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Introduction 

The geographic clustering of firms is a ubiquitous, but poorly understood, feature 

of advanced economies.  Many fundamental issues in economics, such as the role of 

cities in economic development and the location of production in a global economy, have 

at their root some theory of spatial clustering.  Theories of economic agglomerations are 

also important in the design of economic policies aimed at stimulating the development 

of high technology districts. 

In the economics literature, explanations for the geographic concentration of firms 

have focused on “external economies of scale” or equivalently “agglomeration 

economies”.  These terms refer to mechanisms that improve the efficiency of production 

at an individual firm when other related firms co-locate in an area.1  In this paper we use 

a new source of data to examine empirically the role of a much discussed source of 

“external economies of scale” in a much discussed industry and economic cluster.  Our 

focus is on the computer industry and the agglomeration economy we investigate is 

knowledge spillovers due to the easy mobility of skilled employees among firms in 

Silicon Valley. 

Analee Saxenian first proposed the idea that high rates of job mobility were a 

source of agglomeration economies in Silicon Valley (1994).  She argued that the 

sustained high-rates of innovation of computer firms in the Santa Clara valley were the 

                                                 

1  For an excellent and comprehensive review of the literature on geographic clustering see 
Rosenthal and Strange (2003).  Porter (1998) discusses the policy implications of 
clusters. 
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result of two unique aspects of the industrial organization of the region.  The first feature 

was that computer systems manufacturers relied on networks of independent suppliers 

who specialized in incorporating the latest technological advances into modular 

components.2    Modularity increased the rate of technical innovation by allowing rival 

component manufacturers the freedom to experiment with product design provided that 

their component conform to design rules that integrated components into the final 

product.3  Modularity also forced the various suppliers into a competition to build the 

latest technology into components4   

The second key feature of the industrial organization of Silicon Valley was the 

rapid diffusion of technical knowledge throughout the region.   Much of the most 

valuable knowledge in this industry was acquired informally by hands-hands on 

experience and then spread via the easy and rapid movement of employees from one 

                                                 

2  “Companies like Sun, Tandem and Mips recognize that the design and production of 
computers can no longer be accomplished by a single firm: it requires the collaboration of 
a variety of specialist firms, none of which could complete the task on its own…. These 
highly focused producers depend on the unparalleled agglomeration of engineers and 
specialist suppliers of materials, equipment and services in Silicon Valley, and on the 
region’s culture of open information exchange and interfirm mobility, which foster 
recombination and new firm formation.” (Saxenian, p. 145, 2000) 

3  “This freedom to experiment with product design is what distinguishes modular suppliers 
from ordinary subcontractors.  For example, a team of disk drive designers has to obey 
the overall requirements of a personal computer, such as the data transmission protocols, 
specifications for the size and shape of hardware, and standards for interfaces, to be sure 
that the modules will function within the system as a whole.  But otherwise, team 
members can design the disk drive in the way they think works best.  The decisions they 
make need not be communicated to designers of other modules or even to the system’s 
architects….Rival disk drive engineers, by the same token, can experiment with 
completely different engineering approaches for their versions of the module…”(Baldwin 
and Clark, 1997 p. 85) 

4  Baldwin and Clark (1997) define modularity as the “building of a complex product or 
process from smaller subsystems that can be designed independently yet function 
together as a whole” (p. 84).  They argue that modularity is a fundamental feature of 
computer design and, increasingly, of design strategies in other industries (2000). 
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company to another.  This knowledge spill-over was further facilitated by the adoption of 

“open” operating systems (such as Unix) as well as modular component systems. 

These two features of Silicon Valley (multiple suppliers competing to produce 

innovative modular components and spillover of tacit knowledge via rapid employee 

mobility) meant that any firm connected to the personal networks through which 

information and employees flowed in Silicon Valley could benefit from the best 

innovation produced in the entire cluster rather than the best innovation produced by their 

own, proprietary research and development efforts.5 

In support of her argument, Saxenien observed that the computer makers in the 

computer systems cluster around Boston organized their supply networks differently – 

and that this difference slowed the rate of innovation relative to Silicon Valley.  

Companies along Rte. 128 in Massachusetts (such as Digital Equipment Corporation) 

emphasized vertical integration and proprietary operating systems.  The flow of 

information and ideas to competitors was further restricted by internal labor markets, 

compensation systems and informal employment practices that discouraged the easy 

movement of employees from one company to another.  As a result of these differences, 

Rte. 128’s computer makers lost the initial technological advantage they enjoyed over 

their competitors in Silicon Valley.   

                                                 

5  “Why, asks Sun’s vice president of manufacturing, Jim Bean, should Sun vertically 
integrate when hundreds of specialty shops in Silicon Valley invest heavily in staying at 
the leading edge in the design and manufacture of microprocessors, disk drives, printed-
circuit boards, and most other computer components and subsystems?  Relying on 
outside suppliers reduces Sun’s overhead and ensures that the firm’s workstations use 
state-of-the art technology “(Saxenian, 2000, p. 144) 
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The key agglomeration economy in Saxenian’s analysis was not the concentration 

of skilled employees in a region (Rte. 128 had a similar concentration), but the 

knowledge spillovers enabled by the easy mobility between firms.       

“This decentralized and fluid environment accelerated the diffusion of 
technological capabilities and know-how within the region.  Departing employees 
were typically required to sign nondisclosure statements that prevented them from 
revealing company secrets: however much of the useful technology in the 
industry grew out of the experience of developing technology.  When engineers 
moved between companies, they took with them the knowledge, skills, and 
experience acquired at their previous jobs. (Saxenian, 1994, p. 37) 
 

The phenomenon of knowledge spillovers enabled by job hopping between 

companies raises an important theoretical and managerial issue: if the tacit knowledge of 

departing employees includes new innovations developed by or at their current employer, 

why should the employer make it easy for employees to move?  Wouldn’t individual 

companies do better by taking advantage of the free flow of ideas from other firms in the 

Valley while locking up their own ideas and employees?   Of course, if it makes sense for 

each individual firm to inhibit the movement of their ideas and their employees, the 

external economies of scale in Silicon Valley would rapidly disappear.  How is it possible 

then that external economies of the sort described by Saxenian are an equilibrium feature 

of the equilibrium industrial cluster in Silicon Valley? 

A provocative answer to this question has been proposed by Ronald Gilson 

(1999).  Gilson’s analysis focuses on the legal mechanisms available to firms wishing to 

control the disposition of knowledge and ideas that employees acquire in the course of 

their work.  As the preceding quote suggests, laws regulating the disclosure of trade 

secrets were not an effective device for controlling unwanted knowledge transfers.  

Indeed, according to Gilson, given the tacit nature of the knowledge spillovers in the 
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Silicon Valley environment, the only potentially effective legal device for restricting the 

flow of important innovations to competitors would be a non-compete agreement.6    

These employment agreements limit an employee’s ability to find work with competitors 

located in a specified geographic area and for a specified period of time.  It turns out that 

features of California state law introduced serendipitously in the 1870’s, make it 

impossible for employers to enforce non-compete agreements.  But for this historical 

accident, Silicon Valley employers would have had at their disposal an easy way of 

effectively eliminating knowledge spillovers of the sort documented in Saxenian’s 

qualitative study.    Since California’s legal system is exceptional in its treatment of non-

compete agreements, Gilson’s story explains how the hyper-mobility described by 

Saxenian can be an equilibrium – employers simply couldn’t establish effective control 

over tacit knowledge acquired by employees -- and it also explains why similar systems 

didn’t develop in Route 128 and elsewhere where non-compete agreements were more 

easily enforceable.   

Saxenian’s and Gilson’s accounts have captured much attention in management 

and policy circles. Unfortunately data limitations have, until now, precluded direct 

empirical examination of the key features of the story – especially the movement of 

employees between firms within a narrow geographic region and industry.  In this paper 

we use an overlooked set of questions in the Current Population Survey to assess the rate 
                                                 

6  Gilson (1998) argues that the two other legal approaches to controlling knowledge 
spillovers are largely ineffective in this context.  Trade secrets law is of limited use 
because it is hard to differentiate tacit knowledge embedded in an employees human 
capital from a trade secret.  Under the law governing invention, ideas remain an 
employee’s property until the innovation is conceived, i.e. when the design  of the 
invention is complete in the mind of the inventor.  The difficulty of establishing with 
objective evidence when this occurred makes invention law an ineffective means of 
regulating tacit knowledge spillovers.   
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of employer to employer mobility in Silicon Valley and elsewhere.7  Using this data we 

find strong evidence that employees working in the computer industry cluster in Silicon 

Valley do indeed have higher rates of mobility than similar computer industry employees 

in other metropolitan areas having large information technology clusters.  Second, and 

consistent with Gilson’s hypothesis that California state law is the key feature sustaining 

hyper-mobile employment, there appears to be a “California” effect on mobility.  That is 

we find similar high rates of mobility of computer industry employees throughout the 

state of California.  Third, we find that the mobility patterns observed for employees 

working in the computer industry do not hold for employees in other industries residing 

in these same locations.   This last result suggests that our findings are driven by features 

of the computer industry in a particular geographic location rather than features of the 

geographic area itself . 

Our paper proceeds in three parts.  In the next section we lay out a simple, 

overlapping generations model of innovation and employee mobility in an industrial 

district.  Using this model we find that the combination of modular components and tacit 

knowledge transfer is likely to produce a Silicon Valley type industrial structure and 

hyper-mobile employment only in a special set of circumstances.  Specifically when the 

technological potential of component innovations is high but the best way to proceed is 

uncertain.  In such a setting, increasing the number of competing suppliers 

simultaneously experimenting with innovative components, greatly increases the rate at 

                                                 

7  The only other paper we know of that examines mobility in high technology clusters is 
Almeida and Kogut (1999).  They use patent records to study the mobility patterns of 438 
individuals who held major, semiconductor-related patents.  They find higher rates of 
mobility in Northern California than elsewhere in the country.   
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which new technology is built into components.8  Our model also finds that the greater 

the advantages to this type of innovation, the greater the steady state rate of turnover in 

the industrial cluster.  Even under these conditions, however, we demonstrate that the 

Silicon Valley system would not be an equilibrium if employers could disrupt knowledge 

spillovers by limiting the movement of employees from firm to firm.  In section three, we 

present our empirical results.  The paper concludes with a brief discussion of issues for 

further research. 

A Model of Inter-firm Mobility and Innovation 

In this section we present a simple overlapping generations model of innovation 

and mobility in an industrial cluster.  We develop this model to demonstrate that the 

combination of tacit knowledge spillovers and modular components will produce a 

Silicon Valley type industrial organization and hyper mobile employment only under 

very special economic conditions.9  We highlight two of these.  The first is that the payoff 

to having the non-exclusive access to the “best” performing component in a product is far 

greater than the payoff to having exclusive access to an “average” performing component 

in the product.  Second, for inter-firm mobility to be the primary mechanism of 

                                                 

8  Baldwin and Clark (1994, 2000) and Aoki (2001) observe that these conditions hold in 
the computer industry.  “For an industry like computers, in which technological 
uncertainty is high and the best way to proceed is often unknown, the more experiments 
and the more flexibility each designer has to develop and test the experimental modules, 
the faster the industry is able to arrive at improved versions” (Baldwin and Clark, 1994, 
p. 85) 

9  Baldwin and Clark (2000) offer an extensive history and analysis of the central role that 
the development of modular design has played in the computer industry since the 
introduction of the IBM/360 in the 1960s.   
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knowledge spillovers, there must be some mechanism that prevents employers from 

“locking in” knowledgeable employees.   

Our model posits an industrial district with two types of firms: suppliers and 

computer system manufacturers.  The suppliers (represented by S) specialize in rapidly 

incorporating the latest technological innovations into the components of a computer 

system.  The computer manufacturers (represented by E) purchase components and 

incorporate them into products that are then sold to business or individual consumers.  To 

simplify the math and highlight the key relationships, we assume that all computer 

makers purchase a single component from suppliers.  We further assume that computer 

manufacturers produce a similar product, such as a work station or server, but that each 

firm’s product is differentiated in the sense that each commands a certain degree of brand 

loyalty from customers. 

Innovation in Industrial Clusters  

A fundamental feature of Silicon Valley’s innovation system is that multiple 

suppliers simultaneously work on designing new components and computer makers select 

for their final product the component that proves to offer the best performance (Aoki, 

2001, p. 353).  This process of innovation, however, is inherently uncertain in that no one 

knows ex-ante which supplier will prove to have the best component ex-post.10  A 

convenient way to model this uncertainty is to assume that the value of any supplier’s 

innovation is determined by a random draw from a uniform distribution ranging between 

                                                 

10  Aoki’s discussion of Silicon Valley emphasizes that much new innovation is undertaken 
by start-up firms backed by venture capitalists.  The failure rate is high among these 
entrepreneurial ventures.  “In casual conversations in Silicon Valley, venture capitalists 
normally regard three successes out of ten initial fundings as successful and two 
successes as acceptable.” (Aoki, 2001, p. 373) 
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0 and γ, where γ is the maximum feasible technical value of an innovation in components.  

In this case, the expected technical value of the “best” innovation produced by the S 

suppliers in the cluster is determined by the first-order statistic of the uniform 

distribution:  

(1) 
1

S
S

γ
+

 with γ >0 

The important point to take away from (1) is that the expected value of the “best” 

innovation produced by the suppliers in a cluster increases with the number of suppliers 

in the cluster, although the marginal contribution of each new supplier declines as more 

of them enter the district. 

 In Saxenian’s account, the primary advantage to a computer maker of location in 

the Silicon Valley industrial cluster is that the company gains privileged access to the 

“best” component produced by the suppliers in the cluster.  Vertically integrated 

computer makers located outside the district do not rely on suppliers of modular 

components.  These manufacturers tend to design modules that are highly interdependent 

and they are therefore locked into whatever ex-ante design decisions their R&D 

departments make.  Maintaining our assumption that the technical quality of an 

innovation is determined by a random draw from a uniform distribution between 0 and γ, 

a vertically integrated computer maker can expect the quality of their in-house 

component to be 0.5γ.    

In an environment like the computer industry, in which technological potential is 

high, but in which there is also uncertainty about how to realize that potential, we might 

expect there to be a heightened economic return from having numerous competing 
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suppliers working to develop new components.  Formally we write the difference in the 

performance of computers with the “best” components produced by a cluster relative to 

the expected performance of in-house components as: 11 

 (2)  
1 2

S
S

γγΩ =   −
+

Notice that as long as S > 1 increases in γ, i.e increases in the potential economic value of 

innovative new components, increase the performance premium associated with using the 

“best” components produced by competing suppliers.  On this basis we would not expect 

Silicon Valley type supply clusters to evolve in industries where γ is small.  We establish 

this point more precisely in the model that follows. 

   The Product Cycle for Computer Makers: 

We posit that computer makers have a product cycle that begins in period t and 

lasts through period t+1 (see Figure 1 for a diagram outlining the timing of the model).  

At the beginning of period t, the manufacturer decides on the technology it will use over 

the next two periods and, having made this decision, purchases a component from a 

supplier in period t-1.  Each computer maker purchases only one component and this 

                                                 

11  One might wonder why, if experimentation is valuable, individual firms don’t undertake 
simultaneous experiments using  their own design teams, rather than relying on 
component suppliers.  There are two explanations in the literature for why this may not 
take place.  First, component suppliers often have advantages due to their greater 
specialization in the technology of components.  Secondly, even if there were no gains 
from specialization, a rational computer maker would not undertake enough experiments 
to discourage outside suppliers from undertaking their own.  This follows because in the 
“winner-take-all” supply network we model, each new component manufacturer entering 
the tournament reduces the odds that others will win.  The computer manufacturer would 
take this externality into account when deciding on the number of design teams to set up, 
but independent suppliers would not.  This point is made with respect to the difficulty 
IBM had in discouraging rival computer component suppliers for the IBM 360 in 
Baldwin and Clark (2000).  The general point about the externalities generated by 
‘winner take all’ markets is found  Frank and Cooke (1996). 
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component incorporates the best technology available in period t-1.  Having made design 

and component purchase decisions, the computer maker is locked into its technology for 

the rest of the two period product cycle.   

At the beginning of period t computer makers hire a fixed number of employees, 

β, out of college. We assume these employees have a work life of 2 periods, so they retire 

after period t+1.   Because each computer manufacturer’s product is differentiated, they 

cannot rely solely on the general technical knowledge employees may have acquired in 

college.  Rather, they must also make substantial investments in firm-specific human 

capital prior to production in time t.  This means that employee turnover is costly to the 

computer makers. We assume that employees stay with a computer maker unless they are 

hired away by suppliers.12  More on this in the next section. 

We make two ancillary assumptions about timing to simplify the exposition and 

the mathematics.  First computer manufacturers always survive through their product 

cycle.  This means that computer makers present in period t can only exit the industrial 

cluster after period t+1.  Second innovations built into components in period t-1 matter 

only for the product cycle beginning in period t.   In product cycles beginning after period 

t, the technology would have changed enough that the components used in period t are 

useless.  In other words, the value of technology embodied in components completely 

depreciates during the computer maker’s product cycle.  This assumption is consistent 

                                                 

12  A richer treatment would explicitly model employee’s turnover decisions as well as the 
kinds of deferred compensation arrangements firms might use to inhibit turnover.  These 
elaborations, while interesting and important, would serve to detract from the main point 
we seek to make with the model. 
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with the very rapid pace of technological change in the industrial districts described by 

Saxenian and many others. 

The Product Cycle for Suppliers: 

Suppliers who wish to sell components to computer makers need to develop their 

product prior to the start of the computer maker’s product cycle.  Thus a component 

incorporated into a product cycle beginning in period t must be developed in period t-1.  

We assume that it takes suppliers one period to develop the next generation version of the 

component they will sell to computer makers.  This short product cycle, which  is half 

that of the computer makers in our model, captures the rapid rate of innovation in Silicon 

Valley supply networks. Knowledge spillovers are required to produce a useful 

component.  We capture this feature of the cluster by assuming that every supplier must 

hire one experienced employee from a computer maker.  Following Saxenian, we assume 

that this inter-firm mobility is facilitated by geographically specific personal networks so 

that supplier firms hire only experienced engineers already at work in computer makers 

located in the district. 

Since a component must be developed in period t-1 to be incorporated into a 

computer maker’s product cycle in period t,  it follows that suppliers wishing to sell 

components at the end of period t-1, must hire an experienced employee from a computer 

maker at the beginning of period t-1.13    

                                                 

13  We do not model the employee’s decision to exit the computer maker.  Rather, we 
assume that the supplier can offer high enough compensation that the employee will 
always prefer their offer over remaining employed at the computer maker. 
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The Payoff to Innovation in Industrial Districts: 

Location in the industrial district offers both benefits and costs to computer 

makers.  The benefit of locating in the cluster is privileged access to the “best” innovation 

produced by component suppliers in the cluster.  A cost of locating in the industrial 

district is that all computer makers in the cluster will have access to the same innovative 

component technology.  Since the computer makers in the cluster produce competing 

products, the value of access to these innovations decreases as the number of other 

computer makers in the district increases.14  An additional cost to computer makers of 

locating in an industrial district is the risk of losing some of their experienced employees 

to suppliers.   

We capture these costs and benefits in the following payoff function: 

(3) 1

1

11
(1 ) 1 1

E t
t

t t t

S k
S gE r E r
γτ −

−

 Π = + − + + 
1 1tS +

+

                                                

 with  0<θ, τ <1 , and k, g  > 0  

The first term describes the expected value generated by the high rate of technical 

innovation in the industrial district.  As specified in (2) the expression γS/(1+S) is the 

expected value of a computer system that incorporates the “best” component produced by 

the S suppliers in the district.  We divide this by g times the number of computer makers 

in the district to capture the reduction in value when Et competing firms also produce 

products using the same component technology in period t.  Parameter τ is the fraction of 

 

14  This is not to say, of course, that the value to consumers of these innovations in 
components is declining, only that when more firms have access to the technology it is 
harder for computer makers to capture this value. 
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value created in each period by the component that accrues to the computer maker (the 

remainder, 1-τ,  is paid to the suppliers), and r is the interest rate.15  

The second term in equation (3) describes the expected costs to the firm of loss of 

experienced employees to suppliers located in the industrial district.  We assume that 

each start-up hires away an experienced engineer at random from one of the cluster’s 

computer makers at the end of period t.  Since each of these firms will have β 

experienced engineers at the end of period t, the expected number of experienced 

employees a computer maker will loose from turnover is St+1/Et.  Using parameter k to 

denote the per employee cost of loosing the specific human capital embodied in an 

employee, kSt+1/(Et(1+r)) is the expected cost to the firm arising from the exit of 

experienced employees. 

We now turn our attention to the payoff equation for suppliers.  We assume that 

the suppliers present in the cluster at the beginning of each period are all equally likely to 

produce the “winning” innovation.   Thus we can write expected payoff for suppliers at 

the beginning of period t as: 

(4)  1
1

1 1 1

1 1(1 ) (1 ) (1 ) 1
(1 ) 1 (1 ) 1

S t t
t

t t t t

E S
S S gE r g S

γ γτ τ−
−

− − −

     Π = + − = − +    + + +      r+

                                                

  

The expression in brackets is the expected value that the component produces for each 

computer maker over the course of the product cycle.  The supplier receives (1-τ) of this 

value.  Thus the expression in braces is the amount the “winning” supplier receives from 

each of the Et computer makers who buy the component.  Ex ante there are St-1 suppliers 

 

15  In a fuller account, we could solve parameter τ as being determined by Nash bargaining 
process between suppliers and computer makers.  
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who are equally likely to produce a winner.  Thus Et/ St-1 times the expression in braces is 

the expected payoff for the suppliers in period t-1.  Note that suppliers’ expected payoff 

decreases in the number of suppliers in the industrial district.     

Innovation and  Turnover in The Steady State  

From equations (3) and (4), it is clear that the number of computer makers and 

suppliers in the district has a direct influence on the payoffs from innovation in 

components.    In this section, we use these equations to solve for the steady state 

composition of firms in the industrial district as well as the rate of turnover in the district.   

To derive the steady state composition of the industrial district, we specify χ as 

the payoff on the best alternative use of suppliers’ resources.  When expected payoffs 

exceed χ , new suppliers enter the district.  Conversely suppliers exit when expected 

payoffs fall below χ.  Dropping the time subscripts, it follows from this assumption that 

the steady state condition for suppliers can be written: 

(5) (1 ) 1 (1 ) 11 1
(1 ) 1 1

S
g S r g r

τ γ τ γχ
χ

− −   = + ⇔ = +   + + +   
1−  

The cluster only persists when there are positive values for E and S in the steady state.  

Positive values of S require γ large enough that (1 ) 11
1g r

τ γ
χ

−  + + 

 > 1.  This case is 

depicted in Figure 2.   

For computer makers in the cluster, an intuitive alternative use of resources is to 

locate outside the cluster and to vertically integrate by supplying the component to 

themselves.  Maintaining our assumptions regarding technological innovation and 

turnover, the vertically integrated computer maker outside the cluster would have an 

expected payoff of γ/2.  The steady state condition is then: 
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(6) 1 1 21 1
2 1 (1 ) 1 (1 ) (1 ) (2 )

S kS SE
r S gE r E r g S

γ τγ τ
γ

   + = + − ⇔ = −   + + + + + +   
2kS

r
   

It is immediately clear from (6) that when S = 0, E = 0, computer makers will not enter a 

cluster if there are no suppliers there and vice versa.    

Setting the discount rate equal to zero for algebraic convenience, the closed form 

solution for the number of each type of firm in the district is:16 

 (7)  ( ) (1 )2 (1 )
(1 )

kg
g

τE χ τγ τ χ
χγ τ

− −−
−

= −  

(8)  2 (1 )
g

S γ τ χ
χ

− −=  

It is clear from inspection that the industrial cluster will exist (i.e. there will be positive 

steady state numbers of computer makers and suppliers) only when γ is sufficiently  

large.  

In our stylized labor market, each of the β employees hired by the computer 

makers stay with the company for their entire two period work life unless they are 

recruited by suppliers at the end of period 1.    Under the assumption that suppliers recruit 

employees at random, the expected steady state rate of turnover of employees in the 

district is: 

(9) (1 )
(1 )

S
E kg

τ
t

γ
τχ

−=
− −

 

The larger the number of suppliers relative to computer makers, the greater the turnover 

rate in the industrial cluster.  The denominator of (9) must be positive if the district is to 

                                                 

16  The district will have positive numbers of suppliers and computer makers so long as 
2 (1 )γ τ χ− − > 0 and (1 )kgτχ τ− − > 0. 
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have positive numbers of computer makers.  Thus, so long as the parameters are such that 

the cluster exists, increases in γ result in more turnover.  The greater the innovation 

advantages to locating in a Silicon Valley type industrial district, the greater the steady 

state level of turnover in the industrial district.  We illustrate this point graphically in 

Figure 2.  Increases in γ move the steady state from point A to point B with a 

corresponding increase in S/E 

Inter-firm Mobility as the Mechanism for Knowledge Spillovers: 

Each computer maker in the district could increase payoffs if it could find a way 

to prevent the lost of experienced employee talent to suppliers.  In terms of our payoff  

equation (3) above, each computer maker will be better off if it can reduce its turnover 

rate, S/E.  From this it follows that either: (1) the Silicon Valley model developed so far 

is not an equilibrium phenomenon or (2) that firms do not have the ability to restrict the 

mobility of critical employees.  Gilson  ( ) argues in favor of this second explanation.  

Specifically he claims that the legal instruments that can effectively inhibit the loss of 

employees with important tacit knowledge, i.e. non-compete agreements, are not legally 

enforceable in California.  They are, however, enforceable in most other states.  From this 

it follows that the high rates of inter-firm mobility in information technology clusters 

should be different in California than in other states.  

Empirical Results 

In this section we use new data on employee mobility to answer two questions 

that follow directly from Saxenian’s and Gilson’s analysis of agglomeration economies in 

Silicon Valley.  First, is the inter-firm mobility employees in the computer industry 
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higher in Silicon Valley than in other IT clusters elsewhere?  Second, is there a 

“California” effect on the rate of inter-firm mobility for computer industry employees?   

The model in the preceding section makes clear that the hyper-mobility of 

employees in industrial clusters is likely to apply in only a limited set of circumstances.  

This insight leads us to consider a third empirical question: do the mobility patterns we 

observe in the computer industry hold for employees in the same location who are not 

employed in the computer industry?   

Data: 

The mobility data we need for our investigation must track the movement of 

employees from one firm to another within a given geographic location.  In addition, the 

survey must be of sufficient size to study mobility in narrowly defined industries and 

geographic areas.  The existence of this sort of data was not generally recognized before 

recent work by Fallick and Fleischman (2002) on employment flows.  They reported in 

their study that it was possible to exploit changes in the structure of the Current 

Population Survey (CPS) 1994 to gain new information on employee mobility.  

With the redesign of the CPS in January 1994, the Census Bureau ended it’s 

practice of asking all respondents every question afresh in each month.  To avoid 

unnecessary duplication, interviewers asked some questions that refer back to the answers 

given in the previous month.  One specific instance of this new “dependent interviewing” 

approach allowed for the collection of the mobility data we use in this study.  If a 

respondent is reported to be employed in one month and was also reported to be 

employed in the previous month’s survey, the interviewer asks the respondent whether 

they currently work for the same employer as reported in the previous month (the 
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interviewer reads out the employer’s name from the previous month to ensure accuracy). 

If the answer is yes, then the interviewer carries forward the industry data from the 

previous month’s survey; if the answer is no, then the respondent is asked the full series 

of industry, class, and occupation questions.  Using the answer to this routing question, 

we can identify stayers (workers employed in two consecutive months at the same 

employer) and movers (workers who changed employers between two consecutive 

months). 

For our purposes, this new CPS data is the best source of information on 

employer-to-employer mobility in the United States.   The size and scope of the CPS 

sample is far greater than in other household-based survey data and this allows for quite 

detailed analysis by geographic location, educational level, and industry.  In addition, the 

CPS survey is administered monthly and this should reduce the recall errors found in 

other household surveys that ask respondents to remember over the previous year.   

Finally, we can link the employment transition data to demographic and employment data 

for each individual. This allows us to consider the importance of potentially confounding 

influences on employer to employer mobility. 

The phenomenon we seek to study, the role of employer to employer mobility in 

facilitating knowledge transfer in the computer industry, is most relevant for highly 

educated employees.  For this reason, we restrict our sample to men having a minimum 

of four years of college who also live in metropolitan areas having information 

technology clusters.17   In order to achieve an appropriate sample size within the 

                                                 

17  We focus on men to eliminate the potentially confounding effect of gender on mobility.  
Information on metropolitan areas with the top 20 IT clusters by employment is taken 
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computer industry, we pool across all the years for which employer-to-employer data is 

available, 1994 – 2001.  All of our results include fixed year and month-of-interview 

effects to net out the influence of year to year as well as seasonal variation in economic 

activity.  The resulting sample has 44, 202 individuals and 156,149 month-to-month 

observations.  The number of month to month observations observed for each individual 

ranges from 1 to 6 with the median being 3.18  Of the individuals in our sample, 3,768 (or  

7.84%) were observed to have changed employers at least once.  The monthly rate of 

employer to employer job change is 2.41 percent.  19 

Results: 

Table 1 presents probit estimates of the probability an individual in the computer 

industry (SIC 35 and 36) in month t changes employers before being re-interviewed in 

                                                                                                                                                 

from Porter ( ).  We include the following metropolitan areas (MSAs): San Jose; Boston 
(with Worcester Lawrence MA_NH); Austin; Dallas; Seattle; Phoenix; Orange County; 
Washington; Portland; San Francisco; Raleigh; Chicago; Los Angeles; San Diego; 
Minneapolis; Oakland; Atlanta; Phil.; Houston; and Denver. 

18  The CPS has a short panel structure – respondents are in the sample for four consecutive 
months, out for 8 consecutive months and in again for four consecutive months.  This 
means that for each individual we can observe at most 6 month-to-month potential 
transitions.  The median is less than 6 for the following reasons: (1) some individuals 
final four months occurred in 1994; (2) some individual’s final four months occurred in 
2001; and (3) for administrative reasons only 6 months of data were collected in 1995.  In 
addition, some individuals move from one month to the next and these are lost to the 
survey because an individual is identified, in part, by the location of their residence.  
After taking account of factors (1)-(3) above, the number of individuals lost due to 
change of address or data errors is consistent with other published studies.  Details on the 
matching algorithm we used to match individuals from one month to the next are 
available in X. 

19  To put this figure in perspective, if we assume this rate of mobility holds for every month 
an individual is on a job, then the probability a newly hired employee will be at the job in 
one year is (1-.0241)11= 0.76.  Of course the hazard of exiting a firm is not constant and 
the rate of mobility is likely to vary a great deal depending on many factors including age 
and tenure on the job. 
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month t+1. 20   The estimates in column 1 and 2 are for a sample of 2972 men having 

8966 month-to-month observations. The mean of the dependent variable is 0.0195 

suggesting that employers were observed to change employers in 1.95 percent of the 

potential transitions.    All the probit estimates are presented as derivatives.  Thus the 

0.012 coefficient for the variable San Jose in column 1 indicates that living in Silicon 

Valley increases the rate of employer to employer job change by 1.2 percent.  This effect 

is both statistically and behaviorally significant -- suggesting employer to employer 

mobility rates are more than 60% higher the sample average.  On this basis, the hyper-

mobility that Saxenian observed in her ethnographic studies of the late 80’s and early 

90’s appears to persist in Silicon Valley throughout the 1990’s. 

Column 2 of Table 1 introduces a new variable, California, which is a dummy 

variable equal to 1 if an employee in the computer industry in time t resides in a 

metropolitan area with an IT cluster in the state of California.  In this specification, we 

observe that the coefficient on San Jose falls dramatically in magnitude and becomes 

statistically insignificant while the coefficient on California is both behaviorally and 

statistically significant.  Ceterus paribus, employees in California’s IT industries have a 

rate of employer to employer mobility that is 0.9 percentage points above the sample 

mean (z score 2.40) – an increase of 46 percent.  These results are consistent with 

Gilson’s hypothesis regarding California law, the Silicon Valley effect on mobility 

appears to run throughout the state.  The estimate in column 3 looks only at the 871 

respondents in the state of California.  The coefficient on San Jose in this equation is 

                                                 

20  SIC 35 and 36 constitute a rather broad definition of the computer industry –and we 
present results for a more narrow definition in Table 2. 
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small in magnitude and not statistically significant.  This reinforces the conclusions 

drawn from column 2, i.e. that Silicon Valley mobility rates do not differ much from 

those observed elsewhere in California. 21 

Columns (4) through (6) repeat the analysis in columns (1) through (3) with a 

different measure of employer to employer mobility.  Rather than looking at all job 

changes for employees in the computer industry, we now analyze job changes in which 

both the employer in month t and in month t+1 are in the computer industry.  The mean 

of this new measure of job change is 0.009, indicating that roughly 46% of the employer 

to employer job changes for employees in the computer industry are to other employers 

in the same industry.   

The results in column (4) confirm the presence of high rates of employer to 

employer mobility in Silicon Valley.  The coefficient on San Jose is 0.009 (z score = 

3.10), suggesting that this measure of job change is 50% higher in San Jose than the 

sample mean.  Column (5) introduces a California dummy.  This coefficient on this new 

variable is positive, but small in magnitude (0.003) and imprecisely measured (z = 1.36).  

As importantly the coefficient on San Jose falls by a third and also becomes statistically 

insignificant at conventional levels.  One can, however, easily reject the hypothesis that 

San Jose and California are jointly in significant ( chi2(  2) =   11.28 and   Prob > chi2 =    

0.0035).  Taken together, these results suggest that given the smaller number of employer 

to employer moves within the computer industry (narrowly defined), there is simply not 

enough information to distinguish reliably a San Jose effect from a California effect.  

                                                 

21    Of the 886 individuals in our sample who lived in California, 342 (under 40%) live in 
San Jose.   
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This conclusion is supported when the mobility equation is estimated only for 

respondents in California.  The coefficient on San Jose  is 0.008, but is imprecisely 

measured (z = 1.70). 

Columns (7) and (8) compare the “California” effect on mobility to the 

“Massachusetts” effect for each of our measures of employer to employer changes.22  In 

both equations we observe that the coefficient on Massachusetts is smaller than that on 

California, but it is also imprecisely.  Indeed, in either specification, one cannot reject the 

hypothesis that the Massachusetts coefficient is zero at conventional significance levels.  

This imprecision in measurement, however, also means that we cannot reject the 

hypothesis that the coefficient on California is the same as the coefficient on 

Massachusetts.23  Our conservative conclusion is that if there exists a Massachusetts 

effect at all, we cannot be sure that it is different than the California effect. 

The results in Table 1 are based on a very broad definition of the computer 

industry, employees working in establishments that fall into industries 35 and 36 in the 

standard industrial classification system..  In Table 2, we redo the analysis using a more 

narrow definition. 24   The results are qualitatively and quantitatively close to those in 

                                                 

22  Our sample is confined to respondents in MSA’s defined by Porter as having an 
information technology cluster.  Thus all the respondents for which Massachusetts is 
equal to one are in MSA 1120. 

23  A χ2 test of the hypothesis that California = Massachusetts in column (7) yields: chi2( 1) 
=   0.50 Prob > chi2 =    0.4799.  The similar test for equation (8) yields chi2(  1) =    0.32  
Prob > chi2 =    0.5699 

24  Specifically our narrow definition includes employees in two three-digit census 
industries:  computers and related equipment (Census 322); and  electrical machinery, 
equipment, and supplies, not elsewhere classified (Census 342) .  Census 322 includes: 
electronic computers (SIC 3571); computer storage devices (SIC 3572); computer 
terminals (SIC 3575); and computer peripheral equipment, not elsewhere classified (SIC 
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Table 1.  We conclude from this that our findings are not likely to be an artifact generated 

by the way we define the computer industry. 

Our model of innovation in industrial clusters suggests that we would not expect  

hyper-mobility to be a general feature of Silicon Valley or California labor markets.  

Indeed, if we found evidence of hyper-mobility outside of computers, we might worry 

that the effects we are attributing to the industrial organization of clusters may be due to 

other, unobserved and unexplored, aspects of these labor markets.  In Table 3, we 

examine mobility patterns for employees not employed in the computer industry in month 

t.  Our dependent variable is equal to 1 if an employee not employed in SIC 35 and 36 in 

month t changed employers before the interview in month t+1.   Comparing the average 

monthly job change rates conditional on being employed the computer industry (0.0195) 

with the average conditional on not being employed in the computer industry (0.0244), it 

appears that employer to employer movements are more common outside SIC 35 and 36 

In column 1 of Table 3, the coefficient on San Jose is small (about 1/10th of the 

mean mobility rate of the population) and we cannot reject the hypothesis that the true 

effect is zero.  Column 2 introduces a California dummy variable in the equation.  The 

coefficient on California is also small and negative and we can reject the hypothesis that 

the true effect is not zero.  A χ2 test does not allow us to reject the hypothesis that 

California and San Jose are jointly in significant.25   These results suggest that the high 

relative mobility rates in Silicon Valley and California do not hold outside of the 

                                                                                                                                                 

3577).  Census 342 is a residual category from which most non-computing electrical 
devices has been excluded. 

 
25   Chi2(  2) =    4.32 and  Prob > chi2 =    0.1151. 
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computer industry.    Conditional on not being employed in computer manufacturing, 

California employees may be even less likely to change employers on a month-to-month 

basis.  Another interesting difference in the determinants of job mobility is that outside of 

computers, mobility rates are strongly reduced for full time employees and for married 

employees.  These characteristics had no effect on mobility in the computer industry.   

Taken together, the analysis of employer to employer job changes are broadly 

consistent with Saxenien’s observations and Gilson’s legal argument.  Mobility rates 

conditional on employment in the computer industry are substantially higher in Silicon 

Valley than elsewhere (for men with at least four years of college) and the effect seems to 

be due to a state-wide rather than San Jose specific feature of the labor market – although 

this latter finding is supported for only one of our two measures of mobility.   

Conclusion 

This paper has compared the inter-firm mobility of highly educated employees in 

computer firms in Silicon Valley relative to similarly educated employees working in 

computer firms in information technology clusters located in other cities.  Using a new 

data source, we find that there is substantially more job mobility in Silicon Valley than 

elsewhere, and that this differential disappears when we look outside the computer 

industry.    These results are consistent with more qualitative descriptions of the way that 

ubiquitous knowledge spillovers in Silicon Valley are enabled by the rapid and easy 

movement of employees between firms.  

In addition, we find that the hyper mobility of employees in computer firms in 

Silicon Valley, can also be observed in IT clusters throughout California.  This result is 

consistent with the idea, suggested by some legal scholars, that California state laws 
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which make non-compete agreements all but unenforceable, are important for sustaining 

knowledge spillovers. 

While our results are consistent with some influential accounts of the success of 

Silicon Valley, it is important to emphasize the limitations of our study.  Two caveats 

seem especially important.  First, the new evidence we bring to light in this paper allows 

us to observe the movement of employees between firms in a geographic location – but 

not the actual knowledge handoffs that these movements are supposed to facilitate.  Thus 

we cannot rule out the competing hypothesis that rapid employee mobility may be the 

result of some unobserved features of computer firms in California rather than the 

catalyst enabling superior information exchange.  If, for example, Silicon Valley has 

many more start-up firms than other IT clusters and if start-ups simply churn through 

employees more rapidly than other firms, we would see more mobility, but not 

necessarily more knowledge spillovers, in Silicon Valley than elsewhere.26   

Second, while there appears to be a “California” effect on mobility in information 

technology clusters, we have no direct evidence that this is due to the absence of 

enforceable non-compete agreements.  As a result we cannot rule out the role that other 

factors (such as local culture) may play in sustaining high rates of employee turnover.   

Even with these limitations, we believe that the study of turnover in industrial 

clusters could shed some light on the general applicability of theories of agglomeration 

economies.  Our theoretical analysis suggests Silicon Valley type industrial districts 

                                                 

26  Of course “start-ups” are an organizational form particularly well suited to the modular 
supply networks and tacit knowledge spillovers highlighted by Saxenian ( ).  Indeed the 
heightened inter-firm mobility of employees in start-ups can itself be an important 
mechanism for knowledge spillovers in Silicon Valley.   
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ought not to be a general economic phenomenon.  Rather they should only arise in 

settings where the value of having non-exclusive access to the “best” (as opposed to 

exclusive access to the average) innovation is large. Qualitative evidence collected by 

Saxenian, Baldwina and Clark  and other observers suggests that this condition likely 

holds in the computer industry. Agglomeration economies may, of course, have sources 

other than knowledge spillovers facilitated via employee turnover.  It would be useful to 

search for other industries and industrial clusters where this condition might hold to see if 

these locations are also characterized by enhanced inter-firm mobility. 

 27



References 

1.) Almeida, Paul and Kogut, Bruce., (1999) "Localization of Knowledge and the 
Mobility of Engineers in Regional Networks"  Management Science.   45:7. p. 
905-917.  

2.) Aoki, Masahiko, (2001)  Toward a Comparative Institutional Analysis. The MIT 
Press : Cambridge, Massachusetts and London, England.  

3.) Baldwin, Carliss Y. and Clark, Kim B., (1997) "Managing in an Age of 
Modularity"  Harvard Business Review. p.84-93.  

4.) Baldwin, Carliss Y. and Clark, Kim B., (2000)  Design Rules: The Power of 
Modularity. MIT Press : Cambridge, Mass. and London, England. 

5.) Fallick, Bruce C. and Fleischman, Charles A., (2002) ""Employer to Employer 
Flows in the U.S. Labor Market" Working Paper.  April 2002. 

6.) Frank, Robert H. and Cooke, Phillip. (1996)  The Winner Take All Society.  
Penguin Publishers, United States. 

7.) Gilson, Ronald, (1999) "The Legal Infrastructure of High Technology Industrial 
Districts: Silicon Valley, Route 128, and Covenants Not to Compete."  New York  
University Law Review.   74:. p.575.  

8.) Porter, Michael E., (1998) "Clusters and The New Economics of Competition"  
Harvard Business Review.   76:6. 

9.) Rosenthal, Stuart S. and Strange, William C., (2003) "Evidence on the Nature and 
Sources of Agglomeration Economies" Working Paper Prepared for the 
Handbook of Urban and Regional Economics, vol. 4.  February 9, 2003.  

10.) Saxenian, Annalee, (1994)  Regional Advantage: Culture and Competition 
in Silicon Valley and Route 128. Harvard University Press : Cambridge, 
Massachusetts and London England.  

11.) Saxenian, AnaLee, (1996) "Inside-Out: Regional Networks and Industrial 
Adaptation in Silicon Valley and Route 128"  Cityscape.   2:2. p.41-60.  

12.) Saxenian, Annalee, (2000) "The Origins and Dynamics of Production Networks 
in Silicon"  Understanding Silicon Valley: The Anatomy of an Entrepreneurial 
Region. edited by Martin Kenney. Stanford University Press :Stanford. 

 

 

 

 28



 29



Table 1
Determinants of Month-to-Month Job Changes: Conditional on Being in The Computer Industry Broadly Defined (SIC 35 and 36 ) 

(1) (2) (3) (4) (5) (6) (7) (8)

Variable [mean]

Change 
Jobs 

[0.0195]

Change 
Jobs 

[0.0195]

Change Jobs 
(California only) 

[0.0281]

Change 
Jobs 

Within 
Industry 
[0.009]

Change 
Jobs 

Within 
Industry 
[0.009]

Change Jobs 
Within Industry 
(California Only) 

[0.016]

Change 
Jobs 

[0.0195]

Change 
Jobs 

Within 
Industry 
[0.009]

San Jose  [0.122] 0.012 0.004 0.007 0.009 0.006 0.008
(2.40)* (0.80) (1.20) (3.10)** (1.77) (1.70)

California   [.302] 0.009 0.003 0.012 0.006
(2.40)* (1.36) (3.43)** (2.98)**

Massachusetts  [0.089] 0.008 0.005
(1.48) (1.24)

Full-Time  [.961] 0.002 0.002 0.003 0.005 0.005 0.002 0.005
(0.34) (0.34) (0.17) (1.24) (1.23) (0.35) (1.23)

US Citizen  [0.748] -0.002 -0.001 0.006 -0.002 -0.001 -0.003 -0.001 -0.002
(0.57) (0.25) (1.02) (0.76) (0.56) (0.81) (0.37) (0.82)

Married  [.753] -0.003 -0.002 -0.001 0 0 0.003 -0.002 0
(0.80) (0.69) (0.21) (0.21) (0.16) (0.59) (0.64) (0.12)

Post College Schooling  [.332] 0.001 0.001 -0.005 -0.001 -0.001 -0.001 0.001 -0.001
(0.33) (0.42) (0.80) (0.50) (0.45) (0.34) (0.36) (0.42)

Year Fixed Effects 1994 - 2001 yes yes yes yes yes yes yes yes
Month fixed effects yes yes yes yes yes yes yes yes
Age Dummy Variables yes yes yes yes yes yes yes yes

Observations 8966 8966 2669 8966 8966 2425 8966 8966
Number of Individuals 2972 2972 871 2972 2972 848 2972 2972

Absolute value of robust z-statistics in parentheses (with standard errors adjusted for clustering within individual).  * significant at 5%; ** significant at 1%

The dependent variable is equal to 1 if respondent changed jobs between two consecutive months.  Up to 6 potential transitions are observed for each 
individual.    These estimates are for job changes from month t to t+1 conditional on being employed in the computer industry (SIC 35 and 36) in month t.  Thus, 
from column 1, we see that we observe 2972 individuals over 8,966 month to month observations.  1.95% of these potential job changes resulted in actual job 
changes.  

The coefficients in the table are derivatives, i.e. they reflect the impact of the variable on the probability of observing a job change between two consecutive 
months.  Thus, in column 1, residing in San Jose increases the probability of job change by 1.2%, nearly doubling the base rate of job change for the sample.

Age Dummy Variables: < 25; <35, <45, < 55, < 65.  In columns (2) and (4) chi square tests indicated that San Jose and California were jointly significant at better 
than the 1% level. 



Table 2
Determinants of Month To Month Job Transitions Conditional on Being Employed in the Computer Industry Narrowly Defined (Census 322 and 342)

(1) (2) (3) (4) (5) (6) (7) (8)

Variable [mean]

Change 
Jobs 

[0.0196]

Change 
Jobs 

[[0.0196]

Change 
Jobs 

(California 
only) 

[0.0302]

Change 
Jobs 

Within 
Industry 
[0.0083]

Change 
Jobs 

Within 
Industry 
[0.0083]

Change 
Jobs 

Within 
Industry 

(California 
Only) 

[0.0147]

Change 
Jobs 

[0.0196]

Change 
Jobs 

Within 
Industry 
[0.0196]

San Jose  [0.169] 0.018 0.006 0.008 0.009 0.005 0.006
(3.39)** (1.20) (1.23) (3.28)** (1.64) (1.51)

California   [0.350] 0.013 0.004 0.017 0.007
(2.93)** (1.64) (4.29)** (3.42)**

Massachusetts  [0.093] 0.006 0.005
(0.84) (1.28)

Full-Time  [0.965] 0.005 0.004 0.002 0.002 0.004 0.002
(0.60) (0.49) (0.45) (0.42) (0.49) (0.44)

US Citizen  [0.732] 0.003 0.004 0.007 0 0 -0.003 0.004 0
(0.79) (1.13) (1.01) (0.15) (0.07) (0.64) (0.99) (0.20)

Married  [0.749] -0.005 -0.004 -0.007 0.001 0.001 0.002 -0.004 0.001
(1.35) (1.18) (0.99) (0.46) (0.53) (0.35) (1.14) (0.60)

Post College Schooling  [0.348] -0.004 -0.004 -0.006 -0.003 -0.003 -0.005 -0.004 -0.003
(1.18) (1.06) (0.88) (1.71) (1.64) (1.13) (1.07) (1.62)

Year Fixed Effects 1994 - 2001 yes yes yes yes yes yes yes yes
Month fixed effects yes yes yes yes yes yes yes yes
Age Dummy Variables yes yes yes yes yes yes yes yes

Observations 5773 5773 1957 5773 5773 1833 5773 5773
Number of Individuals 1961 1961 651 1961 1961 643 1961 1961
Observed/Potential job changes 0.0196 0.0196 0.0312 0.0083 0.0083 0.0147 0.0196 0.0083

Absolute value of robust z-statistics in parentheses (with standard errors adjusted for clustering within individual).  * significant at 5%; ** significant at 1%

The dependent variable is equal to 1 if respondent changed jobs between two consecutive months.  Up to 6 potential transitions are observed for each individual
These estimates are for job changes from month t to t+1 conditional on being employed in the computer industry narrowly defined (Census 322 or 342 ) in month 
t.  Thus, from column 1, we see that we observe 1961 individuals over 5773 month to month observations.  1.96% of these potential job changes resulted in 
actual job changes.  

The coefficients in the table are derivatives, i.e. they reflect the impact of the variable on the probability of observing a job change between two consecutive 
months.  Thus, in column 1, residing in San Jose increases the probability of job change by 1.8%, nearly doubling the base rate of job change for the sample.

Age Dummy Variables: < 25; <35, <45, < 55, < 65.  In columns (2) and (4) chi square tests indicated that San Jose and California were jointly significant at better
than the 1% level. 



Table 3
The Determinants of Month-to-Month Job Changes Conditional on not  Being Employed in the Computer Industry (i.e. not being in SIC 35 or 36)

(1) (2) (3) (4)

Variable [mean]

Change 
Jobs 

[0.0244]

Change 
Jobs 

[0.0244]

Change 
Jobs 

[0.0244]

Change Jobs 
(California Only) 

[0.0232]

San Jose [.017] 0.002 0.004 0.003
(0.78) (1.23) (1.13)

California [0.238] -0.002 -0.002
(1.93) (1.81)

Massachusetts [.083] -0.001
(0.78)

Full-Time [ 0.871] -0.016 -0.016 -0.016 -0.014
(12.44)** (12.51)** (12.48)** (5.59)**

US Citizen [0.842] 0.001 0 0 0
(0.60) (0.24) (0.19) (0.06)

Married [0.683] -0.003 -0.003 -0.003 -0.003
(3.30)** (3.42)** (3.43)** (1.83)

Post College Schooling [0.375] -0.001 -0.001 -0.001 0
(1.51) (1.59) (1.55) (0.07)

Year Fixed Effects yes yes yes yes
Month fixed effects yes yes yes yes
Age Dummy Variables yes yes yes yes

Observations 147183 147183 147183 35076
Number of Individuals 42232 42232 42232 10165

Absolute value of robust z-statistics in parentheses (with standard errors adjusted for clustering within individual).  
* significant at 5%; ** significant at 1%

The dependent variable is equal to 1 if respondent changed jobs between two consecutive months.  Up to 6 potential transitions are observed for each 
individual.    These estimates are for job changes from month t to t+1 conditional on not  being employed in the computer industry (SIC 35 and 36) in 
month t.  Thus, from column 1, we see that we observe 42232 individuals with 147,183 month to month observations.  2.4% of these potential job 
changes resulted in actual job changes.  

The coefficients in the table are derivatives, i.e. they reflect the impact of the variable on the probability of observing a job change between two 
consecutive months.  Thus, in column 1, residing in San Jose increases the probability of job change by 0.2%, less than 1/10th of the sample mean.

Age Dummy Variables: < 25; <35, <45, < 55, < 65.  In columns (2) and (4) chi square tests indicated that San Jose and California were not jointly 
significant.



Figure 1 

Timing of the Model 

 

 Period t-1  Period t  Period t+1  Period t+2 

Suppliers:  Compete to sell components      
      developed in period t-1 to  
         computer makers whose product     

cycle begins in period t.     

  

Computer Makers:       Beginning of product          New product cycle starts. 
         cycle.  Firm hires β  
         employees and buys  
         components from suppliers 

         Firm produces and sells product through period t+1 
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Figure 2
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