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1 Introduction

Most textbook results about inference with regression models are based on a tacit assumption

that the model is chosen independent of the data that are being analyzed. The reality of applied

econometrics is often very different. The same data set is often used for both model selection

(selection of the regressors) and the subsequent analysis, and in such a situation it is inappro-

priate to base inference on fixed-model results. Repeated use of data creates distortions, such

as the bias caused by pre-testing and data mining. But repeated use of data is inevitable in

econometrics analysis of observational data.1

In this paper, we derive a method for inference that can control for data mining and pre-

testing in the context of regression models. We consider a situation where several regression

models are estimated. These models differ in terms of their regressors but have the same depen-

dent variable, and we seek the distribution of statistics that may be functions of statistics of the

individual models, e.g. the maximal R2 (across models) which is a function of the individual

model’s R2s. We refer to statistics of this kind, as inter-model statistics.

The main contribution of this paper is a method that consistently estimates the distribution

of a broad class of inter-model statistics. The method employs a bootstrap technique that cir-

cumvents the use of approximations, such as those based on probability inequalities, and we

provide sufficient conditions that justify the use of the bootstrap in the context of regression

models. We apply our method to derive the distribution of the maximal R2 in a study, where

monthly stock returns are regressed on lagged variables. The regression models include up to

three regressors that are chosen from a set with 103 (mainly) macro-economic variables. Un-

der the null hypothesis of no explanatory power, we estimate the distribution of the maximal

R2 (across regression models) and find strong evidence against the null, i.e., we conclude that

certain regressors produce a significant R2. It is comforting that the regressors that produce

the largest R2 are economically meaningful, as they measure changes in the level of economic

1As oppose to data collected from controlled experiments that may be repeated, to generate a new independent
data set.
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activities and the yield curve. It should be noted that our finding cannot be taken as evidence

against the efficient markets hypothesis. The reason is that our results document a population

relationship from an in-sample analysis, which need not imply that returns can be predicted

out-of-sample.

Data mining and other types of data reuse are often criticized, but there need not be any-

thing devious about it, as long as inference is adjusted accordingly. It is the lack of analytical

results that makes it difficult to control for data reuse. In some cases, however, one can resort

to approximative methods, such as those based on probability inequalities, e.g., the Bonferroni

bound. The method that we introduce in this paper does not rely on bounds or ad hoc approxi-

mation and it applies quite generally. The bootstrap implementation of our method is similar to

that applied to out-of-sample comparison of forecasting models, by White (2000) and Hansen

(2001), who builds on results of Diebold and Mariano (1995) and West (1996). In spite of this

similarity, the arguments that justify the use of the bootstrap in the present setting are quite

different. The reason is that parameter uncertainty is the sole contributor to the uncertainties

in the in-sample comparison of regression models, whereas this source often has negligible im-

portance in out-of-sample comparisons of forecasting models, see West (1996). Whereas the

aforementioned methods apply to out-of-sample evaluations our method applies to in-sample

evaluation. Recent simulation studies by Inoue and Kilian (2002) indicate that the latter is more

powerful, when the purpose is to access a population relationship, such as the significance of a

parameter. Further, Inoue and Kilian (2002) call for the use of the bootstrap in practice, but do

not derive theoretical results for the use of bootstrap methods in this context.

The method that we propose in this paper has a wide range of applications, and we discuss

some of them next.

THE MAXIMAL R2. Existing methods for approximating the distribution of the maximal

R2 (across several regression models) are discussed in Foster, Smith, and Whaley (1997).

One method applies the Bonferroni bound which leads to a conservative method and a sec-

ond method is known as the Rencher-Pun rule-of-thumb, (see Rencher and Pun (1980)), which
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subsumes a particular covariance structure across regression models. Compared to these two

approaches, the method proposed in this paper has two advantages. The first one is that the new

method incorporates the sample information about the cross-model dependence, rather than as-

suming an extreme form of dependence (like the Bonferroni bound) or an ad hoc dependence

structure (like the Rencher-Pun rule-of-thumb). The second advantage is that the new method

does not rely on a restrictive distributional assumption, which are needed for the implementa-

tion of the two approximative methods. Our method can also be applied to estimate the bias in

the R2 that is caused by data mining, which can be used to create a more informative statistic

in the context of data mining, e.g., the R2 net of the estimated bias.

PRE-TESTING. The new method also applies to situations where pre-testing takes place.

Model reduction by omitting insignificant regressors are known as the general-to-simple pro-

cedure. The estimators of a model that is selected in this manner, are likely to have properties

different from those of a fixed model. In fact, Leeb and Pötscher (2003) have shown that

the convergence in distribution of the estimators, cannot be uniform over the parameter space.

Other interesting results have recently been derived by Danilov and Magnus (2001) in a clas-

sical setting with deterministic regressors and independent Gaussian distributed errors. Within

this framework they are able to derive exact results that show the distortion that pre-testing cre-

ates. The method of this paper is capable of controlling for pre-testing in a general setting as

it can consistently estimate the distribution of statistics of interest, where the analytical form

of the distribution need not be known. For example, the unconditional distribution of a regres-

sion coefficient, which corresponds to a particular regressor (included in all models), can be

estimated.

ROBUSTNESS. There is a large number of regression studies that apply economic growth

rates as the dependent variable, and regressions of this kind are known as “growth regressions”.

The literature on growth regressions has questioned whether the significance of certain regres-

sors are robust to the specification, e.g., would inclusion of additional regressors alter the result.

Questions of this kind can also be addressed by the new method. Suppose that the regressors
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are divided into two sets, one that contains regressors that are always included as regressors and

one that contains regressors that are included in some, but not all models. Leamer (1983, 1985)

referred to the first type of variables, as the free variables and to the second type of variables

as the doubtful variables. We might be interested in evaluating whether the significance of a

particular free variable is robust to the choice of included doubtful variables. Leamer proposed

to estimate a confidence interval for the parameter in each of the m regression models, and

define the “extreme bound” confidence interval to be the union of the m confidence intervals.

Thus if zero lies within the extreme bound interval, the conclusion is that the significance is

not robust. Levine and Renelt (1992) applied the extreme bound method to regression models

using growth rates as the dependent variable, and did not find any “significant” regressors that

satisfied this kind of robustness. Another way of describing the extreme bound method is that

the method concludes that a significance is not robust, if the parameter is not significant is a

single model. Since this conclusion is made without regard to the validity of this model, and

hence the validity of the inference from this model, this method has obvious flaws. A series of

papers, Sala-i-Martin (1997a, 1997b) and Doppelhofer, Miller, and Sala-i-Martin (2000) have

criticized the extreme bound method for being too conservative, and proposed alternative meth-

ods. The method that we propose can also be applied in this context, as one could derive the

distribution of the smallest t-statistic across models, and then evaluate whether the smallest t-

statistic is significantly larger than this value. A better approach would be to take the smallest

t-statistic over models that are consistent with the data, and not rejected in comparisons with

other models.

MODEL SELECTION. Vuong (1989) considered the comparison of two non-nested models

(possibly overlapping) in terms of their (quasi) likelihood ratio. In the context of regression

models, the technique of this paper makes it possible to generalize Vuong’s result to the com-

parison of more than two models. We discuss this issue in more details towards the end of

Section 2.

The method can also be applied by a sceptical econometrician who believes certain re-
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gressors should be included, but is unwilling to include additional regressors, unless there

is evidence in favor of increasing the number of regressors. This can be done by extend-

ing the restricted model in various directions, e.g., by adding ka regressors. Let δ j be the

parameters associated with the additional regressors, and consider all permutations of choos-

ing ka variables from a (finite) set of potential additional regressors. For each of the vectors

for parameters, δ1, . . . , δm, consider the F-statistic, Fj , of the hypotheses H0 j : δ j = 0,

j = 1, . . .m. The new method can derive the distribution of, e.g., max j Fj under the hypoth-

esis, H0 : δ1 = · · · = δm = 0, which can be used to construct a test of H0. A procedure of

this kind can be used as a simple-to-general procedure, and a general-to-simple method can be

constructed in a similar way.

Although the method can be applied in situation where thousands of regression models are

estimated, as we do in our application, the paper does not advocate this practice. One can even

argue that extensive data mining of this kind defies the spirit of econometrics, because eco-

nomic theory is not being incorporated in the modelling of the data. Nevertheless, in applied

econometrics it is not uncommon that a data set is used to estimate a large number of regression

models, perhaps by several econometricians. The applied econometrician who finds the “right”

combination of regressors may appear to have “struck gold” and get the result published, al-

though it may only be “fool’s gold” – the result of data mining. This problem is particularly

relevant in situations where the number of potential regressors is large relative to the number of

observations of each variable. A situation that is not uncommon in the econometric analyses of

macroeconomic variables.2

A Baysian approach to the selection of regressors was derived in Barbieri and Berger (2002).

Their method requires one to specify priors over parameters and models, and derives the pos-

terior probabilities over the set of models. In a second step, one assigns posterior probabilities

to regressor i by adding up the posterior probabilities of the models that included variable i.

This is done for all variables, and those that obtain a posterior probability greater than a half,

2Hundreds of macro economic variables are being recorded for the US alone. Most of these have been recorded
for less than 60 years at a monthly, quarterly, or annual frequency.
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are included in the final model.

Notation: We let diag(A1, . . . , An) denote the block-diagonal matrix that has the matrices,

A1, . . . , An in the diagonal, and for x ∈ R, we let int(x) denote the integer part of x . For a

symmetric positive semi-definite matrix, A, we let A1/2 represent the symmetric semi-definite

matrix that satisfies A = A1/2A1/2. We use subscript, j, to index models, j = 1, . . . ,m.

For a matrix, A, with full column rank, we define A⊥, to be some matrix with full column

rank, that satisfies det(A, A⊥) �= 0 and A′
⊥A = 0. The number of regressors in model j is

denoted by k j , and the total number of regressors is Km =
∑m

j=1 k j , where m is the number

of models. The regressors are selected from a finite number of regressors, which is denoted

by K . The probability measure that governs the raw data is denoted by P, and the probability

measure that define the bootstrap resamples is represented by Q. Convergence in distribution

and almost surely are denoted by d
→ and a.s.→ respectively, where the convergence is with respect

to the product measure P ⊗ Q. (For quantities that do not involve bootstrap resamples this is

equivalent to convergence with respect to P.)

This paper is organized as follow. In Section 2 we present the model and derive the new

method that consistently estimates the distribution of statistics from a broad class of statistics.

The distribution of the maximal R2 is one example, which we discuss in more detail. The

new method is based on bootstrap techniques, and we provide conditions that validate these

techniques. Section 3 contains an empirical analysis of the predictability of monthly stock

returns, and Section 4 contains concluding remarks. Proofs are given in the appendix.

2 Model and Assumptions

We consider a time-series (Yt , X ′
t)
′, t = 1, . . . , n, where Yt is a scalar and where Xt is a vector

of variables. We consider regression models that have Yt as the dependent variable and “some”

of the variables in Xt as the explanatory variables. We have in mind a situation where the

dimension of Xt is too large, relative to the sample size, such that it is impossible to obtain

sensible results by including all variables as regressors. Instead, we consider m models, where
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model j includes a few regressors, which we denote by X jt , j = 1, . . . ,m. Let k j be the

number of variables in X jt , and let Km ≡
∑m

j=1 k j . For now, we leave the structure of the

models unspecified, and do not require the number of regressors, k j , to be the same in all

models, however we take the number of models, m, as given. Statistics from the m models

are combined into a single statistic, S, that we call an inter-model statistic. For the purpose of

inference, we seek the (asymptotic) distribution of S, which we denote by FS. The dependence

across models, makes it intractable to derive analytical expressions for FS, except in very simple

situations. Fortunately, it is possible to estimate FS using bootstrap techniques under certain

regularity conditions, including the following assumption of Goncalves and de Jong (2003),

which is modified to the present context.

Assumption 1 Let Zt ≡ (Yt , X ′
t)
′, t = 1, . . . , n. The sequence {Zt} is stationary and ergodic,

E |Zt |r+ε < ∞ for r > 2 and some ε > 0, and {Zt} is α-mixing of size −r/(r − 2).

Before we turn to the formulation and estimation of regression models, we define the pop-

ulation quantities, µy ≡ E(Yt) and σ 2y ≡ var(Yt), and for each set of regressors, X jt , we

define

� j j ≡ var(X jt), � j y ≡ cov(X jt ,Yt), µx j ≡ E(X jt),

β j ≡ �−1
j j � j y, µ j ≡ µy − β′

jµx j , j = 1, . . . ,m.

These quantities are well-defined under Assumption 1, and we consider the m regression mod-

els,

Yt = β′
j X jt + µ j + ε jt , t = 1, . . . , n, j = 1, . . . ,m, (1)

where X jt is the vector of regressors that are used in model j. Note that the “errors”, ε j t , are

defined by (1), and this construction ensures that {ε j t} inherits the stationarity from (Yt , X ′
t)
′

and that ε j t is uncorrelated with X jt . The regression parameters are estimated by least squares

and it is convenient to define Ȳ ≡ n−1
∑n
t=1 Yt , Syy ≡ n−1

∑n
t=1(Yt − Ȳ )2, and for each of the
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m models, we define

X̄ j ≡ n−1
n∑
t=1
X jt , Sj j ≡ n−1

n∑
t=1
Xcjt X

c′
j t , Sjy ≡ n−1

n∑
t=1
XcjtYt ,

where Xcjt ≡ X jt − X̄ j . It then follows that the least squares estimators are given by β̂ j ≡

S−1j j S jy and µ̂ j ≡ Ȳ j − β̂ j X̄ j , j = 1, . . . ,m. Next, we stack the regression parameters and

their corresponding estimators into the vectors, β0 ≡ (β′
1, . . . , β

′
m)

′ and β̂ ≡ (β̂
′

1, . . . , β̂
′

m)
′,

and similarly we define

ψ0 ≡ (σ 2y, µy, �1y,�11, µx1, . . . , �my, �mm, µxm ),

and its sample analog ψ̂ ≡ (Syy, Ȳ , S1y, S11, X̄1, . . . , Smy, Smm, X̄m). The inter-model statistics

that we consider in the following, will be function of n1/2β̂ and ψ̂. So the asymptotic dis-

tributions of an inter-model statistic is given by a transformation of the joint (across models)

distribution of n1/2β̂, and the probability limit of ψ̂. It is by using the joint distribution of β̂,

rather than combining those of β̂1, . . . , β̂m, that we can achieve a consistent estimate of the

distribution of an inter-model statistic.

Lemma 1 Given Assumption 1 it holds that ψ̂ a.s.
→ ψ0, and

n1/2(β̂ − β0)
d
→ N(0,�),

where � ≡ �−1V�−1, � ≡ diag(�11, . . . , �mm), V = �0 +
∑∞
i=1(�i + �′

i), and where

�t−s ≡ E


Xc1tε1tε1s Xc′1s · · · Xc1tε1tεms Xc′ms

...
. . .

...

Xcmtεmtε1s Xc′1s · · · Xcmtεmtεms Xc′ms

 .

The lemma implies that (Ȳ , Syy, Sjy, Sj j , X̄ j)
a.s.
→ (µy, σ

2
y,� j y,� j j , µ j) and that n1/2(β̂ j−

β j)
d
→ N(0,� j),where� j = �−1

j j Vj j�
−1
j j , Vj j ≡ � j j,0+

∑∞
i=1 � j j,i+�′

j j,i , and E
[
Xcj,tεtεt−i Xc′j,t−i

]
8



for j = 1, . . . ,m. So Lemma 1 contains the well-known result for a single model, as a special

case. Lemma 1 could have been formulated in more general terms, by including the estimators

for µ j , j = 1, . . . ,m. However, the current formulation will suffice for our analysis and makes

it possible to express certain limits in terms of the covariance matrices.

The usefulness of Lemma 1 is made clear below, where we consider transformations of the

parameters. The transformation will have the form of the following assumption.

Assumption 2 The mappings r : RKm y Rp and g : Rp × Rq y Rs are Borel measurable; r

is differentiable with continuous derivative; and g(y, z) is continuous at all points in C×{ψ0},

where C ⊂ Rp and satisfies λ(Rp\C) = 0, where λ is the Lebesgue measure.

The assumption of measurability is needed in order to transform the asymptotic distribution

of β̂. Since r is continuous, the measurability of r is trivially satisfied, whereas the assumption

is more substantive for the mapping g, which is allowed to be discontinuous.

Theorem 2 Consider the random variables ξ̂ ≡ g(n1/2r(β̂), ψ̂), and let Fξ,n be the cdf of ξ̂.

Suppose that Assumption 1 holds and that r and g satisfy Assumption 2. Let Fξ denote the distri-

bution of ξ0 ≡ g(Z̃,ψ0),where Z̃ ∼ N(0, ṙ(β)′�ṙ(β)),where ṙ(β) ≡
[
∂rl (β)
∂β0, j

]
j=1,...,Km , l=1,...,p

.

If r(β0) = 0, then limn→∞ Fξ,n(z) = Fξ(z), for all continuity points of Fξ .

The mapping r is used to impose restrictions on the parameters, r(β0) = 0, and in most

cases we consider restriction on the form r(β0) = A′β0 − a = 0, where A = ṙ(β) (for all

β) is a known matrix and a is a known vector. Without loss of generality we assume that A

has full column rank, which leads to the equivalent formulation of the restrictions, given by

β0 = Hϕ0 + h, where H = A⊥ and where h = A
(
A′A

)−1 a.
This result of Theorem 2 enables us to obtain the asymptotic distribution for a class of

inter-model statistics. We illustrate this by the following example.

Example 1 Consider the average R2, given by R2ave = m−1∑m
j=1 R2j . Under the hypothesis
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that β1 = · · · = βm = 0, we set r(x) = x and let g be given by

g(n1/2r(β̂), ψ̂) =
n
m
β̂
′diag(S11, . . . , Smm)β̂

Syy
,

which is continuous (assuming σ 2y > 0). Since

nR2ave = n m
−1

(
β̂
′

1S11β̂1
Syy

+ · · · +
β̂
′

mSmmβ̂m
Syy

)
= g(n1/2r(β̂), ψ̂),

it follows by Theorem 2, that the asymptotic distribution of nR2ave is given by

1
σ 2
Z ′
I
(
�1/2��1/2

)
ZI =

1
σ 2
Z ′
I
(
�−1/2V�−1/2) ZI ,

where Z ∼ NKm (0, I ), since Syy
a.s.
→ σ 2 and diag(S11, . . . , Smm)

a.s.
→ �, under the null hypothe-

sis.

The distribution in the previous example, Z ′
(
�−1/2V�−1/2) Z, is recognized as a linear

combination of independent χ2-distribution variables, where the weights depend on the eigen-

values of
(
�−1/2V�−1/2) . So it is possible to derive an analytical expression for the asymptotic

distribution of nR2ave, however this is not the case for most inter-model statistics, and in these

situations the bootstrap implementation is particularly useful.

As stated in the introduction, we follow the terminology of Leamer (1983, 1985) and call

the variables, which are included in all models, the free variables, and the remaining variables

of Xt are called the doubtful variables. To simplify matters, we assume that the number of

doubtful variables is the same across models, we let k be the number of regressors, and denote

the number of doubtful regressors by q.We divide the parameters into β j = (γ ′
j , δ

′
j)
′,where γ j

are the parameters that correspond to the free variables and δ j are the parameters that correspond

to the doubtful variables in model j. Note that all models are identical if δ1 = · · · = δm = 0, in

which case we define γ ≡ γ 1 = · · · = γ m .
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We shall consider hypotheses that take the form, H0 : δ1 = · · · = δm = 0 and r1(γ ) = 0. So

we consider hypotheses, where all relevant regressors are in the set of free variables. By testing

the zero-restrictions on δ j , j = 1, . . . ,m, we are able to evaluate whether there is evidence that

any additional regressor are needed. If it is possible to estimate the comprehensive model that

includes all variables as regressors, we can test this hypthesis with an F-test. However, we have

in mind a situation where the number of variables is so large, that there is not sufficient data

to estimate the full model. Instead we consider models that only contains a limited number of

regressors, and compare the restricted model to several alternative models that includes a few

additional doubtful variables. This leads to a multiple comparisons problem, and the inference

in such problems are often quite involved. However, we circumvent the complications by using

a bootstrap implementation that makes it simple to test the hypothesis.

2.1 Bootstrap Implementation

Our implementation is based on the stationary bootstrap (SB) of Politis and Romano (1994) as

this choice facilitates the analysis.3 Our assumptions that justify the use of the bootstrap imple-

mentation is based on the relaxed (moment) conditions due to Goncalves and de Jong (2003).

The bootstrap serves as a tool to take the dependence across models into account, and our im-

plementation is similar to that used to compare forecasting models byWhite (2000) and Hansen

(2001). It should be noted that there is an important difference between the analysis that justifies

the use of the bootstrap in the present setting and that of comparing forecasting models. White

(2000) showed the consistency of the stationary bootstrap in the context of out-of-sample com-

parison of forecasting models. These results do not apply to our analysis, which is concerned

with in-sample comparison. In the in-sample analysis the major “noise-component” arises from

the estimation of parameters. This is in sharp contrast to the out-of-sample analysis, where the

contributions from the parameter estimators, is only one of two components, and in fact, the

standard assumptions made in comparisons of forecasting models, ensure that the contribution

3Nevertheless, we postulate that the results can be obtained with an implementation based on the block-bootstrap
of Kunsch (1989).
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from estimation uncertainty vanishes asymptotically, see West (1996). In the context of out-of-

sample comparison and testing a composite hypothesis, Hansen (2001, 2003) has shown some

unfortunate properties of this bootstrap implementation, and suggested modifications to correct

these problems. The hypotheses that we consider below do not have a composite form that

requires these modifications.

The resamples of the stationary bootstrap are defined as follows.

Definition 1 (Stationary Bootstrap) Let ρ ∈ (0, 1], (the dependence parameter). A station-

ary bootstrap re-sample, Z∗
t , is generated from the sample, Z1, . . . , Zn, by defining Z∗

t ≡ Zτ (t),

where τ (t), t = 1, . . . , n, is generated as follows.

Let υ1, . . . , υn, η1, . . . , ηn be independent and uniformly distributed on [0, 1), and let

τ (1) = 1+ int(υ1n), and for t = 2, . . . , n, let

τ (t) = 1+ int(υ tn)1{ηt≤ρ} + τ (t−1)1{τ (t−1)<n}1{ηt>ρ},

where 1{·} is the indicator function.

Thus, a re-sample, {Z∗
t }, is composed of blocks of the original sample, {Zt}, where the

block-length is geometrically distributed, and where the expected length of each block is ρ−1.

A property of this construction, is that a re-sample, Z∗
t , is stationary and ergodic, conditional

on Z1, . . . , Zn.4 In our asymptotic analysis, we let ρ depend on the sample size, and write ρn.

Specifically, we let ρn → 0 (at a suitable rate) to ensure that the resamples (eventually) will

resemble the time-dependence of the observed process.

We let {(Y ∗
t , X∗′

t )
′} denote a SB re-sample of our observations {(Yt , X ′

t)
′} and calculate the

statistics, S∗yy, Ȳ ∗, S∗j y, S∗j j , and X̄∗
j , where the statistics are defined by the formulae for Syy,

Ȳ , Sjy, Sj j , and X̄ j , after having replaced (Yt , X jt) by (Y ∗
t , X∗

j t). It follows that β̂
∗

j = S∗−1j j S∗j y

is the least squares estimator for β j when regressing Y ∗
t on X∗

j t (and a constant). Similarly, we

4This follows directly from the theory of Markov chains.
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define

ψ̂
∗
= (S∗yy, Ȳ

∗, S∗1y, S
∗
11, X̄

∗
1, . . . , S

∗
my, S

∗
mm, X̄

∗
m).

Lemma 3 If (Yt , X ′
t)
′ has finite second moment, then ψ̂∗ a.s.

→ ψ0.

Assumption 3 Let Zt ≡ (ε1,t X ′
1,t , . . . , εm,t X ′

m,t)
′. For some r > 2 and some ε > 0, it holds

that E |Zt |r+ε < ∞ and that {Zt} is α-mixing of size −r/(r − 2).

Given our definition of {ε j,t}, j = 1, . . . ,m, it is clear that assumptions on {Yt , X ′
t} have

implications for {ε j,t}. The following lemma reassures us that Assumption 3 does not violate

our previous assumptions on {Yt , X ′
t}.

Lemma 4 Assumption 3 is implied by Assumption 1, strengthened by E
∣∣(Yt , X ′

t)
′
∣∣2(r+ε)

< ∞.

Theorem 5 Suppose that ρn → 0 and nρ2n → ∞ as n→ ∞. Given Assumption 3, it holds for

all ε > 0 that

sup
z

∣∣∣P∗(n1/2(β̂∗
− β̂) ≤ z)− P(n1/2(β̂ − β0) ≤ z)

∣∣∣ p
→ 0. (2)

Let F∗
ξ,n denote the cdf of ξ̂

∗
≡ g(n1/2r(β̂∗

)− n1/2r(β̂), ψ̂∗
), where r and g are as in Assump-

tion 2, then, F∗
ξ,n(z) → Fξ(z), for all the continuity points of Fξ.

COMMENT 1: The probability P∗ is evaluated conditional on the sample X1, . . . , Xn, and the

result states that the bootstrap distribution is close to the true distribution, in the sense of (2).

COMMENT 2: Theorem 5 applies to least squares estimation of regression models. But the re-

sult can be generalized to a broader class of estimators, that includes quasi maximum likelihood

estimators (QMLEs) and generalized method of moments (GMM) estimators under appropriate

assumptions, although we shall not pursue this here. For the case with m = 1, (2) has been

established by Goncalves and White (2003) for the aforementioned class of estimators.
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2.2 Applications

The following corollary and examples show how Theorem 5 can be applied to obtain bootstrap

estimates of quantities that are functions of the R2s, F-statistics, or t-statistics. The implemen-

tation requires that we impose the null hypothesis on the bootstrap variables. However, it is not

streight-forward to impose a population R2 to have a particualar value with a non-parametric

bootstrap. Instead we make use of a one-to-one relation between the R2 and a particular F-

statistic.5 The well-known relation is

R2j =
Fj

Fj + (n − k − 1) /k
,

where Fj is the F-statistic of the hypothesis β j = 0, j = 1, . . . ,m. Thus, for each resample,

we calculate (F∗
1,b, . . . , F∗

m,b), where F∗
j,b is the F-statistic of the hypothesis β j = β̂ j , based

on the bth re-sample, b = 1, . . . , B, and define

R∗2
j,b ≡

F∗
j,b

F∗
j,b + (n − k − 1)/k

.

Note that R∗2
j,b is not the R2 of the bth resample using model j’s regressors, it is derived from

the F-statistic, that ensures that the bootstrap distribution approximates the distribution of R2j ,

under the appropriate null hypothesis.

Corollary 6 (Bootstrap Distribution of the Maximal R2) Consider the maximal R2 across

models, R2max = max j=1,...,m R2j . Under the hypothesis that β1 = · · · = βm = 0, the distri-

bution of R2max, F(z) = P
(
R2max ≤ z

)
can be approximated by

F̂(z) =
1
B

B∑
b=1
1{R∗2max,b≤z

}, 0 ≤ z ≤ 1, (3)

for B and n sufficiently large, where R∗2
max,b ≡ max j=1,...,m R∗2

j,b.

5When resampling the variables (Yt , X j,t ), the population parameters of the resample are given by the estimated
parameters in model j , β̂ j . Other values of the parameters would generate the same value of the R2, but those are
irrelevant for the purpose of resampling.
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Example 2 (The Maximal R2 under a Non-Trival Null Hypothesis) Suppose instead that we

are interested to measure how much the R2 can be increased by adding a fixed number of ad-

ditional regressors. Thus the object of interest is the distribution of S = R2max − R20, under the

null hypothesis, H ′
0 : δ j = · · · = δ j = 0, where R20 is the R2 of the model that only includes

the p free variables as regressors. We proceed by estimating the restricted model (with the p

free variables) for the original sample to obtain the estimator γ̂ . For each of the resamples we

also estimated the restricted model, and define R∗2
0,b = F∗

0,b/[F∗
0,b+ (n− p− 1)/p], where F∗

0,b

is the F-statistic for the hypothesis that γ = γ̂ . By defining R∗2
max,b as above, the distribution of

S, can now be estimated by F̂(z) = 1
B
∑B
b=1 1{R∗2max,b−R∗0,b≤z

}. Thus the expected boost in the R2

from searcing over the m larger models is estimated by 1
B
∑B
b=1 R∗2

max,b − R∗
0,b.

The distribution of F-statistics and t-statistics can be estimated in a similar way.

Example 3 (Pre-Testing) Suppose that we have two possible regressors, X1t and X2t , and we

estimate the regression models:

Yt = γ 1X1t + µ1 + ε1t ,

Yt = γ 2X1t + δ2X2t + µ2 + ε2t .

If δ2 is found to be significant in the second regression equation, then γ̂ 2 is reported otherwise

γ̂ 1 is reported. The procedure can be represented by the mapping g, which is defined by

g(β̂, ψ̂) =




γ̂ 1 if |δ̂2|
σ δ2

≤ cr ,

γ̂ 2 otherwise,

where |δ̂2|/σ δ2 is the absolute value of the t-statistic of δ2 = 0. We seek the distribution of

the estimator, γ̂ , which this procedure leads to, under the hypothesis, H0 : γ 1 = γ 2 = 0.

Dependent on the t-statistic, the procedure will report either γ̂ 1 or γ̂ 2, so the distribtion of γ̂ ,

is a complicated mixture of the distribution of γ̂ 1 and γ̂ 2. We can express γ̂ as the mapping,

γ̂ = g(β̂, ψ̂). We note that this mapping is dicontinuous, and the tresshold where we change
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from reporting γ̂ 1 to γ̂ 2. Now if δ2 �= 0 then
|δ̂2|
σ δ2

→ ∞ as n → ∞, in which case γ̂ 2 is always

reported. On the other hand, if δ2 = 0, then the set of discontinuity points has measure zero.

So g satisfies Assumption 2, and Theorem 5 can be applied to estimate the distribution of γ̂ .

Example 4 (Vuong Type Likelihood Ratio Test) If we assume a Gaussian likelihood for the

regression models and let Lmax, j be the maximum value of model j ’s likelihood, then we can

consider (log Lmax,1, . . . , log Lmax,m).Hypotheses, such as E(n−1 log Lmax,i) = E(n−1 log Lmax, j)

for all i, j = 1, . . . ,m, or E(n−1 log Lmax,1) ≥ E(n−1 log Lmax, j) for all j = 2, . . . ,m, can

be tested using test statistics that are functions of (log Lmax,1, . . . , log Lmax,m), which are them-

selves functions of β̂ and ψ̂.

3 Empirical Analysis of Monthly Stock Returns

In this section, we estimate a large number of regression models, where monthly stock returns

are regressed on lagged variables. The application illustrates how the new method can be ap-

plied to control for data mining. In this application we need to a control for the large number

of regression models that we estimate, prior to reporting the largest R2. For additional discus-

sion on data mining in financial econometrics, see Merton (1987), Ross (1989), and Lo and

MacKinlay (1990).

There are several studies that evaluate the predictability of stock and bond returns using re-

gression models, andmeasure the predictability by the R2, see e.g., Campbell and Shiller (1988)

and Fama and French (1989). The R2 is often found to be surprisingly large in “long-horizon

predictions”, and the significance of this observations have been discussed in the literature. Ho-

drick (1992) and Kirby (1997) note that autocorrelation distorts the size of tests in long-horizon

forecasting environments, and argue that the R2 may be spuriously large in long-horizon pre-

dictions, whereas Patelis (1997) argues that monetary policy creates the predictability. Another

possibility is that the predictability have spuriously have been discovered by the research com-

munity after having explored a large number of possible regression models. Our new method,

is capable of controlling for both the autocorrelation and the mining over a set of regressor
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models.

We consider regression models of the form of (1), Yt = β ′
j X jt + µ j + ε j t , t = 1, . . . , n,

j = 1, . . . ,m, where the dependent variable, Yt , is the monthly return on the Dow Jones

Industrial Average (DJIA) index. The regressors of model j, X jt , are predetermined variables,

primarily macro economic variables. We also consider the regression, where the dependent

variable, Yt , is the monthly excess return over the return on a one-month Treasury bill. The

subset of regressors, X jt , are selected from Xt , which is a vector of K = 103 variables. These

variables include: lagged returns; interest rates; monetary variables; business cycle indicators;

unemployment variables; price indexes; and production and consumption data. Acknowledging

that several macro variables are published with a lag and therefore not observed in real time,

we have lagged some of the variables by up to three periods to make it more realistic that our

regressors were observed at time t − 1. Our data are monthly observation that span the period

1959:01 to 1998:01. The effective sample period (which is available for estimation) is reduced

to 1960:07 – 1998:01, because some regressors are constructed from variables that are lagged

by up to 18 months. The data sources are: Federal Reserve Economic Data (FRED), Domestic

Economic Data (DRI), and the Center for Research in Security Prices (CRSP), and the variables

are listed in Table 1.

All the variables in Xt are classified as doubtful variables and we consider all distinct mod-

els that include k = 1, 2, or 3 regressors, (in addition to a constant). This result in m =
(K
k
)

models. Thus for k = 1 we have m1 = 103 models, for k = 2 we have m2 = 5, 253 models,

and for k = 3 we have m3 = 176, 851 models.

We consider the maximal R2 under the hypothesis that none of the variables have any ex-

planatory power, H0 : β0 = (β ′
1, . . . , β

′
m)

′ = 0. Even if the null hypothesis is correct, some of

the models are likely to produce an R2 that would appear to be significant, if we did not adjust

the critical value for the (large) number of models.

The results are presented in Table 2, which displays convincing evidence against the null

hypothesis. Even amongst the models with a single regressor we find significant regressors, and
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the models with two and three regressors provide even stronger evidence against the hypothesis.

Also, the findings are robust to the choice of dependent variable (returns or excess returns). All

results are based on B = 1, 000 bootstrap replications where q = 1
2 was used as the dependence

parameter.

The “Miner (Beta)” critical value is calculated from the Beta-distribution, B ( k
2 ,
n−k−1
2

)
.

This would be the appropriate distribution to use, if the R2 had been calculated from a single

model with deterministic regressors and innovations that were iid Gaussian distributed. The “BF

(Beta)” employs the Beta-distribution and the Bonferroni inequality to derive critical values. It

is interesting to note that “Bootstrap” critical values can exceed those of “BF (Beta)”. For

example, for k = 1, the “Bootstrap” critical value exceeds that of the Bonferroni bound. This

may appear surprising since the latter is called a ‘bound’ for the critical value. However, the

Bonferroni bound method is based on Beta-distribution that is justified by assumptions that are

known to be invalid in the present context. A kernel estimation of the bootstrap-density for the

case k = 2 (where the dependent variable is excess returns) is shown in Figure 1.

Given the significance of the maximal R2 it is interesting to analyze which of the variables

that led to to a large R2, and Table 3 presents the regressors that resulted in the maximal R2,

for the two dependent variables, returns and excess returns, and for models with one, two, and

three regressors.

From Table 3 it is comforting to see that the regressors with the best sample prediction are

key economic variables, rather than more obscure variables. The yield on the ten-year treasury

bond is selected in all but one model, and the second most important variable is DMANEM_2,

which is defined as the change in employment in the manufacturing sector (lagged two month).

So an indicator of economic activity, and a measure of the yield curve turn out to be the best

predictors of returns.

The in-sample prediction errors using the best three-variable model to predict excess returns

are plotted in Figure 2.

There is some evidence that the predictability carries over to out-of-sample forecasts. Pe-
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saran and Timmermann (1995) found that in a real-time setting with recursively estimated pa-

rameters, and various model selection criteria, the selected models would historically have pro-

duced valuable forecasts, especially during periods when interest rates were relative volatile.

Although, it should be added that their analysis did not fully account for the ‘mining’ over

models.

4 Conclusion

We have introduced a new method for robust inference in the situation where several regres-

sion models are estimated. We considered a general class of statistics that we referred to as

inter-model statistics, and we have showed how the distribution of an inter-model statistic, can

be estimated under fairly general assumptions. In the general situation, there does not exist an

alternative method, and in the specific cases where alternative methods exist, the latter are infe-

rior, as they neglect the sample information about cross-model dependence, which is important

for the analysis. Our method implicitly estimates the cross-model dependence and exploits this

to produce a consistent estimate of the relevant distribution. For this reason we believe that our

method is an important contribution to the literature.

The applicability was illustrated with an in-sample regression study, where monthly returns

on the Dow Jones industrial average index were regressed on lagged variables. The results

showed that the largest R2 is significant, even in the set of models that only include a single

regressor, and the evidence is stronger as the number of regressors is increased. This finding

cannot be taken as evidence against the efficient market hypothesis, because full sample esti-

mates are not available for in-sample trading strategies, and an out-of-sample analysis would

presumably lead to a different result.

Extensions and future research include empirical applications of the method, and compar-

isons to approximative methods in the situation where such apply. Also, a much deeper analysis

of the extension to multiple comparisons of likelihoods is needed – in a more general framework

than the regression models considered in this paper.
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A Appendix of Proofs

Proof of Lemma 1. Given Assumption 1, the strong consistency of ψ̂ follows by the ergodic

theorem (the strong law of large numbers for stationary and ergodic precesses), and the asymp-

totic normality follows from

n1/2(β̂ − β0) =




S−111 · · · 0
...

. . .
...

0 · · · S−1mm


 n

1/2
n∑
t=1




Xc1tε1t
...

Xcmtεmt


 ,

since the first term converges in probability to�−1 and the second term converges in distribution

to NKm (0, V ).

Proof of Theorem 2. A Taylor expansion of r about β0 yields

r(β̂) = r(β0)+ ṙ(β0∗)(β̂ − β0),

where β0∗ lies between β̂ and β0. Since β̂
a.s.
→ β0, also β0∗

a.s.
→ β0, and by the continuity of ṙ

it follows that also ṙ(β0∗)
a.s.
→ ṙ(β0). We have established that n1/2(β̂ − β0)

d
→ Z, for some

random variable, Z ∼ N(0,�). So if we define Z̃ = ṙ(β0)Z, it follows that n1/2r(β̂)
d
→ Z̃,

under the restriction, r(β0) = 0. Finally, since (n1/2r(β̂), ψ̂) d
→ (Z̃,ψ0) it follows by the

continuous mapping theorem (for functions that are continuous almost everywhere w.r.t. the

limit distribution of (n1/2r(β̂), ψ̂)) that ξ̂n
d
→ ξ0.

Lemma 7 Let {Zt} be a stationary and ergodic sequence with finite first moment and define

µ ≡ E(Z1). Then

Z̄∗
n
a.s.
→ µ,

where Z̄∗
n = n−1

∑n
t=1 Z∗

t and where Z∗
t is bootstrap re-sample as define in Definition 1.

Proof. We let (�,F, P) denote the probability space that governs {Zt} and let (�,G, Q)
be the probability space that governs {(υt , ηt)}, i.e., the probability measure that governs the
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bootstrap resamples. Then by the specification of (υ t , ηt) (see Definition 1), it holds that {Zt},

{υ t}, and {ηt} are mutually independent. By the ergodic theorem we have that Z̄n
a.s.
→ µ, where

Z̄n = n−1
∑n
t=1 Zt , so there exists a F ⊂ F with P(F) = 1, such that for any ω ∈ F and any

ε > 0, there exists an N1ε(ω), such that |Z̄n(ω)−µ| < ε/2 for all n > N1ε(ω). Similarly, since

{Z∗
t } is stationary and ergodic (conditional on Z1, . . . , Zn), there exists G ∈ G with P(G) = 1,

such that for any λ ∈ G, any ω ∈ �, and any ε > 0, there exists an N2ε(λ, ω), such that

|Z̄∗
m(λ, ω) − Z̄n(ω)| < ε/2 for all m > N2ε(λ, ω). So we have that for (ω, λ) ∈ F × G

and any ε > 0, there exist an N(λ, ω) = max(N1ε(ω), N2ε(λ, ω)) such that |Z̄∗
n(λ, ω) − µ| ≤

|Z̄∗
n(λ, ω)− Z̄n(ω)|+|Z̄n(ω)−µ| < ε for all n > N(λ, ω). This shows the strong consistency.

Proof of Lemma 3. The elements of ψ̂∗ are all linear combinations of sample averages of the

form Z̄∗
n = n−1

∑n
t=1 Z∗

t , where Z∗
t = X∗

t , Y ∗
t , X∗

t X∗′
t , Y ∗2

t , or X∗
t Y ∗
t . Lemma 7 shows that

each of these, converges almost surely provided that E(|(Yt , X ′
t)
′|2) < ∞.

Proof of Lemma 4. The identity X j,tε j,t = X j,tYt − X j,t X ′
j,tβ j , shows that X j,tε j,t inherits

the mixing properties from (Yt , X ′
t)
′, which are given Assumption 1. The strengthened mo-

ment condition implies that E|XtYt |r+ε < ∞ and E|Xt X ′
t |
r+ε < ∞ j = 1, . . . ,m, and by

Minkowski’s inequality:

(E
∣∣X j,tε j,t ∣∣r+ε

)
1
r+ε = (E

∣∣X j,tYt + (−X j,t X ′
j,tβ j)

∣∣r+ε
)
1
r+ε

≤ (E
∣∣X j,tYt ∣∣r+ε

)
1
r+ε + (E

∣∣X j,t X ′
j,t
∣∣r+ε

)
1
r+ε

∣∣β j ∣∣ ,

it follows that E
∣∣X j,tε j,t ∣∣r+ε

< ∞, j = 1, . . . ,m.

Proof of Theorem 5. From the identity

S∗j y = n
−1

n∑
t=1
X j,τ t Yτ t = n−1

n∑
t=1
Xτ t (X ′

j,τ tβ j + ε j,τ t ) = S∗j jβ j + n
−1

n∑
t=1
X j,τ tε j,τ t ,

we see that n1/2(β̂
∗

j − β j) = S∗−1j j n−1/2
∑n
t=1 X j,τ tε j,τ t and similarly

n1/2(β̂ j − β j) = S−1j j n
−1/2

n∑
t=1
X j,tε j,t .

21



Define Zt ≡ (ε1,t X ′
1,t , . . . , εm,t X ′

m,t )
′, S∗ = diag(S∗11, . . . , S∗mm), and S = diag(S11, . . . , Smm).

From the identity (β̂∗
− β̂) = (β̂

∗
− β0)− (β̂ − β0) it follows that

n1/2(β̂∗
− β̂) = n1/2(β̂∗

− β0)− n1/2(β̂ − β0)

= S∗−1n−1/2
n∑
t=1
Zτ t − S−1n−1/2

n∑
t=1
Zt

= S∗−1n−1/2
n∑
t=1

(Zτ t − Zt)+ (S∗−1 − S−1)n−1/2
n∑
t=1
Zt ,

where the first term equals S∗−1n−1/2
∑n
t=1(Zτ t − Z) and the second term is op(1)Op(1) =

op(1). By Goncalves and de Jong (2003, theorem 2), it follows that the asymptotic distribution

of

n−1/2
n∑
t=1

(Zτ t − Z) equals that of n−1/2
n∑
t=1
Zt ,

which is given by NKm (0,�) according to Lemma 4.

Consider the Taylor expansion of r , r(β̂∗
) = r(β̂)+ ṙ(β̃)(β̂∗

− β̂), where β̃ lies between

β̂
∗ and β̂, then by the continuity of ṙ and the fact that β̂ a.s.

→ β0 we have that ṙ(β̃)
a.s.
→ ṙ(β0),

and hence the asymptotic distribution of n1/2[r(β̂∗
)− r(β̂)] equals that of ṙ(β0)n1/2(β̂

∗
− β̂),

which is given by Z̃ = ṙ(β0)Z , where Z ∼ NKm (0, �). By the continuous mapping theorem

we find that

g(n1/2[r(β̂∗
)− r(β̂)], ψ̂∗

)
d
→ g(Z̃,ψ0),

since g is assumed to be continuous almost everywhere on the support of the limit distribution.
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Table 1: List of Candidate Regressors
Variable Name Description Source Lags
ExRet Excess return (Monthly Return on DJIA over the 1 month T-bill rate). – 1,2
NumUps1 Indicator: One if previous ER>0 – 0
NumUps2 Indicator: # of positive ER of last two – 0
NumUps5 Indicator: # of positive ER of last five – 0
I1 1 month T-bill rate AT 1
DI1 Change in 1 month T-bill rate AT 1,2
I3 3 month T-bill rate DRI 1
DI3 Change in 3 month T-bill rate DRI 1,2
I6 6 month T-bill rate DRI 1
DI6 Change in 6 month T-bill rate DRI 1,2
I120 10 years Treasury composite (long term) DRI 1
DI120 Change in 10 years Treasury composite (long term) DRI 1,2
DMaDo Change in mark/$ FRED 1,2
DYeDo Change in Yen/$ FRED 1,2
Dppiic Change in Producer Price Index-Industrial commodities FRED 2,3
rppien Relative Producer Price Index-Fuels and related products and power FRED 2
dppien Change in Producer Price Index-Fuels and related products and power FRED 2,3
roilp Relative Oil Price: Domestic West TX. Intermediate [Prior’82=Posted Price] FRED 1
Doilp Percentage change in relative Oil Price:... FRED 1,2
DPZUC Percentage change in: Consumer Price Index, Commodities FRED 1,2
rcpile Relative CPI-U: All Items Less Energy FRED 2
DCPILE Change in CPI-U: All Items Less Energy FRED 2,3
RCPIEN Relative CPI-U: Energy FRED 2
DCPIEN Change in CPI-U: Energy FRED 2,3
DM1 Percentage change in M1 FRED 2
DM2 Percentage change in M2 FRED 2
DM3 Percentage change in M3 FRED 2
FFR Fed Funds Rate FRED 1,2
DTR Percentage change in Total Reserves adjusted for changes in reserve requirements FRED 2
DPZUC Percentage change in CPI, Commodities DRI 2,3
RPZUCD Relative CPI: Durables DRI 2
RFDB Real Federal Debt: Total amount outstanding DRI 2
DRFDB Percentage change in Real Federal Debt: Total amount outstanding DRI 2
DivBUS Percentage change in Inventories: Business Suppliers DRI 3,4
DivCAP Percentage change in Inventories: Capital Goods Industy DRI 3,4
MDO Percentage change in new orders: Durable goods industi DRI 3,4
MNO Percentage change in new orders: Non durable goods. DRI 3,4
DSALER Percentage change in retail sale (seasonally adjusted) FRED 2,3
IvSaRa Inventory/sales ratio FRED 3,4
IPXMCA Capacity util. rate: Manufacturing DRI 3,4
DLEAD Composite index of 11 leading indicators DRI 3,4
DLAGG Composite index of 7 lagging indicators DRI 3,4
DCOINC Composite index of 4 coincident indicators DRI 3,4
UNRATE Unemployment Rate FRED 2
DUNRAT Change in unemployment rate FRED 2,3
DUEM15 Percentage change in # of unempl. for 15wks or more FRED 2,3
RUEM15 Percentage of population unemployed for 15wks or more FRED 2,3
DMANEM Percentage change in Manufacturing Employees FRED 2,3
DUSSER Percentage change in: Services Employment FRED 2,3
DUSGOV Percentage change in: Government Employment FRED 2,3
DUSGOO Percentage change in: Goods-Producing Industries Employment FRED 2,3
DUSFIR Percentage change in: Finance,Insurance & Real Estate Employment FRED 2,3
DUSCON Percentage change in: Construction Employment FRED 2,3
HHSNTN U.of Mich. Index of consumer expectation DRI 2
DHHSNT Change in U.of Mich. Index of consumer expectation (%-points) DRI 2,3
PSAVE Personal Savings Rate FRED 2
DPSAVE Change in Personal Savings Rate (%-points) FRED 2,3
DPI Percentage change in: Personal Income FRED 2,3
DPCE Percentage change in: Personal Consumption Expenditures FRED 2,3
DPCES Percentage change in: Personal Consumption Expenditures: Services FRED 2,3
DPCEND Percentage change in: Personal Consumption Expenditures: Nondurable Goods FRED 2,3
DPCEDG Percentage change in: Personal Consumption Expenditures: Durable Goods FRED 2,3
DSPI Percentage change in: Disposable Personal Income FRED 2,3

The table lists the set of regressors. From left: the abbreviation, full description, data source, and
the lags included. The total number of variables is 103. FRED refers to Federal Reserve Economic
Data, CRSP refers to Center for Research in Security Prices, and AT to Allan Timmermann, who
kindly provided me with the one month T-bill.
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Table 2: Maximal R2 and Critical Values

5% Critical Values
R2max Miner (Beta) Miner (Bootstrap) BF (Beta) Bootstrap

DEPENDENT VARIABLE: MONTHLY RETURNS (DJIA)

k = 1 0.0726 0.0083 0.0127 0.0261 0.0316
k = 2 0.0990 0.0129 0.0169 0.0635 0.0536
k = 3 0.1101 0.0169 0.0220 0.0698 0.0618

DEPENDENT VARIABLE: MONTHLY EXCESS RETURNS (DJIA)

k = 1 0.0717 0.0083 0.0126 0.0261 0.0321
k = 2 0.0957 0.0129 0.0162 0.0635 0.0512
k = 3 0.1124 0.0169 0.0181 0.0698 0.0644

The table reports the largest R2 and 5% critical values. The upper half contains the results from
the analysis of monthly returns on DJIA , and the lower half contains the results from the analysis
of excess returns (returns minus the risk-free rate). Each row lists the number of regressors, the
largest R2 found in these models, and four 5% critical values. The four critical values: Miner
(Beta) is the “single-model" critical value using the B( k2 ,

n−k−1
2 ) distribution; Miner (Bootstrap)

is the “single-model" critical value estimated with the stationary bootstrap, in the model that had the
largest R2; BF (Beta) is the Bonferroni bound critical value, based on the B( k2 ,

n−k−1
2 ) distribution;

and Bootstrap is the critical value estimated by the bootstrap implementation that take the inter-
dependence of models into account.
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Table 3: Best Set of Regressors

R2max Best Set of Regressors

DEPENDENT VARIABLE: MONTHLY RETURNS (DJIA)

k = 1 0.0726 Constant DI120_1 – –
0.6457 −4.1410 – –

k = 2 0.0990 Constant DI120_1 DMANEM_2 –
0.6796 −3.9935 −1.3304 –

k = 3 0.1101 Constant DI3_1 DI6_1 DMANEM_2
0.6668 4.9331 −7.0297 −1.2962

DEPENDENT VARIABLE: MONTHLY EXCESS RETURNS (DJIA)

k = 1 0.0717 Constant DI120_1 – –
0.1676 −4.1288 – –

k = 2 0.0957 Constant DI120_1 DMANEM_2 –
0.2001 −3.9876 −1.2734 –

k = 3 0.1124 Constant DI120_1 FFR_1 DMANEM_2
1.2681 −3.9576 −0.1605 −1.4230

The table reports regressors that led to the largest R2 for models with k = 1, 2, and 3 regressors.
The estimated coefficients are given below the names of the regressors.
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Figure 1: A kernel estimate of the bootstrap distribution of R2max, over the models with two
regressors and excess return as the dependent variable.

In-Sample prediction error of excess returns (DJIA) using the three best regressors
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Figure 2: Prediction errors of the model with the maximal R2.
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