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ABSTRACT

In this paper we develop a theory of economic growth in an urban environment.
Studying the link between agglomeration and accumulation in the same theory pro-
vides insights on some key problems in urban and growth theory. In particular, we
explain how urban structure eliminates local increasing returns to yield constant re-
turns to scale in the aggregate, which is crucial for balanced growth; and how balanced
growth implies a city size distribution that is well described by a power distribution
with coefficient one: Zipf’s Law. Under strong assumptions our theory produces
Zipf’s Law exactly. More generally, it produces the systematic deviations from Zipf’s
Law observed in the data, namely the under-representation of small cities and the
absence of very large ones. In these cases, the model identifies the standard devia-
tion of industry productivity shocks as the key element determining dispersion in the
city size distribution. We show that the variation in the size distribution of cities is
consistent with the size of the standard deviations of industry shocks observed in the
data.

*We thank Narayana Kocherlakota, Dirk Krueger, and Robert E. Lucas, Jr. for comments, and

Yannis Ioannides, Linda Dobkins and Romain Wacziarg for sharing their data. Comments welcome.
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1. INTRODUCTION

Most economic activity occurs in cities. Despite this, economists have mostly stud-
ied growth and urban. issues separately. In this paper we develop an urban growth
theory that allows us to explain several city and growth facts jointly. Studying the
link between agglomeration and accumulation in the same theory provides insights on
some key problems in both topics. In particular, we will explain how urban structure
eliminates Jocal increasing returns to yield constant returns to scale in the aggregate,
which is crucial for balanced growth; and how balanced growth implies a city size
distribution that is well described by a power distribution with coefficient one: Zipf’s
Law.

In the US at the turn of the millennium 80% of the population lived in urban
agglomerations and they carned around 85% of income. As a result, understanding
aggregate economic activity requires perforce theories of urban economic activity.
One of the key elements of such a theory is that cities emerge out of the trade-off
between agglomeration effects and congéstioné costs. Agglomeration in cities implies
urban scale effects which create a tension between increasing returns at the city level
énd constant returns at the aggregate level. In general, models with aggregate scale
effects do not exhibit the linearity necessary for balanced growth. In particular,
growth theories should explain why permanent growth is possible and why growth
rates are stable, bounded and do not depend solely on population growth.

The essence of our approach is to identify the urban structure as the margin that
leads to constant returns to scale in the economy. In equilibrium, city sizes are
determined out of the trade-off between agglomeration and congestion forces. Given
factor proportions and productivity levels, each city will then produce at an optimal
scale and industries will behave as if using a constant returns to scale technology by
varying the number of cities. In this way, introducing urban structure results in linear

aggregate production functions in a world with increasing return technologies. This

mechanism then has very strong implications for the size distribution of cities once




we Include factor accumulation and productivity shocks. In particular it delivers the
striking regularity known as Zipf’s Law of cities: The rank of city sizes is proportional
to the inverse of their size.

The ability of this mechanism to replicate the city size distribution depends upon
the way we introduce factor accumulation and productivity shocks. In particular, it’s
ability to produce Zipf’s Law is derived from it’s ability to produce Gibrat’s Law of
cities — the mean and variance of the growth rate of a city is independent of it’s size ~
which, as shown by Gabaix (11) and extended by Cordoba (5), is both necessary and
sufficient to produce an invariant distribution for city sizes that satisfies Zipf’s Law.
To fix ideas, consider first a simple economy in which the only factors of production
are labor and human capital both growing at constant rates. With constant total
factor productivity, changes in average human capital levels imply that city sizes
evolve at a constant rate. Mean zero shocks to the level of total factor productivity
will not affect mean city growth rates, but will affect the distribution of city sizes
directly, which implies that, if shocks are permanent, the growth process of cities is
scale independent. More generally, productivity shocks will affect the distribution of
city sizes both directly and through their effect on factor accumulation. The bulk of
the paper is devoted to a study of the interaction of these effects and their ability to
produce or approximate Gibrat’s Law.

In addition to establishing the remarkable robustness of Zipf’s Law as a description
of the size distribution of cities, the empirical literature has also stressed a number of
robust deviations. One of the most notable is that, relative to Zipf’s Law, small cities
are under-represented and the largest cities are not ‘large enough’. A second is that
there is some systematic variation in the dispersion of city sizes across countries. We
show that our theory, in the cases where the direct effect of shocks does not exactly
balance the indirect effect of shocks through factor accumulation, is able to produce
these systematic deviations from Zipf’s Law. In particular, the model identifies the

standard deviation of industry productivity shocks as the key element determining

dispersion in the size distribution of cities.




There are potentially many ways of introducing agglomeration forces and factor
accumulation into an urban growth model. This paper will illustrate these inter-
actions using a very particular specification for these forces, but we argue that the
insights are much more general. In our formulation, cities are the result of the trade-
off between production externalities and commuting costs, while growth can be either
endogenous as a result of linear human capital accumulation, or the exogenous result
of technological change. Adding industry productivity shocks to this specification will
then result in a distribution of city sizes where all cities in one industry will have the
same size.

This paper draws from four related literatures. The first is the extensive literature
on growth, and in particular the large number of papers on endogenous growth that
were spawned by the contributions of Lucas (18) and Romer (19). In this literature,
as emphasized by Jones (16), the treatment of scale effects is crucial, as it is the
imposition of linearity in the aggregate production technology that is necessary for
the existence of balanced growth. Where our paper differs is in it’s utilization of the
urban structure as the vehicle for obtaining this linearity.

A second related literature is the small number of papers on urban growth. The
two main papers in this group are Black and Henderson (4) and Eaton and Eckstein
(8), who both present deterministic urban growth models with two types of cities
in which, along the balanced growth path, both cities grow at the same rate. Qur
paper is most closely related to the contribution of Black and Henderson (4) whom we
follow in using the formulation of Henderson (13) as a vehicle for introducing cities.
Unlike both of these papers, we focus on a stochastic environment and introduce a
~ rich industrial structure which allows us to characterize the evolution of the entire size
distribution of cities over time. In addition, both of these papers obtain the linearity
of the aggregate production process by assuming knife-edge conditions on production
parameters.

Following the original paper of Auerbach (3), a substantial literature has arisen

that investigates the empirical foundations of Zipf’s Law. Rosen and Resnick (20)




documented this regularity in the 1980’s for a wide range of countries, while Soo
(21) has updated this study using modern data and more sophisticated econometric
techniques. One of the key findings of this literature is the robustness of this phenom-
enon both over time ahd across countries. As illustrated in Figure One for the United
States, Zipf’s Law appears to be as good a description of the size distribution of cities

at the turn of the Twenty-First century as it was at the turn of the Twentieth.

log population

Figure One

This visual impression for United States data has been verified in the careful sta-
tistical work of Dobkins and Ioannides (6) and Ioannides and Overman (15). As
illustrated in Figures Two A and B, Zipf’s Law also appears to be a good descrip-
tion of the size distribution of cities across a broad range of countries today. The
description is not perfect. Some countries have a size distribution that is more or

less even than that predicted by Zipf’s Law which is reflected in flatter or steeper

plots of log-rank against log-size. There is also a broad tendency for the relationship




to be slightly concave, at least once one controls for a country’s capital city. These

deviations from Zipf’s Law are precisely the ones emphasized in the discussion above.
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Finally, this paper is related to a number of proposed explanations of Zipf’s Law.
These papers can be distinguished by the emphasis given to the process leading to the
formation of cities as opposed to process determining the growth of cities. Gabaix (11)
provided a proof that Gibrat’s Law is sufficient to generate an invariant distribution
for city sizes that satisfies Zipf’s Law. This result was later extended by Cordoba (5)
who proved that Gibrat’s Law is both necessary and sufficient. Both papers provide
economic models that generate city growth that satisfies Gibrat’s Law: in Gabaix
((11) and (12)), cities grow as labor migrates in response to city amenity shocks,
while in Cordoba (5) labor is allocated across cities in response to a power distribution
of taste shocks. Neither paper generates the existence of cities endogenously. In a
recent study, Duranton (7) presents a quality ladder model of growth in which, under

very particular assumptions on the location and mobility of new firms, is capable
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of producing a size distribution of cities that is close to a power distribution. By
contrast, in our paper, cities arise endogenously out of the growth process in a way
that both eliminates scale effects in growth and also approximates Gibrat’s Law of
city growth.

The rest of the paper is organized as follows. The next section presents the model.
Section 3 derives the main results of the paper, namely, the results on growth, Zipf’s
Law and deviations from Zipf’s Law. Section 4 illustrates the results of the model
numerically and compares them to data on several countries. Section 5 concludes.
An appendix presents the decentralization of the allocation presented in the text, and

also contains the proofs of all propositions in the paper.

2. AN URBAN GROWTH MODEL

We present a growth model with the following elements. Production occurs at spe-
cific locations that we call cities. Firms set up in a city, hiring capital and employing
workers. Agglomeration results from a positive production externality on labor and
human capital. Agents reside in cities and commute to work. Households are made
up of workers who consume, accumulate physical capital to be used in each industry,
and devote their time to working, and learning so as to accumulate industry spe-
cific human capital. We assume log-linear preferences and Cobb-Douglas production
functions so that both the growth path and the city size distribution can be solved

in closed form.

Cities

Our approach to modeling cities follows the classic paper of Henderson (13) and

has been used in the urban growth model of Black and Henderson (4). We consider a

world in which there are a large number of potential city sites. Cities are monocentric,




with all production occurring at the single exogenously given central business district
(CBD). It is assumed that every agent that works at the CBD must reside in the area
surrounding the city. Locations closer to the CBD are more desirable because they
involve a shorter commute to work. Specifically, we assume that the cost of commuting
is linear in the distance travélled, and let 7 be the cost per mile of commuting in terms
of the output of the city, which is the numeraire commodity.

All agents consume the services of one unit of land per period. In order for agents
to be indifferent about where to live in the city, rents differ by the amount of the
commuting cost, with rents on the city edge equal to zero. Therefore, in a city of

radius %, rents at a distance u from the center must be given by
Ruy=71(G—u).

Hence, total rents in a city of radius @ are given by

TR = /27ruR(u)du
0

= 27r/ ut (4 — u) du
0

= g
3
Since everyone in the city lives in one unit of land, a city of population n has a

radius of

~ (n)%

U= {—

™

and so

- 5 )
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where b-= 27~27/3. Total commuting costs are given by

TCC = / 2ruTudu
0




with each resident of the city paying a total of
3b 1

7

in terms of rents and commuting costs.
Firms

Production occurs in firms that face constant returns to scale technology. The
production of a representative firm in industry j located in an arbitrary city at any

point in time ¢, has the Cobb-Douglas form:
5 1B,
Atj kzi&j7 ltj ’ ’

where fitj is the total factor productivity of an urban firm (given that good j is
produced in that city), k;; is the amount of industry j specific capital used by that

firm, and [;; the amount of labor services hired. Labor services are produced using

%3 (1-2;-8;)
(1—51‘) 1-4;
lij = hy; (ugym;) 7o,

where h; is the amount of human capital, and n,; the number of workers employed in

the following technology

a firm, each of whom spends a fraction uy; of their time at work. Labor services are
constant returns to scale in the number of agents and total units of human capital.
There is a local externality in the labour input, so that the productivity of any firm
in the city depends upon the number of workers in a city, and the amount of human
capital they have
Ay = AyHF N,
where A;; is an industry specific productivity shock, I;th, and th, represent the total

stock of human capital and the total amount of labor in the city. This is the force

causing agglomeration iun the model. Firms are assumed to be small, taking the size
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of the externality as given. The industry specific productivity shock is Markov and
distributed according to a density function with finite moments. We assume that the
process is finite order Markov.

We need to impose an additional restriction on the technology. The original set of
J industries, has to allow & partition, with at least two elements of J in each com-
ponent of the partition, where all elements in a component have the same technology
parameters. That is, each industry has to have at least two varieties (counted in
J) that are produced with exactly the same technology, but may be produced with
different amounts of human and physical capital, and receive different shocks. In
line with much of the literature, we see this as a natural way of organizing the set
of products observed in the economy. Some products are distinguished because they
are produced with fundamentally different technologies, while others embody differ-
ent designs or fulfill different purposes. This restriction limits the amount of ex-ante
industry heterogeneity necessary for the growth process of cities to satisfy Gibrat’s

Law.
Households

We consider a world populated by a unit measure of identical small households.
The initial number of people per household is Ny, and we assume that the population
of each household grows exogenously at rate gy. Each household starts with the same
strictly positive endowments of industry j specific physical (Kjo) and human (Hjo)
capital.

Households order preferences over stochastic sequences of the consumption good

according to

(1 - 8)E

i&*Nt (iejlnctj/]\ft)} ,

t=0 =1
where ¢ is a discount factor that lies strictly between zero and 1/ (1 + gn), and Cy;

denotes a sequence of state contingent consumption of each good j. Here E; is an
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expectation operator conditional on all information available to the household at
time zero.
Capital services in industry j are proportional to the stock of industry j-specific

_ capital which is accumulated according to the log-linear equation
. 1_w -
Kt+1j - K;:'th J.

Here investment in industry j, X, is assumed to be denominated in terms of that
industry’s consumption good.

Each member of the household is endowed with one unit of time in each period,
which can be devoted to either the accumulation of human capital or the provision
of labor services in each of the j industries. In order to work in industry j, a member
of the household must be physically present (at the start of the period) at a location
that produces good j. Hence we can think of the household distributing N; of it’s

members to each industry j according to

D Ny <M,
J .

in each period.

Workers spend time producing new human capital according to
Ht+1j = Htj [B? + (1 - ’LLtJ)BJl] f

where B? and B} are positive constants. This specification allows us to nest both
endogenous and exogenous growth within the same framework. If B} = 0, then human
capital evolves exogenously at a constant rate B? and we have an exogenous growth
model. If B} is positive, then the time allocation of a worker affects the growth rate
of the economy, which results in an endogenous growth model. The assumption of
linearity is made for simplicity, but is not necessary to generate balanced growth in
this model since, as we will show below, the economy exhibits constant returns to

scale in the aggregate.
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Efficient allocations

All Pareto efficient allocations are the solution of the following Social Planm'ng
Problem: Choose state contingent sequences {Ct], Xtjy Nij, Poejs Uty Ky, Hy } 1—0,j=1 50
as to maximize

(L-0)Ey

iat N, (ZJ: 6 In cﬁ/Nt)] )

=0 i=1
subject to, for all ¢ and j,

OtJ +XtJ —+—bNtJ/,LtJ < AtJKﬂJHjJ+'YJN1 aJ_ﬁJ+EJu1 (<71 EJ,u‘th (2)

tj

J J
Ny = ;th = z;ﬂthtj, 3)
j= i=

K, ,LLth-{tj, (4)

Hi; utjf{tj, (5)

Ky = K“"X vl (6)
Hypij = Hy; [BY + (1 —wy)B)) . (7)

The first constraint states that consumption plus investment plus commuting costs
has to be less than or equal to production in all cities in the industry, where u,;
denotes the number of cities in industry j at time ¢.

The problem of choosing the optimal sizes of cities is a static problem: The planner
sets the city size to maximize output net of commuting costs. We solve this problem
first and then, imposing the solution, we solve for the dynamics. Towards this, we
can rewrite the resource constraint in an industry j at time ¢ as a function of industry

wide variables and the number of cities in an industry. Namely,

Ciy + Xoy + ONApZ? < AgKHE N itesy eahs mn=es oy
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The first order condition with respect to #y; (which we show in the appendix is

‘necessary and sufficient) is given by
b (Ny\1 Y,
tj tj
—_ —_— = {7, —{- Eq) —=_
2 (.“tj) ( ? J) Hi;
To interpret this equation, rewrite the first order condition as
b [Ny \~ Y:i/Nys
b (,ﬂ) = (v, +&5) Ny, (®)
2\ g Nij/ Hj

That is, the planner increases the number of people in the city until the change in

(S0

commuting costs per person for current residents (left hand side) is equal to the
change in earnings per person for current residents (right hand side).

Now consider the effect of an increase in productivity. Everything else equal, output
per worker increases and the planner finds it optimal to attract more workers to the
city. If the productivity increase is permanent, the city will be permanently larger.
The growth model presented above will be, in essence, a mechanism for producing
permanent increases in the average product of labor in a city, while at the same time
remaining consistent with the aggregate growth facts.

It is important that, in response to a productivity shock, average commuting costs
do not rise by exactly the same amount as the average product of labor; if they does,
the planner would find it optimal not to change the city’s size. If commuting costs
were to rise by less, or even more, than the average product of labor, the basic result
that productivity shocks are translated into fluctuations in city size will remain. In
the model below we ensure that this is the case by denominating commuting costs
within a city in terms of the output of that city. Other assumptions would work as
well. However, one combination of assumptions that does not work is if commuting
costs are denominated in units of time while at the same time workers supply labor
inelastically and the production function is Cobb-Douglas. The reason is that, with
Cobb-Douglas production, marginal and average products are proportional and hence
commuting costs measured as foregone wages will rise at exactly the same rate as the

average product of labor.
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Rearranging the first order condition we also find that the optimal number of cities

is given, as a function of output and employment in industry j, by

-2
Hij = "2‘93:—8])%] Nij, ()
and so total commuting costs are
TCCy =2 (v, +¢€;) Yy : (10)
Notice that we need to impose
V& < %,

since otherwise total commuting costs would be larger thah total output in the indus-
try. To interpret this restriction write industry output minus total commuting cost
as ' '

Ay ng H;j +v; Ntlj_aj —Bj+e; u:j—ﬂ:i —h; /_Lt—j’Yj &y Nt_% /‘Lt_j%’
and notice that if the above condition is not satisfied, as the number of cities decreases,
given industry aggregates, the value of the expression increases unboundedly. This
implies that the above problem has no internal solution: The planner would like to
make cities as large as possible.

Substituting the results for the optimal number of cities and total commuting costs

in the resource constraint yields

' ST TR, [ S g ~
Cis + Xy < FAGHI KN, 5Pl = ¥ (11)
where -
2 ‘Y_.,'+Ej
2 '}"‘f‘E 1-2 '7.7'+‘:ii
Fj:(l_z(fyj_,.gj)) %:l ,
and
X a; +7;
b = —————,
1-2(y;+¢g5)
A 3.
B, —
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and
~ l—a; 4

—_ 2

T2, r e
Since u;; < 1, output net of commuting costs for the optimal city structure (}Aftj) is
constant returns to scale in industry aggregates.

The constraint in (11) contains the first main result of our paper: introducing the
margin of the creation of new cities eliminates increasing returns at the urban level
from the aggregate problem. This has implications for the way in which we view
the growth process. First, it allows us to reconcile the coexistence of cities, which in
turn imply the existence of scale economies, with balanced growth. Second, it shows
that it is inappropriate to test for the existence of increasing returns with aggregate
data even though increasing returns are in fact present in the production technology.
Third, differences in the way production is organized in cities will determine the level
of aggregate productivity (the magnitude of F; in equation 11). This suggests the
possibility that differences in the pattern of urbanization are the source of differences
in total factor productivity across countries'. In our theory, these sort of differences in
productivity can be distinguished from technology levels through the fact that there
is likely to be more time variation in the latter.

After substituting for the optimal number of cities, the result is a standard dynamic
problem with constant returns to scale production technology. In particular, our
problem becomes one of choosing {Cy;, Xtj, Nyj, zj, Kij, Htj};iﬁ,,f_q S0 as to maximize

(1) subject to (11), (3), (6), and (7). The value function of the planner has the form

J
V({Hy, Kyj, Ais}y) = Do+ Y [DF In(Hy) + DF In(Ky;) + D In (Ay)]
j=1
which is the result of the particular log linear specification we have assumed. We
could setup a more general model, however, the merit of the log-linear specification
is that we can solve the model analytically. The details of the solution, together with

expressions for the parameters of the value function, are contained in the appendix.

IHenderson (1) examines this possibility for the particular case of China.
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Three basic results are immediate. The share of population working in each industry

is constant and given by
(1-4 - B;) (6DF (1 —wp) + (1 - 6)6;)
>/, [(1 — G~ Bj) (6DX (1 —wy) + (1 - a)ej)]

Investment is a constant share of output net of commuting costs

th -

DK (1 — w; N .
i 3) -V = 2;Yy,

th - 5DJK (1 — UJJ‘) -+ (1 - 5)9]

and the fraction of time used for production is constant,

¢; (B + BY) [6DE (1 —w;) + (1 — 6)8;]
? SDYB!+ $,B! [6DX (1 —w,) + (1-6)6,]

t_

The original problem is not a convex dynamic optimization problem. However,
since the city size problem is static, we can solve it separately and, as discussed in
the text, transform the problem into a convex dynamic optimization problem. This

argument, when formalized, leads to the following proposition.

Proposition 1 There erists a unique Pareto efficient allocation for this economy.

We have shown how, by solving the urban problem separately, we can convert a
problem with local increasing returns to scale into a problem with aggregate constant
returns to scale. This was possible because the planner internalizes the externality
and therefore the Pareto optimum implies efficient city sizes. In order to explain the
observed city size distributions it is necessary to consider also competitive equilibrium
allocations. We now proceed to introduce a competitive equilibriuin framework for
which the unique equilibrium allocation attains the optimum. As is standard in
the previous literature, we use city developers that internalize the urban production
externality. The rest of the decentralization is standard and we relegate the details

to the appendix.
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We follow Henderson (13) and postulate the existence of a class of competitive
property developers that own each potential city site and compete to attract workers
and firms. Consider the problem of a property developer that aims to maximize the
total rent from their land. In order to attract workers to the city, developers may pay
each resident a transfer T". Agents derive utility out of consumption of goods that
are costlessly tradable and so they will live in the city if their income after rents,
commuting costs, and transfers is larger than what they could obtain elsewhere, say

I. Hence the problem of the developer is given by

subject to

where y (n) is the income earned by a worker in the city, which the property developer
knows is a function of the number of workers in the city n.

After some rearranging the first order condition becomes
TCC’_E_I_ d(y-n) 0TCC

T —
y+ n n on an

This equation has a very intuitive interpretation: the developer increases the size of
the city n until the benefit, in terms of extra income generated by the city net of
transport costs, equals the cost in terms of the income I that must be paid to attract
the agent to the city. _

Now assume that competition from other developers ensures that profits are zero, or
T = (b/2) n'/? = TR/n, and that [ is determined as the result of similar competition
across industries. This will, in general, mean that we must allow the possibility of a
non-integer number of cities, all of which will be identical in size within an industry.

Substituting this into the above first order condition gives

8y  9(%°)
on~  on

Note that this condition is identical to the condition for the optimal size of cities

arising from the social planner’s problem (8). Since both conditions are the same,
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this implies that the developer is fully internalizing the external effect and therefore
the equilibrium allocation will be efficient. We present the analogues of both Welfare

theorems in the next two propositions.

Proposition 2 There exists a recursive competitive equilibrium that attains the Pareto

efficient allocation.

Proposition 3 Every recursive competitive equilibrium in this economy is Pareto
efficient.

3. ANALYTICAL RESULTS

With these results in hand, we are free to make use of the solution to the social
planning problem in order to characterize the recursive competitive equilibrium of
the model. As shown in the appendix, under our functional form assumptions, we are
able to solve for the entire equilibrium growth path and size distribution of cities in
closed form. A couple of general points are worth making. First, although the main
reason for our functional form assumptions is tractability, they have some additional
expository merit: the assumptions imply that the labor allocation across industries is
fixed independently of productivity shocks. This means that our ability to match the
size distribution of cities is being driven solely by forces operating at the city level.
It also means that if we were to relax this assumption, and calibrated the model to
match the size distribution of industries (which, although not obeying a rank size
rule, is at least closer to it than produced by our model) we should get a city size
distribution even closer to Zipf’s Law.

Second, the model is capable of producing grthh, either exogenously or endoge-

nously. More importantly, the model delivers two properties not present in most
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other urban growth models: a balanced growth path exists, and growth is positive
even in the absence of population growth. On the balanced growth path (with no
uncertainty) we know that the growth rates of capital (gx;), human capital (gg;) and

output net of commuting costs (gy,j ) are constant so

gKt+1j = In Kt+1j —1In Ktj = —(1 - (.J.)j) In Ktj + (1 - {.A.)J) In th

Hence, on the balanced growth path In f/tj — In K, is constant. That is

For human capital,
gm; = B;-’ +(1- u;)BJ1

|
For income, when /3 ;< 1, | ' 1
\

Gy = ¥ —InYy
1 ) R
= - Bj [[lnAtHj — In Ay;] + G595, + (1 -G - Ej) chj] ,

so in the balanced growth path? (with no uncertainty),

&;gm; + (1 — 0y — ﬂj) 9n;
9, = - :
¥

Third, the distribution of city sizes is determined by a static prdcess each period.

All cities of a given type are the same size, which is given by

2
Ny _ [2(e+73) Y
Hij b Nij

From this equation it is easy to see that anything that increases the level of the

average product of labor will increase the average size of the city. Indeed, it is the

2For the case when ,Zij =1, gvy = gx =0, and w = 0 (the AK model), I, = Inz;+1In(F;A).
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effect of shocks on the average product of labor, both contemporaneously and in the
future, that determines the growth process of a city.
Given the evolution of output in each industry we can study the evolution of the

size distribution of cities. In particular, the growth rate of a city in industry j is given
by -

In (&il—f) Cn (%—) = 20l (Auy) — 10 (4g)] 2 (& + B;) [n(Mes) — In(o)]

Hiy1y Hj
+26;1n (B} + (1 — u})B}) + 2B; [In (Ki1;) — In (K] -

Recursively substituting for capital growth, we get an expression for the long run

growth rate of cities:

In (Nt+1j) —In (&)
Hey1y He
2, - ‘
= 7 Jﬁ (9525 — gn] + 2 In (Arya5) — In (Ayy)]
T

2=, i) - 3 i (w(]: il(:f:‘j f;) )

Both the aggregate labour growth rate and human capital growth rate are constants,

=1 In(Ar—y;) | - (12)

with the only stochastic part of the growth expression coming from productivity
shocks today, and the effects of past shocks on capital accumulation. Note that,
as the economy grows, and more human capital is accumulated, the size of cities
may increase or decrease indefinitely. This may result in the number of cities in the
economy going to zero or infinity. Human capital accumulation implies that cities
become bigger, while population growth implies that cities become smaller (since per
capita human and physical capital decreases). The condition that guarantees that

the number of cities is constant over time (without uncertainty) is given by

oo 28
N 1—BJ+2&J9HJ’




which implies that population grows slower than human capital.

Equation (12) is the key equation of our model. From this equation we can deduce
conditions under which we can guarantee Gibrat’s Law for city growth for each group
of cities defined by our partition of industries. That is, conditions under which the
expected long run growth rate and variance do not depend on any past information,
and hence are independent of city size distributions in previous periods. That Gibrat’s
Law implies Zipf’s Law follows from the results in Gabaix ((11) and (12)), later
extended by Cordoba (5).

The first set of conditions amount to eliminating physical capital from the model.
Without physical capital, productivity shocks are not propagated via capital stocks.
This implies that if the growth rate of productivity shocks is time independent (shocks
are permanent), the growth rate of cities will be time independent as well. Physical
capital is eliminated if either it can not be accumulated (w; = 1 for all j) or is not
an input in production ([3 ;= 0 for all j). Under either of these conditions we obtain

that the mean long run growth rate is given by

N . .
E, [ln ( m”) —In (&H = 2&; (g — 9N,
iy e

and the long run variance by

v [m (5‘—’—) i (N—)] — 4Vi{1n (Aus) — In (Ay)),

Htyij Hig

both of which are obviously scale independent.

The second set of conditions amount to transforming the model into an AKX model
with no human capital and 100% depreciation. In this context, both last period output
and capital react linearly to last period shocks. These two effects cancel out and so
the only remaining source of uncertainty is the contemporaneous productivity shock.
If on top of this we assume that industry shocks are transitory, we obtain Gibrat’s
Law. The next proposition formalizes these arguments, all proofs are relegated to the

appendix.

21




Proposition 4 (Ezact Zipf’s Law) The invariant distribution for city sizes satisfies

Zipf’s Law if and only if one of the following two conditions is satisfied:

1. (No physical capital) There is no physical capital (ﬁj = [3]. =0 orw; = 1) and

productivity shocks are permanent;

2. (AK model) City production is linear in physical capital and there is no human
capital (&j =0, BJ- = 1) , depreciation is 100% (w; = 0), and productivity shocks

are temporary.

The intuition for the above result is straightforward. In order to generate Zipf’s
Law as an invariant distribution, we need the growth processes at the city level to
be independent of scale. As labor is perfectly mobile across cities and industries, this
in turn requires that the marginal product of labor be independent of scale. The
proposition outlines two scenarios in which this is exactly the case: the first is one
in which current productivity shocks are the only stochastic force in growth and are
permanent, thus producing permanent increases in the level of the marginal product
of labor, so that the growth rate of the marginal product is independent of scale. This
result is invariant to whether the engine of growth is endogenous or exogenous. The
second case is one in which productivity shocks are temporary, but have a permanent
effect on the marginal product of labor through the accumulation of physical capital
in a linear production setting?.

Obviously, the conditions outlined in Proposition 4 are restrictive. Reality surely
lies between these two extremes: capital is a factor of production, but not the only one.
The question that arises is: Between these two. extremes, how close are the predictions
of the model to observed urban structures? As mentioned in the introduction, an
extensive empirical literature (surveyed in Gabaix and Toannides (10)) has uncovered

two systematic departures from Zipf’s Law. First, plots of log-rank against log-size

INote that if we were to allow infinite order Markov processes for A;, we could fine tune the

specification of the process so as to yield Zipf’s Law exactly for any parameter set.
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are concave, reflecting the fact that small cities are under-represented and that big
cities are not ‘big enough.” Second, there is some variation in cross country estimates
of Zipf coefficients, with this variation positively correlated with per capita income:
richer countries have a more even city size distribution (Soo (21)).

In the next two Propositions we argue that, in general, the model produces these
same deviations from Zipf’s Law. First we show that if a city is relatively large,
defined as having experienced a history of productivity shocks above average, it can
be expected to grow slower than average in the future, while the opposite is true of
small cities. To understand this, we can use the expression for the long run growth
rates of cities (12) to show how éapital investments affect the urban size distribution.
Suppose that an industry has experienced very high shocks in the past. This implies
that output in that industry will be relatively high, and, since investment is a fraction
of output, investment in industry specific physical capital has been high. This is

expressed in equation (12) by a large value of the term
i (Wj +(1 _wj)Bj)
s=1 (1 — (U.)j + (1 - (..L)j) ,BJ))

Since this term reduces the growth rate of cities, it implies that large cities will grow

-] ln(At_sj).

at a relatively lower rate than small cities (cities that have experience low shocks and
so have invested little in capital). Intuitively, since B < 1, diminishing returns to
capital imply that industries with high capital stocks have a lower return to capital
than industries with low capital stocks, and so industries with relatively low stocks of
physical capital grow faster. Tﬁis effect is emphasized by the fact that when w; > 0
for all j, in order to keep physical capital constant, industry investments have to be
higher in industries with large capital stocks, and lower in industries with low capital
stocks. Since city growth is proportional to industry output growth, this implies that
small cities grow faster than large cities. Namely, urban growth rates exhibit reversion
to the mean. The result is thaﬁ the log rank-size relationship will in general (apart

from particular realizations of the shocks) be concave. That is, relative to a linear
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relationship there are not enough small cities and large cities are not large enough.

Proposition 5 (Concavity) If conditions 1 and 2 in Proposition 4 are not satisfied,

the growth rate for cities echibits reversion to the mean.

Unless the conditions of Proposition 4 are satisfied, variation in the standard devi-
ation of productivity shocks will affect the distribution of city sizes. Intuitively, given
capital stocks, a larger standard deviation of shocks implies a larger standard devia-
tion of city sizes and a larger standard deviation of investments, which in turn implies
a more dispersed distribution of capital stocks. This would explain the positive cor-
relation between Zipf’s coefficients and income 4f high income countries experience

less volatile shocks. We formalize this intuition in the following proposition.

Proposition 6 If conditions 1 and 2 in Proposition 4 are not satisfied, the standard

deviation of city sizes increases with the standard deviation of industry shocks

Proposition 6 points to the standard deviation of productivity shocks as the key
parameter linking our model with the observed urban structure. In the next section we
explore if international evidence of Zipf’s coeffiecients is consistent with the evidence

on the volatility of industry productivity shocks.

4. NUMERICAL EXERCISES

This section is devoted to illustrating the solution presented in the previous section.
Summarizing, we obtain Zipf’s Law exactly if we either eliminate capital or make
capital accumulation linear; in all other cases the log rank-size relationship is concave
and the slope is positively related to the variance of industry shocks. All the results

we presented are asymptotic and the long run distribution is stochastic. This is
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illustrated in Figure Three, where we simulate the model for 100 identical industries
for the case of w; =1 all j = 1,..., J and permanent shocks (Case 1 of Proposition 4).
Along a given sample path, Zipf’s Law hold exactly apart from stochastic deviations.

The next step is to illustrate the deviations of Zipf’s Law obtained in our model
when we move away from the assumptions in Proposition 4. Figure Four presents
US data in 2002 for MSA’s, together with a numerical simulation of the model with
transitory shocks. We let the model run for 10000 periods so that the distribution of

city sizes is not changing significantly through time.

ZlpPs Law (omega = 1, permanent shocks)

Infrank)
W

e

In(clty size), normalized

Figure Three
As one can see in Figure Four, the model does very well, arguably better than Zipf’s

Law, in matching the US data. In particular, and as expected given Proposition 5,
the curve is slightly concave as in the data. That is, large cities are too small and
there are not enough small cities. Both simulations above have been computed for a

particular set of parameter values. Namely,

a=pB=¢ B vy=¢ w ) T gN m sd
1/3. 0.2 0.01 9 .95 10 1.02 0 0.5
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where m and sd are the mean and standard deviation of the normal distribution from

which the logarithm of the transitory shocks are drawn.

Zipfs Law, US and Model
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Figure Four

The empirical evidence has found that Zipf’s Law fits the data well across countries
and time. .Therefore, particular calibrations of the model to fit distributions for one
country at a point in time is just a statement that the model has enough degrees of
freedom to match the data. Instead, we want to focus on the robustness of the model’s
predictions to variations in the underlying key parameters. Proposition 6 tells us that
one key parameter is the standard deviation of industry shocks. However, the model
seems to be robust (not invariant) to all other parameters values. This justifies our
focus on the standard deviations: the model has identify this parameter as the main
source of variation in Zipf’s Law coefficients. We illustrate the urban distributions
resulting from different assumptions on the standard deviation of temporary shocks
in Figure Five.

The figure starts with a standard deviation of 0.5, that implies a Zipf’s coefficient

close to 1. If we increase sd to 0.9 the absolute value of the slope of the curve decreases.
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That is, cities become less equal. The opposite happens if we reduce sd substantially,
say to 0.1, cities become more similar. Soo (2002) finds that the coefficients in absolute
value tend to be smaller (more unequal distribution of cities) in Africa, South America
and Asia than in Europe, North America and Oceania. Since most of the developed
economies are In the last group of continents, and presumably these are the countries
that experience less volatility of income (that is, smaller industry shocks), we view

the response of the model to changes in sd as identifying the source of the differences

observed in the data.
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Figure Six

As we have mentioned, we can use permanent, instead of transitory, shocks in
the model. This implies that in order to have city size distributions for which the
coefficient of the Pareto distribution are close to one, we are constrained to use much
lower standard deviations of shocks. Figure Six illustrates the effect of changes in the
standard deviation of permanent shocks for sd = 0.006,0.02 and 0.07.

International evidence on urban structures implies bounds on observed Zipf’s Law

coefficients. These bounds, in turn, imply bounds on admissible industry productivity
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In{rank}

shocks. In the rest of this section we compare available evidence on this relationship.
Towards this, we first select two countries that exhibit city size distributions that
are either extremely concentrated or extremely dispersed. The rank size relationship
in Belgium is very steep with a Zipf’s coefficient of 1.59. The standard deviation of
transitory shocks that yields a city size distribution consistent with the Belgian data

is 0.3. The data and the simulation are presented in Figure Seven.
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Figure Seven Figure Eight

We perform the same exercise for a country that exhibits a véry flat rank size
relationship. Saudi Arabia’s cities are very distinct in terms of population sizes, with
a Zipf’s coeflicient of 0.78. Figure Eight shows the simulation and Saudi Arabia’s
data?. The standard deviation used in the numerical simulation is sd = 0.7.

These two extreme cases give us a range of standard deviations that would imply

4There are a few countries that exhibit Zipf’s coefficients that are higher or lower than Belgium
and Saudi Arabia. The reason we do not use them is that typically they have only very few cities.
For example, Guatemala, with 13 cities, has a Zipf’s coeficient of 0.728, while Kuwait, with 28 cities,
has a Zipf’s coefficent of 1.720. Using these countries would only improve the performance of the

model in the comparisons that follow.
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city size distributions consistent with what we observe in the data. The next ques-
tion is whether this range is in line with measures of productivity shocks by industry.
The model gives us a method to map observed Zipf’s coefficients into standard de-
viations of productivity shocks, given industry heterogeneity. As we have done so
far, we want to gauge the performance of the model without relying on particular
forms of industry heterogeneity that would help our theory, but obscure the main
mechanisms in play. Hence, we assume identical industries and solve for the standard
deviation that produces Zipf’s coeflicients consistent with the ones in the data. This
will produce bounds on standard deviations that we will then compare with evidence
on productivity shocks in the data. Horvath (14) measures the standard deviation
and persistence of industry shocks in the US for 36 industries®.

It is important to stress that this comparison puts a heavy burden on our theory. To
illustrate this, consider a situation where all of the standard deviations of productivity
shocks were inside the intervals implied by the range of Zipf’s coefficients. That
would mean that if a country were to have industries that face only the least variable
productivity shocks, it would still exhibit a Zipf’s coefficient within the range of
international evidence. However, we know that all countries produce in a variety of
industries that face shocks that differ in their standard deviations. Therefore, we
know that it is impossible for all industry’s volatilities to be inside the implied range.
Conversely, if none of the standard deviations are inside the implied range it would
be evidence against our theory.

Table One presents these estimates and the percentage of industries in Horvath’s
study that lie inside the interval of standard deviations implied by the international
city size data. Perhaps surprisingly, given the nature of the exercise, fully half of the

industries have standard deviations that lie within these bounds®.

5As the US is the world’s largest economy, we will take this data to represent the universe of
possible productivity shock processes. In order to compare Horvath’s estimates with our range of
standard deviations we first need to map the standard deviations of persistent shocks into standard

deviations of transitory shocks.
6The estimates in the table were computed using city data from 73 countries. Data of ag-
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Table One
Distribution of Zipf’s
Min Max
coeflicients
[Min, Maz] 0.7287  1.7190
[10%, 90%)] 0.8590 1.3820
[20%, 80%) 0.9207 1.2704
Implied bounds on the % of Horvath’s industries
Min Max
sd of industry shocks inside the sd range
[Min, Maz] 0.3080 0.7300 50
[10%, 90%)] 0.3850 0.6200 25
[20%, 80%) 0.4200 0.5730 19

Similarly, we can use the evidence on the standard deviations of industry shocks
to construct bounds on Zipf’s coefficients. In contrast with the previous exercise,
the fact that countries have diversified industrial structures implies that this exercise
will produce only loose bounds on the range of Zipf’s coefficients that we should
observe in the data. Not surprisingly, as shown in Table Two, the Zipf’s coefficient of
every country in our dataset is inside the interval implied by the industry data. This
remains true even if we focus only on those industries at the center of the distribution
of standard deviations.

Reality surely lies between the bounds implied by these two exercises. This allows
us to conclude that the theory is performing well for most industries and countries. It
is also clear that in order to derive tighter bounds we would need to take a stand on
industry heterogeneity. This would require disaggregated data on industrial structure

for a wide set of countries. To the best of our knowledge, this data is not available

glomerations is only available for 26 mostly developed economies. Using agglomeration data the

corresponding number is 33%.
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beyond a small sample of developed economies, and so we leave this empirical exercise

for future research.

Table Two
Distribution of sd of
Min Maz
industry shocks in the US
[Min, Maa] 0.0844  3.6816
[10%, 90%)] 0.1423 1.1727
(20%, 80%] 0.2421 0.6936
Implied bounds on % of countries inside the
Min Max
Zipf’s coefficients Zipf’s coefficient range
[Min, Maxz] 0.1444 6.2389 100
(10%, 90%] 0.4535 3.6862 100
[20%, 80%] 0.7675 2.1933 97

5. CONCLUSIONS

We have presented an urban growth theory in which cities arise endogenously out of
a trade-off between agglomeration forces and congestion costs. Our theory is capable
of reproducing several basic growth and urban facts. The urban structure itself, and
in particular the margin of introducing new cities, leads to a reconciliation between
the increasing returns at the local level which are necessary for agglomeration, and
constant returns at the aggregate level that are necessary for balanced growth. This
has two additional implications for growth theory. First, tests for the presence of
increasing returns should be conducted at the urban, and not the aggregate, level.
Second, differences in the urban organization of economic activity may explain some

part of the observed differences in total factor productivity across countries.
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We find that the organization of economic activity in cities combined with produc-
tivity shocks and factor accumulation produces strong implications for the size distri-
bution of cities. In particular, under special assumptions, the model predicts an exact
version of Zipf’s Law, while more generally the model can be used to explain some of
the robusf empirical deviations from Zipf’s Law, including the under-representation
of small cities and the fact that the largest cities are not large enough.

One of the features of the model is that it was especially tractable as a result of spe-

cial functional form assumptions. We were able to solve for the entire growth path of

the economy, and the entire urban structure, in closed form. A potentially important
extension of this paper is to check the rdbustness of our results to different specifi-
cations of the economy. For example, at the moment the assumption of logarithmic
preferences implies that the labor allocation across industries is fixed, and in all of
the experiments conducted in the paper we have assumed that this is equal across
industries. However, in the data, the size distribution of industry employment levels
is already much closer to Zipf’s Law. What are the assumptions on preferences that
would yield a distribution of industry sizes closer to the one observed in the data?
Other extensions include using different types of agglomeration effects, combining
productivity shocks with taste shocks, or adding amenities and non-traded goods or
services to cities (for example as in Gabaix (11) and Cordoba (5)).

An extension that deserves special consideration is to allow for different specifica-
tions of land ownership and city formation. The current specification, which follows
the contributions of Henderson (13) and Black and Henderson (4) implies that re-
sources are allocated efficiently across cities. The basic results will continue to hold
in an environment with sub-optimal cities as long as the deviation from optimality is
roughly proportional: industries will still act as though they face constant returns to
scale, expanding the number of cities at a sub-optimal size. Moreover, as long as the
equilibrium city size responds to variation in factor proportions, the same mechanisms
will lead to a tendency towards Gibrat’s Law of city growth.

One of the advantages of the simple specification we adopted above is that it allowed
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us to identify analytically the standard deviation of industry productivity shocks as
the crucial factor influencing the ability of the mechanism to match features of the
data. An empirical analysis of this parameter, and how it differs across countries, is
certain to be an important part of any systematic empirical evaluation of our theory.

Finally, it is worth pointing out that Zipf’s Law is also a strikingly good description
of the size distribution of firms (see Axtell (2)). As it stands, our theory assumes
internal constant returns to scale at the firm level, and hence the size distribution of
firms is indeterminate. A natural question is whether the same processes we described
could be used at the firm level. Specifically, assume that there are increasing returns
in production, but that the firms must bear a ‘managerial cost’ that is increasing in
the number of employees of the firm and is denominated in terms of the firm’s own
output. Suppose also that the firm accumulates it’s OWn factors and faces stochastic
firm productivity shocks. Then a simple relabelling of terms would make the model
of the paper also a model of the firm: instead of choosing the number of cities, the
firm would choose the number of plants to operate. The firms as a whole would then
behave as though it had constant returns to scale in the aggregate even though there
were increasing returns at the plant level. Moreover, this would allow us to imbed
this model of the firm within our existing model of city formation in which there are
external economies at the city level. Whether these elements can all be combined in

a calibrated version of the above framework is the subject of future research.
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APPENDIX

Solution of Social Planner’s Problem

Our first task is to solve the planning problem:

Z 5N, (Z 9;1nCy /Nt)}

=1

max(1 — §)Ey

subject to for, all ¢ and 7,
Kopy = K7 X,

Hyyj = Hy [BY + (1 — uy)Bj],

FAt]H Kﬂle_aJ ﬂ ¢J - Ct] + th:

and
J
Nt = Z th.
i=1

To solve this problem, guess that the value function of the problem is given by

J
V({Hyj, Kijy Ay}_) = Do+ Y [DF In(Hyj) + DX In(Ky;) + D In (Ay)]

=1

Hence the solution to the problem above is, under our guess, the same as the solution
to the following problem,

J
max(1 — §) (Z 6;1n Ctj) +6Ey

i=j

J
Z hl Htj +In (BO + (1 ’LLtJ)B})]

+DJK [wj ln(Kt_,,_) + (1 — wj) ln(th)] -+ D;‘ 111 (Atj)]]

subject to

Ytj = _F}AUHQJ K,BJNl—C!J .6_7 ] — Ctj +XtJ,

J
> N
J=1

=2
I
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Let /\;-/ and AV be the Lagrange multipliers associated with the two constraints.
Then, first order conditions are given by

(1-~4)8;

Cy A
DF(1-w) _
X5, 7
0D}’ Bj = (},_ffi)\lf
BY+ (1 —u})B! Tug

W= (1-a-5) ]};—’ZA{.

Combining the first two first order condition and using the resource constraint we get
Cy = ;_ Xy,
1—4)0; ~
= Q_ (Ytj — Ctj)
JE— w .

(1-4)8; v
SDF (1w + (1—0)8; ¥

Which implies that

X* = ‘SD;( (1 ~ wj) V.
U SDEK(1—w;)+(1-6)6; "
and
W _ 9D~ wj) + (1= 0)6;

7 Yt_]
We can use this result, together with the third first order condition to obtain an
expression for u;:

which results in

¥ __

. _ % (B)+ B}) [6Df (1 —w;) + (1 - 6)6;]

’ 6DFB!+ ¢;B} [§DE (1 - w;) + (1 —4)6;]

Using the forth first order condition and the second constraint,

. .\ ODE(L—w;)+(1—4)8,
th = (1—01.7'_5_7') : ,j\N Ja
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which implies that

_}_\1W Z [(1 - [3].) (DX (1 —w))+(1- J)Qj)] :

Jj=1

Nt:

Combining both equations results in
(1-4-58,) (6DF (1 —w)) + (1 - 5)65)
S (16 - B) (DF (1~ wy) + (1= 0)8))]

= TLth.

N;;- = Ny

We still have to verify that our guess for the value function was correct, toward this,
notice that

J
Do+ > [DF In(Hy;) + DX In(Ky;))

=1

= (1-96) (Z 6;1n ct,.) + 6 Ey [Z [Dff In(Hy) +In (BY + (1 — uy;)BY)]

i=j J=1

+ D;( [LL)J' ln(KtJ) + (1 - (..u’]') ln(th)] + Df In (At])]]
Collecting terms this implies that

Djf = (1-6)0;6; + 6DF + DK (1 —-w;) &;

and
DE = (1-68)8;8;+6DKw; + DX (1 —w;) B;
_ (1—6)8;8, _
1 —dwj ~d(1—wj)p;
Hence, -
DF — 0,4, 68,8, (1 —wy) &; ,

1—(5&)]‘—6(1—(.0_7')[3]-
and so the original guess is verified.

We would like to find out what this results imply for the law of motion of capital
and human capital. For this, notice that for human capital,

In Htj = In Ht—lj +In (BJO =+ (]_ - U*)Bl)

J 2

= InHo;+tln (B + (1 —u})B}).
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For physical capital

In Ktj = Wy In Kt—lj + (1 - wj) In X:—lj

wilnKe_1; + (1 —wj) [ln z; + In f’t_lj]

where K

T oDE(1—wy+(1-09,

Zj
Of course, _
In¥;; = In(Fy)+In(As;) +&; In (Hyy)+5; In (i) + (1' — 05— 51) In (N5)+¢;1n ()
50
InKiy; = winKi1;+ (1 —wj)[Inz; +1n(F;) + In(Asy;) + &;1In (Heey;)
+3;In (K 15) + (1 — by — [31') In (N;y;) + & In (“5)]

= (wj + (1 —wy) Bj)tanOj + (1 —wj)|

+ i (Wj + (1 —wj) Bj)t-T [ln:cj + In(F;) + In(Ar—15) + éSj In (u;‘)]
+37 (- 0= wi) ) b [in Hoy+ (7= 1)ln (B + (1 =) )]

+Z (wj + (1~ wj)ﬁi)t_T (1 — &= Bj) ln () +1n (Nz-1)] ],
where N (1 —a - BJ) DK (1 —w;)+ (1 ~0)8;

Dy [(1 —a; - BJ—) (6D (1—wj) + (1 — 5)9,-)] '

In the balanced growth path (with no uncertainty) we know that the growth rates
of capital (gx;), human capital (gz;) and output (gy,) are constant so

gKH_lj = 111Kt+1j —1In Ktj = ""(1 — UJJ) In Kt]‘ -+ (]. - OJJ) lnth
= (1—wj) [ln:cj + 1nf’tj] — (1 — w;) In Ky;.

Hence, in the balanced growth path In YA;j — In Kj; is constant. That is
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For human capital,
= (B} + (1—u})B}).

For income, when ; < 1,

ev1; = In ?H-lj —ln ﬁj
= [In Ay — In Ayl + G;gm,; + B,‘QKW- + (1 - &5 — BJ) Ny »
1 . o
= 105 [[111 Atyr; — In Ay + di9m,; + (1 —&; - [3j) gNt,-]
2

so in the balanced growth path (with no uncertainty),

a;gm; + (1 ~ & — /3]') 9N;
1-5; '
Now given that we are interested in characterizing the solution with shocks, we

want to determine the invariant distribution of the model. For this, we want to
characterize first lim;_o In K; — In Ky ;.

9y =

InKi; —In Ky 35
= ((wr+ @ =w)B,) =1) (w+ (=) B) Iy (1 — )|
(o mopi)
Tgl (1 - ( i+ (1 ‘_wj)Bj))_l
+ [lnxJ + In(F}) + In(A; ;) + ¢ 111( )]

1 w4+ (1 - w;y Aj o
§ (w5 + (1 =w) B;) 18 [In Ho; + (T = 1)In (B) + (1 - 43)B))]

T=1 (1— (w,~+(1 —wj)[i‘-))_

+6; [In Hoj + (t — 1) In (BY + (1 — u}) B} )]

) i (u.)j + (1 —w;) ﬁj) (1 & [31) In (n;) + In (Np_y)]

=1 (1 - (wj +(1— wj)B]-))_l

+(1—wj) (1= 8= B;) In(ny) +1n (Ve-)] ).

[ln z; +In(F};) + In(Ar_y;) + ‘353' In (”;)]

40




Hence, if 3, < 1,

7:lim In K3; — In Ky _y;]

t—1-T

t (UJ]‘ + (1 —w;) BJ) — IH(AT—lJ;)

= (1—-w,;)[ lim | In(Ae-15) ~

= A (o0 a5)
L t -(Wj+(1—wj)[3j)
1—é;—B;) lim |In(Ng—q) — A
+( )t-—voo TZ:;(I—(LUJ'—F(I—'Wj)ﬁj))
In (B} +(1~u})B}) ]

t—1-T

1 In (NT_l)

]

1- (Wj +(1 —Wj)Bj)

+

Notice that if population growth is constant, so that N, = (gy)* Ny is constant,

Jim [In Ky — In K;_y5)

te1-T

t ((Uj +(1—-w)) EIJ) — In(Ar_y;5)

= (1—w;)li n(As_15) —
(1= wj) fim | In(Assj) ;(1—(wj+(1_wf)ﬁj))

+1+Za’j [(1 — & — Ba‘) g + é;1n (B + (1 - “;)B;)] '

The size of the city is given by

Ny _ [LLJ

:utj b ant
50
th _ [ % ' ) —
In (—/.-L—t;) = 2 -111 (bnj) +In (Yt]) ln(Nt):|
= 2|ln - .n/_g, % +In (Ay;) + &; In (Hy;)
|\ (1 - 2¢y)
+ [—3], In (Ktj) - (&J + B]) ln(Nt) + a)j In (’UJ;)] .

Hence

41




In (-]Yiﬂ) —In (&) = 2[In(As;) — In (Ay;)] — 2 (aj + ﬁj) In(Nsye) — In(Vy)]
Hpg1j Hej
+28;1In (BY + (1 — u})B}) + 28, [In (Ky11;) — In (Kyy)]

where the expression for In (K;;1;) — In (Ky;) is given above. Taking limits,

tm [ (G2 -0 (52
i = 2}im [[In (Ausry) =0 (Ag)] = (85 + B ) In(Ner) — In(N)]]

+28;In (B] + (1~ u5)B) +2B; lim [In (Ky41;) — ln (Ky)]

— 21lim [[m (Apsrj) — In (Ag))] — (aj + Bj) In(Nyyy) — ln(Nt)]] +2(1—w,)]

t—o0

R ‘ t (w] -+ (]. - (.UJ) Bj)t_l—T

B, lim [In(A) — ——— In(Ar_1;)
O Tz___; (1 - (wj + (1 —wjy) ,33)) !

) R t (wj + (1 - wj) Bj)tvl_T

Bi (1—6;—p;) lim |[In(NV,) — ———7 In (Nr1)| |
i ( )t-—»oo I: TZ=; (1— (wj+(1—wj)ﬂj))

124 [1+ . B

M

In (B + (1 —u})B]).
Or, if population growth is constant,
lim {ln (M) —1In (&)]
=00 Hit1j Hij
= 2 lim [In (Agyy5) — In (Ay)]
. \t=1-T
t (wj + (1 —wj) ﬁj)
NN -1
T=1 (1 - (wj + (1 —wj) Bj))

+2 (]_ - (.UJ) Bj thl_’rglo ln(Atj) -

ln(AT_lj)]

26‘1‘ 26‘1‘ 0 =\ ol
— A — |In (B 1—u)B;)]|.
1_)6jgN+1“5j[n(J+( uJ) J)]




Equilibrium Allocation
Firms.—

The problem of the firm is to hire labour input and capital to maximize profits
given prices for these inputs and taking as given the total amount of labour input in
the city (and hence the size of the externality term), and factor prices. As there are
constant returns to scale within the firm, we can treat each city as though it had a
representative firm. If we let P;, W, and Rj, be the prices and rental rates written
in terms of some numeraire commodity, the firms optimization problem yields

Ry/Pu = B34 (K57~ (L),
WirlBe = (1= 8;) 4 (K3)™ (L)

As noted above in our discussion of the property developers problem, all cities pro- |
ducing good j will be the same size. Note that in our framework, all cities producing
good j are identical, so that if there are p,; cities producing good j, the amounts of la-
bor and human capital in any one city are given by Hy;/p,; and Ny;/p,;. Substituting
these into the expressions for factor prices gives

Rtj/]Djt — 'BJAUH’YJ NE'JKﬁJ lLl—- ; ;;EJ_—‘YJ"

I/I/}'t/Pjt — ( ﬁj) AtJH'YJ NEJ KtJJ L_ f —_5_7 _'Y.‘f

Households.—

Each resident of a site producing good j takes with them some share of the house-
hold’s stock of industry j specific human capital. If each worker spends u; amount of
their time working, the total amount of labor services provided is given by

oy o 1—a;—A5
=5 il 8 TR
Lj = Hj i (Njuj) i-E — hj Juj 3 Nj,

where h; is the average amount of human capital per worker in industry j. The
remainder of each workers time produces new human capital according to

Hypaj — Hyy = B}hta‘(l — Us;) N,

80 that
Ht+1_7‘ = Htj [B;) + (1 — Ut])BJl] y
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where B}) and BJ:-L are some positive constants.

Clearly households will allocate their labor and capital services to the cities with
the highest wages and rental rates, so that in an equilibrium these must be equal
across all cities producing a given good. If we let W} and R;; denote state contingent
sequences of wages and rental rates in each industry, and F,; the sequence of state
contingent output prices, then the households problem is to maximize

(1 - (5)E0 [i 5tNt (i 9j In Ctj/Nt)

=0 j=1

H

subject to sequences of flow budget constraints

J
ZPtj [Ctj -+ th -+ [ACCU + ARtj] th]

=1
J e 1~a;~f; J J
—-8; _"_'L‘."L
< E Wi, H; 7 (Njuy) 7%+ E :RththFE P, T;: N,
7=1 =1 =1 '

where ACCy; and AR;; represent average commuting costs and average rents. The
laws of motion for human and physical capital

Ky = K;th]_:j_wjz
Ht+1j = Htj [B‘? -+ (1 - utJ)le] y

and the constraint on labor allocation
Z Ny < N;.
J

Note that the prices P;, W;, and R; all depend on the economy-wide state variables
H;,K; and A;. The state vector for each household also includes the households stocks
of human and physical capital H; and K;.

Equilibrium.—

We are now in a position to define a recursive competitive equilibrium for this
economy.

Definition 7 A Recursive Competitive Equilibrium for this economy s a value func-
tion V ({Hj,Kj, E[j, f_(j, Aj}:jjzl B
each industry j, a number of cities for each industry pi;, a set of aggregate policy rules
H;, K, for each industry j, and price functions P;,W;, R;, and T} for each industry
7, such that

a set of household decision rules C;, X,,u;, N; for
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1. households optimize,

: . =n S
2. gwen P, W;, R; firms hire Ky; and H; ™7 (Nju;) =% s0 as to mazimize prof-
its,

gwen P;, W;, R;, developers choose T; and N;/ p; to mazimize profits,
individual and aggregate decisions are consistent,

free entry implies zero profits for developers, and

S N

markets for goods and factors clear
3 _1
Ctj + Xe +ONZu* = Yy,

J
Z: th == Nt-
j=1

Proofs of Propositions

Proposition 1 There ezists a unique Pareto efficient allocation for this economny.

Proof. As the number of cities of each type u,; enters only into the resource con-
straint, the optimal choice of the number of cities is static and maximizes

. by = Bidres 1 —f. —Ei—- 3 _1 .
Atj KtBjJ HZJ Vi th @ 5J+Ejutj a;—B; /-LtjEJ Yi b th_ /J“tjz' (13)

We will study the properties of this expression for given strictly positive values of
Ktja Htj,utj and th. Let

—_ B rraityy arl—ai—B;+e; l—o;—f;
A (Kyj, Hyj, weg, Nyj) = Athtj H, "N Uys .

Then it is easy to see that

A(Kyj, Hyj, ugg, Ngg) 3y,
3 Mg s
BN,

under our assumption that ¢; + v, < 1 /2, is strictly increasing in Hyjy €quals zero
when p,; = 0, and is unbounded as p,; tends to positive infinity. Hence, there exists a
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p” such that for all 4 < p*, the expression in (13) is negative, while for all other y it
18 strictly positive. Moreover, in the limit as 1 goes to infinity, the expression in (13)
goes to zero. Hence, as the expression is continuous in u, it possesses a maximum on
[4*, +00) which from the first order necessary condition satisfies

Rearranging the first order condition we also find that the optimal number of cities
is given as a function of output and employment in the industry

-2
g b Ny| 7

If we substitute these expressions into the above optimization problem, we get the
augmented social planning problem described above. This problem is convex, and as
the objective function is strictly concave, it possesses a unique solution. As a result of
the functional form assumptions, the solution has strictly positive levels for physical
and human capital, employment and hours worked, at every date and in every state
of the world. Hence the solution of the adjusted programing problem also satisfies the
constraints of the social planning problem, and hence it is also the unique solution to
the social planning problem. m

Proposition 2 There exists a recursive competitive equilibrium that attains the Pareto
efficient allocation.

Proposition 3 Fvery recursive competitive equilibrium in this economy ts Pareto
efficient.

Proof. We prove both propositions jointly for the simplified case where v; = 0 all
j. This can be extended to the more general case by introducing a human capital
subsidy paid to firms by developers of the form

1—7H =2 _anj
Vit
Transfers to agents in a city will then become
7y, Y,
T, = ACC,; — ——% Y
v CCtJ 1-— TH Nt]
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Let us start with the solution of the SPP. We know that this solution is the unique
allocation satisfying the FOC’s of the SPP. That problem is to choose

="} J
> 8N, (Z 6,10 Cy; /Nt> ]

=0 i=1

(1—-6)Eo

Cj + Xej + bNt] Nt;, < AyKQ HP N, S0ty o =y
Kt+1j — K;‘;JXU—WJ"
Ht+1j = Htj [B;) -+ (1 - utJ)le] .

7 J
N; = z Nij = Zuthtj,

If We let the multlphers on these constraints be denoted respectively by \>F
v Ktj’ V3 Ht] and v3F, the first order conditions are

tj

1
(1—68)8'V8; o - b

'Y%I:j (1 _wj) tj Xt;wj = )‘f'P
Y.
)‘g‘P (1 - = 53) i = ’YHtJBIHtj
Ut_-,
Y; 3b [ N,
)‘fjpl(l_% B;te )_N%_Z(yfj) = Tnt
3

3
\SP E(%)z_e.ﬁ 0
912 Fij J/'Ltj

Yo 1 SP
E; {)‘t+1_7/6_7r]+ Kt+1]w.1K:)+1 Xt+1h_;] = Yiktj

Yit1y
B {00 40y (B =) BY] | = o
To show that this allocation can also be attained in a RCE, we need exhibit the ele-

ments of the definition of an RCE and show that the allocation satisfies the conditions
on an RCE.
1. Households optimize. The households problem is to maximize

Z &N, (Z 0;InCy; /Nt) ] :

i=1

(1—8)E,
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subject to sequences of flow budget constraints

J
Z P,; [Cij + Xij + {ACCy; + ARy} Ny

J oy lai_p.
Z T (Nyjwg;) &5 + ZRtJKtJ +ZP,tT]tN,t,

j=1 7=1
the laws of motion for human and physical capital

Ky = KjX 1_%,
Hypy; = Hy [B? (1—1‘7:1')3}]1

and the constraint on labor allocation
Z Ny; < Ny

Letting A# be the multipliers on budget constraints, 'thJ and v be those on
physical and human capital accumulation, and v be that on labor supply, the first
order conditions of the household are

(1-8)86'N,0;— Ct = MHp,;
3]

'YKt; (1- wJ) X g )‘HHPtJ
o; — B Th lTﬂ:’ft_—ﬁl = _

AHHMJTFlHl ? N Uy = = HtJ BlHtJ'
HH l—a;~p; =% 1_1“-'5_1'6' =F; HH
A7 By [Ty — ACGy; — ARyl + ijHtj Uy Ny =T
7
1
Ey {)‘{i}lIRtHj + 75{113"*’1 :J-illet+f;J} 7Kt3

o e " 0 1 HH
E; )‘t+l Wt+111 B; Hy; (g Nej) 1% +Vgg-1j [Bj + (1 — ur4y) Bj] = THt;

2. Firms optimize:

1—oa;—fB,+e; -1 l1-a;—B; —g;
Ry/Pp = B;AyH &JN T JK Ugj J,UtjEJ,

I/Vjt/l?jt - ( _13_7') AtJNEJKBJL IBJ:u’tJ
l—a;—B; =B,
= (1-5;) AyN, E’Kﬁ’ " (ug; Nyy) 1P [T
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3. Developer choices and free entry:

. b
II= max {5

T3\ Nej /iy

subject to

1
Y;; 3b (th)i
th Kl 2 :u’tj g

Now assume that competition from other developers ensures that profits are zero,
soT
b [Ny 1/2
Ty=5(=2) .
2\ ;)

OYs;/Ny; — Yii /Ny
ONy/th; 7 (Nyj /1)’

b (_]YEZ)_
2\ '
3 1
Cy + Xij + bNGpy* = Yy,

J
Zth - Nt.

In order to establish the equivalence, it is sufficient to establish that the FOCs of
each set of problems are multiples of each other (i.e., It is sufficient to establish the ex-
istence of the appropriate set of Lagrange multipliers in each case). The equivalences
follow easily. Comparing the social planners FOC in C;; with that of the household,
we must have

Substituting and rearranging

This must be equated to

(S

4. Markets clear:

A = MNPy
Looking at FOCs in investment we get
sP

Ny _ ARy

SP HH
Yits Victj

b
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which, using the first equivalence implies

Vit = Vktj-
Looking at the FOC’s in uz; we get from the households equation

HH @ 1—a;—3; -y
)‘t 1_aj_'8j Hl_‘%;N_l_JEJ 1_‘9.7;

A~ 1 _3. WigHy; Ny U
YHtj i

tj
Substituting for W; and rearranging, this implies

B]lHtJ =

,YHt] = Vgg
But using these results along with the FOC’s of the firm, we can easily establish
the equivalence of the accumulation FOC’s. All that remains is to establish the city
part of the problem. From the SP problem we have the FOC’s in N;; and Hqj- From
the competitive problem we have the households FOC in NV;; combined with the
developers free entry and optimality conditions. From the households FOC, imposing
free entry of developers we get

Lo = bWy s, —aﬂ—ﬂzN—; ACC,; = N
1 _53 By PN
Substituting for real wages we get
1
(-0;-8) 32 -0 (32)" = T
7 Ny Hij PyAiH

From the developers problem we get

LYo b (N_)
J/J'tj 2\ iy

This latter equafion is the same as the FOC from the social planner’s problem in ;.
To show the remaining equivalence, divide both sides of the last equation by N;;/u,;
and subtract from the previous equation and we get the FOC for N;; from the soc1a1
planner’s problem under the equivalence

HH SP
TNt UNt

HH — \8P°*
Ptj)‘t )‘tj
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Proposition 4 (Ezact Zipf’s Law) The invariant distribution for city sizes satisfies
Zipf’s Law if and only if one of the following two conditions is satisfied:

1. There is no physical capital (Bj =0orw;= 1) and productivity shocks are per-
manent; ‘

2. Clity production is linear in physical capital and there is no human capital
&; =0,8;= 1) , depreciation is 100% (w; = 0) , there is no population growth,
and productivity shocks are temporary.

Proof. The Proposition will follow from the results of Gabaix (11) and Cordoba (5)
if we can show that the growth processes for city size are scale independent. Under
our restriction of ex-ante industry heterogeneity, we can do this group by group. The
results then follow from Propositions 1 and 2 in Gabaix (11).

In the first case, we have that

Niyq; Ny; .
In (ﬂ) —In (—tj*) = 2 [11'1 (At+1j) —In (At_;)] - 2C¥j [IH(NH_1) — ln(Nt)]
oy Hij
+24;1n (B) + (1 —u})Bj),

which varies with j but is independent of city size, as E [In (A4s115) | In (A¢y)] is inde-
pendent of In (4,;) .
In the second case, we have

In (]—Vfﬂ) —In (—Aﬁ) = 2[In (Aupry) — In (Ay)] + 2 [In (Ksug) — In (Kiy)]

Hitaj Hij

But under these conditions
@
Kt+1j = th = :EjY;,j = ij_'jAth(tjutha

which implies, as [Vy; is constant, that
. N.. 5
In (N;“i) —In (—vﬂ) = 2In (A4y;) + 21n (:z:JF]ufJ’) :
Mg g

But this is independent of city size. ®

Proposition 5 (Concavity) If conditions 1 and 2 in Proposition 4 are not satisfied,
the growth rate for cities exhibits reversion to the mean.
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Proof. We have that city growth rates are given by
ARy Ny .
In (ﬂ> —In (ﬁ) = 2[In (A1) — In (Ag)] — 2 (aj + Bj) In(Neg1) — In(V2))]
1 Hys
+26;1n (B + (1 — w})B}) + 2B, [In (Kyy15) — In (Ky;)] .
The only places that productivity shocks enter this equation is through their con-
temporaneous effects on output, and through the accumulation of past capital. If

we examine the equation for capital accumulation, recursively substituting we find,
ignoring all other terms, that the effect of productivity shocks is given by

2 [ln (Apr1y) + (Bj (1—wj) = 1) In (4;)
s o (wa +(1- B )t_T
—B; N

1;1 (1 - (wj + (1 - wj) 5:,))

= [ln (A1) + (,3 (1—-wj)— 1) In (Ay;)

B (1= (wi+ (1 -w) By)) (1-wy) Z (wi+ (1 -w)B,) " m(Ar_y)

—) (1 — wj) 1D(AT_1J')

Now if we examine only the weights on the lagged productivity shocks we find that

B (1- (wi+(1-w))) (1-%)2(% —wj)Bj)t_T
= B (1 - (wj+ (1 _wj)Bj)) (1 *%‘)Z (wj +(1 —wj)Bj)T
T=0
= B, (1 - (wj + (1 _Wj)Bj)t_l) (1-wj).

If we take limits into the infinite past, so as to remove the effect of initial conditions,
this expression reduces to 3 5 (1.— wj) , so that the weights on past productivity shocks
sum to minus one.

From this we can conclude that if the city type is of average size, defined as having
experienced a sequence of past shocks whose weighted average is F (In A) , then the
expected growth rate of the city is zero. By contrast if the past shocks have a weighted
average greater than (less than) F (In A) , then the expected growth rates are negative
(positive). m
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Proposition 6 If conditions 1 and 2 in Proposition 4 are not satisfied, the standard
deviation of city sizes increases with the standard deviation of industry shocks

Proof. If conditions 1 and 2 in Proposition 4 are not satisfied the variance of the log
of city sizes is given by

¥o in (52) | = 4 b (4] + 48736 b 1),

:U’tj
and

Vo [In K] = W

5 (v =) (1) 1n<AT_1j)} .

T=1
If shocks are i.i.d. with variance v we obtain,

t o 2
VollnKyl=wv > (wj + (1 —wj) Bj) ' (1- wj)]
=1
or as t — o0,
VollnKy) = ———,
(1 +Bj)

so that the variance of the long run city size distribution is given by

Vo {ln (ﬁ)} =4v |1 +——-~-~——-—Bj 3
Faj (1 + [3]-)

which is increasing in v, thereby proving the result.
If shocks are not i.i.d., a higher unconditional variance implies that V; [ln Ky;] is
o \tT -
larger, since (wj + (1 - wy) /3j> is positive for every 1 > w; > 0 and 1 > 3; > 0.
Higher unconditional variance implies that V4 [In (As;)] is larger for every ¢ and so the
variance of city sizes increases. m
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