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Intraday Returns and  
Heterogeneous Liquidity Sources 

 
 

Abstract 

This paper studies the relation between stock market liquidity and intraday stock returns. 

My model characterizes a momentum-reversal intraday return pattern within which, 

during the reversal, a negative return can be associated with a positive order imbalance. 

The implied momentum-reversal return pattern is observed by comparing the post returns 

of past winners and past losers generated in an intraday context. The empirical study also 

shows that in the reversal, past winners underperform past losers even though investors 

still prefer to buy past winners and sell past losers. The explanation for these phenomena 

lies in the recognition of the market maker as a specialist and limit orders as two 

heterogeneous liquidity sources. In the momentum phase there are relatively few limit 

orders and the market maker charges a high premium to compensate for his inventory risk. 

Later when sufficient limit orders arise in the reversal phase, the market maker can switch 

to this inexpensive liquidity source and thus reduce his premium. Although the 

momentum-reversal pattern could be a Nash equilibrium for limit-order traders, the 

market-order traders’ welfare is not optimized in the equilibrium. 

 

JEL Classification: G19. 

Keywords: intraday return, liquidity, limit order. 
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1. Introduction 

How liquidity is associated with stock market returns has been extensively explored in a 

growing literature [Amihud and Mendelson (1986), Eleswarapu and Reinganum (1993),  

Brennan and Subrahmanyam (1996), Datar, Naik, and Radcliffe (1998), Chordia, Roll, and 

Subrahmanyam (2002a),  Pastor and Stambaugh (2002)].  Most of these studies measure 

returns over daily, monthly, or yearly horizons. For example, Chordia, Roll, and 

Subrahmanyam (2002a) find that liquidity and order imbalances are strongly related to past 

daily market returns. Brennan and Subrahmanyam (1996) investigate the relation between 

monthly stock returns and measures of illiquidity obtained from the intraday data and find a 

significant return premium associated with both the fixed and variable elements of the 

transacting cost. Pastor and Stambaugh (2002) find that on average the annual return of 

stocks with high sensitivities to innovations in aggregate liquidity exceeds that of stocks with 

low sensitivities by 7.5%.  However, there are relatively few papers addressing how liquidity 

can affect intraday returns. 

 

In order to gain more insight into the relation between liquidity and intraday returns, I link 

liquidity to intraday stock price movements measured in minutes instead of days, months, or 

years. Dividing the liquidity supply into two heterogeneous sources; the market maker as a 

specialist and limit orders, I model how their interaction could affect intraday returns. I then 

apply the portfolio sorting method to intraday data to empirically examine the return 

difference between past winners and past losers. This research complements recent work by 

Chordia, Roll, and Subrahmanyam (2002b) who find that in an intraday context 

sophisticated traders react to order imbalances by undertaking countervailing trades and 
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thereby remove serial dependence over the daily horizon by studying twenty large-cap and 

twenty mid-cap stocks. My study differentiates itself from their work by explicitly 

considering the role of limit orders and examining the return of past winner (loser) portfolio 

instead of individual stock returns. 

 

As the motivation of my empirical study, I begin with a model of how prices react to order 

imbalances when the market maker has an inventory concern and needs to accommodate the 

competition from limit-order traders. My model follows the inventory paradigm represented 

by Stoll (1978), Ho and Stoll (1983), O’Hara and Oldfield (1986), Grossman and Miller 

(1988), Spiegel and Subrahmanyam (1995), Chordia and Subrahmanyam (2002). In the spirit 

of Grossman and Miller (1988), I model market liquidity as being determined by the demand 

and supply of immediacy. There are three types of players; the market maker, market-order 

traders, and limit-order traders. Market-order traders perceive a gap between their current 

holdings and their desired holdings of a particular asset. To fill this gap, they choose to trade 

immediately rather than to wait. If, in aggregate, market-order buyers cannot be matched 

with market-order sellers perfectly, a demand of immediacy is created. The market maker 

then has the responsibility to meet this demand in order to clear the market. The other 

liquidity source is limit-order traders. They do not ask for an immediate execution of their 

orders and compete against the market maker for the liquidity provision service [Seppi 

(1997)]. 
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The two liquidity sources differ in the following respect. Limit-order traders cannot 

determine the bid and ask quotes posted on the market. However, on a NYSE-type exchange, 

they are protected by the price priority and public priority. Price priority means that if the 

market maker as a specialist wants to sell (buy) at a specific price, he must first fully fill all 

limit sell (buy) orders at the lower (higher) position. Public priority means that the limit 

order at the same price level also must be filled first. These regulatory policies restrain the 

market maker’s monopoly power. A distinguishing feature of my theoretical framework is 

that it explicitly addresses the relation between the limit-order depth and market returns. 

 

In my model there is one risky asset traded in two periods. Prior to the first trading period, 

an information signal arrives on the market. I assume that, if the signal conveys good news, 

it increases the market maker’s expectation of the risky asset’s value and will cause the 

aggregate market orders placed in both trading periods to be buy orders. In the first trading 

period, confronted with a buy pressure, the market maker will adjust his quote higher than 

his expectation of the risky asset’s value. Hence, the stock price movement in the first 

trading period will be in the same direction as the price jump caused by the information 

signal itself and a momentum effect will be observed.  

 

During the second trading period, it is interesting to examine whether reversal can occur 

even though the order imbalance in this period has the same sign as that of the previous 

period. After clearing the market in the first period, the market maker holds a short position 

as he enters the second period. The positive order imbalance continues to create a buy 
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pressure, causing the market maker to increase his risk premium and adjust his quotes 

upward. If he is the only liquidity supplier, the momentum effect will continue in the second 

trading period. To make the reversal occur, it is necessary for the market maker’s risk 

premium to be reduced. This can only occur if an alternative liquidity source, limit orders, is 

present. If there are enough limit sell orders, the market maker can match the market buy 

orders, cover at least a portion of his previous short position, and thereby reduce his risk 

premium. As the model analysis indicates, for the reversal to occur, a sufficient and 

necessary condition is that the ratio of the limit-order density to the order imbalance size in 

the second trading period be larger than that in the first trading period. Limit orders thus play 

a crucial role in determining the direction of return in the second period. If there are enough 

limit orders, a negative return accompanied by a positive order imbalance can be observed 

and overall the market will witness a “momentum-reversal” return pattern. 

 

In order to test the “momentum-reversal” pattern indicated by my model analysis, I 

examine the performance of past winners and past losers, which are generated and compared 

in an intraday context. Over time horizons from six to twelve months, Jegadeesh and Titman 

(1993) show that for U.S. stocks past winners will outperform past losers. When the time 

horizon is expanded to 3-5 years, the autocorrelation in stock returns becomes negative, as 

documented by Fama and French (1988) and Poterba and Summers (1988). In general, over 

long term horizons such as months and years the return reversal occurs after the momentum 

effect expires. It is an open question whether any similar return pattern can be expected in an 

intraday context. 
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The empirical results show that the momentum effect is significant after the portfolio 

formation and lasts for a few hours for most stocks. After that, the return difference between 

the past winners and the past losers turns from positive to negative, implying that reversal 

replaces the momentum effect. The exception is that extreme losers do not show any 

momentum. Instead, the reversal occurs immediately after the portfolio formation and lasts 

until the end of the day. 

  

Competing explanations for these patterns include various versions of “underreaction-

overreaction” story, such as the investor’s sentiment model of Barberis, Shleifer, and Vishny 

(1998), and the information diffusion model of Hong and Stein (1999).  However, order 

imbalances accompanying the return pattern provide support for my model. No matter 

whether the market is in the momentum phase or in the reversal phase, the order imbalance 

difference between the past winners and past losers is always positive. The implication is 

that in the intraday context investors always have more incentive to buy past winners and 

sell past losers in both the momentum phase and the reversal phase. Then a paradox is why 

in the reversal phase past winners underperform past losers even though there are more 

investors who still want to buy past winners rather than to buy past losers.  

 

This question is answered by my model. Let us construct a security of buying past winners 

and short-selling past losers and think of it as the risky asset in my model. The return and 

order imbalance of this security is the return difference and order imbalance difference 
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between past winners and past losers. Thus, the momentum phase can be interpreted as the 

first trading period in my model with positive return and positive order imbalance and the 

reversal phase can be interpreted as the second trading period in my model with negative 

return and positive order imbalance.  

 

As shown in the later part of my model analysis, under certain condition the number of 

available limit orders during the reversal phase should be larger than that during the 

momentum phase so that the market maker’s risk premium can be reduced in the reversal. 

This proposition is supported indirectly by my empirical observation of spread width. 

Regarding the security constructed in the previous paragraph, its spread width is the sum of 

the spread widths of the past winners and that of the past losers. Empirically, I find a 

decreasing trend in this spread width after the portfolio formation. Chung et al (1999) show 

that the market maker’s own account is an expensive liquidity source and will cause large 

spread width and the limit-order book is relatively inexpensive and will lead to small spread 

width. Thus, the decrease of spread width implies that after the informational event the 

market is turning gradually from the expensive liquidity source (market maker’s own 

specialist account) to the inexpensive liquidity source (limit-order book). This conjecture is 

also consistent with Kavajecz (1999) who finds that the depth of the limit order book will 

decrease around an informational event and then recover afterwards. 
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The organization of the paper is as follows. Section 2 presents a theoretical model that 

derives empirical implication for the intraday return. Section 3 describes the data and sample 

selection method and documents the empirical finding about the patterns of intraday return, 

order imbalance, and spread. Section 4 concludes the paper.  
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2. Theoretical Framework 
 

A. Model Setting 

In the model there is a simple world with four periods: 0, 1, 2, and 3. An informational 

event arrives during period 0. Periods 1 and 2 are the trading periods. Liquidation occurs 

during period 3. I assume two assets: a risky asset the liquidation value of which is a random 

variable Y  with normal distribution ),( 2
0 yYN σ  and a riskless asset (cash) with a rate of 

return equal to zero.   

 

A monopolistic risk-averse market maker has constant absolute risk aversion (CARA) 

utility )exp()( tt RWWU −−= . tW , his total wealth at time t , is equal to the sum of his cash 

balance CtW  and inventory balance ItW  at that time, i.e., ItCtt WWW += . I assume that the 

ask-bid spread covers only the market maker’s order-processing cost. His inventory risk is 

compensated by shifting the quotes away from the rational expectation of the asset’s 

liquidation value. The market maker does not suffer from adverse selection.  

 

There are two types of traders. Limit-order traders compete with the market maker to 

provide liquidity service. During both trading periods, each limit-order trader submits a unit-

size limit order. The number of limit-order traders is exogenously generated. Market-order 

traders cannot wait for a better price and need to ensure the immediate execution of their 

trading orders. The asynchronization of market-order trading creates a temporary order 

imbalance. A positive (negative) order imbalance indicates that in aggregate the market-

order traders have excess demand (supply) of the risky asset. 
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An informational event occurs during period 0 and changes the market maker’s rational 

expectation of the risky asset’s value from −
0Y  to 0Y . Let −

0P  and +
0P  be the market maker’s 

midquote right before and right after the informational event. I assume period 0 is so short 

that in this period there is no order flow. Thus, the market maker’s midquotes will be 

−− = 00 YP  and 00 YP =+ respectively. If the informational event is good (bad) news, the 

midquotes will jump up (down). I assume the market maker’s initial position is 

000 == IC WW . Hence, if the market maker needs to use his own specialist account he must 

either borrow the cash or borrow the stock. The cost of borrowing is non-negative. In other 

words, it implies that the market maker’s own account is an expensive resource of liquidity 

compared with the limit order book.  

 

During period 1, the informational event arrived during period 0 causes a market order 

imbalance, denoted by 1j . I assume that the good (bad) news will lead to a positive (negative) 

order imbalance, i.e., 01 >j  ( 01 <j ). Correspondingly, the market maker will accumulate a 

negative (positive) inventory, 01 <J  ( 01 >J ). Since the market maker is risk averse, he will 

post a midquote 1P , which is higher (lower) than his rational expectation 0Y . Let 1i  and 1I  

be the absolute value of 1j  and 1J , and 011 YPp −=  be the inventory risk premium. Using 

the absolute values ,, Ii  and p  helps to simplify the analysis. The market maker’s cash 

balance at time 1 is 111 JPWC −=  and his inventory balance is 11 YJWI = . Let 1M  be the 

number of limit-order traders who submit a unit-size limit order per capita during period 1.  
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Each unit-size limit order specifies a price that, in turn, implies a premium that varies across 

limit-order traders. 

 

During period 2 I suppose that the order imbalance 2j  has the same sign as 1j , that is, 

021 >jj . The market maker’s inventory and midquote during period 2 is 2J  and 2P  

respectively. Similarly, let 2i  and 2I  be the absolute value of 2j  and 2J , and 022 YPp −=  

be the inventory risk premium at time 2. In this period, the market maker’s cash balance is 

)( 12212 JJPWW CC −−=  22112 )( JPJPP −−=  and his inventory balance is 22 YJWI = . The 

number of unit size limit orders that arise during period 2 is 2M . I assume that before the 

beginning of period 2 all the unexecuted limit orders placed during period 1 get cancelled. 

 

The market maker’s terminal wealth at time 3 before liquidation is 223 YJWW C +=  

22112 )()( JPYJPP −+−= . If the information event is good news and there is a buy pressure 

in the market, the market maker should build a negative inventory to alleviate the buy 

pressure according to the stabilization requirement.  If the market maker accumulates a 

positive inventory, it implies that he actually ignores the market buy pressure and 

destabilizes the price. This is inconsistent with the exchange policy and is prohibited in this 

model. As discussed above, under the buy pressure the market maker’s inventory will be 

negative ( 01 <J  and 02 <J ) and his midquote will be higher than the expected risky asset’s 

value ( 01 YP >  and 02 YP > ). Hence, his terminal wealth 3W  can be rewritten as  

))(())](()[( 22102013 JYPJYPYPW −−+−−−−= . If the information event is bad news and it 

is a sell pressure that appears on the market, the market maker’s inventory will be positive 
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( 01 >J  and 02 >J ) and his midquote will be lower than the expected risky asset’s value 

( 01 YP <  and 02 YP < ). It implies 22120103 )()]()[( JPYJPYPYW −+−−−= . Hence, it is 

straightforward to show 221213 )()( IpIppWE +−=   and 2
2

2
3 )( IWVar yσ=  no matter whether 

the informational event is good news or bad news. The first item in the expected terminal 

wealth is the profit the market maker earns from the premium difference between 1p  and 2p . 

The second item in the expected terminal wealth is the reward for him to carry the risky asset 

until liquidation. In Appendix 1 I also show that optimizing on the absolute-value variable 

tI  is equivalent to the optimization on the signed-value variable tJ   ( }2,1{∈t ). The benefit 

of optimizing on absolute value variables is that it unifies the optimization procedures under 

buy pressure and sell pressure and bring considerable analytical convenience. Before ending 

the model introduction, I provide Diagram 1 as a visual illustration of the model setting. A 

list of the notations used in this paper can be found in Appendix 1.   
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Diagram 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Market Maker’s Optimization 

 

In this part I solve the model by backward induction. As the first step I solve the market 

maker’s optimization during period 2. In period 2 the market maker maximizes the expected 

utility of his terminal wealth ))(( 32 WUE . Also, the market clearing condition implies that 

the market maker also needs to abide by a limit order constraint. According to the limit-order 

priority rules, all the limit orders that imply a premium less than or equal to 2p  must be 

fulfilled first. This constraint implies ),()( 22212 pMFiII −+= , where 2M  is the total 
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number of unit-size limit orders in period 2 and ),( 22 pMF  is the number of limit orders 

that will be fulfilled conditional on 2p . Particularly, I assume 22222 ),( MppMF λ=  when 

]/1,0( 22 λ∈p  and 222 ),( MpMF =  when 22 /1 λ>p . Furthermore, I assume that the 

exchange does not allow the market maker to ask a risk premium higher than 2/1 λ . It 

implies that within the interval ]/1,0( 2λ  the number of fulfilled limit orders is a linear 

function of 2p  and the position of the unit-size limit order is uniformly distributed. Based on 

the assumption above, the limit-order constraint can be written as 222212 )( pMiII λ−+=  

2221 )( pmiI −+= , where  222 Mm λ= can be viewed as the “density” of limit orders placed 

in period 2. Using this definition of 2m  implies that the number of limit orders that will be 

fulfilled is 22 pm  if the market maker decides to charge a premium of 2p .  

 

Providing a numerical explanation of the limit-order density, I assume that there are two 

stocks A and B. The expected value of stock A is AY0 =$30.00 and there are 50,000 shares of 

limit orders that uniformly distribute in the price interval from $30.01 to $30.50. Stock B’s 

expected value is also  BY0 =$30.00 and 60,000 shares of its limit orders uniformly distribute 

in the price interval from $30.01 to $30.80. It implies that ∈Ap (0,50¢], =Aλ 0.02(1/¢), 

∈Bp (0,80¢], and =Bλ 0.0125(1/¢). Thus, the limit-order density of stock A is =Am 1,000 

(share/¢), higher than Stock B’s limit-order density that is =Bm 750(share/¢), although the 

number of Stock B’s limit orders, BM , is larger than that of Stock A’s limit orders, AM . If 

the market maker of stock A increases his quote by 1¢, he needs to fulfill 1,000 shares of 

limit orders, while the market maker of stock B only needs to fill 750 shares of limit orders 

when increasing his quote by 1¢. In the following analysis I show that it is the density of 
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limit orders that determines the return pattern. Also, I assume that there are always enough 

limit orders lying on the limit-order book to match the imbalanced market orders and the 

question is how many of them the market maker wants to fill. Specifically, I assume that 

11 iM >  and 212 iiM +> .1  

 

The market maker maximizes his expected utility in period 2 as follows. 

))((max 32
2

WUE
I

))exp(( 32 RWE −−= }
2
1))((exp{ 2

2
22

22121 IRIpIppR yσ++−−−=   (1) 

with 22212 )( pmiII −+=         (2) 

 

Given that, having chosen his inventory, the market maker has implicitly chosen his 

required premium, the optimization above is equivalent to 

 2
2

2
22121 2

1)(max
2

IRIpIpp yI
σ−+− , with 

2

221
2 m

IiIp −+
= . 

 

Standard optimization procedure yields that  

 2
2

21*
2 2

2

yRm
iI

I
σ+

+
=           (3) 

*
2p

)2(
)1(

2
22

2
2

21
2

2

y

yy

Rmm
iRmIRm

σ
σσ

+

++
=          (4) 

(*See appendix for the detailed optimization procedure.)  

 

1. Kavajecz (1999) shows that the average volume of existing limit orders is 54,211 shares on the buy 
side and  37,457 shares on the sell side according to the TORQ data in 1991. A market order with a 
comparable size arrives rarely, and even if it does, it would be more likely to be settled upstairs rather 
than entering the specialist’s floor trading. 
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Next, I solve the market maker’s optimization problem during period 1. In order to solve 

the model I assume the market maker has the foresight knowledge of  2i  and 2M  when 

optimizing during period 1. Admittedly this is a strong assumption. However, it adds 

considerable tractability and enables the closed-form solutions of the model. The total 

market order imbalance the market maker and the limit-order traders together need to absorb 

is 1i . Hence, the market maker’s inventory amount 1I  is =−= ),( 1111 pMLiI 1111 pMi λ− , 

where 1M  is the total number of unit-size limit orders in period 1 and ),( 11 pML  is the 

number of limit orders that will be fulfilled conditional on 1p . I also assume that 

11111 ),( MppML λ=  when ]/1,0[ 11 λ∈p  and 111 ),( MpML =  when 11 /1 λ>p  and any 

premium higher than 1/1 λ  is not allowed by the exchange. Similarly, I introduce 111 Mm λ=  

as the density of limit orders during period 1. Now I can rewrite the limit-order constraint in 

period 1 as    

1111 /)( mIip −=            (5) 

 

Thus, the market maker’s optimization during period 1 is  

]}2/1))[(exp{))exp(())((max 2
2

2
221213232

1

∗∗∗∗ −+−−−=−−= IRIpIppRRWEWUE yI
σ  

with  2
2

21*
2 2

2

yRm
iI

I
σ+

+
= ; *

2p
)2(

)1(
2

22

2
2

21
2

2

y

yy

Rmm
iRmIRm

σ
σσ

+

++
= ; 1111 /)( mIip −=  

and  s.t. 01 >I . 

 

The optimal inventory amount and premium in period 1 implied by the Kuhn-Tucker 

conditions are as follows. 
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If )2/(/ 2
22

2
11 yy RmiRmi σσ +> , 

)]
2

1(2/[)
2

1( 2
2

2

1
22

2

2

1
1

*
1

y

y

y

y

Rm
R

m
i

Rm
R

i
m

I
σ

σ
σ

σ
+

+
+

−=       (6a) 

)]
2

1(2/[]
2

)
2

21[( 2
2

2

1
22

2

2

12
2

2

1

*
1

y

y

y

y

y

y

Rm
R

m
i

Rm
R

i
Rm

R
m

p
σ

σ
σ

σ
σ

σ
+

+
+

+
+

+=    (7a) 

If )2/(/ 2
22

2
11 yy RmiRmi σσ +< ,  

0*
1 =I                       (6b) 

11
*
1 / mip =                      (7b) 

(*See appendix for the detailed optimization procedure.)  

 

 

C. The Return Pattern 

 

To examine the pattern of returns, I assume that during period 0 the informational event is 

good news. Hence, the market maker’s quote will jump up from −
0P  to +

0P . This can be 

viewed as the prior return in the following empirical part. It is easy to show that the post 

return ++− 001 /)( PPP  during period 1 is positive, since the market maker will ask a price 

higher than the rational expectation += 00 PY  to compensate the risk of his short inventory 

position due to the positive order imbalance during period 1. Therefore, period 1 witnesses 

the momentum effect.  The interesting question is whether during period 2 any reversal can 

be expected after the momentum effect, even if the order imbalance in this period has the 

same sign as that of period 1. In my model, the sign of the return in period 2 depends on 

whether the market maker’s risk premium 2p  during period 2 is lower than 1p . As the 
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optimization above implies, the density of limit orders at both periods ),( 21 mm  will play an 

important role of determining the market maker’s risk premium. The proposition below 

states the sufficient and necessary condition for the reversal to occur in period 2. 

 

Proposition 1: During period 2, the reversal will occur if and only if 1122 // imim >  and the 

momentum will occur if and only if 1122 // imim < .  If 1122 // imim = , the midquote will not 

change in period 2. 

 (Proof: See Appendix) 

 

After going through some tedious algebra, I get a surprisingly elegant result. Proposition 1 

implies that, in order for the reversal to occur in period 2, the ratio of the limit order density 

to the order imbalance size in period 2 should be greater than the same ratio in period 1. This 

is a necessary and sufficient condition. The occurrence of reversal only depends on the 

relation between the limit order density and the order imbalance.  

 

Corollary 1: (Assume 21 ii = ) The reversal (momentum) will occur during period 2 if and only 

if 12 mm >  ( 12 mm < ). 

Corollary 2: (Assume 21 λλ = ) The reversal (momentum) will occur during period 2 if and 

only if 1122 // iMiM >  ( 1122 // iMiM < ). 

Corollary 3: (Assume 21 ii = , and 21 λλ = ) The reversal (momentum) will occur during period 

2 if and only if 12 MM >  ( 12 MM < ). 

(Proof: See Appendix) 
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Corollary 1 implies that, if the buy (sell) pressure in period 2 is the same as that in period 1, 

whether the reversal can occur depends on whether limit orders are more dense in period 2 than 

that in period 1. Corollary 2 indicates that, if the unit-size limit order position distributions in 

both periods are the same, the occurrence of reversal relies on the ratio of the limit order number 

to the order imbalance size. Corollary 3 shows that, after combining the assumptions in 

Corollaries 1 and 2, the occurrence of reversal relies on whether there are more limit orders in 

period 2. As a simplified version of Proposition 1, Corollary 3 lays out the setting in which I 

address the limit-order traders’ choice and the welfare of market-order traders in the next part. 

 

D. The Behavior of Limit Order Traders 
 

The model analysis in the previous part focuses on the strategic choice of the market maker 

and the number and density of limit orders are taken as exogenous variables. In this part, this 

restrictive setting is modestly relaxed. Now limit-order traders have discretion over whether 

they trade in period 1 or in period 2.  For analytical convenience, I assume that the size of 

the order imbalance and the distribution of limit order positions in both periods are the same 

( 21 ii =  and 21 λλ = ). Corollary 3 implies that the reversal occurrence in trading period 2 

requires 12 MM > , i.e., more limit orders in the second period. How the aggregate trading 

cost of market-order traders is affected by the choice of limit-order traders is also addressed 

in this part. 
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I assume that each limit-order trader is atomistic. If he chooses to trade in the first (second) 

trading period, the limit-order trader earns a profit of 1p  ( 2p ). Also, I suppose that once his 

limit order is fulfilled, the limit-order trader needs to bear a non-negative cost 1c  ( 2c ). This 

cost could possibly stem from his monitoring cost and opportunity cost. The limit-order 

trader in period 1 needs to monitor the market more frequently so that he can identify the 

information event in time and respond earlier than the limit-order trader in period 2. Also, 

the limit-order trader in period 1 is engaged in his trading strategy for a longer time than the 

limit-order trader in period 2 and correspondingly endures a higher, or at least the same, 

opportunity cost. Hence, I assume that 1c  is larger than or equal to 2c . For tractability, I 

assume that if the limit order is not fulfilled, the trader will bear a zero cost. Since he is 

atomistic, the limit-order trader does not need to consider how other limit-order traders and 

the market maker will respond to his action. But he has the knowledge of the market maker’s 

optimization procedure.  

 

Proposition 2: (Assume 21 ii =  and 21 λλ = ) If all the limit order traders bear the same cost, 

i.e., 21 cc = ,  a Nash equilibrium is established when 12 MM = , that is, there are equal 

number of limit orders in both trading periods and the midquote return in the second trading 

period is zero.  

(Proof: See Appendix) 
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Proposition 3: (Assume 21 ii =  and 21 λλ = ) If the cost of the limit-order trader in period 1 

is higher than that in period 2, i.e., 21 cc > , in the Nash equilibrium there are more limit 

orders in period 2 ( 12 MM > ) and a “momentum-reversal” return pattern exists.  

(Proof: See Appendix) 

 

As Corollary 3 shows above, if there are more limit orders in the second trading period, the 

model implies a “momentum-reversal” pattern, which is observed in the following empirical 

test. Hence, a natural question is whether this “momentum-reversal” pattern can be a stable 

equilibrium. Proposition 3 indicates that, as a Nash equilibrium, it is stable as long as the 

cost of the limit-order trader in the first trading period is higher than that in the second 

trading period. Given the heterogeneous cost structure, a small group of limit-order traders 

chooses to pay the high cost 1c  and trade in period 1, and a large group of limit-order traders 

decides to trade in period 2 with the low cost 2c . In the Nash equilibrium, their profit margin 

is the same ( 2211 cpcp −=− ). Thus, no one has the incentive to deviate. At the first sight, 

Proposition 2 seems to be nothing more than a degenerate version of Proposition 3. However, 

I am going to show that in terms of the market-order traders’ welfare, the Nash equilibrium 

described in Proposition 2 is optimal compared to the Nash equilibrium in Proposition 3. 

 

The net welfare of the market-order traders is determined by the benefit they receive minus 

the cost they pay. In my model, given that 21 , ii  are exogenously generated, their benefit is 

the immediate execution of their market orders in period 1 and period 2, which does not vary 

according to the decision of the market maker and limit-order traders. Their cost is the total 
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premium they pay to the market maker and limit-order traders as the fee for their liquidity 

service. I denote MktC  to be the aggregate trading cost of market-order traders. Clearly, 

2211 ipipCMkt += . I assume that the total supply of limit orders is fixed, that is, 21 MM + is 

a constant. Proposition 4 states how MktC  is affected by the limit-order trader’s cost structure. 

 

Proposition 4: (Assume 21 ii = , 21 λλ = , and 21 MM + is a constant) The aggregate trading 

cost of market-order traders, MktC ,  is minimized when 12 MM = .  

If 21 cc = , in the limit-order traders’ Nash equilibrium the market-order traders’ aggregate 

cost is minimized. If 21 cc > ,  this cost is not minimized in the limit-order traders’ Nash 

equilibrium. Given that everything else is the same, a larger 21 ccc −=∆  leads to a higher 

MktC .  

(Proof: See Appendix) 

 

Ideally, the market-order traders prefer the same amount of limit orders in both trading 

periods and a flat midquote schedule posted by the market maker. This requires the cost of 

the limit-order trader in the period 1 to be equal to that in period 2. However, this may be 

unrealistic from a practical standpoint, as suggested by the empirical observation of the 

“momentum-reversal” intraday return pattern instead of a flat midquote level. Proposition 4 

implies that the market-order trader’s welfare can be improved by narrowing the cost 

difference between limit-order traders who trade in different periods.  
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The model analysis suggests that a higher ratio of the limit order density to the order 

imbalance size in period 2 relative to period 1 leads to a “momentum-reversal” intraday 

return pattern. To empirically test the model’s implication, in the next section I generate past 

winner and past loser portfolios and compare their post performance in an intraday context.   
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3. Empirical Study  
 

A. Data and Methodology 

 

The transaction data source is the NYSE Trades and Automated Quotations (TAQ) 

database. The sample space includes all the S&P 500 non-NASDAQ components. The virtue 

of these stocks is that they are actively traded and are unlikely to have a long interval 

without trading and quote adjustments.  Since NASDAQ market has multiple market makers 

for the same security who may compete with each other, while in the model I assume the 

market maker is a monopolistic specialist, and the trade rules in NASDAQ are different with 

NYSE, I exclude securities listed on NASDAQ. To avoid the ask/bid bounce, I use quote 

midpoints instead of price. The sample period is from Jan 07th to May 17th, 2002. 

 

The sign of the trade is decided by Lee and Ready (1991) logarithm: if a transaction occurs 

above (below) the prevailing quote mid-point, it is regarded as buyer-initiated (seller-

initiated). If a transaction occurs exactly at the quote mid-point, it is signed by the tick test 

based on the previous transaction price. Any quote less than five seconds prior to the trade is 

ignored and the first one at least five seconds prior to the trade is retained. Order imbalance 

(OIB) for any stock over any time interval can be calculated as the number of buyer-initiated 

trades less the number of seller-initiated trades. Order imbalance in dollar amount (OIB$) is 

correspondingly the dollars paid by buyer-initiators less the dollars paid by seller-initiators. 

The inclusion rules are as follows. If the stock price at any day-end during the sample period 

was greater than $999, the stock is deleted from the sample. Any trade and quote observation 
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is excluded if it is before the opening of the market, or after the close, or has special 

settlement condition. All the negative bid-ask spreads are discarded. 

 

My trading strategy is the intraday version of the portfolio sorting method applied in the 

momentum literature such as Jegadeesh and Titman (1990). It selects stocks based on their 

returns over the past 30, 60, and 90 minutes. I also consider holding periods that vary from 

30 to 180 minutes. Let us take the example of prior-30-minute/post-30-minute strategy. At 

the beginning of each 30-minute interval, stocks in the sample are ranked in ascending order 

on the basis of their returns in the past 30 minutes. Ten decile portfolios are formed based on 

these rankings. Each portfolio equally weights the stocks contained. Since it is possible that 

trades do not occur exactly at the end of a certain interval, if the closest quote revision is 

more than 150 seconds away from the end of the interval, the return for that interval will not 

be used. I should mention that in order to ensure the observation period for post returns is 

long enough the winner (loser) portfolios are formed no later than 1:00pm. 

 

The rationale for applying the portfolio sorting method to test the model is as follows: if I 

assume an information shock arrives on the market being good news for some stocks and 

bad news for some others during the portfolio formation period, then the past winners could 

be interpreted as the beneficiary and the past losers could be interpreted as the victim due to 

the information shock. If I construct the security of longing past winners and shorting past 

losers, it can be thought of as the risky asset in my model.  Hence, the price jump caused by 

the information event can be regarded as the prior return and the quote drift after the jump 
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can be regarded as the post return. According to the model, the post quote drift should follow 

the “momentum-reversal” pattern. Of course, what I am doing here is approximation. 

However, given the difficulty of identifying numerous individual information shocks with 

their exact occurrence time and whom they affect, the portfolio sorting method should be a 

reasonable approach.  

 

B. Portfolio Sorting Result 

 

Applying the portfolio sorting method in the intraday data leads to the results summarized 

as follows: 

 

(a) For most portfolios, the momentum effect is significant after the portfolio formation 

and lasts for a few hours. After that, the reversal effect replaces the momentum effect.  

(b) As the exception, the extreme loser portfolio does not show any momentum. Instead, 

the reversal occurs immediately after the portfolio formation and lasts until the end of the 

day. The extreme winner portfolio may also expect a similar reversal without momentum, 

but it is far less significant than that of the extreme loser portfolio. 

 

Figures 2a and 2b show the post 60-minute and 90-minute return patterns of the portfolios 

constructed according to their prior 60-minute and 90-minute returns. If I am allowed to put 

aside the exception of the extreme portfolios, a clear momentum trend in Figures 1a and 1b 

can be observed, which can be summarized as the positive return difference between 
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portfolio #9 (past winners) and portfolio #2 (past losers). From now on, I will construct a 

security buying portfolio #9 as the past winners and shorting portfolio #2 as the past losers 

and study the return of this constructed security in the following work. 

 

The next question is whether there is any reversal after the momentum effect. In order to 

answer this question, I examine the return difference between portfolio 9 (past winners) and 

portfolio 2 (past losers) of various time lengths of portfolio construction and post return 

observation. The results are provided in Tables 2a and Table 2b.  Table 2a is the cumulative 

return difference between the past winners and past losers and Table 2b is the corresponding 

incremental return difference. Table 2b can be interpreted as the result of operating first-

order auto-difference calculations on Table 2a. If the market is in the momentum phase, the 

cumulative return difference should increase and the incremental return difference should be 

positive. If the market is in the reversal phase, the cumulative return difference should 

decrease and the incremental return difference should be negative. The “momentum-

reversal” pattern is clear in Tables 2a and 2b. For example, Let us choose the prior-60-

minute strategy. The return differences between the past winners and past losers are 

significantly positive at 99% confidence level from the first 30-minute interval to the third 

30-minute interval after the portfolio formation, with a t-statistics no less than 2.84. During 

the fourth 30-minute interval, it is still positive, but less significant, with a t-statistics 1.19 

only. The cumulative return difference between the past winners and past losers reaches its 

peak at the end of the forth 30-minute interval, that is, 120 minutes after the portfolio 

formation. The peak value of the cumulative return difference is 6.47 basis points with a t-
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statistics as large as 4.88. After that, past losers begin to outperform past winners. The return 

differences between the past winners and past losers in the fifth 30-minute interval and in the 

sixth 30-minute interval are -0.45 basis points and -1.21 basis points respectively. The result 

implies that the first two hours after the portfolio formation is the momentum phase. After 

that, the reversal phase takes place. 

 

Given the existence of the “momentum-reversal” quote drift pattern, how can the readers 

are convinced that my heterogeneous liquidity source model is the underlying reason for this 

phenomenon? Ideally, if I had the data including all the information about the limit orders 

for our sample, I could directly examine the change of depth of the limit-order book and how 

much liquidity is provided by it to test our model. However, the NYSE TORQ (Trades, 

Orders, Reports, and Quotes) database that includes necessary limit order information is not 

publicly available. In addition, even if I had the same access to the part of the TORQ 

database that was used in previous empirical literature such as Chung et al (1999) and 

Kavajecz (1999), the database covers only 144 NYSE securities from November 1990 to 

January 1991.  Therefore, I examine the related microstructure variables, that is, order 

imbalance and spread, to obtain the indirect supportive evidence for the model. 

 

The order imbalance (OIB) study reveals the dollar-amount order imbalance difference 

between the past winners and past losers is always positive and fluctuates within a fair range 

in both the momentum phase and the reversal phase, as shown in Tables 3a and 3b. Order 

imbalance is the number of buyer-initiated transactions less the number of seller-initiated 
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transactions and the dollar-amount order imbalance is the dollar amount of buyer-initiated 

transactions less the dollar amount of seller-initiated transactions. A positive dollar-amount 

order imbalance means that there is more money buying the asset than selling it. Hence I 

know that the investor’s incentive, on net, to buy the past winners never decays during the 

same trading day, even when the past winners actually underperform past losers. Based on 

this fact, I think there exists a positively auto-correlated excess demand for the past winners 

in the intraday scenario. In particular, it should be reasonable to post the restricting 

assumption for the net pooled market order to be of the same sign during two trading periods 

in my model. Also, the positive dollar-amount order imbalance difference between the past 

winners and past losers in the reversal phase indicates that it might not be the optimal choice 

to explain the reversal as the price correction from the previous over-reaction. Otherwise, 

investors should on average sell the past winners rather than buy them in the reversal phase 

to correct the price.   

 

Another piece of the indirect evidence is the spread width. Given the risky asset in our 

model is the combination of buying the past winners and selling the past losers, its spread is 

naturally the sum of spreads of past winners and losers (portfolio #9 and portfolio #2). 

However, I should mention that there is an inherent intraday spread pattern for NYSE stocks 

that spread widths are largest right after the market opens and then decrease, as shown by 

McInish and Wood (1992), and Lee, Mucklow, and Ready (1993).  This inherent pattern 

could obscure the empirical study of spread in this paper. Therefore I use the portfolios in 

the midway (portfolio #5 and portfolio #6) as the benchmark and calculate the difference 
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between the spread of past winners and past losers (portfolio #9 and portfolio #2) and 

midway portfolios (portfolio #5 and portfolio #6) to remove the inherent intraday spread 

pattern mentioned above. The results are provided in Tables 4a(b) and 5a(b). Clearly, the 

spread width shrinks as time goes on. Assuming that the market maker’s own account is the 

expensive liquidity source and causes large spread width, and the limit-order book is 

relatively inexpensive, and therefore leads to small spread width, the decrease of spread 

width implies that after the informational shock the market is turning gradually from the 

expensive liquidity source (market maker’s own account) to the inexpensive liquidity source 

(limit-order book).  

 

C. Subperiod Test 

 

The message from the empirical study up to now is that in the intraday context there are a 

“momentum-reversal” return pattern, an always positive order imbalance difference between 

the past winners and the past losers, and a decreasing trend of spread width. In order to test 

whether these results are robust to different market situations, I apply the same empirical 

method to a bull market subperiod and a bear market subperiod separately. During the whole 

sample period I identify a bull trend, which is from February 02nd to March 19th when the 

S&P 500 index went up by 6.92%, and a bear trend, which is from March 20th to May 10th 

when S&P 500 went down by 11.10%.  Tables 6a and 6b reports the cumulative and 

increment return differences between the past winners and past losers in the bull market and 

the bear market correspondingly. 
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 Like the overall sample period, the subperiods witness a “momentum-reversal” intraday 

return pattern. Let us still take the example of the prior-60-minute strategy. In both markets, 

the return differences between the past winners and past losers keep increasing until the 120 

minutes after the portfolio formation. In the bull market, the peak value of the cumulative 

return difference is 5.56 basis points with a t-statistics of 2.39. In the bear market, the peak 

value of the cumulative return difference is 8.83 basis points with a t-statistics of 4.49. After 

that, past winners underperform past losers. The return differences between the past winners 

and past losers in the fifth 30-minute interval and in the sixth 30-minute interval are -0.12 

basis points and -1.80 basis points in the bull market and -0.60 basis points and -1.23 basis 

points in the bear market respectively. Hence in both markets the momentum phase lasts for 

the first two hours after the portfolio formation and after that reversal occurs. It seems that 

the significance of the result in the bear market is stronger than that in the bull market. But I 

should mention that the bear subperiod includes 38 trading days, while the bull subperiod 

contains only 31 trading days.  

 

Similarly with the return pattern, the patterns of order imbalance and spread width are also 

qualitatively replicated in the bull and the bear subperiods, as shown in Tables 7a, 7b, 8a, 8b, 

9a, and 9b. They imply that the previous empirical results about return, order imbalance, and 

spread are robust in both the bull and the bear markets.  
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Before ending this section, I should mention that it still remains an open question 

regarding why for the extreme loser (winner) portfolio the reversal occurs immediately after 

the portfolio formation without any momentum period. One possible explanation is that this 

occurs because of arbitrageurs. Suppose there exist a group of arbitrageurs on the exchange 

floor who has a threshold of cost C . If the market maker’s quote has been shifted away from 

the rational expectation more than their cost threshold C , the floor arbitrageurs will trade to 

earn a profit from the difference. Otherwise, they will choose to do some other profitable 

business. It might be possible that for the extreme loser (winner) portfolio the difference 

between the market maker’s quote and the rational expectation is larger than C  and the 

arbitrageurs counter-trade by buying the past losers at the discounted price or selling past 

winners at the overpriced quote. Once this arbitrageur-effect is strong enough, it may 

override other factors and lead to the immediate reversal for the extreme losers (winners).  
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4. Conclusion 

 

In this paper I study the association among liquidity, order imbalance, and intraday stock 

market returns. I derive implications about the relation between market liquidity and intraday 

returns by developing a two-trading-period model in which the market liquidity source is 

composed of two heterogeneous parts; the market maker as a specialist and limit-order 

traders. The risk-averse market maker needs to adjust his inventory risk and accommodate 

the competition from limit-order traders in providing liquidity. The limit-order traders cannot 

determine the current quotes on the market but are protected by the price priority and public 

priority. The interaction between these two liquidity sources affects the return pattern.  

 

I assume that an information event causes the order imbalance in the same direction during 

two successive trading periods within an intraday context. In the first trading period, the 

order imbalance forces the market maker to ask for a risk premium by shifting his midquote 

away from his rational expectation of the asset value. Thus, a momentum effect can be 

observed. The interesting part in my model is whether reversal can occur during the second 

trading period. I should mention that in the second period the order imbalance is assumed to 

be in the same direction as that in the first period. Hence, in order to make the market maker 

reduce his risk premium, the amount of limit orders should be sufficiently large to help the 

market maker offload part of his previous inventory.  
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My empirical study provides results consistent with the theory.  A “momentum-reversal” 

intraday return pattern is observed by applying the portfolio sorting method to the intraday 

data except for the extreme losers. Further, the order imbalance difference between the past 

winners and past losers is always positive in both the momentum phase and the reversal 

phase. Hence, if I construct a security of buying past winners and selling past losers, in the 

reversal phase there is a negative return with a positive order imbalance. This provides 

supportive evidence for my model.  

 

From a practical standpoint, my result implies that intraday traders could consider timing 

their trade to provide liquidity when the market needs it most.  For example, the empirical 

“momentum-reversal” pattern implies after the arrival of good news a profitable trading 

strategy is to sell short around the end of momentum phase and then cover the short position 

after the reversal. This profit is not generated from superior information. It is because smart 

traders can help to alleviate the order imbalance pressure when the market needs liquidity 

suppliers most.  They will be compensated for their correct liquidity timing.  

 

In the future study, it would be interesting to consider how the “direct-reversal” pattern of 

the extreme losers and winners and the “momentum-reversal” pattern of the rest of the 

portfolios can be unified. How to incorporate the adverse selection concern is another topic 

worth more thought. 
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Appendix 1 
 
Some notations used in the paper: 

:, 2
0 yY σ  The first and second moments of the risky asset’s value Y ; 

tj : The order imbalance during period t;   

ti : The absolute value of the order imbalance during period t; 

tJ : The market maker’s inventory during period t; 

tI : The absolute value of the market maker’s inventory during period t; 

tP : The midquote during period t; 

tp : The absolute value of the difference between the midquote and the expectation of the risky 

asset’s value during period t ( 011 YPp −= , 022 YPp −= ); 

tM : The number of unit-size limit orders during period t; 

:)( 1pL  The cumulative probability for a unit-size limit order in period 1 to be executed 

conditional on 1p . I assume that )( 2pF  is a linear function of 2p , i.e., 111 )( ppL λ=    

:)( 2pF  The cumulative probability for a unit-size limit order in period 2 to be executed 

conditional on 2p . I assume that )( 2pF  is a linear function of 2p , i.e., 222 )( ppF λ=   

tm : The density of limit orders during period t ( ttt Mm λ= ). The interpretation of the density 

concept is that if the market maker decides to charge a premium of tp , the number of limit 

orders that will be executed is tt pm . 

* }2,1{∈t  

 
Market maker’s optimization during period 2: 
 

At period 2 the market maker maximizes his expected utility as 
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Market maker’s optimization during period 1: 

 

According to the limit-order constraint, the market maker’s inventory amount 1I  is  
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The Kuhn-Tucker conditions for this optimization with inequality constraint are as follows. 
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of its concavity. Also, from 1111 /)( mIip −=  and 01 ≥I  I have 

1111111 /1)/(/ λλ <=≤ Mimip , given the assumption that 11 iM > . 

 
    

Justifying the use of absolute-value variables. 

 
(A) The information event is good news and there is a buy pressure in the market. Then the 

market maker’s inventories are negative ( 01 <J  and 02 <J ) and his midquotes are higher than 

the expected risky asset’s value ( 01 YP >  and 02 YP > ). His terminal wealth is 

))(())](()[()()( 2210201221123 JYPJYPYPJPYJPPW −−+−−−−=−+−= .  

 
Thus, his second period optimization is  
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})2/1()})(())]((){[(exp{ 2
2

22
20210201 JRJYPJYPYPR yσ+−−+−−−−−−= .  ( )(0 YEY = ) 

 

Given 022 YPp −=  and 22 JI −= , it is straightforward to show that the maximization above is 
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equal to ))((max 32
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22121 IRIpIppR yσ++−−−= , which is the 

maximization used in this paper. 
 
Similarly, the market maker’s optimization in period 1 is  
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Given 011 YPp −=  and 11 JI −= , the optimization above is also the equivalent of 
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1

∗∗∗∗ −+−−− IRIpIppR yI
σ , which is the maximization used in the paper. 

 

In order to let the reversal occur in the second period, 2P  should be lower than 1P , since the 

prior return is positive and the return in the first period is also positive. This is equal to 12 pp < . 

 

Hence I show that under the buy pressure the optimization and analysis of reversal 

occurrence based on absolute-value variables are the same as that based on signed-value 

variables. 

 
(B) The information event is bad news and there is a sell pressure in the market. The market 

maker’s inventories are positive ( 01 >J  and 02 >J ) and his midquotes are lower than the 

expected risky asset’s value ( 01 YP <  and 02 YP < ). His terminal wealth is 
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Thus, his second period optimization is  
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Given 202 PYp −=  and 22 JI = , it is straightforward to show that the maximization above is 

equal to ))((max 32
2

WUE
I

}2/1))((exp{ 2
2

22
22121 IRIpIppR yσ++−−−= , the maximization 

used in this paper. 
 
Similarly, the market maker’s optimization in period 1 is  

))((max 31
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WUE
J

))exp(( 31 RWE −−=  ))])()((exp([ 221121 JPYJPPRE −+−−−=   

})2/1(})()](){[(exp{ 2
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221010 JRJPYJPYPYR yσ+−+−−−−−= .   

Given 101 PYp −=  and 11 JI = , the optimization above is the equivalent of 

]}2/1))[(exp{max 2
2

2
22121

1

∗∗∗∗ −+−−− IRIpIppR yI
σ , the maximization used in this paper. 

 

In order to let the reversal occur in the second period, 2P  should be higher than 1P , since the 

prior return is negative and the return in the first period is also negative. This is equal to 

12 pp < . 

 

Hence, I show that under the sell pressure the optimization and analysis of reversal 

occurrence based on absolute-value variables are also the same as that based on signed-value 

variables. 

 

In general, the analysis above shows that using absolute-value variables tI , tp  is equal to using 

signed-value variables tJ , tP .   

 
 
Proof of Proposition 1. 

The sufficient and necessary condition for the occurrence of reversal is that the market 

maker’s risk premium 2p  in period 2 should be lower than 1p  in period 1. Hence, I need  
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show that, given 0*
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happens in period 2. Hence the conclusion above also holds true.   
 
 
Proof of Corollaries  1,2, and 3. 
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Proof of Proposition 2. 
 

Assuming iii == 21  and λλλ == 21 , the optimal midquote and inventory choice of the market 

maker can be written as  
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Given 21 cc = , the ex ante profit of a limit order trader who trades in period 1 (period 2) is 

11 cp −  ( 22 cp − ). Nash equilibrium requires that no one has the motivation to deviate. Hence if 

21 MM < , I have 2211 cpcp −>− , and the limit order trader in period 2 has the incentive to 

deviate and choose to trade in period 1. If 21 MM > , then 2211 cpcp −<− , and the limit order 

trader in period 1 has the incentive to deviate and choose to trade in period 2. Only when 

21 MM =  and 21 pp = , the limit order traders in both trading period have no incentive to 

deviate and, thus, a Nash equilibrium is established. If 11 cp −  or 22 cp −  is negative, some 

limit-order traders will quit the money-losing position until the premium is larger than or equal 

to the limit-order traders’ cost. 

 

Proof of Proposition 3. 

 

If the cost 1c  of the limit order trader who trades in period 1 is higher than the cost 2c  of the 

limit order trader who trades in period 2, the no-deviation condition 2211 cpcp −=−  implies 

that 21 pp >  and correspondingly 12 mm > , which is equivalent to 12 MM >  since 21 λλ = .  

 

 

Proof of Proposition 4. 
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Let us assume that the total number of limit orders 21 MM +  is fixed as a constant M . Then the 

sum of limit order densities in both trading periods is also a constant, denoted as 

λ/21 Mmmm =+≡  . Then we can further rewrite the optimal price and inventory amount as 

i
mR
mmR

I
y

y
2

12
2

*
1 2

2/)(1
σ

σ
+

−+
= ,  i

mR
R

m
i

mRm
mRmR

p
y

y

y

yy )
22

1(
)2(2

22
2

2

1
2

1

1
22

*
1 σ

σ
σ
σσ

+
+=

+

++
= ,  

i
mR

I
y
2

*
2 2

2
σ+

= , i
mR
mmR

I
y

y
2

21
2

*
2 2

2/)(1
σ

σ
+

−+
=∆ ,  

and i
mR

R
m

i
mRm

mRmR
p

y

y

y

yy )
22

1(
)2(2

22
2

2

2
2

2

2
22

*
2 σ

σ
σ
σσ

+
+=

+

++
= . 

 
 

The market-order trader’s total cost MktC  is 2211 ipipCMkt += . I show that MktC  is minimized 

when 21 MM =  given 21 MM +  is the constant M . Remember now 21 MM =  is equal to 

21 mm = . 

 

Suppose the limit-order density in period 1 is changed from 1m  to dmmm +=′ 11  and the limit-

order density in period 2 is changed from 2m  to dmmm −=′ 22 , since λ/21 Mmmm ==+  is 

also a constant. Then the market maker’s optimal midquote and inventory level will change 

accordingly. It is straightforward to show the follows. 
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In terms of the market-order trader’s total cost 2211 ipipCMkt +=  , its derivative is 
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Obviously, when 21 mm < , I have 0/ <dmdCMkt . When 21 mm > , I have 0/ >dmdCMkt .  

0/ =dmdCMkt  if and only if 21 mm = , i.e. 21 MM = .  
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Hence if 21 cc = , in the Nash equilibrium I have 21 mm =  and  the aggregate trading cost of the 

market-order traders is minimized. If 21 cc > , I have 21 mm >  and MktC  is not minimized.  

What’s more, given that in the Nash equilibrium )11(
2 21

2121 mm
ippccc −=−=−=∆ , it is 

straightforward  that a larger c∆ leads to a larger 12 mm −   and then a higher MktC  .  
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Appendix 2 

 
 

Figure 1a: The post returns of the portfolios based on prior 60-minute return 
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Figure 1b: The post returns of the portfolios based on prior 90-minute return 
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Table 1: Sample Descriptive Statistics 

 
* Descriptive statistics are the average price level, market capitalization, and daily trading 
volume of the sample firms during the sample period. 

 
 

Mean Median Min Max

Price ($) 36.74 34.05 5.88 121.74

Market Capitalization
($MM) 18,236 7,672 705 309,499

Daily Volume
(1,000 shares) 2,665 1,422 191 28,139

 



 54

Table 2a: The Cumulative Return Differences from Post 30-Minute to Post 180-Minute 

 
* The sample firms are sorted in ascending order on the basis of their returns in the past 30, 60, 
and 90 minutes. Ten decile portfolios are formed based on these rankings. The extreme 
portfolios (portfolio #1 and portfolio #10) are excluded. The return difference is the return of 
past winners (portfolio #9) minus the return of past losers (portfolio #2). The portfolio return is 
the equally-weighted average of the returns of the stocks contained.  Cumulative return 
difference is the return difference from the portfolio formation to the end of each post-return 
observation period. The sample period is from Jan 07th to May 17th, 2002. The corresponding t-
statistics are included in the parenthesis below the value of return difference 

 

Portfolio
Formation Time

Post 30
minutes

Post 60
minutes

Post 90
minutes

Post 120
minutes

Post 150
minutes

Post 180
minutes

30 minutes 1.77 3.09 3.90 4.70 3.85 3.06
(3.46) (4.56) (4.63) (5.09) (3.72) (2.87)

60 minutes 2.04 3.85 5.70 6.47 6.01 4.80
(3.07) (3.95) (4.95) (4.88) (4.01) (3.07)

90 minutes 1.21 4.88 5.69 4.49 4.12 0.80
(1.60) (4.65) (4.16) (2.90) (2.39) (0.41)

Return Difference = Return of portfolio #9 (past winners) -
Return of portfolio #2 (past losers)  (unit:0.01%)
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Table 2b: The Incremental Return Differences from Post 30-Minute to Post 180-Minute  
 
* The sample firms are sorted in ascending order on the basis of their returns in the past 30, 60, 
and 90 minutes. Ten decile portfolios are formed based on these rankings. The extreme 
portfolios (portfolio #1 and portfolio #10) are excluded. The return difference is the return of 
past winners (portfolio #9) minus the return of past losers (portfolio #2). The portfolio return is 
the equally-weighted average of the returns of the stocks contained.  Incremental return 
difference is the return difference during each 30-minute interval after the portfolio formation. 
The sample period is from Jan 07th to May 17th, 2002. The corresponding t-statistics are 
included in the parenthesis below the value of return difference 

 

Portfolio
Formation Time

Post
0~30

minutes

Post
30~60

minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 1.77 1.31 0.81 0.80 -0.85 -0.79
(3.46) (2.95) (1.81) (1.92) (-2.05) (-1.90)

60 minutes 2.04 1.81 1.85 0.77 -0.45 -1.21
(3.07) (2.84) (2.96) (1.19) (-0.71) (-1.86)

90 minutes 1.21 3.67 0.81 -1.21 -0.37 -3.32
(1.17) (4.44) (1.06) (-1.54) (-0.45) (-4.21)

Return Difference = Return of portfolio #9 (past winners) -
Return of portfolio #2 (past losers)  (unit:0.01%)
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Table 3a: The Cumulative $OIB Difference from Post 30-Minute to Post 180-Minute  
 

* $OIB difference is the difference between the equally-weighted dollar-amount order imbalance 
of the past winners (portfolio #9) and that of the past losers (portfolio #2). Trades are signed 
using the Lee and Ready (1991) algorithm. Cumulative $OIB difference is the $OIB difference 
from the portfolio formation to the end of each post-return observation period. The sample period 
is from Jan 07th to May 17th, 2002. The corresponding t-statistics are included in the parenthesis 
below the value of $OIB difference. 

 
 

Portfolio
Formation Time

Post 30
minutes

Post 60
minutes

Post 90
minutes

Post 120
minutes

Post 150
minutes

Post 180
minutes

30 minutes 306.57 456.60 561.07 666.06 860.43 945.87
(8.69) (8.98) (8.68) (8.28) (8.70) (8.20)

60 minutes 401.32 686.37 964.11 1216.87 1492.19 1693.18
(9.09) (10.32) (10.49) (10.98) (10.91) (10.18)

90 minutes 359.51 784.92 988.57 1134.59 1459.92 1736.77
(6.91) (9.82) (9.41) (9.10) (9.34) (9.07)

$OIB Difference = Average $OIB of portfolio #9 (past
winners) - Average $OIB of portfolio #2 (past losers)

(unit:$1,000)
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Table 3b: The Incremental $OIB Difference from Post 30-Minute to Post 180-Minute  
 

* $OIB difference is the difference between the equally-weighted dollar-amount order imbalance 
of the past winners (portfolio #9) and that of the past losers (portfolio #2). Trades are signed 
using the Lee and Ready (1991) algorithm. Incremental $OIB difference is the $OIB difference 
during each 30-minute interval after the portfolio formation. The sample period is from Jan 07th to 
May 17th, 2002. The corresponding t-statistics are included in the parenthesis below the value of 
$OIB difference. 
 
 

Portfolio
Formation Time

Post
0~30

minutes

Post
30~60

minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 306.57 150.04 104.46 104.99 194.37 85.43
(5.59) (5.21) (3.28) (2.87) (4.71) (2.32)

60 minutes 401.32 285.05 277.74 252.76 275.32 200.99
(9.09) (6.95) (5.63) (5.56) (4.77) (3.18)

90 minutes 359.51 425.42 203.65 146.02 325.33 276.85
(6.91) (7.91) (3.68) (2.81) (4.92) (3.27)

$OIB Difference = Average $OIB of portfolio #9 (past
winners) - Average $OIB of portfolio #2 (past losers)

(unit:$1,000)
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Table 4a: QSPR% (Quoted Percentage Spread) Difference: 
Portfolio (#9+#2) - Portfolio (#6+#5) 

 
* QSPR% (Quoted Percentage Spread) is the quoted bid-ask spread divided by  the mid-point of 
the quote in percent. QSPR% difference is the sum of equally-weighted QSPR% of the past 
winners (portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-
weighted QSPR% of the portfolios with middle ranking (portfolios #5 and #6). QSPR% 
difference is measured during each 30-minute interval after the portfolio formation. The sample 
period is from Jan 07th to May 17th, 2002. The corresponding t-statistics are included in the 
parenthesis below the value of QSPR% difference. 

 

Portfolio
Formation Time

Post 0~30
minutes

Post
30~60

minutes
Post 60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 0.0294% 0.0243% 0.0219% 0.0209% 0.0197% 0.0197%
(32.18) (25.75) (21.99) (20.06) (18.27) (17.94)

60 minutes 0.0291% 0.0247% 0.0215% 0.0207% 0.0202% 0.0206%
(23.80) (17.79) (14.25) (13.07) (13.68) (12.72)

90 minutes 0.0269% 0.0244% 0.0207% 0.0194% 0.0193% 0.0180%
(15.22) (14.48) (11.28) (10.29) (9.68) (10.49)

QSPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))
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Table 4b: Change of QSPR% (Quoted Percentage Spread) Difference: 

Portfolio (#9+#2) - Portfolio (#6+#5) 
 

* QSPR% (Quoted Percentage Spread) is the quoted bid-ask spread divided by the mid-point of 
the quote in percent. QSPR% difference is the sum of equally-weighted QSPR% of the past 
winners (portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-
weighted QSPR% of the portfolios with middle ranking (portfolios #5 and #6). QSPR% 
difference is measured during each 30-minute interval after the portfolio formation. The change 
of QSPR% difference is the QSPR% difference during the current 30-minute interval minus that 
of the pervious 30-minute interval. The sample period is from Jan 07th to May 17th, 2002. The 
corresponding t-statistics are included in the parenthesis below the value of QSPR% difference. 

 

Portfolio
Formation Time

Post 30~60
minutes - Post
0~30 minutes

Post 60~90
minutes - Post

30~60
minutes

Post 90~120
minutes - Post

60~90
minutes

Post 120~150
minutes - Post

90~120
minutes

Post
150~180

minutes - Post
120~150
minutes

30 minutes -0.0052% -0.0023% -0.0011% -0.0012% 0.0000%
(-5.19) (-1.93) (-0.98) (-1.77) (-0.04)

60 minutes -0.0044% -0.0033% -0.0008% -0.0005% 0.0004%
(-4.21) (-2.69) (-0.60) (-0.35) (0.27)

90 minutes -0.0025% -0.0037% -0.0013% -0.0001% -0.0013%
(-1.92) (-2.48) (-0.76) (-0.07) (-0.86)

QSPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))
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Table 5a: ESPR% (Effective Percentage Spread) Difference: 
Portfolio (#9+#2) - Portfolio (#6+#5) 

 
* ESPR% (Effective Percentage Spread) is the effective bid-ask spread, which is the difference 
between the execution price and the mid-point of the prevailing bid-ask quote, divided by  the 
mid-point of the quote in percent. ESPR% difference is the sum of equally-weighted ESPR% of 
the past winners (portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-
weighted ESPR% of the portfolios with middle ranking (portfolios #5 and #6). ESPR% difference 
is measured during each 30-minute interval after the portfolio formation. The sample period is 
from Jan 07th to May 17th, 2002. The corresponding t-statistics are included in the parenthesis 
below the value of ESPR% difference. 

 

Portfolio
Formation Time

Post 0~30
minutes

Post
30~60

minutes
Post 60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 0.0207% 0.0172% 0.0157% 0.0145% 0.0129% 0.0123%
(31.87) (25.07) (22.15) (19.66) (16.90) (15.95)

60 minutes 0.0208% 0.0175% 0.0151% 0.0145% 0.0136% 0.0134%
(23.42) (17.18) (14.00) (12.89) (12.86) (12.08)

90 minutes 0.0192% 0.0173% 0.0142% 0.0135% 0.0133% 0.0125%
(15.47) (14.39) (11.42) (10.01) (9.51) (10.41)

ESPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))
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Table 5b: Change of ESPR% (Effective Percentage Spread) Difference: 

Portfolio (#9+#2) - Portfolio (#6+#5) 
 
* ESPR% (Effective Percentage Spread) is the effective bid-ask spread, which is the difference 
between the execution price and the mid-point of the prevailing bid-ask quote, divided by  the 
mid-point of the quote in percent. ESPR% difference is the sum of equally-weighted ESPR% of 
the past winners (portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-
weighted ESPR% of the portfolios with middle ranking (portfolios #5 and #6). ESPR% difference 
is measured during each 30-minute interval after the portfolio formation. The change of ESPR% 
difference is the ESPR% difference during the current 30-minute interval minus that of the 
pervious 30-minute interval. The sample period is from Jan 07th to May 17th, 2002. The 
corresponding t-statistics are included in the parenthesis below the value of ESPR% difference. 

 

Portfolio
Formation Time

Post 30~60
minutes -
Post 0~30
minutes

Post 60~90
minutes -

Post 30~60
minutes

Post 90~120
minutes -

Post 60~90
minutes

Post 120~150
minutes -

Post 90~120
minutes

Post
150~180
minutes -

Post 120~150
minutes

30 minutes -0.0036% -0.0015% -0.0012% -0.0015% -0.0006%
(-6.46) (-2.49) (-1.80) (-1.11) (-0.78)

60 minutes -0.0034% -0.0024% -0.0006% -0.0009% -0.0002%
(-4.13) (-2.59) (-0.64) (-0.86) (-0.17)

90 minutes -0.0019% -0.0031% -0.0007% -0.0001% -0.0008%
(-1.96) (-2.98) (-0.58) (-0.09) (-0.75)

ESPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))
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Table 6a: The Cumulative Return Differences from Post 30-Minute to Post 180-Minute 

(Subperiod Results)  

* The sample firms are sorted in ascending order on the basis of their returns in the past 30, 60, 
and 90 minutes. Ten decile portfolios are formed based on these rankings. The extreme 
portfolios (portfolio #1 and portfolio #10) are excluded. The return difference is the return of 
past winners (portfolio #9) minus the return of past losers (portfolio #2). The portfolio return is 
the equally-weighted average of the returns of the stocks contained.  Cumulative return 
difference is the return difference from the portfolio formation to the end of each post-return 
observation period. The corresponding t-statistics are included in the parenthesis below the 
value of return difference 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post 30
minutes

Post 60
minutes

Post 90
minutes

Post 120
minutes

Post 150
minutes

Post 180
minutes

30 minutes 1.43 1.54 2.41 2.91 1.96 1.27
(1.47) (1.21) (1.55) (1.76) (1.04) (0.63)

60 minutes 2.05 2.82 5.37 5.56 5.45 3.64
(1.78) (1.76) (2.68) (2.39) (2.09) (1.39)

90 minutes 1.52 4.44 6.27 3.97 3.42 0.13
(1.09) (2.34) (2.51) (1.33) (1.14) (0.04)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post 30
minutes

Post 60
minutes

Post 90
minutes

Post 120
minutes

Post 150
minutes

Post 180
minutes

30 minutes 2.12 4.27 5.23 6.18 5.36 4.31
(2.74) (4.06) (4.04) (4.42) (3.54) (2.82)

60 minutes 3.73 5.58 8.15 8.83 8.23 7.00
(3.40) (3.61) (4.55) (4.49) (3.80) (2.92)

90 minutes 1.37 6.40 6.23 5.27 5.09 1.25
(1.31) (3.95) (2.95) (2.29) (1.86) (0.42)

Return Difference = Return of portfolio #9 (past winners) -
Return of portfolio #2 (past losers)  (unit:0.01%)

Return Difference = Return of portfolio #9 (past winners) -
Return of portfolio #2 (past losers)  (unit:0.01%)
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Table 6b: The Incremental Return Differences from Post 30-Minute to Post 180-Minute  

(Subperiod Results)  

* The sample firms are sorted in ascending order on the basis of their returns in the past 30, 60, 
and 90 minutes. Ten decile portfolios are formed based on these rankings. The extreme 
portfolios (portfolio #1 and portfolio #10) are excluded. The return difference is the return of 
past winners (portfolio #9) minus the return of past losers (portfolio #2). The portfolio return is 
the equally-weighted average of the returns of the stocks contained.  Incremental return 
difference is the return difference during each 30-minute interval after the portfolio formation. 
The sample period is from Jan 07th to May 17th, 2002. The corresponding t-statistics are 
included in the parenthesis below the value of return difference 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post
0~30

minutes

Post
30~60

minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 1.43 0.11 0.86 0.50 -0.96 -0.68
(1.47) (0.14) (1.05) (0.71) (-1.16) (-0.87)

60 minutes 2.05 0.77 2.55 0.19 -0.12 -1.80
(1.78） (0.77) (2.49) (0.15) (-0.09) (-1.43)

90 minutes 1.52 2.92 1.83 -2.30 -0.55 -3.29
(1.09) (1.91) (1.21) (-1.72) (-0.37) (-2.35)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post
0~30

minutes

Post
30~60

minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 2.12 2.15 0.97 0.95 -0.82 -1.05
(2.74) (3.17) (1.50) (1.58) (-1.43) (-1.77)

60 minutes 3.73 1.86 2.57 0.68 -0.60 -1.23
(3.40) (1.74) (2.91) (0.79) (-0.71) (-1.27)

90 minutes 1.37 5.03 -0.17 -0.96 -0.18 -3.84
(1.31) (3.96) (-0.17) (-0.95) (-0.14) (-3.53)

Return Difference = Return of portfolio #9 (past winners) -
Return of portfolio #2 (past losers)  (unit:0.01%)

Return Difference = Return of portfolio #9 (past winners) -
Return of portfolio #2 (past losers)  (unit:0.01%)
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Table 7a: The Cumulative $OIB Difference from Post 30-Minute to Post 180-Minute  

(Subperiod Results)  

* $OIB difference is the difference between the equally-weighted dollar-amount order imbalance 
of the past winners (portfolio #9) and that of the past losers (portfolio #2). Trades are signed 
using the Lee and Ready (1991) algorithm. Cumulative $OIB difference is the $OIB difference 
from the portfolio formation to the end of each post-return observation period. The corresponding 
t-statistics are included in the parenthesis below the value of $OIB difference. 

 
 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post 30
minutes

Post 60
minutes

Post 90
minutes

Post 120
minutes

Post 150
minutes

Post 180
minutes

30 minutes 365.05 500.59 665.99 762.23 975.38 1131.23
(6.01) (5.69) (5.78) (5.50) (5.70) (5.44)

60 minutes 458.18 801.22 1059.62 1430.50 1838.57 2072.70
(5.37) (6.78) (6.44) (8.96) (7.04) (6.99)

90 minutes 501.67 861.41 1162.96 1307.24 1554.69 1827.97
(5.74) (6.24) (6.00) (5.44) (5.10) (4.94)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post 30
minutes

Post 60
minutes

Post 90
minutes

Post 120
minutes

Post 150
minutes

Post 180
minutes

30 minutes 261.15 400.66 509.75 594.27 796.67 832.17
(4.94) (5.34) (5.45) (4.85) (5.14) (4.74)

60 minutes 346.49 603.83 919.18 1095.94 1274.91 1482.82
(5.54) (5.96) (6.66) (6.65) (6.41) (6.62)

90 minutes 293.43 771.69 890.63 1002.86 1294.36 1448.61
(4.18) (6.36) (5.62) (5.78) (6.36) (5.94)

$OIB Difference = Average $OIB of portfolio #9 (past
winners) - Average $OIB of portfolio #2 (past losers)

(unit:$1,000)

$OIB Difference = Average $OIB of portfolio #9 (past
winners) - Average $OIB of portfolio #2 (past losers)

(unit:$1,000)
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Table 7b: The Incremental $OIB Difference from Post 30-Minute to Post 180-Minute  

(Subperiod Results)  

* $OIB difference is the difference between the equally-weighted dollar-amount order imbalance 
of the past winners (portfolio #9) and that of the past losers (portfolio #2). Trades are signed 
using the Lee and Ready (1991) algorithm. Incremental $OIB difference is the $OIB difference 
during each 30-minute interval after the portfolio formation. The corresponding t-statistics are 
included in the parenthesis below the value of $OIB difference. 
 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post
0~30

minutes

Post
30~60

minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 365.05 135.55 165.40 96.24 213.15 155.85
(6.01) (2.54) (3.13) (1.78) (3.55) (2.32)

60 minutes 458.18 343.03 258.41 370.88 408.07 234.13
(5.37) (4.87) (3.36) (5.13) (3.89) (1.72)

90 minutes 501.67 359.73 301.55 144.28 247.46 273.28
(5.74) （3.85) (3.23) (1.37) (2.23) (1.71)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post
0~30

minutes

Post
30~60

minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 261.15 139.51 109.10 84.52 202.40 35.49
(6.01) (3.35) (2.29) (1.26) (2.55) (0.62)

60 minutes 346.49 257.34 315.35 176.76 178.98 207.90
(5.54) (4.03) (3.76) (2.82) (1.90) (2.46)

90 minutes 293.43 478.25 118.95 112.23 291.50 154.25
(5.74) （5.40) （1.38) (1.60) (2.64) (1.31)

$OIB Difference = Average $OIB of portfolio #9 (past winners) -
Average $OIB of portfolio #2 (past losers)  (unit:$1,000)

$OIB Difference = Average $OIB of portfolio #9 (past winners) -
Average $OIB of portfolio #2 (past losers)  (unit:$1,000)
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Table 8a: QSPR% (Quoted Percentage Spread) Difference: 
Portfolio (#9+#2) - Portfolio (#6+#5) 

(Subperiod Results)  

* QSPR% (Quoted Percentage Spread) is the quoted bid-ask spread divided by  the mid-point of 
the quote in percent. QSPR% difference is the sum of equally-weighted QSPR% of the past 
winners (portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-
weighted QSPR% of the portfolios with middle ranking (portfolios #5 and #6). QSPR% 
difference is measured during each 30-minute interval after the portfolio formation. The 
corresponding t-statistics are included in the parenthesis below the value of QSPR% difference. 

 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post 0~30
minutes

Post  30~60
minutes

Post 60~90
minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 0.0313% 0.0261% 0.0246% 0.0232% 0.0203% 0.0207%
(18.10) (14.98) (13.01) (11.08) (9.15) (9.90)

60 minutes 0.0319% 0.0251% 0.0246% 0.0223% 0.0212% 0.0210%
(15.24) (9.11) (8.07) (8.49) (7.16) (6.76)

90 minutes 0.0275% 0.0253% 0.0230% 0.0217% 0.0204% 0.0198%
(8.64) (8.26) (7.72) (6.45) (5.83) (6.55)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post 0~30
minutes

Post  30~60
minutes

Post 60~90
minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 0.0266% 0.0211% 0.0182% 0.0172% 0.0169% 0.0166%
(21.76) (16.53) (13.64) (12.91) (12.21) (11.06)

60 minutes 0.0236% 0.0201% 0.0165% 0.0166% 0.0166% 0.0160%
(13.18) (11.83) (8.22) (7.95) (8.41) (7.09)

90 minutes 0.0198% 0.0190% 0.0151% 0.0143% 0.0143% 0.0137%
(8.86) (8.06) (5.52) (5.48) (5.54) (5.36)

QSPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))

QSPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))
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Table 8b: Change of QSPR% (Quoted Percentage Spread) Difference: 
Portfolio (#9+#2) - Portfolio (#6+#5) (Subperiod Results)  

QSPR% (Quoted Percentage Spread) is the quoted bid-ask spread divided by the mid-point of the 
quote in percent. QSPR% difference is the sum of equally-weighted QSPR% of the past winners 
(portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-weighted QSPR% 
of the portfolios with middle ranking (portfolios #5 and #6). QSPR% difference is measured during 
each 30-minute interval after the portfolio formation. The change of QSPR% difference is the 
QSPR% difference during the current 30-minute interval minus that of the pervious 30-minute 
interval. The corresponding t-statistics are included in the parenthesis below the value of QSPR% 
difference. 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post 30~60
minutes - Post
0~30 minutes

Post 60~90
minutes -

Post 30~60
minutes

Post 90~120
minutes -

Post 60~90
minutes

Post
120~150
minutes -

Post 90~120
minutes

Post
150~180
minutes -

Post
120~150
minutes

30 minutes -0.0052% -0.0015% -0.0014% -0.0029% 0.0004%
(-3.89) (-1.00) (-0.81) (-1.77) (0.20)

60 minutes -0.0067% -0.0005% -0.0022% -0.0011% -0.0002%
(-3.37) (-0.24) (-1.07) (-0.43) ( -0.07)

90 minutes -0.0022% -0.0024% -0.0012% -0.0013% -0.0006%
(-0.95) (-0.82) (-0.40) (-0.39) (-0.25)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post 30~60
minutes - Post
0~30 minutes

Post 60~90
minutes -

Post 30~60
minutes

Post 90~120
minutes -

Post 60~90
minutes

Post
120~150
minutes -

Post 90~120
minutes

Post
150~180
minutes -

Post
120~150
minutes

30 minutes -0.0055% -0.0029% -0.0011% -0.0002% -0.0003%
(-5.70) (-2.91) (-0.93) (-0.21) (-0.25)

60 minutes -0.0035% -0.0036% 0.0002% -0.0001% -0.0006%
(-2.56) (-2.25) (0.10) (-0.03) (-0.36)

90 minutes -0.0008% -0.0040% -0.0007% -0.0001% -0.0005%
(-0.44) (-2.38) (-0.38) (-0.03) (-0.27)

QSPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))

QSPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))
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Table 9a: ESPR% (Effective Percentage Spread) Difference: 
Portfolio (#9+#2) - Portfolio (#6+#5) (Subperiod Results) 

 
* ESPR% (Effective Percentage Spread) is the effective bid-ask spread, which is the difference 
between the execution price and the mid-point of the prevailing bid-ask quote, divided by  the 
mid-point of the quote in percent. ESPR% difference is the sum of equally-weighted ESPR% of 
the past winners (portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-
weighted ESPR% of the portfolios with middle ranking (portfolios #5 and #6). ESPR% difference 
is measured during each 30-minute interval after the portfolio formation. The corresponding t-
statistics are included in the parenthesis below the value of ESPR% difference. 

 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post 0~30
minutes

Post  30~60
minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 0.0215% 0.0184% 0.0172% 0.0160% 0.0132% 0.0129%
(17.47) (14.52) (12.99) (11.10) (8.55) (9.17)

60 minutes 0.0230% 0.0178% 0.0168% 0.0157% 0.0142% 0.0134%
(14.93) (8.93) (7.80) (8.58) (6.89) (6.51)

90 minutes 0.0198% 0.0176% 0.0157% 0.0148% 0.0138% 0.0134%
(9.39) (7.92) (7.44) (6.02) (5.89) (6.56)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post 0~30
minutes

Post  30~60
minutes

Post
60~90

minutes

Post
90~120
minutes

Post
120~150
minutes

Post
150~180
minutes

30 minutes 0.0190% 0.0151% 0.0131% 0.0121% 0.0112% 0.0103%
(21.83) (15.83) (13.44) (12.73) (10.90) (9.42)

60 minutes 0.0168% 0.0138% 0.0119% 0.0117% 0.0110% 0.0105%
(10.16) (10.84) (8.02) (7.63) (7.56) (6.46)

90 minutes 0.0141% 0.0139% 0.0102% 0.0099% 0.0095% 0.0098%
(8.67) (8.32) (8.02) (5.68) (5.38) (5.43)

ESPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))

ESPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))
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Table 9b: Change of ESPR% (Effective Percentage Spread) Difference: 

Portfolio (#9+#2) - Portfolio (#6+#5) (Subperiod Results) 
* ESPR% (Effective Percentage Spread) is the effective bid-ask spread, which is the difference 
between the execution price and the mid-point of the prevailing bid-ask quote, divided by  the 
mid-point of the quote in percent. ESPR% difference is the sum of equally-weighted ESPR% of 
the past winners (portfolio #9) and that of the past losers (portfolio #2) minus the sum of equally-
weighted ESPR% of the portfolios with middle ranking (portfolios #5 and #6). ESPR% difference 
is measured during each 30-minute interval after the portfolio formation. The change of ESPR% 
difference is the ESPR% difference during the current 30-minute interval minus that of the 
pervious 30-minute interval.  The corresponding t-statistics are included in the parenthesis below 
the value of ESPR% difference. 

Bull Trend: Feb 04 to March 19, 2002, 

Portfolio
Formation Time

Post 30~60
minutes - Post
0~30 minutes

Post 60~90
minutes - Post

30~60
minutes

Post 90~120
minutes - Post

60~90
minutes

Post 120~150
minutes - Post

90~120
minutes

Post  150~180
minutes - Post

120~150
minutes

30 minutes -0.0032% -0.0011% -0.0012% -0.0028% -0.0003%
(-3.02) (-0.96) (-0.93) (-1.98) (-0.22)

60 minutes -0.0052% -0.0010% -0.0010% -0.0015% -0.0008%
(-3.53) (-0.58) (-0.68) (-0.77) (-0.44)

90 minutes -0.0022% -0.0019% -0.0009% -0.0010% -0.0004%
(-1.30) (-0.88) (-0.37) (-0.41) (-0.21)

Bear Trend: March 19 to May 10, 2002, 

Portfolio
Formation Time

Post 30~60
minutes - Post
0~30 minutes

Post 60~90
minutes - Post

30~60
minutes

Post 90~120
minutes - Post

60~90
minutes

Post 120~150
minutes - Post

90~120
minutes

Post  150~180
minutes - Post

120~150
minutes

30 minutes -0.0040% -0.0020% -0.0010% -0.0009% -0.0009%
(-5.23) (-2.55) (-1.15) (-1.03) (-0.96)

60 minutes -0.0030% -0.0020% -0.0002% -0.0007% -0.0005%
(-2.57) (-1.47) (-0.12) (-0.52) (-0.39)

90 minutes -0.0001% -0.0037% -0.0003% -0.0004% 0.0003%
(-0.09) (-3.14) (-0.20) (-0.25) (0.21)

ESPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))

ESPR% Difference: (Portfolio (#9+#2) - Portfolio (#6+#5))

 
 


