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1 Introduction

Basic Darwinian theory considers individuals competing for resources in order
to achieve their goals of fitness and reproduction. Its more recent develop-
ments have considered cooperation and altruism as the outcome of selective
forces at the gene level, which typically leave room for cooperation at a very
small scale, within a family or tribe of genetically close individuals. Yet
our species has developed institutions which allow cooperation on a much
larger scale.! Markets, in particular, allow people to specialize according to
their comparative advantage and to purchase goods needed for fitness and
survival from other participants. Clearly, most of us would disappear if left
alone facing the forces of natural selection; world population would shrink
considerably if trade among individuals were to suddenly collapse.

This paper studies how an institution such as markets affects the evolution
of mankind. My key point is that the forces of natural selection are made
weaker because trade allows people to specialize in those activities where
they are strong, and to offset their weaknesses by purchasing adequate goods
on the market. Absent trade, people must allocate their time among all
the activities necessary for their fitness. A fitness advantage in any given
dimension will increase survival probability, so that in the long run natural
selection makes sure that population is entirely made of individuals with
the best alleles at all locations. Under trade, there exist long-run equilibria
where less fit individuals are able to achieve the same survival potential as
the fittest, by specializing in activities where they are not at a disadvantage,
and purchasing goods that are substitute for activities for which they are
"weak’.

Hence, markets allow many genotypes that would be eliminated by nat-
ural selection to survive, thus building in greater genetic diversity in human
populations. This genetic diversity may be helpful in face of environmental

shocks, implying that when such shocks prevail, a population which trades

Interesting surveys on interactions between the economic and biological spheres include
Hirshleifer (1977), Robson (2001), and Seabright (2003), forthcoming.



will grow faster than a population which does not, eventually eliminating it
in statistical terms.

The model has a variety of implications, as discussed in section 8. It
explains why many human genes seem to evolve according to the ”neutralist”
view, i.e. as if they had no selective properties. It also sheds light, I believe,
on recent controversies on intelligence and the economic importance of genes.

Note however that the model is silent about how markets themselves
evolve?. The literature on gene/culture coevolution is mostly concerned with
the genetic basis for adoptions of cultural norms such as altruism (often re-
lying on controversial group selection hypotheses).> To my knowledge it has
not provided a theory of how complex institutions such as markets evolve.
The present paper only looks at causality in one dimension, taking institu-
tions as given and studying their impact on the gene pool.

Another potentially relevant critique is that it is not clear whether trade
has been around for long enough to significantly affect evolution. It is often
argued that evolution is very slow, and that our genes are essentially deter-
mined by the hunter-gatherer societies which prevailed hundreds of thousands
of years ago. However, there are two quite different aspects of evolution. The
first one is that mutations do not happen frequently, which explains why it
takes hundreds of thousands of years for a feature like the human brain to
develop. The second one is that an existing allele can replace another one
quite rapidly. A well-known example is that of the gene for lactose tolerance;
the share of the European population with a ”tolerant allele” increased from
5 % to 70 % in less than 5,000 years, due to changes in food habits. In con-
trast, most Asian populations are lactose intolerant because their cultures
had not developed dairy farming.* It is this kind of evolution that I consider

here: the race between existing competing alleles. The message is then that

’Interestingly, Adam Smith saw our propensity to trade as a genetic property of our
species. See Smith (1994).

3See Cavalli-Sforza and Feldman (1981); Lumsden and Wilson (1981); Gintis (2002),
Boyd and Richerson (1985).

4See e.g. Aoki (1991).



in some sense, markets “slow” evolution, by making alleles less loaded with
selective pressure. The example of lactose tolerance suggests that trade can
have a significant impact on our gene pool if it has been present for say 10,000

years.

2 The model: population dynamics

This section describes the basic features of the model, and of its demographic
implications. It is a simplified representation of genetic evolution in a het-
erogeneous population. This population has a single chromosome with two
loci, indexed by A = 1,2. At each loci there can be one of two competing
alleles, indexed by x = H, L. Consequently, there are 4 possible genotypes,
denoted by HH, HL, LH and LL. Genotype kr’' has allele x at location 1
and allele £’ at location 2.

Each of these genotypes ¢ has a specific mortality rate (g), which refers
to the gross outflow per unit of time in the corresponding population. p(g)
could in principle depend on time or on the total distribution of genotypes
in the population. For our purposes, however, it is enough to assume it is
constant.

Reproduction is sexual and takes place as follows. At any instant of
time people mate randomly. Let N; be total population at ¢ and n, be the
proportion of genotype g in the population at date ¢. Then the total number
of matches at ¢ is vN;. Random matching implies that there are (2nyng.)vN;
matches between g and ¢ # ¢, and nZtVNt matches between two people of
the same type g.

Each match produces one offspring and at each location the offspring
inherits the corresponding gene in its mother’s chromosome with probability
1/2, and that corresponding to its father with probability 1/2. The following
table gives the distribution of the offspring’s genotype as a function of each

parent’s genotype:



Match/Proportions HH HL LH LL

HH+ HH 1 0 0 0
HH+ HL 05 05 0 0
HH+LH 05 0 05 0
HH+ LL 0.25 0.25 0.25 0.25
HL+ HL 0 1 0 0
HL~+LH 0.25 0.25 0.25 0.25
HL+LL 0 05 0 0.5
LH+ LH 0 0 1 0
LH + LL 0 0 0.5 0.5
LL+ LL 0 0 0 1

Table 1: proportion of offsprings of each genotype as a function of parents’

genotype.

This table may then be used to compute the evolution equation of the

population’s composition:®

1d 1
ﬁ%(”HHNt) = vnjy + vngpnag + viganog + §V(nLHnHL+nHHnLL) —w(HH)nyy
t
(1)
1d

F%(nHLNt) = VUNguNHL + Vn%{L +vngrnry + §V(7"LLH”HL+”HH”LL) — w(HL)ngy,
i
(2)

1 d
Fa(nLHNt) =vnpinre + l/n%H +vnpgnge + §V(7"LLH”HL+”HH”LL) — w(LH)npg
t
(3)

1 d
F%(nLLNt) = vnpinpg +vni; + vnppngr + §V(nLHnHL+nHHnLL) — w(LL)ngp,
t
(4)

®These formulas are a simplified version of the biologists’s ” Hardy-Weinberg” equations.




These equations are non linear. Adding them we get the population

growth rate:

= V_/_l't’ (5)

=2l =

where 11 is the average mortality rate:
i = ngu(g).
9

Similarly, adding the first two equations we get an evolution equation for
the fraction of the population with an H—allele at location 1, denoted by

hl = NgH +nHL .

h_l = [y — Mg, (6)

where
ngup(HH) +nprpu(HL)

1t —

Npp + ML
is the average mortality rate of this sub-population.

Thus a gene will grow if it is associated with a higher fitness, i.e. a lower
mortality, than the average in the population. Similarly, for the fraction of

agents with an H at location 2, we have

hy
h_2 = My — Moy
As we shall see below, we assume a positive correlation between the pres-
ence of an H—allele and fitness. Thus the following set of assumptions must

hold:

ASSUMPTIONS A1:
p(HH) < p(HL)
p(HH) < p(LH)
p(HL) < p(LL)
p(LH) < p(LL)



Thus, we assume that fitness differences are associated with differences
in mortality, while birth rates are identical. Clearly, one could have a more
complex model and assume that birth rates as well depend on genotype.
While mortality rates are assumed fixed for now, further below they will be
the outcome of individual choice.

Most of the results we will derive will be concerned with a ”long-run”
equilibrium, i.e. a stationary distribution of genotypes.

This section’s central result is then the following lemma:

LEMMA 1 - Assume (A1) holds. Then, in any stationary equilibrium
such that ny = 0,Yg, and h; > 0,Vi, one must have

(1) ngy =1, nyr, =npp =npy =0 if W(HH) < u(HL) and p(HH) <
u(LH).

(ii) npr = nurneg =0 if p(LL) > p(HH)

(111) all surviving genotypes must have the same mortality rate, which is
the minimum across all genotypes.

Proof of (i)-Assuming without loss of generality that u(LH) > u(HL),
we get that % = Ji, — fiy; is positive and bounded away from zero unless
nrg = nrr = 0. Since h; cannot exceed 1, then the latter equalities must
hold. Substituting into (1), we see that in steady state we must have g, =

iy, = p(HH), which only holds if ng; = 0.

Proof of (ii)-If min(u(HL), u(LH)) > p(HH), then (i) applies. Assume
then min(u(HL), w(LH)) = p(HH). Under the same innocuous assumption
that u(LH) > p(HL), we have that % = [i; — [1y; is positive and bounded
away from zero unless ny;, = 0 and either npy = 0 or u(LH) = pu(HL) =
uw(HH). In the first case, the proof is complete. In the second case, substi-

tuting a common mortality rate and ny;, = 0 into (1) yields nyyny;, = 0.

Proof of (iii)-This derives from the proofs of (i) and (ii). All surviving

genotypes have the same mortality, and it is lower than that of nonsurviving

7



genotypes.

This lemma tells us that, as long as the H-alleles are present in the
population, only the fittest types survive. Furthermore, as (ii) implies, H L
and LH cannot simultaneously survive-even though they may be as fit as
HH- it LL has a strictly lower fitness than HH. This is because they
occasionally mate together, thus yielding some LL types which have a lower
survival probability. This process tends to drive L alleles out of the gene
pool until they have disappeared at at least one location, thus preventing

any LL—individuals from arising.

3 Fitness and survival

We now describe how mortality rates are determined. People have a total
time endowment (in flow terms) equal to 1. They allocate time between
two activities, referred by ” f” (fight) and ”d” (defence). Furthermore, they
have different productivities in each activity, and these productivities are
genetically determined. Productivity at the f-acticity is determined by the
gene at location 1 on the chromosome, and productivity in d is determined
by location 2. More specifically, if the individual has allele H (resp. L) at
location 1, his productivity at f is fy (resp. fr). Similarly, productivity at
activity d is dg (resp. dr) for people with allele H (resp. L) at location 2.
Consequently, an individual with genotype g = k' chooses his fight and

defence levels f and d subject to the following time allocation constraint:

f d
ffi * dn’

=1 (7)

Mortality is then given by the inverse of ”fitness”, where fitness is in-

creasing in the total amount of f and d activities:

M:m;%>0’%>0



We shall assume that having an H-allele increases fitness, that is:

fa> [

dH>dL

Finally, we assume that people set f and d in order to maximize their
fitness.® Thus they maximize ¢( f, d) subject to the time allocation constraint
(7). In order to avoid analytical problems we shall assume that ¢ is concave,

and satisfies the following conditions:

ASSUMPTIONS A2 —
lim = 400, dy>0
f=0 (10/2(f7 dO) °
lim 400, > 0.
2 (fo.d) o

To get analytical solutions we shall often use a Leontief fitness function:

p(f,d) = min(f,d)

4 Autarky

The preceding section describes an economy without trade. To get the long-
run composition of the population is quite simple: The HH type has a more
favorable time allocation contraint. Therefore, it is able to achieve a greater
fitness. By virtue of Lemma 1, it must be the only remaining type in the

long run.

5By bluntly making this assumption, we depart from biology and enter economics.
A Dbiologist would ask why people should behave like that, and would probably assume
the existence of a gene for such behavior, and try to show that it drives out genes for
alternative behaviors. This ”"as if” argument is out of the scope of this paper, and we
directly assume maximization of fitness. See Hirschleifer (1977) and Robson (2001) for
discussions.



PROPOSITION 1 — The solution to people’s maximization problem satis-

fies (A1) with strict inequalities. Consequently, in any long-run equilibrium:

ngg = Lingr =ngg =nrp, =0

Proof — Straightforward by application of Lemma 1.

In the long run, the fittest gene is ”fixed” at both locations. The less
fit genes have disappeared. That is in conformity with basic principles of

natural selection.

5 Trade

We now introduce the possibility of trade among people and derive its im-
plications for the long-run composition of the population. We now assume
that f and d, instead of being activities, are tradeable goods. At any date
their price is denoted by p; and pg, and it is convenient to normalize this

price vector so that

Py +pa=1.

An equilibrium is then determined the standard way. Each individual of

genotype g = Kk’ determines his allocation of time by maximizing income:

max pyf° + (1 —ps)d®

Subject to his time allocation constraint:

fS dS
L — =1
ffi - dli’

This determines his supply to the market of goods f and d, f°(g,p;) and
d®(g,py), as well as his total income R(g,p;) = psf° + (1 — py)d°.

10



People purchase quantities f” and d” of each good on the market, by

maximizing ¢(f”,d”) subject to

prfP + (1 =pg)d” = R(g,py). (8)

This determines the individual demand functions f?(g, ps), and d”(g, py),
and the resulting level of mortality u(g,ps) = ©( fP(g,ps),d”(g,ps))" . An
equilibrium is an allocation and a price vector which are solution to these

optimization problems and such that markets clear, i.e.
anfD(gapf) :anfs(gapf)- (9)
g g

By Walras’ law, if this holds, then the market for d is also in equilibrium.
Standard results tell us that, given the current distribution of genotypes
{ny}, an equilibrium exists and is Pareto optimal, in that an agent’s fitness

can’t be increased without reducing another agent’s fitness.

We are now interested in how economic forces affect the long-run genetic
composition of the population. For this we introduce the concept of a ”Long
run equilibrium”, which is a situation where the economy is in Walrasian
equilibrium and the distribution of genotypes in the population is station-
ary. The two are interrelated because the economic equilibrium determines
the level of fitness of each genotype, which in turn affects its population

dynamics.

DEFINITION — A Long-Run Equilibrium (LRE) is an allocation {(f2,d>, fP,d?),

gr7grJg g
a price vector py, and a genotypic distribution {n,} such that

(i) Markets clear, i.e. f7 = f*(g.ps), [P = fP(g.ps), df = d°(g,pp),d}) =
d®(g,py), and (9) holds.

(i) The genotypic distribution is stationary, i.e. the following equations
(SP) hold:

11



_ 1
0=vngy(ngy — 1+ p— p(HH,p¢)) + vngpnur + vnganig + §V(7”LLH”HL +ngunrr)

0 =vnganur +vnur(nar — 1+ o — pw(HL,py)) + vaurnrr + §V(nLHnHL+nHHnLL>

1

0= vnpinry + VTLLH(TLLH —1 —+ /_1/ - ,U/(LH,pf)> + UNipgNygy + —V(nLHnHL+nHHnLL)

2

0= vnrpinrLy + VnLL(nLL —1 —+ /_1/ - ,U/(LL,pf» + N Myr + —V(nLHnHL+nHHnLL),

2

where

L= ngu(g,py)-

g

We now turn to the central result of this section, which characterizes the
properties of an LRE. We first state it formally and prove it, and then discuss
it.

PROPOSITION 2 — In any LRE

(i) The price of f must be equal to

du

T (10)

by

(i) The L-allele has disappeared at at least one location.

12



Proof of (i) — This price makes the H H type indifferent between supplying

f and supplying d. Suppose, say, py > def s Then H H only supplies f, and

so does HL. As for LH, his maximum income does not exceed max(p; fr, (1—

pr)dy) < max(psfi, dinfH) < pyfu. Consequently, u(LH) > p(HH). Next,
lemma 1, (iii), implies that both LL and LH must have disappeared in
equilibrium. But, then total supply of good d is zero, which can’t be true

because of conditions (A2). A similar line of reasoning holds if p; < def .

Proof of (ii) — The LL type has a strictly lower income than H H, therefore
w(LL) > p(HH). Applying (ii) in lemma 2 does the rest.

Part (i) of Proposition 2 is striking. It tells us that in an LRE, the price
vector is entirely pinned down by the productivity levels of the H alleles,
regardless of the shape of the fitness function ¢ and of the composition of
the population. This is a property of any LRE but not of a situation which

would just be a Walrasian equilibrium. In other words, py may transitorily

dy
dg+fu

The intuition is as follows: if the HH type were not indifferent between

differ from but in the long-run it has to be equal to it.
the two goods, it would specialize in one of them, and any type which sup-
plies the other would be strictly worse-off, i.e. less fit, than H H, since its
productivity at doing it is at most as high as that of HH, which strictly
prefers not supplying it. Then, all suppliers of this good gradually disappear
relative to the rest of the population, and this cannot be in equilibrium.
Part (ii) tells us that one of the two L—-alleles has to disappear, because
of the LL type acting as a genetic well. What is important, however, is
that only one low fitness gene has to disappear, whereas all of them were
eventually eliminated under autarky. Trade allows less fit people to specialize
in the activity where they can match the best, thus making their genetic
deficiencies irrelevant for their survival. Consequently, these inferior genes
are passed to the next generation with the same frequency as superior ones,
and are no longer eliminated in the long run. The LL-type, on the other

hand, has an absolute disadvantage in all activities and as long as mating

13



between people with an L-gene produces some LL’s, the L genes gradually
disappear in relative terms. But this process stops when H is fixed at one of

the two locations, since no new LL is then produced.

It is easy to construct equilibria where the L-allele survives at one loca-
tion. To do this let us simply take the Leontief fitness function ¢(f,d) =
min(f, d). Let us construct an LRE where ngy > 0 and ngy > 0. Since HH
is indifferent between the two activities, HL must specialize in f. Thus its

supply of f is nyy fu, and its income is R(HL, —4—) = -1 Ttg demand

Vdg+fu’/ T datfm
for f is then obtained by plugging f = d in its budget constraint (8). We get

D D o dHfH
f(HL) =d (HL)_—dH+fH

dyfu

i and its demand is therefore the
H+f

The income of H H is also equal to

sale:

du fu

D _ gD —
FPHH) = aP(HH) = 00

To get an equilibrium it must be that the total demand for f exceeds
what H L is supplying. The difference is then supplied by H H. Thus it must
be that:

d fu

m(nHH +ngr) > g fu,
or equivalently

dy
an T (11)

This condition is necessary and sufficient for an economic equilibrium.

ngr <

Then noting that H L and H H have the same mortality rate, one can trivially
check that the stationarity conditions (SP) are satisfied. In fact any initial
distribution satisfying nyy = nr, = 0 and (11) will indefinitely reproduce

itself, without any transitional dynamics.

14



Thus, as long as the proportion of HL in the population is not too high,
the economy can be in an LRE with stationary proportions of each type.

In such an equilibrium, fitness is simply equal to f =d = R = %.
Thus mortality is equal to

A fu

pHH) = p(HL) = = R

(12)

Note also that the RHS of (11) is greater, the greater the maximum pro-
ductivity level in the d—activity relative to the f—activity. When dy/fu
is large, only a few people are needed to produce society’s demand for the
d—good (because this demand is inelastic due to the complementarity be-
tween the two activities in producing fitness). Since all of these people must
be of genotype H H in equilibrium, equilibrium exists if nyy is large enough
relative to the required number of people who must produce d. This is more
likely to be the case, the smaller this number, i.e. the greater dy/fg.

Similarly for an LRE with HH and LH in the population, a necessary

and sufficient condition is

fu

n < -
My + Ju

While Proposition 2 has characterized the equilibrium in terms of prices

and genotypic composition, the following one compares trade and autarky in

terms of total population.

PROPOSITION 8 - (i) The long-run population growth rate is the same
under trade and autarky
(it) For given initial conditions, population at any subsequent date is

larger under trade than autarky.

Proof — (i) follows from the observation that average mortality is the same

under both cases. To see this, note that the income of any type under trade

15



must be the same as that of HH, i.e. dyfy/(dy + fu). Consequently, the
budget constraint under trade, i.e.
du fP fud® _ _dufu
da+fu  da+fo  da+ fu’

is equivalent to the H H type’s time allocation constraint under autarky, i.e.

food
44— =1
fu  du

Thus all types choose the same fitness as the HH type under autarky,

yielding the same long-run population growth rate. To prove (ii), just note
that for any given type, fitness is always higher under trade than under

autarky.

Proposition 3 clearly ignores phenomena such as the demographic tran-
sition, when increased fitness may mean lower population growth (See Galor
and Moav (2000) for an analysis). Such effects could be reintroduced by

endogenizing birth rates.

6 A generalization

This section generalizes the preceding results by analyzing the case of a
chromosome with more than 2 loci. To do so, we must first introduce some
notations, and establish some basic results regarding the structure of geno-
typic distribution in a steady state, independently of how fitness is influenced

by markets.

6.1 Notations and genetic properties of stationary pop-
ulations

There are g loci and at each locus 2 possible alleles, denoted by H and L. A
genotype g is a sequence (ky, ..., ky) of genes with x; € {H, L}. Given g, we
denote by g[i] its allele at locus 1.

A key task in extending the previous section’s results is to put enough

structure on the ordering of different genotypes with respect to fitness. Thus,

16



we define the genetic downgrading operator at locus i as associating to each
genotype g a genotype T;g such that T;g[j] = glj], J # ¢, Tig[i] = L. Similarly
one can downgrade over any subset S of loci, by using the operator Ts defined
by

Tsg = QiesTig

Similarly the genetic upgrading operator U, is defined by U;g[j| = g[j], 7 #
i, Usgli] = H. One has U;,T; = U; and T,U; = T,.

As previously, we assume that an H-allele favors fitness. That is, each
genotype ¢ has a specific mortality rate u(g) and the following inequality
holds:

w(Tig) > p(g)-Vg

Or, equivalently’

w(Uig) < pu(g).Vg (13)

We denote by gmax = {H,...H} the fittest possible genotype, and by
Gmin = {L, ..., L} the least fit.

Consider now two genotypes, g and g’. We denote by g - ¢’ the number
of loci where alleles differ between ¢ and ¢’. Then, g ® ¢ is defined as the
set of possible offsprings of g and ¢'. It is obtained by considering all the
possible combinations of alleles at the locations where they differ in the two

genotypes. That is:

9®g ={g" st g"lil = glil v ¢"li] = g'li], Vi} (14)

"To see that these two conditions are equivalent, assume that the first one holds and that
the second does not. Then for some g, 1(U;g) > p(g). Therefore, U;g # g, implying g[i] =
L. But, then T;U;g = g, and u(9) = w(T;Usg) > 1(Usg), which is clearly a contradiction.
Symmetrical reasoning proves that if the second condition holds, the first must also hold.

17



There are 299 such combinations, and each of them comes out with proba-
bility 1/29°9".

Let ¢”, and g be an arbitrary genotype. We denote by ¢g” * g the set of
mates of g which may possibly yield ¢” as an offspring. That is:

g xg=Ag st g'lil =gli] v ¢"[i] = 4'li], Vi}.
The ”star” and "upgrade” operators are linked by the following useful

property:
PROPERTY P1 - If g[i] = L and ¢'[i] = H, then

g*Tig' =Ug =g
PROOF — This is equivalent to proving the following:

ged' 9Td <= Uygeg'®yg,

for any ¢”. To see this, just note that for j # i, T;¢'[j] = ¢'[j] and Ug[j] =

gl], therefore (¢"[5] = glj] v Tig'lj] = glj]) = (9"[5] = Uiglj] v Uiglj] = ¢'l1]) -
Finally, note that g[i] = L and ¢'[i] = H, so that both (¢"[i] = g[i] vV T;¢'[i] = g]i])
and (¢"[i] = Usgli] V Usg[i] = ¢'[i]) are always true. Q.E.D.

With this notational apparatus, we are now ready to extend the popula-
tion analysis of section 2. The distribution of genotypes evolves according to
the following equation:

1 d
N dt TLgNt VZ Z 29 g” S g Mg — ,u(g)ng (15)
/ lleg*q

Summing over all types, we get that the population growth rate still obeys

(5):
1 d
EaNt = UV E g E 21} q//nq’n(]" E ILL

g g"€gxg’
— 1 E E E 2(] q”ng/ng// E IL(,
g geg'®g”
:VEnguEng/—Eugn
g" g g
= V_,at?
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where [i, is again the average mortality rate in the population:

=> p(g)n

Equations such as (6) still hold. Let h; = >_ .y n, the share of the
population with the H-allele at locus 7. Let

_ Zg,g[i]=H ug)ng

25 h,

Then, summing (15) over all types such that g[i] = H, we get:

ot = v 5 Y Y e 3 o,

9.9t g"€gxg’ g,glil=
Z =L Zq” g''li|=H 2 Zqég '®Qg! 2g'- g” g Ngr
_ 1
= Vv +Zq i Z g"li]=L 2 quq '®g" 3g-g7 1vg' Tlg"
L + Zg g [2]: Zg 1 g"[i]=H 9cg'®q" 299" NgMgr g,9[t|=H

1
§1Zgl’g =L Tt Z!I”y” [ij=H g

= V| T3 g glien M grgi— e | = D 1g)ng

Lt gt " Qg g " g.9lil=H

= v [l —h) +B7] = hi = (v — [i;) s,

where the 1/2 coefficients capture the fact that 50 % of the offpsrings of the
mating between a type with H at ¢ and a type with L at ¢ have an H at 1,
and ji; is the average mortality rate of people with an H at i. Hence we again

get the equivalent of (6):

h; = by — g (16)

We are now in a position to extend Lemma 1, which played a key role in

characterizing long-run equilibria.
LEMMA 2 — In any stationary equilibrium such that n, = 0, Vg,
(i) All types such that n, > 0 must have the same mortality rate
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(i) Vg,9';ny > 0,ny > 0,9" € g ¢ = ngr > 0.
iii) The distribution of genotypes can be deduced from the distribution
genoty

of genes by the following formula:

iglil=L ig{il—H

PROOF — See Appendix.

Lemma 2 tells us that in steady state, all existing types must have the
same mortality rate, which is typically that of the fittest type p(gmax) if no
L—allele is fixed. This is because high mortality types typically have more
L-alleles because of the fitness ranking property (13), so that as long as
they exist this tends to diminish the proportion of at least some L-alleles
in the population. Finally, part (iii) tells us that in the long-run, sexual
reproduction and random matching achieve the maximum ” mixing” of a given
distribution of genes in the population, in that the probability of getting a
given allele at a given locus is given by the proportion of that allele in the
population, and therefore independent of whatever other alleles are present
at other loci. Note however that the distribution of genes {h;} must be the
equilibrium one, i.e. it is endogenous, unless all existing types in the wnitial
distribution of genotypes have the same mortality and satisfy (iii)—in which
case the distribution of genes is preserved and in the long-run is equal to the
initial one.

Another way to view this mixing property is to use the concept of entropy.

Let us define genetic entropy as
S = an Inn,
9

The properties of entropy as a measure of disorder, i.e. an inverse mea-
sure of information, are well known (see Shannon(1948)). Now, the following
lemma tells us that in the long-run, genes must be distributed in the popu-

lation so as to maximize genetic entropy.
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LEMMA 3 — In any stationary equilibrium such that n, = 0, Vg, the distri-
bution of genotypes must maximize genetic entropy subject to the following

set of constraints:

Z ng:hi

g,9li]=H

PROOF — See Appendix

6.2 Reintroducing markets

We now describe how an individual’s genotype affects his productivity at
various activities.

The allele present at a given locus ¢ determines the individual’s productiv-
ity at a corresponding activity denoted by the same index i. This productivity
is equal to z;, which is zg; if the allele is H and z;; if it is L. We shall assume
z1i < zm;. The time allocation constraint of an individual with genotype g is

therefore given by

8

q
i=1

where z; is the individual’s output in activity ¢, and z; = zp; (resp. zp;), iff
gli] = H (vesp. gli] = L)
Finally the individual’s fitness is

<1 17
zi_’ ()

@ = oY1, - Yq)

where y; is the individual’s consumption of activity ¢, and ¢ satisfies the same
properties as previously. Under autarky, we have y; = z;, and the following
result holds:

PROPOSITION 38 — Under autarky, w(T;g) > u(g) if gli] = H. Con-
sequently, in any LRE such that h; > 0,Vi, all individuals are of genotype

Omax, 1-€. the H-allele is fixed at all locations.
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Proof — Type T;g has a more unfavorable time budget constraint than
type g. Therefore, it achieves a lower fitness. The rest follows from Lemma
2. Q.E.D.

Let us now look at the trade case. As in the preceding analysis, the price

vector (p;) satisfies the following normalization

sz' =1 (18)

People allocate their time between various activities so as to maximize
their income R(g) = > % | p;z;, subject to the time allocation constraint (17).
Their demand vector is the one which maximizes ¢ subject to their budget

constraint:
q
> " piwi = R(g)
i=1

Types with lower incomes must achieve lower fitness and therefore dis-
appear in the long-run. The following proposition generalizes the results

derived for the two loci case.

PROPOSITION 4 — (i) In any LRE such that h; > 0,Vi, a given type
only supplies goods corresponding to H—alleles in its genotype: z;(g) > 0 =
glil =H

(i) In any LRE such that h; > 0, the price vector is p* = (p7, ..., )
such that

p; = / 1
25 T

(iii) In any LRE, there exists a locus j such that h; =1, i.e. allele H is

(19)

fixed at locus j.

Proof of (i) — If h; > 0 for all 4, n,,__ > 0 (Lemma 2, (iii)). Assume there

exists a genotype g such that x;(g) > 0 for [ such that g[l]] = L. Clearly,
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the plan (z1(g), ..., zi(9) 2, ..., z4(g)) achieves a strictly higher income level
and is feasible (i.e. satisfies (17)) for gmax. Consequently, R(gmax) > R(9g),
implying 14(gmax) < #(g), which can’t hold in LRE since it is precluded by
Lemma 2. Consequently, any type g only supplies goods where it has an
H-allele.

Proof of (ii) — The price vector defined by (19) is the one which makes
type gmax indifferent between all activities. Assume there exists an LRE with

a different price vector. Then there exists a pair of goods (7, k) such that

2 (20)

yg3 ZHj

and z;(gmax) = 0 since more income is yielded for type gmax by offering
good k than good j.

Since ¢ satisfies the Inada conditions, the demand for good j is strictly
positive; since gp.x does not supply good 7, there exists ¢ # gmax such that
ng > 0 and x;(g) > 0. By virtue of (i), g[j] = H. The income of type g is
R(g) = >l piwi(g) = >_,.; piwi(g) + pjz;i(g). The supply vector (z;(g)) is
feasible for type gmax Since gmax is more productive than any other type at
all activities. The supply vector (}) defined by = = x,(g), i # j, k, 2 =
0, x) = x(g) + z;(g)2: also satisfies (17). Therefore,

ZHj

q
R(gmax) Z szm;
i=1

— R(g)— pyy(g) + pp 297k

> R(g),

ZH]'

where the last inequality comes from (20). But, this cannot hold since it
again implies t(gmax) < p(g), which contradicts lemma 2. This proves (ii).
Q.E.D.

Proof of (iii) — If not, then n,_ . > 0 (Lemma 2, iii). But then (i) would

be violated.
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The preceding proposition tells us what properties an LRE must neces-
sarily have, but does not tell us whether an LRE exists and whether, as in the
preceding analysis, one can construct equilibria with a positive level of some
L-alleles. We now establish a result which generalizes condition (11), which
tells us that an LRE exists with a strictly positive proportion of L-alleles,
provided these alleles are not too frequent.

To do so, for any subset S of {1,...q} we define S as S = {g,g[i] = H =
i€ S} S is the set of all genotypes such that the loci of their H-alleles are

all in S. By extension we set (7) = {Gmin}-

PROPOSITION 5 — Let Rf;(p) be the inverse demand function for the
fitness maximization problem of an individual with income R facing price

vector p. Let

D; = Z%fz(p*)

Then there exists an LRE with a distribution {n,} of genotypes if and
only if this distribution satisfies the following property:

VS C{l,..q},Y — > n, (21)

ies “Ht - cg

D
z

Proof — See Appendix.

Clearly, conditions (21) are pretty stringent, so that it is not straightfor-
ward to construct an equilibrium. However for n,  close enough to 1, i.e.
n, small enough when g # gnax, they are clearly satisfied, since ng,.. ap-
pears on the RHS only for S = {1, ...q}, in which case (21) is always satisfied
with equality, due to Walras’ law: > 7, % =Y pifip) =1=3,n,
. Therefore there always exist equilibria with a strictly positive fraction of

genotypes with L-alleles, provided this fraction is small enough.

24



7 The impact of trade on collective fitness:
the role of environmental shocks

One question of interest is: does a population which trades do better than one
which does not, by enough to drive out the latter from existence in the long-
run? As we have seen above, for the same initial distribution of genotypes
a trading society will have a larger population in the long-run than a non
trading one, but these two populations will grow at the same rate. Hence,
the former will be larger than the latter but will not eliminate it. If, on the
other hand, it were the case that trade increased population growth, then a
trading population would eventually become infinitely large relative to a non
trading one, so that the latter has been eliminated in relative terms.

It turns out that trade achieves a greater population growth rate if one
allows for shocks to the environment such that the relative survival value of
H vs. L-alleles can be inverted. A typical example of such an inversion in
nature is skin color. Bears in warm climates are dark, while bears in cold
climate are white. Thus an allele favouring a white skin would be considered
as "H” in a cold climate, but would have to be re-classified as 7 L” if there
is climate change.

If such environmental changes can occur, then the persistence of ”L”
genes under trade is an asset for the population as a whole. It allows it
to diversify its genetic composition so as to better cope with environmental
change.

Going back to the simple model of section 2, and assuming a Leontief
fitness function, consider a population without trade. We know that in steady
state only the fittest type survives, so that ngy = 1. This population grows
at rate v — p, where i is the minimum autarkic mortality of the HH type,
i.e.

o = dy + fu
dufu

Now, assume that this population is subject to an environmental shock

such that the productivity of HH at activity d is now dj, rather than dg,
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while that of type HL is now dy. Population now grows at the rate corre-
sponding to a population entirely made of H L individuals, i.e. v — pu, where

47 is given by

My = ot Ju > Ho-
drfu

This suggests that on average, when there are shocks to the environment,
population will grow at a rate strictly lower than v — p,. Now, this reasoning
is not quite correct, since when there are repeated environmental shocks,
there is no reason why population should entirely be made of HH types.
Rather, as long as environmental shocks do not affect productivity of the f-
activity, it will be made of both HH and H L types, with the former tending
to outnumber the latter when the environment favours them, and tending
to disappear when it hurts them. In such a case, mortality will always be a
weighted average of p, and p,, with strictly positive weights, and population
growth will be smaller than v — p,.

Assume for example that the environment changes between two states,
H and L, such that the productivity of HH (resp. HL) at the d-activity
is dy (resp. dp) in the H state and dj (resp. dy) in the L state. Assume
transitions between two states follow a Poisson process, with a flow transition
probability equal to A\;, from H to L and equal to Ay from L to H. Then one
can show (see Appendix) that the unconditional expectation of mortality is

equal to

E(,l_l,) — MO(:ul - IuO) ,U()(A%{ + A%) + 2/Ll>\H>\L
Mg+ AL+ — g Aa+ A0+ p— o) (A +Ar)

which, as the reader can trivially check, is strictly above p.
On the other hand, consider a trading economy with a proportion ngpy
of HH types, and 1 — nyy of HL types, such that

du

max (ngg,l —n < .
(naH HH) dn + fn
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According to the results at the end of section 2, this distribution is an
equilibrium in both the H and L states. In the H state, the "weak” type
H L achieves the lowest mortality rate by specializing in the f good, while
in the L state, the weak type is HH and it is the one which specializes in f.
Therefore, in both states mortality is the same for both types and given by
(12), i.e. it is equal to p,. Consequently, population grows at rate v — p,.

From there one may argue that if populations with different institutions
compete with each other for land and natural resources, trading populations
will eventually eliminate non trading ones because of their faster population
growth rate. This would not be true in the absence of environmental shocks.
Hence we get the interesting prediction that environmental volatility speeds

up institutional evolution.

8 Applications

In this section, I discuss some real-world applications of the theory outlined
above.

First, it may shed light on a puzzle regarding heritability of economic per-
formance. Here, to simplify, there is a conflict between social scientists, who,
looking at income, tend to favor the environment,® and psychometrists, who,
by looking at test scores, insist on the genetic determinants of intelligence.”
For example, Becker and Tomes (1986) find that regression to the mean in
terms of income takes place quite quickly, which is somewhat at variance
with the view that economic performance is heritable (although randomness
in mating and complexity in the gene combinations that might determine
ability implies that these findings are not incompatible with the importance

of genes). On the other hand, recent evidence on brain structure, as well as

studies of heritability of test scores, suggest that intelligence has substantial

8See Ashenfelter and Krueger (1994).

9This debate is somewhat captured by the heated ”Bell curve” debate in the 1990s.
(Herrnstein and Murray, 1995; Devlin et al. 1997; Cawley et al. 1996; Ashenfelter and
Rouse (1998))
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genetic determinants.!’ Some psychometricians also insist on the existence
of a general intelligence factor g, meaning that people who perform well in
some test will also tend to perform well in other tests.

The above model suggests that specialization according to comparative
advantage loosens the link between ability and income. Under our assump-
tions, people who have a greater number of L—alleles will tend to perform
poorly on a general ability test. However this is of no consequence for their
income as long as the economy is in an equilibrium where they can achieve the
same income level by specializing in activities associates with their H-alleles.

Second, the above model is related to the neutralist hypothesis promoted
by a school of biologists such as Kimura (1983). This approach contends
that most of the observed genetic variation (not only in humans but in all
organisms) is due to random drift of selectively neutral alleles. While the
truth is probably that some alleles are neutral and others not, our analy-
sis suggests that neutrality itself is not independent of social organization.
Trade and specialization increase the number of genes that are neutral be-
cause exchange offsets the fitness deficit of inferior alleles. Formally, this
is captured by the following property of the above model: Under autarky,
the long-run composition of the population is entirely made of H —alleles
(more fundamentally, it is determined by the environment). Under trade,
however, there exists a continuum of steady state distribution of genotypes
compatible with steady state equilibrium, and which one is reached depends
on initial conditions. As long as there are random shocks which change this
distribution while maintaining the economy in the zone where the long-run
equilibrium implies the same fitness for all genotypes (i.e. in the zone where
the equivalent of (11) is satisfied), evolution is driven by random drift rather

than selective pressure.!!

10See Bouchard and McGue (1981), and recent studies by Tang et al. (1999), Tsien
(2000)). and, Thompson et al. (2001).

1'Note however that such evolution cannot fix an L-allele at any locus, because market
forces would push up the relative price for the corresponding good, eventually violating
(11) and giving a fitness advantage to genotypes with an H-allele at that locus.
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Third, the model has implications for differences in the distribution of
specific genes across different human populations. In principle, one should
be able to empirically test the model by comparing human populations with
different degrees of economic advancement, and looking at differences in the
frequency of genes across these populations. One should expect to see genes
that make people fitter for a given activity to be more frequent in the less
advanced populations, to the extent that it implies less frequent trade, and
less specialisation, among individuals.

Unfortunately, this is more easily said than done. First, one should iden-
tify differences in economic advancement that are persistent over long periods
by historical standards, since biological evolution is slow. This is not easy.
While in the XXI century the most developed countries are located in North
America, Europe and East Asia, things were quite different just one thou-
sand years ago. Scandinavian people, for example, who now are among the
richest, were then a primitive tribe compared to the Muslim world. The
ancient civilizations of China, Egypt and America were flourishing while Eu-
rope was stagnating at prehistoric levels. As a first pass, however, one may
speculate that populations coming from Asia, the middle East, or Europe
have had sophisticated institutions for thousands of years, while this is not
the case for more primitive populations in Australasia or sub-saharan Africa.
It is reasonable to assume that exchanges have been more intense in the for-
mer than in the latter societies.But one should expect a lot of heterogeneity
within these broadly defined groups.'?

Second, one should identify alleles that give a clear adaptive advantage.
But measuring the selective value of specific alleles is far from obvious. In
particular, an allele can be good for a given population in a given environ-

ment, and bad for another population in another environment (recall the

12In Africa, for example, co-exist descendents of ancient civilizations such as Egypt as
well as primitive tribes.

On the other hand, this level of aggregation allows to use casual knowledge about world
history, rather than detailed data on comparative economic developments at the population
level, which may be difficult to gather and/or construct.
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above example of skin color in bears); for example, an allele can increase
resistance to tuberculosis, but reduce resistance to malaria. So if we find
that it is more frequent in one population than in another, it may be due
to differences in the environments faced by these populations rather than
differences in economic development. Furthermore, for some genes a fitness
advantage may be in favor of heterozygotes, a phenomenon ignored in our
1-chromosome model. Finally, most documented selective consequences of
alleles are associated with rather serious diseases, whose consequences can
hardly be offset by trade and specialization, at least until recently.

With these caveats in mind, let us illustrate how the model’s prediction
could in principle be tested by looking at the world distribution of some
alleles. One of the most studied gene is the one for blood group (ABO),
which comes in three main alleles, A, B, and O. According to Cavalli-Sforza
et al. (1994, p.129), it has been found that the O—allele confers a selective
advantage with respect to several diseases: syphilis, plague, cholera, diarrhea,
smallpox, tuberculosis, malaria, diabetes, anemia, thrombosis, liver cirrhosis,
and so on. With such overwhelming properties, we should expect A and B to
disappear. Indeed, this is what has happened among native south Americans.
However, O is not uniformly advantageous. Rhuematoid arthritis, and ulcers,
are more likely to occur in O individuals. Furthermore, many puzzles remain
regarding its selective properties.

While specialization is unlikely to offset all the disadvantages associated
with greater exposure to the diseases just mentioned, there is at least one
property of the ABO gene which is useful for our purpose, namely that the
incidence of myopia is 2.5 times greater in A and B individuals than in O

13

individuals.”> Clearly, under autarky myopia confers a substantial disad-

vantage, even when corrected with glasses'*. Hunting, gathering, escaping

13The source for all this discussion is Cavalli-Sforza et al. (1994).

14Glasses are believed to have been invented in the 13th century, but those which cor-
rect for short sightedness were developed only in the 16th century. See Cipolla (1994).
While trade and specialization have been around for say several thousand years, which is
arguably enough to have influenced evolution, this is much less likely for a period of 500
years.
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predators, and many other activities are hampered by myopia. But in a
well developed labor market, one may think of many activities where short-
sightedness does not harm productivity. Therefore, regardless of whether A
and B would disappear in the very long run, we expect a lower frequency of
O in more advanced societies.

The following table shows the frequency of the O alleles in populations
that originate from various regions of the world. Typically, historically more
advanced societies (Europe and Asia) have a lower frequency of the O allele.
This evidence is very mild. New Guinea, for example, has a lower frequency
than Africa and America, although one would tend to think of it as less

advanced. Perhaps this reflects some specific factors.

Area Frequency
Asia 0.596
Furope 0.650

New Guinea 0.654
Pacific Oceania 0.668

Africa 0.694
Australia 0.758
America 0.896

Table 2: Frequency of blood group O-allele. Source: Cavalli-Sforza et al.
(1994).

As already mentioned, the selective properties of even a deeply studied
human gene such as ABO are not very well known. Ideally, one would like
to design a test which would not rely on specific assumptions about the se-
lective properties of a given gene. One way to do so is to compare the actual
distribution of alleles to the one which would prevail under "neutralism”. As
argued above, evolution should be more "neutral” under trade than under
autarky. Fortunately, Cavalli-Sforza et al. provide such a test by looking at
the correlation between genetic distance and geographical distance in each
continent, and compare it to the predictions of a simulated model based
on the neutralist hypothesis. Their results (Figure 2.9.2, p.123) imply sub-

stantial deviations in Africa and Australasia, and no significant deviation
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in Europe and Asia. This confirms our coarse test that more economically
advanced societies are closer to the neutral hypothesis. Again this is mild
evidence, many other environmental explanations can be proposed, but at

least it is consistent with the theory outlined in this paper.

9 Conclusion

Understanding how genes and culture coevolve is an important step in inte-
grating biology with the social sciences. One important cultural institution
of our species is the market. Leaving aside the question of what genetic
characteristics of our species led to such a development, this paper has con-
sidered the reverse influence: how do markets in turn affect human genetic
evolution? The answer it that it makes evolution more selectively neutral
by allowing individuals to offset their genetic disadvantages by specializing.
A potential interesting route for further reseach would be to study how this

could be further enhanced by the use of technology.
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APPENDIX

Proof of Lemma 2
The proof of (ii) is obvious: the proportion of an offspring of ¢ and
g’ cannot be zero as long as g and ¢’ are in positive proportions in the

population, since they mate with positive probability.

Proof of (i) — Ignore all loci where genes are fixed. Consider a locus .
Let

. Ny,
= min &
g.gli=L TNy

Pi

Let B(g) = "y Y gregeq 35757’ Mg be the proportion of offsprings with
genotype g. Then, for g such that g[i] = L, B(g) can be written as

1 1
B(g) = Z Z o0g" 9" + Z Z o0g" 9"

g',9'[i{1=L g",g"[{|=H,g" €g*g’ g',g'lil=H g",g" [i]=L,g" €gxg’

g".g'li|=L g",g" [{]=L.g" €gxg’

= 2 Z Z ﬁng:ngu (22)

g',g'lid1=L g",g" [{]=H,g" €g*g’

+ Z Z ﬁngﬂ’bgu,

g',9'[{]=L g" 9" [i|=L,g" €g*g’

where the equality comes from the fact that

1 1
E E —291.9” ’)’Lglng// = E E —29,.9” ng'ng”

g',g'[i1=H g",g" [{]=L,g" €gxg’ g',9'[{]=H g",g9"[i|=L,g€g'®Rg"

1
= Z Z —29,.9” ngxngu

g".g"li1=L ¢’ .g'li|=H,g€g" 2g’'

1
Z 299" Ttg' Ty

g".g'l{|=L g",g" [i{]=H,g" €g*g’

(]
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Similarly,

1
B(Uig) = 2 Z Z ogg" 9" (23)

g'.g'li|=H g".g"[i|=L,g" €Uigxg’

g".g'li]=H g".g"[i]=H,g" €Uigxg'
Now, (22) may be rewritten as

1
B(g) = 2 Z Z Wnﬂgzngu

g',9'lil=H g",g"[i]=H,g" cg+T;g’'
+ Z Z %T]_”_lnTiglng//.
g',9'lil=H g".9"[{]=L,g" €g+Tig'
That is, the ¢’ such that ¢'[i] = L are constructed by taking all the ¢’ such
that ¢'[i] = H, and downgrading them. One has then T;¢' - ¢" = ¢ - ¢" + 1 if
J"i] =H,and T;¢' - ¢" = ¢ - ¢" — 1 if ¢"[i] = L.

This may be rewritten as

1
B(g) = Z o097 Vi Ty

g'.g'lil=H g",g"[i]=H,g" €U; g*g’

+2 Z Z ﬁnﬂg’ng’“

g',g'li]=H g",g"[{]=L,g" €U;gxg’

where the changes below the sum signs come from property (P1), i.e. the

fact that U;g x ¢’ = g * T,¢', for g[i] = L and ¢'[i] = H.

Next, (23) implies that

1
B(Uig) > p(2 ) > Sa g Mg Mg

g',9'[i]=H g",g9"[i|=L,g" €U g*g’

1
+ > > Sorg7 Mg M)

g'.g'lil=H g",g"[i]=H,g" €U;g*g’

= p;B(9).
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In steady state, we have that

. - vBl)
(e

Assume now that there exists a genotype g and a locus ¢ such that ng > 0
and (g) > p(U;g). Then, the preceding equation implies that ngy,; > p;ng.
Next, consider g = argming g;—r, %, implying ny,; = p;ng. Using again

" : :

(23), we have that

BUg) = 2 Z Z ﬁngfngu—l—

g'.9'ld=H g",g"[i|]=L,g" €Uig=g'

1
E E —291.9” ’)’Lglng//

g'.9'li|=H,,g'#U;g g".g" [i|]=H,g" €U; G*g’'

1 Ny M 5

E ig'°Uig

N g — N ’L*A

™ Uig Uig-g" 9" T UiG-Usg
g".9"[i|=H,g" €U:§+U;3,9" #Usg

1
2 Zg’,g’ lil=H Zg”,g” [{|=L,g" €Usgrg’ 293" “Tig'Tlg"
> Pi + Zgl7g/[i]:H”gl;&Uig Zg//7g//[i]:H,g//€Uig*gl 29" 9" ng%ngu
3 g1, 5
T Zg”,g”[i]:H,g”eUiQ*Uiﬁ,g”#Ui;} SToa7 9" T 3Tl

where the strict inequality comes from the fact that ny,; > p;ng > 0 and
ny,g > 0. That is, the last term in the preceding equation captures the fact
that a strictly positive number of offsprings of matches between U;g and U, g
will be of type U;g, and that exactly half the same proportion among the
(twice as numerous) offsprings of matches between ¢ and U;g will be of type

g. Therefore, B(U;g) > p;B(g), implying

ny.s = vB(Uig) vp; B(9) > vp; B(9) — o
YovuUg) —p T v+ pUg) —p T v+p(g) —p 0

which is a contradiction. Consequently, § cannot exist and p(U;g) = u(g) for
all ¢ and g. Similarly, u(T;g) = p(g) for n, > 0.

Consider now two arbitrary types g and ¢’, such that n, > 0 and ny, > 0.
Let Gy = {i,g[i| = H and ¢'[i]] = L},GL = {i,g[i) = L and ¢'[i] = H},m =
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|Gy |+ |GyL|. Then,

g = OQicay Ti(Ojec,U;9).

That is, we can move from ¢ to ¢’ by a succession of genetic downgradings
and upgradings at the loci where alleles differ between g and ¢'. Let (gx)F=m
denote the sequence of genotypes obtained in this process. We have gy = g,
and g, = ¢

Now, (14) implies that we have the following property:

Ti(g®gd)Cg®giUl(g®g)Cgyg,Vie Gg UG,

Consequently, since g € ¢ ® ¢/, g € g ® ¢'. That is, the intermediate
genotypes between g and ¢’ all exist as offsprings of g and ¢’. Furthermore,
(ii) implies that n,s > 0 for all ¢” € g®g'. Thus, ng, > 0. Since Gx1 = T;gx or
Gr11 = U;gk, then u(gry1) = p(ge). By iteration, it follows that u(g) = u(g').
Q.E.D.

Proof of (iii) — Repeating the steps of the proof of (ii) proves that there
cannot be any ¢ such that g[i| = L and ny,; > p;ng. Consequently, ny,, =
p;ng for all g such that g[i]| = L and n, > 0. Summing over all g’s such that
gli] = L implies that p; = h;/(1 — h;). This implies that

1—h;
Ng = Ngyax H I,

1,9[i|=L

Finally, the only value of g,y such that the preceding equation holds and
such that > gMg =118 Gmax = [T., hi. Consequently:

ng= ] @=h) [] h (24)

,9[¢|=L 4,9{i|=H

Q.E.D.
Proof of Lemma 3

Let \; be the Lagrange multiplier of the corresponding constraint. Then
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the FOC is

1+Inn, = Z A

4,9[i|=H
Consequently,

g
Following the same steps as the proof of (iii) in Lemma 2, if follows that
et = h;/(1 — hy), so that (24) holds. Q.E.D.

Proof of Proposition 5

Proof — We first prove that this condition is necessary. The RHS of (21)
is the total time supplied by genotypes in S. Proposition 4, (i) implies that
it must be allocated among goods i such that g[i] = H, i.e. among goods in
S. The LHS of (21) is the total time input needed to produce all the goods in
S. Tt must be greater than or equal to its RHS, since genotypes in S cannot
produce any other good. Otherwise, supply would exceed demand. Note
that (21) applied to S = () implies n,_, = 0, and therefore that 1 H-gene is
fixed. Also, (21) applied to S = {1,...q} boils down to Walras’ law, since it
is equivalent to > 7 | p? fi(p*) > 1, and by Walras law > 7 | pf fi(p*) = 1.

Let us now prove sufficiency. In order to do so, we construct a set of
functions m;(g), representing the share of time of genotype g devoted to

activity ¢, such that:

mi(g) > 0= gli] = H (25)
milg)ny = . (26)
g,glil=H !

> milg) =1 (27)



If we are able to construct such functions, then this is indeed an equilib-
rium, since supply equals demand for all goods, and since the price vector in
(19) implies that a genotype is indifferent between supplying all the good in
which it has an H-allele.

To construct the m;(g), we use the following algorithm. We start from
any arbitrary allocation mgo) (g) satisfying (25) and (27). This defines the
initial stage.!> Then we move from stage (k) to stage (k + 1) as follows.
At the beginning of stage (k), the set {1,...¢q} can be partioned into three

subsets:

D:
k k %
1Y = (i, Y mPgn, =)
g,9lil=H e
k . k D;
Hi) = {i, Z mg)(g)ng<z -}
g.9lil=H e
D;
HY = (i, > mPgn, >~}
g.9li]=H e

That is, those goods for which supply equals demand, those for which
there is excess demand, and those for which there is excess supply. Note
that since > . D;/zp; = 1, Hff) is empty if and only if H* is empty. If
HJ(f) = H® = (), then we have an equilibrium, and the algorithm stops.

Otherwise, we can show that:

3g,i,4,st. gli) = H,glj] = Hm{"(g) > 0,i e HY je HY  (28)
To prove this, assume (28) does not hold. Let

G(i) = {g,gli] = Hm{"(g) > 0}.

i

Then for any i € H* and g € G(i), it must be that g[j] = L for all
j € Hik)fotherwise, (28) would hold. Consequently, G(i) C HY  where

—

150ne can trivially check that such an allocation exists, since g, is the only genotype

111111
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7® = g® Hék).Therefore:
Z ng < Z Ng. (29)
9eG(®) gei ™
At the same time, we have that for any g € G(i) :

> mPg) =1,

ier™)

since m;(G) =0 for all j € Hﬂ“). Consequently:

Z ng = Z Ng Z mz('k)(g)

9eG(i) 9eG(i)  jep®

= > 3 mPgn,

ieH®) 9€G)

= Z Z mgk)(g)ng

icH™ g.glil=H

> > D: (30)

)
Z .
icH® e

where the last inequality comes from the fact that H &)

is non empty. Now,
confronting (29) with (30) implies Zg ci® Mg > D e H® Z%ii, which violates
(21) for S = H™  Consequently, (28) must hold.

Let us now define
L® = {gst. 3ie HY 35 e HY gli] = H, g[j] = HmP () > 0}.

The above reasoning implies that unless {mz(»k) (9)} is an equilibrium
allocation, i.e. H, = H_ = (), then L™ is non empty. To move to iteration
(k+1), take g* € L™ and some i and j such that g*,4, j satisfy (28).

1. If

mgk)(g*)ng* < min Z m; (g)ng—% — — Z m;(g)ng | ,

g,9lil=H
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then set m{""(g*) = 0,m{""V(g*) = m{" (¢*) + m{”(¢7), and m{"*(¢") =

m&k)(g’) for ¢ # ¢g* or v # i,j. Clearly, in such a case, g* ¢ L*:+1) ¢ L(*),
Thus|L*D| < |L®)].

2. If
D
m (g g > =L — > m{”(g)n,, and
FHj g,9lj]1=H
D; D;
k 7 k
Yo omPgng-— = =L - > mP(g)n,
. ZH; ZHj a_
g,9[i]=H g,9ljl=H

E+1)/ s k), D; k E+1)/ &
then set mg + )(g ) = mg )(g )_(ﬁ — Zg’gm:H mg. )(g)ng> /ng*,m§, + )(g ) =
k) s D; k k k
m{(g7) + (3 = Lygin ™ (90 ) /g, and miV(g) = miP(g) for

g # g* orr # i,j. In such a case, j ¢ Hikﬂ) C HJ(f), while H*™) ¢ g®
and j € HékH) D Hék).

3. If
D:
k * k 2
mg )(9 g > mg )(g)nq T and
g9.9[i|=H Hi
== 2 mPony = m gy - -
A7 gglil=H g,glil=H Hi

E+1)/ « k), k . E+1), ay _
then set m{*(g") = m!" (9") = (X, yon i (9 = 2 ) /gl V(g") =
k), k : k+1 (k
i (0%) + (Lo M (@) — 25 ) /gand mi® 2 (g') = mi (g for g’ #

g* or r # i, j. In such a case, i ¢ H*Y « g® while HJ(rkH) C H(f) and
ie H¥Y o HP.

Consequently, we always have

|L(k+1)‘ I ‘Hikﬂ)‘ i ‘H£k+1)

< L]+ | B+ |H®)

After a finite number of iterations, this quantity must be equal to zero,

which can only happen if one is at an equilibrium. This proves sufficiency.
Q.E.D.
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A Poisson process for environmental shocks
Assume H is fixed at locus 1. To compute average mortality, first note

that in the H state nyy evolves according to
i = (1= ngw) (i — po)-
The solution to this differential equation is
ngg(t) = ngp(0)e”W—rt L1 — o= (B1mno)t,

where ngy (0 | H) is the initial value of ngy, i.e. prevailing at the date when

this spell of H state started. Similarly, in the L state we have

nyp(t) = nHH(O)e‘(”l‘“O)t.
Mortality in the H-state is given by
pr = nampo + (1 — nww) .

Similarly, mortality in the L-state is

g =nunpy + (1 — ngw) .

Let gy (t) be the stationary probability density of having been in the H
state for duration ¢, and gy, (¢) the corresponding density for the L state. The

Poisson process implies that

AHAL s

t) =
gu(t) = -
AHAL i
t) = LHCL o=
9100 = A
The unconditional probability of being in the H state is thus
A
Py = ———
7 Xm0
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The unconditional expectation of mortality is

B = PuE(uy) + (1 - Pu)E(uy) (31)

Using the above formula for mortality, we have

E(uy) = Empw | H)po+ (1 — Emgs | H))im
= Engu | H)(Ho — 1) + 114 (32)

Similarly
E(ur) = —E(ngm | L)(pg — 1) + o (33)

The conditional expectations E(ngy | H) is computed by summing over
all durations in the H state. We get

Py
+oco
= / >\L€7/\Lt [E(?’LHH(O) ’ H)ei(’”*“f’)t +1-— ef(ﬂlfﬂo)t] dt
0
— 1 E((0) | B) o)
)\L + ,u/l _ ,U/O HH .

E(ngy(0) | H) is the expected proportion of the population being HH
conditional on just having shifted to the H state. Since one was in the L

state one instant before we have
E(ngn(0) | H) = E(ngp | L). (35)

Similarly, the expected number of firms conditional on being in the L -

state can be computed as

Al
E L)y=——F 0)| L), 36
(nam | L) J SR (num(0) | L) (36)
and we gain have
E(nun(0) | L) = E(nyn | H). (37)
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These four equations allow to compute E(nyy | H) and E(ngy | L). We

get:
E(nyn | H) = A+ — o
AL+ g+ M1 — Mo
A
E(ngy | L) = L

AL+)‘H+/'L1_ILLO'

Substituting into (32), (33) and then (31) we finally get

E(n) = Ho(ty — o) po(Ney + A1) + 20 A
A+ AL+ =g Mg+ AL+ g — o) A +An)

which is the expression in the text.
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