
Heterogeneity and Learning in Labor Markets∗

Simon D. Woodcock†

Cornell University
sdw9@cornell.edu

July 3, 2003

∗This document reports the results of research and analysis undertaken by the U.S. Census Bureau
staff. It has undergone a Census Bureau review more limited in scope than that given to official Census
Bureau publications. This research is a part of the U.S. Census Bureau’s Longitudinal Employer-Household
Dynamics Program (LEHD), which is partially supported by the National Science Foundation Grant SES-
9978093 to Cornell University (Cornell Institute for Social and Economic Research), the National Institute
on Aging, and the Alfred P. Sloan Foundation. The views expressed herein are attributable only to the
author and do not represent the views of the U.S. Census Bureau, its program sponsors or data providers.
Some or all of the data used in this paper are confidential data from the LEHD Program. The U.S. Census
Bureau is preparing to support external researchers’ use of these data; please contact U.S. Census Bureau,
LEHD Program, Demographic Surveys Division, FOB 3, Room 2138, 4700 Silver Hill Rd., Suitland, MD
20233, USA.

†I would like to thank John M. Abowd, David Easley, George Jakubson, Robert Shimer, Martha Stinson,
members of the LEHD program staff, and seminar participants at the 2002 CEA meetings, Cornell University,
the University of Western Ontario, Simon Fraser University, the University of Washington, RAND, the Fed-
eral Reserve Bank of Atlanta, the University of Wisconsin-Madison, Queen’s University, McGill University,
and the University of Montreal for helpful comments on earlier versions of this paper.

1



Abstract

I develop a matching model with heterogeneous workers, firms, and worker-firm
matches, and apply it to longitudinal linked data on employers and employees. Workers
vary in their marginal product when employed. Firms vary in their marginal product
and cost of maintaining a vacancy. The marginal product of a worker-firm match also
depends on a match-specific interaction between worker and firm that I call match
quality. Agents have complete information about worker and firm heterogeneity, and
symmetric but incomplete information about match quality. They learn its value slowly
by observing production outcomes. There are two key results. First, under a Nash
bargain, the equilibrium wage is linear in a person-specific component, a firm-specific
component, and the posterior mean of beliefs about match quality. Second, in each
period the optimal separation policy is characterized by a reservation level of beliefs
about match quality. The reservation value varies across workers and firms, and is
monotone in job tenure. These results have several implications for empirical work.
The first implies that residuals within a worker-firm match are a martingale; the second
implies the distribution of earnings is truncated.

I test predictions from the matching model using data from the Longitudinal
Employer-Household Dynamics (LEHD) Program at the US Census Bureau. I present
both fixed and mixed model specifications of the equilibrium wage function, taking
account of structural aspects implied by the learning process. In the most general
specification, earnings residuals have a completely unstructured covariance within a
worker-firm match. I estimate structural parameters of the matching model, and test
the martingale structure implied by the learning process. I find considerable support
for the matching model in these data.
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1 Introduction

It has long been recognized that observationally indistinguishable workers employed in seem-
ingly identical firms earn different wages and have vastly different employment histories.
Typically, observable worker and firm characteristics explain only about 30 percent of wage
variation. Numerous authors have addressed this issue from a wide variety of perspectives.
One branch of early empirical work focused on the role of unobserved heterogeneity on the
part of workers as a determinant of employment outcomes. Another considered the impor-
tance of unobserved heterogeneity on the part of firms. Recent advances in the creation
and analysis of longitudinal linked data on employers and employees have brought together
these diverse literatures, and spawned a new one that examines the relative importance of
unobserved worker and firm heterogeneity as determinants of employment outcomes, e.g.,
Abowd et al. (1999), and Abowd et al. (2002). This work has shown that most of the wage
dispersion not explained by observable characteristics can be attributed to unmeasured char-
acteristics of workers and firms. Does this reflect productivity differences, rent-sharing, or
something else?

The purpose of this paper is twofold. The first is to provide a theoretical context in
which to conceptualize the source of worker and firm differences, and their role in determining
employment outcomes. To this end, I present a matching model with heterogeneous workers,
heterogeneous firms, and heterogeneous worker-firm interactions. Workers and firms are
imperfectly informed about the location of worker, firm, and match types. This precludes
the optimal assignment of workers to firms. I endogenize employment mobility via a learning
process. Workers and firms learn about the quality of a match by observing production
outcomes. I show that the Nash-bargained equilibrium wage is linear in a person-specific
component, a firm-specific component, and the posterior mean of beliefs about match quality.
The optimal separation policy is of the reservation-wage type: workers and firms share a
common reservation value of beliefs about match quality. The employment relation persists
only so long as beliefs lie above this reservation value. Like most learning models, this
reservation value reflects the option value of employment and increases with tenure. Unlike
models with homogeneous agents, its value varies across employment matches.

The second goal of this paper is to extend the empirical literature on heterogeneity and
labor markets. I apply the matching model to longitudinal linked data on employers and
employees. I present both fixed and mixed model specifications of the equilibrium wage
function predicted by the matching model, taking account of structural aspects implied
by the learning process. Specifically, the learning process implies that the distribution of
observed earnings is truncated, and that earnings residuals within a worker-firm match are
a martingale. The latter implies a specific covariance structure for earnings residuals. In the
most general empirical specification, I allow wage residuals to have a completely unstructured
covariance within-match. I then fit the martingale structure to an estimate of the within-
match residual covariance, and test the learning hypothesis. I find considerable support for
these and other predictions of the matching model in the data.

The matching model is related to several established literatures. The first is the literature
on search and matching with heterogeneous agents. A recent survey is Burdett and Coles
(1999). In general, work in this area has focused on economies with heterogeneous workers
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and heterogeneous worker-firm matches.1 Typically firms employ only a single worker. Thus
there is no need to separately model heterogeneity at the firm and match level. In contrast,
I model an economy in which firms employ many workers, and introduce an exogenous
firm-specific technology that affects the marginal product of all its employees. A similar
approach is taken by Postel-Vinay and Robin (2002), who present a dynamic search model
with heterogeneous workers and firms that employ many workers. Unlike the model presented
here, their workers are equally productive in every firm. Their work is exceptional, however,
in its empirical application of the search model to longitudinal linked data.

A second related literature concerns learning in labor markets. Work in this area has
provided new interpretations of important characteristics of labor market data, such as
the returns to tenure and the relationship between earnings dispersion and labor market
experience. The seminal Jovanovic (1979) matching model considered the case where identical
workers and firms learn about the quality of a match. Flinn (1986) extends the Jovanovic
(1979) model to the case of observably heterogeneous workers in discrete time. Moscarini
(2002) develops a related model in continuous time. Harris and Holmstrom (1982) and
Farber and Gibbons (1996) present models where workers and firms learn about a worker’s
unobservable ability, which is correlated with observable characteristics. Gibbons et al.
(2002) extend this framework to the case of an economy with heterogeneous sectors (e.g.,
occupation or industry), and where workers exhibit comparative advantage in some sectors.

The empirical portion of the paper draws heavily on recent work by Abowd et al. (1999),
Abowd and Kramarz (1999), and Abowd et al. (2002), and the extensive statistical literature
on mixed models. Abowd et al. (1999) and Abowd et al. (2002) develop and estimate linear
wage models with fixed person and firm effects. Abowd and Kramarz (1999) describe but
do not estimate the mixed model specification where person and firm effects are treated as
random. Excellent references on mixed model theory are Searle et al. (1992) and McCulloch
and Searle (2001).

The remainder of the paper is structured as follows. I present the matching model in
Section 2. In Section 3, I develop the econometric specification. I give a detailed description
of the data in Section 4. I present the results in Section 5 and conclude in Section 6.

2 A Matching Model with Heterogeneous Workers,

Firms, and Worker-Firm Matches

The economy is populated by a continuum of infinitely-lived workers of measure one. There
is a continuum of firms of measure φ. All agents are risk neutral and share the common
discount factor 0 < β < 1. Time is discrete.

In each period, workers are endowed with a single indivisible unit of labor that they
supply to production at home or at a firm. Workers vary in their marginal productivity
when employed, denoted a ∈ [a, a]. I refer to a as worker quality. Assume

a ∼ Fa iid across workers (1)

1Examples include Stern (1990), Sattinger (1995), Shimer and Smith (2000), and Shimer and Smith
(2001). Albrecht and Vroman (2002), Gautier (2000), and Kohns (2000) develop models with exogenous
heterogeneity on one side of the market, and endogenous heterogeneity on the other.

4



where Fa is a probability distribution with zero mean, known to all agents. Assume a is
exogenous, known to the worker, and observed by the firm when the worker and firm meet.
Note a is not a choice variable, and there is no human capital accumulation over the life
cycle. Unemployed workers receive income h ∈ R from home production.2 Workers seek to
maximize the expected present value of wages.

Firms employ many workers. They operate in a competitive output market and produce
a homogeneous good. The price of output is normalized to 1. Firms can only produce output
when matched with workers. Firms seek to maximize the expected net revenues of a match:
the expected value of output minus a wage payment to the worker.

Firms are heterogeneous along two dimensions. They vary in their technology, which
determines the marginal productivity of all their employees, denoted b ∈

[
b, b
]
; and their

cost of opening a vacancy, denoted k > 0. Assume

b, k ∼ Fb,k iid across firms (2)

where Fb,k is a probability distribution known to all agents. Without loss of generality,
assume E [b] = 0. I refer to b as firm quality. Assume that firms know their own values of b
and k, and that these are observed by the worker when the worker and firm meet. Both b
and k are exogenous. Firms incur cost κ (l) to hire l workers in the current period. Assume
κ is continuous, increasing, and convex.

The marginal productivity of worker a when employed at firm b depends not only on
worker and firm quality, but also on a worker- and firm-specific interaction that I call match
quality and denote c. Assume

c ∼ N
(
0, σ2

c

)
iid across matches. (3)

Let Fc denote the normal distribution function in (3) . The normality assumption follows
Jovanovic (1979) and others and is required to obtain a closed form solution for beliefs.

Match quality c is unobserved by either the worker or the firm. They learn its value
slowly. When the worker and firm first meet, they observe a noisy signal of match quality
x = c+ z where

z ∼ N
(
0, σ2

z

)
iid across matches. (4)

Let Fz denote the normal distribution function in (4) . The worker and firm form beliefs about
the value of c on the basis of a common prior and the signal x. They subsequently update
their beliefs about c on the basis of output realizations. Prior beliefs and the updating process
are discussed in Section 2.1. Note that information is incomplete, since c is unobserved, but
is symmetric. That is, the worker and firm both know a, b, and k, and have common beliefs
about c at every point in time.

Output is produced according to the constant returns to scale production function:

qτ = µ+ a+ b+ c+ eτ (5)

2Assume for simplicity that h includes all search costs, the value of leisure, etc. Allowing h to vary across
individuals does not change any of the key theoretical results. However it changes the interpretation of the
person-specific component of wages (Section 2.2.3), the person-specific term in the reservation level of beliefs
(Section 2.2.4), and complicates the comparative static excercise in Section 2.3.
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where τ indexes tenure (the duration of the match), µ is the grand mean of productivity
(known to all agents), and eτ is a match-specific idiosyncratic shock. Assume

eτ ∼ N
(
0, σ2

e

)
iid across matches and tenure. (6)

The linear production technology (5) generalizes that of Jovanovic (1979) to the case of
heterogeneous workers and firms in a discrete time setting. Note that there are no aggregate
shocks to productivity, and no human capital accumulation over the life cycle.3 Since a, b,
and µ are known, agents extract the noisy signal of match quality c + eτ from production
outcomes qτ .

Following Flinn (1986), I assume that qτ is bounded. This implies that the random
variables c, z, and eτ have bounded support. Thus the distributional assumptions (3), (4),
and (6) are approximate. Of course the approximation can be made arbitrarily precise by
appropriate choice of support.

Unemployed workers are matched to firms with open vacancies. Search is undirected.
The total number of matches formed in a period is given by m (u, v) where u is the number
of unemployed workers in the economy, and v is the number of open vacancies. Both u and v
are determined endogenously. Assume m is non-decreasing in both u and v. The probability
that a randomly selected unemployed worker will be matched to a firm in the current period
is π ≡ m (u, v) /u. Similarly, the probability that a randomly selected vacancy will be filled
is λ ≡ m (u, v) /v. With a large number of workers and firms, all agents take u and v as
given.

I restrict attention to steady states of the economy. The economy is in steady state when
the end-of-period distribution of type a workers across employment at type (b, k) firms and
across unemployment is constant. The various flow-balance equations that characterize the
steady state are given in Appendix B. An implication of these is that the steady state level
of unemployment u and the steady state number of vacancies v are constant. Hence so are
the steady state values of λ and π.

Within-period timing is as follows:

1. With probability π, unemployed workers are randomly matched to a firm with an open
vacancy. Upon meeting, agents observe a, b, k and the signal x.

2. Workers and firms decide whether or not to continue the match. The decision is based
on all current information about the match: a, b, k and current beliefs about c. The
current period wage wτ is simultaneously determined by a Nash bargain.

3Introducing a publicly-observable stochastic aggregate shock to productivity is a relatively straightfor-
ward generalization. Likewise, introducing a deterministic trend to individual productivity (i.e., an ex-
perience effect) presents no serious complication provided that it is observable by the firm. I omit these
generalizations since they complicate the exposition considerably – both require additional notation and an
additional index of calendar time. However, there is little loss of generality in their omission. The production
function (5) can be viewed as a measure of output net of aggregate shocks and deterministically acquired
human capital. The same is true of the equlibrium wage wτ in (31) and the net value of output qτ − wτ .
That is, in the more general model, the equilibrium wage (see Proposition 1) remains linear in person- and
firm- specific components and in the posterior mean of beliefs, and is linear in the productivity shock and
the experience effect.

6



3a. If agents decide to terminate the match, the worker enters unemployment and receives
h. There are no firing costs.

3b. If agents decide to continue the match, the negotiated wage is paid to the worker and
output qτ is produced. Agents update their beliefs about c.

4. Firms open new vacancies υ at per-vacancy cost k.

Assume that reputational considerations preclude agents from reneging on the agreed-
upon wage payment.

2.1 Beliefs About Match Quality

Assume agents’ prior beliefs about a, b, k, c, z, and eτ are governed by equations (1), (2),
(3), (4), and (6). Recall that the worker’s type a and the firm’s type (b, k) are observed
by both parties when the match forms. Agents update their beliefs about match quality c
using Bayes’ rule when they acquire new information, i.e., upon observing the signal x and
production outcomes qτ .

After observing the signal x, worker and firm posterior beliefs about c are normally
distributed with mean m1 and variance s2

1 where

m1 = x

(
σ2
c

σ2
c + σ2

z

)
(7)

s2
1 =

σ2
cσ

2
z

σ2
c + σ2

z

. (8)

In each subsequent period that the match persists, the worker and firm extract the signal
c+ eτ from observed output qτ . Hence at the beginning of the τ th period of the match (that
is, after observing τ−1 production outcomes), worker and firm posterior beliefs about match
quality are normally distributed with mean mτ and variance s2

τ , where

mτ =

(
mτ−1

s2
τ−1

+
c+ eτ−1

σ2
e

)
/

(
1

s2
τ−1

+
1

σ2
e

)
(9)

1

s2
τ

=
1

s2
τ−1

+
1

σ2
e

. (10)

Clearly the evolution of s2
τ is deterministic and does not depend on the value of the signals

received. At each τ > 0, s2
τ > s2

τ+1. Equation (9) says that the posterior mean of beliefs
mτ is a precision-weighted average of the prior mean mτ−1 and the signal c + eτ−1. Since
the precision of signals (1/σ2

e) is constant but the precision of beliefs (1/s2
τ ) increases with

tenure, it follows that each new signal is given successively smaller weight in the updating
process. Asymptotically, beliefs converge to point mass at true match quality. That is,

lim
τ→∞

mτ = c (11)

lim
τ→∞

s2
τ = 0 (12)
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which is a standard result for Bayesian learnings with “correct” priors (see e.g., Blume and
Easley (1998)).

In what follows, it will be of interest to describe the distribution of beliefs in the popu-
lation. It is easy to show that

mτ ∼ N (0, Vτ ) (13)

Vτ = s2
τσ

2
c

(
1

σ2
z

+
τ − 1

σ2
e

)
. (14)

With a little algebra, one can show Vτ+1 > Vτ for all τ > 0. That is, the variance of the
posterior mean of beliefs about match quality increases with the number of signals received.
Another standard result for Bayesian learning with normal priors and signals is

mp|mτ ∼ N (mτ , vp) (15)

vp =
s4
τ (p− τ)

s2
τ (p− τ) + σ2

e

(16)

for any p > τ. Note that (15) implies the posterior mean of beliefs is a martingale. Condi-
tional on current information, expectations about future realizations of the random variable
mτ are equal to its current value.

2.2 Match Formation, Duration, and Wages

In each period, wages are determined by a Nash bargain between the worker and the firm.
Since the Nash bargain is efficient, in each period the match continues only if the expected
joint surplus of the match is nonnegative. Expectations are taken with respect to tenure τ
beliefs about match quality, conditional on the worker’s type a and the firm’s type (b, k). It
follows that the equilibrium wage maps tenure τ information about the match (a, b, k,mτ , s

2
τ )

into a payment from the firm to the worker.
Let Jτ denote the worker’s value of employment at tenure τ . Let U denote the value of

the worker’s outside option (unemployment). Let Πτ denote the firm’s value of employment
at tenure τ , and let V denote the value of the firm’s outside option (a vacancy). In the
steady state, U and V are constant. At tenure τ , the match continues if and only if

Jτ + Πτ ≥ U + V. (17)

When (17) is satisfied, the equilibrium wage wτ solves the Nash bargaining condition

Jτ − U = δ [Jτ + Πτ − U − V ] (18)

or equivalently,
(1− δ) (Jτ − U) = δ (Πτ − V ) (19)

where δ is the worker’s exogenous share of the joint surplus.
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2.2.1 The Worker’s Value of Employment and Unemployment

The worker’s expected value of employment at wage wτ is

Jτ = wτ + βE
[
max {Jτ+1, U} |mτ , s

2
τ

]
. (20)

For notational simplicity, I omit the implicit conditioning on a, b, k. It is convenient to rewrite
this value net of the value of unemployment, i.e.,

Jτ − U = wτ − (1− β)U + βE
[
max {Jτ+1 − U, 0} |mτ , s

2
τ

]
. (21)

The steady state value of being unemployed today and behaving optimally thereafter is

U = h+ βπ

∫ b

b

J0dF
∗
b + β (1− π)U (22)

where π is the steady state probability that an unemployed worker is matched to a firm, F ∗b
is the steady state distribution of firm types among open vacancies defined in Appendix B,
and

J0 = E
[
max {J1, U} |0, σ2

c + σ2
z

]
(23)

is the expected value of employment prior to observing the initial signal of match quality.

2.2.2 Vacancies and The Firm’s Value of Employment

I now turn to the firm’s value of employment. The firm’s value of employing a worker at
wage wτ is today’s expected net revenues plus the discounted expected value of employment
next period. Thus,

Πτ = E
[
qτ |mτ , s

2
τ

]
− wτ + βE

[
max {Πτ+1, V } |mτ , s

2
τ

]
= µ+ a+ b+mτ − wτ + βE

[
max {Πτ+1, V } |mτ , s

2
τ

]
. (24)

It follows that

Πτ − V = µ+ a+ b+mτ − wτ − (1− β)V + βE
[
max {Πτ+1 − V, 0} |mτ , s

2
τ

]
. (25)

The production technology (5) implies that the firm’s employees produce independently
of one another. As a consequence, in each period the firm’s decision to open vacancies is
a static one. The number of hires today has no dynamic consequences for future hiring or
productivity. When a firm opens υ vacancies, we can model the number l that are filled as
a binomial process. The number of vacancies opened by a type (b, k) firm in each period
solves4

max
υ∈N

υ∑
l=0

(
υ

l

)
λl (1− λ)υ−l

[
l

∫ a

a

Π0dF
∗
a − κ (l)

]
− kυ (26)

where λ is the steady state probability that a vacancy is filled, F ∗a is the steady state distri-
bution of unemployed worker types defined in Appendix B, and

Π0 = E
[
max {Π1, V } |0, σ2

c + σ2
z

]
(27)

4This approach to modeling vacancies follows Nagypal (2000).
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is the expected present value of net revenues from a match before observing the initial signal
of match quality.

Note that firm size (employment) is indeterminate. However, increasing and convex
hiring costs κ guarantee the solution to (26) is well defined and the number of vacancies
opened in any period by the firm is finite. I derive the average steady state employment of
a type (b, k) firm in Appendix B.

The equilibrium value of a vacancy satisfies V = 0. Since firms are free to open vacancies,
they open them until there is no further benefit to doing so. Equivalently, since hiring costs
are sunk there are no resources freed up by terminating an employment relationship. Thus
the alternative value of a vacancy is zero.

2.2.3 The Equilibrium Wage

With expressions for the value functions in hand it is a simple matter to solve for the
equilibrium wage. The equilibrium wage takes a remarkably simple form, summarized in
Proposition 1.

Proposition 1 (Equilibrium Wage) At each tenure τ > 0, the equilibrium wage wτ is
linear in person- and firm-specific components, linear in mτ , and independent of s2

τ .

Proof. Substituting (21) and (25) into the Nash bargaining condition (19) we obtain

(1− δ)
{
wτ − (1− β)U + βE

[
max {Jτ+1 − U, 0} |mτ , s

2
τ

]}
= δ

{
µ+ a+ b+mτ − wτ − (1− β)V + βE

[
max {Πτ+1 − V, 0} |mτ , s

2
τ

]}
. (28)

It follows immediately from (19) that

(1− δ)E
[
max {Jτ+1 − U, 0} |mτ , s

2
τ

]
= δE

[
max {Πτ+1 − V, 0} |mτ , s

2
τ

]
(29)

and thus

(1− δ) {wτ − (1− β)U} = δ {µ+ a+ b+mτ − wτ − (1− β)V } . (30)

Rearranging,
wτ = δµ+ θ + ψ + δmτ (31)

where

θ = δa+ (1− δ) (1− β)U (32)

ψ = δb− δ (1− β)V (33)

= δb

upon imposing the equilibrium condition V = 0.
The linear wage structure in (31) is at the core of the empirical strategy developed in

Section 3. In related work, Abowd et al. (1999) present an empirical specification for
earnings with fixed worker and firm effects. I thus refer to θ and ψ as empirical person and
firm effects, respectively. The model thus far provides a behavioral interpretation to such

10



empirical constructs. Equation (33) illustrates that the firm effect is simply the worker’s share
δ of the firm’s contribution to match surplus. It reflects the firm’s productivity parameter b.
Rewriting equation (32) as θ = δ (a− (1− β)U) + (1− β)U demonstrates that the person
effect is the worker’s share of his contribution to the joint surplus, plus compensation for
forgoing his next-best alternative. It reflects the worker’s productivity parameter a.

Equation (31) also demonstrates that the equilibrium wage is linear in the posterior
mean of beliefs about match quality and independent of the posterior variance of beliefs. It
is worthwhile relating this result to the Jovanovic (1979) equilibrium wage. In his model,
workers and firms are ex-ante identical but matches are heterogeneous, and production
occurs according to the continuous time analog of (5) with a = b = 0. The Jovanovic
(1979) equilibrium wage is equal to expected marginal product, which in his case is also the
posterior mean of beliefs about match quality. His result relies on the assumption that firms
earn zero expected profit. Similar to Jovanovic’s model, the equilibrium wage (31) is linear
in expected marginal product, µ+a+b+mτ and in the posterior mean of beliefs about match
quality, mτ . A stronger result is that when workers capture all the quasi–rents associated
with the match, i.e., as δ → 1 (so that firms earn zero expected profit), the equilibrium wage
converges to w′τ = µ+ a+ b+mτ . That is, the equilibrium wage converges to the expected
marginal product of the match. In this sense, the Jovanovic (1979) equilibrium wage is a
special case of (31).

2.2.4 The Separation Decision

Under the Nash bargaining framework, the separation decision is made jointly by the worker
and firm. The match persists as long as the joint net surplus accruing to employment is
non-negative. To characterize the separation decision, it is useful to introduce the Bellman
equation that characterizes the joint value of employment, Wτ .

Wτ = max {Jτ + Πτ , U + V }
= max

{
µ+ a+ b+mτ + βE

[
Wτ+1|mτ , s

2
τ

]
, U
}

(34)

given the equilibrium condition V = 0. Lemma 2 establishes a fundamental property of Wτ ,
namely that it is increasing in the posterior mean of beliefs about match quality. The proof
is rather lengthy, and relegated to Appendix A.

Lemma 2 At each tenure τ > 0, the joint value of employment, Wτ , is increasing in mτ .

The proof of Lemma 2 shows that the first argument of the max operator in (34) is
strictly increasing in mτ . Since the second argument is constant, it follows that the optimal
separation policy is of the reservation-wage type.

Proposition 3 (Optimal Separation Policy) At each tenure τ > 0, the optimal separa-
tion policy is characterized by a reservation level of beliefs about match quality, m̄τ . Specifi-
cally, the optimal policy is to separate if mτ < m̄τ , and continue if mτ ≥ m̄τ .

Proof. Follows immediately from Lemma 2.
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The reservation level of beliefs about match quality is the value of mτ at which workers
and firms are indifferent between continuing the employment relation and terminating it.
Thus m̄τ satisfies the Nash continuation condition (17) with equality. Equivalently, it is the
value of mτ that equates the arguments of the max function in (34). Thus m̄τ is implicitly
defined by

m̄τ = U − µ− a− b− βE
[
Wτ+1|m̄τ , s

2
τ

]
= U − µ− a− b− β

∫
Wτ+1dF

(
mτ+1|m̄τ , s

2
τ+1

)
(35)

where F
(
mτ+1|m̄τ , s

2
τ+1

)
is the normal distribution (15) with mean m̄τ .

It is of considerable interest to characterize how m̄τ varies with tenure. The proof of
Lemma 4 is in Appendix A.

Lemma 4 The expected joint value of employment at τ + 1 given tenure τ information,
E [Wτ+1|mτ , s

2
τ ] , is increasing in s2

τ for all τ > 0.

Proposition 5 (Monotonicity) The reservation value of beliefs about match quality is
monotone in tenure, i.e., m̄τ+1 ≥ m̄τ for all τ > 0.

Proof. Suppose not, so that m̄τ+1 < m̄τ . Consider

m̄τ+1 − m̄τ = β

∫
Wτ+1dF

(
mτ+1|m̄τ , s

2
τ

)
− β

∫
Wτ+2dF

(
mτ+2|m̄τ+1, s

2
τ+1

)
. (36)

We know from the proof of Lemma 2 that
∫
Wτ+1dF (mτ+1|m̄τ , s

2
τ ) is increasing in m̄τ

(see equation (75) in Appendix A). Lemma 4 established that
∫
Wτ+1dF (mτ+1|m̄τ , s

2
τ ) is

increasing in s2
τ . Since s2

τ+1 < s2
τ for all τ > 0 and m̄τ+1 < m̄τ by hypothesis, the right hand

side of (36) is nonnegative. But the left hand side of (36) is negative, a contradiction.
The result in Proposition 5 is standard in equilibrium learning models, e.g. Jovanovic

(1979) and Flinn (1986). It reflects the option value of employment. Early in the match,
when beliefs about match quality are imprecise, workers and firms are willing to enter into
employment relationships of low perceived quality because their point estimate mτ may be
inaccurate. Later, as the worker and firm acquire more information their beliefs become
increasingly precise. As a consequence, the worker and firm become increasingly selective
about admissible values of match quality, and the reservation value increases. Asymptoti-
cally, limτ→∞ m̄τ = (1− β)U − µ− a− b.

2.3 Comparative Statics

In this section, I explore how separation behavior varies across workers and firms. This is
completely characterized by variation in the reservation value of beliefs about match quality.
The key result is summarized in Proposition 6. The Proof is in Appendix A.

Proposition 6 Increasing worker or firm quality reduces the reservation value of beliefs
about match quality at each tenure. That is for each τ > 0,

∂m̄τ

∂a
< 0,

∂m̄τ

∂b
< 0. (37)
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This result is fairly intuitive. Consider the varying the productivity parameter b common
to all employees of a firm. Variation in b has no effect on the firm’s outside option V, since
V = 0 in equilibrium. Thus variation in b only affects the value of remaining in the match,
Jτ + Πτ . Increasing b increases the wage wτ (via ψ), and hence increases Jτ . Likewise, it
increases the net value of output (qτ − wτ ) and hence Πτ . Thus an increase in b increases
the joint value of remaining in the match, and at each tenure makes the worker and firm
less selective about the set of acceptable values of match quality. Having found a “good”
firm, the worker is less picky about whether or not it is a “good” match. Since all workers
are highly productive at “good” firms, the firm is less picky about whether they are “good”
matches.

Similar intuition explains why an increase in a reduces the reservation value of beliefs
about match quality, with one complication. Increasing a increases the worker’s productivity
not only in the current match, but in all matches. That is, the value of the worker’s outside
option is increasing in a (see Lemma 8 in Appendix A). Nevertheless, search frictions
ensure that increasing a increases the value of continuing the match more than the value of
terminating it.5 Furthermore, having found a “good” employee, the firm is less picky about
whether or not she is a “good” match.

2.4 Discussion

Before turning to empirics, it is useful to discuss various predictions that stem from the
matching model with regards to equilibrium wages, mobility, turnover, and firm size. We
will look for the empirical counterparts to these theoretical predictions when assessing the
empirical specification.

First and foremost, the model predicts that wages are linear in person- and firm-specific
components. In keeping with the empirical literature (e.g., Abowd et al. (1999)), I have called
these empirical person and firm effects, and denoted them θ and ψ. They are functions of
the random variables a, b, and k, and thus are random variables themselves.

Equilibrium wages are also linear in the posterior mean beliefs about match quality
mτ . This has a number of implications for the equilibrium distribution of wages and their
evolution within a worker-firm match. First, since mτ is a normally distributed random
variable, conditional on the person and firm effects, equilibrium wages are as well. Second,
since the person and firm effects do not vary within a worker-firm match, all within-match
wage variation is due to the evolution of beliefs about match quality. Since beliefs evolve
according to Bayes’ rule, mτ is a martingale. Thus the model predicts that within a worker-
firm match, wages are also a martingale.6 The martingale property is common to most
learning models, see e.g. Farber and Gibbons (1996) and Gibbons et al. (2002).7 Its

5That is, using the result of Lemma 8 in Appendix A, it is easy to show that

∂Jτ

∂a
>
∂U

∂a
. (38)

6Due to the selection process that terminates a match if mτ < m̄τ , observed wages within a worker-firm
match are a submartingale.

7In these two papers, firms and matches are homogeneous. Workers vary in their ability, which is unknown
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econometric implications are discussed in Section 3.4. However, the martingale structure
also has a number of economic consequences. First, recalling the definition of mτ in equation
(9), shocks to beliefs about match quality (z and eτ ) are permanent. Within a worker-firm
match, these are the only shocks to wages. Thus wage shocks are permanent. Second, on
average, wage shocks diminish with tenure. To see this, recall that mτ is a precision-weighted
average of mτ−1 and the signal c+ eτ . The precision of the signals (shocks) is constant, but
the precision of beliefs increases with tenure. Thus as agents learn about match quality, each
successive signal (shock) receives smaller weight in the updating process. Asymptotically,
new signals receive zero weight. Third, within a worker-firm match the variance of earnings
increases with tenure. This arises because the variance of mτ increases with the number of
observed signals. This may seem at odds with the notion that beliefs about match quality
become increasingly precise with tenure. However, it is important to distinguish between the
variance of beliefs, s2

τ , that declines with tenure, and the variance of the posterior mean of
beliefs, Vτ , that increases with tenure.8 That the variance of earnings increases with tenure
is broadly consistent with the empirical observation that the variance of earnings increases
with labor market experience (see e.g., Mincer (1974)).

Section 2.3 presented comparative statics that characterize how separation behavior be-
havior varies with worker and firm quality, a and b. The empirical exercise that follows
focuses on estimation of the empirical person and firm effects θ and ψ. Thus it is of interest
to obtain predictions regarding the relationship between separation behavior and θ and ψ.
It is a simple matter to show ∂a

∂θ
> 0 and ∂b

∂ψ
> 0. Combining this with (37), at each τ > 0

we have

∂m̄τ

∂ψ
< 0 (39)

∂m̄τ

∂θ
< 0. (40)

Note that lower values of m̄τ are on average associated with longer job duration. Thus
equation (39) implies that on average, jobs last longer at firms with larger firm effects ψ. A
corollary is that firms with larger values of ψ experience less turnover than firms with smaller
values. Since firms with large firm effects are better able to retain workers, ceteris paribus
these firms have larger employment at any point in time than firms with smaller values.
This is consistent with Brown and Medoff (1989) and others who find that conditional on
observable worker and firm characteristics, larger firms pay higher wages than smaller firms.
Abowd et al. (1999) find that estimated firm-size wage effects are well explained by firm-size
category average person and firm effects.9

to either worker or firm. All agents in the economy observe signals of the worker’s ability, and update their
beliefs using Bayes’ rule. Thus, individual earnings are a martingale, both within and between worker-firm
matches. Farber and Gibbons (1996) test this hypothesis using data from the NLSY, with mixed results.

8Intuitively, the variance of beliefs s2τ declines with tenure because agents learn: as they acquire more
information about true match quality, their beliefs become increasingly precise. In contrast, the prior variance
of the mean of beliefs is zero: all agents have common priors about match quality. As information is acquired,
the posterior mean of beliefs converges to the true match quality. It follows that Vτ increases from its prior
value (zero) to its asymptotic value (σ2

c) as tenure increases.
9However, they note that person effects are much more important in explaining firm-size wage effects

than are firm effects.
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Similar predictions arise from equation (40). On average, workers with large person effects
enjoy longer job duration and change jobs less often. Lillard (1999) finds a comparable result
in NLSY data.10 Combining (39) and (40), we should expect to find a positive duration-
weighted correlation between estimates of θ and ψ. Abowd et al. (2003) find evidence
consistent with this prediction in LEHD data. Abowd et al. (2002) find the reverse in
France and in the State of Washington.

The model also predicts that in a cross-section, workers with longer job tenure earn higher
wages on average than their counterparts with lower tenure. This is consistent with styl-
ized facts about labor markets and numerous empirical findings, e.g., Mincer and Jovanovic
(1981), Bartel and Borjas (1981), and many others.11 The result stems from several obser-
vations. First, larger values of θ and ψ are associated with higher wages and longer expected
duration. Second, conditional on θ and ψ, better matches last longer and are associated
with larger values of mτ and hence higher wages. This effect is reinforced by monotonicity
in tenure of the reservation level of beliefs about match quality.

Finally, for the empirical specification that follows, it is important to note that wages
and employment duration are simultaneously determined. The posterior mean of beliefs
about match quality mτ enters the equilibrium wage, but the employment relationship only
continues as long as mτ ≥ m̄τ . Thus the observed distribution of earnings is truncated:
earnings outcomes are only observed if wτ ≥ µ+ θ + ψ + m̄τ .

3 Empirical Specification

The empirical specification is based primarily on the equilibrium wage function (31). It takes
account of the wage and mobility dynamics implied by the learning process. For clarity, I
develop the empirical specification in stages.

Abowd et al. (1999), Abowd et al. (2002), and others have estimated earnings models
with fixed person and firm effects. Since the equilibrium wage (31) is linear in person- and
firm- specific components I adopt a similar approach. However, I depart from earlier work
in two important respects.

The first departure is to focus primarily on a mixed model specification, where the person
and firm effects are treated as random. There are a number of compelling reasons to do so.
First, as shown in Section 3.2.2, least squares estimates of the fixed effects are a special

10Lillard (1999) estimates simultaneous wage and job turnover hazard equations with random person and
job effects. His job effect is nested within the person effect and thus is not directly comparable to the firm
effects discussed here. He finds a negative correlation between the person effect in the wage equation and
the person effect in the job turnover hazard equation: higher values of the person-wage effect are associated
with a reduced turnover hazard. Using a similar specification, Stinson (2002) obtains the same result in 1990
SIPP data, but finds the reverse in 1996 SIPP data.

11More recent research has focused on the causal link between job tenure and earnings growth using
longitudinal data. Examples include Abraham and Farber (1987), Altonji and Shakotko (1987), and Topel
and Ward (1992). Recent studies using longitudinal linked data include Dostie (2002) and Stinson (2002).

In the context of this debate, the learning model implies that conditional on person and firm effects, all
returns to tenure are due to accumulated knowledge about match quality. This accumulated knowledge is
a form of match-specific human capital. It is not “productive” human capital since productivity is constant
over the duration of the match. Nevertheless, it has value: it takes time to accumulate, and is lost when the
match terminates.
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case of mixed model estimates. Second, the theoretical person and firm effects θ and ψ are
random variables. This suggests treating their empirical counterparts similarly. Third, with
a large number of person and firm effects to estimate, it is their distribution that is of primary
interest. Their realizations for specific workers and firms are of secondary importance. A
mixed model specification estimates parameters of the (assumed) distribution of the random
effects. One can also recover estimates of the realized values of the random effects, called Best
Linear Unbiased Predictors (BLUPs). Fourth, the data can be considered a random sample
of workers and firms from a larger population, and the person and firm effects a random
sample from a larger population of values. When making inferences about a population of
effects from which those in the data are considered a random sample, Searle et al. (1992)
argue in favor of treating the effects as random. Finally, a mixed model specification permits
out-of-sample prediction of person and firm effects.

The second important departure from earlier empirical work is to explicitly account for
the structure implied by the learning process on earnings residuals. Recall the equilibrium
wage function (31), into which θ, ψ, and δmτ enter linearly. If we ignore for a moment the
selection process that terminates an employment match whenever mτ < m̄τ , it is a simple
matter to show E (mτθ) = E (mτψ) = 0 for all τ > 0. That is, signals of match quality
are drawn independently of the person and firm effects. Furthermore, mτ is a normally
distributed random variable with zero expected value in the population, i.i.d across matches,
and satisfying

E [mτmτ ′ ] = Vτ for τ ≤ τ ′ (41)

within matches, where Vτ is the unconditional variance of mτ defined in equation (14).12

Taken together, these facts suggest treating the term δmτ in (31) as a normally distributed
statistical residual with a within-match covariance structure defined by 41.

Of course the learning model of the previous Section predicts a selection process that com-
plicates matters slightly. Since worker-firm matches terminate when mτ < m̄τ , the observed
distribution of earnings residuals δmτ (and hence earnings) is truncated. Furthermore, since
∂m̄τ

∂θ
< 0 and ∂m̄τ

∂ψ
< 0, the selection process induces a negative correlation between mτ and

the person and firm effects. I correct for truncation in the distribution of observed earnings
residuals using standard methods. The corrected residual is uncorrelated with the person
and firm effects by construction. The correction yields consistent estimates of the effects of
interest.

Let i = 1, ..., N index workers and j = 1, ..., J index firms. The empirical specification
for earnings is

wijt = µ+ x′itβ + θi + ψj + εijt (42)

where wijt is a measure of earnings; µ is the grand mean of earnings; xit is a vector of
observable time-varying individual characteristics;13 β is a parameter vector; θi is the pure

12The fact that Cov(mτ ,mτ ′) = V ar (mτ ) for τ ≤ τ ′ is a standard property of Bayesian learning. The only
information common to mτ and mτ ′ is the set of signals observed through tenure τ . Hence their covariance
is the variance of the common signals. This is discussed further in Section 3.4.

13There are no explicitly time-varying covariates in the theoretical model of the previous Section. However,
as noted in footnote 3, if we generalize the model to include deterministic human capital accumulation and
publicly-observable stochastic aggregate productivity shocks, the equilbrium wage is linear in θ, ψ, mτ , an
additive experience effect, and time effects. The vector xit includes a polynomial in experience (interacted
with sex) and time effects. There is no conceptual leap required to include these in (42).
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person effect; ψj is the pure firm effect of the firm j at which worker i was employed in t
(denoted j = J (i, t)); and εijt is a statistical residual. Note that in Section 2, τ was used
to index tenure; here t indexes calendar time.14 We can further decompose the pure person
effect θi into components observed and unobserved by the econometrician as

θi = αi + u′iη (43)

where αi is the unobserved component of the person effect; ui is a vector of time-invariant
person characteristics observed by the econometrician; and η is a parameter vector.15.

Let N∗ denote the total number of observations; q the number of time-varying covariates
including the constant term; and p the number of time-invariant person characteristics.
Rewriting (42) and (43) in matrix notation, we have

w = Xβ + Uη +Dα+ Fψ + ε (44)

where w is the N∗ × 1 vector of earnings outcomes, X is the N∗ × q matrix of time-varying
covariates including the intercept; β is a q × 1 parameter vector; U is the N∗ × p matrix of
time-invariant person characteristics; η is a p× 1 parameter vector; D is the N∗ ×N design
matrix of the unobserved component of the person effect; α is the N × 1 vector of person
effects; F is the N∗ × J design matrix of the firm effects; ψ is the J × 1 vector of pure firm
effects; and ε is the N∗ × 1 vector of residuals.

Abowd and Kramarz (1999) discuss fixed and mixed model specifications of equations
like (44). A fixed model specification treats all the effects β, η, α, and ψ as fixed. A mixed
model specification treats some of the effects as random. I consider the case where β and η
are fixed, and α and ψ are random. I estimate both fixed and mixed model specifications in
what follows, but focus primarily on the mixed model. For completeness, I discuss estimation
of both fixed and mixed model specifications.

3.1 The Fixed Model

The fixed model is completely specified by (44) and the following assumptions on εijt :

E [εijt|i, j, t, x, u] = 0 (45)

E [εε′] = σ2
εIN∗ (46)

where IN∗ is the identity matrix of order N∗. The least squares estimator of β, η, α, and ψ
solves the normal equations

X ′X X ′U X ′D X ′F
U ′X U ′U U ′D U ′F
D′X D′U D′D D′F
F ′X F ′U F ′D F ′F



β
η
α
ψ

 =


X ′w
U ′w
D′w
F ′w

 . (47)

14The inclusion of time-varying covariates xit in (42) necessitates the additional calendar time index t.
Since tenure and calendar time are in general related by a simple function, the tenure index τ is suppressed
to avoid undue notational clutter.

15A similar decomposition could be done on the pure firm effect ψj . This is left for future research.
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In the data described in Section 4, the cross product matrix on the left hand side of (47)
is of sufficiently high dimension to preclude estimation using standard software packages.
Instead, I obtain least squares solutions β̂, η̂, α̂, and ψ̂ using the iterative conjugate gradient
method of Abowd et al. (2002). Their algorithm exploits the sparse structure of the cross
product matrix after blocking on connected groups of workers and firms.16 The resulting
estimates of α and ψ are not unique, since the design matrices D and F are not full rank.
Abowd et al. (2002) discuss identification of the person and firm effects in detail. I apply
their procedure to obtain unique estimates of α and ψ subject to the restriction that their
overall and group means are zero. When there are G connected groups of workers and firms,
this procedure identifies an overall constant term, and a set of N + J − G − 1 person and
firm effects measured as deviations from the overall constant and group-specific means.

3.2 The Mixed Model

In the remainder of this Section, I focus on a mixed model specification based on (44).
The particular specification that I consider treats β and η as fixed, and the unobserved
components of the person and firm effects α and ψ as random. The model is completely
specified by (44) and the assumption α

ψ
ε

 ∼ N

 0
0
0

 ,
 σ2

αIN 0 0
0 σ2

ψIJ 0
0 0 R

 . (48)

It is worth noting that unlike the usual random effects specification considered in the econo-
metric literature, (44) and (48) do not assume that the random effects are orthogonal to the
design (X and U) of the fixed effects (β and η). Such an assumption is almost always vio-
lated in economic data. More general specifications than (48) are technically feasible though
computationally demanding, e.g., allowing for a nonzero correlation between the person and
firm effects. These are left for future research.

I present results for two different parameterizations of the residual covariance R.17 The
simplest of these is R = σ2

εIN∗ . I estimate this specification primarily for comparison with
the fixed model. The second parameterization of R allows for a completely unstructured
residual covariance within a worker-firm match. Let M denote the number of worker-firm
matches in the data, and let τ̄ denote the maximum observed duration of a worker-firm
match. Suppose the data are ordered by t within j within i. In the balanced data case,
where there are τ̄ observations on each worker-firm match, we can write

R = IM ⊗W (49)

where W is the τ̄ × τ̄ positive-semidefinite matrix of within-match residual covariances.18

16See Searle (1987) for a statistical discussion of connectedness. In labor market data, firms are connected
by common employees; workers are connected by common employers. Abowd et al. (2002) develop a
graph-theoretic algorithm for finding connected groups of workers and firms in longitudinal linked employer-
employee data.

17Estimates of a variety of alternate residual covariance structures are available from the author on request.
These include a number of common one and two parameter specifications for the within-match residual
covariance, e.g., AR(1), AR(2), MA(1), MA(2), and ARMA(1,1).

18Symmetry and postive-semidefiniteness are the only restrictions imposed on W during estimation.
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The extension to unbalanced data, where each match between worker i and firm j has
duration τ ij ≤ τ̄ , is fairly straightforward. Define a τ̄×τ ij selection matrix Sij with elements
on the principal diagonal equal to 1, and off-diagonal elements equal to zero.19 Sij selects
those rows and columns of W that correspond to observed earnings outcomes in the match
between worker i and firm j. In the unbalanced data case, the second parameterization of R
is

R = IM ⊗ S ′ijWSij. (50)

3.2.1 REML Estimation of the Mixed Model

Mixed model estimation is discussed at length in Searle et al. (1992) and McCulloch and
Searle (2001). There are three principal methods that can be applied to estimate the vari-
ance components

(
σ2
α, σ

2
ψ

)
and R : ANOVA, Maximum Likelihood (ML), and Restricted

Maximum Likelihood (REML). ANOVA and ML methods are familiar to most economists;
REML less so.20 Since I apply the REML method in this application, it is worth giving it a
brief treatment.

REML is frequently described as maximizing that part of likelihood that is invariant to
the fixed effects (e.g., β and η). More precisely, REML is maximum likelihood on linear
combinations of the dependent variable w, chosen so that the linear combinations do not
contain any of the fixed effects. As Searle et al. (1992, pp. 250-251) show, these linear
combinations are equivalent to residuals obtained after fitting the fixed effects via OLS. The
linear combinations k′w are chosen so that

k′ (Xβ + Uη) = 0 ∀β, η (51)

which implies
k′
[
X U

]
= 0. (52)

Thus k′ projects onto the space orthogonal to
[
X U

]
, and must therefore be of the form

k′ = c′

[
IN∗ −

[
X U

]([ X ′

U ′

] [
X U

])− [ X ′

U ′

]]
(53)

≡ c′MXU (54)

for arbitrary c′, and where A− denotes the generalized inverse of A. When
[
X U

]
has

rank r ≤ q + p, there are only N∗ − r linearly independent vectors k′ satisfying (51).

19For example, if τ̄ = 3 and a match between worker i and firm j lasts for 2 periods,

Sij =

 1 0
0 1
0 0

 .
20REML estimation of mixed models is commonplace in statistical genetics and in the plant and animal

breeding literature. In recent years, REML has in fact become the mixed model estimation method of choice
in these fields, superceding ML and ANOVA.
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Define K ′ = TMXU with rows k′ satisfying (51), and where K ′ and T have full row
rank N∗− r. REML estimation is maximum likelihood on K ′w. For w ∼ N (Xβ + Uη,V) it
follows that

K ′w ∼ N (0, K ′VK) (55)

where V = DD′σ2
α + FF ′σ2

ψ + R is the covariance of earnings implied by (48). The REML
log-likelihood (i.e., the log-likelihood of K ′w) is therefore

logLREML = −1

2
(N∗ − r) log 2π − 1

2
log |K ′VK| − 1

2
w′K (K ′VK)

−1
K ′w. (56)

REML estimates of the variance components and residual covariance have a number of
attractive properties. First, REML estimates are invariant to the choice of K ′.21 Second,
REML estimates are invariant to the value of the fixed effects (i.e., β and η). Third, in the
balanced data case, REML is equivalent to ANOVA.22 Under normality, it thus inherits the
minimum variance unbiased property of the ANOVA estimator.23 Finally, since REML is
based on the maximum likelihood principle, it inherits the consistency, efficiency, asymptotic
normality, and invariance properties of ML.

I estimate the variance components and residual covariance using the ASREML soft-
ware package. ASREML implements the Average Information (AI) algorithm of Gilmour
et al. (1995) to maximize the REML log-likelihood (56). The AI algorithm is a variant of
Fisher scoring. AI uses a computationally convenient average of the expected and observed
information matrices to compute parameter updates during iterative maximization of (56).24

Inference based on REML estimates of the variance components and parameters of the
residual covariance is straightforward. Since REML estimation is just maximum likelihood
on (56), REML likelihood ratio tests (REMLRTs) can be used. In most cases, REMLRTs
are equivalent to standard likelihood ratio tests. The exception is testing for the presence of
some random effect γ.25 The null is σ2

γ = 0. Denote the restricted REML log-likelihood by
logL∗REML. The REMLRT statistic is Λ = −2 (logL∗REML − logLREML) . Since the null puts
σ2
γ on the boundary of the parameter space under the alternative hypothesis, Λ has a non-

standard distribution. Stram and Lee (1994) show the asymptotic distribution of Λ is a 50:50
mixture of a χ2

0 and χ2
1. The approximate p-value of the test is thus 0.5 (1− Pr (χ2

1 ≤ Λ)) .

3.2.2 Estimating the Fixed Effects and Realized Random Effects

A disadvantage of REML estimation is that it provides no means for estimating the fixed
effects β and η. Henderson, in Henderson et al. (1959) derived a system of equations that

21Subject to rows k′ satisfying (51).
22The usual statistical definition of balanced data can be found in Searle (1987). Under this definitions,

longitudinal linked data on employers and employees are balanced if we observe each worker employed at
every firm, and all job spells have the same duration. Clearly, this is not the usual case.

23In contrast, ML estimators of variance components are biased since they do not take into account degrees
of freedom used for estimating the fixed effects.

24The expected information matrix is the inverse of the negative expected Hessian of the REML log-
likelihood (56). The observed information matrix is the inverse of the negative Hessian. The familiar
Newton-Raphson method of maximizing the log-likelihood uses the observed information matrix to compute
parameter updates. The Fisher scoring method uses the expected information for this purpose.

25For example, I test for the presence of an interaction effect between workers, i.e., a “match effect” γij .
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simultaneously yield the BLUE of the fixed effects and BLUP of the random effects for known
values of the variance components and R. These equations have become known as the mixed
model equations or Henderson equations. Define the matrix of variance components

G =

[
σ2
αIN 0
0 σ2

ψIJ

]
. (57)

The mixed model equations are
[
X ′

U ′

]
R−1

[
X U

] [
X ′

U ′

]
R−1

[
D F

][
D′

F ′

]
R−1

[
X U

] [
D′

F ′

]
R−1

[
D F

]
+G−1



β̃
η̃
α̃

ψ̃

 =


[
X ′

U ′

]
R−1w[

D′

F ′

]
R−1w

 (58)

where β̃ and η̃ denote solutions for the fixed effects, and α̃ and ψ̃ denote solutions for the
random effects. In practice, of course, solving (58) requires estimates of R and G. Common
practice, which I apply here, is to use the REML estimates G̃ and R̃ for this purpose.

The BLUPs α̃ and ψ̃ have the following properties. They are best in the sense of mini-
mizing the mean square error of prediction

E

([
α̃

ψ̃

]
−
[
α
ψ

])′
A

([
α̃

ψ̃

]
−
[
α
ψ

])
(59)

where A is any positive definite symmetric matrix. They are linear in w, and unbiased in
the sense E(α̃) = E (α) and E(ψ̃) = E (ψ) .

The mixed model equations make clear the relationship between the fixed and mixed
models. In particular, as G→∞ with R = σ2

εIN∗ , the mixed model equations (58) converge
to the normal equations (47). Thus the mixed model solutions (β̃, η̃, α̃, ψ̃) converge to the
least squares solutions (β̂, η̂, α̂, ψ̂). In this sense the least squares solutions are a special case
of the mixed model solutions.

Equation (58) also makes clear the relationship between the mixed model and the usual
“random effects” specification of Nerlove (1971) and others. In such models, the design
of the random effects is assumed orthogonal to the design of the fixed effects. That is,
X ′D = X ′F = U ′D = U ′F = 0. Thus the off-diagonal blocks of (58) are zero, and we can
solve for β̃ and η̃ independently of α̃ and ψ̃. Furthermore, due to orthogonality the covariance
of the random effects G is subsumed into R. The usual GLS estimator for β̃ and η̃ results.

3.3 Correcting for Residual Truncation

Under the matching model, a match between worker and firm terminates when the point
estimate of match quality mτ falls below the reservation value m̄τ . This implies the distri-
bution of earnings residuals is truncated. Only earnings observations such that mτ ≥ m̄τ

are observed.
If we iterate forward on the definition of m̄τ in (35) we obtain

m̄τ = −µAτ − [a− U (1− β)]Aτ − bAτ −Bτ (60)
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where

Aτ = 1 +
∞∑
s=1

βs
∫ ∞

m̄τ+1

∫ ∞

m̄τ+2

· · ·
∫ ∞

m̄τ+s

dFτ+s · · · dFτ+2dF̄τ+1 (61)

Bτ =
∞∑
s=1

βs
∫ ∞

m̄τ+1

∫ ∞

m̄τ+2

· · ·
∫ ∞

m̄τ+s

mτ+sdFτ+s · · · dFτ+2dF̄τ+1 (62)

where Fτ = F
(
mτ |mτ−1, s

2
τ−1

)
and F̄τ = F

(
mτ |m̄τ−1, s

2
τ−1

)
. In keeping with the empirical

discussion, I now add i and j subscripts to the posterior mean of beliefs about match quality
and its reservation value. To correct earnings residuals for truncation, I approximate (60)
by

m̄ijτ ≈ −µτ − ζ iτ − ξjτ . (63)

Since mijτ ∼ N (0, Vτ ) , under the approximation (63) the marginal probability of observing
the earnings outcome wijτ is

Pr (mijτ ≥ m̄ijτ ) = 1− Φ

(−µτ − ζ iτ − ξjτ

V
1/2
τ

)
= Φ

(
µτ + ζ iτ + ξjτ

V
1/2
τ

)
(64)

where Φ is the standard normal CDF. Then we have

E [wijt|mijτ ≥ m̄ijτ ] = µ+ x′itβ + θi + ψj + V 1/2
τ

φ
(
µτ+ζiτ+ξjτ

V
1/2
τ

)
Φ
(
µτ+ζiτ+ξjτ

V
1/2
τ

)
= µ+ x′itβ + θi + ψj + V 1/2

τ λijτ (65)

where λijτ is the familiar Inverse Mills’ Ratio.
I perform a simple truncation correction based on (64) and (65). I estimate a contin-

uation probit at each tenure level with random person- and firm-specific mobility effects.26

The probits are estimated by Average Information REML applied to the method of Schall
(1991).27 With estimates of the realized random effects ζ̃ it and ξ̃jτ in hand, I construct an

estimate λ̃ijτ of the Inverse Mills’ Ratio term for each observation. To correct for truncation
in the distribution of earnings, I include λ̃ijτ as an additional time-varying covariate in the
earnings equation (42).

3.4 The Learning Hypothesis

Having discussed fixed and mixed model estimation in some detail, I now turn to a testable
hypothesis of the matching model. In the matching model, agents update their beliefs about

26Identification of the random effects required pooling of some probit equations across tenure levels.
27The Schall (1991) method extends standard methods for estimating generalized linear models to the

random effects case. The basic idea is to perform REML on a linearization of the link function Φ. The
process requires an iterative reweighting of the design matrices of fixed and random effects in the linearized
system, see Schall (1991) for details.
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match quality using Bayes’ Rule. Bayesian learning implies a specific structure for the
within-match residual covariance W. Since the empirical residual is εijt = δmijτ , we can
write W = δ2V , where V is the τ̄ × τ̄ within-match covariance of the vector of belief terms
[mij1 · · · mijτ̄ ] .

28 Overlaying V with classical measurement error as in Farber and Gibbons
(1996), Bayesian learning implies

V =


V1 + σ2

u V1 V1 · · · V1

V1 V2 + σ2
u V2 · · · V2

V1 V2 V3 + σ2
u · · · V3

...
...

...
. . .

...
V1 V2 V3 · · · Vτ̄ + σ2

u

 (66)

where σ2
u is the variance of measurement error, and where the elements Vτ of V are the

unconditional variance of mijτ in (14).
Some aspects of V are worthy of note. First, concentrating on the lower triangle of (66),

off-diagonal elements within each column are equal. This is a property of the covariance of
any martingale process, and is quite intuitive. Elements of column τ are Cov (mijτ ,mijτ ′) .
In the lower triangle, τ ≤ τ ′. The common elements in mijτ and mijτ ′ are the signals of
match quality received up to tenure τ . Thus the covariance between mijτ and mijτ ′ is the
variance of the signals received up to tenure τ : V ar (mijτ ) ≡ Vτ . A second aspect of note is
that the diagonal elements of V are greater than off-diagonal elements in the same column
due to measurement error. Finally, it can be shown that Vτ+1 > Vτ . As mentioned in Section
2.4, the prior variance of mijτ is zero: all agents have common priors about match quality.
As agents acquire information, the posterior mean of beliefs converges to true match quality.
Thus Vτ increases from its prior value (zero) to its asymptotic value (σ2

c) as tenure increases.
Consequently in the lower triangle of (66), elements within a row increase in magnitude from
left to right.

Whether or not earnings residuals have the structure implied by (66) is a testable hy-
pothesis. Furthermore, since the structural parameters σ2

c , σ
2
z, and σ2

e enter into each Vτ
they can be recovered from an estimate of the within-match residual covariance. I test the
learning hypothesis and recover the structural parameters and σ2

u using a two-step proce-
dure. The first step is to obtain an estimate of the within-match residual covariance W. I
use the unstructured estimate of the residual covariance W̃ obtained under the mixed model
specification. An estimate of the covariance of elements of W̃ is provided by the relevant
block of the REML Average Information matrix. Following Abowd and Card (1989) and
Farber and Gibbons (1996), the second step is to fit the martingale covariance δ2V to W̃
by minimum distance.29 This yields estimates of the structural parameters up to the factor

28In the unbalanced data case where a match between worker i and firm j lasts τ ij ≤ τ̄ periods, the vector
of belief terms is

[
mij1 · · · mijτ ij

]
. The residual covariance is R = IM⊗δ2S′ijV Sij , where Sij is the selection

matrix defined earlier.
29Optimal minimum distance estimation, as discussed in Hansen (1982) and Chamberlain (1984), proved

infeasible. The covariance of elements of W̃ was poorly conditioned, and did not invert. Instead I use a diag-
onal weight matrix, with elements equal to the natural logarithm of the number of observations contributing
to each element of W̃ . The data are highly unbalanced, with many more observations contributing to the
estimation of elements in the upper-left corner of W than to elements of the lower-right corner. This weight
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of proportionality δ2. I test the learning hypothesis with the usual χ2 test of overidentifying
restrictions, using the test statistic of Newey (1985).30

3.5 Logs or Levels?

The matching model of Section 2 was developed in earnings levels. In keeping with this, the
empirical specification has been developed thus far in levels also. However, it is customary
to model earnings in logs, partly because the distribution of earnings is typically found to
be approximately lognormal, but also to alleviate heteroskedasticity. Should the empirical
specification proceed in earnings logs or levels? I opt to do both. I model earnings in levels
to test the learning hypothesis and other predictions of the matching model, and model
earnings in logs to facilitate comparison with earlier work.31

4 Data

Identifying the person and firm effects requires longitudinal linked data on employers and
employees: data with repeated observations on both workers and firms. I use data from the
Longitudinal Employer-Household Dynamics (LEHD) program database, under development
at the U.S. Census Bureau. At present, the LEHD database spans eighteen states. Together,
these states represent well over 50 percent of U.S. employment. In this paper, I use data from
two of the eighteen participating states. The identity of the two states cannot be revealed
for confidentiality reasons.

The LEHD data are administrative, constructed from quarterly Unemployment Insur-
ance (UI) system wage reports. Every state in the U.S., through its Employment Security
Agency, collects quarterly earnings and employment information to manage its unemploy-
ment compensation program. The characteristics of the UI wage data vary slightly from
state to state. However Bureau of Labor Statistics (1997, p. 42) claims that UI coverage is
“broad and basically comparable from state to state” and that “over 96 percent of total wage
and salary civilian jobs” were covered in 1994. Further details regarding UI wage records and
the LEHD data can be found in Stevens (2002), Abowd et al. (2000), and LEHD Program
(2002). With the UI wage records as its frame, the LEHD data comprise the universe of

matrix gives greater weight to more precisely estimated elements of W. Weighting by a diagonal matrix of
the variances of each element of W̃ yields similar results, as does equally weighted minimum distance.

30The Newey (1985) test statistic does not require inversion of the variance of the moment conditions.
31The log-linear specification can be interpreted as an approximation to the levels specification as follows.

Rewrite (42) as

wijt = µ

(
1 + x′it

β

µ
+
θi

µ
+
ψj

µ
+
εijt

µ

)
so that

lnwijt ≈ lnµ+ x′it
β

µ
+
θi

µ
+
ψj

µ
+
εijt

µ

= µ∗ + x′itβ
∗ + θ∗i + ψ∗

j + ε∗ijt (67)

where the first line of (67) uses ln(1 + x) ≈ x, and where µ∗ = lnµ, β∗ = β/µ, θ∗i = θ/µ, ψ∗
j = ψ/µ, and

ε∗ijt = εijt/µ.
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employers required to file UI system wage reports — that is, all employment covered by the
UI system in the eighteen participating states. For the two states used in this analysis, the
data span the first quarter 1990 through the fourth quarter 1999.32

Individuals are uniquely identified in the data by a Protected Identity Key (PIK). Em-
ployers are identified by a state unemployment insurance account number (SEIN). The UI
wage records themselves contain only very limited information: PIK, SEIN, and quarterly
earnings. Quarterly earnings are a measure of total compensation, including gross wages
and salary, bonuses, stock options, tips and gratuities, and the value of meals and lodging
when these are supplied (Bureau of Labor Statistics (1997, p. 44)). In the LEHD database,
the UI wage records are integrated with internal Census Bureau data to obtain additional
demographic characteristics. Such characteristics include sex, race, and date of birth.

Though the underlying data are quarterly, they are aggregated to the annual level for
estimation. All preliminary data processing is done on the quarterly records.

4.1 Sample Construction

Before discussing the estimation sample, variables, and the imputation of missing data, it
is necessary to develop several concepts. The first concept is that of a dominant employer.
A dominant employer is identified for each individual in each year. Individual i’s dominant
employer in year t is the employer at which i’s actual UI earnings were largest in t. About 87
percent of the UI system wage records correspond to employment at a dominant employer.
The second concept is full quarter employment. Individual i employed at SEIN j in quarter
q is considered to have worked a full quarter if she was employed at j in quarters q − 1 and
q + 1.

The analysis sample is restricted to full-time private sector employees at their dominant
employer, between 25 and 65 years of age, who had no more than 44 employers in the
sample period,33 with real annualized earnings between $1,000 and $1,000,000 (1990 dollars),
employed in non-agricultural jobs that included at least one full quarter of employment, at
firms with at least five employees in 1997. The resulting analysis sample consists of 174
million quarterly earnings observations on 9.3 million individuals employed at approximately
575,000 firms, for a total of over 15 million unique worker-firm matches. The quarterly
records are annualized for estimation, for an analysis sample of 49.3 million annual records.

Using the method of Abowd et al. (2002), it is feasible to estimate the fixed model on
the entire analysis sample. Unfortunately, estimating the mixed model on the full sample
remains computationally intractable. Drawing an appropriate random sample of observations
for estimating the mixed model is not trivial. Obtaining precise estimates of the variance
components and BLUPs requires a highly connected sample of workers and firms. In a
small simple random sample of individuals, there may not be sufficient connectivity to be
confident that the person and firm effects are well identified. For this reason I develop a dense
sampling algorithm, described in detail in Appendix C. The basic idea behind the algorithm

32For one of the two states, the data series begins earlier. All estimation is done on the pooled states for
the years 1990-1999.

33There is some concern that observing an extreme number of employment spells may be due to measure-
ment error in the person and firm identifiers. Around 0.5 percent of quarterly wage observations corresponded
to individuals employed at more than 44 employers over the sample period.
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is to sample firms first, with probabilities proportional to employment in a reference period.
Workers are then sampled within firms, with probabilities inversely proportional to firm
employment. A minimum of n employees are sampled from each firm. In Appendix C, I
show that the resulting sample has all the properties of a simple random sample of workers
employed in the reference period (i.e., each worker has an equal probability of being sampled),
but guarantees that each worker is connected to at least n others by a common employer.

I draw two disjoint 1 percent dense random samples of workers employed in 1997 using
this algorithm. Each worker is connected to at least n = 5 others.34 I label the two samples
Dense Sample 1 and Dense Sample 2. All mixed model estimation is performed on Dense
Sample 1. Dense Sample 2 is used for model validation. For comparison, I also draw a 1
percent simple random sample of workers employed in 1997. Table 1 presents connectedness
properties of the full analysis sample, the two dense samples, and the simple random sample.
The full analysis sample is highly connected: the largest connected group contains 99.06
percent of jobs. The dense samples remain quite highly connected: about 92 percent of jobs
are contained in the two largest connected groups. This is in contrast to the simple random
sample: though about 80 percent of jobs are contained in the two largest groups, only 84
percent are in groups containing at least 5 worker-firm matches. By construction, all jobs in
the full analysis sample and the dense samples are contained in groups of at least 5 matches.
In the simple random sample, fully 5.5 percent of jobs are connected to no other.

4.2 Variable Creation and Missing Data Imputation

Time-varying covariates X include a quartic in labor force experience (interacted with sex),
four dummy variables to indicate the number of full quarters the individual worked in the
year (interacted with sex), and year effects. Time-invariant person characteristics U are
education (five categories, interacted with sex), race (3 categories, interacted with sex), and
a dummy variable to indicate if the initial experience measure was negative (interacted with
sex).35

Missing data items include full-time status, education, tenure (for left censored job spells),
initial experience, and (in some cases discussed below) the earnings measure. Missing data
items are multiply-imputed using the Sequential Regression Multivariate Imputation (SRMI)
method. See Rubin (1987) for a general treatment of multiple-imputation; the SRMI tech-
nique is due to Raghunathan et al. (1998); Abowd and Woodcock (2001) generalize SRMI
to the case of longitudinal linked data. SRMI imputes missing data in a sequential and it-
erative fashion on a variable-by-variable basis. Each missing data item is multiply-imputed
with draws from the posterior predictive distribution of an appropriate generalized linear
model under a diffuse prior. Full estimation results of each of the imputation regressions
are available from the author on request. I generate three imputed values of each missing
data item. The result is three versions of the analysis sample, each containing different im-
puted values for the missing data items. In keeping with the statistical literature on multiple
imputation, I refer to these as completed data implicates.

34The other parameters used to draw the dense samples, defined in Appendix C, arem = 0.5 and p = 0.004.
35As described in Section 4.2.3, initial experience is set to zero in this case.
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4.2.1 Real Annualized Earnings

The dependent variable for the earnings regressions is real annualized earnings. The annual-
ized measure is constructed from real full-quarter earnings. Full quarter earnings are defined
as follows. For individuals who worked a full quarter at firm j in t, the full-quarter earnings
measure is reported UI system earnings (about 80 percent of the analysis sample). For in-
dividuals who did not work a full quarter in t, one of two earnings measures is used. If the
individual worked at least one full quarter in the four previous or subsequent quarters, and
if real reported earnings in quarter t were at least 80 percent of average real earnings in the
full quarters, the individual is presumed to have worked a full quarter.36 That is, reported
earnings are treated as full-quarter earnings (12.5 percent of the analysis sample). If on the
other hand reported earnings are less than 80 percent of average real average earnings in
the full quarters, earnings are imputed to the full-quarter level (7.5 percent of the analy-
sis sample). The imputation model is a linear regression on log real full quarter earnings.
Conditioning variables include up to four leads and four lags of full quarter earnings (where
available), year and quarter dummies, race, education (5 categories), labor market experi-
ence (linear through quartic terms), and SIC division. Separate imputation models were
estimated for men and for women. For each quarter in which earnings are imputed to the
full-quarter level, three imputed values are drawn from the posterior predictive distribution
under a diffuse prior. After constructing the real full-quarter earnings measure, these are
annualized to obtain real annualized earnings.

4.2.2 Education

Education is multiply-imputed from the 1990 Decennial Census long form. The imputation
model is an ordered logit. There are 13 outcome categories, corresponding to 0 through
20 years of education. Conditioning variables include age (10 categories), vintiles of real
annual earnings at the dominant employer in 1990 or the year the individual first appeared
in the sample, and SIC division. Separate imputation models were estimated for men and
for women. For each person, three imputed values are drawn from the normal approximation
(at the mode) to the posterior predictive distribution under a diffuse prior. For the earnings
model I collapse the education measure to five categories: Less than high school, High
school graduate, Some college or vocational training, Undergraduate degree, and Graduate
or professional degree.

4.2.3 Labor Market Experience

In the first quarter that an individual appears in the sample, I calculate potential labor
market experience (in years) as: age at the beginning of the quarter, minus years of education,
minus 6. In cases where this measure is negative, potential experience is set to zero. In each
subsequent quarter, labor market experience is accumulated using the individual’s realized

36The 80 percent cutoff rule was chosen to reduce error in the construction of the full quarter earnings
measure. To determine the cutoff, for each quarter I computed real average full quarter earnings in the four
previous and subsequent quarters (a nine quarter moving window). For full quarter employees, the median
ratio of real earnings in quarter t to real average full quarter earnings in the nine quarter window around t
was 0.8.
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labor market history. Note that since initial experience depends on the multiply-imputed
education measure, calculated labor market experience varies across the three completed
data implicates.

4.2.4 Tenure

Jobs fall into two categories with respect to the calculation of job tenure: spells that are
left-censored and spells that are not. In one state the data series begins in the first quarter
of 1990; in the other state, the data series begins earlier. All jobs with positive earnings
in the first quarter of available data for that state are presumed left censored. Such spells
comprise 33 percent of jobs in the full analysis sample.

For non-left-censored spells, tenure is set to 1 in the first quarter that there is a UI system
wage record, and is subsequently accumulated using the individual’s employment history.
For left-censored spells, tenure as of the first quarter of 1990 is imputed using data from the
1996 and 1998 CPS February supplements. The imputation model is a linear regression on
the natural logarithm of tenure. Conditioning variables include age (10 categories), vintiles
of real annual earnings at the dominant employer in 1990, education (5 categories), and
SIC division. For each left-censored job, three imputed values of tenure in 1990 quarter 1
were drawn from the posterior predictive distribution under a diffuse prior. In subsequent
quarters, tenure is accumulated using the individual’s employment history.

4.2.5 Full-Time Status

Full-time status is multiply-imputed using the 1982-1999 CPS March supplements. The
imputation model is a binary logit. Conditioning variables include a quadratic in age, SIC
division, year dummies, and vintiles of reported annual earnings at the dominant employer.
Separate imputation models were estimated for men and for women. For each worker-firm
match in each year, three imputed values were drawn from the normal approximation (at
the mode) to the posterior predictive distribution under a diffuse prior.

4.3 Characteristics of the Samples

Table 2 presents basic summary statistics for the full analysis sample, the two dense samples,
and (for comparison) the simple random sample. The dense samples exhibit properties
virtually identical to those of the simple random sample, confirming the analytic equivalence
result in Appendix C. Since these are point-in-time samples, their properties differ slightly
from those of the full analysis sample. In particular, they exhibit properties consistent with a
sample of individuals with a strong labor force attachment: individuals in the point-in-time
samples are somewhat more likely to be male, are more educated, have longer average job
tenure, earn more, and are more likely to work a full calendar year. However these are all
slight differences.

Figures 1 and 2 confirm these properties of the samples. Figure 1 plots the yearly time
series of average real annualized earnings in each of the samples. The same trend is apparent
in all four samples. The dense and simple random samples are virtually indistinguishable.
However, average real annualized earnings are greater in each year in the point-in-time
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samples than in the full analysis sample, as expected. Figure 2 plots the yearly time series
of employment in each of the samples. By construction, employment in the point-in-time
samples is greatest in 1997.37 As a consequence, the dense and simple random samples are
indistinguishable, but their employment series differ somewhat from that of the full analysis
sample.

5 Results

The econometric specification of Section 3 is estimated on each of the completed data im-
plicates. Statistics reported in this section combine those obtained on the three implicates
using formulae in Rubin (1987). Estimates of the fixed covariate effects β and η are avail-
able from the author upon request. There is little variation in the estimated covariate effects
across specifications. Their values are reasonable.

5.1 Estimated Variance Components and Model Fit

5.1.1 The Earnings Model

Table 3 presents estimates of the variance components and a summary of model fit for the
four earnings models, estimated on the natural logarithm of annualized earnings. The four
models are: 1) the fixed model; 2) a mixed model with random person and firm effects and a
spherical error (R = σ2

εIN∗); 3) a mixed model with random person, firm, and match effects
and a spherical error;38 and 4) a mixed model with random person and firm effects and
an unstructured within-match residual covariance W . Mixed model estimates are presented
both with and without the truncation correction.39 In the case of the fixed model, the
reported “variance components” are the sample variance of the estimated person and firm
effects. The estimated variance components have a fairly straightforward interpretation.
Conditional on all other effects, a one standard deviation increase in the value of the person
effect αi increases real annualized earnings by σα log points. Similarly, a one standard
deviation increase in the value of the firm effect increases real annualized earnings by σψ log
points.

The first thing to note in Table 3 is that applying the truncation correction induces
virtually no change in the estimated variance components. This is not overly surprising given
the small selection/truncation bias typically found in earnings data. The second item of note
is that in each of the models, the variance of the person effect (σ2

α) is considerably larger than
the variance of the firm effect (σ2

ψ). That is, in the log earnings dimension, individuals are
more heterogeneous than firms. This is consistent with Abowd et al. (1999) and others, who
find unobserved individual heterogeneity to be a more important determinant of earnings

37Recall these are random samples of individuals employed in 1997. There are no individuals in the dense
and simple random samples who were not employed in that year.

38This model is included to test for the presence of an interaction effect between person and firm effects.
39I have not applied the truncation correction to the fixed model. Doing so would require computing

realized random effects ζ̃iτ and ξ̃jτ for each worker and firm in the full analysis sample (about 25 million
effects total). Although this is technically feasible, it is extraordinarily demanding from a computational
standpoint. I leave this exercise for future research.
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than unobserved firm heterogeneity. In Table 3, the fixed model yields the largest estimate
of σ2

α (0.290), but one of the smallest estimates of σ2
ψ (0.077). These values are slightly

larger than those estimated by Abowd et al. (2002) for France and the State of Washington.
The mixed model with random person and firm effects and a spherical error yields a slightly
smaller estimate of σ2

α (0.23), and an estimate of σ2
ψ twice that obtained under the fixed

model. Relaxing the mixed model specification to allow for a match effect or an unstructured
within-match residual covariance reduces the estimated variance of the firm effect to levels
comparable to the fixed model, and reduces the estimated variance of the person effect
to around 0.175. Under the most general specification (W unrestricted), a one standard
deviation increase in the value of the person effect increases earnings by 0.42 log points, and
a one standard deviation increase in the value of the firm effect increases earnings by 0.28
log points. These are very close in magnitude to Abowd et al. (2002).

Table 3 also reports some measures of model fit. Not surprisingly, the mixed model
with the unrestricted within-match residual covariance obtains the best fit by all in-sample
measures (REML log-likelihood, AIC, BIC). To obtain a measure of out-of-sample fit, I solve
the mixed model equations (58) on Dense Sample 2, using the variance components G̃ and
residual covariance R̃ estimated on Dense Sample 1. To facilitate comparison with models
estimated on earnings levels, the dependent variable is first scaled to have unit variance (and
parameters are re-scaled accordingly). I compute the prediction error for each observation,
and report its variance in Table 3.40 By this measure, the mixed model specification with
a match effect has the smallest out-of-sample prediction error. The mixed model with W
unrestricted has the largest, though only slightly larger than the simple mixed model.

I perform a REMLRT for the presence of a match effect in the mixed model with a
spherical error. The p-value for this test is extremely small (< 10−8) , so we reject the null
of no match effect. I do not test the match effect specification against the specification with
W unrestricted, since these hypotheses are not nested. The AIC and BIC statistics indicate
the model with W unrestricted fits the data better than the match effect specification.

Table 4 reproduces that in Table 3 for models estimated on earnings levels. To put
the parameter estimates on a recognizable scale, the dependent variable is scaled to have
unit variance. Parameter estimates exhibit the same stylized facts as those obtained on
earnings logs: the truncation correction has almost no influence on the estimated variance
components; the estimates of σ2

α are considerably larger than estimates of σ2
ψ; the estimate of

σ2
α is largest under the fixed model; and relaxing the mixed model specification to allow for a

match effect or unstructured within-match residual covariance reduces the magnitude of the
estimated variance components. Under the mixed model withW unrestricted, a one standard
deviation increase in the value of the person effect αi increases real annualized earnings by
0.63 standard deviations (about $32,500 1990 Dollars). Employment at a firm with a value of
ψj one standard deviation above the mean increases real annualized earnings by 0.21 standard
deviations (about $10,600 1990 Dollars). Clearly, unobserved individual heterogeneity is a
much more important determinant of earnings variation than unobserved firm heterogeneity.
Nevertheless, the effect of unobserved firm heterogeneity is very economically significant.

40For models with R = σ2
εIN∗ , the prediction error associated with an observation is the estimated residual.

For the model with the unstructured residual covariance, prediction error is the difference between the
estimated residual and its expected value given the other within-match residuals. The conditional expectation
is calculated using standard formulae for the multivariate normal distribution.
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As in Table 3, the mixed model with unstructured W obtains the best fit to earnings
levels using in-sample measures. Using the out-of-sample measure, its fit is the same as the
simple mixed model with spherical error. By this measure, the mixed model with the match
effect obtains the best fit. Prediction errors are nevertheless considerably more variable than
under the log specification. It is no surprise that the linear model fits the logarithm of
earnings better than it does earnings levels.

Tables 5-8 present correlations among the estimated effects for the various specifications.
Table 5 presents correlations for models estimated on log earnings without the truncation
correction. There is only slight variation across specifications. Of the estimated effects, the
pure person effect θi is most highly correlated with log earnings: between 0.74 and 0.83,
depending on the specification. The portion of θi corresponding to unobserved heterogeneity
(αi) is much more highly correlated with earnings than the observable component (uiη).
Correlations between the firm effect and log earnings are considerably lower: between 0.45
and 0.54 depending on the specification. The match effect is highly correlated with log
earnings (0.62) in the specification that includes one.

Recall that the matching model predicts a positive correlation between the pure person
effect θi and the pure firm effect ψj. In the fixed model and the mixed model with no match
effect and spherical error, there is a small positive correlation between θi and ψj (about
0.03). When the mixed model is relaxed to allow for a match effect or an unstructured
within-match residual covariance, the correlation between θi and ψj increases markedly to
around 0.22. This is consistent with the matching model’s prediction that larger values of
θi and ψj are associated with longer job duration. It is also consistent with conventional
wisdom that “good” workers sort themselves into “good” firms.

Table 6 presents correlations among estimated effects for the mixed model specifications
on log earnings after correcting for truncation. Once again, correcting for truncation has little
effect on the results. The truncation correction term βλλijτ has a small positive correlation
with earnings (0.056 in each specification), exhibits a small positive correlation with θi
(about 0.11), and a small negative correlation with ψj (between -0.06 and -0.13 depending
on specification).

Tables 7 and 8 reproduce the information in Tables 5 and 6 for models estimated on
earnings levels. Again, there is little change in the estimates when correcting for truncation.
The person effect exhibits a slightly higher correlation with earnings levels than with logs;
the reverse is true for the firm effect. In the fixed model, the correlation between θi and ψj
remains small and positive. In all the mixed model specifications, including the model with
no match effect and a spherical error, the correlation between θi and ψj is larger: between
0.17 and 0.27 depending on the specification.

5.1.2 The Continuation Probit

Table 9 presents parameter estimates for the probit models used to correct for truncation.
The longest observed tenure in Dense Sample 1 was 21 years.41 I estimate eight continuation

41Only ten years of earnings data are used in the estimation. In one state, the data series is longer.
Consequently, in that state there are individuals with (true) tenure values in excess of 10 years (maximum
value 14 years). Other cases where tenure exceeds 10 years are due to the tenure imputation of left-censored
job spells.
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probits: one each for 1-2 years of tenure, 3-4 years of tenure, 5-6 years, 7-8 years, 9-10 years,
11-12 years, 13-14 years, and 15+ years. In each of the these the residual variance is scaled
to unity. At all tenure levels the variance of the firm effect far exceeds the variance of the
person effect. This is in contrast to the earnings models, and suggests greater heterogeneity
in the separation policies of firms than of workers. The variance of the person effect increases
from a very small value (0.001) at 1-2 years of tenure, to its maximum 0.31 at 5-6 years of
tenure, and then declines with further increases in tenure. Likewise, the variance of the firm
effect increases from 0.09 at 1-2 years of tenure, increases to its maximum of 1.34 at 11-12
years, and then declines.

5.2 Testing the Learning Hypothesis

Estimates of the within-match residual covariance W are presented in Tables 10-13. Table
10 presents the estimate of W obtained on log earnings without correcting for truncation.
Estimates in Table 10 exhibit a number of the properties of the martingale covariance struc-
ture overlaid with classical measurement error given in (66): in each column, the diagonal
elements are larger than the off-diagonal elements, and elements increase in magnitude from
left to right within a row. However, the martingale structure also implies that off-diagonal
elements within a column should be equal. They are clearly not. Moving from lower-order
to higher-order autocovariances, the elements in Table 10 consistently decline.

Table 11 presents the estimate of W obtained on log earnings after correcting for trunca-
tion. Once again, there is little difference between the estimates obtained with and without
the truncation correction. A casual comparison of Tables 10 and 11 suggests that there is
slightly less decay in the autocovariances corrected for truncation than without the correc-
tion.

In Tables 12 and 13 I present estimates of W obtained on earnings levels, with and
without correcting for truncation. They are virtually identical. Once again, casual inspection
indicates the estimates are consistent with the structure implied by the learning process. The
diagonal elements are larger than off-diagonal elements within a column. Elements increase
in magnitude from left to right within each row. Unlike the estimates obtained on earnings
logs, there is little decline moving from lower-order to higher-order autocovariances, which is
consistent with the martingale structure implied by the learning model. This is particularly
true for the first 10 years of tenure.

I formally test whether the within-match residual covariance has the martingale structure
predicted by the learning model. I fit (14) and (66) to estimates of W by minimum distance.
Table 14 presents the estimates of structural parameters and p-values from the chi-squared
test of over-identifying restrictions.42 Recall that the structural parameters σ2

u, σ
2
c , σ

2
z, and

42Rubin (1987) provides formulae for combining statistics with chi-squared distributions obtained on
multiply-imputed data. Let dm denote the test statistic from the mth implicate, with an asymptotic χ2

k

distribution. Let M denote the number of implicates, d̄m the mean of the statistics dm, and s2d their
variance. Define

r̂m =

(
1 +M−1

)
s2d

2d̄m +
(
4d̄2

m − 2ks2d
)1/2

(68)

and
v̂ = (M − 1)

(
1 + r̂−1

m

)2
. (69)
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σ2
e are only identified up to a factor of proportionality: the square of the bargaining strength

parameter δ. The estimates in Table 14 are presented on the scale of the data, i.e., for δ = 1.43

The first column of Table 14 presents the results obtained on log earnings. Given that
estimates of W obtained with and without the truncation correction are virtually identical,
it is no surprise that the minimum distance estimates are also. The estimated variance of
measurement error (σ2

u) and variance of match quality (σ2
c) are both approximately 0.05.

This is of similar magnitude to the variance of the firm effect in this model. The variance
of the initial signal of match quality (σ2

z) and of production outcomes (σ2
e) are considerably

smaller: 0.02 and 0.004, respectively. This implies learning about match quality is very rapid.
Figure 3 plots the estimated posterior variance of beliefs about match quality (s2

τ ) at each
tenure. Upon receipt of the initial signal x, the posterior variance drops from the prior level
(σ2

c = 0.05) to less than 0.02; after observing one production outcome it drops well below
0.01. However, these results should be viewed cautiously, since the p-value of the χ2 test of
overidentifying restrictions is 0.001. Though the log specification is only an approximation
to the matching model, this is nevertheless evidence against the learning hypothesis.

Column (2) of Table 14 presents results estimated on earnings levels. The estimated
variance of match quality is quite large: about 0.38, which is more than a third of the
variance of annual earnings. The estimate of σ2

z (8.66) indicates the initial signal of match
quality conveys virtually no information. However, learning is quite rapid once production
outcomes are observed: the posterior variance of beliefs drops below 0.2 after observing one
production outcome, and is about 0.1 after two (see Figure 4). On the basis of the p-value
from the χ2 test (0.002), we are inclined to reject the learning hypothesis. However, recall
from Tables 12 and 13 that for the first 10 years of tenure, casual inspection indicated W̃
was highly consistent with the martingale covariance structure. In column (3) of Table 14
I present results estimated on only the first 10 rows and columns of W̃ . These yield a
considerably larger variance of match quality (0.58) and indicate that learning about match
quality is quite slow (see Figure 4). Both with and without the truncation correction, the
p-value of the χ2 test is 0.026. Thus we reject the learning hypothesis at the 5 percent level,
but fail to do so at the 1 percent level. Though far from conclusive evidence in favor of the
matching model, these results certainly provide some support to the learning hypothesis.
However, they also raise the possibility that imputing initial tenure for left-censored job
spells may be the source of some inconsistencies between the data and the matching model.
All tenure observations in excess of 14 years, and most in excess of 10 years, are the result
of imputing tenure for left-censored job spells (see footnote 41).

The quantity r̂m is a method of moments estimator of the relative increase in variance of the test statistic
due to nonresponse. The test statistic

D̂m =
d̄m

k − M−1
M+1 r̂m

1 + r̂m
(70)

has an asymptotic F distribution with k and
(
1 + k−1

)
v̂/2 degrees of freedom.

43They can be re-scaled for any other 0 < δ < 1 quite easily: the re-scaled parameter σ2
∗ is σ2

∗ = σ2/δ2.
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5.3 Additional Predictions From the Matching Model

Thus far we have seen several predictions of the matching model confirmed in the LEHD data:
an earnings specification linear in person and firm effects fits the data very well;44 we observe
a positive correlation between the estimated person and firm effects; and limited evidence in
favor of the learning hypothesis. Though the matching model predicted the distribution of
earnings residuals is truncated, this appears to have little influence on parameter estimates.
I now address two other predictions: that larger values of θi and ψj should on average be
associated with longer job duration, and that firms with larger estimated firm effects should
have greater employment on average.

To address the first of these predictions, I fit a fourth-order polynomial in job duration to
the estimated person and firm effects. Right-censored spells are excluded from the regression.
I focus on the effects estimated in the mixed model with the unstructured within-match
residual covariance. Results from the other specifications are very similar and available on
request. Figures 5 and 6 present the fitted curves. As the matching model predicted, larger
values of θi and ψj are associated with longer duration. This is true on both logs and levels,
with and without the truncation correction. The profile is much steeper for the person effect
than for the firm effect. This is consistent with the much greater variation in θi than ψj.

To address the second prediction, I fit a fourth-order polynomial in the natural logarithm
of 1997 employment to the estimated firm effects. Again, I focus on effects estimated from
the mixed model with the unstructured within-match residual covariance. Results obtained
on the other specifications are qualitatively similar. Figure 7 presents the fitted curves. As
predicted by the matching model, larger values of ψj are associated with larger employment.
The relationship is nearly linear for small and medium-size firms, and quite convex among
the largest firms.

6 Conclusion

I presented a matching model with heterogeneous workers, firms, and worker-firm matches.
The model generalizes the seminal Jovanovic (1979) model to the case of heterogeneous
workers and firms. I showed that the equilibrium wage is linear in a person-specific com-
ponent, a firm-specific component, and the posterior mean of beliefs about match quality.
The matching model has numerous predictions for empirical person and firm effects, and
earnings residuals. I then developed a mixed model specification for the equilibrium wage
function that takes account of structural aspects of the learning process. I found considerable
support for the various predictions of the matching model in UI wage data. A formal test of
the learning hypothesis proved inconclusive.

Conventional wisdom suggests that “good” workers sort themselves into “good” firms.
The matching model contains no explicit sorting mechanism. Nevertheless, it predicts that
given time, good workers sort themselves into good firms. This arises simply because matches
between bad workers and bad firms dissolve. Since agents need to enter a match to learn

44In a simple auxiliary regression of log earnings on covariates and the estimated person and firm effects
from the simple mixed model, R2 = 0.92; on earnings levels, R2 = 0.88. Excluding covariates, the R2 is
apprximately 0.7 under both specifications.

34



one another’s type, only by sampling a number of employment relationships do they even-
tually find a match worth pursuing. Empirically, the result is a positive duration-weighted
correlation between person and firm effects. The data support this prediction.

The empirical analysis demonstrates that unobserved worker and firm heterogeneity are
extremely important determinants of earnings. The estimated person and firm effects are
highly correlated with earnings; much more so than observable characteristics such as ed-
ucation and labor market experience. Together, they explain about 70 percent of earnings
variation. An important contribution of the matching model is that it yields an economic
interpretation of these effects. They reflect worker and firm productivity, adjusted for the
worker’s bargaining strength and the value of each agent’s outside option.

The paper suggests several fruitful areas for future work. One is to consider the case
where a worker invests in productive human capital. On the empirical front, it would be of
considerable value to refine the imputation of initial tenure for left-censored jobs.
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A Appendix: Omitted Proofs

Proof of Lemma 2. Following Flinn (1986), consider a finite-period model with terminal
date T. Abusing notation slightly, the joint value of employment in the terminal period is

WT = max {µ+ a+ b+mT , UT} (71)

where UT = h is the value of the worker’s outside option in the terminal period. WT is
clearly increasing in mT . The proof proceeds by induction. Take as the induction hypothesis
that Wt+1 is increasing in mt+1, and I establish that Wt is increasing in mt, t < T.

Consider the joint value of employment in period t :

Wt = max
{
µ+ a+ b+mt + βE

[
Wt+1|mt, s

2
t

]
, Ut
}

= max

{
µ+ a+ b+mt + β

∫
Wt+1dF

(
mt+1|mt, s

2
τ

)
, Ut

}
(72)

where F (mt+1|mt, s
2
τ ) is the normal distribution given in (15),

Ut = h+ βπt+1

∫
E
[
Jt+1|0, σ2

c + σ2
z

]
dF ∗b,t+1 + β (1− πt+1)Ut+1 (73)

is the value of the worker’s outside option in t, πt+1 is the probability of drawing a new
match in t+1, and F ∗b,t+1 is the period t+1 distribution of firm types among open vacancies.

We need to show Wt is increasing in mt. Note Ut is independent of mt, and the current
period return to employment µ+ a+ b+mt is strictly increasing in mt, so it is sufficient to
establish that

β

∫
Wt+1dF

(
mt+1|mt, s

2
τ

)
(74)

is increasing in mt. Period t beliefs affect (74) in two ways: via Wt+1, and via the transi-
tion distribution. The effect via Wt+1 is straightforward: Wt+1 is increasing in mt+1 (by
hypothesis), and mt+1 is increasing in mt from (9). Thus Wt+1 is increasing in mt. The
effect of an increase in mt on the transition distribution is as follows. Consider m′

t > mt.
Then F (mt+1|m′

t, σ
2) ≤ F (mt+1|mt, σ

2) for any σ2 <∞. That is, F (mt+1|m′
t, σ

2) first order
stochastically dominates F (mt+1|mt, σ

2). Thus,∫
f (mt+1) dF

(
mt+1|m′

t, σ
2
)
≥
∫
f (mt+1) dF

(
mt+1|mt, σ

2
)

(75)

for any f in the class of increasing functions. Since Wt+1 is a member of this class, we
conclude that (74) is increasing in mt. Hence Wt is increasing in mt for all t ≤ T.

The boundedness assumption on qτ guarantees that mτ is bounded. Thus Wt is bounded.
Boundedness and β ∈ (0, 1) are sufficient conditions for the optimal value function in the
finite horizon problem to converge to the optimal value of the infinite horizon problem.

The following Lemma is useful for the proof of Lemma 4.

Lemma 7 The joint value of employment, Wτ , is convex in mτ for all τ > 0.
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Proof. Consider once again the T−period model developed in the proof of Lemma 2.
The value function WT in the terminal period (71) is convex in mT . The proof proceeds
by induction. Take as the induction hypothesis that Wt+1 is convex in mt+1, t < T. Now
consider Wt, given in (72). It is sufficient to establish that E [Wt+1|mt, s

2
t ] is convex in

mt. From (9), mt+1 is linear in mt. Since Wt+1 is a convex increasing function of mt+1, it
follows that Wt+1 is convex in mt. It is useful to write Wt+1 = Wt+1 (mt) to illustrate this
dependence. Convexity implies

αWt+1 (mt) + (1− α)Wt+1 (m′
t) ≥ Wt+1 (αmt + (1− α)m′

t) (76)

for all mt,m
′
t and α ∈ [0, 1] . Since the expectation operator preserves inequalities,

E [αWt+1 (mt) + (1− α)Wt+1 (m′
t)] ≥ E [Wt+1 (αmt + (1− α)m′

t)] (77)

and hence

αE [Wt+1 (mt)] + (1− α)E [Wt+1 (m′
t)] ≥ E [Wt+1 (αmt + (1− α)m′

t)] (78)

for all mt,m
′
t and α ∈ [0, 1] .

Proof of Lemma 4. First note that E [Wτ+1|mτ , s
2
τ ] =

∫
Wτ+1dF (mτ+1|mτ , s

2
τ ) ,

where F is the normal distribution function given in (15) with mean mτ and variance vτ+1

defined in (16). Differentiating vτ+1 with respect to s2
τ yields

∂vτ+1

∂s2
τ

= s2
τ

s2
τ + 2σ2

e

(s2
τ + σ2

e)
> 0. (79)

Thus an increase in s2
τ constitutes a mean-preserving spread on mτ+1. Since Wτ+1 is an

increasing convex function of mτ+1, for any s̃2
τ > s2

τ we have

E
[
Wτ+1|mτ , s

2
τ

]
=

∫
Wτ+1dF

(
mτ+1|mτ , s

2
τ+1

)
≤

∫
Wτ+1dF

(
mτ+1|mτ , s̃

2
τ+1

)
= E

[
Wτ+1|mτ , s̃

2
τ

]
. (80)

The following lemmata are useful for the proof of Proposition 6.

Lemma 8 ∂U
∂b

= 0, ∂U
∂a
∈
(
0, 1

1−β

)
Proof. Write the value of the worker’s outside option as:

U = h+ βπ

∫ b

b

J0dF
∗
b + β (1− π)U

=
h+ βπ

∫ b
b
J0dF

∗
b

1− β (1− π)
(81)
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where J0 = E [max {J1, U} |0, σ2
c + σ2

z] and F ∗b is defined Appendix B. The statement ∂U
∂b

= 0
is obvious, since U doesn’t depend on b.

From (81) we have

∂U

∂a
=

βπ

1− β (1− π)

∫ b

b

∂J0

∂a
dF ∗b . (82)

We can rewrite J0 as

J0 = U +

∫ ∞

m̄1

(J1 − U) dF1 (83)

where Fτ is shorthand for F
(
mτ |mτ−1, s

2
τ−1

)
. Differentiating and applying Leibniz’s Rule,

∂J0

∂a
=

∂U

∂a
− ∂m̄1

∂a

(
J̄1 − U

)
f
(
m̄1|0, σ2

c + σ2
z

)
+

∫ ∞

m̄1

∂ (J1 − U)

∂a
dF1

=
∂U

∂a
+

∫ ∞

m̄1

∂ (J1 − U)

∂a
dF1 (84)

where J̄τ is shorthand for the value of Jτ when mτ = m̄τ . Note J̄τ = U by definition of
m̄τ and the individual rationality property of the Nash Bargain. Differentiating (21) using
Leibniz’s Rule,

∂ (Jτ − U)

∂a
= δ − δ (1− β)

∂U

∂a
+ β

∫ ∞

m̄τ+1

∂ (Jτ+1 − U)

∂a
dFτ+1 (85)

for all τ > 0. Repeated substitution of (85) into (84) gives the forward recursion

∂J0

∂a
=
∂U

∂a
(1− δ (1− β)Z) + δZ (86)

where

Z =
∞∑
τ=1

βτ−1

∫ ∞

m̄1

· · ·
∫ ∞

m̄τ

dFτ · · · dF1 ∈
(

0,
1

1− β

)
(87)

Thus
∂U

∂a
=

βπ

1− β (1− π)

[
∂U

∂a

(
1− δ (1− β)

∫ b

b

ZdF ∗b

)
+ δ

∫ b

b

ZdF ∗b

]
. (88)

Some omitted algebra reveals

∂U

∂a
=

1

1− β

 δβπ
∫ b
b
ZdF ∗b

1 + δβπ
∫ b
b
ZdF ∗b

 ∈ (0,
1

1− β

)
(89)

because Z > 0 implies the term in square brackets is between zero and one, and β ∈ (0, 1) .

Lemma 9 The joint value of continuing the employment relationship, Jτ + Πτ , is strictly
increasing in a and b.
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Proof. Return to the finite horizon model used in the proof of Lemma 2. In the terminal
period,

JT + ΠT = µ+ a+ b+mT (90)

which is strictly increasing in a and b. Take as the induction hypothesis that Jt+1 + Πt+1 is
strictly increasing in a and b, t < T. Then

Jt + Πt = µ+ a+ b+mt + βE
[
max {Jt+1 + Πt+1, U} |mt, s

2
t

]
. (91)

By Lemma 8, U is independent of b and increasing in a. Combining this and the induction
hypothesis, the last term in (91) is increasing in a and b. Since the current period return
µ+ a+ b+mt is strictly increasing in a and b, so is Jt + Πt.

Proof of Proposition 6. Rewrite the threshold value of beliefs as

m̄τ = (1− β)U − µ− a− b+ β

∫ ∞

m̄τ+1

(U − Jτ+1 − Πτ+1) dF̄τ+1 (92)

where F̄τ+1 = F (mτ+1|m̄τ , s
2
τ ) . Let x ∈ {a, b} . Differentiating (92) using Leibniz’s Rule,

∂m̄τ

∂x
= (1− β)

∂U

∂x
− 1− β

∂m̄τ+1

∂x

(
U − J̄τ+1 − Π̄τ+1

)
f
(
m̄τ+1|m̄τ , s

2
τ

)
+β

∫ ∞

m̄τ+1

∂ (U − Jτ+1 − Πτ+1)

∂x
dF̄τ+1

+β
∂m̄τ

∂x

∫ ∞

m̄τ+1

(U − Jτ+1 − Πτ+1)

(
mτ+1 − m̄τ

s2
τ

)
dF̄τ+1

=
(1− β) ∂U

∂x
− 1 + β

∫∞
m̄τ+1

∂(U−Jτ+1−Πτ+1)
∂x

dF̄τ+1

1 + β
∫∞
m̄τ+1

(U − Jτ+1 − Πτ+1)
(
mτ+1−m̄τ

s2τ

)
dF̄τ+1

(93)

where J̄τ+1 is shorthand for the value of Jτ+1 whenmτ+1 = m̄τ+1, Π̄τ+1 is defined analogously,
and J̄τ+1 + Π̄τ+1 = U by definition of m̄τ+1.

Applying the first result from Lemma 8,

∂m̄τ

∂b
=

−1− β
∫∞
m̄τ+1

∂(Jτ+1+Πτ+1)
∂b

dF̄τ+1

1 + β
∫∞
m̄τ+1

(U − Jτ+1 − Πτ+1)
(
mτ+1−m̄τ

s2τ

)
dF̄τ+1

. (94)

Since ∂(Jτ+1+Πτ+1)
∂b

> 0 by Lemma 9, the numerator is negative. The denominator is positive
because Jτ+1 + Πτ+1 ≥ U for mτ+1 ≥ m̄τ+1 (with equality only when mτ+1 = m̄τ+1); and
mτ+1 ≥ m̄τ for mτ+1 ≥ m̄τ+1 (with equality only when mτ+1 = m̄τ+1). Thus ∂m̄τ

∂b
< 0.

Substituting x = a into (93) gives

∂m̄τ

∂a
=

(1− β) ∂U
∂a
− 1 + β

∫∞
m̄τ+1

∂(U−Jτ+1−Πτ+1)
∂a

dF̄τ+1

1 + β
∫∞
m̄τ+1

(U − Jτ+1 − Πτ+1)
(
mτ+1−m̄τ

s2τ

)
dF̄τ+1

. (95)
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As in (94), the denominator is positive. To sign the numerator note that for all s ≥ 1,

U − Jτ+s − Πτ+s = (1− β)U − µ− a− b−mτ+s

+β

∫ ∞

m̄τ+s+1

(U − Jτ+s+1 − Πτ+s+1) dFτ+s+1 (96)

and differentiating gives the recursion

∂ (U − Jτ+s − Πτ+s)

∂a
= (1− β)

∂U

∂a
− 1 + β

∫ ∞

m̄τ+s+1

∂ (U − Jτ+s+1 − Πτ+s+1)

∂a
dFτ+s+1. (97)

Repeated substitution of (97) into the numerator of (95) gives

∂m̄τ

∂a
=

[
(1− β) ∂U

∂a
− 1
]
Z̄τ

1 + β
∫∞
m̄τ+1

(U − Jτ+1 − Πτ+1)
(
mτ+1−m̄τ

s2τ

)
dF̄τ+1

(98)

where

Z̄τ = 1 +
∞∑
s=1

βs
∫ ∞

m̄τ+1

∫ ∞

m̄τ+2

· · ·
∫ ∞

m̄τ+s

dFτ+s · · · dFτ+2dF̄τ+1 > 0 (99)

and we conclude that the numerator of (98) is negative, since ∂U
∂a
< 1

1−β by Lemma 8.
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B Appendix: The Steady State

B.1 Flow-Balance Equations

Let l (a, b, k, τ) denote the density of type a workers employed at type (b, k) firms with tenure
τ . The number of such workers entering unemployment in a given period is

(1− u) l (a, b, k, τ) Pr (mτ < m̄τ )

= (1− u) l (a, b, k, τ) Φ

(
m̄τ

V
1/2
τ

)
(100)

where Φ denotes the standard normal CDF. The flow into unemployment of all type a workers
from type (b, k) firms is

(1− u)
∞∑
τ=1

l (a, b, k, τ) Φ

(
m̄τ

V
1/2
τ

)
(101)

and the aggregate flow into unemployment is

(1− u)

∫ a

a

∫ b

b

∫ ∞

0

∞∑
τ=1

l (a, b, k, τ) Φ

(
m̄τ

V
1/2
τ

)
dkdbda. (102)

Let fa and fb,k denote the density functions associated with the distributions Fa and Fb,k
of worker and firm types . The flow of type a workers out of unemployment and into type
(b, k) firms is

m (u, v) fa (a) fb,k (b, k) . (103)

Thus the aggregate flow out of unemployment is

m (u, v)

∫ a

a

∫ b

b

∫ ∞

0

fa (a) fb,k (b, k) dkdbda = m (u, v) . (104)

The steady state flow-balance condition is the equality of (101) and (103) for all worker
types a and all firm types (b, k) . This implies the aggregate steady state flow-balance (102) =
(104) .

B.2 Unemployment and Vacancies

In the steady state, the probability λ that a randomly selected vacancy is filled is constant.
Thus the equilibrium number of vacancies opened by each firm, i.e., the solution to (26), is
also constant. Let v∗b,k denote the steady state number of vacancies opened by a type (b, k)
firm, i.e.,

v∗b,k = arg max
υ∈N

υ∑
l=0

(
υ

l

)
λl (1− λ)υ−l

[
l

∫ a

a

Π0dF
∗
a − κ (l)

]
− kυ (105)

when λ takes its steady state value and where F ∗a is the steady state distribution of unem-
ployed worker types defined below. Thus the steady state number of vacancies opened by all
type (b, k) firms is φv∗b,kfb,k (b, k) , and the steady state stock of vacancies in the economy is

v = φ

∫ b

b

∫ ∞

0

v∗b,kfb,k (b, k) dkdb. (106)
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The steady state level of unemployment is implicitly defined by the equality of (102) and
(104) when v takes its steady state value.

Each open vacancy is associated with a firm type (b, k) . Let f ∗b,k (b, k) denote the steady
state distribution of firm types among open vacancies. This is

f ∗b,k (b, k) = φ
v∗b,k
v
fb,k (b, k) . (107)

Define the marginal distribution f ∗b (b) =
∫∞

0
f ∗b,k (b, k) dk with associated CDF F ∗b . Workers

use F ∗b to compute the expected value of employment in new matches before the identity of
the matching firm is known.

Similarly, we can define the distribution F ∗a of unemployed worker types. Firms use F ∗a
to compute the expected value of employment in new matches before the identity of the
matching worker is known. Define the density of employed type a workers:

l (a) =

∫ b

b

∫ ∞

0

∞∑
τ=1

l (a, b, k, τ) dkdb. (108)

Then the density function f ∗a (a) associated with F ∗a is f ∗a (a) = u−1 [fa (a)− (1− u) l (a)] .

B.3 Firm size

Let

l (b, k) =

∫ a

a

∞∑
τ=1

l (a, b, k, τ) da (109)

be the density of employment at type (b, k) firms. Then the average size of type (b, k) firms
is

(1− u) l (b, k)

φfb,k (b, k)
. (110)
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C Appendix: The Dense Sampling Algorithm

In labor market data, observations are connected by a sequence of workers and firms. Workers
are connected to one another by a common employer. Firms are connected to one another
by a common employee. Connectedness is crucial for identifying worker and firm effects in
linear and mixed models of employment outcomes. The degree of connectedness depends
both on the number of connected groups in the data and their size. See Searle (1987) for
a statistical definition of connectedness. Abowd et al. (2002) discuss connectedness in the
context of labor market data.

This section describes an algorithm for sampling highly connected work histories from
longitudinal linked employer-employee data. The algorithm is designed to draw two disjoint
samples of predictable size. The disjoint samples can be used for independent model estima-
tion and validation. Of primary importance is the fact that the resultant samples have all
the statistical properties of a simple random sample of workers employed at a point in time.
Specifically, all such workers have an equal probability of being sampled. However, unlike
a (naive) simple random sample of workers, the algorithm guarantees that all workers are
connected to at least n > 1 others.

The basic idea is as follows. In a reference period, sample firms with probabilities that are
proportional to employment. Next, sample workers within firms, with equal (firm-specific)
probabilities. Roughly speaking, the probability of sampling a particular employee within a
firm is inversely proportional to the firm’s employment in the reference period. In a sample
of dominant jobs,45 the resulting probability of sampling any worker is a constant.

The samples’ characteristics are determined by three parameters: p ∈ [0, 1] determines a
firm’s probability of being sampled; n ∈ N determines the minimum level of connectedness
and a worker’s probability of being sampled within a firm; and m ∈ [0, 1] determines an
observation’s probability of being sampled into disjoint sample s ∈ {1, 2} . Sample s = 1 is a
100mpn percent random sample of workers; sample s = 2 is a 100(1−m) pn percent random
sample of workers. When m = 1

2
, the disjoint samples are of equal size.

Let S denote the base sample from which the disjoint subsamples s will be drawn. Let t
be the reference period, and let Nj denote firm j’s employment in t. The algorithm relies on
two assumptions:

Assumption 1 Each worker i is employed at only one firm j = J (i, t) in t.

Assumption 2 All firms have employment Nj ≥ n in t.

Assumptions 1 and 2 are easily satisfied by imposing restrictions on the base sample S.
For example, restrict S to a sample of dominant jobs at firms with at least n employees in t.

Denote the probability that firm j is sampled into some s by π (j) , and let π (j) =
min {1, pNj}. That is,

π (j) =

{
1 if Nj ≥ p−1

pNj if Nj < p−1

so that a firm’s probability of being sampled is proportional to employment in t.

45A worker’s dominant job in a period is the employer at which he/she earned the most in that period. Each
individual has only one dominant job in each period. Technically, the algorithm requires that each individual
has only one employer per period. The dominant job restriction is a convenient way of guaranteeing this.
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Sampling Rule 1 If firm j is sampled in t, sample j into s = 1 with probability m; sample
j into s = 2 with probability (1−m) .

Denote the probability that firm j is sampled into s by πs (j) . Thus,

π1 (j) = min {m,mpNj}

=

{
m if Nj ≥ p−1

mpNj if Nj < p−1

π2 (j) = min {1−m, (1−m) pNj}

=

{
1−m if Nj ≥ p−1

(1−m) pNj if Nj < p−1 .

Let nj = max {n, pnNj} . That is,

nj =

{
pnNj if Nj ≥ p−1

n if Nj < p−1 . (111)

Sampling Rule 2 If firm j is sampled into s in t, draw a simple random sample of nj
workers employed at j in period t into s.

Together, Rule 2 and the definition of nj in (111) have several implications for the
structure of the dense sample. First, it is clear that in each sample s, each worker is connected
to at least n others: their fellow employees sampled from firm j in t. Consequently, increasing
n increases the minimum degree of connectedness in each sample. Second, as shown in Figure
8 the firm-specific sampling rate nj/Nj is nonincreasing in firm j’s period t employment Nj.

Let πs (i|j) denote the probability that worker i is sampled into s, given that j has been
sampled into s in t. This is

πs (i|j) = njN
−1
j

=

{
pn if Nj ≥ p−1

nN−1
j if Nj < p−1 .

To determine an individual’s unconditional probability of being sampled, we need to
introduce some further notation. Let πs (j|i) denote the probability that firm j is sampled
into s in t, given that employee i is sampled into s and j = J (i, t) . Assumption 1 implies
πs (j|i) = 1. Denote the unconditional probability that individual i is sampled into s by
πs (i) . By Bayes’ rule,

πs (i) =
πs (i|j)πs (j)

πs (j|i)
= πs (i|j)πs (j)

so that

π1 (i) =

{
mpn if Nj ≥ p−1

mpNjnN
−1
j if Nj < p−1

= mpn (112)

π2 (i) =

{
(1−m) pn if Nj ≥ p−1

(1−m) pNjnN
−1
j if Nj < p−1 .

= (1−m) pn (113)

A final Sampling Rule completely specifies the subsamples:
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Sampling Rule 3 If i is sampled into s, sample i’s complete work history into s.

Equations (112) and (113) demonstrate that both subsamples s have the properties of
a simple random sample of individuals employed in t. That is, all individuals in S that are
employed in t have equal probability of being sampled into each s. Furthermore, Assumption
1 and Rules 1 and 2 guarantee that the samples are disjoint: πs (i|i is sampled into s′) = 0
for s, s′ = 1, 2 and s 6= s′. Finally, Rule 3 states that the subsamples consist of the complete
work histories (in S) of individuals sampled according to Rules 1 and 2.
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Full Analysis 
Samplea

Dense 
Sample 1b

Dense 
Sample 2b 

Simple 
Random 
Samplec

Number of Groups 84,708 1,140 1,081 9,457
Number of Workers 9,271,766 49,425 48,003 49,200
Number of Firms 573,237 27,421 27,555 40,064
Number of Worker-Firm Matches 15,305,508 92,539 90,500 93,182
Number of Matches in Smallest Group 5 5 5 1
Proportion of Matches in:

Largest Group 99.06 67.25 68.82 59.37
Second Largest Group 0.0006 24.70 22.68 20.30
Third Largest Group 0.0003 0.04 0.04 0.06

Groups containing 5 or more matches 100 100 100 84.44

Groups containing only 1 match 0 0 0 5.50
a Results combined across three completed data implicates.

c One percent simple random sample of workers employed in 1997. Results are from one completed data implicate.

TABLE 1
PROPERTIES OF CONNECTED GROUPS OF WORKERS AND FIRMS

b One percent dense random samples of workers employed in 1997, drawn according to the dense sampling algorithm in Appendix 
C.  Results are combined across three completed data implicates.



Variable Meana Std. Devb Meana Std. Devb Meana Std. Devb Meana Std. Devb

Demographic Characteristics
Male (Proportion) 0.560 0.496 0.564 0.496 0.584 0.493 0.569 0.495
Age (Years) 40.6 10.2 40.4 9.5 40.3 9.6 40.3 9.5

Men
Nonwhite (Proportion) 0.209 0.574 0.210 0.573 0.203 0.553 0.210 0.570
Race Missing (Proportion) 0.036 0.250 0.034 0.243 0.036 0.244 0.035 0.245

Less than high school (Proportion) 0.119 0.445 0.110 0.428 0.115 0.429 0.109 0.424
High school (Proportion) 0.299 0.666 0.291 0.657 0.299 0.650 0.297 0.659
Some college (Proportion) 0.232 0.600 0.233 0.599 0.234 0.588 0.231 0.594
Associate or Bachelor Degree (Proportion) 0.247 0.617 0.256 0.623 0.247 0.601 0.258 0.622
Graduate or Professional Degree (Proportion) 0.103 0.416 0.110 0.428 0.105 0.411 0.105 0.417

Women
Nonwhite (Proportion) 0.237 0.694 0.240 0.702 0.240 0.721 0.236 0.599
Race Missing (Proportion) 0.022 0.225 0.021 0.220 0.019 0.211 0.021 -0.011

Less than high school (Proportion) 0.094 0.453 0.085 0.434 0.090 0.456 0.088 0.283
High school (Proportion) 0.314 0.784 0.299 0.772 0.308 0.804 0.301 0.390
Some college (Proportion) 0.253 0.715 0.250 0.714 0.251 0.736 0.251 0.311
Associate or Bachelor Degree (Proportion) 0.259 0.723 0.278 0.748 0.268 0.757 0.270 0.423
Graduate or Professional Degree (Proportion) 0.080 0.418 0.088 0.440 0.083 0.438 0.090 0.308

Work History Characteristics
Tenure (Years) 4.48 3.48 4.90 3.59 4.78 3.51 4.85 3.56
Job is Left Censored (Proportion) 0.331 0.470 0.358 0.479 0.342 0.474 0.347 0.476
Real Annualized Earnings (1990 Dollars) 53755 50804 57209 51196 56571 51980 56483 50074

Men
Labor Market Experience (Years) 11.8 13.1 11.7 12.6 12.1 12.7 11.7 12.6
Initial Experience <0 (Proportion) 0.023 0.201 0.022 0.197 0.021 0.190 0.023 0.200

Worked 0 Full Quarters in Calendar Year (Proportion) 0.077 0.363 0.059 0.318 0.060 0.316 0.060 0.320
Worker 1 Full Quarter in Calendar Year (Proportion) 0.146 0.490 0.114 0.435 0.122 0.441 0.120 0.443
Worker 2 Full Quarters in Calendar Year (Proportion) 0.134 0.470 0.123 0.450 0.120 0.436 0.122 0.447
Worker 3 Full Quarters in Calendar Year (Proportion) 0.143 0.484 0.136 0.472 0.134 0.460 0.134 0.466
Worker 4 Full Quarters in Calendar Year (Proportion) 0.500 0.914 0.568 0.963 0.563 0.992 0.564 0.968

Women
Labor Market Experience (Years) 9.5 13.0 9.3 12.6 8.8 12.4 9.2 12.5
Initial Experience <0 (Proportion) 0.023 0.227 0.022 0.226 0.021 0.221 0.022 0.223

Worked 0 Full Quarters in Calendar Year (Proportion) 0.070 0.393 0.053 0.346 0.055 0.359 0.056 0.357
Worker 1 Full Quarter in Calendar Year (Proportion) 0.136 0.538 0.108 0.486 0.113 0.509 0.111 0.496
Worker 2 Full Quarters in Calendar Year (Proportion) 0.129 0.526 0.117 0.505 0.114 0.510 0.117 0.507
Worker 3 Full Quarters in Calendar Year (Proportion) 0.141 0.548 0.129 0.529 0.132 0.548 0.128 0.529
Worker 4 Full Quarters in Calendar Year (Proportion) 0.524 0.958 0.592 1.003 0.586 1.033 0.588 1.009

Miscellany
Year (Proportions)

1991 0.094 0.293 0.080 0.271 0.079 0.270 0.079 0.270
1992 0.093 0.291 0.083 0.277 0.083 0.276 0.083 0.275
1993 0.096 0.294 0.089 0.285 0.089 0.285 0.089 0.284
1994 0.099 0.298 0.097 0.295 0.097 0.295 0.096 0.294
1995 0.101 0.302 0.105 0.306 0.105 0.307 0.104 0.305
1996 0.104 0.305 0.115 0.319 0.115 0.319 0.114 0.318
1997 0.106 0.308 0.131 0.337 0.131 0.338 0.138 0.345
1998 0.108 0.311 0.118 0.322 0.118 0.322 0.117 0.322
1999 0.107 0.309 0.108 0.310 0.108 0.311 0.107 0.309

Number of Observations 49,281,533 357,725 345,954 357,009
Number of Workers 9,271,766 49,425 48,003 49,200
Number of Firms 573,237 27,421 27,555 40,064
Number of Worker-Firm Matches 15,305,508 92,539 90,500 93,182
a Means are computed on each completed data implicate for each sample. The reported mean is the simple average of the means computed on each implicate.

TABLE 2

Full Analysis Sample Dense Sample 1 Dense Sample 2

b The variance of each variable is computed on each completed data implicate for each sample. The reported standard deviation is the square root of the simple average of the variances computed on each implicate.

Simple Random Sample

Estimates Combined Across 3 Completed Data Implicates
SUMMARY STATISTICS



Parameter 
Estimatea,e

Standard 
Errorb

Parameter 
Estimatea

Standard 
Errorb

Parameter 
Estimatea

Standard 
Errorb

Parameter 
Estimatea

Standard 
Errorb

No Correction for Truncation
Variance of person effect (σ2

α) 0.290 (0.002) 0.230 (0.005) 0.171 (0.003) 0.177 (0.002)

Variance of firm effect (σ2
ψ) 0.077 (0.000) 0.153 (0.002) 0.074 (0.002) 0.076 (0.007)

Variance of match effect (σ2
γ) 0.070 (0.002)

Residual variance (σ2
ε) 0.061 (0.000) 0.044 (0.001) 0.036 (0.000) n/a n/a

Corrected for Truncation
Variance of person effect (σ2

α) 0.229 (0.005) 0.171 (0.003) 0.176 (0.002)

Variance of firm effect (σ2
ψ) 0.153 (0.002) 0.075 (0.002) 0.077 (0.006)

Variance of match effect (σ2
γ) 0.069 (0.002)

Residual variance (σ2
ε) 0.044 (0.001) 0.036 (0.000) n/a n/a

Summary of Model Fit Statistics

Valuea

Between-
Implicate 
Std. Dev.c Valuea

Between-
Implicate 
Std. Dev.c Valuea

Between-
Implicate 
Std. Dev.c Valuea

Between-
Implicate 
Std. Dev.c

No Correction for Truncation
Log Likelihood 263423 (1051.0) 280342 (928.2) 313288 (1292.8)
AIC -526760 (2102.0) -560595 (1856.4) -626163 (2585.5)
BIC -526296 (2102.1) -560121 (1856.4) -623941 (2585.1)
Var(out-of-sample prediction error)d 0.090 (0.0012) 0.069 (0.0007) 0.096 (0.0004)

Corrected for Truncation
Log Likelihood 263807 (1063.3) 280509 (938.4) 313395 (1298.8)
AIC -527526 (2126.7) -560927 (1876.7) -626376 (2597.5)
BIC -527051 (2126.8) -560442 (1876.7) -624143 (2597.1)
Var(out-of-sample prediction error)d 0.090 (0.0012) 0.069 (0.0007) 0.096 (0.0004)

Number of Observations 49,281,533 (9103.2) 357,725 (2363.5) 357,725 (2363.5) 357,725 (2363.5)
Number of Workers 9,271,766 (710.4) 49,425 (150.4) 49,425 (150.4) 49,425 (150.4)
Number of Firms 573,237 (118.1) 27,421 (12.6) 27,421 (12.6) 27,421 (12.6)
Number of Worker-Firm Matches 15,305,508 (3195.5) 92,539 (470.3) 92,539 (470.3) 92,539 (470.3)
a   Simple average of parameter estimate across three completed data implicates.
b   Square root of the total variance of parameter estimate across three completed data implicates, as defined in Rubin (1987).
c  Square root of between-implicate variance.
d  Computed on Dense Sample 2. Dependent variable is scaled to have unit variance.
e  Simple variance of estimated person and firm effects, averaged across three completed data implicates.

TABLE 3
ESTIMATED VARIANCE COMPONENTS AND SUMMARY OF MODEL FIT STATISTICS

Dependent Variable: Log(Real Annualized Earnings), Combined Results From 3 Completed Data Implicates

Fixed Person and Firm 
Effects

Random Person and Firm 
Effects

Random Person, Firm, 
and Match Effects

Random Person and Firm 
Effects, Unstructured 
Residual Covariance



Parameter 
Estimatea,e

Standard 
Errorb

Parameter 
Estimatea

Standard 
Errorb

Parameter 
Estimatea

Standard 
Errorb

Parameter 
Estimatea

Standard 
Errorb

No Correction for Truncation
Variance of person effect (σ2

α) 0.720 (0.003) 0.551 (0.004) 0.496 (0.005) 0.402 (0.004)

Variance of firm effect (σ2
ψ) 0.062 (0.000) 0.100 (0.003) 0.045 (0.002) 0.043 (0.002)

Variance of match effect (σ2
γ) 0.080 (0.002)

Residual variance (σ2
ε) 0.160 (0.000) 0.151 (0.001) 0.137 (0.001) n/a n/a

Corrected for Truncation
Variance of person effect (σ2

α) 0.551 (0.036) 0.495 (0.005) 0.401 (0.003)

Variance of firm effect (σ2
ψ) 0.099 (0.003) 0.045 (0.002) 0.043 (0.002)

Variance of match effect (σ2
γ) 0.079 (0.002)

Residual variance (σ2
ε) 0.151 (0.001) 0.137 (0.001) n/a n/a

Summary of Model Fit Statistics

Valuea

Between-
Implicate 
Std. Dev.c Valuea

Between-
Implicate 
Std. Dev.c Valuea

Between-
Implicate 
Std. Dev.c Valuea

Between-
Implicate 
Std. Dev.c

No Correction for Truncation
Log Likelihood 66937 (874.9) 72661 (723.6) 106727 (1719.8)
AIC -133787 (1749.7) -145234 (1447.1) -213043 (3439.7)
BIC -133323 (1749.6) -144759 (1447.0) -210820 (3440.2)
Var(out-of-sample prediction error)d 0.131 (0.0006) 0.114 (0.0009) 0.131 (0.0012)

Corrected for Truncation
Log Likelihood 67061 (869.4) 72736 (720.5) 106785 (1703.4)
AIC -134034 (1738.8) -145382 (1441.1) -213156 (3406.9)
BIC -133560 (1738.7) -144896 (1440.9) -210923 (3407.3)
Var(out-of-sample prediction error)d 0.131 (0.0006) 0.114 (0.0009) 0.131 (0.0009)

Number of Observations 49,281,533 (9103.2) 357725 (2363.5) 357725 (2363) 357725 (2363)
Number of Workers 9,271,766 (710.4) 49425 (150.4) 49425 (150) 49425 (150)
Number of Firms 573,237 (118.1) 27421 (12.6) 27421 (13) 27421 (13)
Number of Worker-Firm Matches 15,305,508 (3195.5) 92539 (470.3) 92539 (470) 92539 (470)
1 The standard deviation of real annualized earnings in Dense Sample 1 is $51,195 (1990 Dollars).
a   Simple average of parameter estimate across three completed data implicates.
b   Square root of the total variance of parameter estimate across three completed data implicates, as defined in Rubin (1987).
c  Square root of between-implicate variance.
d  Computed on Dense Sample 2. Dependent variable is scaled to have unit variance.
e  Simple variance of estimated person and firm effects, averaged across three completed data implicates.

TABLE 4
ESTIMATED VARIANCE COMPONENTS AND SUMMARY OF MODEL FIT STATISTICS

Dependent Variable: Real Annualized Earnings (Unit Variance Scale), Combined Results From 3 Completed Data Implicates

Fixed Person and Firm 
Effects

Random Person and Firm 
Effects

Random Person, Firm, 
and Match Effects

Random Person and Firm 
Effects, Unstructured 
Residual Covariance



Fixed Person and Firm Effects
y θ α Uη ψ Xβ

Log Earnings (y) 1.000 0.738 0.659 0.335 0.448 0.176
Pure Person Effect (θ) 0.738 1.000 0.914 0.406 0.034 -0.297

Unobserved Component (α) 0.659 0.914 1.000 0.000 -0.005 -0.271
Observed Component (Uη) 0.335 0.406 0.000 1.000 0.094 -0.121

Pure Firm Effect (ψ) 0.448 0.034 -0.005 0.094 1.000 0.048
Time-Varying Covariates (Xβ) 0.176 -0.297 -0.271 -0.121 0.048 1.000

Random Person and Firm Effects
y θ α Uη ψ Xβ

Log Earnings (y) 1.000 0.801 0.705 0.376 0.472 0.289
Pure Person Effect (θ) 0.801 1.000 0.908 0.408 0.027 0.020

Unobserved Component (α) 0.705 0.908 1.000 -0.013 -0.008 -0.029
Observed Component (Uη) 0.376 0.408 -0.013 1.000 0.083 0.110

Pure Firm Effect (ψ) 0.472 0.027 -0.008 0.083 1.000 0.042
Time-Varying Covariates (Xβ) 0.289 0.020 -0.029 0.110 0.042 1.000

Random Person, Firm, and Match Effects
y θ α Uη ψ γ Xβ

Log Earnings (y) 1.000 0.829 0.735 0.378 0.536 0.615 0.290
Pure Person Effect (θ) 0.829 1.000 0.853 0.511 0.226 0.475 0.039

Unobserved Component (α) 0.735 0.853 1.000 -0.013 0.205 0.560 -0.032
Observed Component (Uη) 0.378 0.511 -0.013 1.000 0.095 -0.011 0.127

Pure Firm Effect (ψ) 0.536 0.226 0.205 0.095 1.000 0.166 0.039
Pure Match Effect (γ) 0.615 0.475 0.560 -0.011 0.166 1.000 -0.016
Time-Varying Covariates (Xβ) 0.290 0.039 -0.032 0.127 0.039 -0.016 1.000

Random Person and Firm Effects, Unstructured Residual Covariance
y θ α Uη ψ Xβ

Log Earnings (y) 1.000 0.820 0.733 0.361 0.536 0.300
Pure Person Effect (θ) 0.820 1.000 0.867 0.489 0.222 0.018

Unobserved Component (α) 0.733 0.867 1.000 -0.011 0.201 -0.029
Observed Component (Uη) 0.361 0.489 -0.011 1.000 0.093 0.087

Pure Firm Effect (ψ) 0.536 0.222 0.201 0.093 1.000 0.041
Time-Varying Covariates (Xβ) 0.300 0.018 -0.029 0.087 0.041 1.000

TABLE 5
CORRELATIONS AMONG ESTIMATED EFFECTS

Dependent Variable: Log(Real Annualized Earnings), No Correction for Truncation
Results Combined From 3 Completed Data Implicates



Random Person and Firm Effects
y θ α Uη ψ Xβ βλλ

Log Earnings (y) 1 0.802 0.706 0.376 0.477 0.291 0.056
Pure Person Effect (θ) 0.802 1 0.908 0.407 0.032 0.024 0.105

Unobserved Component (α) 0.706 0.908 1 -0.012 -0.004 -0.028 0.111
Observed Component (Uη) 0.376 0.407 -0.012 1 0.084 0.118 0.103

Pure Firm Effect (ψ) 0.477 0.032 -0.004 0.084 1 0.050 -0.064
Time-Varying Covariates (Xβ) 0.291 0.024 -0.028 0.118 0.050 1 0.131
Inverse Mills Ratio (βλλ) 0.056 0.105 0.111 0.103 -0.064 0.131 1

Random Person, Firm, and Match Effects
y θ α Uη ψ γ Xβ βλλ

Log Earnings (y) 1 0.829 0.735 0.378 0.536 0.616 0.291 0.056
Pure Person Effect (θ) 0.829 1 0.854 0.510 0.225 0.476 0.042 0.113

Unobserved Component (α) 0.735 0.854 1 -0.013 0.204 0.561 -0.031 0.122
Observed Component (Uη) 0.378 0.510 -0.013 1 0.096 -0.011 0.132 0.103

Pure Firm Effect (ψ) 0.536 0.225 0.204 0.096 1 0.165 0.043 -0.133
Pure Match Effect (γ) 0.616 0.476 0.561 -0.011 0.165 1 -0.013 0.160
Time-Varying Covariates (Xβ) 0.291 0.042 -0.031 0.132 0.043 -0.013 1 0.130
Inverse Mills Ratio (βλλ) 0.056 0.113 0.122 0.103 -0.133 0.160 0.130 1

Random Person and Firm Effects, Unstructured Residual Covariance
y θ α Uη ψ Xβ βλλ

Log Earnings (y) 1 0.820 0.733 0.362 0.537 0.302 0.056
Pure Person Effect (θ) 0.820 1 0.867 0.489 0.222 0.021 0.116

Unobserved Component (α) 0.733 0.867 1 -0.011 0.200 -0.028 0.123
Observed Component (Uη) 0.362 0.489 -0.011 1 0.094 0.092 0.106

Pure Firm Effect (ψ) 0.537 0.222 0.200 0.094 1 0.045 -0.126
Time-Varying Covariates (Xβ) 0.302 0.021 -0.028 0.092 0.045 1 0.124
Inverse Mills Ratio (βλλ) 0.056 0.116 0.123 0.106 -0.126 0.124 1

TABLE 6
CORRELATIONS AMONG ESTIMATED EFFECTS

Dependent Variable: Log(Real Annualized Earnings), Corrected for Truncation
Results Combined From 3 Completed Data Implicates



Fixed Person and Firm Effects
y θ α Uη ψ Xβ

Log Earnings (y) 1.000 0.761 0.729 0.224 0.297 0.205
Pure Person Effect (θ) 0.761 1.000 0.937 0.350 0.023 -0.292

Unobserved Component (α) 0.729 0.937 1.000 0.000 0.011 -0.230
Observed Component (Uη) 0.224 0.350 0.000 1.000 0.036 -0.220

Pure Firm Effect (ψ) 0.297 0.023 0.011 0.036 1.000 0.063
Time-Varying Covariates (Xβ) 0.205 -0.292 -0.230 -0.220 0.063 1.000

Random Person and Firm Effects
y θ α Uη ψ Xβ

Log Earnings (y) 1.000 0.846 0.812 0.248 0.400 0.262
Pure Person Effect (θ) 0.846 1.000 0.941 0.344 0.173 -0.058

Unobserved Component (α) 0.812 0.941 1.000 0.007 0.160 -0.012
Observed Component (Uη) 0.248 0.344 0.007 1.000 0.066 -0.139

Pure Firm Effect (ψ) 0.400 0.173 0.160 0.066 1.000 0.020
Time-Varying Covariates (Xβ) 0.262 -0.058 -0.012 -0.139 0.020 1.000

Random Person, Firm, and Match Effects
y θ α Uη ψ γ Xβ

Log Earnings (y) 1.000 0.853 0.822 0.247 0.424 0.624 0.262
Pure Person Effect (θ) 0.853 1.000 0.928 0.378 0.274 0.507 -0.063

Unobserved Component (α) 0.822 0.928 1.000 0.007 0.266 0.544 -0.012
Observed Component (Uη) 0.247 0.378 0.007 1.000 0.075 0.009 -0.141

Pure Firm Effect (ψ) 0.424 0.274 0.266 0.075 1.000 0.266 0.026
Pure Match Effect (γ) 0.624 0.507 0.544 0.009 0.266 1.000 0.004
Time-Varying Covariates (Xβ) 0.262 -0.063 -0.012 -0.141 0.026 0.004 1.000

Random Person and Firm Effects, Unstructured Residual Covariance
y θ α Uη ψ Xβ

Log Earnings (y) 1.000 0.809 0.781 0.242 0.412 0.262
Pure Person Effect (θ) 0.809 1.000 0.910 0.420 0.257 -0.075

Unobserved Component (α) 0.781 0.910 1.000 0.006 0.250 -0.012
Observed Component (Uη) 0.242 0.420 0.006 1.000 0.073 -0.155

Pure Firm Effect (ψ) 0.412 0.257 0.250 0.073 1.000 0.038
Time-Varying Covariates (Xβ) 0.262 -0.075 -0.012 -0.155 0.038 1.000

TABLE 7
CORRELATIONS AMONG ESTIMATED EFFECTS

Dependent Variable: Real Annualized Earnings, No Correction for Truncation
Results Combined From 3 Completed Data Implicates



Random Person and Firm Effects
y θ α Uη ψ Xβ βλλ

Log Earnings (y) 1 0.846 0.812 0.248 0.402 0.263 0.015
Pure Person Effect (θ) 0.846 1 0.942 0.344 0.174 -0.057 0.031

Unobserved Component (α) 0.812 0.942 1 0.007 0.161 -0.012 0.033
Observed Component (Uη) 0.248 0.344 0.007 1 0.067 -0.137 0.034

Pure Firm Effect (ψ) 0.402 0.174 0.161 0.067 1 0.025 -0.101
Time-Varying Covariates (Xβ) 0.263 -0.057 -0.012 -0.137 0.025 1 0.036
Inverse Mills Ratio (βλλ) 0.015 0.031 0.033 0.034 -0.101 0.036 1

Random Person, Firm, and Match Effects
y θ α Uη ψ γ Xβ βλλ

Log Earnings (y) 1 0.853 0.822 0.248 0.424 0.624 0.262 0.015
Pure Person Effect (θ) 0.853 1 0.929 0.378 0.272 0.507 -0.063 0.031

Unobserved Component (α) 0.822 0.929 1 0.007 0.264 0.544 -0.011 0.033
Observed Component (Uη) 0.248 0.378 0.007 1 0.075 0.009 -0.140 0.034

Pure Firm Effect (ψ) 0.424 0.272 0.264 0.075 1 0.263 0.030 -0.155
Pure Match Effect (γ) 0.624 0.507 0.544 0.009 0.263 1 0.006 0.056
Time-Varying Covariates (Xβ) 0.262 -0.063 -0.011 -0.140 0.030 0.006 1 0.035
Inverse Mills Ratio (βλλ) 0.015 0.031 0.033 0.034 -0.155 0.056 0.035 1

Random Person and Firm Effects, Unstructured Residual Covariance
y θ α Uη ψ Xβ βλλ

Log Earnings (y) 1 0.808 0.780 0.242 0.412 0.262 0.015
Pure Person Effect (θ) 0.808 1 0.910 0.420 0.257 -0.075 0.032

Unobserved Component (α) 0.780 0.910 1 0.006 0.249 -0.012 0.034
Observed Component (Uη) 0.242 0.420 0.006 1 0.073 -0.154 0.035

Pure Firm Effect (ψ) 0.412 0.257 0.249 0.073 1 0.040 -0.155
Time-Varying Covariates (Xβ) 0.262 -0.075 -0.012 -0.154 0.040 1 0.032
Inverse Mills Ratio (βλλ) 0.015 0.032 0.034 0.035 -0.155 0.032 1

TABLE 8
CORRELATIONS AMONG ESTIMATED EFFECTS

Dependent Variable: Real Annualized Earnings, Corrected For Truncation
Results Combined From 3 Completed Data Implicates



Variance of Person 
Effect (σ2

ζ)
Variance of Firm 

Effect (σ2
ξ) Log Likelihooda

Tenure 1-2 Years 0.001 0.091 -117856.7
(0.001) (0.008) (2125.5)

Tenure 3-4 Years 0.243 0.678 -101463.3
(0.007) (0.014) (2008.6)

Tenure 5-6 Years 0.307 1.035 -76709.5
(0.012) (0.081) (942.2)

Tenure 7-8 Years 0.294 1.207 -57831.4
(0.019) (0.038) (143.9)

Tenure 9-10 Years 0.231 1.294 -41535.5
(0.013) (0.038) (536.0)

Tenure 11-12 Years 0.149 1.342 -22809.7
(0.020) (0.046) (1727.5)

Tenure 13-14 Years 0.097 1.285 -11970.8
(0.026) (0.063) (1799.1)

Tenure 15+ Years 0.168 1.101 -6284.8
(0.107) (0.067) (1164.4)

a Value in parentheses is the square root of the between-implicate variance of lnL.

TABLE 9

Standard Errors in Parentheses
Combined Results From Three Completed Data Implicates

PARAMETER ESTIMATES FROM THE PROBIT EQUATION



Te
nu
re

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
1

0.
12
6

2
0.
07
1

0.
09
3

3
0.
05
1

0.
06
7

0.
08
9

4
0.
04
1

0.
05
5

0.
06
7

0.
08
9

5
0.
03
0

0.
04
4

0.
05
6

0.
06
9

0.
08
5

6
0.
02
3

0.
03
7

0.
04
9

0.
06
0

0.
06
8

0.
08
7

7
0.
01
7

0.
03
1

0.
04
3

0.
05
4

0.
06
2

0.
07
1

0.
08
9

8
0.
01
4

0.
02
7

0.
03
8

0.
05
1

0.
05
8

0.
06
6

0.
07
5

0.
09
3

9
0.
01
1

0.
02
4

0.
03
5

0.
04
7

0.
05
5

0.
06
2

0.
07
0

0.
07
9

0.
09
6

10
0.
00
6

0.
02
1

0.
03
2

0.
04
4

0.
05
1

0.
05
9

0.
06
7

0.
07
4

0.
08
3

0.
10
1

11
0.
01
8

0.
02
9

0.
04
0

0.
04
8

0.
05
6

0.
06
3

0.
07
0

0.
07
7

0.
08
8

0.
10
5

12
0.
02
3

0.
03
5

0.
04
4

0.
05
1

0.
05
9

0.
06
7

0.
07
3

0.
08
0

0.
08
9

0.
10
5

13
0.
03
3

0.
04
3

0.
04
8

0.
05
4

0.
06
2

0.
06
8

0.
07
5

0.
08
1

0.
09
1

0.
10
9

14
0.
03
7

0.
04
2

0.
04
6

0.
05
4

0.
06
1

0.
06
8

0.
07
4

0.
08
2

0.
09
6

0.
11
6

15
0.
03
0

0.
03
4

0.
04
2

0.
04
7

0.
05
5

0.
06
0

0.
06
8

0.
07
9

0.
09
3

0.
11
9

16
0.
01
5

0.
02
2

0.
02
7

0.
03
5

0.
04
0

0.
04
7

0.
05
6

0.
07
1

0.
08
7

0.
12
4

17
0.
00
4

0.
00
7

0.
01
3

0.
01
6

0.
02
2

0.
02
8

0.
04
0

0.
05
7

0.
08
7

0.
12
8

18
0.
00
1

0.
00
6

0.
00
7

0.
01
1

0.
01
6

0.
02
5

0.
03
7

0.
06
1

0.
09
3

0.
11
1

19
0.
00
3

0.
00
4

0.
00
6

0.
00
9

0.
01
6

0.
02
5

0.
04
0

0.
06
6

0.
08
1

0.
09
7

20
0.
00
3

0.
00
4

0.
00
6

0.
01
1

0.
01
8

0.
03
0

0.
04
6

0.
05
9

0.
07
0

0.
08
6

21
0.
00
3

0.
00
5

0.
00
8

0.
01
2

0.
02
1

0.
03
4

0.
04
2

0.
05
1

0.
06
2

0.
08
0

T
A

B
L

E
 1

0
M

IX
E

D
 M

O
D

E
L

 E
ST

IM
A

T
E

S 
O

F 
R

E
SI

D
U

A
L

 C
O

V
A

R
IA

N
C

E
 W

IT
H

IN
 W

O
R

K
E

R
-F

IR
M

 M
A

T
C

H
D

ep
en

de
nt

 V
ar

ia
bl

e:
 L

og
(R

ea
l A

nn
ua

liz
ed

 E
ar

ni
ng

s)
, N

o 
C

or
re

ct
io

n 
fo

r 
T

ru
nc

at
io

n,
 C

om
bi

ne
d 

R
es

ul
ts

 F
ro

m
 3

 C
om

pl
et

ed
 D

at
a 

Im
pl

ic
at

es



Te
nu
re

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
1

0.
12
6

2
0.
07
1

0.
09
3

3
0.
05
1

0.
06
7

0.
08
8

4
0.
04
0

0.
05
5

0.
06
6

0.
08
8

5
0.
03
0

0.
04
4

0.
05
5

0.
06
8

0.
08
5

6
0.
02
3

0.
03
7

0.
04
8

0.
05
9

0.
06
8

0.
08
6

7
0.
01
7

0.
03
1

0.
04
3

0.
05
4

0.
06
1

0.
07
1

0.
08
9

8
0.
01
4

0.
02
7

0.
03
8

0.
05
0

0.
05
8

0.
06
6

0.
07
4

0.
09
3

9
0.
01
1

0.
02
4

0.
03
4

0.
04
7

0.
05
4

0.
06
2

0.
06
9

0.
07
9

0.
09
6

10
0.
00
7

0.
02
1

0.
03
2

0.
04
3

0.
05
1

0.
05
9

0.
06
7

0.
07
5

0.
08
3

0.
10
1

11
0.
01
9

0.
02
9

0.
04
0

0.
04
8

0.
05
6

0.
06
4

0.
07
1

0.
07
8

0.
08
8

0.
10
6

12
0.
02
4

0.
03
6

0.
04
5

0.
05
2

0.
06
0

0.
06
8

0.
07
4

0.
08
1

0.
09
0

0.
10
7

13
0.
03
4

0.
04
4

0.
04
9

0.
05
5

0.
06
3

0.
06
9

0.
07
6

0.
08
3

0.
09
4

0.
11
2

14
0.
03
8

0.
04
3

0.
04
8

0.
05
6

0.
06
2

0.
07
0

0.
07
6

0.
08
5

0.
09
8

0.
11
9

15
0.
03
1

0.
03
6

0.
04
3

0.
04
9

0.
05
6

0.
06
1

0.
07
0

0.
08
1

0.
09
6

0.
12
1

16
0.
01
7

0.
02
4

0.
02
8

0.
03
7

0.
04
2

0.
04
9

0.
05
9

0.
07
3

0.
09
0

0.
12
7

17
0.
00
5

0.
00
9

0.
01
4

0.
01
8

0.
02
3

0.
03
0

0.
04
2

0.
05
9

0.
08
9

0.
13
0

18
0.
00
2

0.
00
7

0.
00
8

0.
01
2

0.
01
8

0.
02
7

0.
03
9

0.
06
2

0.
09
4

0.
11
3

19
0.
00
4

0.
00
5

0.
00
7

0.
01
0

0.
01
7

0.
02
6

0.
04
2

0.
06
7

0.
08
2

0.
09
8

20
0.
00
4

0.
00
5

0.
00
7

0.
01
2

0.
01
9

0.
03
1

0.
04
7

0.
06
0

0.
07
1

0.
08
7

21
0.
00
4

0.
00
5

0.
00
9

0.
01
3

0.
02
2

0.
03
5

0.
04
2

0.
05
2

0.
06
3

0.
08
1

T
A

B
L

E
 1

1
M

IX
E

D
 M

O
D

E
L

 E
ST

IM
A

T
E

S 
O

F 
R

E
SI

D
U

A
L

 C
O

V
A

R
IA

N
C

E
 W

IT
H

IN
 W

O
R

K
E

R
-F

IR
M

 M
A

T
C

H
D

ep
en

de
nt

 V
ar

ia
bl

e:
 L

og
(R

ea
l A

nn
ua

liz
ed

 E
ar

ni
ng

s)
, C

or
re

ct
ed

 fo
r 

T
ru

nc
at

io
n,

 C
om

bi
ne

d 
R

es
ul

ts
 F

ro
m

 3
 C

om
pl

et
ed

 D
at

a 
Im

pl
ic

at
es



Te
nu
re

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
1

0.
18
3

2
0.
06
9

0.
16
4

3
0.
06
0

0.
11
6

0.
19
5

4
0.
06
0

0.
11
5

0.
16
7

0.
28
9

5
0.
05
4

0.
09
9

0.
15
2

0.
22
6

0.
30
2

6
0.
03
9

0.
10
9

0.
15
2

0.
22
1

0.
25
5

0.
36
9

7
0.
05
6

0.
11
6

0.
16
3

0.
23
5

0.
26
4

0.
32
7

0.
44
3

8
0.
07
0

0.
09
5

0.
14
6

0.
22
7

0.
26
6

0.
31
9

0.
38
0

0.
49
5

9
0.
07
5

0.
10
8

0.
15
3

0.
22
7

0.
26
5

0.
30
9

0.
37
0

0.
43
5

0.
55
1

10
0.
06
4

0.
11
3

0.
15
5

0.
22
4

0.
26
6

0.
31
2

0.
37
5

0.
43
0

0.
48
5

0.
61
2

11
0.
11
4

0.
15
7

0.
23
1

0.
28
5

0.
32
4

0.
39
1

0.
44
3

0.
49
5

0.
57
0

0.
69
9

12
0.
13
9

0.
22
2

0.
26
2

0.
31
5

0.
38
0

0.
43
4

0.
48
3

0.
54
2

0.
60
8

0.
73
2

13
0.
20
7

0.
30
6

0.
32
2

0.
37
1

0.
42
6

0.
47
6

0.
54
1

0.
61
3

0.
65
7

0.
88
3

14
0.
28
7

0.
32
0

0.
34
8

0.
38
8

0.
44
0

0.
50
4

0.
58
3

0.
63
4

0.
75
4

0.
93
2

15
0.
29
4

0.
32
7

0.
36
0

0.
39
5

0.
46
7

0.
53
0

0.
58
9

0.
69
9

0.
75
2

1.
03
2

16
0.
23
1

0.
25
4

0.
30
5

0.
35
4

0.
42
5

0.
45
7

0.
62
5

0.
69
5

0.
73
4

0.
97
4

17
0.
15
1

0.
20
4

0.
22
5

0.
27
1

0.
32
4

0.
40
8

0.
51
5

0.
53
7

0.
67
7

0.
80
0

18
0.
14
7

0.
16
5

0.
20
3

0.
23
1

0.
28
4

0.
35
9

0.
36
3

0.
46
7

0.
52
0

0.
51
9

19
0.
09
5

0.
11
9

0.
13
4

0.
16
5

0.
21
1

0.
21
2

0.
27
5

0.
30
9

0.
30
9

0.
34
9

20
0.
07
1

0.
08
0

0.
09
8

0.
12
5

0.
12
6

0.
16
3

0.
18
3

0.
18
3

0.
20
5

0.
28
7

21
0.
04
7

0.
05
8

0.
07
4

0.
07
4

0.
09
6

0.
10
7

0.
10
7

0.
12
0

0.
16
8

0.
26
6

T
A

B
L

E
 1

2
M

IX
E

D
 M

O
D

E
L

 E
ST

IM
A

T
E

S 
O

F 
R

E
SI

D
U

A
L

 C
O

V
A

R
IA

N
C

E
 W

IT
H

IN
 W

O
R

K
E

R
-F

IR
M

 M
A

T
C

H
D

ep
en

de
nt

 V
ar

ia
bl

e:
 R

ea
l A

nn
ua

liz
ed

 E
ar

ni
ng

s (
U

ni
t V

ar
ia

nc
e 

Sc
al

e)
, N

o 
C

or
re

ct
io

n 
fo

r 
T

ru
nc

at
io

n,
 C

om
bi

ne
d 

R
es

ul
ts

 F
ro

m
 3

 C
om

pl
et

ed
 D

at
a 

Im
pl

ic
at

es



Te
nu
re

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
1

0.
18
3

2
0.
06
9

0.
16
4

3
0.
06
0

0.
11
6

0.
19
4

4
0.
06
0

0.
11
5

0.
16
7

0.
28
9

5
0.
05
4

0.
09
9

0.
15
2

0.
22
6

0.
30
2

6
0.
03
9

0.
10
9

0.
15
2

0.
22
1

0.
25
5

0.
37
0

7
0.
05
6

0.
11
7

0.
16
3

0.
23
5

0.
26
4

0.
32
8

0.
44
3

8
0.
07
1

0.
09
5

0.
14
6

0.
22
7

0.
26
6

0.
31
9

0.
38
1

0.
49
7

9
0.
07
6

0.
10
9

0.
15
4

0.
22
8

0.
26
5

0.
31
0

0.
37
1

0.
43
6

0.
55
3

10
0.
06
6

0.
11
4

0.
15
6

0.
22
5

0.
26
7

0.
31
4

0.
37
6

0.
43
1

0.
48
7

0.
61
4

11
0.
11
7

0.
15
9

0.
23
3

0.
28
6

0.
32
6

0.
39
3

0.
44
5

0.
49
7

0.
57
2

0.
70
1

12
0.
14
1

0.
22
4

0.
26
4

0.
31
8

0.
38
2

0.
43
7

0.
48
7

0.
54
6

0.
61
2

0.
73
8

13
0.
21
0

0.
30
9

0.
32
5

0.
37
4

0.
43
0

0.
48
0

0.
54
5

0.
61
9

0.
66
3

0.
89
0

14
0.
29
4

0.
32
6

0.
35
4

0.
39
5

0.
44
7

0.
51
2

0.
59
1

0.
64
4

0.
76
5

0.
94
6

15
0.
30
4

0.
33
7

0.
37
0

0.
40
7

0.
48
0

0.
54
4

0.
60
4

0.
71
9

0.
77
3

1.
05
9

16
0.
25
0

0.
27
4

0.
32
6

0.
37
9

0.
45
4

0.
48
8

0.
67
2

0.
74
6

0.
78
2

1.
04
4

17
0.
17
3

0.
23
0

0.
25
2

0.
29
9

0.
36
4

0.
45
4

0.
56
9

0.
58
7

0.
74
2

0.
87
3

18
0.
16
6

0.
18
6

0.
22
4

0.
26
0

0.
31
7

0.
39
9

0.
39
9

0.
51
4

0.
57
2

0.
55
3

19
0.
10
8

0.
13
2

0.
15
2

0.
18
6

0.
23
5

0.
23
4

0.
30
4

0.
34
1

0.
33
1

0.
36
1

20
0.
07
9

0.
09
1

0.
11
0

0.
14
0

0.
13
9

0.
18
0

0.
20
2

0.
19
6

0.
21
3

0.
29
1

21
0.
05
4

0.
06
5

0.
08
2

0.
08
2

0.
10
6

0.
11
9

0.
11
5

0.
12
5

0.
17
0

0.
26
7

T
A

B
L

E
 1

3
M

IX
E

D
 M

O
D

E
L

 E
ST

IM
A

T
E

S 
O

F 
R

E
SI

D
U

A
L

 C
O

V
A

R
IA

N
C

E
 W

IT
H

IN
 W

O
R

K
E

R
-F

IR
M

 M
A

T
C

H
D

ep
en

de
nt

 V
ar

ia
bl

e:
 R

ea
l A

nn
ua

liz
ed

 E
ar

ni
ng

s (
U

ni
t V

ar
ia

nc
e 

Sc
al

e)
, C

or
re

ct
ed

 fo
r 

T
ru

nc
at

io
n,

 C
om

bi
ne

d 
R

es
ul

ts
 F

ro
m

 3
 C

om
pl

et
ed

 D
at

a 
Im

pl
ic

at
es



V
ar

ia
nc

e 
Pa

ra
m

et
er

Pa
ra

m
et

er
 

Es
tim

at
ea

St
an

da
rd

 
Er

ro
rb

Pa
ra

m
et

er
 

Es
tim

at
ea

St
an

da
rd

 
Er

ro
rb

Pa
ra

m
et

er
 

Es
tim

at
ea

St
an

da
rd

 
Er

ro
rb

N
o 

C
or

re
ct

io
n 

fo
r T

ru
nc

at
io

n
V

ar
ia

nc
e 

of
 M

ea
su

re
m

en
t E

rr
or

 (σ
2 u 

)
0.

05
0

(0
.0

00
)

0.
20

1
(0

.0
15

)
0.

09
3

(0
.0

01
)

V
ar

ia
nc

e 
of

 M
at

ch
 Q

ua
lit

y 
(σ

2 c 
)

0.
05

2
(0

.0
02

)
0.

38
3

(0
.0

36
)

0.
58

0
(0

.0
18

)
V

ar
ia

nc
e 

of
 In

iti
al

 S
ig

na
l (
σ2 z )

0.
02

3
(0

.0
02

)
8.

66
1

(3
.0

27
)

11
.4

22
(1

.5
06

)
V

ar
ia

nc
e 

of
 P

ro
du

ct
io

n 
O

ut
co

m
es

 (σ
2 e 

)
0.

00
4

(0
.0

06
)

0.
22

8
(0

.0
14

)
2.

54
9

(0
.1

17
)

P-
va

lu
e 

fr
om

 C
hi

-S
qu

ar
e 

Te
stc

0.
00

1
0.

00
2

0.
02

6

C
or

re
ct

ed
 fo

r T
ru

nc
at

io
n

V
ar

ia
nc

e 
of

 M
ea

su
re

m
en

t E
rr

or
 (σ

2 u 
)

0.
05

0
(0

.0
00

)
0.

20
2

(0
.0

15
)

0.
09

2
(0

.0
03

)
V

ar
ia

nc
e 

of
 M

at
ch

 Q
ua

lit
y 

(σ
2 c 

)
0.

05
3

(0
.0

03
)

0.
39

3
(0

.0
16

)
0.

57
3

(0
.0

07
)

V
ar

ia
nc

e 
of

 In
iti

al
 S

ig
na

l (
σ2 z )

0.
02

4
(0

.0
03

)
9.

33
1

(2
.3

63
)

11
.2

35
(1

.4
97

)
V

ar
ia

nc
e 

of
 P

ro
du

ct
io

n 
O

ut
co

m
es

 (σ
2 e 

)
0.

00
4

(0
.0

06
)

0.
22

6
(0

.0
14

)
2.

44
0

(0
.1

19
)

P-
va

lu
e 

fr
om

 C
hi

-S
qu

ar
e 

Te
st

 c
0.

00
1

0.
00

2
0.

02
6

1   P
ar

am
et

er
s e

st
im

at
es

 c
an

 b
e 

re
sc

al
ed

 fo
r a

lte
rn

at
e 

va
lu

es
 0

<δ
<1

 b
y 

di
vi

di
ng

 th
e 

pa
ra

ra
m

et
er

 e
st

im
at

e 
by

 δ
2 ,

a   
 A

ve
ra

ge
 o

f p
ar

am
et

er
 e

st
im

at
es

 a
cr

os
s t

hr
ee

 c
om

pl
et

ed
 d

at
a 

im
pl

ic
at

es
.

b 
  Sq

ua
re

 ro
ot

 o
f t

ot
al

 v
ar

ia
nc

e 
of

 p
ar

am
et

er
 e

st
im

at
e 

ac
ro

ss
 th

re
e 

co
m

pl
et

ed
 d

at
a 

im
pl

ic
at

es
, a

s d
ef

in
ed

 in
 R

ub
in

 (1
98

7)
.

(1
)

(2
)

(3
)

Lo
g(

R
ea

l A
nn

ua
liz

ed
 

Ea
rn

in
gs

) S
ca

leT
A

B
L

E
 1

4

R
ea

l A
nn

ua
liz

ed
 E

ar
ni

ng
s (

U
ni

t V
ar

ia
nc

e)
 S

ca
le

C
om

bi
ne

d 
R

es
ul

ts
 F

ro
m

 3
 C

om
pl

et
ed

 D
at

a 
Im

pl
ic

at
es

M
in

im
um

 D
is

ta
nc

e 
E

st
im

at
es

 o
f S

tr
uc

tu
ra

l P
ar

am
et

er
s, 

Sc
al

e 
Pa

ra
m

et
er

1  δ
=1

c   D
et

ai
ls

 o
n 

co
m

bi
ni

ng
 th

e 
ch

i-s
qu

ar
e 

te
st

 st
at

is
tic

 a
cr

os
s c

om
pl

et
ed

 d
at

a 
im

pl
ic

at
es

 c
an

 b
e 

fo
un

d 
in

 th
e 

te
xt

, o
r i

n 
R

ub
in

 (1
98

7,
 p

p.
 7

6-
79

). 
Th

e 
ch

i-s
qu

ar
e 

te
st

 st
at

is
tic

 h
as

 
16

1 
de

gr
ee

s o
f f

re
ed

om
 fo

r m
od

el
s l

ab
el

ed
 "

M
ax

im
um

 T
en

ur
e 

= 
21

 y
ea

rs
",

 a
nd

 5
1 

de
gr

es
s o

f f
re

ed
om

 fo
r t

he
 m

od
el

 la
be

le
d 

"M
ax

im
um

 T
en

ur
e 

= 
10

 y
ea

rs
".

M
ax

im
um

 T
en

ur
e 

= 
10

 y
ea

rs
 

M
ax

im
um

 T
en

ur
e 

= 
21

 y
ea

rs
 

M
ax

im
um

 T
en

ur
e 

= 
21

 y
ea

rs
 



Figure 1
Yearly Time Series of Average Real Annualized Earnings
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Figure 2
Yearly Time Series of Employment
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Figure 3
Estimated Sequence of Belief Variances, Log Earnings Scale
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Figure 4
Estimated Sequence of Belief Variances, 

Earnings (Unit Variance) Scale
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Figure 5
Estimated Relationship Between Person Effect and Job Duration

Model With Unrestricted Within-Match Residual Covariance
Right-Censored Spells Excluded From Regression (N=54,661)
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Figure 6
Estimated Relationship Between Firm Effect and Job Duration

Model With Unrestricted Within-Match Residual Covariance
Right-Censored Spells Excluded From Regression (N=54,661)
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Figure 7
Estimated Relationship Between Firm Effect and Log(1997 Employment)
Model With Unrestricted Within-Match Residual Covariance (N=27,421)
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Figure 8
An Example of the Firm-Specific Sampling Rate in the Dense Sampling
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