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Abstract

We generalize the standard model of demand for a statistical life by more fully

describing different health states and by recasting the model in an option price

framework. By doing so, we eliminate several sources of upward bias in the VSL

that result from excluding substitution possibilities. Our model permits distinct

estimates of the individual’s marginal willingness to pay to avoid a sick-year and

a prematurely lost life-year. Using this approach, it will be possible to evalu-

ate aggregate demand for programs that shift the distribution of illness profiles,

where an illness profile describes sequential periods of health, morbidity, possible

recovery, and premature mortality. Focusing on illness profiles will significantly

enhance the evaluation of public life-saving policies.
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1 Introduction

Constructing and estimating models of individual demand for future health states is one

of the most challenging tasks economists face. Traditionally, scholars have focused on the

individual’s marginal rate of substitution between two just health states, life and death.

In the standard model, the individual considers her utility in both states, weighted by the

probability that each of these states will occur (Dreze 1967; Jones-Lee, 1974). One may then

calculate the individual’s willingness to trade off wealth for a reduced probability of death,

holding utility constant. This simple model has served as the theoretical basis for hundreds

of empirical studies designed to estimate the value of a statistical life, including those used to

evaluate the appropriateness of life-saving public policies. (Viscusi, 1993; Aldy and Viscusi,

2002; Mrozek and Taylor, 2002).

In the context of the consumer’s problem, we generalize the standard model in two ways.

Subject to an income constraint, the consumer’s problem is one of choosing quantities of

costly risk-management programs that reduce the likelihood of the undesirable health states.

As a first generalization, rather than assuming the individual faces only two homogeneous

health states, our model assumes the individual faces a large set of multi-dimensional and

time-denominated health states. Second, rather than assuming the individual makes a single

lump-sum payment for a program in the current period, we recast the individual’s demand

for risk management programs in an option price framework. This accommodates programs

with a future stream of certain costs and uncertain benefits.
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Our more general model offers numerous advantages over the conventional specification.

First, it eliminates several currently problematic sources of upward bias in estimates of

the VSL. These upward biases are present when scholars omit relevant substitute states or

dimensions of states (such as time) along which substitution may occur. Second, our model

enables scholars to estimate the demand for programs that affect any feasible time sequence

of states that involves periods of health, morbidity, or mortality. Third, because both the

costs and health states are time-denominated, our model produces estimates of individual

marginal willingness to pay to avoid a sick-year and prematurely lost life-year.

The first step in our model’s theoretical development is to more completely describe the

set of health states and the time-sequence in which the individual faces them. To begin

with, we allow for a wide range of morbidity states, in addition to states of perfect health

and sudden death. The reference state, from which future states are being evaluated, may

be a state of morbidity rather than one of perfect health. The admission of morbidity states

to the individual’s choice set also allows for the possibility that there may be fates (states)

worse than death for some individuals. Failing to recognize either of these cases, when they

hold, is likely to bias upward estimates of VSL.

We also allow individuals to express their willingness to pay to avoid concatenations

of health states, which we call “illness profiles.” Each profile is defined as a probabilistic

sequence of health states in the context of the individual’s current age and remaining nominal

lifespan. Each profile describes the future age of onset of an illness, sudden death if it occurs,
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and if it does not, the level and duration of pain and disability that follow. The remainder

of the profile is described in terms of either full recovery or premature death after a number

of years of pain and disability.

Describing future health states in terms of illness profiles is useful for several reasons.

First, individuals actually think and talk about future health states in terms of illnesses (and

their health-state profiles). Health profiles offer the appropriate lexicon and unit of analysis.

Second, many risk management programs target specific illnesses. When choosing across

programs, we allow individuals to substitute across illness profiles. Third, when choosing

the quantity of a program to consume, it is quite likely that the individual is substituting

among periods of health states within an illness profile. Our model explicitly allows for inter-

temporal substitution among health states within an illness profile. We recover individual

preferences over the latency periods associated with the onset of an illness, the duration of

symptoms, the period of post-illness recovered status (if there is one), and the years lost to

premature death. In contrast, most existing studies evaluate the individual willingness-to-

pay for mortality risk reductions in the current year only. Fourth, our use of illness profiles

captures the reality that mortality states are often positively correlated with morbidity

states. VSL estimates from models that omit the associated morbidity will tend to be biased

upward since the VSL from such a model conflates the value of avoided mortality and avoided

morbidity.

Our second major theoretical contribution is the derivation of option prices for programs
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that reduce the risk of experiencing illness profiles. An option price framework accommodates

choices involving the inter-temporal distribution of a future stream of certain costs and

uncertain benefits (Graham, 1981). By explicitly discounting the future periods of costs and

benefits, we are able to define the constant current-value payment that makes an individual

just indifferent to an annual treatment program to reduce the risk of a future illness. When

scaled to correspond to a 1.00 change in risk, the present discounted value of these payments

is the multi-period optimization analog to a conventional VSL.

Our theoretical model, which is cast in terms of the indirect utility function, is designed

to support the empirical phase of this research project. In this conjoint choice study, each

illness profile is characterized as one of twelve illnesses which represent the major causes of

death in society today. Each illness profile in the conjoint choice exercise is described in

richer detail than will be carried through the devlopment of the following theoretical model.

Together, our theoretical framework and the forthcoming empirical analysis will provide

two methodological contributions to the literature on valuing future health states. First, our

option price formulas lead naturally to what we have labeled as the "value of a statistical

illness" (VSI). Any given illness is associated with a distribution of specific profiles that a

given population will experience (e.g., morbidity with full recovery, chronic morbidity with

no premature death, morbidity followed by premature death, and sudden premature death).

When a public policy reduces the incidence of an illness, it is altering the joint distribution

of these illness profiles in the population. Our framework captures the value of avoiding all
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of the illness profiles for a particular illness, not just those associated with sudden death.

Second, by applying the option price framework to an illness profile we offer an impor-

tant methodological advance: we estimate the marginal value of a life-year in various health

states. Specifically, we estimate the marginal value of an additional life year spent in illness,

spent in recovery, and lost to premature death. This innovation will contribute substantially

to both the risk-valuation literature and, ultimately, to meeting the needs of policymakers.

Policymakers often evaluate policies that postpone, but do not prevent, specific health out-

comes. Until now they have had no estimates of the value of incrementally delaying the

onset of an illness or death or of hastening recovery.

We organize this paper as follows. Section 2 present develops our option price model.

Section 3 describes the broader theoretical construct of the value of a statistical illness and

compares it to the value of the statistical life. In Section 4, we discuss two directions for

future research before concluding in Section 5.

2 Theoretical Model: Indirect utility from an illness

profile

Within the conventional VSL model, individuals may choose only two states—a "healthy"

state or a "dead" state—in the current period. We expand upon these by considering four

states: 1) a pre-illness healthy state, 2) illness state, 3) a post-illness recovered state and 4)
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a dead state.3 We define each of these states as a time segment. Within each segment, the

individual’s health status is assumed (for now) to be relatively homogeneous.

2.1 Indirect utility from an illness profile

In Figures 1 and 2, we represent these four discrete health states. Let i index individuals

and let t index time periods. To capture an illness profile, we use sets of dummy variables

that collectively exhaust the period of time between the individual’s present age and the end

of his nominal life expectancy. The dummy variable Pre-illness_year it take a value of 1 in

years when the individual enjoys a healthy state. When the health state ends, the value of

Pre-illness_year it changes to 0 and remains there for the rest of the individual’s expected

lifespan. At the end of the healthy period the individual may die suddenly or become sick.

Let the dummy variable Illness_year it take on a value of 1 at this point and remain equal

to 1 for the years during which the individual is ill. When he is not sick, it takes a value

of zero. If the individual recovers from this illness, he may not recover to the exact state

of health he experienced prior to the illness. The dummy variable labeled Recover_year it

takes on value of 1 in the years between the conclusion of the illness and the individual’s

expected time of death. Finally, we define Lifeyear_lost it to distinguish the extent to which

death is premature (that is, the time between death and what would otherwise have been

3Within our empirical model, the illness states are further differentiated into one of twelve specific illnesses,
each of which can exhibit a wide variety of different symptom-treatment profiles that may last from zero to
six years. In appropriate cases, the illness may also be chronic, lasting for more than six years.
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the individual’s nominal life expectancy).

For each health-state period, we assume initially that the indirect utility derived per

unit of time from that particular health state is constant within that period. Time may

be measured in years, months, or even a smaller units of time, depending on the degree of

resolution needed. Next we define the future undiscounted indirect utilities per unit of time

in each health state. Let these marginal utilities be denoted as δs for an episode of type s,

where s in our model can be illness, recovered status, or a life-year lost to premature death.

Let the undiscounted utility from each future year in a particular health state be defined

relative to no new illness. In other words, we will normalize utility on the level of utility

being experienced by the individual in their current health state.

We develop a simple linear model of the individual’s future undiscounted indirect utility

as a function of their health state in that future period. We abbreviate Pre-illness_year it

to preit, Illness_year it to ill it, Recover_year it to rcv it and Lifeyear_lost it to lyl it to allow

more-compact notation.

Vit = β (Yi) + δ1illit + δ2rcvit + δ3lylit + ηit (1)

Let the undiscounted (dis)utility from each future year of illness be defined as δ1, from each

year of the post-illness recovered state be δ2, and from each year of being prematurely dead

be δ3. The disutility of each of these states can be interpreted as being the same as the

utility associated with avoiding them. The role of the dummy variables, ill it , rcv it, and lyl it
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will be simply to adjust the limits of the summations used for the present value of future

continued good health, future intervals of illness, recovered time, and life-years lost. In this

paper we assume that the individual uses the same discount rate, r, to discount both future

money costs and the future disutility from either illness or premature mortality.4

With this set-up, we can develop a structural model of the ex ante option price that

an individual will be willing to pay for a program that reduces his/her risk of a morbid-

ity/mortality profile over the future. Define the present discounted value of indirect utility

V jk
i for the ith individual when j = A if the program is chosen and j = N if the program is

not chosen. The superscript k will be S if the individual suffers the illness (or injury) and

H if the individual does not suffer the illness.

The present value of indirect utility if the individual does choose the program and does

suffer the illness takes the following form. All summations below will run from 0 to Ti, the

remaining number of years in the individual’s nominal life expectancy:

PDV (V AS
i ) = β (Yi)

X¡
1− lylAit

¢
(1 + r)t

− β(cAi )
X¡

preAit + rcvAit
¢

(1 + r)t
(2)

+δ1
X illAit

(1 + r)t
+ δ2

X rcvAit
(1 + r)t

+ δ3
X lylAit

(1 + r)t
+ εASi

4Empirically estimated discount rates for future money as opposed to future health states are suspected to
differ to some extent. Discount rates also differ across individuals and across choice contexts, time horizons
and sizes and types of outcomes at stake. No comprehensive empirical work has been undertaken that
conclusively demonstrates the relationships between money and heath discount rates.
If we were to choose hyperbolic discounting for our specification, all of the discount factors in the expres-

sions for present discounted value, below, would need to be changed from 1/(1 + r)t to 1/(1 + t)λ. Other
than this, the formulas will be the same.
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What the individual assumes about their future income and program costs, if they choose

the program, has implications for the formulas we develop in later sections. For their future

income, our default assumption will be that individuals expect constant real annual income

Yi in each future year until the expected time of death if the individual gets the illness. The

term
¡
1− lylAit

¢
in equation (2) will be nonzero in those periods when the individual is still

alive. While earned income is likely to suffer if the individual gets the illness, we assume

that their annual income can be sustained through insurance coverage. For program costs,

we assume that the annual costs of the risk-management program in question are incurred in

the years leading up to the onset of the illness or injury, but are not paid while the individual

is sick or injured.5 If the individual recovers from the illness or injury, rather than dying

from it, they will again participate in the risk-management program until their death. The

term preAit + rcvAit in equation (2) will be non-zero only prior to the onset of the illness or

during the recovered state.

The present value indirect utility, if the individual does choose the program but does not

suffer the illness, involves no illness, recovery, or reduced lifespan. Thus, the expression for

indirect utility takes the following form:

PDV (V AH
i ) = β

¡
Yi − cAi

¢X 1

(1 + r)t
+ εAHi (3)

5While the individual is sick, the health testing program would provide no further information, and we
assume that the major traffic accident is likely to result in the vehicle being "totaled" so that a new vehicle,
with its safety features, would not be acquired until the individual has recovered from his or her injuries.
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In this case, both income and the annual costs of program will continue until the end of

the individual’s nominal life expectancy. However, there are no benefits in the form of

illness-years or lost life-years avoided.

Present value indirect utility, if the individual does not choose the program but does

suffer the illness, is given by:

PDV (V NS
i ) = β (Yi)

X¡
1− lylAit

¢
(1 + r)t

(4)

+δ1
X illAit

(1 + r)t
+ δ2

X rcvAit
(1 + r)t

+ δ3
X lylAit

(1 + r)t
+ εNS

i

The individual’s lifespan is potentially reduced, so future income continues only until the

time of death, and the disutility of the illness, any recovery period, and any life-years lost

will be relevant.

Present value indirect utility, if the individual does not choose the program and does not

suffer the illness, is:

PDV (V NH
i ) = β (Yi)

X 1

(1 + r)t
+ εNH

i (5)

Recall, the individual assumes that his current income level will be sustained until the end

of his lifespan in the absence of premature mortality.
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2.2 Expected indirect utility

In deriving the individual’s option price for the program, given the ex ante uncertainty about

future health states, we need to calculate expected utilities. In this case, the expectation is

taken across the binary uncertain outcome of getting sick, S, or remaining healthy, H. The

probability of illness or injury differs according to whether the respondent participates in

the risk-reducing intervention program. Let the baseline probability of illness be ΠNS
i if the

individual opts out of the program, and let the reduced probability be ΠAS
i if the individual

opts in. The risk change due to program participation, ∆ΠAS
i , is presumed to be negative.

Expected utility if the individual buys program A is:

E
£
V A
i

¤
S,H

= ΠAS
i × PDV (V AS

i ) +
¡
1−ΠAS

i

¢× PDV (V AH
i ) (6)

= ΠAS
i

 β (Yi)
X (1−lylAit)

(1+r)t
− β(cAi )

X (preAit+rcvAit)
(1+r)t

+δ1
X

illAit
(1+r)t

+ δ2
X

rcvAit
(1+r)t

+ δ3
X

lylAit
(1+r)t

+ εASi


+
¡
1−ΠAS

i

¢ ·
β
¡
Yi − cAi

¢X 1

(1 + r)t
+ εAHi

¸

Expected utility if the program is not purchased (i.e. "no program", N), with the
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expectation taken over uncertainty about whether the individual will suffer the illness, is:

E
£
V N
i

¤
S,H

= ΠNS
i × PDV (V NS

i ) +
¡
1−ΠNS

i

¢× PDV (V NH
i ) (7)

= ΠNS
i

 β (Yi)
X

1
(1+r)t

+δ1
X

illAit
(1+r)t

+ δ2
X

rcvAit
(1+r)t

+ δ3
X

lylAit
(1+r)t

+ εNS
i


+
¡
1−ΠNS

i

¢ ·
β (Yi)

X 1

(1 + r)t
+ εNH

i

¸

By simplifying and collecting terms (See Appendix A), we can express the expected utility

difference as:

E
£
V A
i

¤−E
£
V N
i

¤
(8)

=

·
β
¡−cAi ¢X 1

(1 + r)t

¸
−ΠAS

i

·
β (Yi)

X lylAit
(1 + r)t

¸
−ΠAS

i

"
β(−cAi )

X¡
1− preAit − rcvAit

¢
(1 + r)t

#

+
¡
ΠAS
i −ΠNS

i

¢ ·
δ1
X illAit

(1 + r)t
+ δ2

X rcvAit
(1 + r)t

+ δ3
X lylAit

(1 + r)t

¸
+ εi

In this expression, the second line to the right of the equals sign is an artifact of our

assumption about future income and the cost commitment implied by a choice of the pro-

gram. The first term in this line corrects for the loss of income (meaning no consumption

of other goods and services) after death. The second term in this line accommodates the

presumption that program costs will not be paid if the individual is ill or dead.
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Now define new variables based on the present value terms appearing in the formulas

derived above:6

pdvcAi =
X 1

(1 + r)t

pdviAi =
X illAit

(1 + r)t

pdvrAi =
X rcvAit

(1 + r)t

pdvlAi =
X lylAit

(1 + r)t

Equation (8) can then be written more compactly as:

E
£
V A
i

¤− E
£
V N
i

¤
(9)

=
£
β
¡−cAi ¢ pdvcAi ¤−ΠAS

i

£
β (Yi) pdvl

A
i

¤−ΠAS
i

£
β(−cAi )

¡
pdviAi + pdvlAi

¢¤
+
¡
∆ΠAS

i

¢ £
δ1pdvi

A
i + δ2 pdvr

A
i + δ3pdvl

A
i

¤
+ εi

where ∆ΠAS
i = ΠAS

i − ΠNS
i , which will be a negative number in our choice scenarios, since

each involves a risk reduction.

6We refer to these compound explanatory variables using just the abbreviation for the main variable
upon which each is based. Thus "pdvc" is used to denote

¡−cAi ¢ ¡pdvcAi −ΠASi ¡
pdviAi + pdvlAi

¢¢ −
(Yi)Π

AS
i pdvlAi , "pdvi" to denote

¡
∆ΠASi

¢
pdviAi , and so on.
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2.3 Ex ante option prices

It will be convenient to be able to isolate the terms in cAi when we are calculating the values

of statistical illnesses. We will also find it helpful to express the expected utility difference

as linear-in-parameters, so equation (9) can be re-written as:

E
£
V A
i

¤−E
£
V N
i

¤
(10)

= β
£ ¡−cAi ¢ ¡pdvcAi −ΠAS

i

¡
pdviAi + pdvlAi

¢¢ − (Yi)Π
AS
i pdvlAi

¤
+δ1

¡
∆ΠAS

i

¢
pdviAi

+δ2
¡
∆ΠAS

i

¢
pdvrAi

+δ3
¡
∆ΠAS

i

¢
pdvlAi + εi

The discrete choice among program alternatives can be modeled as depending upon the

marginal utility of income, β, and the marginal utilities of each year of avoided degraded

health status or premature mortality: δ1, δ2, and δ3.7 The variables that must be constructed

in order to estimate these three key parameters are revealed in equation (10). We see from

equation (10) that the difference in expected present value indirect utilities associated with

choosing a risk-reduction program is a function of the illness profile as captured by the pdviAi ,

pdvrAi ,and pdvlAi terms.

With respect to our empirical application, equation (10) is the basis for estimation of the

7In future analysis, we plan to let the choice depend upon individual specific discount rates.
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random utility choice model that explains individuals’ choices among the three alternatives

presented in each choice scenario: Program A, Program B, or Neither Program. There is

an analogous difference in expected utilities between Program B and the Neither Program

choice. All choices posed to respondents were three-way choices, so the models will be

estimated using McFadden’s conditional logit estimator (or appropriate modifications of this

model).

The option price for the program that accomplishes this decrease in illness probabilities is

the common certain payment, regardless of which way the uncertainty about contracting the

illness is resolved, that makes the individual just indifferent between paying for the program

and enjoying the risk reduction, or not paying for the program and not enjoying the risk

reduction. This payment, cA∗i , will make E
£
V A
i ]−E[V N

i

¤
= 0. Setting equation (10) equal

to zero and solving yields:

cA∗i =

 β
£− (Yi)ΠAS

i pdvlAi
¤

+δ1
¡
∆ΠAS

i

¢
pdviAi + δ2

¡
∆ΠAS

i

¢
pdvrAi + δ3

¡
∆ΠAS

i

¢
pdvlAi + εi


β [pdvcAi −ΠAS

i (pdviAi + pdvlAi )]

(11)

where ∆ΠAS
i = ΠAS

i −ΠNS
i is the size of the risk reduction to be derived from participating

in the program. The amount of money cA∗i is the maximum constant annual payment that

the individual will be willing to make, regardless of whether he suffers the illness, in order to

purchase the program that reduces his probability of suffering the illness from ΠNS
i to ΠAS

i .
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While the payment cA∗i is the maximum annual payment the individual is willing to make,

these payments are necessary for the rest of the individual’s life, so the present value of these

payments must be calculated. In this context, however, there is some uncertainty over just

what will constitute "the rest of the individual’s life," since this may differ according to

whether the individual suffers the illness or not. We will use the expected present value

of this time profile of costs, with the expectation taken over whether or not the individual

suffers the illness when they are participating in the program.

E
£
PV (cA∗i )

¤
(12)

=
¡
1−ΠAS

i

¢
(cA∗i )

X 1

(1 + r)t
+
¡
ΠAS
i

¢
(cA∗i )

X¡
preAit + rcvAit

¢
(1 + r)t

= (cA∗i )
X 1

(1 + r)t
− ¡ΠAS

i

¢
(cA∗i )

X 1

(1 + r)t
+
¡
ΠAS
i

¢
(cA∗i )

X¡
preAit + rcvAit

¢
(1 + r)t

= (cA∗i )

"X 1

(1 + r)t
− ¡ΠAS

i

¢X ¡
1− preAit − rcvAit

¢
(1 + r)t

#
= (cA∗i )

£
pdvcAi −ΠAS

i

¡
pdviAi + pdvlAi

¢¤

The expected present value of the lifetime stream of payments, given that the individual

participates in the program, is therefore simply:

E
£
PV (cA∗i )

¤
(13)

= [β]−1

 β
£− (Yi)ΠAS

i pdvlAi
¤

+δ1
¡
∆ΠAS

i

¢
pdviAi + δ2

¡
∆ΠAS

i

¢
pdvrAi + δ3

¡
∆ΠAS

i

¢
pdvlAi + εi
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2.4 Value of a statistical illness (VSI)

The expected present discounted value in equation (13) pertains to the maximum annual

willingness to pay for a small risk reduction, ∆ΠAS
i . To convert this to the value for a

statistical illness (VSI), we divide by the absolute size of the risk reduction in order to scale

this present value to the present discounted willingness to pay that would correspond to a

1.00 change in the risk.

E
£
PV (cA∗i )

¤
|∆ΠAS

i | (14)

=
£
β
¯̄
∆ΠAS

i

¯̄¤−1
 β

£− (Yi)ΠAS
i pdvlAi

¤
+δ1

¡
∆ΠAS

i

¢
pdviAi + δ2

¡
∆ΠAS

i

¢
pdvrAi + δ3

¡
∆ΠAS

i

¢
pdvlAi + εi


=

µ− (Yi)ΠAS
i pdvlAi

|∆ΠAS
i |

¶
+

Ã
δ1
¡
∆ΠAS

i

¢
β |∆ΠAS

i |

!
pdviAi +

Ã
δ2
¡
∆ΠAS

i

¢
β |∆ΠAS

i |

!
pdvrAi

+

Ã
δ3
¡
∆ΠAS

i

¢
β |∆ΠAS

i |

!
pdvlAi +

µ
εi

β |∆ΠAS
i |
¶

In our study, all probability changes ∆ΠAS
i are negative, while the absolute magnitude of

these changes will be positive. Multiplication by ∆ΠAS
i /

¯̄
∆ΠAS

i

¯̄
will amount to multiplying

by -1, which will change the effective sign on each of the terms involving this ratio. The

effective formula for the value of a statistical illness will be:
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V SIAi =
E
£
PV (cA∗i )

¤
|∆ΠAS

i | (15)

=

µ−δ1
β

¶
pdviAi +

µ−δ2
β

¶
pdvrAi +

µ−δ3
β
−Qi

¶
pdvlAi +

µ
εi

β |∆ΠAS
i |
¶

where Qi = (Yi)Π
AS
i /

¯̄
∆ΠAS

i

¯̄
. Across the distribution of the logistic error term, εi, the

expectation is zero, so the expected value of a statistical illness depends only on the system-

atic portion of equation (14). The V SI will depend upon the different marginal utilities of

avoided periods of illness, recovered status, and premature death. It will also depend upon

the time profiles for each of these states as embedded in the terms pdviAi , pdvr
A
i , and pdvl

A
i ,

and (implicit in this model) upon the individual’s own discount rate.8

Qi consists only of data and must be strictly positive. Any non-zero Qi will shrink the

predicted point estimate of the V SI. The shrinkage will be greater (i.) as income is larger,

(ii.) as more life-years are lost, (iii.) as the individual is older, so that life-years lost come

sooner in time, (iv.) the larger the remaining risk, and (v.) the smaller the absolute risk

reduction.9

8Subsequent work will preserve individual discount rates as systematically varying parameters, to be
estimated with reference to the individual’s responses to a hypothetical lottery question. Here, discount
rates are presumed to be exogenous and constant across individuals. Our empirical work explores the
consequences of using different discount rate assumptions.

9Nothing in this specification precludes negative point estimates of the V SI. It is possible to estimate a
positive value for the marginal utility of income, β, and negative values for the marginal utilities of illness-
years, recovered-years, and lost life-years (the δs). This would guarantee a positive fitted value for V SI if
Qi = 0 as in the naive-costs case. If we assume a sophisticated cost interpretation, however, for Qi sufficiently
large, the point estimate of V SI can be negative, even with homogeneous preferences.
The key undiscounted marginal utility parameters are not presently constrained to be strictly positive
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In expectation, the fitted value of a statistical illness can potentially vary systematically

across types of illnesses according to the labels assigned to the illnesses, the symptoms and

treatment associated with them, the individual’s characteristics (such as age and gender),

perceptions of risks associated with the type of illness, and prior experience with that illness.

This heterogeneity can be accommodated by making the indirect utility parameters δ1, δ2,

and δ3 depend upon individual characteristics or attributes of each illness.

The error term ε in equation (15) is assumed to be identically distributed across obser-

vations in a manner appropriate for conditional logit estimation. Given the transformation

needed to solve for the V SI, however, the error term in the V SI formula will be heteroscedas-

tic, with smaller error variances corresponding to cases with larger absolute risk reductions,¯̄
∆ΠAS

i

¯̄
.

In our future empirical application, the addition of illness labels and a symptom-treatment

profile (within the illness state) will convey to the respondent some information about what

health consequences might ensue from each illness we describe. These illness characteristics

can be expected to shift the value of δ1, the marginal (dis)utility of a sick-year. The marginal

utility of each period of recovered health status, δ2, could be allowed also to vary by type

of illness as well, since the illness labels may connote the degree of "health" that nominal

(for income) and strictly negative (for episodes of undesirable health states). This is especially a concern
when these marginal utilities are permitted to vary systematically with of the attributes of the illness profile
and/or the characteristics of the individual in question. The marginal utility of income, the scalar parameter
β in our simplest models, bears a point estimate that is robustly positive, but positive values for one or
both of the systematically varying parameters capturing the marginal utility of an illness-year (δ1) or a lost
life-year (δ3) can push an individual fitted value of the VSI for a particular morbidity/mortality profile into
the negative range.
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recovery from that illness actually implies. Finally, the marginal utility of a lost life-year

may depend upon the health state prior to death.

2.5 VSIs versus Conventional VSLs

The existing literature, especially the hedonic wage-risk literature, focuses on society’s will-

ingness to pay for incremental reductions in the chance of a sudden accidental death in the

current period. In the framework of our illness profiles, such an event would be captured

by zero years of morbidity and sudden death in the current year, with the remainder of

the individual’s nominal life expectancy experienced as lost life-years. In this case, a point

estimate of the VSI would be given by equation (15), for a specification where a dummy

variable for die_suddenly is allowed to shift the marginal utility of a lost life-year. Let δ30

be the baseline marginal utility of a lost life-year and let δ31 be the estimated coefficient on

the dummy variable activated when death is sudden. Since the terms in pdviAi and pdvrAi

will be zero, our analog to the conventional VSL formula will be:

E[V SL] =
E
£
PV (cA∗i )

¤
|∆ΠAS

i |
=

µ−(δ30 + δ31)

β
−Qi

¶
pdvlAi , where (16)

pdvlAi =
X lylAit

(1 + r)t
and Qi =

(Yi)Π
AS
i

|∆ΠAS
i |

The summation in the formula for pdvlAi is from the present until the individual’s nominal
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life expectancy. This interval depends upon the individual’s current age, so even in a model

with homogeneous preferences, the VSI will vary with age. The VSI also depends upon the

individual’s income, on the absolute magnitude of the risk reduction, and on the remaining

health risk with the program in place. Of course, the individual’s discount rate will also

matter.

2.6 Calculating Policy-Relevant VSIs

To be clear on what is needed to construct VSIs using our present results, we offer the

following checklist:

1. For the illness in question: An approximate joint distribution for the possible

ages of onset, possible durations of moderate and severe pain and disability,

possible durations of hospitalization, possibilities of minor or major surgery, and

possible reductions in lifespans, and possible outcomes (recovery, sudden death,

morbidity less than six years, chronic morbidity more than six years). In practice,

this joint distribution will be constructed using expert judgment and its validity

will in part determine the validity of the eventual VSI estimates our model will

produce.

2. For the population affected by this health threat: An approximate joint

distribution of at least age, gender, and income level (and possibly other variables

if richer models prove to provide robust results with our data). The distribution
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of these characteristics may be based on expert judgment combined with exposure

and epidemiological data. Again, the validity of the assumptions underlying this

approximate joint distribution will in part determine the validity of the resulting

VSI estimates.

3. Make a large number of random draws (say, 10,000 or even 1,000,000) from the

joint distribution of illness profile characteristics (some of these characteristics

may be judged to be independently distributed, others will be correlated.)

4. If illness profiles are independent of the age, gender and other characteristics

of the affected population, make an equal number of random draws from the joint

distribution of characteristics of the affected population. If the joint distribution

of illness profiles differs by gender or by age category or income level, such joint

illness distributions might preferably be specified for each category within the

population, stratified by age, gender, and possibly income level.

5. Combine these illness attributes and individual characteristics with our derived

formulas for the value of a statistical illness.

6. Generate a marginal distribution for the range of implied VSIs. The mean of

this distribution can be interpreted as our model’s prediction about the popula-

tion average of VSIs for this type of health threat.
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The overall Value of a Statistical Illness, estimated in this fashion and calculated for a

given policy by simulation methods, will allow the researcher to more fully capture the policy

choice context for the risk in question.

3 Two Directions for Future Research

3.1 The death event

Figures 1 and 2 display morbidity/mortality profiles that exhibit no particular recognition

of the time of death. It is possible that the event of death bears greater significance for re-

spondents than simply a transition from the status of being either healthy, sick, or recovered

to being dead. To introduce the possibility that there is some additional disutility asso-

ciated with the future event of dying, we can introduce another indicator variable, called

Death_year it, which takes on a value of 1 in the year of death (also the first year of the

Lifeyear_lost it interval). Figure 3 displays a morbidity/mortality profile that includes ex-

plicit recognition of the event of death at a particular point in the future. The present value

of the single future year of when death occurs would bear the coefficient δd in our specifi-

cation, so that the overall effect of death in year t would be the increment in present-value

utility that comes from death, as well as the usual increment to present-value utility that is
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associated with a lost life-year.

δd
1

(1 + r)t
+ δ3

1

(1 + r)t
= (δd + δ3)

1

(1 + r)t
(17)

For years subsequent to the year of death, the present value of utility would reflect only the

disutility of life-years lost:

δ3
1

(1 + r)t
(18)

If the event of death confers greater disutility than simply the status of being dead, then

we would expect the parameter δd to be nonzero and the sum (δd + δ3) to convey greater

disutility than just δ3, the disutility associated with another year of being prematurely dead

in each subsequent year of what might otherwise have been the individual’s life expectancy.

Incorporating the event of death into our model involves modifying many of the main

equations presented above. Assume that program A is designed to reduce the probability of

death occuring in year tA, whereas if the individual does not get sick or injured, they will

expect to die in year te. Equation (2 ) can be modified to read:

V AS
i = β (Yi)

X¡
1− lylAit

¢
(1 + r)t

− β(cAi )
X¡

preAit + rcvAit
¢

(1 + r)t
(19)

+δ1
X illAit

(1 + r)t
+ δ2

X rcvAit
(1 + r)t

+ δ3
X lylAit

(1 + r)t
+ δd

1

(1 + r)t
A + εASi

If the individual chooses the program, but gets sick anyway, his utility level will be adversely
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affected by δd in the year tA when he is likely to die if he suffers from the illness. In contrast if

th individual chooses the program but does not suffer the illness, his utility will be modified

to the following if the event of death is distinguished as having a distinct effect on utility:

V AH
i = β

¡
Yi − cAi

¢X 1

(1 + r)t
+ δd

1

(1 + r)t
e + εAHi (20)

where the event of death is now postponed until year te which is the individual’s nominal

life expectancy.

If the individual does not choose the program, he may suffer the illness and die earlier,

which will make his utility

V NS
i = β (Yi)

X¡
1− lylAit

¢
(1 + r)t

(21)

+δ1
X illAit

(1 + r)t
+ δ2

X rcvAit
(1 + r)t

+ δ3
X lylAit

(1 + r)t
+ δd

1

(1 + r)t
A + εNS

i

If the individual does not choose the program and managed to avoid suffering the illness or

injury, his utility will be

V NH
i = β (Yi)

X 1

(1 + r)t
+ δd

1

(1 + r)t
e + εNH

i (22)

With these amendments, the expression for the expected utlity difference between program
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and no program will include the following additional terms:

ΠAS
i

"
δd

1

(1 + r)t
A

#
+
¡
1−ΠAS

i

¢ ·
δd

1

(1 + r)t
e

¸

−ΠNS
i

"
δd

1

(1 + r)t
A

#
− ¡1−ΠNS

i

¢ ·
δd

1

(1 + r)t
e

¸

=
¡
ΠAS
i −ΠNS

i

¢ "
δd

1

(1 + r)t
A

#
− ¡ΠAS

i −ΠNS
i

¢ ·
δd

1

(1 + r)t
e

¸

Working through similar algebra, the eventual estimating specification can be expressed

comparably if we define an additional simplification:

pdvdAi =

Ã
1

(1 + r)t
A −

1

(1 + r)t
e

!
(23)

Then we can write the modified expected indirect utility difference as

E
£
V A
i

¤−E
£
V N
i

¤
(24)

= β
£¡−cAi ¢ ¡pdvcAi −ΠAS

i

¡
pdviAi + pdvlAi

¢¢− (Yi)ΠAS
i pdvlAi

¤
+δ1

¡
ΠAS
i −ΠNS

i

¢
pdviAi

+δ2
¡
ΠAS
i −ΠNS

i

¢
pdvrAi

+δd
¡
ΠAS
i −ΠNS

i

¢
pdvdAi

+δ3
¡
ΠAS
i −ΠNS

i

¢
pdvlAi + εi
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In subsequent work, we will explore the potential for there to be an added disutility from

the event of death.

3.2 Age-at-Illness rather than age now

Our basic specification assumes that the undiscounted (dis)utility of a year of illness or injury

is a constant (in the homogeneous specification) or depends upon a number of characteris-

tics of the individual at the time they are asked to make program choices. One important

generalization to explore is the possibility that the undiscounted disutility of a future year

of illness or injury depends upon the age of the individual at the time they are experiencing

that year of illness or injury. In this case, equation (1) can be rewritten as a function of the

respondent’s age at time t, aget, rather than their current age, which we will use elsewhere

in our model with heterogeneous preferences and will denote by age0:

Vit = β (Yi) + (δ10 + δ11aget)ill
A
it + (δ20 + δ21aget)rcv

A
it + (δ30 + δ31aget)lyl

A
it + ηit (25)

As an example of the implications of the specification in equation (25) for the estimation
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process, equation (2) now becomes:

V AS
i = β (Yi)

X¡
1− lylAit

¢
(1 + r)t

− β(cAi )
X¡

preAit + rcvAit
¢

(1 + r)t
(26)

+δ10
X illAit

(1 + r)t
+ δ11

X (aget)(ill
A
it)

(1 + r)t

+δ20
X rcvAit

(1 + r)t
+ δ21

X (aget)(rcv
A
it)

(1 + r)t

+δ30
X lylAit

(1 + r)t
+ δ31

X (aget)(lyl
A
it)

(1 + r)t
+ εASi

We will thus define some new variable acronyms:

agepdviAi =
X (aget)(ill

A
it)

(1 + r)t
(27)

agepdvrAi =
X (aget)(rcv

A
it)

(1 + r)t

agepdvlAi =
X (aget)(lyl

A
it)

(1 + r)t

This implies that the eventual estimating specification will become a generalization of

equation (10):

29



E
£
V A
i

¤−E
£
V N
i

¤
(28)

= β
£ ¡−cAi ¢ ¡pdvcAi −ΠAS

i

¡
pdviAi + pdvlAi

¢¢ − (Yi)Π
AS
i pdvlAi

¤
+δ10

¡
∆ΠAS

i

¢
pdviAi + δ11

¡
∆ΠAS

i

¢
agepdviAi

+δ20
¡
∆ΠAS

i

¢
pdvrAi + δ21

¡
∆ΠAS

i

¢
agepdvrAi

+δ30
¡
∆ΠAS

i

¢
pdvlAi + δ31

¡
∆ΠAS

i

¢
agepdvlAi + εi

If the marginal utility of a health state is not a linear function of age, but (perhaps)

a quadratic function or some other simple non-linear relationship, we might pursue models

with not only the contemporaneous age as an interaction term with each health state dummy,

but also the square of this variable. Or perhaps we will find that the logarithm of age has

greater predictive power, or that age captured as several categories will work best.

4 Conclusions

Policy analysis with respect to risk-management programs requires detailed information

about consumer demand for these programs. We have set out to build a formal utility-

theoretic model that captures the relevant considerations in private ex ante consumer choices

about incurring ongoing expenditures to reduce risks to life and health. Most past studies

have focused on current-period costs and current-period benefits. In contrast, our model
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recognizes the future time profiles of illnesses and injuries for which individuals may choose

to act to reduce their risks. Intertemporal consumer optimization requires explicit treatment

of the interaction between disease latencies and individual discount rates. Our model permits

us to derive option prices for programs that reduce well-defined types of risks. Option prices

are the appropriate theoretical construct for decision-making under uncertainty, where the

uncertainty in this case concerns whether the individual will actually suffer the illness or

injury that the proposed risk reduction measure addresses.

We show that our option price formulas lead naturally to what we have labeled as the

"value of a statistical illness" (VSI). The VSI is the present discounted value of the stream

of maximum annual payments that the individual would be willing to pay for the specified

(typically small) risk reduction, scaled up proportionately to correspond to a risk reduction

of 100%. This construct is analogous to the more familiar, but more-limited, concept of the

value of a statistical life (VSL). A VSL is typically constructed by looking simply at the static

single-period willingness to pay for a specified risk reduction, and scaling this willingness to

pay up to a 100% risk reduction. However, static VSL estimates do not typically vary with

important morbidity/mortality attributes such as latency, time profiles of illness, symptoms

and treatments, outcomes, or life-years lost.
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6 Appendix A

The difference in expected present discounted utility between the program and no-program

cases will be:

E
£
V A
i

¤−E
£
V N
i

¤
(29)

= ΠAS
i

 β (Yi)
X (1−lylAit)

(1+r)t
− β(cAi )

X (preAit+rcvAit)
(1+r)t

+δ1
X

illAit
(1+r)t

+ δ2
X

rcvAit
(1+r)t

+ δ3
X

lylAit
(1+r)t

+ εASi


+
¡
1−ΠAS

i

¢ ·
β
¡
Yi − cAi

¢X 1

(1 + r)t
+ εAHi

¸

−ΠNS
i

 β (Yi)
X

1
(1+r)t

+δ1
X

illAit
(1+r)t

+ δ2
X

rcvAit
(1+r)t

+ δ3
X

lylAit
(1+r)t

+ εNS
i


− ¡1−ΠNS

i

¢ ·
β (Yi)

X 1

(1 + r)t
+ εNH

i

¸

Distributing terms, this expected utility difference can be written as:
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E
£
V A
i

¤−E
£
V N
i

¤
(30)

= ΠAS
i

"
β (Yi)

X¡
1− lylAit

¢
(1 + r)t

− β(cAi )
X¡

preAit + rcvAit
¢

(1 + r)t

#

+ΠAS
i

·
δ1
X illAit

(1 + r)t
+ δ2

X rcvAit
(1 + r)t

+ δ3
X lylAit

(1 + r)t

¸
+ΠAS

i

£
εASi
¤

+

·
β
¡
Yi − cAi

¢X 1

(1 + r)t

¸
−ΠAS

i

·
β
¡
Yi − cAi

¢X 1

(1 + r)t

¸
+
¡
1−ΠAS

i

¢ £
εAHi

¤
−ΠNS

i

·
β (Yi)

X 1

(1 + r)t

¸
−ΠNS

i

·
δ1
X illAit

(1 + r)t
+ δ2

X rcvAit
(1 + r)t

+ δ3
X lylAit

(1 + r)t

¸
−ΠNS

i

£
εNS
i

¤
−
·
β (Yi)

X 1

(1 + r)t

¸
+ΠNS

i

·
β (Yi)

X 1

(1 + r)t

¸
− ¡1−ΠNS

i

¢ £
εNH
i

¤

In the process of simplifying this expression, there are four components involving error

terms. We will define the compound error term as ε. If the error terms εNk
i are independent

and identically distributed according to an extreme value distribution, and if the εNk
i are

similarly independent and identically distributed extreme value, then the resulting error term

can be assumed to be logistic, so that a logit model is appropriate.

εi = ΠAS
i

£
εASi
¤
+
¡
1−ΠAS

i

¢ £
εAHi

¤−ΠNS
i

£
εNS
i

¤− ¡1−ΠNS
i

¢ £
εNH
i

¤
(31)

In equation (30), the two terms involving ΠNS
i and β multiplying the present value of gross
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income will cancel. Two other component-wise simplifications include:

·
β
¡
Yi − cAi

¢X 1

(1 + r)t

¸
−
·
β (Yi)

X 1

(1 + r)t

¸
=

·
β
¡−cAi ¢X 1

(1 + r)t

¸
(32)

and

ΠAS
i

"
β (Yi)

X¡
1− lylAit

¢
(1 + r)t

− β(cAi )
X¡

preAit + rcvAit
¢

(1 + r)t

#
(33)

−ΠAS
i

·
β
¡
Yi − cAi

¢X 1

(1 + r)t

¸
= ΠAS

i

"
β (Yi)

X¡
1− lylAit

¢
(1 + r)t

#
+ΠAS

i

"
β(−cAi )

X¡
preAit + rcvAit

¢
(1 + r)t

#

−ΠAS
i

·
β (Yi)

X 1

(1 + r)t

¸
−ΠAS

i

·
β
¡−cAi ¢X 1

(1 + r)t

¸
= −ΠAS

i

·
β (Yi)

X lylAit
(1 + r)t

¸
−ΠAS

i

"
β(−cAi )

X¡
1− preAit − rcvAit

¢
(1 + r)t

#

Note that 1− preAit − rcvAit = illAit + lylAit .
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Figure 1:

Figure 2:
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Figure 3:
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