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Abstract 
 

We investigate the path through which an information or liquidity shock reveals itself in 
subsequent adjustments of the bid-ask spreads and corresponding depths.   Our simple three-
equation error correction model incorporates both the short term and long term effects of the 
spread and depths on the dynamics of adjustment.  In particular, we study both the stochastic 
properties of spreads and depths as well as their permanent impounding of stochastic common 
trends.  Using two years of tick-by-tick quote data on all the DJIA stocks, we show that indeed 
depths rather than spreads are first to impound new information.  Specifically, (bid and ask) 
depths adjust first in virtually every stock in both years, while spreads almost never adjust first 
in 1998, and do so in only 8 out of 30 cases in 1995.  Analysis of the orthoganalized impulse 
response functions shows that spreads widen initially in response to positive depth shocks but 
that subsequent tightening occurs within 2 minutes and is a permanent effect.  Depths decline 
in response to positive shocks to the spread but this effect is not permanent.  In addition, bid 
depths and ask depths respond to one another in asymmetrical ways.  Our results have 
important implications for testing competing theories of asymmetric information trading, for 
security market design, and for public policy.   
 
 
JEL Classification:  G12



1. Introduction 
We examine the exact path through which new information is assimilated into the subsequent 

price and depth dimensions of a specialist’s quote in the NYSE.  Beginning with the seminal work of 

Demsetz (1968), a fundamental thrust of the classical market microstructure literature has been to 

show how the specialist may use quoted prices (and, by extension, the bid ask spreads) to manage 

inventory, mitigate adverse selection problems and promote price discovery.  While the role of 

spreads in the price discovery process has been well documented (see O’Hara (1995) and Madhavan 

(2000) for comprehensive summaries of the relevant literature), the quantity dimension –i.e., the bid 

and ask depths--of the specialists’ quotes have been significantly less investigated. 1  However, two 

institutional features of asset markets attest to the fact that the depth is an important empirical proxy 

for market liquidity.  First, the NYSE specialist has an affirmative obligation to keep a fair and 

orderly market, which includes quoting tight spreads with reasonably indicative depths.  The 

average spreads and depths are part of the monthly statistics reported on each specialist, and affect 

his performance evaluation.  Excessive spreads or inadequate depths are regarded as indicators of 

poor performance, since they suggest relatively thin liquidity.  Second, although there is some 

discreteness in both prices and depths, stock prices have historically been quoted in large discrete 

intervals of quarters, 1/8ths and 1/16ths while depths have always been disaggregated into small 

100 share lots.  Accordingly, Lee, Mucklow and Ready (1993) argue that changes in market liquidity 

should be more easily detected in depths than in spreads.    

Moreover, by virtue of his strategic location on the trading floor, a specialist has knowledge 

of liquidity over and beyond that displayed to other market participants  -- information that he is free 

to use in determining the direction and magnitude of his posted price and quantity quotes.   For 

example, the specialist has “not held” orders wherein he is given discretion regarding when to 

execute the order.  In particular, the specialist will seek an opportune time for execution to provide 

the customer with the least price impact.  The specialist can also “stop” an order whereby he seeks 

price improvement while providing the buyer/seller a BBO guarantee at the time of the order.  In 

addition, the specialist has orders to execute that are not displayed.   He is aware of limit orders 

                                                           
1 In particular, a specialist posts a bid and an ask depth, along with the corresponding bid and ask price quotes, signaling 
the maximum shares the market is willing to buy or sell at those prices and a complete characterization of market liquidity 
should include both the spread and the associated depths (see Harris (1990)).  In recent years, a growing body of empirical 
research has examined the role of spreads and depths as a way to characterize the changing market liquidity around 
specific corporate events (see, for example, Lee, Mucklow, and Ready (1993), Chakravarty and McConnell (1997), Chung 
and Zhao (1999), and Chakravarty, Van Ness and Wood (2003)).       
  

 1



being worked by the crowd of two-dollar brokers acting as agents for buyers/sellers.  And specialists 

are often aware of trading patterns of large market participants – money funds or brokers – that 

reveal forthcoming order flow.2  Finally, communication between block trading desks and specialists 

is common, wherein specialists have advance knowledge of forthcoming order flow.  All this would 

also argue in favor of the specialists’ best price and depth quotes as being informative of the ebb and 

flow of information in the market.   

To underscore the importance of depth quotes, Kavajecz (1999) reports that specialists in the 

NYSE change their quoted depths in 90% of all quote changes while only 50% of all quote changes 

are accompanied by changes in quoted prices.   It appears, therefore, as though specialists actively 

manage their quoted depths even when prices are not changing.   In general, bid and ask prices, as 

well as the corresponding bid and ask depths, should be optimally adjusted by the market maker 

until all incoming information is incorporated in prices.  Using TORQ data Kavajecz (1999) finds that 

the specialist decreases his component of the depth at times of high adverse selection while Harris 

and Panchapagesan (2002), investigating limit orders from the same data source, find that the limit 

order book is informative about future price movements.    

Kavajecz and Odders-White (hereafter KOW, 2001) build on Kavajecz (1999) by estimating a 

simulatenous equation system of the bid and ask prices and the associated bid and ask depths, using 

the TORQ data, and report that the changes in the best prices and depths in the limit order book have 

a significant impact on the posted price schedule, thereby underscoring the important role of the 

limit order book in the price discovery process.   Thus, for example, KOW opine that (p. 683): “The 

prominence of the limit order book’s impact on the price schedule suggests that the book is an 

important channel of information to the market.”  However, while the role of the limit order book in 

the price discovery process is beyond question, what is not clear and cannot be extrapolated from 

exisiting studies is:  What is the exact path through which an information/liquidity shock reveals 

itself in the subsequent adjustment of the bid and ask prices and the corresponding bid and ask 

depths? What is the resiliency of the market to various magnitudes of liquidity/information shocks 

                                                           
2 For example, VWAP trading is widely employed whereby let’s say Merrill Lynch is buying a 50,000 shares of IBM for a 
customer during a trading day.  In order to obtain approximately the value-weighted average price for the day (or better), 
the order will be “sliced and diced” into 78 five-minute trading intervals throughout the day wherein 640 shares will be 
traded in each interval.  (In practice the volume submitted in each five-minute interval is altered to mimic the u-shaped 
volume pattern observed for each stock.)  Initially in each interval a limit buy order will be submitted by Merrill.  If the 
order is not executed within five minutes it is cancelled and a 640-share market order entered.  Then the pattern is repeated 
for the next five-minute interval.  The IBM specialist readily observes this process and can anticipate volume throughout 
the day with a high degree of reliability.   
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on the limit order book?   Investigating such questions is the goal of the current paper. 3  

To do so, we develop an empirical model to capture the dynamics of how relevant 

information in quotes is incorporated into the subsequent adjustments in both the bid and ask prices 

and the bid and ask depths. 4   In particular, our model allows us to study both the long-term and 

short term equilibrium properties of time-series variables that move together (or, are cointegrated).  

Failure to detect and analyze cointegration between microstructure-theoretic variables like price 

quotes, spreads and depths can led to the serious misinterpretation of spurious regression 

coefficients as evidence of long-run economic relationships when all they might truly provide is mere 

evidence of contemporaneous correlations with unidentified causal variables.  In that regard, our 

work builds on an important body of research spearheaded by Huberman and Halka (1999), Pastor 

and Stambaugh (2001) and Chordia, Roll and Subrahmanyam (2001), all of whom extract the 

liquidity premium from asset pricing models of expected returns but do not allow for the possible 

presence of common stochastic trends inherent in prices and order flows. 5

 We estimate our model of spreads and depths with a long time series of high frequency 

quote data on each of the thirty stocks in the DJIA over the calendar years 1995 and 1998.   This time 

period was chosen to additionally investigate the changing role (if any) of spreads and depths in the 

wake of significant market reforms, like the decrease in the minimum quoted spreads from eighths to 

sixteenths in June of 1997.   To confirm the stationarity of all underlying series of interest, either in 

first differences or in levels,  we first conduct detailed tests (including unit root, system lag length, 

and cointegration tests) to establish the appropriate specification of the system of prices, spreads and 

depths as a cointegrated system.  We then employ a common factor procedure by Gonzalo and 

                                                           
3 Although a growing body of empirical research has examined the role of spreads and depths as a way to 
characterize the changing market liquidity around particular events (see, for example, Lee, Mucklow, and 
Ready (1993), Chakravarty and McConnell (1997), Chung and Zhao (1999), and Chakravarty, Van Ness and 
Wood (2003)), the extant literature is incapable of providing an answer to the general question of the resiliency 
of the markets to information and liquidity shocks.     
 
4 The impact of trades on both the price and size components of the spread is another key measure of the 
amount of friction present in the market and is therefore important to academics, practitioners and regulators 
alike, but is beyond the scope of the present paper.    
 
5 Chakravarty and Holden (1995) were among the first to theoretically investigate the interaction between 
spreads and depths by explicitly allowing an informed trader to choose both market and limit orders to 
maximize his expected profit.   Their main result is that the informed trader can use limit orders as a "safety 
net" for his market orders.  Kavajecz (1998) formalizes the Lee, Mucklow and Ready (1993) empirical result by 
modeling a specialist choosing prices and depths jointly to maximize profits.  In a similar vein, Dupont (2000) 
provides an asymmetric information model of spread and depth where the equilibrium depth is proportionally 
more sensitive than the spread, to changes in the degree of information asymmetry. 
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Granger (1995), discussed in detail later, to estimate the contribution of the spread and the bid and 

ask depth to the common underlying trend(s) among these three cointegrated variables.6

We show that indeed depths, rather than spreads, are the first to impound new information 

that leads to new quote trends.   Specifically, (bid and ask) depths convey new information in 

virtually every stock in both years, while spreads almost never convey new information in 1998, and 

do so in only 8 out of 30 cases in 1995.  Even in those 8 cases, the percentage of new information 

reflected first in spreads ranges from 51% to 59% with the depths accounting for the rest.   Our 

parameter estimates over the two years 1995 and 1998 also suggest that a tightening of the spreads in 

1998, due to increased competition and a decrease in the minimum tick size to sixteenths from 

eighths, leads to an increased role of the now tighter depths in the error correction process.   

We also focus on the short-run dynamics of the price-quantity adjustment process through a 

close inspection of the orthoganalized impulse response functions of our VECM model.   We find 

that spreads widen temporarily in response to positive depth shocks but that subsequent tightening 

occurs within 2 minutes and is a permanent effect.  Depths decline in response to positive shocks to 

the spread but this effect is not permanent.  However, bid depths and ask depths respond to one 

another differently.   While both eventually increase in response to positive shocks, the ask depth 

declines initially in response to positive sell-side shocks at the bid while the bid depth increases 

continuously in response to positive buy-side shocks. 

Our results highlight the active role played by the specialist at the NYSE and by the limit 

order book in the price discovery process and thereby enrich the fabric of intuition provided by 

Kavajecz and Odders-White (2001).    Our results also underscore the exponential growth over the 

last few years of marketable and near-the-quote limit orders, a large percentage of which are 

canceled if a fill is not obtained soon.   To the extent that these orders originate from big institutional 

traders with private information about the direction of stock prices in the short run, depths would be 

expected to convey new information first.  Our finding on the role of depth has important 

implications for academic research as well as for exchange regulators concerned with market 

                                                           
6 Currently there are two popular common factor models that are used to investigate the mechanics of price 
discovery:  The Hasbrouck (1995) information share approach and the Gonzalo and Granger (1995) approach of 
decomposing co-integrated series into their permanent and transitory components.  Both models use the 
VECM as their basis and, as Hasbrouck (1996) argues, the VECM approach is consistent with several market 
microstructure models in the extant literature.  Thus, even though we use the Gonzalo and Granger approach 
in this paper (discussed in section 3.1 and in appendix B), both approaches are considered (see, for example, 
Tse (2000)) to lead to virtually identical results with tick-by-tick high frequency intraday data on the thirty 
stocks comprising the Dow Jones Industrial Average (DJIA) used here.     
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liquidity -- especially due to the fact that that the depth changes in the limit order book represent a 

combination of the specialists’ personal trading interests as well as the inflow of public limit orders.   

Overall, our results suggest that depths are orchestrated by the specialists’ beliefs about the changing 

rubric of the adverse selection pressure that they face over the course of the trading day, consistent 

with Kavajecz (1999).   

The US equity markets have also undergone significant structural changes in recent years 

through the reduction in minimum tick sizes first from eighths to sixteenths (in 1997) and then from 

sixteenths to a penny three years later.  The consensus result emerging from this stream of research is 

that spreads – both quoted and effective – have decreased following a reduction in tick size but so has 

market depth. 7  This result coupled with our finding of the increasing importance of depths before 

and after the changeover to sixteenths implies an even greater role of depth in a post decimal world.   

The recent regulatory changes in NASDAQ of decreasing the minimum depth requirement from 

1,000 shares to 100 shares for dealers posting quotes also reflects the increasing importance and 

scrutiny of this long overlooked parameter of market liquidity and is consistent with our finding of 

the increasingly important role played by depths.   

In the policy realm, our findings suggest that depth indicators need to be publicly 

disseminated by the exchanges to provide traders and other market participants with an accurate 

estimation of prevailing liquidity.  Furthermore, theoretical modeling and empirical measures of 

adverse selection should provide at least as much weight to depths as is done to spreads.  The limit 

order book, with its order sizes at the various pricing grids (the depths), needs to be monitored for 

continuity at least as closely as spreads are monitored.   There is indication that such scrutiny has 

already begun.  In March 2001, the NYSE started disseminating “depth indications” on eight of its 

stocks (WSJ, March 15, 2001, C1) – and this program has since been expanded to include all NYSE 

stocks.  Its purpose is to show investors the existence of a meaningful number of shares of a given 

stock available beyond the best price being bid and offered for the stock.   

The remainder of the paper is structured as follows.   Section 2 motivates the current research 

in light of recent literature and develops an error correction model of spreads and depths.  Section 3 

provides an overview of the data used for the analyses, discusses the stochastic properties of spreads, 

                                                           
7 See, for example, Bacidore (1997), Bollen and Whaley (1998), Ricker (1998), Ronen and Weaver (1998), 
Goldstein and Kavajecz (2000), and Jones and Lipson (2001).  Bacidore, Battalio and Jennings (2001), 
Chakravarty, Van Ness and Wood (2002), and Chung, Van Ness and Van Ness (2001) present similar results 
following the introduction of decimal pricing for a select group of pilot NYSE stocks before the market-wide 
switchover in January 2001. 
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and addresses the appropriate specification of an error correction model involving various pairs of 

price and depth quotes. 8    Section 4 reports tests of cointegration involving the spread and two 

depths and estimates the proportion of new information reflected in depths versus spreads.  Section 

5 investigates the adjustment dynamics of spreads and depths using impulse response functions. 

Section 6 concludes.  Appendix A provides estimates and tests of cointegrating vectors involving bid 

and ask quotes and bid and ask depths for all thirty stocks in our sample over 1995 and 1998, while 

Appendix B provides details about the Gonzalo and Granger decomposition of co-integrated series 

into permanent and transitory components.   

 

2. A model of endogenous spreads and depths 
2.1 Background 

Although our work is parallel to a fast growing literature on liquidity (e.g., Hasbrouck and 

Seppi 2001, or Chordia, Roll and Subrahmanyam 2001), it is most closely related to vector auto 

regression (VAR) and vector error correction models (VECM) examining questions like:  How is new 

information incorporated into prices? In particular, this branch of research is spearheaded by 

Hasbrouck (1991) who finds that infrequently traded stocks have greater price impacts than 

frequently traded stocks.  Hasbrouck, however, assumes that price impacts are constant over time –- 

an assumption relaxed by Dufour and Engle (2000) who show that the price impact is especially large 

when trades are frequent, presumably because the cumulative order size has exceeded the depth at 

the previous BBO.    

Kavajecz and Odders-White (2001) estimate the bid and ask price and depth changes in a 

system of four simultaneous equations that incorporates trading activity, the specialist’s inventory 

position, and the derived limit order book using a proprietary algoritm.   The authors assume that 

full reaction to new information occurs instantaneously.  That is, their empirical model does not 

include serial dependence, lagged effects, and the possibility of cointegration and error correction 

among their variables.  While providing important insights, their model also includes the 

unfortunate possibility that if price and or depth levels are cointegrated, their model of the changes 

in these variables would be seriously misspecified since it omits an error correction term.   

Engle and Patton (2001) test exactly this error correction specification and show that the way 

in which information inherent in trades is incorporated into quoted prices is indeed via an error 

                                                           
8 Appendix A provides results of cointegration tests involving four variables--the two price quotes and two 
depth quotes--for the representative stocks in the DJIA.   
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correction model for the log difference of the bid and ask prices with the spread acting as the error-

correction term.   Controlling for several trade-related characteristics, Engle and Patton include the 

difference in the log depths at the ask and at the bid as a non-stochastic explanatory variable and 

interpret the negative sign on this excess depth regressor as evidence of asymmetric information in 

the depth quotes, consistent with Huang and Stoll (1994).   However, Engle and Patton do not 

incorporate the possible error correction of bid and ask depths in their analysis – an important 

innovation of the current paper.9     

To investigate the comparative importance of the bid and ask depths and the bid-ask spread 

in the error correction adjustment dynamics and in revealing new information leading to permanent 

trends, we develop a simple model from fundamental intuition that is related to a common trends 

estimation model first proposed by Stock and Watson (1988), refined by Hall, Anderson and Granger 

(1992), and fully developed as common factor components estimation by Gonzalo and Granger 

(1995).  Common factor components estimation allows us to summarize with a single metric the 

adjustment dynamics when there are more than two cointegrated series. 10    

In order to address our central question of the relative importance of spreads versus depths in 

reflecting new information that results in permanent quote or spread trends, our focus and testing 

framework differ from Engle and Patton in several important and distinct ways.  First, and most 

importantly, we allow for depths to convey new information (see our discussion in the introduction) 

and explicitly model the stochastic process imbedded in the depth quotes.   In particular, we initially 

test for the appropriate specification of our cointegrated model of prices and depths.  We find that 

depth quotes are cointegrated and adjust to excess depth, analogous to Engle and Patton’s (2001) 

error correction of price quotes to the spread, but that the full system of bid and ask prices and the 

bid and ask depths are not cointegrated.   

                                                           
9 Hasbrouck and Seppi (2001) use principal components and canonical correlation analysis to examine common 
factors in prices, order flow and liquidity.  They, too, do not model the dynamic adjustment process between 
spreads and depths. 
 
10 Recently, several papers have employed common  factor components estimation as a way to measure and 
test the comparative importance in price discovery of competing exchanges involved in international dual 
listings (see, for example, Ding, Harris, Lau, and McInish, 1999; Liberman, Ben-Zion and Hauser, 1999; and 
Harris, McInish, and Wood, 2002a); examination of distinct trade execution channels within an exchange 
(Frino, Harris, McInish, and Tomas, 2001); and price informativeness of the NYSE versus the regional 
exchanges (Harris, McInish and Wood,  2002b; Hasbrouck, 2002).   Similarly, Huang (2002) and Chakravarty, 
Gulen and Mayhew (2002) have used the information share approach of Hasbrouck to investigate how much 
price discovery occurs in the ECNs relative to the NASDAQ quotes and in the option market relative to the 
stock market.   
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Second, we find that intraday spreads are non-stationary I(1) processes in the DJIA stocks, 

contrary to the widely-reported stationary stochastic process for spreads in closing DJIA prices.11  

Non-stationarity is consistent with the well-established U-shaped pattern of intraday spreads (see 

McInish and Wood, 1992).  Moreover, non-stationary spreads are consistent with the underlying 

motivation of our paper that information effects are seldom impounded continuously into prices 

alone and, instead, trigger multi-period and multi-dimensional adjustments spanning both spreads 

and depths.12   

Consequently (and third), we investigate whether spreads and depths are themselves 

cointegrated and result in a (newly discovered) linear combination of price and depth quotes in 

equilibrium.  Our results confirm this hypothesis and show the existence of one cointegrating vector 

of spreads and excess depth, leading to two distinct common stochastic trends. 

2.2   A model of endogenous time-varying spreads and depths 

Assume that price and depth quotes reflect two unobservable continuous random walks – i.e., 

an implicit efficient price random walk underlying the price quotes and, analogously, an immediacy 

random walk underlying the depth quotes.  These random walks cumulate into long-term stochastic 

trends of prices and liquidity variables.  This empirical framework highlights the role of strategic 

traders who time their trades to execute when the depths on one or both sides of the market are 

large, so as to minimize the price impact of their trades (see, for example, Admati and Pfleiderer 

(1988)).  Comparing and assessing the level and origins of order flow on the opposite sides of the 

market is a function of the specialist and the crowd in floor trading environments but is increasingly 

performed by limit order and other traders in screen-based electronic trading environments. 

 To decipher the economic content of this model it is instructive to analyze the explicit 

dynamics of price and depth quote adjustment.  We begin with a conceptual framework used by 

Hasbrouck (2002) to characterize half-spreads (S/2), implicit efficient prices P and stale quotes in 

microstructure models.  Thus, at time t, the observed price pt can be expressed as: 

  pt =  Pt   +   c qt ,      (1)  

                                                           
11 In contrast, Engle and Patton (2001) examine a random sample of continuous quotes for 100 TAQ stocks and 
proceed with an assumption that spreads are I(0).  We investigate at length this question of trend and 
difference stationarity of spreads in the empirical results reported below.   
 
12 We should caution readers that our finding that spreads are I(1) series does not necessarily imply that the 
variance of the innovation in spreads could grow very large over time.  Roll (2002), for example, argues that the 
non-stationarity is to be expected in rational expectations models and that the variance of the error term may 
well be constant as in the random walk i.i.d. innovation. 
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 where c is a time-invariant half-spread, qt is an equi-probable random indicator variable for the 

direction of the last trade (+1 for trades at the ask, -1 for trades at the bid) , Pt evolves as an I(1)  

random walk of pure information arrivals (wt) and contemporaneous trading pressure (λqt),  

Pt      = Pt-1   +   wt   +   λqt,        (2) 

 with wt and qt  being i.i.d. N(0, σ )  and i.i.d. bivariate normal random variables, respectively.  In 

addition, w

2
w

t and qt are assumed independent of one another.   

At this point, we wish to adapt and amend Hasbrouck’s framework in three ways to capture 

1) the a priori endogeneity of time-varying spreads (see Glosten and Milgrom (1985) and Campbell, 

Lo and MacKinlay (1997, pp. 103-107)), 2) the observable lagged trade direction indicator variable qt-1, 

rather than qt (see Huang and Stoll, 1997),  

 Pt      = Pt-1   +   wt   +   λqt-1,       (2’) 

and 3) an empirically-estimated I(1) order of integration of the  stochastic process for the spread (see 

our results in Table 2 discussed below).   First, we introduce a time-varying component of the half-

spread by inserting an asymmetric information risk premium that is a function of the pure 

information arrivals: 

   (S/2) t  =  (c   +   θwt),     (3) 

where c can be reinterpreted to represent the order processing and inventory-carrying cost 

components of market-making, and θwt represents a market-makers’s spread premium for picking 

off risk—i.e., the prospect of being picked off when offering to trade at stale prices against  an 

asymmetrically informed trader already updated about wt.   Consistent with prior literature (e.g., 

Hasbrouck (1996)), note that the half-spread in (3) is a covariance-stationary I(0) series varying  

N(0, σ ) around c.    2
w

The price quote sequence  

  pt =  Pt    +  (c   +   θwt-1)qt-1,      (4) 

would then be written as,    

  pt =         [pt -1   +   wt   +   λqt-1]   +   c∆qt-1   +    θ∆(wt-1 qt-1),  (4’) 

or, as two stochastic trends ∑ wT and ∑q T-1  (that cumulate information arrivals to time period T  and 

trade directions to time period T-1) plus the product of two zero-mean covariance stationary r.v.s,   

  PT =         P0    + ∑ wT  +   λ ∑q T-1   +   (c   +    θ wT-1) qT-1.  (4’’) 
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Examining the time-varying spreads in (3) and the price quotes in (4’’), one notes that spreads and 

quotes share a common stochastic disturbance structure – i.e., (c   +  θ wT) and (c   +  θ wT-1), 

respectively.   Any serial correlation of the wt could therefore lead to correlation between spreads 

and price quotes.  However, even time-varying spreads and quotes that are correlated may well not 

be cointegrated.  In particular, the I(0) spreads in (3) and the I(1) price quotes in (4’) and (4”) do not 

share a Stock-Watson common stochastic trend.  Consequently, these spreads and quotes can not be 

cointegrated.  

 Our empirical results reported below suggest just the opposite, however.  Spreads and some 

quotes are, in fact, cointegrated.   Specifically, we find that spreads and depth quotes share a common 

stochastic trend.    Again, our empirical work confirming the maintained hypotheses for this study 

suggests why.   In pretesting the order of integration of spreads, price quotes, and depth quotes for 

all Dow 30 stocks, we found not only that the spread is time-varying but also that the spread is a non-

stationary series (again, see Table 2 below).   To illustrate this empirical fact in our modeling 

framework, consider a case in which spreads are themselves representable as an I(1) simple random 

walk, 

(S/2) t  =  [(S/2) t-1   +    εt],    (5) 

where the random disturbance epsilon is interpreted as an i.i.d. N(0, σ 2 ) order imbalance, again (like 

w

ε

t) provisionally assumed to be independent of q. 13   Michaely and Vila (1995), Michaely, Vila and 

Wang (1996), and Fernando (2003) also model common shocks to liquidity fundamentals separate 

from information shocks to valuation fundamentals.  Hence, systematic liquidity becomes a priced 

factor in asset pricing equilibrium even in the absence of trading.  Moreover, discretionary liquidity-

driven trading (reflected in the idiosynchratic shocks qt) is endogenously-determined as 

heterogeneous investors with lower exposure to systematic shocks supply liquidity to investors with 

higher exposure.   

Equation (5) implies spreads can be written as a cumulative stochastic trend of liquidity 

fundamentals, 

   (S/2)T  =  (S/2)0   +   ∑ εT.    (5’) 

Drawing a parallel between implicit efficient price fundamentals, Pt,and liquidity fundamentals, Dt, 

by mirroring (2’) and (4’), the depth (size) quote sequence could then be written 

                                                           
13 These are assumptions of convenience to allow us to demonstrate as simply as possible a cointegration relationship 
between spreads and depths. Later, in specifying regression relations for empirical modeling, we require a more complex 
approach addressing the possible non-independence of εt, qt,and wt.  See Campbell, Lo, and MacKinlay (1997). 
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Dt =  Dt     +  (S/2)t-1 qt-1           (6) 

   =         [Dt -1   +   εt    +   λqt-1]   +    ∆[(S/2)t-1 qt-1],    (6’)   

D T =         D0    +    ∑ εT     +   λ∑qT-1   +   [(S/2)T-1 qT-1    -    (S/2)T-2  qT-2 ],    (6’’) 

Comparing (5’) and (6”), both time-varying spreads and depths then contain the common stochastic 

trend ∑ ε T.   Said another way, these spreads and depths are I(1) variables whose linear combination 

can be a stationary I(0) error correction term.   Consequently, time-varying spreads and depth quotes 

can indeed be cointegrated C(1). 

To estimate this C(1) relationship between spreads and depths, we therefore hypothesize a 

three-variable system of the Spread (S) , the Ask depth (Asz) and the Bid depth (Bsz) based on an 

error correction mechanism involving both spreads and excess depth   -- specifically, the spread plus 

ask depth minus the bid depth (the net supply of stocks available to investors at the best quotes): 

 

∆ Spread t  =    αS + β∑
=

6

1i
S, t-i ∆Spread t – i + β∑

=

6

1i
S, asz, t-i∆ β∑

=
− +

6

1i
itAsksz S, bsz, t-i∆Bidsz t – 

i  

  -   (Spread + Asksz -Bidsz)  + u   

Asksz  = αasz +

 γS t-1 t                        (7)
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6

=
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∑
6
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1i

∑− +
6

=
itAsksz βasz, bsz, t-i 

ids  t-i - (Spr sz ids  + v               (8)

Bidsz t = αbsz +

1i

∆B z   γasz ead + Ask -B z) t-1 t                          

∆ ∑
6

=

βbsz, S, t-i ∆Spread t-i +
1i

∑
6

=

βbsz, asz, t-i ∆ βbsz, bsz, t-i  

 ∆Bidsz t-i-  γbsz (Spread + Asksz -Bidsz) t-1 + wt                         (9)
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ly 

hort 

∑
=

− +
6

1i
itAsksz

1i

 

The system of equations given by (7), (8) and (9) form the basis of our empirical investigation 

with the appropriate high frequency trading data.  Observe that our model has a simple but intuitive 

interpretation.  The change in spread at any given point in time, ∆Spreadt,  is a function of the actual 

past spread changes and the past bid and ask depth changes (the relatively long term effect) and 

the spread and the net depth (i.e., ask depth minus the bid depth) associated with the last quote

revision (the short term, or error correction, effect).   Note that the error correction term simp

measures the speed of adjustment back to the long-run equilibrium whenever the system is 

perturbed from its equilibrium path.  Hence, our model accommodates both a long term and a s

 11



term effect of past spreads and depths on the current spread adjustment.  The same logic holds 

individually for the ask and bid depths, as well.  By putting minimal structure on our empir

model, we let the data tell us the actual path by whi

ical 

ch new information gets impounded in 

successive adjustments of the spreads and depths.  

3.  
e 

os and 

rice 

tor] 

rice [and depth] change innovations have the same 

varianc

 

Data and Time-series Properties  
There are multiple ways of solving the above system of equations (7) - (9).   Among them, th

information shares of Hasbrouck (1995, 2002) and the Gonzalo and Granger (1995) common factor 

components provide competing approaches to estimating parameters of cointegrated time series.   

The July 2002 Special Issue on Price Discovery in the Journal of Financial Markets debates the pr

cons of the two approaches.  Lehrmann (2002),  the editor of the Special Issue, concludes, “In 

summary, the Hasbrouck information shares correctly measure price discovery only when the p

[and depth] change innovations are uncorrelated while the Gonzalo-Granger [common fac

weights generically do so only when p

e…”[p. 273, brackets added].14

Since price and depth innovations are likely to be highly correlated, we use the Gonzalo-

Granger (1995) (GG) procedure to decompose the permanent and temporary components in the 

jointly cointegrated spread and two depth series.   In so doing, we derive from the error correction 

terms, γ S, γ asz , and γ bsz, in equations (7) – (9),  a set of common factor component estimates of the 

long-run impact on quotes and spreads from innovations in quotes and spreads.    Further deta

the operationalization of the GG deco

ils on 

mposition for our purposes are provided in a Technical 

der.  

3.1 

 

 our 

                                                          

Appendix for the interested rea

 Data Methodology  

To estimate the cointegration-error correction relationship between the spread and the bid 

and ask depths, we use quote data for all 30 stocks comprising the DJIA in 1995 and then repeat the 

analysis for 1998.  The tick-by-tick quote data are extracted from TAQ and then filtered to detect new

quotes.  For a new quote to be recorded in our dataset, at least one of the four parameters (bid, bid 

depth, ask or ask depth) has to be different.  Table 1 provides a breakdown of the thirty stocks in

sample in terms of the number of new quotes and average interval of time (SPAN, measured in 

 
14 With the very high frequency (continuous) data analyzed below, Harris, McInish and Wood (2002b) and Tse (2002) 
show that the information share and common factor approaches are virtually identical.   
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second study 

aving avoided the measurement bias 

 

 

, 

liquidity that accompanied the tighter spreads over 1995-98 had an impact on the relative role 

rmation is one of the questions we seek to address in this 

tudy. 

 

).  In 

ay 

s 

t is, 

 the estimates are shown for 10,000 intraday 

s) between new quotes.   The average SPAN declines sharply over the four years under 

from 91 seconds in 1995 to 26 seconds in 1998.  

The growth of market activity from 1995 to 1998 is also clear from the explosion in the 

number of quotes.  For example, a typical increase ranges from 61,737 quotes at 95-second mean 

intervals for Chevron in 1995 to 229,866 quotes at 32-second mean intervals in 1998.  In the current 

study, we consider only quotes originating from the NYSE.  H

issues introduced by ECN and regional autoquotes, our data set still comprises an average of 74,058

quotes per stock in 1995 and 260,927quotes per stock in 1998. 

 Table 1 also provides average spreads as well as the average bid depth and the average ask

depth for each stock in 1995 and 1998.   Across all DJIA stocks, the quoted spread declined by 27% 

from 16.5 to 12.1 cents.  Depth measured by the average of the ask and bid depths plummeted by 

61% from 159 and 139 round lots at the best ask and bid in 1995 to 66 and 52 round lots, respectively

in 1998.  The last line of Table 1 shows that the standard deviation of spreads declined slightly over 

the period as well, and that the volatility of ask and bid depth declined by 37% and 41% over their 

respective prior levels.  Whether or not the massive decline in market liquidity and the volatility of 

market 

of spreads and depths in revealing new info

s

3.2   Stochastic Properties of Spreads 

 In Table 2, we investigate the time-series and stochastic properties of the spreads that arise 

from our series on new price or depth quotes.  To provide a familiar reference point from analysis of

CRSP data, we contrast the stochastic properties of spreads in daily closing prices with those from 

high frequency intraday data.  One of the series is clearly I(0), and the other is just as clearly I(1

particular, the change in the closing ask price minus the closing bid price over 252 days in 1995 and 

1998 is related to a set of lagged spread changes but not to the level of spreads.  However, the 

augmented Dickey-Fuller tests documented on the right of Table 2 show that changes in intrad

spreads follow a random walk.  Note that drift parameters and occasional deterministic time trend

arise in many daily spread series but never do so in the high frequency intraday data.  Tha

intraday spreads are related with a unit root coefficient to immediately past spreads plus an error 

term, just as in equation (5) above. Although
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observations on new quotes (approximately one month for DJIA stocks), very similar results hold for

one week, one quarter or one year of data. 

 

r 

her) .  By contrast, 

n.  This has not been 

tests 

T&T in 

on was minimized for the set of VAR equations at six lags. We repeated all 

nferences 

two 

and 1998.  The conclusion, again, is that bid and the ask depths are 

cointeg

arly 

15

 In sum, we find that the conventional wisdom that spreads are I(0) stationary holds only fo

closing trades--that is, for data that has been aggregated to the daily level (or hig

intra-day spreads unquestionably display an I(1) difference stationary patter

widely discussed in the literature and is a contribution of the current research.   

3.3      Cointegration tests involving price quotes, spreads and depths 

 Before estimating our empirical model, it is important to check for the cointegration 

properties of the price and depth series on either side of the market for the stocks in our data over the 

time period investigated.   Accordingly, in Table 3, we present Johansen’s (1991) cointegration 

for various combinations of price quotes and size quotes using all the TAQ data on IBM and A

both 1995 and 1998.  These Johansen tests were preceded by augmented Dickey-Fuller tests to 

determine the order of integration of the series.  All were found to be I(1) series.  The Akaike 

Information Criteri

analyses with the other DJIA stocks (not reported for brevity).  In all cases, our statistical i

were the same.      

 In Panel A, testing for no cointegrating vector (r = 0) versus the alternative of one 

cointegrating vector (r = 1) in the bid and ask price series, the trace and Hmax (maximum 

eigenvalue) statistics indicate that the null is rejected at the 0.01 level.  The implication is that the 

series represented by the bid and ask prices are themselves cointegrated, and error correct (or, adjust  

back) to the spread at a rate to be determined by the estimated coefficient of the error correction 

term.16  Similarly, panel B provides cointegration test results of the bid depth and ask depth series for 

the same two stocks over 1995 

rated I(1) and error correct to excess depth; trace and Hmax test statistics reject H0: r=0 at the 

0.01 level.    

To discern whether the common stochastic trends in price and depth quotes were one and the 

same, we then examine whether the ask price and ask depth series are cointegrated (and simil

whether the bid price and bid depth series are cointegrated.  Using again the trace and Hmax test, we 

are unable to reject the null of no cointegration.  Therefore, we next investigated the order of 

                                                           
15 These results are available from the authors. 
 
16 The γ⊥ ask or γ⊥ bid results, in the last two columns, are the common factor components which we discuss later. 
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integration and cointegration relationships between spreads and depths suggested by the analysis of 

microstructure dynamics in Section 2.2 above.   Thus, in Panels C and D of Table 3, we report 

evidence at the 0.01 level that I(1) spreads are cointegrated with each separate depth size quote 

series.  Similarly, in Panel E of Table 2,  I(1) spreads are shown to be cointegrated with ½ the summe

depth (bid depth p

d 

lus the ask depth).  In the next section, we estimate and analyze at length our 

preferr l 

 

 

 in periods of informed 

ading (see, for example, Kavajecz, 1998), price quotes and depth quotes appear instead to reflect 

 not reflected in the extant literature.  We 

 adjustment processes on spreads. 

 

re I(1) 

 to 

component of the spread is a systematic reflection of information content in recent trades or orders 

                                                          

ed specification of I(1) spreads, ask depth, and bid depth in a three-equation VECM mode

with a linear combination of spreads and excess depth forming the error correction (or the speed of 

adjustment) term. 

Finally, we round out the specification pretesting part of the estimation of our empirical 

model, associated with the order of integration and cointegration, by examining whether all four 

price and depth quotes are cointegrated.  In Appendix A, we report results of Johansen’s (1991) test

for all 30 Dow stocks.  In every case we are unable to reject the null hypothesis of zero (as opposed to

one or more) cointegrating vectors.  Put differently, no linear combination of all four series appears 

to be a mean-reverting stationary long-term equilibrium process.  Excess depth does not appear to 

display a pattern of declining when the spread rises and vice versa.  Rather than reflecting a simple 

asymmetric information story about depth drying up when spreads increase

tr

distinct equilibrium processes.   This is an important finding

now trace the effect of these two separate

4    Information Discovery Role of Depths  
4.1 Modeling Spreads and Depths 

In our initial investigation (see Section 3), we discovered that our intra day spreads we

in 1995 and 1998 for Dow stocks and that an error correction term (comprised of the spread and 

excess depth), reflecting the adjustment back to a long term equilibrium,  was I(0).  The finding that 

spreads themselves are not I(0), as would be hypothesized in a full information batch market 

environment, is pivotal to our modeling approach.17  Specifically, quoted spreads do not appear

represent white noise market frictions alone.  Instead, as argued by Huang and Stoll (1994), a 

 
17When prices are fully informative and when there’s continuous market-clearing, any spread fluctuations 
should be white noise.  For further details, see Hasbrouck (1996).  Section 2.2 above suggests why this will not 
hold when time-varying spreads reflect order imbalances.  
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(the information effect) while another component of the spread is a systematic reflection of the 

variatio  

ree 

 to be 

 

 and the corresponding bid and ask depths.  These 

cointeg

r matrix.   

inst 

ch 

avor 

IA 

 two distinct stochastic trends – and are 

rical studies (see, 

r exa

 

attributable to the spread versus the bid and ask depths that reflect their respective contributions to 

                                                        

n in execution reliability at a price and therefore should be related to market depth (the

inventory effect).18   

To investigate the possible cointegration relationship between spreads and depths, we 

therefore determined an optimal lag length and the cointegrating vectors for the system of th

equations (7) – (9).  Using the SAS subroutine TSULMAR, the optimal system lag length proved

less than ten for all DJIA stocks, e.g., six (new) quotes for IBM.   Table 4 provides tests of the

cointegrating vectors for the quoted spread

rating vectors define the equilibrium errors that can be employed in a simultaneous 

estimation of our three-equation model.     

For each of the 30 stocks in our sample, and in each of the years 1995 and 1998, we provide 

results of the Johansen’s (1991) trace test to determine the rank of the cointegrating vecto

Examining the null hypothesis of r cointegrating vectors against r+1, we run two tests of r = 0 aga

r = 1 and of r = 1 against r = 2.   Table 4 indicates that in all 30 cases in 1995, the null of 0 

cointegrating vectors is rejected in favor of the alternative of one cointegrating vector at the 95% 

level.  This implies that spreads and depths display a long-term equilibrium relationship with ea

other.  We also find that for 1998, we reject the null hypothesis of zero cointegrating vectors (in f

of the alternative of r = 1) in 27 out of the thirty stocks at the 95% level.  In addition, subsequent 

testing of r=1 against the alternative r=2 indicates that ten cases in 1995 have two cointegrating 

vectors and one common trend.  The implication of these results is that for all 27 cointegrated DJ

stocks in 1998 and for 20 of 30 cointegrated DJIA stocks in 1995, the three-equation system of the 

spread and two depths is characterized by one cointegrating vector and therefore two common 

stochastic trends.  That is, depths and spreads may represent

not consistently inversely related to each other as has been postulated by other empi

fo mple, Lee, Mucklow and Ready (1993)).     

4.2     Proportion of  long-run impact attributable to spreads versus depths 

 The cointegration results of the previous section allow us to apply the Gonzalo-Granger 

common factor estimation and testing.  Table 5 displays our estimates of the common factor weights

   
18 Brock and Kleidon (1992) and Harris, McInish and Chakravarty (1995) have characterized the inventory 
effects in continuous (or, non-Walrasian) trading environments. 
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the first common trend.19  These common factor weights are proportional to the impact multipliers 

associated with the information discovery processes.  That is, the common factor weights associ

with each depth quote and the spread indicate the proportion of long-run impact on the Stock-

Watson common stochastic trend attributable to each respective series.  We test each of the separat

elements of the vector of common factor weights for statistical significance.  In each case, the null 

hypothesis is that the individual factor weight of the indicated series is zero.     The 

ated 

e 

Gonzalo-Granger 

 

998 

 spreads almost never convey information in 1998, and do so in only 8 of the 30 

ht on 

nce 

 

, 

s 

 

 these seven cases, the factor weight on spreads is just 10.8% with 

Qgg test statistic is distributed chi-squared with one degree of freedom.   

  From Table 5, we reject the null hypothesis for the quoted spread series (at the 1% level) in 8 

cases out of 30 in 1995 and in only 1 case out of 27 in 1998.  In contrast, we reject the null hypothesis

of zero effect for each of the depth series in all 57 cases.  Our interpretation of these findings is that 

the (bid and ask) depths convey new information in literally every stock in the DJIA in 1995 and 1

while the quoted

cases in 1995.    

 Interestingly, in those eight cases in 1995 and one in 1998 where the common factor weig

spreads is significant, the percentage of information discovery attributable to the spread varies 

between only 50 and 59%, with the depths revealing the remaining 41-50% of the information.  Si

seven of these nine total cases indicate just one cointegrating vector among the three series and, 

therefore, two common trends, we can examine the factor weight on depths in the second common 

trend as a further indication of the role of spreads versus depths in information discovery.  In each 

instance, the proportion of information discovery is decidedly smaller in spreads (the first number

listed) than in depths (the last two numbers listed): [BA95: 0.255, 0.409, 0.336]; [EK95: 0.023, 0.481

0.495]; [GE95: 0.042, 0.463, 0.495]; [IP95: 0.066, 0.484, 0.450]; [MO95: 0.245, 0.408, 0.346]; [XON95: 

0.005, 0.466, 0.529]; [WMT98: 0.076, 0.446, 0.478].  Note that a Gonzalo-Granger chi-squared test find

the depth numbers (i.e., the last two numbers for each stock) to be statistically significant at the 1%

level in each of the seven cases while in no case is γ⊥ SPREADS  (i.e., the first number in each set) ever 

significant.  Also, at the mean in

depths accounting for 89.2%.   

                                                           
19 Note that these weights derive from the third eigenvector of the common factor matrix orthogonal to the 
adjustment vector matrix (for further details, see Gonzalo and Granger (1995)).   The weights for the second 
common trend derived from the second eigenvector of this same matrix are available from the authors.  We 

 

report the three elements of each of these eigenvectors as a factor weight—i.e., all reported weights are 
normalized to sum to 1.   
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 To examine further the inference that depths rather than spreads predominantly convey n

information, we present, in Table 6, the Gonzalo and Granger (1995) Q

ew 

preads is 1 and that the common factor 

th 0.  The test statistic is distributed chi-squared with two degrees of 

freedom

mation.  The fact that these results are consistent across the 

years 1

he 

es 

ediacy revealed by the depth at various prices on the book.  

Thus, f

.   

depths) at each discrete price points have to be exhausted before a nice price point is established 

which in and of itself guarantees that depths will change more frequently than spreads.  Our findings 

                                                        

gg statistic for the null 

hypothesis that the common factor weight for the quoted s

weights of the two depths are bo

.  Table 6 indicates that we can reject the null hypothesis of no information discovery by 

depths at a 1% level of significance in all 30 cases in 1995 and in 25 of 27 cases in 1998.  The null 

hypothesis is rejected at just 2% in the other two cases.20   

4.3    Discussion of Results  

Our finding from Tables 5 and 6 is that, relative to the quoted bid-ask spreads, the depths 

appear to convey significantly more infor

995 and 1998 entailing dynamic institutional change at the NYSE attests to the temporal 

generalizability of our conclusion.  The results are also robust across several specifications of the 

spreads-depth VECM that we have tried including average depth (or, ½ the summed depth), and t

two separate depths as reported above.   

These results underscore the important role played by the limit order book in the price 

discovery process.  Optimal execution strategy rationally clusters informed traders to where the 

uninformed traders execute their trades, which may be predominantly in the limit order book.  It 

appears that informed traders also actively use the limit order book to affect all or part of their trad

through attention to the value of imm

or example, informed traders could submit marketable (or even near-the-quote) limit orders 

and then quickly cancel if they did not obtain a quick fill and/or the price moved away from them

The significantly high percentage of such orders that are canceled bear testament to their possible 

strategic use by informed traders.21   

Even though our findings pertain to the specialist market of the NYSE, we should emphasize 

that our results apply even to quote driven markets without specialists like the burgeoning ECNs 

and other order matching systems.   It is easy to see that in such markets, outstanding orders (the 

   
20 Recall that in three stocks listed as n.a., Johansen’s test indicated no cointegrating vectors. 
 
21 Such strategic uses of  limit orders differs from the early theoretical models of market and limit orders which 
allowed informed (or, strategic) traders to submit only market orders and uninformed traders to submit only 
limit orders (see, for example, Angel (1992) and Rock (1999)).   
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also provide a compelling reason why depth information from options markets needs to be mad

available to off-floor participants in much th

e 

e same way as equity markets disseminate both spread 

and de

reads 

usion 

e; even with the tighter spreads of 1998, information first revealed in the depths 

es.   

  

5.  

 

ply 

d 

n 

ed) show 

fects can be 

interpr

Z2 

a 

pth information in real time.  Currently, only intra day spread information in options is 

widely available to off-floor participants.     

From a regulatory perspective, it is likely that the wider spreads in 1995 reflected, in part, a 

barrier to effective price competition perpetuated by the 1/8th minimum tick size.   Following the 

reduction in the minimum tick size from eighths to sixteenths in 1997, the resulting narrower sp

were significantly more informative than their earlier counterparts.  Nevertheless, our concl

remains in plac

overwhelmingly accounts for the common stochastic trends in price and depth quot

Adjustment Dynamics with Impulse Response Functions 

 To investigate further the adjustment of depths to an innovation shock in spreads and vice 

versa, we next examine the equilibrium error term Z ≡  (Spread + Asksz – Bidsz) in the estimated

VECM.  In 20 of 30 cases in 1995 and in all 30 in 1998, the cointegration estimates in Table 4 im

one cointegrating vector (Z1) defining the equilibrium of spreads and depths.  From the VECM 

results in Tables 7A and 7B, the sign of the equilibrium responses to Z1 are straight-forwar

analytically.  An increase in spreads raises the error correction term which is defined in the VECM 

specifications (see Eqns. (7) – (9)) as a negative adjustment to the left-hand side variables.  

Consequently, the positive sign on the Z1 term in the fourth and sixth columns of Tables 7A and 7B 

indicates that a higher spread results in a decrease in depths, ceteris paribus.  Turning the question 

around and examining the Z1 term in the second column of Tables 7A and 7B, a positive innovatio

shock to net depths (i.e., Asksize - Bidsize) reduces spreads.  Other specifications (not report

the same result for summed depths; an increase in summed depth decreases the spread.  In short, 

greater depth, however measured, implies tighter spreads.  These permanent ef

eted as the traditional effect of increased liquidity in reducing costs for both specialists and 

limit order traders making markets in competition with off-exchange dealers.  

However, in ten cases in 1995 the cointegration evidence in Table 4 suggests not one but two 

cointegrating vectors—i.e., a more complex equilibrating condition between spreads and depths than 

would be represented by Z1 alone.  IBM in Table 7 illustrates one such case.  Examining then the 

term in the fourth column of Table 7A, an increase in spreads raises Z2 and increases asksize while 

decrease in spreads, lowers Z2, and lowers asksize.  In short, here in the second equilibrating 
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condition, an exogenous shock resulting in tighter spreads lowers depths. This result is familiar to 

those who have studied the effect of tick-size reduction.  At smaller tick sizes 1995-2000, the picking 

off risk associated with writing limit orders at the BBO increased for any given underlying volatility

in the true efficient price.  Consequently, essentially all traders backed off from their regular trading

intensity by posting smaller limit orders at any given price.  Just as pricing one’s uninformed limit 

orders less aggressively (at wider spreads) makes sense in the face of in

 

 

creased volatility (Foucault 

1999), s

inct 

 

 

 Reimers (1992) 

recomm  

 track the multi-period response paths of time-series 

  

 

lse response function analysis can prove quite useful.  Coopejans, Domowitz and 

est 

 will 

discretionary liquidity trading, and to information  shocks themselves may well co-vary causing 

Cov(vit, vjt) ≠ 0.   Therefore, following Lutkepohl (1993), we propose to isolate impulse responses 

o too smaller tick sizes increases the probability of being picking off at stale quotes.   Tighter 

quotes therefore reduce the optimal order size for uninformed traders. 

Thus, cointegrating vectors Z1 and Z2 have opposite signs in Table 7 and do not carry dist

implications for a given shock, holding all else constant.  Our careful specification analysis in section

4 shows that the identifying restrictions that could reduce this complexity are rejected by tests of

restrictions on the cointegrating vectors.  In just such circumstances, Lutkepohl and

end investigating the dynamics of adjustment with regard to magnitudes and speed by

examining the orthoganalized impulse response functions of the VAR processes.   

Impulse response functions (IRFs)

variables as they return to long-run equilibrium relationships after experiencing a one-time single-

variable shock to a system of VARs like   

St =  άst  +   ∆ss St-1   +  ∆saAszt-1   +    ∆sbBszt-1   + …  + vst (10) 

Aszt =  άat  +   ∆as St-1   +  ∆aaAszt-1   +    ∆abBszt-1   + …  + vat  (11) 

Bszt =  άbt  +   ∆bs St-1   +  ∆baAszt-1   +    ∆bbBszt-1   + …  + vbt  (12) 

where S is spreads, Asz is asksize, and Bsz is bidsize.  Even with C(1) series in (10)-(12), since the 

derivatives of the normalized cointegrating vector(s) do not capture all the possible feedback loops in

(10)-(12), impu

Madhavan (2001), for example, employ IRFs for forecasting liquidity dynamics in an electronic limit 

order book.   

 Often in finance and economics, however, IRFs that are fine for forecasting are of little inter

for testing implications of competing theories.   In particular, if Cov(vit, vjt) ≠ 0 in (10)-(12), IRFs

capture global, system-wide shocks in multiple series at once (because of contemporaneous cross-

equation correlation of the error terms).  In our case, innovations to the price of immediacy, to 
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from individual series by orthoganalizing with a Cholesky factorization procedure for which the 

results will be dependent on the order of the variables in the model.22  

In particular, we define an orthogonal innovation in spreads as dvst = [St – Seq] where dvst is a 

one-time-only unit standardized innovation in spreads.   Since the variance of standardized 

orthogonal components is 1.0, a unit innovation can be thought of as just an innovation of size one 

standard deviation (Lutkepohl, 1993).  The orthoganalized impulse response function (OIRF) for 

spreads on spreads Φss is then   

Φsst = dvst  = + 1σv >  0 

Φsst+1 = ∆ss dvst => sign Φsst+1 > 0 since 0 < ∆ss ≤  1    (13) 

Φsst+2 = (∆ss)2 dvst => sign Φsst+2 > 0 and  Φsst+2 < Φsst+1 

….

An own-impulse response function should therefore be monotonically decreasing like the 

four OIRFs in Figure 1.  These are average ORIFs across all DJIA stocks for the spreads and depths in 

1995 and 1998.  The horizontal axis is time which from Table 1 averages 91.1 seconds (1.5 mins.) 

between quotes in 1995 and 25.7 seconds (0.4 mins.) between quotes in 1998.  The vertical axis is a 

percentage change where the units are standard deviations of the series.  Spreads in 1998, for 

example, are 36% of a standard deviation higher 0.4 minutes after a unit standard deviation positive 

shock – i.e., 36% of a $0.072 standard deviation or 2.6 cents.  This 2.6 cents can be related to the 12.1 

cents average spread of DJIA stocks throughout 1998 shown in Table 1.  By comparison, ask depths 

in 1998 are 81% higher 0.4 minutes after a positive shock – i.e., 81% of a 87.7 standard deviation or 71 

rounds lots relative to an average depth of DJIA stocks in 1998 of 60.7 round lots.23  This is our first 

indication that depths are more sensitive than spreads to shocks.  

In response to a unit innovation to each series, subsequent values of that series erode 

asymptotically back to the initial zero coordinates position. For example, 91 seconds (one quote) after 

the initial positive shock of one unit standard deviation, 1995 ask depths in DJIA stocks are 81% of 

the size of the innovation. Approximately 6 minutes (4 quotes) after the initial shock, ask depth is 

                                                           
22 We report below the average impulse responses associated with all possible orderings of variables in the Cholesky 
factorization model, consistent with the recommendations of Lutkepohl (1993, p. 297).  Ballie, Booth, Tse and Zabotina 
(2002) also recommend this procedure in using Cholesky factorization to calculate Hasbrouck’s information shares. 
 
23 The Bidsize OIRF was very similar to the Asksize OIRFs displayed in the bottom panels of Figure 1.  For 
example, 0.4 minutes after a positive shock, 1998 bid depths are 76% higher.  After three minutes, 1998 ask 
depths are 12% higher, and 1998 bid depths are 11% higher. 
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only 21% increased, and by 23 minutes (15 quotes later) ask depth is back to its initial level.  The 

OIRF for bid depths is very similar.  1995 spreads, on the other hand, decline to 29% of the 

innovation within one quote, 2% within four quotes (6 minutes), and essentially back to their 

previous level within 11 minutes (seven quotes) in DJIA stocks. 

In addition, note from Figure 1 that more frequent 1998 quotes only 25.7 seconds apart lead to 

a faster adjustment process for depths but not for spreads.  Although it still takes four quotes for the 

effect of a positive shock on ask depths to decline to 20% above its initial level, those four quotes take 

less than 2 minutes in 1998 versus six minutes in 1995.  In addition, depths in DJIA stocks returned to 

their pre-shock level in about six minutes in 1998 versus 23 minutes in 1995.  DJIA spreads, on the 

other hand, took 11 minutes to return to their initial level following a positive shock in 1995 and took 

6 minutes to do so in 1998.   Depths were about twice as slow to adjust as spreads in 1995 but by 1998 

both depths and spreads adjust equally quickly, in just six minutes. 

As opposed to these very regularized own-impulse response functions, orthoganalized cross-

impulse response functions can display any pattern.  Figure 2 shows the effect of ask depth 

innovations on spreads in 1995 and 1998.  Initially, in response to greater buy-side depth at the ask, 

spreads widen by 18% in 1995 and 12% in 1998.  That is, traders appear to respond to the 

informational uncertainty signaled by the depth innovation by less aggressively pricing their limit 

orders, consistent with Foucault (1999). However, within three minutes in 1995 and within  50 

seconds in 1998, spreads actually fall precipitously to a lower level than that at which they started.  

That is, as the informational uncertainty is resolved and perceived picking off risk declines, spreads 

tighten and stay below normal for 20 minutes in 1995 and for 6 minutes in 1998.  Hence the 

permanent effect on spreads is in the opposite (negative) direction from the positive transitory effect 

of the increased information uncertainty triggered by such a sharp increase in depth. 

The maximum decline in 1995 spreads is 4% (of a $0.067 standard deviation, so $0.0027 

relative to a mean DJIA spread of $0.17) at about 5 minutes after the depth innovation, and the 

maximum decline in 1998 spreads is 4% (of a $0.07 standard deviation, so $0.0028 relative to a mean 

DJIA spread of $0.126) at about 2 minutes after the depth innovation.  The permanent effect on 1998 

spreads of a one standard deviation positive shock to ask depths (87 round lots in 1998) is negative 

1%, or about 1/10th cent. 

Turning the question around, do depths error correct to spreads and if so, in which direction?  

In the bottom two panels of Figure 2, 1995 depths are seen to decline 10% in response to a sharp (one 

standard deviation, 8.2 cent) increase in the spread.  And 1998 ask depth declines 6.5% in response to 

 22



a shock to spreads.  At wider (bid and ask) quotes, the picking off risk associated with writing limit 

orders at the BBO increases for any given underlying volatility in the true efficient price.  At the same 

time, the execution risk increases for any given deviation from the midpoint of the quote (see, for 

example, Foucault 1999).  Consequently, for both reasons one might expect uninformed traders to 

decrease their order sizes.  Wider quotes therefore reduce the optimal order size for uninformed 

traders.  

 Depths error correct to one another as well.  Figure 3 shows the OIRF of bid depths to an 

innovation in ask depths in 1995 and 1998.  Within 8 minutes (5 quotes) in 1995 and within 2 minutes (5 

quotes) in 1998, bid depth steadily increases to 4.5% above its starting value.  The magnitude of this 

positive effect of depth on the sell side of the market to depth on the buy side varies across securities by 

almost a 100%.  The top right panel of Figure 3, for example, shows the 5% to 9% increases in 1995 bid 

depth across individual securities.  The second row of Figure 2 shows that a similar variation in the 

magnitude of these transitory effects is observed across securities in 1998.  In both years, the transitory 

positive effects gradually decline to a statistically significant permanent positive effect.  Specifically, a 

131 round lots (a unit standard deviation) positive shock to 1995 ask depth generates a permanent 

9/10ths of 1% x 124 round lots (1 round lots) increase in 1995 bid depth.  Similarly, a 88 round lots 

positive shock to 1998 ask depth generates a permanent 1.3% x 76 round lots (1 round lot) increase in 

1998 bid depth. 

Figure 4, displaying the ORIF for ask depths in response to an innovation in bid depths, 

shows an asymmetry.  The first effect of increased selling pressure at the bid is that the ask depth 

falls 9% (in 1995) as buyers back off their order sizes.  One security was even observed to have a 22% 

decline in initial ask depth. Within 5 minutes, however, in these thickly-traded DJIA stocks, ask 

depth on the third post-innovation quote has increased.  At 9 minutes, the ask depth is up 3% and 

then gradually erodes back to a permanent slight increase.  In 1998 data, the same initial backing off 

of buy-side depth occurs, though the variation across individual stocks is a much smaller  -3% to -8% 

(-2% on average).  Faster quotes also again imply speeder adjustment, with ask depths going positive 

about one minute after the positive bid depth shock, reaching the maximum 4% increase in 1998 (4% 

of 88 = 3.5 round lots) within 2 ½ minutes as opposed to the 9 minute delay of peak buy-side 

liquidity in 1995.  Again, the permanent effect is a 95% statistically significant increase in 1998 ask 

depth of 1.2% -- i.e., 1 round lot. 

 We also investigated variation across days of the week, morning versus afternoon, and times 

of the day.  The impulse responses security by security do exhibit such variation but not these OIRF 
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averages across the DJIA stocks, with one exception.  The less aggressive limit pricing that results in 

initially wider spreads in response to depth shocks exhibited in Figure 2 is less apparent at the open 

on Mondays.  Figure 5 shows that between 9:30 -10:00 a.m. Mondays, spreads increase by only 15% 

in 1995 in response to ask depth shocks of +131 rounds lots.  The rest of the day and rest of the week, 

the increased spread in response to the information conveyed by such a depth shock is almost twice 

as large -- i.e., 27% in 1995.  Three minutes later on the Monday openings in 1995, spreads have 

plummeted to 10% below their initial value, and this process takes longer (5 minutes) and tightens 

less (-7% rather than -10%) the rest of the day and the rest of the week.   

 In 1998, the permanent effect tightening the spread in response to additional buy-side 

liquidity required the same 2 minutes on Monday openings as at other times, but the initial, 

transitory effects are different.  On Monday openings, the spread rises only 10% in response to an 88 

round lot shock to ask depth, whereas the typical widening of the spread is 17% at other times and 

days of the week.  Both facts suggest an enhanced information processing role of those market 

makers especially prevalent in the Monday openings. 

 

6.     Concluding Summary 
We develop and estimate a simple, but intuitive, three-equation system of the bid-ask spread 

and the bid and ask depths with a long time-series of high frequency data to analyze the relative 

importance of bid-ask spreads and the associated bid and ask depths in revealing new information 

first that, in turn, affects subsequent quote revisions.   The importance of the current work lies in the 

fact that the microstructure theory literature has traditionally recognized (changes in) the bid-ask 

spread as the primary measure of adverse selection and information-based trading in security 

markets (McInish and Wood (1992), Peterson and Fialkowski (1994), Huang and Stoll (1996), 

Bessembinder (1997)).   Furthermore, the existing studies of spreads and depths, such as Kavajecz 

(1998), make important stylized assumptions for tractability that may, or may not, be accurate.  An 

example of such an assumption is the inverse relationship between spreads and depths.   In contrast, 

our general model derived from fundamentals is able to tease out the nature of the relationship 

between spreads and depths when confronted with the data.  To our knowledge, our research is the 

first to investigate, within a cointegration/error correction framework, whether depths play a 

significant role -- and if so, by how much -- in the information revelation process. 

Our results indicate that new information is reflected overwhelmingly in (bid and ask) depth 

updates rather than in spread updates.   Our findings are intuitive from the point of view that size 
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offers strategic limit order traders a variety of options, including raising the aggregate depth statistic 

at the prevailing BBO, simply by improving the best bid or offer prices one tick.   This is especially 

relevant in the current post-decimal trading environment of penny ticks.  The increasingly important 

role of depths is also recognized in the recent NASDAQ regulation of decreasing the minimum depth 

requirement from 1,000 shares to 100 shares for dealers posting quotes.  Finally, our results are 

consistent with available empirical evidence that shows that specialists actively manage their quoted 

depths even when prices are not changing.  

Our findings are equally compelling from either a theoretical or a practical standpoint.   

While microstructure theory postulates a specialist price schedule that is complete and continuous 

(see, for example, Kyle (1985, 1989)), what we observe in practice are two prices and two 

corresponding sizes the prices are guaranteed for.  Understanding the interaction between these 

posted prices and quantities, and their theoretical counterparts, is important to further our 

understanding of how new information gets incorporated in subsequent updates of the posted price-

quantity schedule.   From a practical perspective, posted prices and associated quantities are the 

information most investors possess when deciding on a trading strategy.  Understanding the channel 

through which new information is reflected first furthers our understanding of how informed traders 

trade.    Finally, our empirical results provide support to recent theoretical models that attempt to 

formalize the intuition that depths are at least as important as spreads in permanently incorporating 

new information arrival in the market.  

Analysis of the orthoganalized impulse response functions shows that spreads widen initially 

in response to positive depth shocks but that subsequent tightening occurs within 2 minutes and is a 

permanent effect.  Depths decline in response to positive shocks to the spread but this effect is not 

permanent.  Bid depths and ask depths respond to one another differently.  Both eventually increase 

in response to positive shocks, but ask depth declines initially in response to positive sell-side shocks 

at the bid whereas bid depth increases continuously in response to positive buy-side shocks. 

There are potentially interesting ways of extending our model to develop further insights into 

the relative importance of depths over spreads in reflecting new information first.   While the 

impulse response analysis focuses on the thirty relatively active (and high profile) stocks at specific 

times of day and days of week, it does not focus on specific corporate events or on less liquid issues.  

But we know from extant research that (the degree of) adverse selection is a function of the day of the 

week (Monday versus Friday), time of day (middle of the trading day versus the beginning or the 

end) and varies around specific corporate events such as earnings announcements.  Additionally, 
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small cap (and thinly traded) stocks are also associated with higher spreads (higher adverse 

selection).  Investigating the relative importance of depths over spreads in each of these cases, to 

further increase our understanding of the exact channels of information assimilation in prices, should 

prove to be a fruitful future research agenda.    
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Table 1.  Descriptive Statistics 
DJIA 30 stocks showing the number of quote observations in 1995 and 1998, the average time interval between observations, 
the average ask price minus bid price, and the average depths (expressed in round lots of 100 shares). 

  1995 1998 
Stock  No. 

Obs. 
Span 
(secs) 

Spread 
(cents) 

Depth 
at Ask 

Depth 
at Bid 

No. 
Obs. 

Span 
(secs) 

Spread 
(cents) 

Depth at 
Ask 

Depth at 
Bid 

   AA 
ALD 
AXP 
BA 

CAT 
CHV 
DD 
DIS 
EK 
GE 
GM 
GT 

HWP 
IBM 
IP 

JNJ 
JPM 
KO 

MMM 
MO 

MRK 
MCD 

PG 
S 
T 

TRV 
UK 

UTX 
WMT 
XON 

 
Mean 

St. Dev. 

74,459 
42,900 
50,759 
54,028 
58,210 
61,737 

114,203 
104,717 
90,668 
97,823 
53,163 
56,868 

174,666 
122,705 
92,799 

101,870 
63,923 
98,629 
58,096 
79,982 
51,238 
53,251 
96,940 
51,507 
58,610 
43,659 
45,482 
50,958 
31,485 
86,392 

 
74,058 

  79 
136 
115 
108 
100 
  95 
  51 
  56 
  65 
  60 
110 
103 
  33 
  48 
  63 
  57 
  92 
  59 
101 
  73 
114 
110 
  60 
114 
100 
134 
129 
115 
186 
  68 

 
91.1 

18.8 
17.5 
15.5 
17.8 
17.8 
16.1 
15.9 
15.4 
15.8 
15.7 
16.3 
17.0 
19.0 
17.2 
17.6 
15.4 
17.5 
14.7 
17.2 
15.6 
15.5 
14.8 
17.0 
16.3 
15.6 
17.8 
16.4 
19.8 
15.0 
15.1 

 
16.5 
8.2 

   80.6 
 110.3 
 261.5 
 100.6 
   75.0 
 163.9 
 135.3 
 181.9 
 105.7 
 205.3 
 198.2 
 109.9 
   61.3 
 131.6 
   91.3 
 120.3 
   57.2 
 178.5 
   95.3 
 157.2 
 324.0 
 254.4 
   81.9 
 184.9 
 316.9 
 106.9 
   92.6 
   60.4 
 522.4 
 214.7 
 
159.8 
 172.8 
 
 

  60.6 
  98.4 
240.4 
109.8 
  66.3 
118.4 
104.6 
138.7 
  88.6 
182.4 
210.9 
  94.7 
  47.6 
108.6 
  71.9 
  96.3 
  43.6 
157.9 
  80.6 
152.1 
292.3 
205.4 
  70.2 
147.8 
259.0 
  98.1 
82.9 
  57.6 
504.2 
176.1 

 
139.5 
152.1 

165,322 
183,307 
290,043 
341,570 
184,673 
229,866 
425,811 
312,174 
224,131 
121,832 
260,588 
137,116 
391,003 
336,014 
199,380 
279,775 
232,834 
346,350 
197,681 
436,053 
173,082 
247,650 
392,998 
225,368 
236,918 
327,322 
133,489 
188,633 
294,922 
311,905 

 
260,927 

35 
33 
32 
20 
17 
32 
25 
14 
26 
48 
22 
43 
15 
17 
29 
21 
25 
17 
30 
13 
34 
24 
15 
26 
25 
18 
44 
31 
20 
19 

 
25.7 

13.6 
14.6 
14.7 
9.4 

11.1 
12.5 
12.4 
10.7 
12.3 
9.8 
9.9 

16.5 
11.0 
13.7 
12.0 
10.0 
19.3 
9.1 

14.6 
  9.4 
12.2 
10.6 
13.9 
11.8 
10.2 
10.0 
12.2 
16.4 
9.4 

10.7 
 

12.1 
7.2 

  42.4 
  57.0 
33.7 
103.6 
67.3 
  47.3 
  55.3 
108.9 
  45.9 
  76.9 
  63.9 
  40.3 
64.9 
52.2 
59.1 
67.2 
  25.8 
83.6 
38.3 
153.4 
  41.5 
68.6 
47.1 
50.8 
127.2 
115.1 
50.0 
39.2 
77.1 
80.1 

 
66.1 
108.4 

  32.1 
  52.1 
26.2 

106.3 
38.4 

  35.5 
42.2 
76.7 

  38.1 
56.7 
56.6 
32.3 
52.8 
42.1 
42.9 
49.1 
19.6 
61.3 
30.2 

137.4 
  33.3 
56.7 
35.6 
45.6 
89.0 
81.9 
36.6 
25.6 
59.1 
72.1 

 
52.3 
89.0 
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Table 2. Stochastic Properties of Spreads 
For DJIA stocks, we present on the left, spreads in closing trades each day in 1998 for all the DJIA stocks. On the right, we present approximately a month of  intraday spreads in 1998.  
Daily spreads mean revert with ADF test statistics of (rho-1) or joint F tests of drift parameters and (rho-1) or drift, time trends, and (rho-1) easily able to reject the unit root hypothesis.  
Ninety-nine percent critical values for the ADF test of H0: (rho-1=0) with samples size 250 are -3.99, -3.46, and -2.58 for model specifications with drift and deterministic time trends, wit
drift alone, and with neither drift nor time trends.  F tests of the linear restrictions have critical values of 6.52 and 8.43 for 99% confidence and samples of size 250 (Hamilton, 1994, p. 76
        In contrast, in the intraday data, spreads are non-stationary processes -- specifically, AR(1) random walks reflecting stochastic trends in intraday information or order imbalance.  In 
performing the F tests for a unit root, and drift or time trend in the intraday data, we adjusted the critical values to reflect the enormous number of degrees of freedom in the denominator 
using Leamer’s method (Reject if F > (n-k)/r)((n*r/n) – 1).  For example, for AA the critical value for 164,322 observations (n), sixteen variables (k), and three restrictions (r) is ((164,322
16)/3) ((164,322*0.0000183) – 1) = 12.04 or 12.01 for  r=1.   The comparable critical value for n=10,000, k=16, and r=3 is 9.21 (9.20 for r=1) versus the ∞ sample size augmented Dickey
Fuller F statistic for a drift parameter, a time trend, and an AR(1) process of 8.27.  

1998 Daily Closing Spreads 1998 Intraday Spreads 
Stock  No.  

Obs. 
Lags 

at 0.05 
Drift/ 

TimeTrend 
      
Rho-1 

    Test Stats 
  ADF         F 

Concl. No. 
Obs. 

Lags 
at 0.05 

Drift/ 
T Trend 

 
Rho-1 

Test Stats 
 ADF       F 

Conc 

   AA 
ALD 
AXP 
BA 

CAT 
CHV 
DD 
DIS 
EK 
GE 
GM 
GT 

HWP 
IBM 

IP 
JNJ 
JPM 
KO 

MMM 
MO 

MRK 
MCD 
PG 
S 
T 

TRV 
UK 

UTX 
WMT 
XON 

252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 
252 

1,4,8 
1,4,9,13,15 

1,3,7 
3,7,9,11 

1 
8,10,14 

2,3 
1,4,8 
1,15 

1,3,4,8,9,12 
4,8 

1,3,7 
13,14 

1,2,7,12 
2,10,11 
2,3,8,11 

1,2,9,11,14 
1,10,12,14 

6,11 
3,9,10,14 

3,8 
4,7 

7.8.9 
4,10 

4,5,13 
7,12 
2,6 

1,13 
3,14 

1,6,8,13 

Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/Neg 
Neg/No 
Neg/Pos 
Neg/No 
Neg/No 
Neg/Pos 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/No 
Neg/Pos 
Neg/No 

-0.921 
-0.838 
-0.907 
-0.994 
-0.866 
-0.968 
-0.895 
-0.928 
-0.881 
-0.884 
-0.940 
-0.790 
-1.024 
-0.806 
-0.951 
-1.091 
-0.877 
-0.923 
-0.988 
-1.104 
-1.017 
-0.992 
-0.994 
-1.064 
-0.989 
-1.062 
-0.975 
-0.839 
-1.039 
-0.905 

-10.16 
   -9.49 
 -10.46 
 -14.93 
 -10.34 
 -15.03 
 -11.69 
 -10.64 
   -9.92 
   -9.94 
 -14.09 
 -10.47 
 -15.51 
   -7.75 
 -14.47 
 -16.70 
   -8.22 
   -9.59 
 -14.01 
 -16.83 
 -15.46 
 -16.50 
 -15.08 
 -16.28 
 -14.68 
 -13.61 
 -14.85 
  - 9.20 
 -15.63 
- 10.24 

   51.7 
   42.8 
   50.5 
 115.4 
   53.4 
 112.9 
   68.2 
   37.8 
   49.2 
  32.8     

 100.3 
   81.3 
   80.4 
   24.3 
 104.4 
 139.5 
   33.8 
   46.1 
   98.0 
 141.6 
 119.6 
 111.1 
 113.6 
 132.2 
 107.8 
   92.5 
 109.9 
   42.2 
   80.9 
   52.5 

I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 
I(0) 

10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 
10,000 

1-6,14,15 
1-6,9,11,15 

1-5,6-9,13,15 
1-5,7,8,11,15 
1-10,12-15 
1-5,7,9-15 

1,2,4-6,13-15 
1-5,7,9,12,15 
1-4,6,7,10-15 
1-5,7,9,12,15 
1-8,10,13-15 
1-4,8,9,12,15 
1-7,9,11-15 

1-4,6,9-13,15 
1-5,7,9,12,15 
1-5,8,9,13-15 
1-4,6,8,13,15 
1,2,5,6,11,15 

1-8,13-15 
1-4,7,8,11-15 
1-3,5,13,15 

1-7,9,11,14,15 
1-4,6,9,12-15 
1-5,8,10,15 
1-8,10-15 

1-4,6-11,13-15 
1-4,6,8,9,14,15 
1-4,6,8,9,12,15 
1-6,8-10,12-15 

1-12,14,15 

No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 
No/No 

-0.009 
-0.005 
-0.007 
-0.005 
-0.004 
-0.003 
-0.003 
-0.004 
-0.004 
-0.002 
-0.002 
-0.007 
-0.003 
-0.003 
-0.004 
-0.002 
-0.008 
-0.002 
-0.005 
-0.001 
-0.003 
-0.008 
-0.004 
-0.003 
-0.002 
-0.003 
-0.003 
-0.006 
-0.002 
-0.002 

-4.74 
-3.93 
-3.94 
-3.30 
-1.71 
-2.12 
-1.99 
-2.28 
-2.12 
-1.82 
-1.58 
-3.40 
-1.87 
-1.85 
-2.17 
-1.42 
-3.40 
-1.52 
-2.51 
-1.55 
-2.05 
-3.04 
-2.39 
-2.11 
-1.32 
-1.82 
-1.98 
-2.78 
-1.36 
-1.50 

 11.09 
 7.20 
8.22 
5.41 
 1.34 
 2.55 
2.02 
2.32 
2.46 
1.08 
1.36 
6.01 
1.89 
1.70 
2.31 
0.94 
5.60 
1.23 
3.07 
0.75 
2.33 
4.41 
2.73 
2.42 
1.05 
1.75 
1.85 
3.98 
0.98 
1.06 

 ≈ I(1) 
  I(1) 
  I(1) 
  I(1) 

I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
I(1) 
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Table 3.   Specification Analysis for Quote Data. 
 
The various panels of the table indicate the stock ticker and the year for which the cointegration tests are carried out; Hypothesis indicates the specific nature of the null and the alternative; 
Trace and Hmax are Johansen’s (1991) cointegration test statistics, and Conclusion summarizes whether the variables are cointegrated.   Σγ is the sum of the magnitudes of the cointegrating 
vector (suggesting the magnitude of possible arbitrage profit opportunities) while γ⊥ ask and γ⊥ bid are common factor weights for the ask and the bid (or the ask size and the bid size), 
respectively.  Note that γ⊥ ask + γ⊥ bid = 1.  The results are provided for IBM and AT&T, estimated over calendar years 1995 and 1998.  Similar results were obtained for other DJIA stocks.   
** (*) denotes significance at the 0.01 (0.05) level.   

Panel A: Price Quotes 
 

 Hypothesis    Trace Hmax Conclusion Σγ γ⊥ ask γ⊥ bid
IBM95        H0:r = 0, Ha:r =1 26.75** 26.74** C (1) 0.00003 0.496** 0.504**
IBM98 

          
H0:r = 0, Ha:r =1 19.64* 16.63* C (1) 0.0001 0.554** 0.446** 

T95 H0:r = 0, Ha:r =1 28.03** 28.02** C (1) 0.000006 0.237** 0.763**
T98 H0:r = 0, Ha:r =1 17.78* 17.75* C (1) 0.00023 0.553** 0.447* 
 
The estimated equations:  

∆ Ask t     =    α a  +∑
=

6

1i
itaa −,β ∑

=
− +

6

1i
itAsk itab −,β Bid t-i + γa(Ask - Bid)t-1 

 

∆ Bid t       =     α b   +∑
=

6

1i
itba −1

β ∑
=

− +
6

1i
itAsk itbb −,β Bid t-i + γb(Ask - Bid)t-1 

Panel B: Depth Quotes 
         

   Hypothesis Trace Hmax  Conclusion Σγ γ⊥ asz γ⊥ bsz
IBM95          Ho:r = 0, Ha:r = 1 25.84** 16.75* C(1) 0.00008 0.414* 0.586*
IBM98          

 
Ho:r = 0, Ha:r = 1 29.75** 17.30* C(1) 0.00002 0.491* 0.509

T95 Ho:r = 0, Ha:r = 1 24.62** 16.81* C(1) 0.000002 0.421* 0.579* 
T98          Ho:r = 0, Ha:r = 1 22.93** 14.64* C(1) 0.000002 0.352 0.648*

The estimated equations: 

∆ Asksz t   =    α asz +∑
=

6

1i
itasza −,β ∑

=
− +

6

1i
itAsksz itaszb −,β Bid t - i    +  γasz(Asksz -Bidsz)t-1  

∆ Bidsz t    =    α bsz +∑
=

6

1i
itbsza −,β ∑

=
− +

6

1i
itAsksz 1, −tbszbβ  Bid t – i  +  γbsz(Asksz - Bidsz)t-1
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Panel C: Spreads (Ask – Bid) and Ask Depth  
   

 Hypothesis    Trace Hmax Conclusion Σγ fs fasz
IBM95 H0:r = 0, Ha:r =1 42.31** 28.35** C(1) n.a. 0.509 0.491** 
IBM98 

 
H0:r = 0, Ha:r =1 32.49** 19.21** C(1)    n.a. 0.572 0.428* 

T95 H0:r = 0, Ha:r =1 42.08** 27.53** C(1)    n.a. 0.573 0.427** 
T98 H0:r = 0, Ha:r =1 32.73** 21.30** C(1) n.a. 0.632 0.368** 
 

The estimated equations: 

∆ Spread t      =    α a +∑
=

6

1i
itSS −,β ∑

=
− +

6

1i
itSpread itSasz −,β Asksz t – i     +  γS(Spread -Asksz)t-1  

∆ Asksz t    =    α asz  +∑
=

6

1i
itaszS −,β ∑

=
− +

6

1i
itSpread 1, −taszaszβ  Asksz t – i  +  γasz(Spread - Asksz)t-1

 
Panel D: Spreads (Ask – Bid) and Bid Depth  

   
 Hypothesis    Trace Hmax Conclusion Σγ γ⊥ S γ⊥ bsz

IBM95 H0:r = 0, Ha:r =1 41.98** 28.56** C(1)    n.a. 0.460 0.540** 
IBM98 

 
H0:r = 0, Ha:r =1 32.03** 18.97** C(1)    n.a 0.580 0.420* 

T95 H0:r = 0, Ha:r =1 41.15** 27.40** C(1) n.a. 0.533 0.467** 
T98 H0:r = 0, Ha:r =1 32.14** 20.77** C(1) n.a 0.521 0.479** 
 

The estimated equations: 

∆ Spread t      =    α a +∑
=

6

1i
itSS −,β ∑

=
− +

6

1i
itSpread itSbsz −,β Bidsz t – i  +  γS (Spread -Bidsz)t-1  

∆ Bidsz t          =    α bsz   +∑
=

6

1i
itbszS −,β ∑

=
− +

6

1i
itSpread 1, −tbszbszβ  Bidsz t – i  +  γbsz (Spread - Bidsz)t-1
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Panel E: Spreads (Ask – Bid) and ½ Summed Depths (Asksz + Bidsz) 

 
   

 Hypothesis    Trace Hmax Conclusion Σγ γ⊥ S γ⊥ ½ (asz + bsz)
IBM95 H0:r = 0, Ha:r =1 31.65** 22.72** C(1)   n.a. 0.232 0.768** 
IBM98 

 
H0:r = 0, Ha:r =1 28.12** 16.32** C(1)  n.a 0.510         0.490* 

T95 H0:r = 0, Ha:r =1 35.54** 28.09** C(1)   n.a. 0.211 0.789** 
T98 H0:r = 0, Ha:r =1 26.70** 18.90** C(1) n.a 0.428         0.572** 
 

The estimated equations: 
 

∆ Spread t      =    α a +∑
=

6

1i
itSS −,β ∑

=
− +

6

1i
itSpread itbszaszS −+ ,,β 1/2 (Asz+Bsz) t – i  +  γS (Spread – ½ (Asz+Bsz))t-1  

∆ 1/2 (Asksz t  + Bidsz t)   =    α asz+bsk   +∑
=

6

1i
itSbszasz −+ ,,β ∑

=
− +

6

1i
itSpread 1, −+ tbszaszβ 1/2 (Asz+Bsz) t – i  +  γasz+bsk (Spread – ½ (Asz+Bsz))t-1  
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Table 4.  Estimates and tests of cointegrating vectors.  
For each Dow 30 stock, we estimate the cointegrating vectors for the quoted spread and the two depths at the quotes.  These cointegrating vectors define the 
equilibrium errors that we employ subsequently in the estimation of the error correction version of the model.  For each firm, we present results of the trace 
test of r = 0 against r ≥ 1 and of r = 1 against r ≥ 2.  The 99% critical values for rejecting the null hypotheses are 37.29 and 21.96 and for 95% 31.26 and 
17.84, respectively (Enders, 1995). Twenty of the thirty cases in 1995 and all thirty cases in 1998 fail to reject the null hypothesis of one cointegrating vector 
and two common factors. In all sixty cases we can reject the null hypothesis of no cointegrating vectors.   
 
Firm symbol AA95 ALD95 AXP95 BA95 CAT95  CHV95   DD95 DIS95 EK95 GE95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
    40.84** 

17.65 

 
    40.97** 

15.80 

 
 48.30** 
21.02* 

 
   40.67** 

15.77 

 
  41.64** 

17.97* 

 
  44.73** 

18.92* 

 
   40.76** 

17.37 

 
   40.64** 

16.19 

 
   42.44** 

17.67 

 
   43.55** 

17.25 

Firm symbol GM95 GT95 HWP95 IBM95 IP95 JNJ95 JPM95 KO95 MMM95 MO95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
    45.82** 

17.20 

 
   39.07** 

16.23 

 
    36.91** 

15.60 

 
  45.29** 

18.13* 

 
    38.72** 

15.94 

 
    42.54** 

16.45 

 
    41.80** 

17.55 

 
    41.60** 

15.15 

 
  42.40** 

18.23* 

 
    42.16** 

17.82 
 

Firm Symbol    MRK95  MCD95    PG95     S95    T95    TRV95    UK95   UTX95   WMT95     XON95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  48.87** 

20.76* 

 
  46.97** 

19.95* 

 
   38.98** 

16.62 

 
  44.76** 

18.64* 

 
  48.62** 

21.23* 

 
    40.65** 

16.06 

 
    41.26** 

17.24 

 
  34.91* 
14.11 

 
  48.92** 

20.64* 

 
    44.27** 

17.68 

Firm symbol AA98 ALD98 AXP98 BA98 CAT98  CHV98   DD98 DIS98 EK98 GE98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  30.84* 
17.65 

 
  34.21* 
15.80 

 
  31.32* 
13.77 

 
  33.01* 
13.84 

 
  37.20* 
15.97 

 
  35.50* 
15.51 

 
  35.65* 
16.24 

 
  33.98* 
16.21 

 
  34.59* 
15.67 

 
  31.36* 
13.36 

Firm symbol GM98 GT98 HWP98 IBM98 IP98 JNJ98 JPM98 KO98 MMM98 MO98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  34.67* 
13.94 

 
30.41 
13.36 

 
  33.21* 
14.31 

 
  35.37* 
16.89 

 
  32.63* 
14.30 

 
  35.58* 
14.78 

 
  31.36* 
16.01 

 
  31.32* 
12.83 

 
  34.42* 
14.35 

 
26.16 
11.58 

Firm Symbol    MRK98  MCD98    PG98     S98    T98    TRV98    UK98   UTX98   WMT98     XON98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
 
 

 
  34.28* 
16.74 

 
    37.31** 

16.93 

 
  32.29* 
14.02 

 
  32.36* 
13.70 

 
  35.33* 
14.62 

 
  34.37* 
15.92 

 
  31.86* 
13.11 

 
    32.26** 

14.21 

 
    38.06** 

16.14 

 
29.37 
10.66 

**Significant at 0.01, *Significant at 0.05 
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Table 5.  Proportion of information discovery by spreads versus depths at the quote.  For each of the three series (spreads, asksizes, bidsizes), 
we present the common factor weights (in percent), which are normalized so that for a given stock for a given year, the weights sum to 100%, except for rounding 
errors.  With two cointegrating vectors (r = 2) there is only one common factor--i.e., one relevant vector of the common factor matrix orthogonal to the adjustment 
vectors.  We test each of the elements of this last eigenvector of the common factor matrix for significance using the methodology developed by Gonzalo and Granger 
(1995).  In each case the null hypothesis is that the factor weight for the indicated series is 0.  The test statistic is distributed chi-squared with one degree of freedom.  In 
all sixty cases, we reject the null hypothesis for depths.  The boldface stocks are those for which the Johansen test statistics in Table 3 indicate two cointegrating vectors 
and therefore one common trend.  The factor weights and tests for the second common trend for the non-boldface stocks are available from the authors.   
 
 1995  1998
Stock Symbol  Spread Ask size          Bid size           Spread Ask size          Bid size 
AA 
ALD 
AXP 
BA 
CAT 
CHV 
DD 
DIS 
EK 
GE 
GM 
GT 
HWP 
IBM 
IP 
JNJ 
JPM 
KO 
MMM 
MO 
MRK 
MCD 
PG 
S 
T 
TRV 
UK 
UTX 
WMT 
XON 

0.523 
0.475 

    0.568** 
    0.522** 

0.532 
0.530 
0.565 
0.514 

    0.548** 
    0.503** 

0.461 
0.552 
0.482 
0.419 

    0.532** 
0.496 
0.513 
0.542 
0.516 

    0.587** 
    0.505** 

0.537 
0.518 
0.477 
0.491 
0.498 
0.499 
0.482 
0.557 

    0.518** 

0.234** 
0.274** 
0.213** 
0.200** 
0.220** 
0.234** 
0.211** 
0.230** 
0.218** 
0.238** 
0.261** 
0.220** 
0.265** 
0.268** 
0.222** 
0.248** 
0.246** 
0.208** 
0.252** 
0.186** 
0.232** 
0.228** 
0.234** 
0.253** 
0.240** 
0.264** 
0.247** 
0.250** 
0.220** 
0.238** 

0.242** 
0.251** 
0.219** 
0.278** 
0.246** 
0.236** 
0.229** 
0.236** 
0.234** 
0.259** 
0.278** 
0.228** 
0.263** 
0.313** 
0.246** 
0.246** 
0.244** 
0.250** 
0.232** 
0.227** 
0.263** 
0.235** 
0.248** 
0.270** 
0.268** 
0.238** 
0.254** 
0.268** 
0.223** 
0.244** 

          0.520 
          0.490  
          0.522 
          0.535 
          0.520 
          0.517  
          0.550 
          0.484 
          0.550 
          0.547  
          0.446 
           n.a. 
          0.541 
          0.486  
          0.515 
          0.511 
          0.509 
          0.524  
          0.512 
            n.a. 
          0.469 
          0.532  
          0.538 
          0.556 
          0.500 
          0.479  
          0.429 
          0.483 
          0.589** 
            n.a. 

0.252** 
0.284** 
0.252** 
0.226** 
0.221** 
0.259** 
0.236** 
0.242** 
0.206** 
0.208** 
0.239** 

n.a. 
0.212** 
0.252** 
0.262** 
0.259** 
0.255** 
0.224** 
0.231** 

n.a. 
0.261** 
0.220** 
0.230** 
0.206** 
0.233** 
0.224** 
0.294** 
0.271** 
0.201** 

n.a. 

0.228** 
0.226** 
0.226** 
0.229** 
0.229** 
0.224** 
0.214** 
0.274** 
0.244** 
0.245** 
0.315** 

n.a. 
0.247** 
0.272** 
0.223** 
0.230** 
0.236** 
0.252** 
0.257** 

n.a. 
0.270** 
0.258** 
0.232** 
0.248** 
0.267** 
0.227** 
0.277** 
0.246** 
0.210** 

n.a. 
Mean 0.5154          0.2351           0.2489           0.5131          0.2393          0.2447 
**Significant at the 0.01 level.       
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Table 6.  Test of the null hypothesis that no information discovery occurs in depths.   
Using the Gonzalo and Granger (1995) QGG statistic, we test the null hypothesis that the common factor weight 
for spreads is 1.0 and that the common factor weights for the two depths are both 0.0.  The test statistic is 
distributed chi-squared with two degrees of freedom.  We reject the null hypothesis in all 30 cases in 1995 and 
in 25 of 30 cases in 1998. 
  

1995 
 

1998 
 
Stock  
 

 
χ2

    
p-value 

 

 
χ2 p-value 

 
AA 
ALD 
AXP 
BA 
CAT 
CHV 
DD 
DIS 
EK 
GE 
GM 
GT 
HWP 
IBM 
IP 
JNJ 
JPM 
KO 
MMM 
MO 
MRK 
MCD 
PG 
S 
T 
TRV 
UK 
UTX 
WMT 
XON 

12.61 
15.71 
18.96 
14.97 
13.85 
15.80 
15.03 
15.71 
15.11 
17.56 
18.99 
13.74 
12.71 
15.87 
16.40 
17.89 
14.94 
17.50 
15.70 
15.75 
18.84 
16.97 
13.71 
17.71 
17.97 
15.15 
14.05 
12.62 
14.29 
18.04 

  
 
 
 
 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

7.29 
8.93 
9.27 
9.95 
8.73 

10.59 
9.41 
6.60 
9.77 
9.61 

11.33 
n.a. 

9.38 
5.48 
8.77 

11.61 
5.39 

10.73 
6.78 
n.a. 

8.18 
11.98 
8.05 
9.61 

10.51 
8.58 

10.21 
7.11 

12.67 
n.a. 

  0.01
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
n.a. 

0.01 
0.02 
0.01 
0.01 
0.02 
0.01 
0.01 
n.a. 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
n.a. 
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Table 7.  Error-correction models.  For each series in the three-variable information structure, we present Seemingly 
Unrelated Regression (SUR) estimates of the error correction model for log changes.  In each case, the error-correction term z  
specified as - (Spread + AskSize - BidSize) has the expected sign and is statistically significant at the 0.05 level (signified by a 
single-asterisk) 

PANEL A 
      IBM 1995 

              VECTOR ERROR CORRECTION MODEL           

∆SPREADS ∆ASKSIZE ∆BIDSIZE 
Constant 
∆SPREADS (t-1) 
∆SPREADS (t-2) 
∆SPREADS (t-3) 
∆SPREADS (t-4) 
∆SPREADS (t-5) 
∆SPREADS (t-6) 
∆ASKSIZE (t-1) 
∆ASKSIZE (t-2) 
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3) 
∆BIDSIZE (t-4) 
∆BIDSIZE (t-5) 
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(t-1) 

-0.699  (-90.85)*
-0.103  (-14.96)* 
-0.115  (-17.95)* 
-0.105  (-17.84)* 
-0.087  (-16.36)* 
-0.062  (-13.65)* 
-0.035  (-9.47)* 
0.015   (8.27)* 
0.018  (-1.31) 
0.015  ( 8.35)* 
0.016   (9.49)* 
0.011   (6.74)* 
0.006   (4.36)* 
0.021 (10.52)* 
0.023   (11.64)* 
0.022   (11.37)* 
0.019  (10.15)* 
0.016  (8.97)* 
0.010  (6.13)* 
 

61.2 (91.97)* 
1.38 (3.38)* 
 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(t-1) 

-0.645 (-36.35)*
0.226 (14.24)* 
0.138  (-9.3)* 
0.111  (-8.12)* 
0.087  (-7.16)* 
0.061  (-5.78)* 
0.047   (5.47)* 
-0.207  (-46.96)* 
-0.138   (9.3)* 
-0.116  (-27.29) 
-0.086  (-21.27)* 
-0.063   (16.25)* 
-0.038   (-10.75)* 
-0.115   (24.72)* 
-0.075 (-16.15)* 
-0.054   (-11.94)* 
-0.040   (-9.09)* 
-0.033  (-8.07)* 
-0.027  (-7.00)* 
 

 62.0 (40.35)* 
-54.1 (-57.22)* 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6)
 
Z1(t-1) 
Z2(t-1) 

-0.664 (-40.31)* 
0.248 (16.86)* 
0.165 (12.01)* 
0.122 (9.64)* 
0.096 (8.46)* 
0.069 (7.03)* 
0.048 ((6.02)* 
-0.104 (-25.60)* 
-0.072 (-17.95)* 
-0.057 (-14.57)* 
-0.042 (-11.18)* 
-0.033 (-9.21)* 
-0.023 (-7.15)* 
 -0.234 (54.13)* 
-0.165 (-38.4)* 
-0.123 (-29.25)* 
-0.097 (-23.83)* 
-0.069 (-17.89)* 
-0.041 (-11.65)* 
 
53.59 (37.58)* 
48.07 (54.76)* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 

0.393 
2592* 
61.6* 
23.2* 
35.1* 
4231* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.235 
1231* 
37.9* 
380* 
104* 
2488* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.223 
1150* 
50.92* 
113.75* 
510.30* 
2174* 
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Table 7   PANEL B 
      IBM 1998 

              VECTOR ERROR CORRECTION MODEL           

∆SPREADS ∆ASKSIZE ∆BIDSIZE 
Constant 
∆SPREADS (t-1) 
∆SPREADS (t-2) 
∆SPREADS (t-3) 
∆SPREADS (t-4) 
∆SPREADS (t-5) 
∆SPREADS (t-6) 
∆ASKSIZE (t-1) 
∆ASKSIZE (t-2) 
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3) 
∆BIDSIZE (t-4) 
∆BIDSIZE (t-5) 
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(t-1) 

-0.363  (-68.10)*
-0.272  (-52.60)* 
-0.174  (-34.61)* 
-0.134  (-27.71)* 
-0.098  (-21.60)* 
-0.071  (-17.07)* 
-0.045  (-12.74)* 
0.017   (7.80)* 
0.016  (-7.44)* 
0.014  (6.87)* 
0.007  (3.72) 
0.010  (5.18)* 
0.005  (3.07) 
0.022 (10.15)* 
0.017 (7.84)* 
0.014 (6.56)* 
0.010 (5.17)* 
0.009 (4.81)* 
0.009 (5.17)* 
 

28.7 (70.68)* 
-1.20 (-2.95) 
 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6) 
 
Z1(t-1) 
Z2(t-1) 

-0.309 (-29.49)*
0.099 (9.82)* 
0.061 (-6.15)* 
0.052 (-5.48)* 
0.046 (-5.18)* 
0.046 (-5.65)* 
0.030 (4.36)* 
-0.213 (-48.85)* 
-0.153 (-35.57)* 
-0.110 (-26.25)* 
-0.086 (-21.27)* 
-0.061 (16.04)* 
-0.040 (-11.55)* 
-0.079 (-18.17)* 
-0.060 (-14.04)* 
-0.053 (-12.68)* 
-0.048 (-11.95)* 
-0.043 (-11.25)* 
-0.026  (-7.19)* 
 

23.9 (29.96)* 
-43.2 (-54.04)* 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6)
 
Z1(t-1) 
Z2(t-1) 

-0.372 (-36.56)* 
0.107 (10.91)* 
0.078 (8.13)* 
0.055 (6.05)* 
0.055 (6.37)* 
0.047 (5.93)* 
0.035 (5.24)* 
-0.062 (-14.73)* 
-0.049 (-11.87)* 
-0.043 (-10.69)* 
-0.033 (-8.43)* 
-0.064 (-17.07)* 
-0.042 (-11.87)* 
-0.172 (40.70)* 
-0.135 (-32.44)* 
-0.108 (-26.52)* 
-0.085 (-21.54)* 
-0.064 (-17.07)* 
-0.042 (-11.87)* 
 
29.9 (38.59)* 
39.0 (50.31)* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 

0.2924 
1652* 
465* 
14.5* 
20.4* 
2502* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.1953 
970* 
17.5* 
415* 
68.1* 
1908* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
   Z1,Z2 
 

0.1768 
858.5* 
21.4* 
41.4* 
317* 
2009* 
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Table 8.  Unrestricted VAR.  For each series in the three-variable information structure, we present SUR estimates of the 
vector autoregressions (VAR) for log changes. In each equation, this misspecification results in sign switches on several lagged 
variables and a substantially reduced R2

 relative to the correct specification of this model as a VECM (Table 6). 
 

 
      IBM 1995 

              VECTOR AUTOREGRESSIONS           

∆SPREADS ∆ASKSIZE ∆BIDSIZE 
Constant 
∆SPREADS (t-1) 
∆SPREADS (t-2) 
∆SPREADS (t-3) 
∆SPREADS (t-4) 
∆SPREADS (t-5) 
∆SPREADS (t-6) 
∆ASKSIZE (t-1) 
∆ASKSIZE (t-2) 
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3) 
∆BIDSIZE (t-4) 
∆BIDSIZE (t-5) 
∆BIDSIZE (t-6) 

6.16E−7 (0.00)
-0.647 (-174.77)* 
-0.576  (-134.97)* 
-0.477 (-104.76)* 
-0.368 (-80.69)* 
-0.255 (-59.30)* 
-0.141 (-37.80)* 
-0.022 (-13.94)* 
-0.012 (-7.12)* 
-0.008 (-4.89)* 
-5.03E−4 (-0.29) 
1.61E−4 (0.09) 
0.002 (1.20) 
-0.027 (1-15.83)* 
-0.016 (-8.59)* 
-0.009 (-4.72)* 
-0.004 (-2.33)* 
-6.58E−5 (0.04) 
0.001 (0.90) 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6) 
 

2.47E−5 (0.01)
-0.317 (-37.86)* 
-0.321 (-33.26)* 
-0.259 (-25.22)* 
-0.193 (-18.70)* 
-0.130 (-13.40)* 
-0.057 (-6.84)* 
-0.389 (-107.09)* 
-0.292 (-75.76)* 
-0.243 (-61.85)* 
-0.187 (-47.65)* 
-0.138 (-35.90)* 
-0.086 (-23.88)* 
-0.021 (-5.47)* 
0.007 (1.86) 
0.016 (3.88)* 
0.019 (4.46)* 
0.012 (3.06) 
0.006 (1.70) 

Constant 
∆SPREADS (t-1)
∆SPREADS (t-2)
∆SPREADS (t-3)
∆SPREADS (t-4)
∆SPREADS (t-5)
∆SPREADS (t-6)
∆ASKSIZE (t-1)
∆ASKSIZE (t-2)
∆ASKSIZE (t-3) 
∆ASKSIZE (t-4) 
∆ASKSIZE (t-5) 
∆ASKSIZE (t-6) 
∆BIDSIZE (t-1) 
∆BIDSIZE (t-2) 
∆BIDSIZE (t-3)
∆BIDSIZE (t-4)
∆BIDSIZE (t-5)
∆BIDSIZE (t-6)

6.06E−6 (0.00) 
-0.234 (-30.23)* 
-0.242 (-27.21)* 
-0.207 (-21.76)* 
-0.153 (-16.09)* 
-0.101 (-11.32)* 
-0.046 (-5.93)* 
-0.017 (-5.07)* 
0.004 (1.29) 
0.008 (-2.39) 
0.012 (3.43) 
0.010 (2.92) 
0.008 (2.44) 
-0.397 (-109.84)* 
-0.303 (-78.75)* 
-0.237 (-60.28)* 
-0.188 (-47.83)* 
-0.137 (-35.64)* 
-0.085 (-23.61)*  

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 

0.329 
2180* 
5649* 
37.1* 
45.7* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
 

0.187 
1027* 
289.3* 
2309* 
13.2* 

R2

F Statistics 
   ∆Spreads 
   ∆Asksize 
   ∆Bidsize 
 

0.181 
983* 
189.9* 
9.8* 
2402* 

*Significant at 0.05 
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Figure 1   Own Impulse Response Functions for Spreads and Depths in 1995 and 1998 
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Figure 2  Orthoganalized Impulse Response of Spreads to Depths in 1995 and 1998 
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Figure 3 Orthoganalized Impulse Response of Bid Depths to Ask Depths in 1995 and 1998 

OIRF of Bid Depths to Ask Depths in 1995

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1.5 3 5 6 8 9 11 12 14 15 17 18 20 21 23 min

Orthoganizled Impulse Response of Bid 
Depths to Ask Depths in 1995

Individual Securities

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1.5 5 8 11 14 17 20 23

 

OIRF of Bid Depths to Ask Depths in 1998

0.00

0.01

0.02

0.03

0.04

0.05

0.4 1 1.3 2 3 4 5 6 7 min

Orthoganalized Impulse Response of Bid 
Depths to Ask Depths in 1998

individual Securities

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0.4 1.3 2 3 4 5 6 min

 

 46



Figure 4 Orthoganalized Impulse Response of Ask Depths to Bid Depths in 1995 and 1998 
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Figure 5 Orthoganalized IRF of Spreads to Ask Depths in 1995 and 1998, Monday 9:30-10:00 
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APPENDIX A 

 
 
Estimates and tests of cointegrating vectors involving bid and ask quotes and bid and ask depths.  For each Dow 30 stock, we estimate the 
cointegrating vectors for the four-variable model of the two price quotes and the two depths at the quotes and present results of the trace test of r = 0 against 
r ≥ 1,  r = 1 against r ≥ 2, and r = 2 against r ≥ 3.  The 90% critical values for rejecting the null hypothesis of no cointegration are 45.24, 28.44, and 15.58, 
respectively (Enders, 1995). 
 
Firm symbol AA95 ALD95 AXP95 BA95       CAT95 CHV95 DD95 DIS95 EK95 GE95
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
36.05 
14.36 
8.42 

 
38.46 
14.51 
8.63 

 
43.14 
16.53 
8.48 

 
37.84 
13.73 
8.95 

 
36.73 
14.78 
7.72 

 
38.45 
14.55 
7.11 

 
36.06 
14.18 
5.54 

 
36.06 
14.18 
5.54 

 
35.84 
12.96 
6.89 

 
40.28 
14.10 
7.57 

Firm symbol GM95 GT95 HWP95 IBM95 IP95 JNJ95 JPM95 KO95 MMM95 MO95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
42.82 
14.03 
8.51 

 
34.50 
12.72 
7.19 

 
31.73 
11.96 
8.33 

 
39.30 
16.46 
9.39 

 
32.27 
11.61 

     7.08 

 
38.82 
13.59 
7.21 

 
37.02 
13.54 
8.12 

 
38.72 
12.39 
7.46 

 
38.09 
14.39 
7.15 

 
36.74 
13.85 
7.13 

Firm Symbol MRK95 MCD95 PG95 S95 T95 TRV95 UK95 UTX95 WMT95 XON95 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
  45.62* 
17.05 
9.78 

 
43.77 
16.38 
9.47 

 
35.43 
13.48 
7.31 

 
42.30 
15.46 
6.80 

 
  45.35* 
16.90 
8.13 

 
40.53 
13.99 
9.14 

 
35.17 
13.21 
8.95 

 
31.65 
12.23 
6.22 

 
45.11 
17.32 
11.02 

 
39.77 
13.18 
6.03 

Firm symbol AA98 ALD98 AXP98 BA98       CAT98 CHV98 DD98 DIS98 EK98 GE98
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
25.58 
10.24 
7.43 

 
25.99 
10.79 
8.63 

 
28.41 
12.17 
7.99 

 
28.19 
10.95 
7.11 

 
28.10 
11.24 
6.40 

 
29.52 
12.29 
8.56 

 
29.80 
13.10 
7.80 

 
30.21 
13.7 
9.29 

 
27.67 
11.24 
6.78 

 
24.95 
8.75 
5.54 

Firm symbol GM98 GT98 HWP98 IBM98 IP98 JNJ98 JPM98 KO98 MMM98 MO98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
28.98 
10.34 
7.23 

 
24.19 
10.23 
7.51 

 
28.29 
11.81 
7.81 

 
33.66 
16.59 
11.94 

 
28.25 
11.87 
7.62 

 
30.79 
11.53 
7.13 

 
30.37 
12.80 
9.38 

 
27.09 
9.66 
5.73 

 
26.16 
10.08 
8.59 

 
20.93 
8.45 
5.25 

Firm Symbol MRK98 MCD98 PG98 S98 T98 TRV98 UK98 UTX98 WMT98 XON98 
 
Test of r = 0 against r = 1 
Test of r = 1 against r = 2 
Test of r = 2 against r = 3 
 
 

 
29.08 
12.84 
8.04 

 
27.33 
10.75 
7.11 

 
25.85 
9.91 
6.37 

 
27.33 
10.75 
7.11 

 
31.12 
12.12 
7.65 

 
29.22 
12.93 
8.74 

 
26.67 
9.71 
5.43 

 
28.27 
11.50 
8.33 

 
29.11 
10.34 
5.89 

 
29.46 
9.04 
7.23 
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Technical Appendix 
 

The Gonzalo-Granger Decomposition of Co-Integrated Series into 
Permanent and Transitory Components. 
 

The GG decomposition involves expressing p cointegrated series as an additively separable 

function of k common factor(s), f t , and r stationary error correction terms, z t = α′ P t , where α′ is 

an r x p matrix of the cointegrating vectors and z t  is I(0), 

 (4)   P t   =  A1 f t +  A2 z t 

 (4')                 P t    =  A1 γ⊥′ P t  +  A2 α′ P t-1. 

Pt is a p x 1 vector of cointegrated prices or depths, A1 and  A2 are loading matrices, and  γ⊥′ is a k 

x p matrix of common factor weights on the contemporaneous prices or depths in the k common 

factor vector(s)  f t where k = (p - r).  Gonzalo and Granger (1995) show that under the above 

restrictions, the p x k matrix A1 =  α⊥( γ⊥′ α⊥) -1 and the p x r matrix A2 =  γ (α′ γ) –1, where, by 

definition, γ⊥′γ = 0.   Since the vector of common factor weights γ⊥ is orthogonal to the coefficient 

vector γ on the error correction terms in a fully-specified VECM, the γ estimates in the above 

model provide a way to identify the permanent components γ⊥′Pt .   

Our information structure incorporates three I(1) variables—i.e., the depth quote at the 

ask (ASQ), the depth quote at the bid (BSZ), and the spread (S).24  Consider, for example, the 

special case in which the spread is totally (100%) responsible for reflecting new information.  This 

would be the case, for example, if informed traders used only market orders and never used limit 

orders.  Further, for simplicity, suppose that the cointegration tests reveal two cointegrating 

vectors (r = 2), thereby implying that there exists only one common factor—i.e., (k = 3 – 2).   With 

k = 1, the rank of the 3 x k loading matrix, A1 in equation (4'), would be one (i.e., each row of A1 is 

identical), and the elements of γ⊥ would therefore cumulate the response of each series to an 
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innovation in the common factor.  The error correction terms of the VECM in equation (4’) would 

then be estimated as 

(5)        γ        =   ′α 1-tP
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⎥
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where Π1, i and Π2, i are the elements of the cointegrating vectors.  By hypothesis, γ S  = 0 so that 

(6)     γ       =   ′α 1-tP
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Under this unilateral information discovery hypothesis, spreads do not error correct to changes 

in ask depths or bid depths (because, by assumption, they are not informative) whereas both 

depths do error correct to changes in spreads in order to maintain their equilibrium 

(cointegration) relationship to the permanent stochastic trend.  To identify the GG common factor 

vector γ⊥ for this case, one simply applies the orthogonality condition γ⊥′ γ  =  0 which here 

implies γ⊥′ = [ 1   0    0 ].  That is, the factor weight, γ⊥ , S, corresponding to the first series in 

equations (5) and (6) is 1.0; one could therefore conclude spreads are 100% responsible for 

revealing the common stochastic trend. 

Gonzalo and Granger (1995) develop a χ2 distributed test statistic (QGG) for the elements of 

the common factor vector, γ⊥ j, interpretable as a vector of factor weights on the underlying time 

series that together are responsible for the multivariate cointegration.  In this paper, we use the 

common factor weights attributable to spreads and depths to uncover which dimension of the 

quote adjustment process first conveys new information in DJIA stocks.   

 
                                                                                                                                                                                              
24 Again, recall that our order of integration tests show that the spread is generally not I(0) but I(1) for DJIA 
stocks during 1995 and 1998 when many features of the security market design were changing. 
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