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1 Introduction

Understanding the cause of aggregate °uctuations and, therefore, being able

to assess whether relevant macroeconomic variables possess a stochastic (ST)

or a deterministic trend (DT), namely models for which the e®ect of random

shocks persist for ever or models for which this e®ect is eventually absorbed

as time passes converging towards a steady state, represents one of the main

issues in empirical macroeconomics. The number of papers dedicated to

this issue is considerably large. The pure ST model, or more generally

models where the size of the random walk component is large, dominated

for more than a decade since seminal work of Nelson and Plosser (1982). To

date, however, the dominant paradigm oscillates between the so-called we

don't know viewpoint (see, in particular, Christiano and Eichenbaum (1990)

and Rudebusch (1993)) and the DT model (see, among others, Diebold and

Senhadji (1996)). In the class of DT models we, agnosticly, include models

which are practically in-distinguishable from it, such as long memory models

(see Diebold and Rudebusch (1989)), where the e®ect of the shock diminishes

slowly according to a power law, or even ST models with a small random

walk component (see Cochrane (1988)).

The mainstream approaches all used aggregate macro economic data,

mainly real GNP data. This has limited the ability of the various statistical
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methods to disentangle between the DT and the ST hypothesis, both because

long spans of data are not available and because these methods typically

exhibit low power against the contiguous DT and ST alternatives. These

limitations represent the ultimate causes of this long-lasting debate.

This paper reexamines the nature of the °uctuations of real income per

capita combining the information stemming from aggregate and individual

(panel) data. There is no reason to assume that agents do perceive only

shocks common to all individuals and employ the same model of economic

behaviour. Instead, it is reasonable to allow for idiosyncratic random shocks

and, even if retaining the same model, assume di®erent parameter values

across agents. Although, theoretically, one can allow for a great deal of

heterogeneity in shocks and parameters, empirical estimation of such rich

models entails simpli¯cation of the degree of heterogeneity. This typically

takes the form of simplifying, if not cancelling, heterogeneity across param-

eters and maintaining heterogeneity across shocks (see Abowd and Card

(1989) and Pischke (1995)).

In this paper we consider simple, in the sense of linear, dynamic mod-

els of individual behaviour but un-restricting heterogeneity across shocks

and parameters. Linearity is justi¯ed by the fact that the reduced form

of dynamic general equilibrium models is typically well approximated by

auto-regressive moving average (ARMA) models with exogenous regressors.

(The approximation error is zero only for linear-quadratic models of inter-

temporal optimization.) Accounting for full heterogeneity matches, on one

hand, empirical observation, as noted above. This permits not to impose, for

instance, that all individual incomes have an exact unit root but rather leave

the data say whether this holds or not, case by case. On the other, a number

of statistical results emphasizes the relevance of heterogeneity in imparting

the statistical properties of the aggregate and that even mild di®erence in

the form of heterogeneity at individual level can imply relevant di®erences

at the aggregate level (see Robinson (1978), Granger (1980) and Forni and

Lippi (1997)). In particular, it has been pointed out that stationary pro-

cesses for individuals can nevertheless give rise to nonstationarity at the

aggregate level. Moreover, although the individual processes are modelled

as (stationary) ARMA, aggregate process will not be an ARMA anymore
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in general. Finally, the impact of purely idiosyncratic shocks might have

a non-degenerate impact on aggregate °uctuations (see Lippi and Za®aroni

(1998) and Za®aroni (2003) for details). In words, this means that aggrega-

tion could drastically modify the impulse response function at the aggregate

level compared with the ones of individual processes. The crucial ingredient

turns out to be the shape of the cross-sectional distribution of the auto-

regressive roots. These results explicitly provide the taxonomy for linking

the parameters dictating aggregate dynamics the aggregate with parameters

representing cross-sectional heterogeneity.

The main empirical ¯ndings, based on a a panel of real income extracted

from the PSID data set for roughly a thousand households over twenty-six

years, are the following. Real GNP per capita signi¯cantly belongs to the

class of trend stationary processes. In particular, the impact of random

shocks does dissipate as time passes albeit slowly, according to a power

law. Technically, the estimated power spectrum of aggregate data exhibit

mass at zero frequency, well approximated by a long memory process with a

small memory parameter. The propagation mechanism appears, therefore,

markedly di®erent from the one characterizing individual income processes.

The latter turn out to be well approximated, in great majority, by station-

ary ARMA models (around a deterministic trend), for which the impact of

random shocks dissipates exponentially fast. A small fraction of units, in-

stead, does exhibit a unit auto-regressive coe±cient. The estimates indicate

a signi¯cant degree of heterogeneity across individual parameters, besides

signi¯cant heterogeneity for the shocks perceived by individuals. The es-

timated degree of memory of the aggregate series mimics strikingly well

the memory induced by the shape of the cross-sectional distribution of the

auto-regressive roots estimated from individual data.

Uncovering the nature of business cycle °uctuations has relevant implica-

tions. Among many, it has a say on whether aggregate consumption should

or should not exhibit excess smoothness. When the income process has a ST,

consumption will be more volatile than income if the permanent income hy-

pothesis holds (see Campbell and Deaton (1989)). Empirically, the opposite

has bee observed, justifying the terminology of excess smoothness. Several

explanations have been formulated, nicely surveyed in Attanasio (1999), all
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retaining the ST assumption for income but imposing some frictions which

attenuate model-driven excess smoothness. It turns out that allowing for

full heterogeneity in parameters and random shocks implies, under general

circumstances, that consumptions is predicted to be less volatile than in-

come. Therefore there would be no excess smoothness paradox at all. This

result does not require to impose any frictions, which in any case would not

alter our result.

Although the main goal of this paper is empirical, estimating the rela-

tionship between individual heterogeneity and the dynamic properties of the

aggregate macro economic time series, prompted few but relevant method-

ological issues. First, we developed a formal statistical procedure to test

whether heterogeneity across individuals is also due to non-negligible varia-

tion of parameters across individuals, and not simply due to the presence of

an idiosyncratic component of random shocks hitting individuals. Second,

the model for individual income is formally an ARMA(1; 1) factor model.

Estimation methods recently proposed (see Stock and Watson (1999) and

Forni, Hallin, Lippi, and Reichlin (2000)) do not not require a paramet-

ric speci¯cation of the model but impose other restrictions which rule out

auto-regressive structures, such as ours. Therefore, we devised a simple

estimation method, fully exploiting the ARMA(1; 1) structure. Third, het-

erogeneity across coe±cients is described assuming that parameters are in-

dependent and identically distributed (i:i:d:) realizations of some underlying

(multivariate) random variable, henceforth denominated the cross-sectional

distribution. Its distribution is estimated nonparametrically. However, due

to the small temporal dimension of the sample, a large bias is likely to occurr,

especially for the distribution of the auto-regressive coe±cients. Therefore,

we envisage an estimation method, tailored to our model, that takes into

full account the bias problem. This aspect is crucial since the shape of the

cross-sectional distribution represents the key ingredient driving the e®ect

of the aggregation mechanism.

This paper develops as follows. Section 2 recalls a number of results on

aggregation of heterogeneous time series, used throughout the paper. A pre-

liminary analysis of the data on individual income is described in section 3.

Section 4 analyzes the features of a possible factor structure in the data.
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The econometric model, and the related estimation method, are introduced

in section 5. The empirical result, concerning the degree of persistence of

aggregate income, is reported in section 6. Section 7 explores the theoretical

and empirical implications of heterogeneity for the consumption smoothing

phenomenon. Concluding remarks are in section 8. A more detailed anal-

ysis of the statistical properties of the test for heterogeneity are described

in Appendix A. Versions of the PIH model with frictions, when allowing for

heterogeneity, are exempli¯ed in Appendix B.

2 Some facts on aggregation of heterogeneous AR(1)

models

In this section we examine, by means of a series of numerical examples, the

most important results on contemporaneous aggregation of heterogeneous

ARMA models, when the number of units gets arbitrarily large. Further

details are reported in Za®aroni (2003). We focus, for sake of simplicity,

on the case where the behaviour for some characteristic of the ith agent is

described by an AR(1) model:

xit = ®ixit¡1 + ´it; (1)

where both the coe±cients and the random shocks vary across individuals.

When considering an arbitrary large number of units, a convenient way

to allow for heterogeneity is to assume that the coe±cients ®i are i:i:d:

random drawn from some underlying, ¯nite dimensional, distribution F (®).

Stationarity of xit then requires

j ®i j< 1 a:s:; (2)

or, alternatively, that F (®) has support (¡1; 1). Finally, we assume that

the random shock represent the sum of a common and of an idiosyncratic

component

´it = ut + ²it; (3)

with the ut being an i:i:d: sequence (0; ¾2u) and ²it being an i:i:d: sequence

(0; ¾2² ). The ²i;t are also assumed independent across individuals.
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In view of (3) and linearity of the model one gets the following decom-

position for the aggregate (L denotes the lag operator)

Xn;t =
1

n

nX

i=1

ut
1 ¡ ®iL

+
1

n

nX

i=1

²it
1 ¡ ®iL

= Un;t + En;t;

meaning that the aggregate could be separated in a common and idiosyn-

cratic component.

The statistical properties of each unit are well-de¯ned, given her realiza-

tion for ®i. On the other hand, knowledge of the entire history of the xit,

or even of a ¯nite number n of them, is completely uninformative on F (®).

In that case, in fact, the randomness assumption of the ®i is unnecessary.

However, when looking at an arbitrarily large number of units, F (®) will

entirely determine the properties of the limit aggregate, meaning the limit

(with respect to some metric) of the Xn;t for n ! 1. We aim at establishing

the statistical properties of the so-called limit aggregate.

It is well know that summing a ¯nite number of ARMA processes yields

again an ARMA process. For example, the sum of n distinct AR(1) models,

with di®erent auto-regressive parameters, yields an ARMA(n; n ¡ 1) (see

Granger and Morris (1976)). However, when n diverges to in¯nity, it turns

out that for absolutely continuous F (®), the limit of Xn;t will not belong to

the class of ARMA processes, in contrast to the individual xit.

To illustrate the main results, let us consider two possible ways of pa-

rameterizing F 0(®) = f(®). For sake of comparison, we consider only distri-

butions satisfying

E®i = ¹; (4)

for some 0 · ¹ · 1 (together with (2)). Generalization to the case of

negative ¹ is straightforward. However, we do not explore this case since

the estimates of ¹ are signi¯cantly positive for the data set used in this

paper.

First, consider case of the uniform distribution over the interval [1¡²; 1],

some 0 · ² · 2. Imposing (4) yields

f1(®) =

(
1

2(1¡¹) ; 2¹ ¡ 1 · ® · 1;

0; otherwise :
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Second, consider the case of Beta distribution, with parameters p; q > 0,

f2(®) =

(
B¡1(p; q)®p¡1(1 ¡ ®)q¡1; 0 · ® < 1;

0; otherwise:

where B(p; q) denotes the Beta function of order p; q. Imposing (4) requires

p =

µ
¹

1 ¡ ¹

¶
q: (5)

Let us now focus on the common component. This can be written as

Un;t = ut + ¹̂1ut¡1 + ¹̂2ut¡2 + :::+; (6)

setting

¹̂k =
1

n

nX

i=1

®ki ; real k:

When n gets large, by the strong law of large numbers, each ¹̂k will converge

a:s: to the population moments of the ®i:

¹̂k ! ¹k = E(®ki ) a:s: for n ! 1:

It turns out that (under suitable regularity conditions) the Un;t will converge

in mean square to the limit aggregate

Ut = ut + ¹1ut¡1 + ¹2ut¡2 + :::+ (7)

as n goes to in¯nity. This holds for the uniform distribution case and for

the Beta distribution case when q > 1=2.

From (7), the dynamic pattern of the ¹k represents the impulse response

of the common shocks ut on the aggregate. We now make a numerical

evaluation of the impulse response function of the limit aggregate. For the

uniform density f1(®) simple calculation yields

¹1;k =
1

(k + 1) 2(1 ¡ ¹)

³
1 ¡ (2¹ ¡ 1)k+1

´
; (8)

whereas for the Beta density f2(®)

¹2;k =
¡( ¹

1¡¹q + k)

¡( ¹
1¡¹q)

¡( q
1¡¹)

¡( q
1¡¹ + k)

; (9)
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where ¡(x) indicates the Gamma function.

Table 0 reports the dynamic pattern of ¹k, both for the uniform and

the Beta distribution case (the latter for various values of q). We compare

the results with the case of homogeneous AR(1), setting the auto-regressive

coe±cient equal to ¹. In this case, the impulse response will be given by

¹k. The ¯rst half of the table reports the results for ¹ = 0:8. This is very

close to the empirical value found for E®i from the data. The second half

of the table considers ¹ = 0:95. In this way, we can compare the e®ect

of aggregation with an homogeneous, yet very persistent, case. The e®ect

of aggregation is dramatic: the impulse response function of the aggregate

process (common component) decays towards zero very slowly, compared

with the constant coe±cient case. This is true even for unrealisticly large

values of ¹, such as ¹ = 0:95. For the Beta distribution case, note that the

smaller is q, the slower will the e®ect of random shocks fade away. Finally,

choosing a di®erent ¹ has a greater e®ect on the constant parameter cases

rather than on the heterogeneous case.

Further insights can be obtained looking at the corresponding analytic

results. The long-run dynamic pattern of the ¹1;k is evident from (8). Case

2¹¡1 = 1 is ruled out since this implies a degenerate (uniform) distribution

on the interval [1; 1]. Case 2¹¡1 = ¡1 asks for ¹ = 0. Ignoring these cases,

0 < (2¹ ¡ 1) < 1 and therefore,

¹1;k » c

k + 1
as k ! 1:

Therefore, for aggregate the impulse response displays an hyperbolically

decaying pattern. A similar result is obtained for the Beta distribution

case. For the ¹2;k one needs to use Stirling's formula, ¡(x) »
p

2¼e¡x+1(x¡
1)x¡1=2 as x ! 1, to (9) yielding

¹2;k » ck¡q as k ! 1:

Again, an hyperbolic behaviour arises whose intensity is now directly deter-

mined by the Beta parameter q, in agreement with the ¯ndings of Table 0.

In particular, the smaller is q, the slower will the ¹2;k converge towards zero

(recall than q > 0 always). Note, however, that the e®ect of the mean ¹
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Table 0: impulse response functions of limit aggregate Ut.

¹k f1(®) f2(®)

k q = 0:2 0:3 0:7 1 3

¹ = 0:8

1 0:8 0:8 0:8 0:8 0:8 0:8 0:8

2 0:64 0:65 0:72 0:70 0:67 0:66 0:65

5 0:33 0:39 0:61 0:57 0:48 0:44 0:37

10 0:11 0:23 0:54 0:47 0:33 0:28 0:17

50 1:4£ 10¡5 0:05 0:39 0:29 0:12 0:07 0:01

200 4:1£ 10¡20 0:01 0:36 0:26 0:09 0:05 0:01

¹ = 0:95

1 0:95 0:95 0:95 0:95 0:95 0:95 0:95

2 0:90 0:90 0:91 0:91 0:91 0:90 0:90

5 0:77 0:78 0:83 0:82 0:79 0:79 0:78

10 0:60 0:62 0:76 0:73 0:67 0:65 0:62

50 0:08 0:19 0:58 0:49 0:33 0:27 0:15

200 3:5£ 10¡5 0:05 0:54 0:45 0:27 0:22 0:11

f1(®) denotes the uniform density and f2(®) the Beta

density with parameter q.
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Table 00: asymptotic behaviour of varn(En;t).

f1(®) f2(®)

n q = 0:2 0:3 0:7 1 3

10 0:1 1:6 0:4 0:3 0:2 0:2

100 2:2£ 10¡2 1:4£ 106 5:4 3:1£ 10¡2 5:2£ 10¡2 1:6£ 10¡3
1; 000 4:1£ 10¡3 3:6£ 104 8:3£ 103 1:4£ 10¡2 3:7£ 10¡3 1:5£ 10¡3
5; 000 8:9£ 10¡4 2:8£ 108 1:8£ 103 4:3£ 10¡3 8:4£ 10¡4 3:1£ 10¡4
10; 000 4:9£ 10¡4 1 1:2£ 104 3:7£ 10¡3 4:2£ 10¡4 1:6£ 10¡4
20; 000 3:1£ 10¡4 1 4:6£ 103 1:6£ 10¡3 2:2£ 10¡4 7:9£ 10¡5
f1(®) denotes the uniform density and f2(®) the Beta density with

parameter q. Symbol 1 indicates a large value (computer out°ow) for varn(En;t).

is completely annihilated asymptotically, as this impacts on the other Beta

parameter p. In practice, as Table 0 shows, a non-negligible e®ect arises

since we look at the impulse response for a ¯nite horizon. In view of the lin-

earity of the set-up, this characterization of the impulse response has a neat

representation in terms of the auto-covariance function (acf) and spectral

density of the limit aggregate Ut.

Let us focus on the idiosyncratic component En;t. Table 00 reports the

asymptotic behaviour of

varn(En;t) =
1

n2

nX

i=1

1

1 ¡ ®2i
;

for various values of n. Hereafter, varn(:) indicates the variance operator,

for given parameter values (®1; :::; ®n).

The most, somewhat striking, result that appears from Table 00 is that

this component, made by averaging perfectly independent and stationary

(a:s:) units, does not necessarily vanish. In fact, varn(En;t) gets smaller as n

increases for the uniform distribution case and for the Beta distribution case

for q = 0:7; 1; 3. In contrast, varn(En;t) gets arbitrarily large for q = 0:2; 0:3.

It turns out that this is precisely what the theory predicts.

One can then ask which component is the dominant one with respect to
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Table 000: asymptotic behaviour of Rn.

f1(®) f2(®)

n q = 0:2 0:3 0:7 1 3

10 0:1 0:9 0:9 0:3 0:1 0:1

100 2:7£ 10¡2 0:51 ¡ 4:9£ 10¡2 1:7£ 10¡2 1:1£ 10¡2
1; 000 3:1£ 10¡3 0:49 ¡ 1:2£ 10¡2 3:7£ 10¡3 1:1£ 10¡3
5; 000 8:6£ 10¡4 0:48 ¡ 3:6£ 10¡3 9:4£ 10¡4 2:3£ 10¡4
10; 000 3:4£ 10¡4 0:17 ¡ 1:5£ 10¡3 3:6£ 10¡4 1:1£ 10¡4
20; 000 1:8£ 10¡4 ¡ ¡ 9:9£ 10¡3 1:6£ 10¡4 5:7£ 10¡5
f1(®) denotes the uniform density and f2(®) the Beta density with

parameter q. Symbol ¡ indicates an undetermined value (computer out°ow) for Rn.

aggregate dynamics. In Table 000, we look at the behaviour of the ratio

Rn =
varn(En;t)

varn(Un;t)

as n gets large.

It turns out that Rn gets smaller as n increases for the uniform distribu-

tion case and for the Beta distribution case for q = 0:7; 1; 3. For the cases

where the idiosyncratic variance tends to explode (q = 0:2; 0:3), instead, Rn

is stable, in the sense that it does not diverge nor converge towards zero.

This suggests that also the variance of Un;t tends to explode and, moreover,

at the same rate. This is to say that in the non-stationary case the com-

mon and the idiosyncratic component have precisely the same importance

in determining aggregate °uctuations.

Model (1) represents an extremely simpli¯ed set-up. In fact, we consider

below, a more complicated and realistic model than (1). However, it turns

out that, as far as the analysis of aggregation is concerned, the results that

apply to an AR(1) set-up equally apply to higher-dimensional models, which

must include an auto-regressive component, with no qualitative di®erences.

Summarizing, we have found that allowing for heterogeneity across the

auto-regressive parameter, has a dramatic e®ect on the behaviour of the im-

pulse response function. In fact, the e®ect of random shocks to the aggregate

decays much slowly compared with any individual AR(1), in particular ac-

cording to a power law. Second, the e®ect of the idiosyncratic shocks might
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not be negligible on aggregate °uctuations. The key ingredient appears to

be the shape of the cross-sectional distribution f(®) around 1, dictated by

the Beta parameter q. For ® approaching 1, f2(®) " 1 when q < 1 and

f2(®) # 0 when q > 1. When q = 1 then f1(®) ! c.

Such results havd been established by Za®aroni (2003) for the general

case where

f(®) » c(1 ¡ ®)¯; as ® ! 1¡; (10)

for ¯ > ¡1 and 0 < c < 1. Note that (10) only de¯nes the local behaviour

of the density around unity.

3 The data

To perform an empirical investigation of the e®ect of aggregation we uti-

lize a panel of individual income processes drawn from the Panel Study of

Income Dynamics (PSID). From the PSID, we select a sample of male in-

dividuals in the working age (16-65) in the period 1967-1992. We retain

those individuals with positive annual income (earning plus assets income)

in at least 24 consecutive years starting between 1967 and 1969. This allows

us to construct a sample of 950 time series (n = 950) of individual income

processes, Ii;t.

We start by de°ating income by the consumes price index for urban

consumers (base 1983) and the data sample mean and median are reported

in Figure 1. The average age of the individuals in the sample is 27 years

at the beginning of the sample in 1967 and ends at 52 in 1992. In order to

capture the deterministic component of the income level as well as the e®ect

of the change of the age structure in the sample over time the individual

data have been regressed over a quadratic trend as:

log(Ii;t) = ai + bit + cit
2 + yi;t with i = 1; :::; n (11)

where Ii;t is the real individual income, yi;t is the regression residual and t is

a time trend equal to one in 1967. Only the signi¯cant coe±cients at the 95%

con¯dence are retained. In Figure 2 the average deterministic component,
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de¯ned as P
i exp(ai + bit + cit

2)

n
;

appears as the smoothed bold line. In the ¯gure it is plotted versus the

average age of the cross-section, the estimated income age pro¯le presents the

characteristic hump shape with a peak in the mid 40s and decline afterwards.

The residual yi;t of the above regression is our variable of interest.

There are two facts which are common knowledge about the behavior of

individual income data, the ¯rst one is that individual income is much more

variable than aggregate one, second that individual process are much less

persistent than aggregate ones. In light of those facts we start by investigate

the variance-covariance structure of the yi;t: Along the line of Abowd and

Card (1989) and Pischke (1995), we estimate the covariance and correlation

matrix of the income residual yi;t along the cross-section at each point in

time t between 1971-1990, as:
P
i(yi;t ¡ yt)(yi;t+h ¡ yt+h)

n

with h = 1; :::; 20 and yt the cross-section average at time t; and the results

are in the 20 £ 20 matrix in Table 1. Below the diagonal there is the co-

variance, while above the correlation. As a matter of comparison, Table 2

presents some descriptive statistics for relevant aggregate variables (GNP,

personal income and consumption, both absolute and per capita)1; in par-

ticular mean, standard deviation and autocorrelation up to lag ¯ve for the

log-change and standard deviation and autocorrelation up to lag ¯ve for the

residual of the regression of the log value on a deterministic quadratic trend.

An immediate fact clearly emerge from the inspection of Tables 1-2,

namely that the individual income variance is an order of magnitude larger

that the one of the aggregate income. This ¯nding is in line with similar

one of Abowd and Card (1989) and Pischke (1995) and while some of this

variation can be attributed to measurement errors, large part of it surely

re°ects the presence of large idiosyncratic income shocks. Cross section

dispersion of yi;t is relatively high in early 70s and the 80s and relatively

small in the second part of the 70s.

1All the aggregate data are NIPA in chained 1996 dollars.
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Turning to the o®-diagonal terms, the average ¯rst order correlation is

positive and on average over time equal to 0:37 and the second one is still

positive and equal to 0:15. However the o® diagonal term in Table 1 are not

pure autocorrelation coe±cients of the data given that they do not account

of the dependence in the cross-section average, yt:

To this end in Figure 3, the distribution over the individuals of the

¯rst four autocorrelations is displayed as well as the cumulative distribution

form each of the autocorrelations over the individuals versus the cumulative

density of the test of the null of zero correlations. These second plots are

utilized to asses if the sample dispersion in the correlation coe±cients would

be coherent with the null of zero correlation assuming that each income

process on which the correlation is calculated is a independent draw. The

average correlation at lag one is equal to 0:25 (standard error of the mean

0:008) and 0:02, ¡0:05, ¡0:09 and ¡0:11 at lag 2¡4 respectively (standard

error of the mean of 0:007, 0:006, 0:005 and 0:005).

Again the evidence is in line with the common knowledge that the indi-

vidual process are less persistent than the aggregate one, as the comparison

with the value of the autocorrelations in Table 2 point out. Moreover this

rapid decay of the covariance points to the idea that the stochastic term y

can be well described as a stationary process. This points is at odds with

previous literature (as Abowd and Card (1989) and Pischke (1995)) which

in estimating individual income process retained the idea of modelling the

growth rates of individual income as a simple short MA process, which in the

estimation turned out to have a negative ¯rst coe±cients. In the estimation

step, we will not impose the unit root but we will estimate a short ARMA

process for individual income and in this way allowing the possibility of a

unit root in the level of individual income.

4 Features of the common component in the cross

section

The previous section pointed to the fact that the individual income process

do present a very high variance respect to the aggregate data and also they
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show much lower persistence. However, these two facts can be the results of

large idiosyncratic income shocks as well as of the presence of measurement

errors at individual level. Here we investigate the key issue of the existence

of a common component (or common shock) in the cross-section of 950 time

series.

Retaining the assumption of linearity, we start modelling the individual

income process as the sum of two components:

yit = ªi(L)ut + »it = ft + »it; i = 1; :::; n;

where ut is an aggregate (common) shock and »it a stationary idiosyncratic

component, orthogonal to the common one, where ªi is a lag polynomial

term which represent the way in which the common shock a®ect the yit

process.2

Following Stock and Watson (1999) and Forni, Hallin, Lippi, and Re-

ichlin (2000), the presence of common components ut in the covariance

structure of a large cross-section can be inferred by the relative size of the

eigenvalues of the variance-covariance matrix of the data. In Table 3 the ¯rst

twenty eigenvalues associated with the contemporaneous variance-covariance

matrix of the data are reported. Clearly the ¯rst two dominating eigenvalues

point to the presence of some common feature in the data.3

To this end, we consider the cross-sectional average of the income process

yi as our aggregate measure:

Yn;t =
1

n

nX

i=1

yi;t: (12)

In the terminology of Forni, Hallin, Lippi, and Reichlin (2000), the averaging

operation is an aggregating sequence and, as the size of the cross-section

increases, Yn;t will be only a function of the common shocks ut: On the

contrary, if the shocks underlying the individual process were independent

2The assumption of a unique common shocks is only for convenience of exposition but

the same logic applies in the presence of multiple common shocks.
3The number of large eigenvalues in the contemporaneous variance-covariance matrix

cannot be directly associated to the presence of more common shocks, see (Forni, Hallin,

Lippi, and Reichlin (2000)).
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across agent or if they are only correlated among a limited amount across

agents, than the cross-sectional average of the stochastic components, Yn;t;

would converge to zero by a standard law of large number as the size of the

cross-section increases, conditional to the fact that the individual income

processes do not present large persistence, but this has been veri¯ed to be

not the case as in the previous section.4 This fact does not seem to be the

case as Figure 4 shows where Yn;t is the bold line. The variable Yn;t is the

aggregate measure of which we aim to disentangle the dynamic properties

thought the characteristic of the individual process yi;t:

There are two immediate concerns in this approach. First that the aggre-

gation in (12) is performed on the logarithm of the variable, while it would

be more appropriate to consider the logarithm of the cross-sectional average

of the level in order to resemble as close as possible the aggregation process

implicit in the national account macro data. Second element of uncertainty

is the relation between the variable Yn;t and its aggregate counterpart, in

particular the personal per-capita income coming from national accounts.

Relative to the ¯rst point, the relation between the

log(
1

n

nX

i=1

Ii;t)

and
1

n

nX

i=1

log(Ii;t) =
1

n

nX

i=1

(ai + bit + cit
2) + Yn;t

is not linear given that the expectation of the log is di®erent from the log

of the expectation and an exact mapping between the quantities is function

of the distribution of the idiosyncratic shocks and parameters. While it

would be quite hard to take fully account of that, empirically in Figure

5, we plotted the two series in the level and they are remarkably similar

and the correlations of their changes is above 0:90. Moreover it should be

stressed that we are not interested in the exact estimation of structural

relationships, where this type of non linear e®ect would result in a possible

bias in the estimation of the structural parameters as noted in Attanasio

4See Stock and Watson (1999) and Forni, Hallin, Lippi, and Reichlin (2000).
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(1999), but we are interested in understanding the dynamic property of the

data.

Concerning the relation between Yn;t and the aggregate income per

capita process the relation is more problematic issue that clearly relates

to the representativety of the PSID sample and consequently of our sub-

sample. It is very doubtful that a small sample of 950 income process can

be representative of the population and that it remains representative over

a twenty ¯ve year horizon, for this reason we are not stressing to much

the relation with the national account data, but we are more interested in

understanding the dynamic property of Yn;t per se given the properties of

the underlying individual process. However in Figure 4, the residual of the

regression of the log of the aggregate per capita income over a quadratic

trend is plotted together with the Yn;t process. The graph is quite striking

given that in the common sample the two time series are quite similar ex-

cept in the very beginning of our sample, which can be mainly related to

the feature of our PSID sub-sample. Since then the two data series provide

the same signal, having the same cyclical behavior and a correlation in the

period 1970-1992 of 0:90.

Under a set of conditions veri¯ed in the following section on the distri-

bution of the parameters characterizing the individual income process, as

result of the aggregation process the variable Yn;t will be function only of

the common (or aggregate) shocks and not of the idiosyncratic components

(including also idiosyncratic measurement errors). The dynamic property

of the aggregate are synthesized in its auto-correlation function in Figure 6,

where it is plotted together with the autocorrelation of the aggregate per

capita income and also with the average of the individual autocorrelation.

The ¯rst correlation of the aggregate Yn;t is much higher than the average

of the correlations and quite similar to the one of national account data;

after it declines to 0.3 at lag two and than goes to zero faster than the na-

tional account data one but remaining always higher than the average of the

individual correlations.

In the aggregation process two elements play a role. On one side the

aggregation decrease the e®ect of idiosyncratic innovations relative to the

common ones and on the other side it average the di®erent propagation
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mechanism of the common shocks. Here we are in the position of assessing

one the question of the paper, namely if the propagation mechanism of the

common shocks in the cross-section of individual is equal across agent, i.e.

ªi(L) = ª(L) 8i; or if it is di®erent. So we aim to understand if the

dispersion of the correlation observed in the previous section is due to the

presence of large idiosyncratic noise and measurement errors.

As a ¯rst step in Figure 7, the correlations of the individual income

process yi;t with the aggregate one Yn;t at lags 0 to 3 are reported. Being

the aggregate variable Yn;t just a function of the aggregate shocks (at least

asymptotically) it follows that if the true data generating process is of the

form:

M0 : yit = ª(L)ut + »it = ft + »it with i = 1; :::; n

then the dispersion of the empirical correlation is only a result of the small

sample variability. In Appendix A, we develop a formal testing procedures

based on the above intuition which consider the distribution of the correla-

tion at lag h between the aggregate variable Y and the individual. Then one

can test the null of ªi(L) = ª(L) 8i through a test statistic denominated

Th: Moreover a modi¯cation of the same test for the more general hypothesis

of ªi(L) = ®iª(L) with ®i a positive scalar 8i; called Rh is also proposed.

The results in Figure 8.1, 8.2 and 8.3 are the cumulative distribution

function (cdf) associated with the statistics T0; T1 and T2 while Figure

8.4 and 8.5 reports one relative to the statistics R1 and R2; in both cases

they are compare with the cdf under the null. The results point to the

rejection of the hypothesis of homogeneity in the propagation mechanism of

the common shocks given that all the statistic proposed present cdf which

are far away from the standard normal one. While the small sample size

of the data can be element of concern in the estimation, in light of the

simulation exercise in the Appendix A it seems that the small sample e®ect

cannot by himself generate the sharp di®erences between the statistic cdf

have the one presented above.
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5 Model and estimation

In the actual estimation we have to consider the trade o® between accom-

modating the possible heterogeneity in the data generating process and the

need of a parsimonious speci¯cation due to the short data set in hand. We

considered a model with an autoregressive part of order one and two moving

average components, one for the common shock ut and a second one for the

idiosyncratic term ²it: The speci¯cation for each i is as follows:

yit =
°0i + °1iL

1 ¡ ®iL
ut +

1 + ±iL

1 ¡ ®iL
²it = y²it + yuit; (13)

with ut is an i:i:d: innovation having unit variance and ²it another i:i:d: se-

quence with mean and variance (0; ¾2²i). Finally ut and ²si are independent

at all t; s; i. For notational convenience we denote with µi the parameters

vector
©
®i; °0i; °1i; ±i; ¾

2
²i

ª
: At the individual level the model is indistinguish-

able from a simple ARMA(1,1) process as:

(1 ¡ ®iL) yit = (1 + ´iL)wit; (14)

with wit » (0; ¾2wi) being a linear combination of the common and idiosyn-

cratic innovations. However the cross sectional aggregation of the innova-

tions over the agents can allow to recover the common shocks given that:
P

wit
n

i! E(°0)ut:

The estimation procedure for the model in (13) for each i hinges upon this

and it is composed by the following steps:

1. The ARMA(1,1) model in (14) is estimated for every i and the inno-

vation bwit recovered;

2. The cross-sectional average of the bwit delivers an estimates of the

E(°0)ut; after standardization but are recovered:

3. The estimated common shock but is utilized as regressor in the estima-

tion of (13) for each i: This delivers an estimation of the parameters

vector bµi and of the idiosyncratic innovations b²it:
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Given the new estimates of wit as b°0ibut+b²it the procedure can be iterated

going to step 2 until convergence; the need for iteration derives from the

improve in e±ciency in the estimates of the common shock ut: In the actual

estimation, we iterated the procedure six times. This was enough to assure a

correlation of 0.97 between the parameters estimates at the last two rounds.

Note that in the cross section there is a problem of identi¯cation of

the sign of the common shocks and the sign of the loading parameters of

the common shocks, namely °0i and °1i: To couple with this identi¯cation

problem, we assumed that the average of °0 loading is positive.

Moving to the result of the estimation, Figure 9 shows the common shock

ut as at the last iteration of the estimation procedure; while a summary of

the statistics of the estimated parameters is in Table 4. The autoregressive

parameter ® assumes values in the range [-1.36, 1.24] with mean 0.356 but

median 0.529 pointing to a skewed distribution towards unit root. Concern-

ing the factor loadings of the common shocks, they have mean respectively

0.0716 and 0.0253, but again the distribution is skewed to the left and the

median is equal to 0.0349 and 0.011 respectively. Figure 10 shows the dis-

tribution of the autoregressive parameters ®; the density is uni-modal and

skewed to the right.

An additional problem arises when estimating autoregressive models

with a small sample. It is well-known that a signi¯cative downward bias

a®ects the least squares estimator of the autoregressive parameters, espe-

cially when the latter is close to unity. Bias correction methods do exist but

only for a class of relatively simple models (see Andrews (1993)). Unfortu-

nately, model (13) is ruled out from such class, due to its moving average

component. Moreover, in our random coe±cient framework, this bias prob-

lem asks for a correction of the entire parameters' distribution. The problem

can be seen as follows. We can estimate fT (µ), that is the empirical distri-

bution of the µi for a sample of size T (henceforth the small-sample density).

On the other hand, we are really interested in the population density f(bµ)
which satis¯es:

fT (bµ) =
Z

KT (bµ; µ)f(µ)dµ (15)
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where KT (bµ; µ) indicates the small-sample kernel which, for a given f(:)

yields fT (:) for a given sample of size T . We proceed using the following

argument in order to recover f(:).

Assume that the true density is fT (:). We can then seek its associated

small-sample density, that is another function hT such that:

hT (bµ) =
Z

KT (bµ; µ)fT (µ)dµ: (16)

This is not equivalent to evaluate the bias for each point estimate but it

means that we are in e®ect re-sampling from fT (µ), generate the data, re-

estimate and obtaining hT (µ): Hence, let us de¯ne the change-of-measure
fT (µ)
hT (µ)

. When we applied this change of measure to hT (:) yields the population

density under which hT (:) was generated, namely fT (:): Moreover if the

realizations under hT (:) are reweighted by the change of measure fT (µ)
hT (µ)

;

they can be treated as realizations from fT (:):

Applying the same line of reasoning in order to recover the population

density f(:) associated with the small sample density fT (:); one would need

the change of measure f(µ)
fT (µ)

. In that case the change of measure f(µ)
fT (µ)

could

be appiled to the realizations under fT (:) in order to recover the moments

of the parameters under f(:):

Of course, we do not have f(µ)
fT (µ)

but rather fT (µ)
hT (µ)

and we can use it as a

¯rst approximation. In fact properly re-arranging terms in (15) it yields:

f(bµ) ¡ fT (bµ) fT (bµ)

hT (bµ)
=

Z
KT (bµ; µ)( f(bµ)

fT (bµ)
¡ fT (bµ)

hT (bµ)
)f(µ)dµ; (17)

and this saws that the corrections works, namely the left hand side converges

to zero, as long as the term f(µ)
fT (µ)

¡ fT (µ)
hT (µ)

is small and asymptotically zero.

We computed hT (µ) and the change fT (µ)
hT (µ)

as follow. We draws 1000

sample of µ from the empirical distribution fT (µ) and given those parameters

values we generated the associated data yit with sample size equal to the one

of the true data; on the generated data we applied our estimation procedure

to recover bµ and to have an estimate of hT (µ): The procedure is repeated

100 times and the average of the empirical densities hT (µ) is considered.

The results of the change of measure are visible in the Figure 10, where

the distribution of the autoregressive parameter ® is plotted together with
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the bias corrected one. In Table 4 the moment of the parameters of inter-

ested under the bias corrected densities are reported in the last three lines

of the table. As expected the bias correction shift the distribution of the

persistence parameters to the right versus the unit root; the mean increases

to 0.430 while no major correction are present for the other parameters.

Figure 11 reports the again the bias-corrected distribution together with its

90 per cent con¯dence band, based on the 100 bootstrap estimates of f(®).

6 Persistence of aggregate income

We now discuss the empirical results, focusing on the degree of memory

of aggregate income. The key variable is the cross-sectional distribution of

the autoregressive coe±cients ®i. As indicated above, Figure 10 shows the

nonparametric estimate of such distribution, both un-adjusted and adjusted

for the small-sample bias. The following features emerge. First, the support

of the distribution is [¡1; 1]. Only 19 units exhibit an estimated value greater

or equal than 1 and 6 are below ¡1. Second, the distribution appears uni-

modal, with the great majority of individuals displaying a positive auto-

regressive coe±cient and a mode of 0.53 in the original density and 0.62

in the adjusted one. Finally, the behaviour near unity of such distribution

satis¯es

f̂(®) » c(1 ¡ ®)0:13 as ® ! 1¡;

implying that (10) holds with

^̄ = 0:13: (18)

The bootstrap standard deviation of ^̄ is 0.07.

Let the (log) aggregate be

gn;t =
1

n

nX

i=1

log(Yi;t) = log

Ã
nY

i=1

Yi;t

! 1
n

= logGn;t;

thus equal to the logarithm of the geometric mean Gn;t of individual incomes.

It is well known that the geometric mean is di®erent from the arithmetic
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mean, in particular satisfying

Zn;t =
1

n

nX

i=1

Yi;t > Gn;t:

Note, however, that in terms of growth rates, use of these measures should

be approximately equivalent. In fact, writing Zn;t = rn;tGn;t for some 1 <

rn;t < 1 yields, setting zn;t = log Zn;t,

zn;t ¡ zn;t¡1 = gn;t ¡ gn;t¡1 + log
rn;t

rn;t¡1
¼ gn;t ¡ gn;t¡1

whenever rn;t is approximately constant across time as also the result of the

previous section shows as well as Figure 5.

In our application n is roughly 1; 000 and gn;t will be well approximated

by the limit aggregate gt. Indeed, under (18)

gn;t ! gt as n ! 1

in mean square. Under (18) the acf of the gt satis¯es

cov(gt; gt+u) » c u¡1:1 as u ! 1:

Therefore, the aggregate appear to be a stationary process around a deter-

ministic trend. Technically, the aggregate displays short memory. However,

the acf decays toward zero as a power law, a case of quasi long memory and

thus markedly di®erent from the behaviour of the individual income pro-

cesses. This type of behaviour mimics extremely well a pure long memory

process and, as a consequence, a unit root process.

Moreover, we estimate the memory parameter using now the NIPA data,

based on zn;t = log Zn;t. Although, as indicated above, there is no perfect

correspondence between the zn;t and the gn;t, the estimate of the memory

parameter appear unchanged, with

cov(zn;t; zn;t+u) » c u¡1:2 as u ! 1:

with standard deviation of the estimate of 0:24: Finally, note that under

(18), the idiosyncratic component vanishes (in mean square) at the aggregate

level.
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7 Consumption smoothing

Aggregate consumption is smoother than GNP. This is evident looking at

the ¯gures on the second and eighth row of Table 5. This stylized fact

was the principal motivation for the formulation of Friedman's permanent

income hypothesis (PIH). However, the relationship between consumption

and income °uctuations is far from obvious. In fact, based on the modern

version of the PIH (see Sargent (1978)), it turns out that the model can

predict a greater volatility of aggregate consumption than the one of ag-

gregate income! Therefore, the excess smoothness (ES) phenomenon would

then be in con°ict with the theory, justifying the denomination of excess

smoothness of aggregate consumption. The prediction of the PIH model de-

pends entirely on the dynamic properties of the aggregate income process:

smoothness of consumption will be excessive if the income process has a unit-

root process and not so if the income process is stationary (see Campbell

and Deaton (1989)). The views, empirically motivated, that consumption is

smoother than income and that the latter is well described by a unit root

process represent a serious challenge to the empirical importance of the PIH

model. Therefore, the perfect information model has been suitably modi¯ed

by means of di®erent types of frictions which attenuate the model-implied

volatility of aggregate consumption (see Attanasio (1999)). Pischke (1995)

allows for heterogeneity of the income innovations but some frictions are

needed in order to attenuate the excess smoothness phenomenon. In this

paper we re-examine the PIH model but allowing for complete heterogene-

ity of both innovations and parameters. It turns out that the latter source

of heterogeneity permits to reconcile the ES, in the sense that, thanks to

the aggregation e®ect, the model-driven aggregate consumption is smoother

than aggregate income. More importantly, this result holds within the basic,

full information, framework. Introducing some frictions might exacerbate

the result though. The implications of parameters' heterogeneity for Good-

friend (1992) and Pischke (1995) versions of the PIH model are reported in

Appendix B.

We maintain the assumption that individual income is described by the
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dynamic factor model introduced in section 5:

yit =
°0i + °1iL

1 ¡ ®iL
ut +

1 + ±iL

1 ¡ ®iL
²it = yuit + y²it; (19)

with

j ®i j< 1 a:s:

The idiosyncratic component vanishes (in mean square) whenever ¯ > ¡1=2

(see Za®aroni (2003)). When ¯rst-di®erencing, however, this holds for any

shape of f(®):
1

n

nX

i=1

(y²it ¡ y²it¡1) !2 0 as n ! 1:

Therefore, for any shape of the distribution of the ®i, the model implied for

the ¯rst-di®erenced aggregate income is

1

n

nX

i=1

¢yit !2 ¢Yt = º(L)²t

setting º(L) =
P1
k=0 ºkL

k where

º0 = E°0i; º1 = E(°0i(®i¡1)+°1i); ºk = E (°0i®i+°1i)(®i¡1)®k¡2i ; k ¸ 2:

Agents can distinguish between common and idiosyncratic component. There-

fore, applying the modern PIH (see Campbell and Deaton (1989, eq (1)))

to each of the two components yields

¢cit =
r

1 + r

µ
(1 + r)°0i + °1i

1 + r ¡ ®i

¶
ut +

r

1 + r

µ
(1 + r + ±i
1 + r ¡ ®i

¶
²it:

Whenever r > 0
1

n

nX

i=1

¢cit !2 ¢Ct = º(
1

1 + r
)ut:

In general (see Za®aroni (2003))

E(
®i

1 + r
)k = (

1

1 + r
)kE®ki » c(

1

1 + r
)k k¡(¯+1); as k ! 1:

Therefore, condition r > 0 ensures that
¯̄
¯̄º(

1

1 + r
)

¯̄
¯̄ < 1; (20)
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although the left-hand side of (20) will be larger than for the case of ho-

mogeneous parameters. However, when r = 0 then sum of the E®ki might

not be summable anymore. Of course, a compensation occurs due to the

terms r=(1 + r) which will tend to make the ¼k arbitrarily small. Indeed,

one can easily show that this interest rate e®ect is dominant, compared with

the aggregation e®ect. In fact, considering the simple case of independent

parameters,

º(
1

1 + r
) =

r

1 + r

µ
E°0i +

E°1i
1 + r

¶ 1X

k=0

E®ki
(1 + r)k

:

For µ
1

1 + r

¶k
» cos(k

p
r) as r ! 0+

then 1X

k=0

E®ki
(1 + r)k

» c r¯ as r ! 0+:

Thus

var(¢Ct) » c r2(1+¯) as r ! 0+; (21)

equal to zero in the limit, recalling that it must be ¯ + 1 > 0.

Aggregate consumption volatility is

var(¢Ct) = ¾2²

µ
º(

1

1 + r
)

¶2

and aggregate income volatility

var(¢Yt) = ¾2²

Ã 1X

k=0

º2k

!

Whenever ³
º( 1
1+r )

´2
¡P1

k=0 º2k
¢ < 1 (22)

then there would be no issue of ES, since the model would predict that in fact

consumption is smoother than income, in line with the empirical evidence.

Table 5 reports the results of some numerical examples, to assess the

extent to which (22) is veri¯ed, allowing for coe±cients' heterogeneity. We
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assume that the °0i; °1i are independent from the ®i which are distributed

according to the Beta distribution f2(®) (eq. (9)) with mean E(®i) = ¹.

Using (5), it easily follows that

var(®i) =
¹(1 ¡ ¹)

q( 1
(1¡¹) + 1

q )
;

converging towards zero as q ! 1, hence yielding ®i = ¹ a:s:. Therefore,

taking q large we are able to obtain the homogeneous parameters case as a

special case of our set-up.

Table 5 shows the result obtained for various shape of the cross-sectional

distribution of the ®i and

Table 5 permits to evaluate the e®ects of parameters' heterogeneity, com-

pared with the case where homogeneous parameters case. This last case is

represented by the last column, corresponding to q = 100. In this case the

distribution of the ®i is (nearly) degenerate around E(®i) = ¹. The classi-

cal PIH model with (homogeneous) stationary ARMA income processes and

unit-root income processes correspond, respectively, to the ¯rst and second

portions of the table (¹ = 0:8 and 0:95) and to the last portion of the table

(¹ = 0:999). The standard deviations ratios here obtained mimic closely

the values reported in the literature under these two hypothesis (see, for

example, Deaton (1992, p.111)). All the other columns correspond to the

heterogeneous case. Recall that the smaller is q, the more dense is the dis-

tribution of the ®i around unity. For q below 0:5 the (log) income processes

is nonstationary and for q between 0:5 and 1 is stationary but with long

memory. Equation (22) is nevertheless always well de¯ned since the ºk are

the MA coe±cients of the ¯rst-di®erences (log) income, always stationary

for any values of q. In all cases, aggregation changes the impulse response

of the income processes as q diminishes and, as a consequence, the standard

deviations ratio increases.

It turns out that for ¹ equal to 0:8 and 0:95 the standard deviations

ratio is always below one, although increasing with r and with 1=q. Only

for ¹ very close to unity (¹ = 0:999), the model predicts that consumption

is more volatility than income in most cases. The intuition underlying the

result works as follows. Aggregation induces a substantial change in the
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Table 5:

Ratio of consumption volatility versus income volatility

f2(®)

r E(°1;i) q = 0:2 0:3 0:7 1 3 100

¹ = 0:800

:001 0:5 0.35 0:22 0:05 0:03 0:01 0:01

:01 0:5 0.55 0:42 0:21 0:15 0:08 0:06

:05 0:5 0.73 0:64 0:46 0:39 0:29 0:24

:001 1 0.38 0:23 0:06 0:03 0:01 0:01

:01 1 0.59 0:45 0:22 0:17 0:08 0:06

:05 1 0.77 0:67 0:48 0:41 0:30 0:25

¹ = 0:950

:001 0:5 0.50 0:36 0:14 0:09 0:04 0:03

:01 0:5 0.77 0:66 0:46 0:39 0:27 0:22

:05 0:5 0.97 0:91 0:80 0:76 0:69 0:64

:001 1 0.53 0:38 0:14 0:09 0:04 0:03

:01 1 0.81 0:69 0:48 0:41 0:29 0:23

:05 1 1.01 0:95 0:83 0:79 0:72 0:66

¹ = 0:999

:001 0:5 1.01 0:95 0:84 0:79 0:72 0:67

:01 0:5 1.24 1:23 1:22 1:22 1:21 1:21

:05 0:5 1.28 1:27 1:27 1:27 1:26 1:26

:001 1 1.06 0:99 0:88 0:84 0:76 0:71

:01 1 1.31 1:29 1:28 1:28 1:27 1:27

:05 1 1.32 1:32 1:31 1:31 1:31 1:30

¹ = 0:600

:001 0:04 0.23 0:13 0:03 0:11 0:01 0:01

:01 0:04 0.37 0:27 0:11 0:75 0:04 0:03

:05 0:5 0.51 0:43 0:27 0:22 0:15 0:12

The table reports the standard deviations ratio

jº( 1
1+r )j¡P1

k=0
º2

k

¢ 1
2

for several combination of the parameters. We set E°0;i = 1.

for all cases but case ¹ = 0:6 where we set E°0;i = 0:1.

f2(®) denotes the Beta density with parameter q (and eq.(5)).28



impulse response of the aggregate income process, as indicated in section 3,

with respect to the exponential decaying impulse response of the individual

income processes. Namely, the ºk decay hyperbolically, as k¡(q+1), for k

going to in¯nity. On the other hand, the PIH implies that the ¼k decay

as 1=(1 + r)k k¡q where the ¯rst, exponential factor, dominates for r > 0.

Therefore, the e®ect of aggregation on consumption dynamics is attenuated

by the very nature of the model. Hence, even though parameter's hetero-

geneity does in°uence the predicted volatility ratio, the PIH model pins

down the behaviour of aggregate consumption tightly.

The results are very sensitive to the assumptions made on r. The most

reasonable values for the real interest rate are r = 0:001, virtually zero, and

r = 0:01, resembling values used in the literature. In contrast, changes of

E°1;i have a negligible e®ect, and so do changes E°0;i, not reported for sake

of simplicity.

Allowing for heterogeneity represents an intermediate case between the

homogeneous stationary case (®i = ®, smaller than one in absolute value)

and the homogeneous unit root case (®i = 1). In the latter case, maintaining

heterogeneity of the MA coe±cients,

var(¢Ct) = ¾2²

µ
E°0i + E

°1i
1 + r

¶2
;

and

var(¢Yt) = ¾2²

³
E2°0i + E2°1i

´
:

Therefore, the convergence of r to zero does have only a negligible e®ect

on aggregate consumption dynamics. Indeed, when °0i°1i > 0 a:s: then ag-

gregate consumption will certainly be more volatile than aggregate income.

This e®ect is only mitigated in our case (cf. (21)), since q = ¯ + 1 > 0, but

not eliminated. In the homogeneous and stationary parameter case, instead,

the interest rate e®ect dominates and var(¢Ct) converges to zero fast, with

r2.

The last panel of Table 5, corresponding to ¹ = 0:6, shows the standard

deviation ratio for parameter values that match estimated values of the

median of the corresponding estimated cross-sectional distribution. Note

the dramatic e®ect of parameter heterogeneity, with an implausibly small
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ratio for the homogeneous case. Note, though that the ratio is always smaller

than the aggregate estimate for plausible values of the real interest rate.

8 Conclusion

This paper provides a framework able to estimate the relationship between

aggregate dynamics and individual heterogeneity. In particular, we are in-

terested in the mapping between the shape and degree of heterogeneity and

the degree of memory of the aggregate. When applying such framework to

data on individual income (PSID) and aggregate income (NIPA), we con-

clude that given the observed structure of the individual data, aggregate

per capita income is well described by a trend stationary process (with a

deterministic trend). The unit root proposition is highly rejected by the

data.

We also explore the implications of individual heterogeneity for the con-

sumption smoothness phenomenon.
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Tables

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

1971 0.24 0.36 0.12 -0.02 -0.08 -0.06 -0.14 -0.15 -0.20 -0.16 -0.16 -0.12 -0.06 -0.06 -0.13 -0.11 -0.11 0.01 0.00 -0.05

1972 0.08 0.22 0.38 0.19 0.09 0.10 -0.04 -0.08 -0.17 -0.13 -0.22 -0.17 -0.18 -0.21 -0.25 -0.15 -0.09 -0.09 -0.03 -0.05

1973 0.02 0.07 0.17 0.55 0.20 0.20 0.07 0.04 -0.11 -0.17 -0.18 -0.25 -0.23 -0.23 -0.26 -0.16 -0.19 -0.13 -0.04 -0.10

1974 0.00 0.03 0.08 0.13 0.32 0.27 0.16 0.09 0.01 -0.03 -0.11 -0.08 -0.17 -0.20 -0.19 -0.21 -0.23 -0.13 -0.09 -0.12

1975 -0.02 0.02 0.03 0.05 0.16 0.32 0.19 0.12 0.10 0.02 -0.08 -0.05 -0.12 -0.21 -0.17 -0.16 -0.26 -0.15 -0.10 -0.06

1976 -0.01 0.02 0.03 0.03 0.04 0.12 0.40 0.13 0.09 0.00 -0.03 -0.05 -0.14 -0.14 -0.15 -0.22 -0.22 -0.22 -0.13 -0.20

1977 -0.02 -0.01 0.01 0.02 0.03 0.05 0.12 0.37 0.25 0.07 0.04 -0.08 -0.11 -0.16 -0.15 -0.25 -0.17 -0.19 -0.17 -0.17

1978 -0.03 -0.01 0.01 0.01 0.02 0.02 0.05 0.13 0.43 0.13 0.13 -0.04 -0.17 -0.20 -0.16 -0.23 -0.21 -0.13 -0.16 -0.11

1979 -0.03 -0.03 -0.01 0.00 0.01 0.01 0.03 0.05 0.11 0.42 0.27 0.06 -0.10 -0.18 -0.19 -0.21 -0.22 -0.13 -0.15 -0.13

1980 -0.03 -0.02 -0.02 0.00 0.00 0.00 0.01 0.02 0.05 0.11 0.43 0.29 -0.03 -0.11 -0.14 -0.16 -0.23 -0.21 -0.19 -0.09

1981 -0.02 -0.03 -0.02 -0.01 -0.01 0.00 0.00 0.01 0.03 0.04 0.09 0.47 0.03 -0.03 -0.08 -0.21 -0.16 -0.27 -0.23 -0.12

1982 -0.02 -0.03 -0.04 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.03 0.05 0.11 0.19 0.02 -0.02 -0.17 -0.16 -0.17 -0.09 -0.05

1983 -0.01 -0.04 -0.04 -0.03 -0.02 -0.02 -0.02 -0.03 -0.01 0.00 0.00 0.03 0.17 0.33 0.16 0.02 -0.01 -0.11 -0.13 -0.11

1984 -0.01 -0.04 -0.04 -0.03 -0.03 -0.02 -0.02 -0.03 -0.02 -0.01 0.00 0.00 0.05 0.15 0.36 0.17 0.13 -0.05 -0.11 -0.06

1985 -0.02 -0.05 -0.04 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.00 0.03 0.06 0.16 0.44 0.17 -0.04 0.01 -0.04

1986 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.03 -0.03 -0.02 -0.03 -0.02 0.00 0.03 0.07 0.16 0.35 0.20 0.12 0.02

1987 -0.02 -0.02 -0.03 -0.03 -0.04 -0.03 -0.02 -0.03 -0.03 -0.03 -0.02 -0.02 0.00 0.02 0.03 0.06 0.17 0.35 0.10 0.06

1988 0.00 -0.01 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.01 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 0.03 0.05 0.13 0.38 0.16

1989 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.01 -0.02 -0.02 0.00 0.02 0.02 0.05 0.14 0.31

1990 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 0.00 0.01 0.02 0.04 0.13

Table 1 - Covariance and Correlation between Income: PSID 1971-1990.
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Income Consumption GNP Income
per cap

Consumption
per cap

GNP
per cap

delta-log mean 0.0305 0.0347 0.0332 0.0177 0.0219 0.0204

std 0.0257 0.0174 0.0242 0.0260 0.0180 0.0245

½1 0.1682 0.1696 -0.0028 0.1588 0.1996 -0.0015

½2 0.0358 -0.0713 -0.0378 0.0257 -0.0442 -0.0366

½3 -0.1438 -0.1158 -0.1893 -0.1582 -0.0923 -0.1938

½4 -0.0377 -0.0691 -0.0860 -0.0609 -0.0560 -0.0963

½5 0.0828 -0.0185 0.0454 0.0482 -0.0457 0.0249

log-detr. std 0.0373 0.0283 0.0299 0.0387 0.0323 0.0309

½1 0.6306 0.7688 0.6576 0.6346 0.8100 0.6638

½2 0.3786 0.4916 0.3487 0.3951 0.5815 0.3764

½3 0.1737 0.2723 0.0721 0.1957 0.3880 0.1082

½4 0.1337 0.1264 -0.0307 0.1547 0.2399 0.0078

½5 0.0643 -0.0067 -0.1000 0.0708 0.0846 -0.0780

Table 2 - Aggregate data descriptive statistics

(NIPA source, chained 1996 dollars annual ranging from 1946 to 2001)

¡0

¸1 0.14

¸2 0.10

¸3 0.08

¸4 0.07

¸5 0.06

¸6 0.05

¸7 0.05

¸8 0.04

¸9 0.03

¸10 0.03

Table 3 - Standardized eigenvalues associated to variance-covariance matrix
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® °0 °1 ± ¾²

mean 0.356 0.072 0.025 0.078 0.433

median 0.529 0.035 0.011 0.055 0.277

std 0.536 0.194 0.148 0.583 0.432

mean 0.430 0.075 0.026 0.047 0.489

median 0.616 0.040 0.013 0.072 0.275

std 0.559 0.185 0.130 0.489 0.593

Table 4 - Moments of the empirical distribution of micro parameters
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Figure 1 - Mean (bold) and median of real income.

5000

10000

15000

20000

25000

30000

35000

40000

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Figure 2 - Estimated deterministic component as function of average age.
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Figure 3 - Histogram of autocorrelations of agent i at lag 1-3

and their cdf versus the cdf of the test of the zero autocorrelation.
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Figure 3 - Histogram of autocorrelations of agent i at lag

and their cdf versus the cdf of the test of the zero autocorrelation.
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Figure 4 - Average of the PSID income process and NIPA aggregate
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Figure 6 - Autocorrelation of the aggregate Y , avegage of the agent's

autocorrelations and autocorrelation of the NIPA per capita personal

income (quadratic detrended).
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Figure 7 - Histogram of correlations of agent i with aggregate at lag 0-2

and their cdf versus the test of zero autocorrelation.
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Figure 7 - Histogram of correlations of agent i with aggregate at lag 3-4

and their cdf versus the cdf of the test of the zero autocorrelation.
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Fig. 8.1: T0 on the PSID data Fig. 8.2: T1 on the PSID data

Fig. 8.3: T2 on the PSID data.

Fig. 8.4: R1 on the PSID data Fig. 8.5: R2 on the PSID data
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Figure 9 - Common shock ut:
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Figure 10 - Distribution of ®:

Figure 11 - Corrected density of ® and 90% con¯dence bands.
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9 Appendix A - Tests of heterogeneity

Let us consider the model under the null as:

M0 : xit = ª(L)ut + »it = ft + »it with i = 1; :::; n

with »it a stationary idiosyncratic component such that ut?»is 8t; s and ut

is a iid(0; ¾2u) and ª(L) is squared summable. The model under the null

of the test is the one which imposes the homogeneity in the propagation of

the commons shocks. Under the altervative the propagation of the common

shock ut is di®erent across agents as:

M11 : xit = ªi(L)ut + »it = fi;t + »it:

Also we consider the following modi¯cation of the main alternative M11 as:

M12 : xit = ®iª(L)ut + »it = ®ift + »it

which allows for di®erent impact e®ect of the aggregate shocks but equal

dynamic over time; clearly M12 ½ M11.. Assume that conditions hold such

that:
1

n

nX

i=1

xi;t = Xn;t !2 Xt as n ! 1:

which their are automatically ful¯ll under M0: Consider the contemporane-

ous cross-covariance of the income process of each agent i with the aggregate

mean Xn;t:

ĥi;0 =
1

T

TX

t=1

Xn;t(xi;t ¡ xi);

and the lag ¿ cross-covariance correspondent:

ĥi;¿ =
1

T

TX

t=1

Xn;t(xi;t+¿ ¡ xi):

Under speci¯cation M0 :

ĥi;¿ =
1

T

TX

t=1

ft(ft+¿ + »i;t+¿ ¡ ¹f ¡ »i;:) +
1

T

TX

t=1

»:;t(ft+¿ + »i;t+¿ ¡ ¹f ¡ »i;:);
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and

¹̂
h:;¿ =

1

n

nX

i=1

ĥi;¿

=
1

T

TX

t=1

ft(ft+¿ + »:;t+¿ ¡ ¹f ¡ »:;:) +
1

T

TX

t=1

»:;t(ft+¿ + »:;t+¿ ¡ ¹f ¡ »:;:);

setting

¹f =
1

T

TX

t=1

ft; »:;t =
1

n

nX

i=1

»i;t; »:;: =
1

T

TX

t=1

»:;t; and »i;: =
1

T

TX

t=1

»i;t:

As n ! 1

¹̂
h:;¿

n! 1

T

TX

t=1

(ft ¡ ¹f)(ft+¿ ¡ ¹f);

ĥi;¿
n! 1

T

TX

t=1

(ft ¡ ¹f)(ft+¿ ¡ ¹f + »i;t+¿ ):

Note ¯rst that the mean of ĥi;¿ over i is the same both under the model M0

and M11; so the mean over i of the covariance does not allow to discriminate

between the two speci¯cation. The variance of the estimate of the cross

covariance of the agents i with the aggregate under the model M0 is given

by given that ft?»is 8t; s:

E(ĥi;¿ ¡ ¹̂
h:;¿ )

2 n! E

0
@ 1

T 2

TX

t;s

(ft ¡ ¹f)(fs ¡ ¹f)»i;t+¿»i;s+¿

1
A

' 1

T

1X

¿=¡1
°f (¿)°»i(¿)

T! 0:

We are interested in the case n large and T small. Thus, as n ! 1, we can

consider the statistic

Ti;¿ =
ĥi;¿ ¡ ¹̂

h:;¿
³
1
T2

PT
t;s(ft ¡ ¹f)(fs ¡ ¹f)»i;t+¿»i;s+¿

´ 1
2

n!
1p
T

PT
t=1(ft ¡ ¹f)»i;t+¿

³
1
T

PT
t;s(ft ¡ ¹f)(fs ¡ ¹f)»i;t+¿»i;s+¿

´1
2
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which under model M0 is asymptotically equivalent to:

1p
T

PT
t=1(ft ¡ ¹f)»i;t+¿

qP1
¿=¡1 °f (¿)°»i(¿)

;

clearly N(0; 1) for any i (under suitable conditions on ft) as T goes to

in¯nity. If T is large, we could compute the Ti;¿ for each i in the cross-section

and, under M0; they should be considered as draw from the distribution

under the null and so they should behave as a standard normal. On the

other hand if T is small, we should boostrap but given the autocovariance

structure of the » we cannot do it in general and so we resort on the use on

asymptotic.

The idea is to estimate the test Ti;¿ for the di®erent agents i and then

construct the empirical distribution of the Ti;¿ over i for di®erent ¿ . Under

the null, asymptotically the statistic for each agent i should be a draw from

a standard normal and so the distribution over i of the statistics should

resemble the one of a standard normal.

Under the alternatives M11 and M12; the numerator of the statistic will

converge to:

ĥi;¿ ¡ ¹̂
h:;¿

n! 1

T

TX

t=1

(ft ¡ ¹f)(f it ¡ ¹f i ¡ ft + ¹f + »i;t+¿ ) (23)

T!
X

j

(Ãij ¡ Ãj)Ãj¾
2
u;

while the estimate of °»i(¿) under the alternative will converge to:

b°»i(¿) = °»i(¿ ) +
X

j

(Ãij ¡ Ãj)(Ã
i
j+¿ ¡ Ãj+¿ )¾

2
u:

So for each i under the alternative, the test will be distributed normally with

mean as in (23) and variance not unitary. The distribution over the i agents

of the asymptotic distribution will depend on the cross section distribution

of the Ãi parameters and so would not be standard normal in general.

Finally, the proposed test strategies will have power both versus M11

and also with respect to M12: However model M12 is not an interesting
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alternative given that the di®erence across agents is only in term of impact

of the aggregate shock on each agent but not in term of di®erent dynamic.

In order to design a test strategy which has power only versus the interesting

alternative of di®erent cross section dynamic, we propose the following:

Si;¿ =
p

T

0
@ ĥi;¿

ĥi;0
¡

¹̂
h:;¿
¹̂
h:;0

1
A

for ¿ > 1; under the null M0 [ M11 the test will be distributed as N(0; V )

where

V =
1

¾4f

1X

k=¡1
°f (k)°»i(k + ¿):

9.1 Small sample performance

A small Montecarlo is performed in order to investigate the small sample

properties of the testing strategy. The data generating process has the

following speci¯cation:

M12 : xit = ai(ut ¡ ½iut¡1) + ²it with ²it » N(0; 1)

where ai » U [0:5; 1:5] and ½i » U [0; 1:0]: The restricted model with equal

dynamic is:

M11 : xit = ai(ut ¡ ½ut¡1) + ²it with ²it » N(0; 1);

and, under the null, the model reduces to:

M0 : xit = (ut ¡ ½ut¡1) + ²it with ²it » N(0; 1)

with ½ = 0:5: We considered a population of 500 agents, i = 1; :::; 500 and

the sample size is T = 30:

The simulation exercise is structured that at each Montecarlo replica-

tion we generated xit 8i and computed the statistic Ti;0, Ti;1 and Ri;1: The

statistics are then used to estimate their empirical distribution over i; the

¯gures below reports the average of the cumulative empirical distribution

of the three statistics over the Montecarlo replications (500) and its 90%

con¯dence interval versus the standard normal cdf.
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In Figure A, the data generating process is M0; as expected they resemble

very closely the asymptotic distribution. In Figure B, the data generating

process is M11 and the average distribution over i of all three tests is far

from the null one; this evidence is particularly true for the autocovariance

based test T . Finally in Figure C, the DGP follows M12 and as expected

the R test does not have power versus this form of heterogeneity which is

instead detected in the generality of cases by the T test.

Fig A.1: T0 statistic under model M0 Fig A.2: T1 statistic under model M0

Fig A.3: R1 statistic under model M0
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Fig B.1: T0 statistic under model M11 Fig B.3: T1 statistic under model M11

Fig B.3: R statistic under model M11

Fig C.1: T0 statistic under model M12 Fig C.2: T1 statistic under model M12
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Fig C.3: R1 statistic under model M12

10 Appendix B - Imperfect information

We now discuss the e®ect of aggregation for two cases of imperfect infor-

mation. In particular, we generalize Pischke (1995) and Goodfriend (1992)

versions of the PIH.

Unobservable aggregate shock. Pischke (1995) considers the case when

that agents are not able to disentangle common from idiosyncratic shocks

but observe only yit. This implies that, although the true dynamics of

individual income is still given by (19), agents perceive it as

¢yit = ¦i(L)´it;

where ¢yit is ARMA(1,2) with respect to the white noise sequence ´it and

¦i(L) = (1 ¡ L)
(1 + µiL)

(1 ¡ ®iL)
;

and the MA(1) coe±cient is an exact, nonlinear, function of the ®i; °i; ±i,

obtainable comparing the acf, at lag 1, of (1¡L)(1 +µiL)´it with the one of

(1 ¡ L)(°0i + °1iL)²t + (1 ¡ L)(1 + ±iL)uit:

This can be re-written as

(1 ¡ L)(1 +
°1i

°0i
L)°0i²t + (1 ¡ L)(1 + ±iL)uit;
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where the common innovation will now have heterogeneous variance ¾2²°
2
0i.

Setting

qi =
°20i¾

2
²

¾2ui

and

°i =
°1i
°0i

;

yields
µi

1 + µ2i
=

qi°0i + ±i
qi(1 + °2i ) + (1 + ±2i )

:

Choosing the stable solution yields

µi =
1

2(qi°i + ±i)

µ
qi(1 + °2i ) + (1 + ±2i ) ¡

q
(qi(1 + °2i ) + (1 + ±2i ))

2 ¡ 4(qi°i + ±i)2
¶

It turns out that

min[±i; °i] · µi · max[±i; °i]:

where the extremes are achieved only for

lim
qi!0+

µi = min[±i; °i]

and

lim
qi!1

µi = max[±i; °i]:

Individual consumption follows from

¢cit = ¦i(
1

1 + r
)´it

= ¦i(
1

1 + r
)

µ
¦¡1i (L)

1 + °iL

1 ¡ ®iL
(²t ¡ ²t¡1) + ¦¡1i (L)

1 + ±iL

1 ¡ ®iL
(uit ¡ uit¡1)

¶
:

Note that what matters is the distribution of the µi. But when 0 < q ·
qi · Q < 1 the µi are always bounded away from one in modulus. For the

aggregate, only the part involving the common shock matters, yielding

1

n

nX

i=1

¢cit !2 ¢Ct =
1X

k=0

¼k²t¡k; as n ! 1;
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setting

E

µ
¦i(

1

1 + r
)
1 + °iL

1 + µiL

¶
=

1X

k=0

¼kL
k:

This yields

¼0 = E¦i(
1

1 + r
); ¼k = E¦i(

1

1 + r
)(¡µi)

k¡1(°i ¡ µi); k ¸ 1:

Aggregate consumption will be smoother than aggregate income if

1X

k=0

¼2k <
1X

k=0

º2k (24)

As pointed out by Pischke (1995), changes of aggregate consumption will

not be martingale di®erence anymore. The e®ect of aggregation is limited,

however. First, the ®i do not enter into the expression for the ¼k. The au-

toregressive root is represented by µi. However, the ¼k will decay exponen-

tially fast towards zero since µi · ¹µ < 1 a:s: whenever 0 < q · qi · Q < 1,

as indicated above. Therefore Eµki = O(¹qk) ruling out the possibility of an

hyperbolic rate of decay.

Lagged information about aggregate shocks. Agents observe at each

period

ºit = ²t + uit

and can distinguish between the two only for previous period. Then

¢yit = ºit ¡ uit¡1:

Following Pischke (1995, section 2.3) version of Goodfriend (1992) model

¢cit =

µ
!i

1 + r + °i
1 + r + ®i

+ (1 ¡ !i)
1 + r + ±i
1 + r + ¯i

¶
ºit

+(1 + r)

µ
1 + r + °i
1 + r + ®i

¡ 1 + r + ±i
1 + r + ¯i

¶
((1 ¡ !i)²t¡1 ¡ !iuit¡1)

Aggregating yields

¢Ct = µ1(r)²t + µ2(r)²t¡1
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setting

µ1(r) = E

µ
!i

1 + r + °i
1 + r + ®i

+ (1 ¡ !i)
1 + r + ±i
1 + r + ¯i

¶

µ2(r) = (1 + r)E

µµ
1 + r + °i
1 + r + ®i

¡ 1 + r + ±i
1 + r + ¯i

¶
(1 ¡ !i)

¶
:

Consumption is smoother than income whenever

µ21(r) + µ22(r) <
1X

s=0

º2s : (25)

The e®ect of aggregation is limited since changes in aggregate consumption

follow an MA(1) process and it is well-known that aggregation is harmless

when aggregating ¯nite order MA (see Za®aroni (2003, section 3)).
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