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Abstract

Standard models in economics are based on intelligent agents that maximize utility. However, there
may be situations where constraints imposed by market institutions are more important than intelligent
agent behavior. We use data from the London Stock Exchange to test a simple model in which zero
intelligence agents place orders to trade at random. The model treats the statistical mechanics of the
interaction of order placement, price formation, and the accumulation of stored supply and demand, and
makes predictions that can be stated as simple expressions in terms of measurable quantities such as
order arrival rates. The agreement between model and theory is excellent, explaining 96% of the variance
of the bid-ask spread across stocks and 76% of the price diffusion rate. We also study the market impact
function, describing the response of prices to orders. The non-dimensional coordinates dictated by the
model collapse data from different stocks onto a single curve, suggesting a corresponding understanding
of supply and demand. Thus, it appears that the price formation mechanism strongly constrains the
statistical properties of the market, playing a more important role than the strategic behavior of agents.
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1 Introduction

Since the nineteenth century one of the classic ques-
tions in economics has been, ” What determines sup-
ply and demand?”. Similarly, since Bachelier [1] in-
troduced the random walk model for prices in 1900,
a question that has been crying out for an answer
has been, ”What determines the diffusion rate of
prices?”. Standard models in economics, which are
based on rational utility maximizing agents, have
had only limited success in addressing these ques-
tions. In this paper we demonstrate that a model
built on the opposite approach — that agents are of
zero intelligence, and simply place orders to trade at
random — can successfully address these questions
and others, providing one properly models the sta-
tistical mechanics of price formation.

Traditionally economics has devoted considerable
effort to modeling the strategic behavior and ex-
pectations of agents. While no one would dispute
that this is important, it has also been pointed out
that some aspects of economics are independent of
the agent model. For example, Becker [2] showed
that a budget constraint is sufficient to guarantee
the proper slope of supply and demand curves, and
Gode and Sunder [3] demonstrated that if one re-
places the students in a standard classroom eco-
nomics experiment by zero-intelligence agents, the
zero-intelligence agents perform surprisingly well.
In this paper we show that this principle can be
dramatically more powerful, and can make surpris-
ingly accurate quantitative predictions, if one mod-
els the statistical mechanics of the price formation
process. In particular, we test a zero-intelligence
statistical mechanics model due to Daniels et al.
[4, 5], which builds on earlier work in financial eco-
nomics [6, 7, 8, 9] and physics [10, 11, 12, 13, 14]
(See also interesting subseqent work [15, 16]). This
model added to the prior literature by constructing
and approximately solving a simple model for price
setting that makes quantitative, testable predic-
tions about fundamental market properties, many
of which can be expressed as simple algebraic for-
mulas.

1.1 Continuous double auction

The model of Daniels et al. [4] assumes a continu-
ous double auction, which is the most widely used
method of price formation in modern financial mar-

kets [5]. There are two fundamental kinds of trad-
ing orders: Impatient traders submit market orders,
which are requests to buy or sell a desired number
of shares immediately at the best available price.
More patient traders submit limit orders, which in-
clude the worst allowable price for the transaction.
Limit orders may fail to result in an immediate
transaction, in which case they are stored in a queue
called the limit order book, illustrated in Fig. 1. As
each buy order arrives it is transacted against ac-
cumulated sell limit orders that have a lower selling
price, in priority of price and arrival time. Simi-
larly for sell orders. The lowest selling price offered
in the book at any point in time is called the best
ask, a(t), and the highest buying price the best bid,
b(t).

1.2 Review of model

The model assumes that two types of zero intelli-
gence agents place and cancel orders randomly (see
Fig. 1). Impatient agents place market orders of
size o, at a rate u shares per time. Patient agents
place limit orders of the same size o, with a con-
stant rate density « shares per price per time, and
queued limit orders are canceled at a constant rate
4, with dimensions of 1/time. Prices change in dis-
crete increments called ticks, of size dp. To keep the
model as simple as possible, the rates are equal for
buying and selling, and order placement and cancel-
lation are Poisson processes. All of these processes
are independent except for coupling through their
boundary conditions: Buy limit orders arrive with
a constant density a over the semi-infinite inter-
val —oo < p < a(t), where p is the logarithm of the
price, and sell limit orders arrive with constant den-
sity o on the semi-infinite interval b(t) < p < oo.
As new orders arrive they may alter the best prices
a(t) and b(t), which in turn changes the bound-
ary conditions for subsequent limit order placement.
For example, the arrival of a buy limit order in-
side the spread will alter the best bid b(¢), which
immediately alters the boundary condition for sub-
sequent sell limit order placement. As a result of
the random order arrival processes, a(t) and b(t)
each make random walks, but because of coupling of
the buying and selling processes the bid-ask spread
s(t) = a(t) —b(t) is a stationary random variable. Tt
is this feedback between order placement and price
diffusion that makes this model interesting, and de-
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Figure 1: A random process model of the continuous double auction. Stored limit orders are shown stacked
along the price axis, with sell orders (supply) stacked above the axis at higher prices and buy orders (demand)
stacked below the axis at lower prices. New sell limit orders are visualized as randomly falling down, and new buy
orders as randomly “falling up”. New sell orders can be placed anywhere above the best buying price, and new
buy orders anywhere below the best selling price. Limit orders can be removed spontaneously (e.g. because the
agent changes her mind or the order expires) or they can be removed by market orders of the opposite type. This
can result in changes in the best prices, which in turn alters the boundaries of the order placement process. It is
this feedback between order placement and price formation that makes this model interesting, and its predictions

non-trivial.

spite its apparent simplicity, quite difficult to un-
derstand analytically [5].

While a(t) and b(t) make random walks, the in-
crements of their random walks are strongly anti-
correlated. This is a good example of how the prop-
erties of this model are not simple to understand.
One might naively think that under IID Poisson or-
der flow, price increments should also be IID. How-
ever, due to the coupling of boundary conditions
for the buy market order-sell limit order process
to those of the sell market order/buy limit order
process, this is not the case. Because of the fact
that supply and demand tend to build as one moves
away from the center of the book, price reversals
are more common than price changes in the same
direction. As a result, the price increments gen-
erated by this model are strongly anti-correlated,
much more so than real price series. This has in-
teresting consequence: If we add the assumption of
strong market efficiency, and assume that real price
increments must be white, it implies that real order
flow should be strongly positively correlated in or-

der to compensate for the anticorrelations induced
by the continuous double auction. This has indeed
been observed to be the case [21, 22].

This model has been analyzed using both simula-
tion and two different mean field theories [5]. The
analytic prediction of the spread based on mean
field theory match the simulations quite well. They
also do a fairly good job of matching the simu-
lation results for the average supply and demand
curves defined by the limit order book. The ana-
lytic methods are not as successful in predicting the
price diffusion rate, and so here we will fall back on
simulation results.

One of the virtues of this model is that we
can make approximate predictions of several of its
properties with almost no work using dimensional
analysis. This also greatly simplifies the analy-
sis and understanding of the model, which as we
will see is particularly useful for understanding
market impact. There are three fundamental di-
mensional quantities describing everything in this
model: shares, price, and time. This is apparent



already from Fig. 1, whose axes have units of price
and shares — time is the third dimension. On the
other hand, there are five parameters defined in
the model. When the dimensional constraints be-
tween the parameters are taken into account, this
leaves only two independent degrees of freedom in
the model.

It turns out that the order flow rates u, a;, and §
are more important than the discreteness parame-
ters ¢ and dp, in the sense that the properties of
the model are much more sensitive to variations
in the order flow rates than they are to variations
in o or dp. It therefore natural to construct non-
dimensional units based on the order flow param-
eters alone. There are unique combinations of the
three order flow rates with units of shares, price,
and time. This gives characteristic scales for price,
shares, and time, that are unique up to a con-
stant. In particular, the characteristic number of
shares N. = u/d, the characteristic price interval
pe = p/a, and the characteristic timescale t. = 1/0.

These characteristic scales can be used to de-
fine non-dimensional coordinates based on the order
flow rates. These are p = p/p.. for price, N = N/N.
for shares, and £ = t/t. for time. The use of non-
dimensional coordinates has the great advantage
that it reduces the number of degrees of freedom
from five to two, and as we will see, many quantities
are much more well-behaved and easily understood
when plotted in non-dimensional coordinates than
they are otherwise.

The remaining two degrees of freedom are natu-
rally discussed in terms of non-dimensional versions
of the discreteness parameters. A non-dimensional
scale parameter based on order size is constructed
by dividing the typical order size o (with dimen-
sions of shares) by the characteristic number of
shares N,. This gives the non-dimensional param-
eter € = o/N. = do/p, which characterizes the
granularity of the order flow. A non-dimensional
scale parameter based on tick size is constructed
by dividing the tick size dp by the characteristic
price, i.e. dp/p. = adp/u. The usefulness of this is
that the properties of the model only depend on the
two non-dimensional parameters, € and dp/p.: Any
variations of the parameters p, «, and delta that
keep the two non-dimensional parameters constant
will result in exactly the same market properties.
One of the interesting properties that emerges from

analysis of the model is that the effect of the gran-
ularity parameter € is generally much more impor-
tant than the tick size dp/p.. For a more detailed
discussion, see reference [5].

Another one of the virtues of this model is that
it results in simple scaling laws relating the pa-
rameters of the model to fundamental properties
such as the average bid-ask spread, the price diffu-
sion rate, and average supply and demand curves.
Rather than reviewing these here, we will review
each of them as we compare to the data. However,
we would like to emphasize that the construction of
the model and all the predictions derived from the
model were made before looking at the data.

2 The London Stock Exchange
(LSE) data set

The London Stock Exchange is composed of two
parts, the electronic open limit order book, and the
upstairs electronic quotation market, which is used
to facilitate large block trades. During the time pe-
riod of our dataset 40% to 50% of total volume was
routed through the electronic order book while the
rest through the upstairs market. It is believed that
the limit order book is the dominant price formation
mechanism of the London Stock Exchange: about
75% of upstairs trades happen between the current
best prices in the order book [19]. Our analysis in-
volves only the data from the electronic order book.
We chose this data set because we have a complete
record of every action taken by every participating
institution, allowing us to measure the order flows
and cancellations and estimate all of the necessary
parameters of the model.

We used data from the time period August 1st
1998 - April 30th 2000, which includes a total of
434 trading days and roughly six million events. We
chose 11 stocks each having the property that the
number of total number of events exceeds 300,000
and was never less than 80 on any given day. Some
statistics about the order flow for each stock are
given in table 1.

The trading day of the LSE starts at 7:50 with
a roughly 10 minute long opening auction period
(during the later part of the dataset the auction
end time varies randomly by 30 seconds). During
this time orders accumulate without transactions;



stock num. events  average limit market deletions eff. limit eff. market # days
ticker (1000s) (per day) (1000s) (1000s)  (1000s)  (shares) (shares)

AZN 608 1405 292 128 188 4,967 4,921 429
BARC 571 1318 271 128 172 7,370 6,406 433
CW. 511 1184 244 134 134 12,671 11,151 432
GLXO 814 1885 390 200 225 8,927 6,573 434
LLOY 644 1485 302 184 159 13,846 11,376 434
ORA 314 884 153 57 104 12,097 11,690 432
PRU 422 978 201 94 127 9,502 8,597 354
RTR 408 951 195 100 112 16,433 9,965 431
SB. 665 1526 319 176 170 13,589 12,157 426
SHEL 592 1367 277 159 156 44,165 30,133 429
VOD 940 2161 437 296 207 89,550 71,121 434

Table 1: Summary statistics for stocks in the dataset. Fields from left to right: stock ticker symbol, total number
of events (effective market orders + effective limit orders + order cancellations) in thousands, average number
of events in a trading day, number of effective limit orders in thousands, number of effective market orders in
thousands, number of order deletions in thousands, average limit order size in shares, average market order size

in shares, number of trading days in the sample.

then a clearing price for the opening auction is cal-
culated, and all opening transactions take place at
this price. Following the opening at 8:00 the market
runs continuously, with orders matched according
to price and time priority, until the market closes
at 16:30. In the earlier part of the dataset, un-
til September 22nd 1999, the market opening hour
was 9:00. During the period we study there have
been some minor modifications of the opening auc-
tion mechanism, but since we discard the opening
auction data anyway this is not relevant.

Some stocks in our sample (VOD for example)
have stock splits and tick price changes during the
period of our sample. We take splits into account by
transforming stock sizes and prices to pre-split val-
ues. In any case, since all measured quantities are
in logarithmic units, of the form log(p1) — log(p2),
the absolute price scale drops out. Our theory pre-
dicts that the tick size should change some of the
quantities of interest, such as the bid-ask spread,
but the predicted changes are small enough in com-
parison with the effect of other parameters that we
simply ignore them (and base our predictions on the
limit where the tick size is zero). Since granularity
is much more important than tick size, this seems
to be a good approximation.

3 Measurement of model pa-
rameters

Our goal is to compare the predictions of the model
with real data. The parameters of the model are
stated in terms of order arrival rates, cancellation
rate, order size, and tick size. We chose an appropri-
ate time interval and measure the parameters over
that interval, and then compare to the properties
of the market over that same interval.

Reconstructing the limit order book on a
moment-by-moment basis makes it clear that the
properties of the market tend to be relatively sta-
tionary during each day, changing more dramati-
cally at the beginning and at the end of day. It
is therefore natural to measure each parameter for
each stock on each day. Since the model does not
take the opening auction into account, we simply
neglect orders leading up to the opening auction,
and base all our measurements on the remaining
part of the trading day, when the auction is contin-
uous.

In order to treat simply and in a unified man-
ner the diverse types of orders traders can submit
in a real market (for example, crossing limit orders,
market orders with limiting price, ”fill-or-kill”, ”ex-
ecute & eliminate”) we use redefinitions based on
whether an order results in an immediate transac-



tion, in which case we call it an effective market
order, or whether it leaves a limit order sitting in
the book, in which case we call it an effective limit
order. Marketable limit orders (also called crossing
limit orders) are limit orders that cross the oppos-
ing best price, and so result in at least a partial
transaction. The portion of the order that results
in an immediate transaction is counted as a effec-
tive market order, while the non-transacted part (if
any) is counted as a effective limit order. Orders
that do not result in a transaction and do not leave
a limit order in the book, such as for example failed
"fill-or-kill” orders, are ignored altogether. These
have no affect on prices, and in any case, make up
only a very small fraction of the order flow, typically
less than 1%. Note that throughout the remainder
of the paper, we will tend to drop the term ”effec-
tive”, so that e.g. "market order” means ”effective
market order”.

A limit order can be removed from the book
for many reasons, e.g. because the agent changes
her mind, because a time specified when the or-
der was placed has been reached, or because of the
institutionally-mandated 30 day limit on order du-
ration. We will lump all of these together, and sim-
ply refer to them as ”cancellations”.

Our measure of time is based on the number of
events, i.e., the time elapsed during a given period
is just the total number of events, including effec-
tive market order placements, effective limit order
placements, and cancellations. We call this event
time. Price intervals are computed as the difference
in the logarithm of prices, which is consistent with
the model, in which all price intervals are assumed
to be logarithmic in order to assure prices are al-
ways positive.

We measure the average value of the five param-
eters of the model, i, a, §, o, and dp for each day,
making the assumption that the parameters of the
model are stationary within each day, but change
from day to day. u, o, and dp are straightforward
to measure, but there are problems in measuring «
and J that must be understood in order to properly
interpret our results.

The parameter p;, which characterizes the aver-
age market order arrival rate on day t, is straight-
forward to measure. It is just the ratio of the num-
ber of shares of effective market orders (for both
buy and sell orders) to the number of events during

the trading day. Similarly, o; is the average limit
order size! in shares for that day, and dp; is just
the tick size, which is fixed for each day but varies
from stock to stock and for a given stock changes
occasionally during the sample.

Measuring the cancellation rate d; and the limit
order rate density «; is more complicated, due to
the highly simplified assumptions we have made for
the model. In contrast to our assumption of a con-
stant density for placement of limit orders across the
entire logarithmic price axis, real limit order place-
ment is highly concentrated near the best prices
(roughly 2/3 of all orders are placed at the best
prices), with a density that falls off as a power
law as a function of the distance A from the best
prices [15, 20]. In addition, we have assumed a con-
stant cancellation rate, whereas in reality orders
placed near the best prices tend to be cancelled
much faster than orders placed far from the best
prices. We cope with these problems as described
below.

In order to estimate the limit order rate density
for day t, oy, we make an empirical estimate of the
distribution of the relative price for effective limit
order placement on each day. For buy orders we
define the relative price as A = a—p, where p is the
logarithm of the limit price and a is the logarithm
of the best selling price. Similarly for sell orders,
A = p — b, where b is the best buying price. (By
using this convention we include all effective limit
orders and guarantee that A is always positive).
We then somewhat arbitrarily choose Qiower as the
2 percentile of the density of A corresponding to the
limit orders arriving on day ¢, and Q?pper as the 60
percentile. Assuming constant density within this
range, we calculate oy as ay = L/(Q)PP — @lower)
where L is the total number of shares of effective
limit orders on day ¢t. These choices are made in a
compromise to include as much data as possible for
statistical stability, but not so much as to include
orders that are unlikely to ever be executed, and
therefore unlikely to have any effect on prices.

1The model assumes that the average size of limit orders
and market orders is the same. For the real data this is
not strictly true, though as seen in Table 1, it is a good
approximation to within about 20%. For the purposes of the
analysis we use the limit order size as the measure because
for theoretical reasons we think this is more important than
the market order size, but because the two are approximately
the same, this will not make a significant difference in the
results.
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Figure 2: Density estimations and cross correlations for Vodafone between the four model parameter
measures. On the diagonal we present the histogram of the corresponding parameter. Upper off-diagonal
plots are the time cross correlation. We see that ¢ is uncorrelated with other measures, while the other
three are quite correlated although without any noticeable lead-lag effects. The lower off-diagonal plots

are scatter plots between the parameters. p and «

are particularly strongly correlated; fortunately, for

the prediction of the spread their ratio is the most important quantity, and this correlation largely cancels

out.

Similarly, to cope with the fact that in reality the
average cancellation rate § decreases [15] with the
relative price A, whereas in the model § is assumed
to be constant, we base our estimate for ¢ only on
canceled limit orders within the range of the same
relative price boundaries (Q,lfower,Q?pp ") defined
above. We do this to be consistent in our choice of
which orders are assumed to contribute significantly
to price formation (orders closer to the best prices
contribute more than orders that are further away).
We then measure d;, the cancellation rate on day t,
as the inverse of the average lifetime of a canceled
limit order in the above price range. Lifetime is
measured in terms of number of events happening
between the introduction of the order and its subse-
quent cancellation. Some simple diagnostics of the
parameter estimates are presented in Fig. 2.

The above is obviously a crude simplification that
allows us to use a model constructed for simplicity
and ease of analysis. The arbitrary choices involved
in choosing price intervals will introduce some un-
certainty into the scale of the parameters, as dis-
cussed later when we present the results. We are
also developing more realistic order placement and
cancellation models. However, this model has the
important advantage of simplicity, and in particu-
lar, we will see that its non-dimensional coordinates
have unanticipated power.



4 Spread and price diffusion
rate

4.1 Predicted vs. actual spread

The bid-ask spread is of central interest in finan-
cial markets because it is an important compo-
nent of transaction costs. The mean value of the
spread, predicted based on a mean field theory anal-
ysis of the model is § = (u/a)f(e,dp/p.), where
f is a relatively slowly varying, monotonically in-
creasing non-dimensional function that can be ap-
proximated as f(e) = 0.28 + 1.11 % €3/4, neglect-
ing the dp/p. dependence [5]. To test this relation-
ship, we measure the actual average spread 5 across
the full time period for each stock, and compare
to the predicted average spread 5 based on order
flows. Spread is measured as the daily average of
log(bid) — log(ask). The spread is measured after
each event, with each event given equal weight. The
opening auction is excluded. For reasons that are
detailed in Section 4.4 we choose to test the model
cross-sectionally.

To test our hypothesis that the predicted and ac-
tual values coincide, we perform a regression of the
form log s = Alog §+B. We use the free parameters
A and B for hypothesis testing; apriori we expect
A =1 and B = 0. However, because of the pa-
rameter measurement problems described above, we
do not expect the value of the intercept to be very
meaningful, i.e. the hypothesis tested is that first
of all this relationship is linear, and secondly that
A =1. (We used logarithms because the spread is
positive and the log of the spread is approximately
normally distributed).

The least squares regression, shown together with
the data comparing the predictions to the actual
values in Fig. 3, gives A = 0.99 £ 0.10 and B =
0.06 = 0.29. We thus very strongly reject the null
hypothesis that A = 0, indicating that the pre-
dictions are far better than random. More impor-
tantly, we are unable to reject the null hypotheses
that A = 1. (In fact, we are also unable to reject
B = 0, but this may be largely a matter of luck
in our choice of thupper.) The regression has an
R? = 0.96, so the adjusted model explains most of
the variance. Note that because of long—memory ef-
fects and cross—correlations between stocks the er-
ror bars are much larger than they would be for

IID, normally distributed data (see the discussion
in Section 4.3).

Actual

T T T T T T
-3.0 -2.9 -2.8 2.7 -2.6 25
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Figure 3: Regressions of predicted values based on or-
der flow parameters vs. actual values for the log spread.
The dots show the average predicted and actual value
for each stock averaged over the full 21 month time pe-
riod. The solid line is a regression; the dashed line is
the diagonal, representing the model’s prediction with-
out any adjustment of slope or intercept.

4.2 Price diffusion rate

Another quantity of primary interest is the price dif-
fusion rate, which drives the volatility of prices and
is the primary determinant of financial risk. If we
assume that prices make a random walk, then the
diffusion rate measures the size and frequency of its
increments. The variance V' of an uncorrellated nor-
mal random walk after time ¢ grows as V (t) = Dt,
where D is the diffusion rate. We choose to measure
the price diffusion rate rather than the volatility
because it is a stationary quantity that provides a
more fundamental description of the volatility pro-
cess. This is the main free parameter in the Bache-
lier model, and while its value is essential for risk
estimation and derivative pricing there is very little
understanding of what determines it.

The measurement of the price diffusion rate re-
quires some discussion. The variance of mid-point
returns at time scale 7 is defined as o?(7) = ((m(t+



7)—m(t))?), where (-) indicates an (event weighted)
time average. For a random walk with stationary
increments the variance increases with 7 as

; (1)

where D is the diffusion rate. H is the Hurst ex-
ponent, which for an IID Gaussian random walk
is H = 1/2. By measuring this variance at dif-
ferent intra-day time scales 7 we estimate D using
expression (1) by a linear regression weighted by the
square root of the number of independent observa-
tions, and assuming H = 1/2. An example of this
procedure is given in Fig. 4.

o = Dr?H

<(m(t+1)-m(t))>

Vodafone, August 4 1998
D=1.498e-06, R"2=0.998

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
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Figure 4: Illustration of the procedure for measur-
ing the price diffusion rate for Vodafone (VOD)
on August 4th, 1998. On the x axis we plot the
time 7 in units of ticks, and on the y axis the vari-
ance of mid-price diffusion o%(7). According to the
hypothesis that mid-price diffusion is an uncorre-
lated Gaussian random walk, the plot should be lin-
ear with slope equal to the diffusion constant (see
equation (1)). To cope with the fact that points
with larger values of 7 have fewer independent in-
tervals and are less statistically significant, we use
a weighted regression to compute the slope.

The estimated slope of the variance plot is the
diffusion rate D; for day ¢t. One must bear in mind
that the price diffusion rate from day to day has
substantial correlations, as illustrated in Fig. 5.

Numerical experiments indicate that the short
term price diffusion rate predicted by the model is

2)

where k is a constant. As for the spread, we com-
pare this to the actual price diffusion rate D; for
each stock averaged over the 21 month period, and
regress the logarithm of the predicted vs. actual
values, as shown in Fig. 6.

The regression gives A = 1.33 £ 0.25 and B =
2.43 +1.75. Thus, we again strongly reject the null
hypothesis that A = 0. We are still unable to re-
ject the null hypothesis that A = 1 with 95% con-
fidence, though there is some suggestion that the
scaling of the model and the actual values are not
quite the same. (This could happen if, for exam-
ple, the scaling exponent predicted by the model of
one or more of the order flow rates is too low). The
reader should bear in mind that because of the long-
memory effects and the cross-correlations between
stocks, as discussed in Section 4.3, these error bars
are difficult to determine. Although the results are
not as good as for the spread, R2 = 0.76, so the
model still explains most of the variance.
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Figure 5: Time series (top) and autocorrelation
function (bottom) for daily price diffusion rate D;
for Vodafone. Because of long-memory effects and
the short length of the series, the long-lag coeffi-
cients are poorly determined; the figure is just to
demonstrate that the correlations are quite large.
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Figure 6: Regressions of predicted values based on or-
der flow parameters vs. actual values for the logarithm
of the price diffusion rate. The dots show the average
predicted and actual value for each stock averaged over
the full 21 month time period. The solid line is a re-
gression; the dashed line is the diagonal, representing
the model’s prediction without any adjustment of slope
or intercept.

4.3 Estimating the errors for the re-
gressions

The error bars presented in the text are based on
a bootstrapping method. We are driven to use this
method because order flow variables, spread, and
price diffusion rates all have slowly decaying pos-
itive autocorrelation functions. Indeed, it has re-
cently been shown that order sign, order volume
and liquidity as reflected by volume at the best
price, are long-memory processes [21, 22]. In ad-
dition the spread, price diffusion rates, and pa-
rameters are highly cross-correlated between stocks.
These effects complicate the statistical analysis, and
make the assignment of error bars difficult.

The method we use is inspired by the variance
plot method described in Beran [23], Section 4.4.
We divide the sample into blocks, apply the regres-
sion to each block, and then study the scaling of
the deviation in the results as the blocks are made
longer to coincide with the full sample. We divide
the N daily data points for each stock into m dis-
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joint blocks, each containing n adjacent days, so
that n &~ N/m. We use the same partition for each
stock, so that corresponding blocks for each stock
are contemporaneous. We perform an independent
regression on each of the m blocks, and calculate
the mean M,, and standard deviation o, of the m
slope parameters A; and intercept parameters B;,
i=1,...,m. We then vary m and study the scaling
as shown in Figs. 7 and 8.

Figs. 7(a) and (b) illustrate this procedure for the
spread, and Figs. 8(a) and (b) illustrate this for the
price diffusion rate. Similarly, panels (c¢) and (d)
in each figure show the mean and standard devia-
tion for the intercept and slope as a function of the
number of bins. As expected, the standard devia-
tions of the estimates decreases as n increases. The
logarithm of the standard deviation for the inter-
cept and slope as a function of logn is shown in
panels (e) and (f). For data with no auto- or cross-
correlation we expect a line with slope v = —1/2;
instead we observe v > —1/2. For example for the
spread v = —0.19. The smaller v is an indication
that this is a long memory process; see the discus-
sion in Section (5.3).

This method can be used to extrapolate the error
for m = 1, i.e. the full sample. This is illustrated in
panels (e) and (f) in each figure. The inaccuracy in
these error bars is evident in the unevenness of the
scaling. This is particularly true for the price dif-
fusion rate. To get a feeling for the accuracy of the
error bars, we estimate the standard deviation for
the scaling regression assuming standard error, and
repeat the extrapolation for the one standard devi-
ation positive and negative deviations of the regres-
sion lines, as shown in panels (e) and (f) of Figs. 7
and 8. The results are summarized in Table 2.

One of the effects that is evident in Figs. 7(c-
d) and 8(c-d) is that the slope coefficients tend to
decrease as m increases. We believe this is due to
the autocorrelation bias discussed in Section (4.4).

4.4 Longitudinal vs. cross-sectional

tests

It is possible to test this model either longitudinally
(across different time intervals for a given stock)
or cross-sectionally (across different stocks over the
same time period). We have applied tests of both
types, but due to the very strong autocorrelations
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Figure 7: Subsample analysis of regression of predicted vs. actual spread. To get a better feeling for the
true errors in this estimation (as opposed to standard errors which are certainly too small), we divide the
data into subsamples (using the same temporal period for each stock) and apply the regression to each
subsample. (a) (top left) shows the results for the intercept, and (b) (top right) shows the results for the
slope. Each point is the value of the estimate for one of the bins. In both cases we see that progressing
from right to left, as the subsamples increase in size, the estimates become tighter. (c) and (d) (next
row) shows the mean and standard deviation for the intercept and slope. We observe a systematic
tendency for the mean to increase as the number of bins decreases. (e) and (f) show the logarithm of the
standard deviations of the estimates against log n, the number of each points in the subsample. The line
is a regression based on binnings ranging from m = N to m = 10 (lower values of m tend to produce
unreliable standard deviations). The estimated error bar is obtained by extrapolating to n = N. To test
the accuracy of the error bar, the dashed lines are one standard deviation variations on the regression,
whose intercepts with the n = N vertical line produce high and low estimates.
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regression estimated standard bootstrap low  high
spread intercept 0.06 0.21 0.29 0.25 0.33
spread slope 0.99 0.08 0.10 0.09 0.11
diffusion intercept 2.43 1.22 1.76 1.57 1.97
diffusion slope 1.33 0.19 0.25 0.23 0.29

Table 2: A summary of the bootstrap error analysis described in the text. The columns are (left to right)
the estimated value of the parameter, the standard error from the cross sectional regression in Fig. 6, the
one standard deviation error bar estimated by the bootstrapping method, and the one standard deviation
low and high values for the extrapolation, as shown in Figs. 7(e-f) and 8(e-f).

of the order flow rates, spread, and price diffusion
rates, there are difficulties in getting a clean test of
the model longitudinally. In this section we discuss
these problems, and discuss some of our results on
the longitudinal tests.

A priori we would expect to do a better job mak-
ing cross-sectional rather than longitudinal predic-
tions. Indeed, it is not clear that this model should
predict anything at all about longitudinal varia-
tions. To see why, imagine that the assumptions of
the model are satisfied perfectly, and suppose that
the five parameters of the order flow process (u, a,
etc.) for a given stock are fixed in time. Then the
only daily variations we would observe in testing
the model would be due to sample errors in the es-
timation process. Even though the assumptions are
satisfied perfectly, we would find no correlation be-
tween predicted and actual values. To observe such
a correlation requires real variations in the parame-
ters of the order flow process. There are also possi-
ble problems with relaxation times: If a parameter
is suddenly changed, according to the model it takes
the system time to reach a new steady state behav-
ior. There are two characteristic times in the model:
o /u, which is the characteristic time for removal of
limit orders by market orders, and 1/4, which is
is the characteristic time for cancellations of limit
orders. For the data here it appears that o/ is typ-
ically less than a minute, whereas 1/6 ranges from a
few minutes to a few hours. Thus, 1/§ is the slowest
relaxation time, and in some cases at least it is po-
tentially problematic for a daily analysis. In addi-
tion, there is the very significant problem that real
order flows are strongly autocorrelated, discussed
below.

Cross-sectionally, in contrast, we expect a priori
that different stocks should have different parame-
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ters. There are likely to be larger variations in the
parameters between stocks than in the parameters
for a given stock at different times. In addition,
for a cross-sectional analysis there are no problems
with relaxation times, and in any case averaging
over longer periods of time reduces the sampling
error. Thus cross-sectional analysis is expected to
be more promising and more reliable.

As noted, for the daily analysis, and even for
cross-sectional analysis over long periods of time,
there are problems caused by the long range au-
tocorrelations of real order flow, spreads, and
price diffusion rates. Autocorrelations can remain
strongly positive on the order of 50 days. This cre-
ates problems in performing the regression, and can
result in a systematic bias in the estimated param-
eters. It causes severe systematic biases and inter-
pretation problems for a daily analysis.

To produce estimates of the average values of
the parameters and of the price diffusion and
spread across the full 21 month period for the
cross-sectional regressions, we have used the event-
weighted average of the daily values. The alterna-
tive would have been to repeat the measurements as
done for the daily data on a 21 month rather than
a daily time-scale. However, this latter approach
would run into problems because of the opening
auction, which is not treated by our model. There
are price changes driven by the orders received dur-
ing the opening auction, and if we measured price
diffusion across the full period we would be includ-
ing these as well as the intra-day price movements.
As a simple solution to this problem we use an
event-weighted 21 month average of daily values to
compute values for each of the order flow parame-
ters, and then make predictions for each stock based
on the average values. The weighting is done by the



number of events in a day, which for simple quan-
tities such as the market impact rate reduces to
something that is equivalent to applying the anal-
ysis over the full period. Similarly, to get the 21
month average of the spread and price diffusion we
simply compute an event-weighted average of their
daily values. We have tried several variations on
this procedure and the differences appear to be in-
consequential.

When we perform longitudinal regressions at a
daily time-scale we get values for the slope coefli-
cient of the regressions that are less than one, often
by a statistically significant amount. We believe
this is caused by the strong autocorrelation. For
example, consider a time series process of the form

(3)

where n; is an IID noise process. In case x; are
i.i.d., regressing y; against x; will result in coefhi-
cients that are systematically too small, due to the
fact that the y;_; term damps the response of y;
to changes in x;. Of course, one can fix this in
the simple example above by simply including y;_1
in the regression [31]. For the real data, however,
the autocorrelation structure is more complicated
— indeed we believe it is a long-memory process —
which is not well modeled by an AR process in the
above form. Without finding a proper characteriza-
tion of the autocorrelation structure, we are likely
to make errors in estimating the dependence of the
predicted and actual values. This is borne out in the
error analysis presented in Section (4.3), where we
see that as we break the data into shorter subsam-
ples, the estimated slope coefficients systematically
decrease for the spread and the price diffusion.

Yt = aTt + pYi—1 + Ny

5 Average market impact

Market impact is practically important because it
is the dominant source of transaction costs for large
traders, and conceptually important because it pro-
vides a convenient probe of the revealed supply and
demand functions as manifested by the limit order
book. When a market order of size w arrives it
causes transactions which can cause a change in the
midpoint price m(t) = (a(t) + b(¢))/2. The average
market impact function ¢ is the average logarithmic
midpoint price shift Ap conditioned on order size,

¢(w) = E[Ap|w].
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A long-standing mystery about market impact is
that it is highly concave [24, 25, 26, 27, 28, 15, 17,
18]. This is unexpected since simple arguments
would suggest that because of the multiplicative
nature of returns, market impact should grow at
least linearly [5]. The model we are testing pre-
dicts a concave average market impact function,
with the concavity becoming more pronounced for
small e. However, these predictions are not in good
detailed agreement with the data; the model pre-
dicts a larger variation with € than what is actually
observed. This is not surprising, given the assump-
tion of uniform order placement and the subdiffu-
sive nature of prices of the Poisson order flow model
mentioned earlier, both of which affect the average
market impact.

5.1 Collapse in non-dimensional co-
ordinates

However, a surprising regularity of the average mar-
ket impact function is uncovered by simply plot-
ting the data in non-dimensional coordinates, as
shown in Fig. 9. Each market order w; causes a
possible price change Ap;, defining an impact event
(ws, Ap;); if the mid price does not change, Ap; = 0.
If we bin together events with similar w and plot the
mean order size as a function of the mean price im-
pact Ap, we typically see highly variable behavior
for different stocks, as shown in Fig. 9(b). We have
also explored other ways of renormalizing the or-
der size, such as taking the ratio of each order to
the daily or full-sample mean, but they give similar
behavior.

Plotting the data in non-dimensional units tells
a much simpler story. Here, we normalize each im-
pact event (transaction) by the appropriate normal-
ization constants as measured for the day at which
the event occured. The order sizes w; we normal-
ize by the characteristic number of shares N., and
the price impacts dp; by the characteristic price P,.
Upon binning simmilar w; values, the data collapses
onto roughly a single curve, as shown in Fig. 9(a).
The variations from stock to stock are quite small;
on average the corresponding bins for each stock de-
viate from each other by about 8%, roughly the size
of the statistical sampling error. We have made an
extensive analysis, but due to problems caused by
the long-memory property of these time series and
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against the average logarithmic price shift.

cross correlations between stocks, it remains unclear
whether these differences are statistically signifi-
cant (see Section 5.3). In contrast, using standard
coordinates the differences are highly statistically
significant. This collapse illustrates that the non-
dimensional coordinates dictated by the model pro-
vide substantial explanatory power: We can under-
stand how the average market impact varies from
stock to stock by a simple transformation of coor-
dinates. This provides a more fundamental expla-
nation for the empirically constructed collapse of
average market impact for the New York Stock Ex-
change found earlier [17].

If we fit a function of the form ¢(w) = Kw? to
the market impact curve, we get 8 = 0.26 £+ 0.02 for
buy orders and 8 = 0.23 + 0.02 for sell orders, as
shown in Fig. 10. The functional form of the market
impact we observe here is not in agreement with a
recent theory by Gabaix et al. [18], which predicts
0 = 0.5. While the error bars given are standard
errors, and are certainly too optimistic, it is nonthe-
less quite clear that the data are inconsistent with
B = 1/2, as discussed in Ref. [29]. This relates to an
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interesting debate: The theory for average market
impact put forth by Gabaix et al. follows tradi-
tional thinking in economics, and postulates that
agents optimize their behavior to maximize prof-
its, while the theory we test here assumes that they
behave randomly, and that the form of the average
market impact function is dictated by the statistical
mechanics of price formation.

5.2 Market impact vs.
demand

supply and

The market impact function is closely related to the
more familiar notions of supply and demand. We
have chosen to measure average market impact in
this paper rather than average relative supply and
demand for reasons of convenience. Measuring the
average relative supply and demand requires recon-
structing the limit order book at each instant, which
is both time consuming and error prone. The av-
erage market impact function, in contrast, can be
measured based on a time series of orders and best
bid and ask prices.
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Figure 10: The average market impact vs. order size plotted on log-log scale. The upper left and right panels
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much greater.

At any instant in time the stored queue of sell
limit orders reveals the quantity available for sale
at each price, thus showing the supply, and the
stored buy orders similarly show the revealed de-
mand. The price shift caused by a market order
of a given size depends on the stored supply or de-
mand through a moment expansion [5]. Thus, the
collapse of the market impact function reflects a cor-
responding property of supply and demand. Nor-
mally one would assume that supply and demand
are functions of human production and desire; the
results we have presented here suggest that on a
short timescale in financial markets their form is
dictated by the dynamical interaction of order ac-
cumulation, removal by market orders and cancel-
lation, and price diffusion.
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5.3 Error analysis for market impact

Assigning error bars to the average market impact is
difficult because for many stocks, particularly liquid
ones, the absolute price changes Ap have a slowly
decaying positive autocorrelation function. This
may be a long-memory process, although this is not
as obvious as it is for other properties of the mar-
ket, such as the volume and sign of orders [21, 22].
The signed price changes Ap have an autocorre-
lation function that rapidly decays to zero, but to
compute market impact we sort the values into bins,
and all the values in the bin have the same sign.
One might have supposed that because the points
entering a given bin are not sequential in time, the
correlation would be sufficiently low that this might
not be a problem. However, the autocorrelation is



sufficiently strong that its effect is still significant,
particularly for smaller market impacts, and must
be taken into account.

To cope with this we assign error bars to each
bin using the variance plot method described in,
for example, Beran [23], Section 4.4. This is a more
straightforward version of the method discussed in
Section (4.3). The sample of size N = 434 is divided
into m subsamples of n points adjacent in time.
We compute the mean for each subsample, vary n,
and compute the standard deviation of the means
across the m = N/n subsamples. We then make
use of theorem 2.2 from Beran [23] that states that
the error in the n sample mean of a long-memory
process is € = on~ ", where -y is a positive coeflicient
related to the Hurst exponent and o is the standard
deviation. By plotting the standard deviation of
the m estimated intercepts as a function of n we
estimate v and extrapolate to n = sample length to
get an estimate of the error in the full sample mean.
An example of an error scaling plot for one of the
bins of the market impact is given in Fig. 11.

A central question about Fig. 9 is whether the
data for different stocks collapse onto a single curve,
or whether there are statistically significant idiosyn-
cratic variations from stock to stock. From the re-
sults presented in Fig. 9 this is not completely clear.
Most of the stocks collapse onto the curve for the
pooled data (or the pooled data set with themselves
removed). There are a few that appear to make
statistically significant variations, at least if we as-
sume that the mean value of the bins for different
order size levels are independent. However, they
are most definitely not independent, and this non-
independence is difficult to model. In any case, the
variations are always fairly small, not much larger
than the error bars. Thus the collapse gives at least
a good approximate understanding of the market
impact, even if there are some small idiosyncratic
variations it does not capture.

6 Extending the model

In the interest of full disclosure, and as a stimulus
for future work, in this section we detail the ways in
which the current model does not accurately match
the data, and sketch possible improvements. This
model was intended to describe a few average sta-
tistical properties of the market, some of which it
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Figure 11: The variance plot procedure used to de-
termine error bars for mean market impact condi-
tional on order size. The horizontal axis n denotes
the number of points in the m different samples, and
the vertical axis is the standard deviation of the m
sample means. We estimate the error of the full
sample mean by extrapolating n to the full sample
length.

describes very well. However, there are several as-
pects that it does not describe well, such as the
scale-free power law properties. This would require
a more sophisticated model of order flow, including
a more realistic model of price dependence in order
placement and cancellations [15, 20], long-memory
properties [21, 22] and the relationship of the dif-
ferent components of the order flow to each other.
This is a much harder problem, and is likely to re-
quire a more complicated model. While this would
have some advantages, it would also have some dis-
advantages.

Some market properties that might profit from
such an improved model are detailed below.

e Price diffusion. The variance of real prices
obeys the relationship o?(7) = D7 to a
good approximation for all values of 7, with



H close to and typically a little greater than
0.5. In contrast, under Poisson order flow,
due to the dynamics of the double continuous
auction price formation process, prices make a
strongly anti-correlated random walk, so that
the function ¢2(7) is nonlinear. Asymptoti-
cally H 0.5, but for shorter times H <
0.5. Alternatively, one can characterize this in
terms of a timescale-dependent diffusion rate
D(7), so that the variance of prices increases
as 02(7) = D(7)7. Refs. [4, 5] showed that the
limits 7 — 0 and 7 — oo obey well-defined scal-
ing relationships in terms of the parameters of
the model. In particular, D(0) ~ p?§/a?e=1/2
and D(oc0) ~ pu?5/a%e'/?. Interestingly, and for
reasons we do not fully understand, the predic-
tion D(0) does a good job of matching the real
data, as we have shown here, while D(o0) does
a poor job. Note that it is very interesting
that the double continuous auction produces
anti-correlations in prices, even with no corre-
lation in order flow. One can turn this around:
Given that prices are uncorrelated, there must
be correlations in order flow. And indeed this
is observed to be the case [21, 22].

Market efficiency. The question of market ef-
ficiency is closely related to price diffusion.
The anti-correlations mentioned above imply
a market inefficiency. We are investigating the
addition of “low-intelligence” agents to correct
this problem.

Correlations in spread and price diffusion. We
have already discussed in Section (4.4) the
problems that the autocorrelations in spread
and price diffusion create for comparing the
theory to the model on a daily scale.

Lack of dependence on granularity parameter.
In Section (5.3) we discuss the fact that the
model predicts more variation with the granu-
larity parameter than we observe. Apparently
the Poisson-based non-dimensional coordinates
work even better than one would expect. This
suggests that there is some underlying simplic-
ity in the real data that we have not fully cap-
tured in the model.

Although in this paper we are stressing the fact
that we can make a useful theory out of zero-
intelligence agents, we are certainly not trying to
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claim that intelligence doesn’t play an important
role in what financial agents do. Indeed, one of the
virtues of this model is that it provides a benchmark
to separate properties that are driven by the statis-
tical mechanics of the market institution from those
that are driven by conditional intelligent behavior.

7 Conclusions

The model we have presented here does a strikingly
good job of predicting the average spread, and a
pretty good job of predicting the price diffusion
rate. Also, by simply plotting the data in non-
dimensional coordinates we get a good prediction of
market impact. These are remarkable because to do
this we have completely dropped agent rationality,
instead focusing all our attention on the problem of
understanding the constraints imposed by the con-
tinuous double auction. The resulting dynamics of
the interaction between price formation and order
placement are complicated, and the predictions of
the model are nontrivial.

The approach taken here can be viewed as a di-
vide and conquer strategy. Rather than attempting
to explain the properties of the market from funda-
mental assumptions about utility maximization by
individual agents, we divide the problem into two
parts. The first problem, which is addressed here,
is that of understanding the characteristics of the
market given a model of order flow. The second
(and harder) problem, which remains to be inves-
tigated, is that of explaining order flow. This is
part of a broader research program that might be
characterized as the ”low-intelligence” approach to
economics: We begin with zero-intelligence agents
to get a good benchmark of the effect of mar-
ket institutions, and once this benchmark is well-
understood, add a little intelligence, moving toward
market efficiency. We thus start from zero rational-
ity and work our way up, in contrast to the canoni-
cal approach of starting from perfect rationality and
working down. See Ref. [30].

These results have several practical implications.
For market practitioners, understanding the spread
and the market impact function is very useful for
estimating transaction costs and for developing al-
gorithms that minimize their effect. And for regu-
lators they suggest that it may be possible to make
prices less volatile and lower transaction costs by



creating incentives for limit orders and disincentives
for market orders.

The model we test here was constructed before
looking at the data [4, 5], and was designed to be
as simple as possible for analytic analysis. A more
realistic (but necessarily more complicated) model
would more closely mimic the properties of real or-
der flows, which are price dependent and strongly
correlated both in time and across price levels. An
improved model would hopefully be able to cap-
ture even more features of the data, such as the
power law tails of prices. Nonetheless, as we have
shown above, this simple model does a remarkable
job of explaining important fundamental properties
of markets, such as transaction costs, price diffusion
and supply and demand. The model captures the
statistical mechanics of the market quite well, and
in particular, the way order placement and price for-
mation interact to alter the accumulation of stored
supply and demand. For the phenomena studied
here this appears to be the dominant effect. We do
not mean to claim that market participants are un-
intelligent: Indeed, one of the virtues of this model
is that it provides a benchmark to separate proper-
ties that are driven by the statistical mechanics of
the market institution from those that are driven by
conditional strategic behavior. It is surprising that
such a simple model can explain so much about a
system as complex as a market, and shed light on
century-old questions about the rate of price diffu-
sion and the form of supply and demand
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