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Abstract

Empirical studies have suggested that stock returns can be predicted by financial

variables such as the dividend-price ratio. However, these studies typically ignore the

high persistence of predictor variables, which can make first-order asymptotics a poor

approximation in finite samples. Using a more accurate asymptotic approximation, we

propose two methods to deal with the persistence problem. First, we develop a pretest

that determines when the conventional t-test for predictability is misleading. Second,

we develop a new test of predictability that results in correct inference regardless of

the degree of persistence and is efficient compared to existing methods. Applying our

methods to US data, we find that the dividend-price ratio and the smoothed earnings-

price ratio are sufficiently persistent for conventional inference to be highly misleading.

However, we find some evidence for predictability using our test, particularly with

the earnings-price ratio. We also find evidence for predictability with the short-term

interest rate and the long-short yield spread, for which the conventional t-test leads to

correct inference.
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1 Introduction

Numerous studies in the last two decades have asked whether stock returns can be predicted

by financial variables such as the dividend-price ratio, the earnings-price ratio, and various

measures of the interest rate. (See for example Keim and Stambaugh (1986), Campbell

(1987), Campbell and Shiller (1988), Fama and French (1988, 1989), and Hodrick (1992).)

The econometric method used in a typical study is an OLS regression of stock returns onto

the lag of the financial variable. The main finding of such regressions is that the t-statistic

is typically greater than two and sometimes greater than three. Using conventional critical

values for the t-test, we would conclude that there is strong evidence for the predictability

of returns.

This statistical inference of course relies on first-order asymptotic distribution theory,

which implies that the t-statistic is approximately standard normal in large samples. Hence,

an important question is whether the large sample theory provides an accurate approximation

to the actual finite sample distribution of the t-statistic. Unfortunately, this may not be the

case since financial variables typically used as regressors tend to be highly persistent.

To be concrete, suppose we were to use the log dividend-price ratio as the regressor.

Even if we were to know with certainty that the log dividend-price ratio is stationary, a time

series plot (or more formally a unit root test) tells us that it is highly persistent, much like a

nonstationary process. Since first-order asymptotics fails when the regressor is nonstationary,

it provides a poor approximation in finite samples when the regressor is persistent. Elliott and

Stock (1994, Table 1) provide Monte Carlo evidence which suggests that the size distortion

of the one-sided t-test is approximately 20% for plausible parameter values in the dividend-

price ratio regression.1 They derive an alternative asymptotic distribution theory in which

the regressor is modeled as having a local-to-unit root. This theory provides a more accurate

approximation to the finite sample distribution.

The issue of persistence suggests that the “significant” t-statistics in the empirical fi-

nance literature might be a consequence of size distortion rather than predictability of stock

1We report their result for the 10% one-sided t-test when the sample size is 100, the regressor follows

an AR(1) with an autoregressive coefficient of 0.975, and the correlation between the innovations to the

dependent variable and the regressor is -0.9.
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returns. Some recent papers have therefore proposed and applied test procedures that have

the correct size even if the predictor variable is highly persistent or contains a unit root. For

instance, Torous, Valkanov, and Yan (2001) develop a test procedure, extending the work of

Richardson and Stock (1989) and Cavanagh, Elliott, and Stock (1995), and find evidence for

predictability at short horizons but not at long horizons. Using a conservative test procedure,

Lanne (2002) finds no evidence that stock returns can be predicted by a highly persistent

predictor variable.

A difficulty with understanding the rather large literature on predictability is the sheer

variety of test procedures that have been proposed. The main contribution of this paper

is to analyze tests of predictability within the unifying framework of statistical optimality

theory. Using the Neyman-Pearson Lemma and local-to-unity asymptotics, we derive the

Gaussian power envelope when the degree of persistence of the predictor variable is known.

We show that there is no uniformly most powerful (UMP) test even asymptotically since the

optimal test statistic is a weighted sum of two minimal sufficient statistics. In particular, the

t-test (with appropriate critical values) fails to achieve the power envelope. However, since

one of the two sufficient statistics is ancillary, there is a conditional test that is optimal and

whose power function is never far below the power envelope for point optimal tests. Using

the optimal conditional test, we propose a new test procedure, closely related to Lewellen

(2002), that has good power and is computationally simple.

The intuition for our approach is as follows. A regression of stock returns onto a lagged fi-

nancial variable has low power because stock returns are extremely noisy. If we can eliminate

some of this noise, we can increase the power of the test. When innovations to the predictor

variable are correlated with innovations to stock returns, we can subtract a multiple of the

innovation to the predictor variable from the stock return to obtain a less noisy dependent

variable for our regression. Of course, this procedure requires us to measure the innovation

to the predictor variable. When the predictor variable has a near-unit root, it is possible to

do this in a way that retains power advantages over the t-test.

Although tests derived under local-to-unity asymptotics — Cavanagh, Elliott, and Stock

(1995), Lanne (2002), or the test proposed in this paper — always lead to correct inference,

they are somewhat more difficult to implement than the conventional t-test. A researcher
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may therefore be interested in knowing when the conventional t-test leads to correct infer-

ence. In this paper, we develop a simple pretest based on the confidence interval for the

largest autoregressive root. If the confidence interval indicates that the predictor variable is

sufficiently stationary, one can proceed with inference based on the t-test with conventional

critical values. The pretest thus provides a bridge between tests based on first-order and

local-to-unity asymptotics.

We apply our methods to annual, quarterly, and monthly US data, looking first at

dividend-price and smoothed earnings-price ratios. Using the pretest, we find that these

valuation ratios are sufficiently persistent for the conventional t-test to be misleading. Us-

ing our test that is robust to the persistence problem, we find that the earnings-price ratio

reliably predicts returns at all frequencies in the full sample. The dividend-price ratio also

predicts returns at annual frequency, but we cannot reject the null hypothesis at quarterly

and monthly frequencies.

In a sub-sample since 1952, we find that the dividend-price ratio predicts returns at all

frequencies if its largest autoregressive root is less than or equal to one. However, since

statistical tests do not reject an explosive root for the dividend-price ratio, we have evidence

for return predictability only if we have prior knowledge that the largest root is non-explosive.

Finally, we consider the short-term nominal interest rate and the long-short yield spread

as predictor variables in the period since 1952. Our pretest indicates that the conventional

t-test is valid for these interest rate variables, and we find strong evidence that they predict

returns.

The rest of the paper is organized as follows. In Section 2, we review the theory of optimal

tests of predictability under first-order asymptotics. First-order asymptotics is appropriate

only when the predictor variable is sufficiently stationary. Although these results are not

applicable for testing predictability with persistent financial variables, the section provides

a review of the relevant statistical tools in a familiar framework. In Section 3, we derive

the theory of optimal tests in the local-to-unity framework and discuss how these tests

can be implemented in practice. We also introduce the pretest for determining when the

conventional t-test leads to correct inference. In Section 4, we apply our test procedure to US

equity data and reexamine the empirical evidence for predictability. We reinterpret previous
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empirical studies within our unifying framework. Section 5 concludes.

2 Predictive Regressions

Let rt denote the excess stock return in period t, and let xt−1 denote a variable observed at

t−1 which may have the ability to predict rt. For instance, xt−1 may be the log dividend-price

ratio at t − 1. The statistical model that we consider is

rt = βxt−1 + ut, (1)

xt = ρxt−1 + vt, (2)

where β is the unknown coefficient of interest. We say that the variable xt−1 has the ability

to predict returns if β �= 0. For simplicity, we assume that both rt and xt have mean zero, so

the usual intercept terms do not appear in equations (1) and (2). In addition, we assume that

(ut, vt)
′ is independently and identically distributed (i.i.d.) with mean zero and covariance

matrix Σ = [(1, δ)′, (δ, 1)′]. We further assume that the correlation δ between the innovations

is known. We will later relax these assumptions to a more realistic statistical model. For

now, this simple model captures the essence of the problem.

In equation (2), ρ is the unknown degree of persistence in the variable xt. If |ρ| < 1 and

fixed, xt is integrated of order zero (I(0)). If ρ = 1, xt is integrated of order one (I(1)). Since

β and ρ are the only unknown parameters in the model, we can write down the joint log

likelihood2

L(β, ρ) = −
T∑

t=1

[(rt − βxt−1)
2 − 2δ(rt − βxt−1)(xt − ρxt−1) + (xt − ρxt−1)

2]. (3)

Suppose we are interested in testing the null hypothesis β = β0. We consider two alternative

hypotheses. The first is the simple alternative β = β1, and the second is the composite

alternative β �= β0. The hypothesis testing problem is complicated by the fact that the

nuisance parameter ρ is unknown.

One way to test the hypothesis of interest in presence of the nuisance parameter ρ is

through the likelihood ratio test (LRT). Let β̂ and ρ̂ denote the OLS estimators of β and ρ,

2To simplify notation, we ignore additive and multiplicative constants in expressions involving the likeli-

hood throughout the paper.
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respectively. Define ρ̂(β) = ρ̂ − δ(β̂ − β). Against the simple alternative, the LRT rejects

the null hypothesis if

L(β1, ρ̂(β1)) − L(β0, ρ̂(β0)) = 2(β1 − β0)
T∑

t=1

xt−1rt − (β2
1 − β2

0)
T∑

t=1

x2
t−1 > C (4)

for some constant C. (With a slight abuse of notation, we use C to denote a generic constant

throughout the paper.) Against the composite alternative, the LRT rejects the null if

L(β̂, ρ̂(β̂)) − L(β0, ρ̂(β0)) = t(β0)
2 > C, (5)

where t(β0) = (
∑T

t=1 x2
t−1)

1/2(β̂ − β0). In other words, the LRT against the composite

alternative is based on the t-statistic.

Note that we would obtain the same tests (4) and (5) starting from the marginal likelihood

L(β) = −∑T
t=1(rt − βxt−1)

2. Hence, the LRT can be interpreted as a test that ignores

information contained in equation (2) of the statistical model. Intuitively, this seems to be

a reasonable solution to the hypothesis testing problem when ρ is unknown.

The problem with the nuisance parameter could also be resolved if ρ were known a

priori. Since β is then the only unknown parameter in the likelihood function (3), the

Neyman-Pearson Lemma implies that the most powerful test against the simple alternative

rejects the null if

L(β1, ρ) − L(β0, ρ) = 2(β1 − β0)
T∑

t=1

xt−1[rt − δ(xt − ρxt−1)] − (β2
1 − β2

0)
T∑

t=1

x2
t−1 > C. (6)

Since the optimal test statistic (6) is a weighted sum of two minimal sufficient statistics with

the weights depending on the alternative β1, there is no UMP test. However, these point

optimal tests have power against the composite alternative for appropriately chosen values

of β1.

Comparing the LRT (4) with the most powerful test when ρ is known (6), they are

equivalent if and only if δ = 0. As noted by Torous, Valkanov, and Yan (2001) and Lewellen

(2002), incorporating knowledge of ρ, if it were known, could result in large efficiency gains.

2.1 Local Asymptotic Power

Suppose xt is I(0). Then conventional first-order asymptotics applies, and the OLS estimator

β̂ is
√

T -consistent. Hence, any reasonable test, such as the conventional t-test, rejects
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alternatives that are a fixed distance from the null with probability one as the sample size

becomes arbitrarily large. In practice, however, we have a finite sample and are interested

in the relative efficiency of test procedures. A natural way to evaluate the power of tests in

finite samples is to consider their ability to reject local alternatives. Formally, we consider a

sequence of alternatives of the form β1 = β0+b/
√

T for some fixed constant b. (See Lehmann

(1999, Chapter 3) for a textbook treatment of local alternatives and relative efficiency.)

The LRT against the simple alternative (4) rejects the null if

L(β1, ρ̂(β1)) − L(β0, ρ̂(β0)) = 2bT−1/2

T∑
t=1

xt−1(rt − β0xt−1) − b
2
T−1

T∑
t=1

x2
t−1 > C. (7)

The test statistic is a weighted sum of two statistics, T−1/2
∑T

t=1 xt−1(rt − β0xt−1) and

T−1
∑T

t=1 x2
t−1, with the weights depending on b. However, the second statistic has a degen-

erate asymptotic distribution (i.e. it converges in probability to E[x2
t−1] = σ2

x = (1− ρ2)−1).

Hence, the LRT is asymptotically equivalent to the test that rejects if

b
∑T

t=1 xt−1(rt − β0xt−1)

(
∑T

t=1 x2
t−1)

1/2
= bt(β0) > C. (8)

Since the test takes the same form for each alternative b, the t-test is asymptotically the

LRT against the simple alternative.

Now consider the case that ρ is known. Then the most powerful test against the simple

alternative (6) rejects if

L(β1, ρ)−L(β0, ρ) = 2bT−1/2

T∑
t=1

xt−1[rt −β0xt−1 − δ(xt − ρxt−1)]− b
2
T−1

T∑
t=1

x2
t−1 > C. (9)

The optimal test statistic is a weighted sum to two minimal sufficient statistics with the

weights depending on b. However, the second statistic T−1
∑T

t=1 x2
t−1 has a degenerate

asymptotic distribution, so the most powerful test is asymptotically equivalent to the test

that rejects if

b
∑T

t=1 xt−1[rt − β0xt−1 − δ(xt − ρxt−1)]

(1 − δ2)1/2(
∑T

t=1 x2
t−1)

1/2
= bQ(β0, ρ) > C, (10)

where

Q(β0, ρ) =
(
∑T

t=1 x2
t−1)

1/2[(β̂ − β0) − δ(ρ̂ − ρ)]

(1 − δ2)1/2
. (11)
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Since the test based on Q(β0, ρ) takes the same form for each alternative b, it is UMP against

one-sided alternatives when ρ is known.

When β0 = 0, the statistic Q(β0, ρ) is the t-statistic that results from regressing rt −
δ(xt − ρxt−1) onto xt−1. Since vt = xt − ρxt−1, knowledge of ρ allows us to subtract off the

part of innovation to returns that is correlated with the innovation to the predictor variable,

resulting in a more powerful test. The statistic Q(β0, ρ) has also appeared in Lewellen (2002),

where he motivates it by interpreting δ(ρ̂− ρ) in (11) as the “finite sample bias” of the OLS

estimator (cf. Stambaugh (1999)). Using the fact that Q(β0, ρ) is asymptotically standard

normal under the null and assuming that ρ = 1, Lewellen (2002) tests the predictability

of returns using the statistic Q(β0, 1). We have shown here that the UMP one-sided test

when ρ is known is based on the statistic (11) rather than the conventional t-statistic. For

simplicity, we will refer to this (infeasible) test as the Q-test.

2.2 Power under First-Order Asymptotics

We now derive the power functions of the t-test and the Q-test to illustrate the power

gains that would result from incorporating knowledge of the persistence parameter ρ. Let

Φ(z) denote one minus the cumulative distribution function of the standard normal, and

let zα denote the upper α-quantile of that distribution. Under first-order asymptotics, the

probability of rejecting a local alternative b = b is

πt(b) = Φ(zα − σx|b|), (12)

πQ(b) = Φ

(
zα − σx|b|

(1 − δ2)1/2

)
, (13)

for the t-test and the Q-test, respectively. Since the Q-test is asymptotically UMP against

one-sided alternatives, πQ(b) is also the power envelope when ρ is known.

In Figure 1, we plot the power functions for various combinations of ρ (0.99 and 0.75)

and δ (-0.95 and -0.75). These values are chosen to correspond to the relevant region of

the parameter space when the predictor variable is the log dividend-price ratio or the log

earnings-price ratio. Note that, as expected, the power function for the Q-test dominates

that of the t-test. A comparison of (12) and (13) shows that the power gain arises from

δ2 �= 0 and is increasing in the degree of correlation. Intuitively, when ρ is known, the
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innovation vt = xt − ρxt−1 is known as well. Then by subtracting off the portion of the

innovation to rt that is correlated with vt (i.e. δvt), the Q-test is able to gain efficiency from

the reduction in noise. When the predictor variable is a valuation ratio (e.g. dividend-price

ratio or earnings-price ratio), the efficiency gain from using the Q-test is especially large

since the innovations to returns and the valuation ratio are highly correlated through the

stock price. In practice, the Q-test is infeasible because ρ is unknown, so unfortunately, the

large efficiency gains over the t-test cannot be realized.

2.3 Relaxing the Assumptions

The statistical model (1)–(2) and the distributional assumptions that we have used to derive

the results in the last section are quite restrictive. In this section, we show that all the key

insights are retained under a more general model. Consider the statistical model

rt = γr + βxt−1 + ut, (14)

xt = γx + ρxt−1 +

p−1∑
i=1

ψi∆xt−i + vt. (15)

The predictor variable xt is now an AR(p), which we have written in the augmented Dickey-

Fuller form. xt is I(0) if ρ < 1 and fixed and is I(1) if ρ = 1. We assume that all the other

roots ψi (i = 1, . . . , p − 1) are fixed and less than one in absolute value.

Following Elliott and Stock (1994), we make the following fairly weak distributional

assumptions:

Assumption 1 Let wt = (ut, vt)
′ and Ft = {ws|s ≤ t} be the filtration generated by the

process wt. Then

1. E[wt|Ft−1] = 0,

2. E[wtw
′
t|Ft−1] = Σ = [(σ2

u, σuv)
′, (σuv, σ

2
v)

′],

3. supt E[u4
t ] < ∞ and supt E[v4

t ] < ∞.

In other words, wt is a homoskedastic martingale difference sequence with finite fourth

moments. Under this assumption, the asymptotics for the t-statistic and the Q-statistic

continue to hold through the law of large numbers and the central limit theorem.
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For instance, consider the Q-statistic

Q(β0, ρ) =

∑T
t=1 xµ

t−1[rt − β0xt−1 − (σuv/σ
2
v)(xt − ρxt−1 −

∑p−1
i=1 ψi∆xt−i)]

σu(1 − δ2)1/2(
∑T

t=1 xµ2
t−1)

1/2
, (16)

where xµ
t−1 = xt−1 − T−1

∑T
t=1 xt−1. Definition (16) is a generalization of definition (11) to

the model (14)–(15). Suppose ρ is known. The Q-statistic (16) is still infeasible because

it requires knowledge of nuisance parameters Σ and ψi. However, a feasible version of the

Q-statistic that replaces these nuisance parameters with consistent estimators has the same

asymptotic distribution as the infeasible Q-statistic. Hence, the power function for the Q-

statistic in Figure 1 still applies as long as the largest autoregressive root ρ is known. The

asymptotic results that we have derived for the simplified statistical model (1)–(2) therefore

carry over to the more general model (14)–(15).

Under the further assumption that wt is bivariate normal, we recover the result that

the power function for the Q-test coincides with the power envelope for point optimal tests.

When wt is non-normal, there are in principle tests that more efficient than the Q-test.

However, the Q-test is asymptotically more efficient than the t-test even if the innovations

are non-normal. This illustrates the fact that the Gaussian likelihood function and the

Neyman-Pearson Lemma can be useful tools for deriving efficient tests even if the error

distribution is unknown.

3 Inference with a Persistent Regressor

In Figure 2, we plot the log dividend-price ratio for the CRSP NYSE/AMEX portfolio and

the log smoothed earnings-price ratio for the S&P 500 portfolio at quarterly frequency. Fol-

lowing Campbell and Shiller (1988), earnings are smoothed by taking a backwards moving

average over ten years. Both valuation ratios are persistent and even appear to be nonsta-

tionary, especially toward the end of the sample period. The 95% confidence intervals for ρ

are [0.964, 1.010] and [0.949, 1.005] for the dividend-price ratio and the earnings-price ratio,

respectively. Hence, we cannot reject the null hypothesis that these valuation ratios contain

a unit root.

The persistence of financial variables typically used to predict returns has important im-
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plications for inference about predictability. Even if xt is I(0), first-order asymptotics is a

poor approximation in finite samples as long as ρ is close to one because of the discontinu-

ity in the asymptotic distribution at ρ = 1 (cf. Elliott and Stock (1994)). Local-to-unity

asymptotics is an alternative asymptotic framework that circumvents this problem by mod-

eling ρ = 1 + c/T , where c is a fixed constant. Within this framework, the asymptotic

distribution theory is not discontinuous when xt is I(1) (i.e. c = 0). This device also allows

xt to be stationary but nearly integrated (i.e. c < 0). Local-to-unity asymptotics has been

applied successfully to approximate the finite sample behavior of persistent time series in

the unit root testing literature. (See Stock (1994) for a survey and references.) The local-to-

unity framework has been applied to the present context of predictive regressions by several

authors. Elliott and Stock (1994) derived the asymptotic null distribution of the t-statistic.

This has been extended to long-horizon t-tests by Torous, Valkanov, and Yan (2001).

An important feature of the nearly integrated case is that the mean of the process xt is

not well defined. Hence, the process xt and the demeaned process xµ
t = xt − T−1

∑T
t=1 xt

have different asymptotic distributions. Similarly, second moments do not exist for nearly

integrated series. However, when appropriately scaled, these objects converge to functionals

of a diffusion process. Let Jc(s) be the diffusion process defined by the stochastic differential

equation dJc(s) = cJc(s)ds+dW (s) with initial condition Jc(0) = 0, where W (s) is a Wiener

process. Let Jµ
c (s) = Jc(s)−

∫
Jc(r)dr, where integration is over [0, 1] unless otherwise noted.

Let ⇒ denote weak convergence on the space D[0, 1] of cadlag functions (cf. Billingsley (1999,

Chapter 3)). By a straightforward extension of Phillips (1987, Lemma 1),(
T−3/2

T∑
t=1

xµ
t , T

−2

T∑
t=1

xµ2
t

)
⇒

(
ω

∫
Jµ

c (s)ds, ω2

∫
Jµ

c (s)2ds

)
,

where ω = (1 − ∑p−1
i=1 ψi)

−1σv.

In empirical application, the series xt needs to be demeaned. For instance, there is an

arbitrary scaling factor involved in computing the dividend-price ratio, which results in an

arbitrary constant shifting the level of the log dividend-price ratio. Hence, it is natural to

have intercept terms as in the model (14)–(15), which were assumed away in the simplified

model (1)–(2). Throughout the rest of the paper, we assume that (14) and (15) are the

true processes for excess returns and the predictor variable, respectively, where c = T (ρ− 1)
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is fixed. We restrict ourselves to tests that are invariant to translations in the unknown

intercept terms γr and γx (cf. Lehmann (1986, Chapter 6)).

3.1 Point Optimal Tests

In this section, we derive optimal test procedures in the local-to-unity framework, mirroring

our derivations for conventional first-order asymptotics in Section 2.1. In order to do so, we

strengthen Assumption 1 and assume the following

Assumption 2

1. wt is independently distributed N(0, Σ).

2. The nuisance parameters Σ and ψi (i = 1, . . . , p − 1) are known.

We will later relax these assumptions and show that the asymptotic results hold more gen-

erally.

Since the derivations of the LRT (4) and the point optimal test (6) against the simple

alternative did not rely on assumptions about the nature of ρ, they are still applicable here.

However, to derive expressions analogous to (7) and (9) for tests against a local alternative,

we must consider alternatives that are in a T−1-neighborhood of β0. This is because when

the regressor xt contains a local-to-unit root, OLS estimators β̂ and ρ̂ are consistent at

the rate T , rather than
√

T . Formally, we consider a sequence of alternatives of the form

β1 = β0 + b/T for some fixed constant b.

Define the test statistic

N(β0, b) = 2bT−1

T∑
t=1

xµ
t−1(rt − β0xt−1) − b

2
T−2

T∑
t=1

xµ2
t−1. (17)

The LRT against the simple alternative rejects the null if N(β0, b) > C. Let β = β0 + b/T

denote the true value of the unknown parameter. We show in the Appendix that

N(β0, b) ⇒ (2bb − b
2
)ω2κ2

c + 2bσuω[δτc + (1 − δ2)1/2κcZ], (18)

where κc = (
∫

Jµ
c (s)2ds)1/2, τc =

∫
Jµ

c (s)dW (s), and Z is a standard normal random variable

independent of (W (s), Jc(s)). Suppose b > 0 so that for an α-level test, we reject the null
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if N(β0, b) > Cα, where Cα is the upper α-quantile of N(β0, b) under the null (i.e. b = 0).

Although the statistic N(β0, b) is the LRT against the alternative b = b, expression (18)

shows that it has power against all alternatives b > 0.

Recall that the LRT against the composite alternative is based on the t-statistic. As

shown by Elliott and Stock (1994), the t-statistic has the asymptotic distribution

t(β0) ⇒ bωκc

σu

+ δ
τc

κc

+ (1 − δ2)1/2Z. (19)

Because T−2
∑T

t=1 xµ2
t−1 has a non-degenerate asymptotic distribution under local-to-unity

asymptotics, the LRT against the simple alternative is not asymptotically equivalent to the

LRT against the composite alternative.

Now consider the case that ρ is known, or equivalently c is known. Define the test statistic

P (β0, b, ρ) = 2bT−1

T∑
t=1

xµ
t−1

[
rt − β0xt−1 − σuv

σ2
v

(
xt − ρxt−1 −

p−1∑
i=1

ψi∆xt−i

)]

−b
2
T−2

T∑
t=1

xµ2
t−1. (20)

The most powerful test against a local alternative rejects if P (β0, b, ρ) > C. There is a

pair of minimal sufficient statistics for this decision problem. Unlike the case for first-order

asymptotics, the second statistic T−2
∑T

t=1 xµ2
t−1 has a non-degenerate asymptotic distribu-

tion, so there are two minimal sufficient statistics even asymptotically. Since the optimal

test statistic is a weighted sum of these two statistics, where the weights depend on the

alternative b, we do not have a UMP test against a one-sided alternative. Instead, we have

an infinite family of asymptotically admissible tests indexed by b that are optimal against a

point alternative.

We show in the Appendix that

P (β0, b, ρ) ⇒ (2bb − b
2
)ω2κ2

c + 2bσuω(1 − δ2)1/2κcZ. (21)

As we have argued for the LRT, the statistic P (β0, b, ρ) has power against all alternatives

with the same sign as b. A comparison of expressions (18) and (21) shows that the cost of

not knowing ρ is an extra term 2bσuωδτc. When δ is large, the additional noise in the test

statistic should translate to a decrease in power.
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Although there are two minimal sufficient statistics for the point optimal test (20), the

second statistic T−2
∑T

t=1 xµ2
t−1 is ancillary. That is, its distribution does not depend on β. It

is thus reasonable to consider tests that condition on the ancillary statistic. The conditional

test is based on the Q-statistic (16), which has the asymptotic distribution

Q(β0, ρ) ⇒ bωκc

σu(1 − δ2)1/2
+ Z (22)

as shown in the Appendix. Hence, Q(β0, ρ) is distributed standard normal under the null

(i.e. b = 0). Lewellen (2002) derived this result under first-order asymptotics; we generalize

it to the case of local-to-unity asymptotics. Note that this statistic is pivotal in the sense

that its distribution under the null does not depend on the nuisance parameter c. In contrast,

the asymptotic null distributions of N(β0, b), P (β0, b, ρ), and t(β0) depend on the random

variables κc and τc, which have nonstandard distributions that depend on c. Of course, the

distribution of these random variables can be simulated by Monte Carlo, but the test based

on Q(β0, ρ) is much more convenient to implement computationally.

Against a local alternative b > 0, we reject the null if Q(β0, ρ) > zα. The power function

of the Q-test is thus given by

πQ(b) = E

[
Φ

(
zα − ωκc|b|

σu(1 − δ2)1/2

)]
, (23)

where expectation is taken over the distribution of κc. The power of the Q-test, of course,

will be dominated by the power envelope since there is no UMP test. Moreover, the Q-test

is not a member of the family of point optimal tests. However, since it is the most powerful

test conditional on the ancillary statistic, it should have good power properties. We will

examine this in the next section.

3.2 Power under Local-to-Unity Asymptotics

Under first-order asymptotics, the t-statistic is asymptotically pivotal. That is, its asymp-

totic null distribution does not depend of the nuisance parameter ρ. Under local-to-unity

asymptotics, however, the asymptotic null distribution of the statistic N(β0, b) or the t-

statistic depends on the unknown nuisance parameter c, making the LRT infeasible. In this
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section, we examine the power properties of various test procedures under the assumption

that c is known. We return to the problem of feasible tests in Section 3.4.

In Figure 3, we plot the power envelope for the point optimal tests using the local-to-unity

asymptotic distribution (21). We also plot the power functions for the Q-test and the t-test

(using the appropriate critical value that depends on c). Under local-to-unity asymptotics,

power functions are not symmetric in b. We only report results for right-tailed tests (i.e.

b > 0) since the results are similar for left-tailed tests. We consider various combinations of c

(-2 and -20) and δ (-0.95 and -0.75), which are in the relevant region of the parameter space

for the log dividend-price ratio or the log earnings-price ratio. The nuisance parameters are

normalized as σu = ω = 1.

Although not reported in the figure, point optimal tests that are optimal for a fixed

alternative b = b have good power against all alternatives b that are of the same sign as b.

Hence, although we do not have a UMP test, we have an infinite family of point optimal

tests that are effectively UMP. This is similar to a remarkable result by Elliott, Rothenberg,

and Stock (1996) that although there is no UMP test for an autoregressive unit root, there

is a family of point optimal tests that in practice achieve the power envelope.

The Q-test is quite powerful, effectively achieving the power envelope, especially for

alternatives that are close to the null. Although a member of the family of point optimal tests

is more powerful than the Q-test in principle, the latter has some important computational

advantages. The critical value of the Q-test just depends on the quantiles of the standard

normal. On the other hand, one has to run Monte Carlo simulations to calculate the critical

values for the point optimal tests. Also, to assure that the point optimal test achieves good

power, one must compute a reasonable value for b given c and δ. Perhaps the best value is the

b such that the power function is tangent to the power envelope at 50% power.3 This requires

additional expensive Monte Carlo simulations to pick an appropriate b. For these reasons,

the Q-test seems more practical, especially since it does a fairly good job of approximating

the power envelope.

As expected, the power function for the Q-test dominates that for the t-test. The dif-

ference is especially large when δ = −0.95. When the correlation between the innovations

3Stock (1994) makes similar recommendations for the point optimal unit root tests.
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is large, there are large efficiency gains from subtracting off the part of the innovation to

returns that is correlated with the innovation to the predictor variable.

To assess the importance of the power gain, we compute the Pitman efficiency, which is

the ratio of the sample sizes at which two tests achieve the same level of power (e.g. 50%)

along a sequence of local alternatives. Consider the case c = −2 and δ = −0.95 in the upper

left panel. To compute the Pitman efficiency of the t-test relative to the Q-test, note first

that the t-test achieves 50% power when b = 4.8. On the other hand, the power envelope

achieves 50% power when b = 1.7. Following the discussion in Stock (1994, p. 2775), the

Pitman efficiency of the t-test relative to the Q-test is 4.8/1.7 ≈ 2.8. This means that

to achieve 50% power, the t-test asymptotically requires 180% more observations than the

Q-test.

As was the case for first-order asymptotics in Section 2.3, the asymptotic power functions

computed in this section are valid under the more general Assumption 1. For instance, the

nuisance parameters Σ and ψ can be substituted by consistent estimators without conse-

quence to the asymptotic theory. The only fact that we lose by dropping Assumption 2

is the point optimality of tests based on the statistic P (β0, b, ρ). When wt is non-normal,

one can in principle construct a more powerful test using the relevant likelihood function

if the error distribution were known. In practice, the true distribution is unknown, so the

quasi-likelihood approach that we have taken here is a reasonable solution.

3.3 Relation to First-Order Asymptotics and a Simple Pretest

In this section, we discuss the relation between first-order and local-to-unity asymptotics

and use it to develop a simple pretest that can be used to determine when inference based

on first-order asymptotics is reliable.

Recall the asymptotic distribution of the t-statistic under local-to-unity asymptotics (19).

In general, the distribution under the null is nonstandard because of its dependence on τc

and κc. However, the t-statistic is standard normal in the special case δ = 0. Hence, the

t-statistic should be approximately standard normal when δ ≈ 0. Likewise, the t-statistic

should be approximately standard normal when c � 0 because conventional first-order

asymptotics should be a good approximation when the predictor variable is stationary. This
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follows formally from Phillips (1987, Theorem 2) who shows that τc/κc ⇒ Z̃ as c → −∞,

where Z̃ is a standard normal random variable independent of Z.

In Figure 4, we plot the actual size of the nominal 5% one-sided t-test as a function of c

and δ. In other words, we plot

p(c, δ; α) = Pr

(
δ
τc

κc

+ (1 − δ2)1/2Z > zα

)
, (24)

where α = 0.05. The t-test that uses conventional critical values has approximately the

correct size when δ is small in absolute value or c is large in absolute value.4 The size

distortion of the t-test peaks when δ = −1 and c ≈ 1. The size distortion arises from the

fact that the distribution of τc/κc is skewed to the left, which causes the distribution of the

t-statistic to be skewed to the right when δ < 0. This causes a right-tailed t-test that uses

conventional critical values to over-reject, and a left-tailed test to under-reject. When the

predictor variable is a valuation ratio (e.g. dividend-price ratio), δ ≈ −1 and the hypothesis

of interest is β = 0 against the alternative β > 0. Thus we may worry that the evidence for

predictability is a consequence of size distortion.

In Table 1, we use Figure 4 to tabulate the values of c ∈ (c, c) that cause the size of the

right-tailed t-test to exceed 7.5% for selected values of δ. For instance, when δ = −0.95,

the nominal 5% t-test has actual size greater than 7.5% if c ∈ (−79.318, 8.326). The table

can be used to construct a pretest to determine whether inference based on the conventional

t-test is sufficiently reliable. Suppose a researcher is willing to tolerate an actual size of up

to α̃ (e.g. 7.5%) for a nominal α-level (e.g. 5%) test. Let Θ = {c, δ|p(c, δ; α) > α̃}. Then

the goal is to test

H0 : {c, δ} ∈ Θ

H1 : {c, δ} �∈ Θ.

To test this hypothesis, we first construct a 100(1 − α1)% confidence interval for c, which

we denote as Cc(α1). (For instance, the confidence interval can be computed by inverting

the Dickey-Fuller test as in Stock (1991).) We then estimate δ using the OLS residuals from

4The fact that the t-statistic is approximately normal for c � 0 corresponds to asymptotic results for

explosive AR(1) with Gaussian errors. See Phillips (1987) for a discussion.
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(14) and (15). We reject the null hypothesis if Cc(α1)
⋂

(c, c) = ∅, where (c, c) is taken from

Table 1 using the estimated correlation δ̂. That is, we reject the null if the confidence interval

for c indicates that the predictor variable is sufficiently away from unit root for the t-test to

be reliable. Asymptotically, this pretest has size α1.

3.4 Feasible Tests of Predictability

In Sections 3.1–3.2, we proceeded under the assumption that c is known to develop efficient

tests in that context. In practice, however, c is an unknown nuisance parameter that cannot

be estimated consistently. Consequently, tests based on N(β0, b) and P (β0, b, ρ) are infeasible

since their asymptotic null distributions depend on c through the random variables κc and

τc. In other words, the statistics N(β0, b) and P (β0, b, ρ) are not asymptotically pivotal.

Although the statistic Q(β0, ρ) is asymptotically pivotal, we still require the true value of ρ

(or equivalently c) to compute the test statistic.

The problem that the tests cannot be implemented without knowledge of c is not unique

to these efficient tests, but rather plagues even the conventional t-test as expression (19)

reveals. Intuitively, the degree of persistence, controlled by the parameter c, influences the

finite sample distribution of test statistics that depend on the persistent predictor variable.

This must be accounted for by adjusting either the critical values of the test (e.g. t-test and

N -test), the value of the test statistic itself (e.g. Q-test), or both (e.g. point optimal test).

Cavanagh, Elliott, and Stock (1995) discuss several methods of approaching this problem

including sup-bound, Bonferroni, and Scheffe-type confidence intervals that have the correct

coverage. Here, we will discuss the Bonferroni confidence interval.

To construct a Bonferroni confidence interval, we first construct a 100(1−α1)% confidence

interval Cρ(α1) for ρ. (Note that we parameterize the degree of persistence by ρ rather than

c since this is the more natural choice in the following.) Then for each value of ρ in the

confidence interval, we construct a 100(1 − α2)% confidence interval Cβ|ρ(α2) for β given ρ.

A confidence interval that does not depend on ρ can be obtained by

Cβ(α) =
⋃

ρ∈Cρ(α1)

Cβ|ρ(α2).
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By Bonferroni’s inequality, this confidence interval has coverage of at least 100(1 − α)%,

where α = α1 + α2.

This approach is conservative in the sense that the actual coverage rate of Cβ(α) is likely

to be greater than 100(1 − α)%. To see this, we use the equality

Pr(β �∈ Cβ(α)) = Pr(β �∈ Cβ(α)|ρ ∈ Cρ(α1)) Pr(ρ ∈ Cρ(α1))

+ Pr(β �∈ Cβ(α)|ρ �∈ Cρ(α1)) Pr(ρ �∈ Cρ(α1)).

Since Pr(β �∈ Cβ(α)|ρ �∈ Cρ(α1)) is not known, the Bonferroni confidence interval bounds

it by one as the worst case. In addition, the inequality Pr(β �∈ Cβ(α)|ρ ∈ Cρ(α1)) ≤ α2

is strict unless the conditional confidence intervals Cβ|ρ(α2) do not depend on ρ. Because

these worst case conditions are unlikely to hold in practice, the inequality Pr(β �∈ Cβ(α)) ≤
α2(1 − α1) + α1 ≤ α is likely to be strict, resulting in a conservative confidence interval.

To implement the Bonferroni confidence interval in practice, Cavanagh, Elliott, and Stock

suggest inverting the Dickey-Fuller t-statistic to first construct Cρ(α1). They then suggest

inverting the conventional t-statistic for testing β, using appropriate critical values computed

by its asymptotic distribution (19). The two t-statistics are correlated, which tends to

increase the coverage rate of the confidence interval. Cavanagh, Elliott, and Stock suggest

adjusting α1 and α2 to achieve an exact test of the desired significance level. The method

that we have outlined here has been applied to US data by Torous, Valkanov, and Yan

(2001).

A natural question that arises is whether there is a more efficient method of constructing

the Bonferroni confidence interval. Since there is no UMP test for an autoregressive unit root

(cf. Elliott, Rothenberg, and Stock (1996)), there is no uniformly most accurate confidence

interval for ρ. However, as discussed in Elliott and Stock (2001), inverting a relatively

efficient unit root test translates to a relatively tight confidence interval. Hence, inverting

the DF-GLS test of Elliott, Rothenberg, and Stock (1996) should result in a tighter confidence

interval for ρ than inverting the Dickey-Fuller t-test. Hence, we will construct the confidence

interval for ρ by applying Stock’s (1991) method of confidence belts to the DF-GLS test.

In addition, the power calculations in Section 3.2 suggest that there are tests of β given

ρ that are more powerful than the t-test. In particular, we can obtain a more accurate
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confidence interval Cβ|ρ(α2) by inverting the Q-test. Because the statistic Q(β0, ρ) is standard

normal under the null, an equal-tailed α2-level confidence interval is simply Cβ|ρ(α2) =

[β(ρ, α2), β(ρ, α2)] where

β̂(ρ) =

∑T
t=1 xµ

t−1[rt − (σuv/σ
2
v)(xt − ρxt−1 −

∑p−1
i=1 ψi∆xt−i)]∑T

t=1 xµ2
t−1

, (25)

β(ρ, α2) = β̂(ρ) − zα2/2σu

(
1 − δ2∑T
t=1 xµ2

t−1

)1/2

, (26)

β(ρ, α2) = β̂(ρ) + zα2/2σu

(
1 − δ2∑T
t=1 xµ2

t−1

)1/2

. (27)

Let Cρ(α1) = [ρ(α1), ρ(α1)] denote the confidence interval for ρ, where α1 = Pr(ρ < ρ(α1)),

α1 = Pr(ρ > ρ(α1)), and α1 = α1 + α1. Then the Bonferroni confidence interval is given by

Cβ(α) =


[
β(ρ(α1), α2), β(ρ(α1), α2)

]
if δ < 0[

β(ρ(α1), α2), β(ρ(α1), α2)
]

otherwise.
(28)

Hence, we have a closed form expression for the confidence interval of β that is easy to

compute.

As discussed above, the Bonferroni confidence interval can be quite conservative. As

suggested by Cavanagh, Elliott, and Stock, the significance levels α1 and α2 can be adjusted

to achieve a test of desired significance level α̃ ≤ α. To do so, we first fix α2. Then for each

δ < 0, we numerically search over a grid for c to find the α1 such that

Pr(β(ρ(α1), α2) > β) ≤ α̃/2, (29)

with equality at some c. We then repeat the same procedure for α1 and

Pr(β(ρ(α1), α2) < β) ≤ α̃/2. (30)

In Table 2, we report the values of α1 and α1 for selected values of δ when α̃ = α2 = 0.10,

using the grid c ∈ [−50, 5]. The table can be used to construct a 5% one-sided Q-test for

predictability. Note that α1 and α1 are increasing in δ, so the Bonferroni inequality has more

slack and the unadjusted Bonferroni test is more conservative the smaller is δ in absolute

value.
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Our computational results indicate that in general the inequalities (29) and (30) are

close to equalities when c is large and are slack when c is small. For right-tailed tests, the

probability (29) can be as small as 0.04 for some values of c and δ. For left-tailed tests, the

probability (30) can be as small as 0.012. This means that even the adjusted Bonferroni

Q-test is still conservative (i.e. undersized) when c < 5. In principle, one can obtain a

tighter Bonferroni confidence interval for β by using confidence belts that are narrower than

the DF-GLS confidence belt for stationary autoregressive roots and wider for explosive roots.

The approach that we have taken here is somewhat conservative but tractable. Similar tests

that have size exactly α̃ uniformly in c are elusive and are left to future research.

3.5 Power of Feasible Tests

In this section, we analyze the power properties of various feasible tests that have been

proposed in the literature.

In addition to the Bonferroni Q-test described in the last section, we analyze the Bon-

ferroni t-test. Our Bonferroni t-test is a slight modification of the one originally proposed

by Cavanagh, Elliott, and Stock (1995); instead of constructing the confidence interval for

c using the Dickey-Fuller t-test, we use the DF-GLS test of Elliott, Rothenberg, and Stock

(1996). We use the numerical procedure described in the last section to set the size of the

Bonferroni t-test test to 5% uniformly in c ∈ [−50, 5].

In Figure 5, we plot the power of the two Bonferroni tests against right-sided local

alternatives (i.e. b > 0). As a benchmark, we also plot the power function of the infeasible

t-test that assumes knowledge of c. The values of c (-2 and -20) and δ (-0.95 and -0.75) are

the same as those in Figure 3.

When c = −2, the Bonferroni Q-test dominates the Bonferroni t-test. The Bonferroni

Q-test comes very close to the power function of the infeasible t-test. When c = −2 and

δ = −0.95, the Pitman efficiency of the Bonferroni Q-test over the Bonferroni t-test is 1.2,

which means that the t-test requires 20% more observations to achieve 50% power. When

c = −20, both tests have similar power with the power functions lying slightly below that

of the infeasible t-test. This is not surprising since the t-statistic is approximately pivotal

when c � 0, so the power loss from not knowing c is relatively small.
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In addition to the the Bonferroni tests, we also consider the power of Lewellen’s (2002)

test which is the Q-test that assumes ρ = 1. In our notation (28), Lewellen’s confidence

interval corresponds to [β(1, α2), β(1, α2)]. This test can be interpreted as a sup-bound

Q-test, provided that the parameter space is restricted to c ∈ (−∞, 0], since Q(β0, ρ) is

decreasing in ρ when δ < 0. By construction, the sup-bound Q-test is the most powerful

test when c = 0. When c = −2 and δ = −0.95, the sup-bound Q-test is undersized when b

is small and has good power when b � 0. When c = −2 and δ = −0.75, the power of the

sup-bound Q-test is close to that of the Bonferroni Q-test. When c = −20, the sup-bound

Q-test has very poor power. In some sense, the comparison of the sup-bound Q-test with

the Bonferroni tests is unfair because the size of the sup-bound test is greater than 5% when

the true autoregressive root is explosive (i.e. c > 0), while the Bonferroni tests have the

correct size even in the presence of explosive roots.

Against left-sided local alternatives (i.e. b < 0), the sup-bound t-test, which is the t-

test that uses conventional critical values, has correct albeit conservative size. (Recall from

Section 3.3 that the left-tailed t-test is undersized when δ < 0.) Although we do not report

the power functions, our computations indicate the Bonferroni tests (based on either the

t-test or the Q-test) are less undersized than the sup-bound t-test. Hence, the Bonferroni

tests have better power, especially when the predictor variable is persistent (i.e. c = −2).

The two Bonferroni tests have similar power although the t-test version has better power

when the predictor variable is stationary (i.e. c = −20).

We conclude that the Bonferroni Q-test has important power advantages over the other

feasible tests. Against right-sided alternatives, it has greater power than the Bonferroni

t-test when the predictor variable is highly persistent, and it has much greater power than

the sup-bound Q-test when the predictor variable is less persistent.

4 Predictability of Stock Returns

In this section, we implement our test of predictability in US equity data. We then relate

our findings to previous empirical results in the literature.
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4.1 Data

We use four different series of excess stock returns, dividend-price ratio, and earnings-price

ratio. The first is annual S&P 500 index data (1871–2001) from DRI-WEFA Webstract since

1926 and Shiller (2000) before then.5 The last three are annual, quarterly, and monthly

NYSE/AMEX value-weighted index data (1926–2001) from the Center for Research in Se-

curity Prices (CRSP).

Following Campbell and Shiller (1988), the dividend-price ratio is computed as dividends

over the past year divided by the current price, and the earnings-price ratio is computed as a

moving average of earnings over the past ten years divided by the current price. Since earn-

ings data are not available for the CRSP series, we instead use the corresponding earnings-

price ratio from S&P 500. Earnings are available at monthly frequency only since 1935, so

we use Shiller’s annual earnings before then. Instead of using linear extrapolation of annual

earnings as in Shiller (2000), we assign annual earnings to each month of the year.

To compute excess returns of stocks over a riskfree return, we use the 1-month T-bill rate

for the monthly series and the 3-month T-bill rate for the quarterly series. For the annual

series, we compute the riskfree return by rolling over the 3-month T-bill every quarter. For

1926–2001, the T-bill rates are taken from CRSP’s Fama Risk Free Rates File. For our

longer S&P 500 series, we augment this with US Commercial Paper Rates, New York City

from Macaulay (1938).6

For the three CRSP series, we consider the sub-sample 1952–2001 in addition to the full

sample. This allows us to add two additional predictor variables, the 3-month T-bill rate

and the long-short yield spread. Following Fama and French (1989), the long yield used in

computing the yield spread is Moody’s Seasoned Aaa Corporate Bond Yield.7 The short

rate used is the 1-month T-bill rate. Although data are available before 1952, the nature of

the interest rate is very different then due to the Fed’s policy of pegging the interest rate.

Following the usual convention, excess returns and the predictor variables are all in logs.

5Shiller’s data is available at http://aida.econ.yale.edu/∼shiller/data.htm.
6Available at http://www.nber.org/databases/macrohistory/contents/chapter13.html.
7Available at http://www.stls.frb.org/fred/data/irates.html.
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4.2 Empirical Results

4.2.1 Persistence of Predictor Variables

In Table 3, we report the 95% confidence interval of the autoregressive root ρ for the log

dividend-price ratio (d − p), the log earnings-price ratio (e − p), the 3-month T-bill rate

(r3), and the yield spread (y − r1). The confidence interval is computed by applying the

method of confidence belts (Stock (1991)) to the DF-GLS statistic. The autoregressive lag

length p ∈ [1, p] for the predictor variable is estimated using BIC (Schwartz criterion). We

set the maximum lag length p to 4 for annual, 8 for quarterly, and 12 for monthly data. The

estimated lag lengths are reported in the fourth column of Table 3.

All of the series are highly persistent, often containing a unit root in the confidence

interval. An interesting feature of the confidence intervals for d−p and e−p is that they are

sensitive to whether the sample period includes data after 1994. The confidence interval for

the sample through 1994 (Panel B) is always less than that for the full sample through 2001

(Panel A). The source of this difference can be explained by Figure 2, which is a time series

plot of d− p and e− p at quarterly frequency. Around 1994, these valuation ratios begin to

drift down to historical lows, making the processes look more like unit-root processes. The

least persistent series is y − r1, whose confidence interval never contains a unit root.

The high persistence of these predictor variables suggests that first-order asymptotics —

which implies that the t-statistic is approximately standard normal — may be misleading.

As shown in Section 3.3, whether conventional inference based on the t-test is reliable also

depends on the correlation δ between the innovations to excess returns and the predictor

variable. Hence, we report point estimates of δ in the fifth column of Table 3. As expected,

the correlations for d − p and e − p are negative and large. This is because movements in

stock returns and these valuation ratios mostly come from movements in the stock price. The

large magnitude of δ̂ suggests that inference based on the conventional t-test leads to large

size distortions. More formally, we fail to reject the null hypothesis that the size distortion

is greater than 2.5% using the pretest described in Section 3.3. For r3 and y − r1, δ̂ is much

smaller. For these predictor variables, the pretest rejects the null hypothesis, which suggests

that the conventional t-test leads to approximately correct inference.
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4.2.2 Testing the Predictability of Returns

In this section, we construct valid confidence intervals for β to test the predictability of

returns. Based on the power analysis in Section 3.5, our preferred test is the Bonferroni

Q-test.

Our methodology and results can most easily be explained by the following graphical

method, which can be implemented as a sequence of OLS regressions:

1. Run the OLS regressions (14) and (15), with the autoregressive lag length p estimated

by BIC, to obtain β̂, ψ̂i (i = 1, . . . , p − 1), and the standard error of β̂ which will be

denoted by SE(β̂). Using the OLS residuals, ût and v̂t, compute σ̂2
u = (T−2)−1

∑T
t=1 û2

t ,

σ̂2
v = (T − 2)−1

∑T
t=1 v̂2

t , σ̂uv = (T − 2)−1
∑T

t=1 ûtv̂t, and δ̂ = σ̂uv/(σ̂uσ̂v).

2. Construct a 100(1−α1 −α1)% confidence interval for ρ, denoted by Cρ(α1), using the

appropriate values of α1 and α1 from Table 2 based on δ̂.

3. For each value of ρ in Cρ(α1), compute an equal-tailed 90% confidence interval for β

given ρ as follows. Regress rt − (σ̂uv/σ̂
2
v)(xt − ρxt−1 −

∑p−1
i=1 ψ̂i∆xt−i) onto a constant

and xt−1. Let β̂(ρ) denote the coefficient on xt−1. The confidence interval for β given

ρ is Cβ|ρ(α2) = [β(ρ, α2), β(ρ, α2)], where

β(ρ, α2) = β̂(ρ) − zα2/2(1 − δ̂2)1/2SE(β̂),

β(ρ, α2) = β̂(ρ) + zα2/2(1 − δ̂2)1/2SE(β̂).

4. Plot Cβ|ρ(α2) against ρ for all ρ ∈ Cρ(α1).

In practice, we only need to compute the confidence interval Cβ|ρ(α2) at the end points of

Cρ(α1) since β(ρ, α2) and β(ρ, α2) are linear in ρ. Note that this results in a 10% two-sided

test (i.e. 90% confidence interval) or a 5% one-sided test for predictability.

In reporting our confidence interval for β, we will scale it by σ̂v/σ̂u. In other words, we

report the confidence interval for β̃ = (σv/σu)β instead of β. Although this normalization

does not affect inference, it is a more natural way to report results for two reasons. First, β̃

has a natural interpretation as the coefficient in (14) when the errors in (14) and (15) are
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normalized to have unit variance. This is in the spirit of our statistical model (1)–(2), which

assumed unit variance in the innovations. Second, by the equality

β̃ =
σ(Et−1rt − Et−2rt)

σ(rt − Et−1rt)
,

β̃ can be interpreted as the standard deviation of the change in expected returns relative to

the standard deviation of the innovation to returns. To simplify notation, we will use β to

denote β̃ throughout the rest of the paper.

In Figure 6, we plot the Bonferroni confidence interval for both d−p and e−p for annual

and quarterly CRSP series (1927–2001). The solid lines represent the confidence interval

based on the Bonferroni Q-test, and the dashed lines represent the confidence interval based

on the Bonferroni t-test. The numerical procedure described in Section 3.4 for the Bonferroni

Q-test is also applied to the Bonferroni t-test; the significance levels α1 and α1 used in

constructing the confidence interval for ρ are chosen to result in a 5% one-sided test for β,

uniformly in c ∈ [−50, 5]. Because of the asymmetry in the null distribution of the t-statistic,

the confidence interval for ρ used for the right-tailed Bonferroni t-test differs from that used

for the left-tailed test. The application of the Bonferroni Q-test is new, but the Bonferroni

t-test has been applied previously by Torous, Valkanov, and Yan (2001). We report the

latter for the purpose of comparison.

For the annual d − p in the upper left panel, the Bonferroni confidence interval for β

based on the Q-test lies strictly above zero. Hence, we can reject the null β = 0 against the

alternative β > 0 at the 5% level. The Bonferroni confidence interval based on the t-test,

however, includes β = 0. Hence, we cannot reject the null of no predictability using the

Bonferroni t-test. This can be interpreted in light of the power comparisons in Section 3.5.

From Table 3, δ̂ = −0.721 and the confidence interval for c is [−5.637, 4.097]. In this region

of the parameter space, the Bonferroni Q-test is more powerful than the Bonferroni t-test

against right-sided alternatives, resulting in a tighter confidence interval.

For the quarterly d− p in the lower left panel of Figure 6, the evidence for predictability

is weaker. In the relevant range of the confidence interval for ρ, the confidence interval for β

contains zero for both the Bonferroni Q-test and t-test, although the confidence interval is

again tighter for the Q-test. Using the Bonferroni Q-test, the confidence interval for β lies
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above zero when ρ ≤ 0.988. This means that if the true ρ is less than 0.988, we can reject

the null hypothesis β = 0 against the alternative β > 0 at the 5% level. On the other hand,

if ρ > 0.988, the confidence interval includes β = 0, so we cannot reject the null. Since there

is uncertainty over the true value of ρ, we cannot reject the null of no predictability.

In the upper right panel, we test for predictability in annual data using e − p as the

predictor variable. We find that stock returns are predictable with the Bonferroni Q-test

but not with the Bonferroni t-test. In the lower right panel, we test predictability at the

quarterly frequency using e − p and obtain the same results. Again, the fact that the

Bonferroni Q-test gives tighter confidence intervals can be explained by the power functions

in Figure 5.

In Figure 7, we repeat the same exercise as Figure 6, using the quarterly CRSP data

in the sub-sample 1952–2001. We report the plots for all four of our predictor variables:

d − p (upper left), e − p (upper right), r3 (lower left), and y − r1 (lower right). For d − p,

we find evidence for predictability if ρ ≤ 1.006. This means that if we are willing to rule

out explosive roots, confining attention to the area of the figure to the left of the vertical

line at ρ = 1, we can conclude that returns are predictable with the dividend-price ratio.

The confidence interval for ρ, however, includes explosive roots, so we cannot impose ρ ≤ 1

without using prior information about the behavior of the dividend-price ratio.

The earnings-price ratio is a less successful predictor variable in this sub-sample. We find

that ρ must be less than 0.998 before we can conclude that e − p predicts returns. Taking

account of the uncertainty in the true value of ρ, we cannot reject the null hypothesis β = 0.

The weaker evidence for predictability in the period since 1952 seems to be partly due

to the fact that the valuation ratios appear more persistent when restricted to this sub-

sample, so the confidence intervals for ρ contain rather large values of ρ that were excluded

in Figure 6.

For r3, the Bonferroni confidence interval for β lies strictly below zero for both the Q-

test and the t-test over the entire confidence interval for ρ. For y − r1, the evidence for

predictability is similarly strong, with the confidence interval strictly above zero over the

entire range of ρ. The power advantage of the Bonferroni Q-test over the Bonferroni t-test

is small when δ is small in absolute value, so these tests result in very similar confidence
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intervals.

In Table 4, we report the complete set of results in tabular form. In the fifth column

of the table, we report the 90% Bonferroni confidence intervals for β using the t-test. In

the sixth column, we report the Bonferroni confidence interval for the Q-test. In relation to

Figures 6–7, we simply report the minimum and maximum values of β that the confidence

bands achieve.

Focusing first on the full-sample results in Panel A, the Bonferroni Q-test rejects the

null of no predictability for e − p at all frequencies. For d − p, we fail to reject the null

except for the annual CRSP series. Using the Bonferroni t-test, we always fail to reject

the null due to its poor power relative to the Bonferroni Q-test. Moving to the results for

the sub-sample through 1994 in Panel B, we obtain qualitatively the same results using the

Bonferroni Q-test with rejections for e − p at all frequencies. Interestingly, the Bonferroni

t-test gives similar results to the Bonferroni Q-test in this sub-sample. In this sub-sample,

the power gains from using the Bonferroni Q-test appear to be minor.

In Panel C, we report the results for the sub-sample since 1952. In this sub-sample, we

cannot reject the null hypothesis for d − p or e − p. For the predictor variable r3, we reject

the null hypothesis except at annual frquency, and for y − r1, we reject at all frequencies.

As we have seen in Figure 7, the weak evidence for predictability using the valuation

ratios stems from the fact that the confidence intervals for ρ contain explosive values. If we

could obtain tighter confidence intervals for ρ that exclude these values, the lower end of the

confidence intervals for β would shrink, strengthening the evidence for predictability. In the

last two columns of Table 4, we report how the lower end of the confidence interval for β

changes if we impose the restriction ρ ≤ 1. This corresponds to Lewellen’s (2002) sup-bound

Q-test that restricts the parameter space to c ≤ 0. In terms of Figures 6–7, this is equivalent

to discarding the region of the plots where ρ > 1. Note that under this restriction, the lower

ends of the confidence intervals lie above zero for d − p at all frequencies. So d − p can

predict returns in the sub-sample since 1952 if we can rule out explosive roots, consistent

with Lewellen’s results.

To summarize the empirical results, we find evidence for predictability with e − p, r3,

and y − r1. The evidence for predictability using d − p is much weaker, and we do not find
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unambiguous evidence for predictability using our Bonferroni Q-test. The Bonferroni Q-test

gives tighter confidence intervals than the Bonferroni t-test due to greater power. The power

gain is empirically relevant in the full sample through 2001.

4.3 Connection to Previous Empirical Results

The empirical literature on the predictability of returns is rather large, and in this section,

we attempt to interpret the main findings in light of our analysis in the last section.

4.3.1 t-test

The earliest and the most intuitive approach to testing predictability is to run the predictive

regression and to compute the t-statistic. One would then reject the null hypothesis β = 0

against the alternative β > 0 at the 5% level if the t-statistic is greater than 1.645. In the

third column of Table 4, we report the t-statistics from the predictive regressions. Using the

conventional critical value, the t-statistics are mostly “significant,” often greater than 2 and

sometimes greater than 3. Comparing the full sample through 2001 (Panel A) and the sub-

sample through 1994 (Panel B), the evidence for predictability appears to have weakened in

the last seven years. In the late 1990’s, stock returns were high when d − p and e − p were

at historical lows. Hence, the evidence for predictability “went in the wrong direction.”

However, one may worry about statistical inference that is so sensitive to an addition of

7 observations to a sample of 114 (for S&P 500) or an addition of 28 data points to a sample

of 272 (for quarterly CRSP). In fact, this sensitivity is evidence for the failure of first-order

asymptotics. The t-statistic is not normally distributed under the null in finite samples,

so the conventional critical values lead to wrong inference. Intuitively, when a predictor

variable is persistent, its sample mean can change dramatically with an addition of a few

data points. This is what happened in the late 1990’s when valuation ratios reached historical

lows. Since the t-statistic measures the covariance of excess returns and the valuation ratio,

its value is sensitive to a shift in the sample mean. Tests that are derived from local-to-unity

asymptotics take this persistence into account and hence lead to correct inference.

Using the Bonferroni Q-test that is robust to the persistence problem, we find that e− p
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predicts returns in both the full sample and the sub-sample through 1994. There appears

to be some empirical content in the claim that the evidence for predictability has weakened,

with the Bonferroni confidence interval based on the Q-test shifting toward zero. Using the

Bonferroni confidence interval based on the t-test, we reject the null of no predictability

in the sub-sample through 1994 but not in the full sample. The “weakened” evidence for

predictability in the recent years puts a premium on the efficiency of test procedures.

As additional evidence for the failure of first-order asymptotics, we report the OLS point

estimates of β in the fourth column of Table 4. As equations (26) and (27) show, the point

estimate β̂ does not necessarily lie in the center of the robust confidence interval for β.

Indeed, β̂ often falls toward the upper end of the Bonferroni confidence interval based on the

Q-test for d − p and e − p, and in a few cases, β̂ falls strictly above the confidence interval.

This is a consequence of the upward finite sample bias of the OLS estimator due to the

persistence of these predictor variables (cf. Stambaugh (1999) and Lewellen (2002)).

One way to interpret the t-test based on the conventional critical value (1.645 for a 5%

one-sided test) is the Bayesian interpretation. Suppose δ = −0.9, which is a reasonable value

for d− p or e− p. As reported in Table 1, the unknown persistence parameter c must be less

than about -70 for the size distortion of the t-test to be less than 2.5%. Hence, if a researcher

has prior information that c < −70, he can proceed with the t-test using the critical value

1.645. Of course, one can also use the Q-test imposing the prior information c < −70, which

leads to a more powerful test. Our empirical findings in Figures 6–7 confirm that there is

strong evidence for predictability with d− p or e− p when ρ � 1. The difficulty is that the

lower end of the confidence interval for c is much greater than −70, so it is hard to reconcile

the prior belief in a low c with the observed persistence of the valuation ratios.

For the predictor variables r3 and y − r1, the correlation δ is sufficiently small that

conventional inference based on the t-test leads to approximately the correct inference. This

is confirmed in Panel C of Table 4 where the conventional t-test and the Bonferroni Q-test

both reject the null.
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4.3.2 Long-Horizon Tests

Some authors, notably Fama and French (1988) and Campbell and Shiller (1988), have

explored the behavior of stock returns at lower frequencies by regressing long-horizon returns

onto financial variables. In annual data, d − p has a smaller autoregressive coefficient than

it does in monthly data and is less persistent in this sense. Over periods of several years,

d − p has an even lower autoregressive coefficient. Unfortunately, this does not eliminate

the statistical problem caused by persistence because the effective sample size shrinks as one

increases the horizon of the regression.

Recently a number of authors have pointed out that the finite sample distribution of the

long-horizon regression coefficient and its associated t-statistic can be quite different from

the asymptotic distribution due to persistence in the regressor and overlap in the returns

data. (See Hodrick (1992), Nelson and Kim (1993), Ang and Bekaert (2001) for compu-

tational results and Valkanov (2002) and Torous, Valkanov, and Yan (2001) for theoretical

results.) Accounting for these problems, Torous, Valkanov, and Yan (2001) find no evidence

for predictability at long horizons using many of the popular predictor variables. In fact,

they find no evidence for predictability at any horizon or time period, except at quarterly

and annual frequency in 1952–1994.

Long-horizon regressions can also be understood as a way to reduce the noise in stock

returns, because under the alternative hypothesis that returns are predictable, the variance

of the return increases less than proportionally with the investment horizon. (See Campbell,

Lo, and MacKinlay (1997, Chapter 7) and Campbell (2001).) The procedures developed in

this paper and in Lewellen (2002) have the important advantage that they reduce noise not

only under the alternative, but also under the null. Thus they increase power against local

alternatives, which long-horizon regression tests do not.

4.3.3 Other Tests

In this section, we discuss three recent papers that have taken the issue of persistence se-

riously to develop tests that have the correct size even if the predictor variable is highly

persistent or I(1).
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Lewellen (2002) proposes to test the predictability of returns by computing the Q-statistic

evaluated at β0 = 0 and ρ = 1 (i.e. Q(0, 1)). His test procedure rejects β = 0 against the

one-sided alternative β > 0 at the α-level if Q(0, 1) > zα. Since the null distribution of

Q(0, 1) is standard normal under local-to-unity asymptotics, Lewellen’s test procedure has

correct size as long as ρ = 1. If ρ �= 1, this procedure does not in general have the correct

size. However, Lewellen’s procedure is a valid (although conservative) one-sided test as long

as δ < 0 and we know a priori that ρ ≤ 1. As we have shown in Panel C of Table 4, the

5% one-sided test using monthly d − p rejects when ρ = 1, confirming Lewellen’s empirical

findings.

Although Lewellen’s assumption that ρ ≤ 1 may initially seem reasonable based on

finance theory, we may not want to impose such a strong parametric assumption on the

data. Even if we were to know with certainty that the dividend-price ratio is stationary,

we do not know that the log dividend-price ratio is an AR(1) with ρ ≤ 1. If the true data

generating process for the dividend-price ratio is stationary but with some nonlinear effects,

an AR(1) with ρ slightly greater than one may be a better approximation to the true process

than an AR(1) with ρ ≤ 1. For this reason, we have considered a flexible parametric model

(15) for the predictor variable, allowing for the possibility that ρ > 1. In addition, we allow

for possible short-run dynamics in the predictor variable by considering an AR(p), which

Lewellen rules out by imposing a strict AR(1) (i.e. ψi = 0 (i = 1, . . . , p − 1) in (15)).

Torous, Valkanov, and Yan (2001) develop a test of predictability that is conceptually

similar to ours, constructing Bonferroni confidence intervals for β. One difference from our

approach is that they construct the confidence interval for ρ using the Dickey-Fuller t-test

rather than the more powerful DF-GLS test of Elliott, Rothenberg, and Stock (1996). The

second difference is that they use the long-horizon t-test, instead of the more powerful Q-test,

for constructing the confidence interval of β given ρ. Their choice of the long-horizon t-test

was motivated by their objective of highlighting the pitfalls of long-horizon regressions.

One key insight of Torous, Valkanov, and Yan (2001) is that the evidence for the pre-

dictability of returns with these persistent variables depends critically on the unknown degree

of persistence. Because we cannot estimate the degree of persistence consistently, the evi-

dence for predictability can be ambiguous. This point is illustrated in Figures 6–7, where
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we find that d − p predicts returns if its autoregressive root ρ is sufficiently small. In this

paper, we have confirmed their finding that the evidence for predictability by d − p is weak

once its persistence has been properly accounted for.

A different approach to dealing with the problem of persistence is to ignore the data on

predictor variables and to base inference solely on the returns data. Under the null that

returns are not predictable by a persistent predictor variable, returns should behave like a

stationary process. Under the alternative of predictability, the return process should have

a unit or near-unit root. Using this approach, Lanne (2002) fails to reject the null of no

predictability. However, his test is conservative in the sense that it has poor power when the

predictor variable is persistent but not close enough to being integrated.8 Lanne’s empirical

finding agrees with ours and those of Torous, Valkanov, and Yan (2001). From Figures 6–7,

we see that if in fact β > 0, the degree of persistence in d − p or e − p must be sufficiently

small. In addition, we find evidence for predictability using y − r1 in the post-1952 sample,

which has a relatively small degree of persistence compared to the valuation ratios. Lanne’s

test would fail to detect predictability by less persistent variables like y − r1.

5 Conclusion

The hypothesis that stock returns are predictable at long horizons has been called a “new fact

in finance” (Cochrane 1999). That the predictability of stock returns is now widely accepted

by financial economists is remarkable given the long tradition of the “random walk” model

of stock prices. In this paper, we have shown that there is indeed evidence for predictability,

but it is more challenging to detect than previous studies may have suggested. Most popu-

lar and economically sensible candidates for predictor variables (such as the dividend-price

ratio, earnings-price ratio, or measures of the interest rate) are highly persistent. When the

predictor variable is persistent, the distribution of the t-statistic is nonstandard, which can

lead to over-rejection of the null hypothesis using conventional critical values.

8In fact, Campbell, Lo, and MacKinlay (1997, Chapter 7) construct an example in which returns are

univariate white noise but are predictable using a stationary variable with an arbitrary autoregressive coef-

ficient.
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In this paper, we have developed a pretest to determine when the conventional t-test leads

to misleading inferences. Using the pretest, we find that the t-test leads to correct inference

for the short-term interest rate and the long-short yield spread. Persistence is not a problem

for these interest rate variables because their innovations have sufficiently low correlation

with innovations to stock returns. Using the t-test with conventional critical values, we find

that these interest rate variables predict returns in the post-1952 sample.

For the dividend-price ratio and the smoothed earnings-price ratio, persistence is an

issue since their innovations are highly correlated with innovations to stock returns. Using

our pretest, we find that the conventional t-test can lead to misleading inferences for these

valuation ratios. In this paper, we have developed an efficient test of predictability that leads

to correct inference regardless of the degree of persistence of the predictor variable. Over the

full sample, our test reveals that the earnings-price ratio reliably predicts returns at various

frequencies (annual to monthly), while the dividend-price ratio weakly predicts returns only

at an annual frequency. In the post-1952 sample, there is less evidence for predictability, but

the dividend-price ratio predicts returns if we can rule out explosive autoregressive roots.

Taken together, these results suggest that there is a predictable component in stock

returns, but one that is difficult to detect without careful use of efficient statistical tests.

34



Appendix

Throughout this appendix, we assume that Assumption 1 holds, c = T (ρ − 1) is fixed,

and b = T (β − β0) is fixed. Collecting results from Phillips (1987, Lemma 1), Chan and

Wei (1988, Theorem 2.4), and Cavanagh, Elliott, and Stock (1995), we have the following

convenient lemma.

Lemma 1 Let ηt = (ut − (σuv/σ
2
v)vt)/(σu(1 − δ2)1/2). The following limits hold jointly:

1. T−2
∑T

t=1 xµ2
t−1 ⇒ ω2

∫
Jµ

c (s)2ds,

2. T−1
∑T

t=1 xµ
t−1vt ⇒ σvω

∫
Jµ

c (s)dW (s),

3. T−1
∑T

t=1 xµ
t−1ηt ⇒ ω(

∫
Jµ

c (s)2ds)1/2Z.

To obtain the asymptotic distributions of N(β0, b), P (β0, b, ρ), and Q(β0, ρ), we first note

that these statistics can be written as

N(β0, b) = (2bb − b
2
)T−2

T∑
t=1

xµ2
t−1 + 2b

[
σuv

σ2
v

T−1

T∑
t=1

xµ
t−1vt + σu(1 − δ2)1/2T−1

T∑
t=1

xµ
t−1ηt

]
,

P (β0, b, ρ) = (2bb − b
2
)T−2

T∑
t=1

xµ2
t−1 + 2bσu(1 − δ2)1/2T−1

T∑
t=1

xµ
t−1ηt,

Q(β0, ρ) =
b(T−2

∑T
t=1 xµ2

t−1)
1/2

σu(1 − δ2)1/2
+

T−1
∑T

t=1 xµ
t−1ηt

(T−2
∑T

t=1 xµ2
t−1)

1/2
.

Then an application of Lemma 1 results in (18), (21), and (22), respectively.
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Table 1: Parameters Leading to Size Distortion of the One-Sided t-test

This table reports the regions of the parameter space where the actual size of the nominal

5% t-test is greater than 7.5%. The null hypothesis being considered is β = β0 against the

alternative β > β0. For a given δ, the size of the t-test is greater than 7.5% if c ∈ (c, c).

Size is less less than 7.5% for all c if δ ≤ −0.125.

δ c c δ c c

-1.000 -83.088 8.537 -0.550 -28.527 6.301

-0.975 -81.259 8.516 -0.525 -27.255 6.175

-0.950 -79.318 8.326 -0.500 -25.942 6.028

-0.925 -76.404 8.173 -0.475 -23.013 5.868

-0.900 -69.788 7.977 -0.450 -19.515 5.646

-0.875 -68.460 7.930 -0.425 -17.701 5.435

-0.850 -63.277 7.856 -0.400 -14.809 5.277

-0.825 -59.563 7.766 -0.375 -13.436 5.111

-0.800 -58.806 7.683 -0.350 -11.884 4.898

-0.775 -57.618 7.585 -0.325 -10.457 4.682

-0.750 -51.399 7.514 -0.300 -8.630 4.412

-0.725 -50.764 7.406 -0.275 -6.824 4.184

-0.700 -42.267 7.131 -0.250 -5.395 3.934

-0.675 -41.515 6.929 -0.225 -4.431 3.656

-0.650 -40.720 6.820 -0.200 -3.248 3.306

-0.625 -36.148 6.697 -0.175 -1.952 2.800

-0.600 -33.899 6.557 -0.150 -0.614 2.136

-0.575 -31.478 6.419 -0.125 — —
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Table 2: Significance Level of DF-GLS Confidence Interval for Bonferroni Q-test

This table reports the significance level of the confidence interval for the largest

autoregressive root ρ, computed by inverting the DF-GLS test, that sets the size of the

one-sided Bonferroni Q-test to 5%. Using the notation (28), the confidence interval

Cρ(α1) = [ρ(α1), ρ(α1)] for ρ results in a 90% Bonferroni confidence interval Cβ(0.1) for β

when α2 = 0.1.

δ α1 α1 δ α1 α1

-0.999 0.050 0.055 -0.500 0.080 0.280

-0.975 0.055 0.080 -0.475 0.085 0.285

-0.950 0.055 0.100 -0.450 0.085 0.295

-0.925 0.055 0.115 -0.425 0.090 0.310

-0.900 0.060 0.130 -0.400 0.090 0.320

-0.875 0.060 0.140 -0.375 0.095 0.330

-0.850 0.060 0.150 -0.350 0.100 0.345

-0.825 0.060 0.160 -0.325 0.100 0.355

-0.800 0.065 0.170 -0.300 0.105 0.360

-0.775 0.065 0.180 -0.275 0.110 0.370

-0.750 0.065 0.190 -0.250 0.115 0.375

-0.725 0.065 0.195 -0.225 0.125 0.380

-0.700 0.070 0.205 -0.200 0.130 0.390

-0.675 0.070 0.215 -0.175 0.140 0.395

-0.650 0.070 0.225 -0.150 0.150 0.400

-0.625 0.075 0.230 -0.125 0.160 0.405

-0.600 0.075 0.240 -0.100 0.175 0.415

-0.575 0.075 0.250 -0.075 0.190 0.420

-0.550 0.080 0.260 -0.050 0.215 0.425

-0.525 0.080 0.270 -0.025 0.250 0.435
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Table 3: Estimates of Model Parameters

This table reports estimates of parameters for the predictive regression model. The data

series are annual S&P 500 and CRSP at annual, quarterly, and monthly frequencies. The

predictor variables are log dividend-price ratio (d − p), log earnings-price ratio (e − p),

3-month T-bill rate (r3), and long-short yield spread (y − r1). p is the estimated

autoregressive lag length for the predictor variable, and δ̂ is the estimated correlation

between innovations to excess stock returns and the predictor variable. The last two

columns are 95% confidence intervals for the largest autoregressive root (ρ) and the

corresponding local-to-unity parameter (c) for each of the predictor variables, computed

using the DF-GLS statistic.

Series Sample Variable p δ̂ DF-GLS 95% CI: ρ 95% CI: c

(Obs)

Panel A: Full Sample

S&P 500 1881–2001 d − p 3 -0.843 -1.058 [0.937,1.031] [-7.483,3.746]

(122) e − p 1 -0.963 -2.599 [0.801,0.982] [-24.093,-2.235]

Annual 1927–2001 d − p 1 -0.721 -0.773 [0.925,1.055] [-5.637,4.097]

(76) e − p 1 -0.960 -1.951 [0.789,1.017] [-15.798,1.275]

Quarterly 1927–2001 d − p 1 -0.942 -1.448 [0.964,1.010] [-10.651,3.009]

(301) e − p 1 -0.986 -1.918 [0.949,1.005] [-15.434,1.417]

Monthly 1927–2001 d − p 2 -0.950 -1.450 [0.988,1.003] [-10.672,3.003]

(901) e − p 2 -0.982 -1.756 [0.985,1.002] [-13.701,1.998]

(continued on next page)

41



Series Sample Variable p δ̂ DF-GLS 95% CI: ρ 95% CI: c

(Obs)

Panel B: Sample through 1994

S&P 500 1881–1994 d − p 3 -0.841 -2.860 [0.752,0.964] [-27.831,-4.082]

(115) e − p 1 -0.959 -3.492 [0.667,0.916] [-37.979,-9.521]

Annual 1927–1994 d − p 1 -0.695 -2.081 [0.745,1.010] [-17.348,0.687]

(69) e − p 1 -0.962 -2.849 [0.593,0.941] [-27.658,-4.022]

Quarterly 1927–1994 d − p 1 -0.941 -2.635 [0.910,0.991] [-24.585,-2.473]

(273) e − p 1 -0.988 -2.811 [0.900,0.986] [-27.073,-3.701]

Monthly 1927–1994 d − p 2 -0.948 -2.592 [0.971,0.997] [-24.006,-2.195]

(817) e − p 2 -0.983 -2.655 [0.970,0.997] [-24.852,-2.577]

Panel C: Sample from 1952

Annual 1953–2001 d − p 1 -0.744 -0.068 [0.944,1.093] [-2.725,4.556]

(50) e − p 1 -0.957 -1.172 [0.831,1.073] [-8.305,3.575]

r3 1 -0.037 -1.812 [0.708,1.038] [-14.288,1.853]

y − r1 1 -0.202 -3.242 [0.311,0.853] [-33.746,-7.189]

Quarterly 1952–2001 d − p 1 -0.977 0.056 [0.988,1.023] [-2.353,4.612]

(200) e − p 1 -0.980 -0.783 [0.971,1.021] [-5.687,4.088]

r3 4 -0.120 -1.462 [0.945,1.015] [-10.783,2.972]

y − r1 2 -0.079 -3.209 [0.832,0.965] [-33.237,-6.934]

Monthly 1952–2001 d − p 1 -0.966 0.154 [0.996,1.008] [-2.105,4.657]

(600) e − p 1 -0.982 -0.531 [0.993,1.007] [-4.418,4.298]

r3 2 -0.084 -1.550 [0.981,1.005] [-11.625,2.733]

y − r1 1 -0.055 -4.523 [0.904,0.964] [-57.580,-21.384]
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Table 4: Test of Predictability

This table reports statistics used to infer the predictability of excess stock returns. The

data series are annual S&P 500 and CRSP at annual, quarterly, and monthly frequencies.

(See Table 3 for the sample periods and the number of observations.) The predictor

variables are log dividend-price ratio (d − p), log earnings-price ratio (e − p), 3-month

T-bill rate (r3), and long-short yield spread (y − r1). In the third and fourth columns, the

table reports the t-statistic and point estimate β̂ from an OLS regression of returns onto

the predictor variable. The next two columns report the 90% Bonferroni confidence

intervals for β using the t-test and Q-test, respectively. The final column reports the lower

end of the Bonferroni confidence interval when the constraint ρ ≤ 1 on the largest

autoregressive root of the predictor variable is imposed.

Series Variable t-stat β̂ 90% CI: β Low CI β

t-stat Q-stat (ρ ≤ 1)

Panel A: Full Sample

S&P 500 d − p 1.486 0.076 [-0.069,0.124] [-0.029,0.114] -0.021

e − p 2.363 0.113 [-0.004,0.170] [0.013,0.188] —

Annual d − p 2.169 0.112 [-0.026,0.165] [0.000,0.172] 0.012

e − p 2.490 0.154 [-0.015,0.223] [0.022,0.238] —

Quarterly d − p 1.754 0.030 [-0.020,0.046] [-0.013,0.036] -0.011

e − p 2.710 0.046 [-0.002,0.064] [0.006,0.057] —

Monthly d − p 1.383 0.007 [-0.008,0.012] [-0.007,0.009] -0.006

e − p 2.472 0.013 [-0.002,0.018] [ 0.000,0.016] —

(continued on next page)
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Series Variable t-stat β̂ 90% CI: β Low CI β

t-stat Q-stat (ρ ≤ 1)

Panel B: Sample through 1994

S&P 500 d − p 2.124 0.142 [-0.007,0.228] [-0.040,0.197] —

e − p 3.238 0.191 [0.064,0.268] [0.088,0.318] —

Annual d − p 2.960 0.210 [0.038,0.299] [0.054,0.329] —

e − p 3.434 0.282 [0.093,0.385] [0.128,0.446] —

Quarterly d − p 2.283 0.053 [-0.002,0.080] [-0.007,0.075] —

e − p 3.576 0.082 [0.027,0.110] [0.027,0.109] —

Monthly d − p 1.798 0.013 [-0.004,0.021] [-0.006,0.020] —

e − p 3.284 0.023 [0.006,0.031] [0.007,0.031] —

Panel C: Sample from 1952

Annual d − p 1.876 0.108 [-0.048,0.170] [-0.017,0.169] 0.015

e − p 1.480 0.098 [-0.095,0.157] [-0.049,0.183] -0.019

r3 -1.405 -0.119 [-0.262,0.019] [-0.262,0.020] —

y − r1 1.729 0.218 [-0.008,0.416] [0.002,0.448] —

Quarterly d − p 1.872 0.031 [-0.018,0.044] [-0.010,0.026] 0.006

e − p 1.562 0.025 [-0.022,0.036] [-0.014,0.032] -0.001

r3 -1.981 -0.048 [-0.093,-0.010] [-0.093,-0.011] —

y − r1 2.598 0.123 [0.041,0.199] [0.038,0.196] —

Monthly d − p 1.846 0.010 [-0.006,0.014] [-0.004,0.008] 0.001

e − p 1.502 0.008 [-0.007,0.012] [-0.005,0.009] 0.000

r3 -2.732 -0.020 [-0.033,-0.008] [-0.033,-0.008] —

y − r1 3.615 0.059 [0.032,0.086] [0.031,0.086] —
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Figure 1. Local Asymptotic Power under First-Order Asymptotics. This fig-

ure plots the power of the one-sided Q-test and t-test when the predictor variable is an

AR(1). The local alternatives being considered are b =
√

T (β1 − β0). ρ = 0.99, 0.75 is the

autoregressive root of the predictor variable, and δ = −0.95,−0.75 is the correlation between

innovations to returns and the predictor variable.

Figure 2. Time Series Plot of Valuation Ratios. This figure plots the log dividend-

price ratio (d − p) for the CRSP NYSE/AMEX portfolio and the log earnings-price ratio

(e − p) for the S&P 500 portfolio at quarterly frequency. Earnings are smoothed by taking

a ten year moving average.

Figure 3. Local Asymptotic Power under Local-to-Unity Asymptotics. This

figure plots the power of the one-sided Q-test and t-test when the predictor variable contains

a local-to-unit root. It also plots the power envelope for point optimal tests. The local

alternatives being considered are b = T (β1 − β0) > 0. c = −2,−20 is the local-to-unity

parameter, and δ = −0.95,−0.75 is the correlation between innovations to returns and the

predictor variable.

Figure 4. Asymptotic Size of the One-Sided t-test at 5% Significance. This

figure plots the actual size of the nominal 5% t-test when the predictor variable has an

autoregressive root that is local-to-unity. The null hypothesis is β = β0 against the one-

sided alternative β > β0. c is the local-to-unity parameter, and δ is the correlation between

innovations to returns and the predictor variable.

Figure 5. Local Asymptotic Power of Feasible Tests. This figure plots the power

of two Bonferroni tests (based on the Q-test and the t-test), the sup-bound Q-test, and

the infeasible t-test that assumes knowledge of the local-to-unity parameter. The local

alternatives being considered are b = T (β1 − β0) > 0. c = −2,−20 is the local-to-unity

parameter, and δ = −0.95,−0.75 is the correlation between innovations to returns and the

predictor variable.

Figure 6. Bonferroni Confidence Interval (Annual and Quarterly, 1927–2001).

This figure plots the 90% confidence interval for β over the confidence interval for ρ. The

significance level for ρ is chosen to result in a 90% Bonferroni confidence interval for β. The

solid (dashed) line is the confidence interval for β computed by inverting the Q-test (t-test).
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The data series used are annual and quarterly CRSP (1927–2001). The predictor variables

are log dividend-price ratio and log earnings-price ratio.

Figure 7. Bonferroni Confidence Interval (Quarterly, 1952–2001). This figure

plots the 90% confidence interval for β over the confidence interval for ρ. The significance

level for ρ is chosen to result in a 90% Bonferroni confidence interval for β. The solid (dashed)

line is the confidence interval for β computed by inverting the Q-test (t-test). The data series

used is quarterly CRSP (1952–2001). The predictor variables are log dividend-price ratio,

log earnings-price ratio, 3-month T-bill rate, and long-short yield spread.
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Figure 1: Local Asymptotic Power under First-Order Asymptotics
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Figure 3: Local Asymptotic Power under Local-to-Unity Asymptotics
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Figure 4: Asymptotic Size of One-Sided t-test at 5% Significance
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Figure 5: Local Asymptotic Power of Feasible Tests
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Figure 6: Bonferroni Confidence Interval (Annual and Quarterly, 1927–2001)
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Figure 7: Bonferroni Confidence Interval (Quarterly, 1952–2001)
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