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Abstract

This paper establishes that the bootstrap provides asymptotic refinements for the generalized
method of moments estimator of overidentified linear models when autocovariance structures of
moment functions are unknown. Because the heteroskedasticity and autocorrelation consistent
covariance matrix estimator cannot be written as a function of sample moments and converges
at a rate slower than 7'/2, the asymptotic refinement cannot be proved in the conventional
way. As a result, we find that the bootstrap approximation error for the distribution of the
t test and the test of overidentifying restrictions is of larger order than typically found in the
literature. We also find that the choice of kernels plays a more important role in our second-
order asymptotic theory than in the conventional first-order asymptotic theory. Nevertheless,
the bootstrap approximation improves upon the first-order asymptotic approximation. A Monte
Carlo experiment shows that the bootstrap improves the accuracy of inference on regression
parameters in small samples. We apply our bootstrap method to inference about the parameters
in the monetary policy reaction function.
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1. Introduction

In this paper we establish that the bootstrap provides asymptotic refinements for the
generalized method of moments (GMM) estimator of possibly overidentified linear mod-
els. Our analysis differs from earlier work in that we allow for general autocovariance
structures of moment functions. In typical empirical situations, the autocovariance
structure of moment functions is unknown and the inverse of the heteroskedasticity
and autocorrelation consistent (HAC) covariance matrix estimator is used as a weight-
ing matrix in GMM estimation. It is well known, however, that coverage probabilities
based on the HAC covariance estimator are often too low, and that the t test tends
to reject too frequently (see Andrews, 1991). In this paper, we propose a bootstrap
method for the GMM estimator to improve the finite sample performance of the ¢ test
and the test of overidentifying restrictions (J test). We use the block bootstrap origi-
nally proposed by Kiinsch (1989) for weakly dependent data (see also Carlstein, 1986).
When the block length increases at a suitable rate with the sample size, such block
bootstrap procedures eventually will capture the unknown structure of dependence.
Our linear framework is of particular interest in applied time series analysis. GMM
estimation of linear models has been applied to the expectation hypothesis of the term
structure (Campbell and Shiller, 1991), the monetary policy reaction function (Clarida,
Gali and Gertler, 2000), the permanent-income hypothesis (Runkle, 1991), and the
present value model of stock prices (West, 1988). Since the GMM estimates often have
policy implications in structural econometric models, it is important for researchers
to obtain accurate confidence intervals. For example, the interpretation of the policy
rule crucially depends on the value of the estimated parameters (see Clarida, Gali and

Gertler, 2000).



Not surprisingly, given the poor performance of the conventional asymptotic ap-
proximation, the econometric literature on the bootstrap for GMM is growing rapidly.
Hahn (1996) shows the first-order validity of the bootstrap for GMM with iid observa-
tions.! For dependent data, Hall and Horowitz (1996) show that the block bootstrap
provides asymptotic refinements for GMM. However, Hall and Horowitz (1996) assume
that the autocovariances of the moment function are zero after finite lags, and thus
their framework does not cover the use of the HAC covariance matrix estimator for the
general dependence structure. Economic theory often provides information about the
specification of moment conditions, but not necessarily about the dependence struc-
ture of the moment conditions. Therefore, it is important for applied work to be able
to allow for more general forms of autocorrelation. This extension is not straightfor-
ward because the HAC covariance matrix estimator cannot be written as a function of

/2 Thus, the conventional

sample moments and converges at a rate slower than T~
arguments cannot be applied directly to prove the existence of Edgeworth expansions
and to establish asymptotic refinements of the bootstrap.

Recently, Gotze and Kiinsch (1996) and Lahiri (1996) show that the block bootstrap
can provide asymptotic refinements for a smooth function of sample means and for
parameters in a linear regression model, respectively, even when the HAC covariance
estimator is used. They show that the bootstrap provides asymptotic refinements for
approximating the distribution of the estimator and for the coverage probability of one-
sided confidence intervals. However, they do not show asymptotic refinements for the

two-sided symmetric ¢ test nor do they provide any result for the overidentified case

which is of great interest in empirical work. The purpose of this paper is to prove that

'Brown and Newey (1995) propose an alternative efficient bootstrap method based on the empirical
likelihood.



the bootstrap provides asymptotic refinements for these statistics in overidentified linear
models estimated by GMM. To our knowledge, the higher-order properties of the block
bootstrap for GMM with unknown autocovariance structures have not been formally
investigated.

Our results are nonstandard for two reasons. First, we show that the order of the
bootstrap approximation error is larger than typically found in the literature on the
bootstrap for parametric estimators. The intuition behind this result is as follows: The
HAC covariance matrix estimator is (proportional to) a nonparametric estimator of the
spectral density at frequency zero, and its convergence rate is slower than T-1/2. For the
first-order asymptotic theory, all that matters is the consistency of the HAC covariance
matrix estimator. However, the nonparametric nature of the HAC covariance matrix
estimator becomes important in the higher-order asymptotic theory and complicates
the analysis of the two-sided symmetric ¢ test and the J test statistic. Nevertheless,
we are able to establish that the bootstrap approximation error is smaller than the
conventional normal approximation error.

Second, we note that the choice of kernels plays a more important role in our second-
order asymptotic theory than in the conventional first-order asymptotic theory because
the order of the bootstrap approximation error depends on the bias of the HAC covari-
ance estimator. For the bootstrap to provide asymptotic refinements, the bias must
vanish sufficiently fast. For the one-sided ¢ test, most of the commonly used kernels sat-
isfy this condition. For two-sided symmetric ¢ test and for the J test statistic, however,
one must use kernels, such as the truncated kernel (White, 1984) and the trapezoidal
kernel (Politis and Romano, 1995), whose bias vanishes even faster. The resulting HAC

covariance matrix estimator based on these kernels, however, is not necessarily positive



semidefinite. In this paper, we propose a modified HAC covariance matrix estimator
that is always positive semidefinite.

In a Monte Carlo experiment, we find that our bootstrap method improves the
accuracy of inference in small samples, especially for the two-sided symmetric ¢ test. To
illustrate the usefulness of the bootstrap approach, we apply our bootstrap procedure
to the monetary policy reaction function of Clarida, Gali and Gertler (2000). We find
that the data do not necessarily support some of their conclusions.

The rest of the paper is organized as follows. Section 2 introduces the model and
describes the proposed bootstrap procedure. Section 3 presents the assumptions and
theoretical results. Section 4 provides some Monte Carlo results. Section 5 presents
an empirical illustration. Section 6 concludes the paper. All proofs are relegated to an

appendix.

2. Model and Bootstrap Procedure
Consider a stationary time series (x}, yt, 2;) which satisfies
E[ztut] = 0, (21)

where us = yr — Bjxe, Oo is a p-dimensional parameter, x; is a p-dimensional vector,
z is a k-dimensional vector and p < k. Given a realization {(z}, s, 2})'}i2,, we are
interested in two-step GMM estimation of Gy based on the moment condition (2.1). Let

¢ denote the lag truncation parameter used in HAC covariance matrix estimation and



T =Ty —(+ 1.2 We first obtain the first-step GMM estimator 37 by minimizing

/

1 &
7 > zly — B | Vr Zzt yr — B'a)
=1

with respect to 3, where Vi is some k X k positive semidefinite matrix. Then we obtain

the second-step GMM estimator Br by minimizing

T ! 5 1T
[ Z — B'ay) ] T lf Zzt(yt - ﬁ'ib“t)] )
t=1

where
. 1L
~ ~ ~ ~ /
Sr = TZ ztutzt Z <—> (zt+jut+jutzt+ztutut+jzt+j>
t=1
2l
Uy = yt*ﬂTﬂ«“t-

is the HAC covariance matrix estimator for the moment function (2.1), w(-) is a kernel.
We are interested in the distribution of the studentized statistic f);l/ *(Br — By) where

Sp = (NF, 2281 L, za4)~! and in the distribution of the J test statistic

T /
ﬁ ; 2t (yr — B{rﬁ'«“t ] [ Z zt(y ﬂTJ«“t

We propose the following block bootstrap procedure. Suppose that T' = bf for some

integer b.

Step 1. Let Ny, Na, ..., N} be iid uniform random variables on {0,1,...,7 — ¢} and let

*/ * */ I / ! /
($(j_1)e+iay(j_1)e+iaZ(j_1)e+i) = (Z'JNj+i,yNj+z,ZNj+i),

for1<i<fland1<j<h.

2We use T' observations and the modified HAC covariance matrix estimator Sz to obtain asymptotic
refinements for the two-sided symmetric ¢ test and the J test statistic. This modification is not necessary
for obtaining asymptotic refinements for one-sided confidence intervals. See also Hall and Horowitz (1996,
p.895).



Step 2. Calculate the first-step bootstrap GMM estimator B} by minimizing

T Zzt - /«‘T] Vr lT Zzt ﬂ,x:) -

where
Tt ¢
pr = T_ £+ 1 ; Z;Zt—&-z Yt+i — T$t+z)

Step 3. Compute the second-step bootstrap GMM estimator [3:’;, by minimizing

/
1 d * (% * * Qrk— 1 d * (% * *
Tzzt(yt — p'xf) F‘T] St ' [Tzzt(yt — B'z) — pr |,
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where
X 1 b Lt
St = 5 SN (N iling 1 — 7) (2N TN, 1 — 17
k=1i=1j=1
@ =y - Bral.

Step 4. Obtain the bootstrap version of the studentized statistic f)i}_l/ 2([3:’}, — Br) where

St o= (UE a2 St ST 2ra) 7! and the J test statistic
/
Grk—1
Jr = Z 2 (y; :7’,55:) ) St Z 2 (vf :7’,55:) wrl ¢ -
\/_ =

By repeating Steps 14 sufficiently many times, one can approximate the finite-sample
distributions of the studentized statistic and the J test statistic by the empirical distri-
butions of their bootstrap version.

Remarks: 1. As in Hall and Horowitz (1996), we recenter the bootstrap version of the
moment functions. Unlike the just identified case, the bootstrap version of the moment
condition does not hold without recentering in the case of overidentified restrictions.
The expression 7. is the mean of the bootstrapped moment function with respect to

the probability measure induced by the bootstrap algorithm.



2. Davison and Hall (1993) show that naive applications of the block bootstrap do
not provide asymptotic refinements for studentized statistics involving the long-run
variance estimator. Specifically, they show that the error of the naive bootstrap is of
order O(b~') + O(¢~') and thus is greater than or equal to the error of the first order
asymptotic approximation. We therefore modify the bootstrap version of the HAC
covariance matrix estimator (see Gotze and Hipp, 1996, for the just-identified case).
The expression S given in Step 3 is a consistent estimator for the variance of the

bootstrapped moment function with the bootstrap probability measure.

3. Asymptotic Theory

In this section, we present our main theoretical results. Unless noted otherwise, we shall
denote the Euclidean norm of a vector x by ||z||. First, we provide the following set of

assumptions.

Assumption 1:

(a) {(z},yt,2)'} is strictly stationary and strong mixing with mixing coefficients sat-
isfying ayy, < (1/d) exp(—dm) for some d > 0.

(b) There is a unique [y € RP such that E[zu] = Elz(y: — Byze)] = 0.

(c) Let Ry = ((ztut)’, vec(ziwy)'). Then E||R¢||™" < oo for some r > 12 and 1 > 0.

(d) Let F? denote the sigma-algebra generated by Ry, Ryy1,..., Rp. For all m,s,t =

1,2,...and A € Fits

t—s»

E|P(AIFYLUFS) — PAFZL,, UFLET™)| < (1/d) exp(—dm).



(e) For all m,t =1,2,... and § € RP**+1 such that 1/d < m <t and |0] > d,

< exp(—d).

E‘E {exp [w’ tf (Rs E(Rs))] ‘fi;; U ;iil}

s=t—m

(f) w: R — [-1,1] satisfies (i) w(0) = 1, (ii) w(z) = w(—x) Yo € R, (iii) w(x) =0

V|z| > 1, (iv) w(+) is continuous at 0 and at all but a finite number of other points.

(g) £ — oo as T — oo such that £ # O(T/6) and ¢ = o(T'/*).

(h) Sy = Z;F:__lT w/ )T} is a positive semidefinite matrix that converges in prob-
ability to a positive definite matrix Sp = 372 E(zouou;2}).

(i) The first-step estimator 37 satisfies E|TY2(8r — B)|" = O(1), and Vi is a pos-
itive semidefinite matrix that converges to a positive definite matrix V at rate

O /2T=1/2),

Remarks: Assumption 1(c) requires that at least the 12th moment of the moment func-
tion be finite, and we will later require that at least the 36th moment be finite. Although
this condition is strong, it is not atypical in the literature on higher-order asymptotic
theory. For example, a sufficient (but not necessary) condition for Assumptions 3(f)
and 4 of Hall and Horowitz (1996) is the finiteness of the 33rd moment of the mo-
ment functions and of their derivatives. Assumptions 1(d) and 1(e) are from Gotze
and Kiinsch (1996). Hall and Horowitz (1996, Assumptions 1 and 6) impose similar
assumptions. Assumption 1(f) is a subset of Andrews’ (1991) class of kernels K. For
example, the truncated kernel (White, 1984), Bartlett kernel (Newey and West, 1989)

and Parzen kernel (Gallant, 1987) satisfy Assumption 1(f).® The range of divergence

30ur proofs depend on the assumption that lags of order greater than or equal to £ receive zero weight. We
do not know whether the bootstrap provides asymptotic refinements for one-sided confidence intervals when
the quadratic spectral kernel (Andrews, 1991) is used. The bootstrap does not provide asymptotic refine-
ments for the two-sided symmetric ¢ test and the J test statistic when this kernel is used as its characteristic
exponent is two.



rates of ¢ allowed in Assumption 1(g) is narrower than the one typically assumed in the
literature on HAC covariance matrix estimation (e.g., Theorem 1 of Andrews, 1991) but
is wider than the one Hall and Horowitz (1996) assumed for the divergence rate of the
block length. While the v/T-consistency of the first-step estimator is sufficient for the
first-order asymptotic theory (e.g., Assumption B(i) of Andrews, 1991), Assumption

1(i) requires further conditions.

Next, we present our three main theorems. Let ¢ denote the characteristic exponent
of the kernel w. That is, ¢ is the largest real number such that lim, ,o(1 — w(x))/|z|? €

[0, 00).
Theorem 1: Suppose that Assumption 1 holds. Let

Up(z) = () +T Ppi(2)d(z) + (T pa(w) ()

V(@) = Fg @)+ p@)fe (@)

Xi_p

denote the Edgeworth expansions of P(f);l/ 2(371— Go) < x) and P(Jp < x), respectively,
where ®(z) denote the p-dimensional standard normal distribution, F> and f2 are
-p -p

the distribution and density functions of a x? random variable with degree of freedom

k — p, p1 is even, and py and py are odd. Then

sup \P(S72(Br — Bo) < @) — Up(x)] = o(eT~ 1)+ 0L, (3.2)
sup \P(Jp <) — U p(z)] = o(lT™Y) +O0@™9). (3.3)

Theorem 2: Suppose that Assumption 1 holds with r > 12 replaced by r > 36. Let

Vi) = ®(x)+ T 2pi(x)(x) + €T p3(x)¢()

5r@) = Fe_ (@) + T 9@ (@)



denote the Edgeworth expansions of P(f)i}_l/ 2([3:’}, — Br) < ) and P(J; < x), respec-

tively, where pj is even, and p5 and p’; are odd. Then

sup |PH ST (B — Br) < 2) — k()] = op((T7Y), (3.4)
sup| P (/7 < @) = Wip(e)| = op(eT ™) (3.5)

where P* is the probability measure induced by the bootstrap conditional on the data.

Theorem 8: Suppose that Assumption 1 holds with r» > 12 replaced by r > 36. Let 7r
denote the ¢-statistic for the kth element of 8. Let 17, 73, and x;, denote the 100«
level critical values for the one-sided t test, the two-sided symmetric-t test and the J

test statistic, respectively. Then

Plrpr <1iy) = 1—a+O0{T™ ") +0(79), (3.6)
P(lrr| <75,) = 1—a+o(lT™")+0(l79), (3.7)
P(Jr>x5) = a+o(T™hH +0(™). (3.8)

Remarks: Theorems 1 and 2 show that the distributions of the studentized statistic
and the J test statistic and their bootstrap versions can be approximated by their
Edgeworth expansions. Theorem 3 shows the order of the bootstrap approximation
error. For the one-sided ¢ test, the two-sided symmetric ¢ test and the J test statistic,

the approximation errors made by the first-order asymptotic theory are of order
O(T_I/Q) + 079, OUT 1 4+ 0(¢™9) and O((T™) + O(¢79), (3.9)
respectively, whereas the bootstrap approximation errors are of order

O(UT™Y) + O(t™9), o((T™1) + O(~7) and o(¢T~1) + O(£~9). (3.10)

10



Thus the bootstrap provides asymptotic refinements if the bias of the HAC covariance

matrix estimator vanishes fast enough, i.e.,
o1 = o(T_l/Q), O =o((T™1) and O(L™9) = o(4T™Y). (3.11)

for the three statistics, respectively.

For the one-sided t test, the bootstrap provides asymptotic refinements for a wide
class of kernels that satisfy O(£~9) = o(T~'/?), such as the Parzen kernel. However, the
bootstrap does not provide asymptotic refinements for the Bartlett kernel as it does not
satisfy (3.11), because its characteristic exponent is one. For the two-sided symmetric ¢
test and the J test statistic, the bootstrap can provide asymptotic refinements only for

kernels whose characteristic exponent is greater than 2, such as the truncated kernel,

() = 1 for|z| <1
YT Y 0 otherwise

the trapezoidal kernel (Politis and Romano, 1995)

1 for |z| < «
wx) =4 1- |11’|__aa fora<|z| <1 ,
0 otherwise

where 0 < « < 1, and the Parzen (b) kernel (Parzen, 1957)

(2) = 1—|z|?7 for|z| <1
S ) otherwise

where ¢ > 2. Under the assumption of exponentially decaying mixing coefficients, the
truncated and trapezoidal kernels have no asymptotic bias and thus satisfy (3.11). If ¢ >
2 and ¢ # O(TY(@+1), the Parzen (b) kernel also satisfies (3.11). A potential problem
with these kernels is that the resulting weighting matrix is not necessarily positive
semidefinite. To eliminate this problem, the weighting matrix can be modified as follows:

By Schur’s decomposition theorem (e.g., Theorem 13 of Magnus and Neudecker, 1999,

11



p.16), there exist an orthogonal & x k matrix E whose columns are eigenvalues of Wp =
5”} 1'and a diagonal matrix A = diag(\1, ..., A ), whose elements are the eigenvalues of
W, such that

Wr =E"AE™L. (3.12)
Define a modified HAC covariance matrix estimator by
Wi =FE"TATE, (3.13)

where AT = diag(max(\1,0), ..., max(A\g, 0)). Then W;I is positive semidefinite, asymp-
totically equivalent to (3.12) and thus is consistent. Politis and Romano (1995, equation
12) uses a similar modification in the context of univariate spectral density estimation.
For the trapezoidal kernel, the frequency of positive semidefinite corrections can be re-

duced by choosing small a. However, Politis and Romano (1995) recommends o = 1/2.

4. Monte Carlo Results

In this section, we conduct a small simulation study to examine the accuracy of the
proposed bootstrap procedure. We consider the following stylized linear regression

model with an intercept and a regressor, z;:
ye = P11+ Bomy + uy, fort=1,...,T. (4.14)

The disturbance and the regressors are generated from the following AR(1) processes

with common p,

Uy = pui—1 + €1, (4.15)

Ty = pPTi—1 + E2¢, (4.16)

12



where e; = (e11,€2t)’ ~ N(0, I2). In the simulation, we use 8 = (01, 32)" = (0,0)’ for the
regression parameter and p € {0.5,0.9,0.95} for the AR parameters. For instruments,
we use Iy, 41 and x;_o in addition to an intercept. This choice of instruments implies
an over-identified model with 2 degrees of freedom for the J test. Two values for the
sample size T, 64 and 128, are considered. The kernel functions employed are the
trapezoidal, Parzen (b) and truncated kernels. In all experiments, the number of Monte
Carlo trials is 1000.

The choice of the block length is important in practice. Ideally, one would choose
a longer block length for more persistent processes and a shorter block length for less
persistent processes. In the literature, this is typically accomplished by selecting the
lag truncation parameter that minimizes the mean squared error of the HAC covari-
ance matrix estimator (see Andrews, 1991; and Newey and West, 1994). Because the
trapezoidal and truncated kernels have no asymptotic bias, however, one cannot take
advantage of the usual bias-variance trade-off and thus no optimal block length can be
defined for these kernels. Thus, we propose the following procedure that is similar to
the general-to-specific modeling strategy for selecting the lag order of autoregressions
in the literature on unit root testing (see Hall, 1994; Ng and Perron, 1995). By the
Wold representation theorem, the moment function has a moving average (M A) repre-
sentation of possibly infinite order. The idea is to approximate this MA representation
by a sequence of finite-order M A processes. Because the block bootstrap is originally
designed to capture the dependence of m-dependent-type processes when £ is fixed, it
makes sense to approximate the process by an M A process that is m-dependent.

The proposed procedure takes the following steps.

Step 1. Let #1 <l < -+ < lpyax be candidate block lengths that satisfy Assumption 1(g)

13



and set k = max —1.

Step 2. Test the null that every element of the moment function is M A({) against the

alternative that at least one of the elements is M A({j1).

Step 3. If the null is accepted and if £ > 1, then let £k = k — 1 and go to Step 2. If the null

is accepted and if k = 1, then let ¢ = ¢;. If the null is rejected, then set ¢ = {5 1.

Because there is parameter uncertainty due to first-step estimation and because
we apply a univariate testing procedure to each element of the moment function, it is
difficult to control the size of this procedure. In this Monte Carlo experiment, therefore,
we use the 99% level critical value to be conservative.

Our primary interest is to compare the size properties of tests based on asymptotic
and bootstrap critical values. For each experiment, the empirical size for the ¢ test
for the regression slope parameter (o as well as for the J test is obtained using the
10% nominal significance level. Each bootstrap critical value is constructed from 999
replications of the bootstrap sampling process. In addition to the results based on
the asymptotic and bootstrap critical values using our proposed procedure, we report
the asymptotic results based on the Bartlett and QS kernels, with Andrews’ (1991)
data-dependent bandwidth estimator and Andrews and Monahan’s (1992) prewhitening
procedure.

Table 1 summarizes the result of the simulation study. In all cases, the size proper-
ties of the bootstrap ¢ test are better than those of the asymptotic ¢ test. The choice of
kernel function does not make much of a difference for the performance. Indeed the em-
pirical sizes of the bootstrap test are very close to the nominal size when 1" is 128. The
degree of the reduction in the size distortion depends on the value of the AR parameters

as well as the sample size. The bootstrap works quite well with persistent processes.

14



Because the moment functions have an AR(1) autocovariance structure, the prewhiten-
ing procedure has a considerable advantage in our simulation design. However, the
bootstrap outperforms the conventional prewhitened HAC procedure with asymptotic
critical values. In contrast, the advantage of the bootstrap for the J test is not clear
because the J test performs quite well even with asymptotic critical valuest Based on
this experiment, we recommend our bootstrap procedure especially for the ¢ test for

regression parameters.

5. Empirical Illustration

To illustrate the usefulness of the proposed bootstrap approach, we conduct bootstrap
inference about the parameters in the monetary policy reaction function of Clarida,
Gali and Gertler (2000, hereafter CGG). CGG model the target for the federal funds
rate r; by

ry = 1"+ B(E[msal- o] = 7F) + yEl2]- ] (5.17)

*

where 7 is the inflation rate, 7* is the target for inflation, - ; is the information set at
time ¢, x; is the output gap, and r* is the target with zero inflation and output gap.
Policy rules (5.17) with 8 > 1 and v > 0 are stabilizing and those with § < 1 and
v < 0 are destabilizing. CGG obtain the GMM estimates of 3 and v based on the set

of unconditional moment conditions

E{lre — (1 —p1 — p2)[rr™ — (B — 1)7* + Brgp1 + yoe] + pire—1 + pari—2]z ) = 0, (5.18)

where 7; is the actual federal fund rate, rr* is the equilibrium real rate and z; is a vector

of instruments. They find that the GMM estimate of 3 is significantly less than unity

4See Tauchen (1986) and Hall and Horowitz (1996) for similar findings.
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during the pre-Volcker era, while the estimate is significantly greater than unity during
the Volcker-Greenspan era.

We reexamine these findings by applying our bootstrap procedure as well as the
bootstrap procedure of Hall and Horowitz (1991) and the standard HAC asymptotics.

We obtain GMM estimates of 3 and v based on the linear moment conditions
E{[rs — ¢ — O1ms1 — Oozp — p11i—1 — pari—2]z} = 0, (5.19)

where ¢ = (1 — p1 — po)[rr* — (6 — D)a*]. Then B = 617/(1 — pur — por) and 4p =
égT/(l — p11 — par ), where 011, O, p1r and por are the GMM estimates of 01, 02, p1 and
p2, respectively. We use CGG’s baseline dataset and two sample periods, the pre-Volcker
period (1960:1-1979:2) and the Volcker-Greenspan period (1979:3-1996:3) (see CGG for
the description of the data source). In addition to their baseline specification, we
construct the optimal weighting matrix using the inverse of the HAC covariance matrix
estimator to allow for more general dynamic specifications in the determination of the
actual funds rate. For the asymptotic confidence intervals, we use the conventional
prewhitened and recolored estimates based on the Bartlett and QS kernels with the
automatic bandwidth selection method (Andrews 1991, Andrews and Monahan 1992).
For the confidence intervals constructed from our bootstrap, we use the trapezoidal,
Parzen (b) and truncated kernels. We use the data-dependent procedure described
in the previous section to select the block length for the bootstrap. The number of
bootstrap replications is set to 999.

Table 2 presents GMM estimates of these parameters. Asymptotic standard errors
are reported in parentheses. The first two rows of each of Tables 2(a) and (b) replicate
CGG’s results. These findings are robust to whether or not the HAC covariance matrix

estimator is used.
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Table 3 shows 90% two-sided confidence intervals of these parameters. Consistent
with CGG’s findings, the upper bound of the asymptotic confidence interval for 3 is less
than unity during the pre-Volcker period, and the lower bound is far greater than unity
during the Volcker-Greenspan period. Based on these estimates, CGG suggest that
the Fed was accommodating inflation before 1979, but not after 1979. The bootstrap
confidence interval, however, indicates that 3 may be greater than unity even during the
pre-Volcker period, consistent with the view that the Fed has always been combating
inflation. Moreover, unlike the asymptotic confidence interval, the bootstrap confidence

interval does not rule out that v is negative during the Volcker-Greenspan period.

6. Concluding Remarks

In this paper we establish that the bootstrap provides asymptotic refinements for the
GMM estimator of possibly overidentified linear models when the autocovariance struc-
ture of the moment function is unknown. Because the HAC covariance matrix estimator
cannot be written as a function of sample moments and converges at a rate slower than
T-1/2 the conventional techniques cannot be used directly to prove the existence of
the Edgeworth expansions. Because of the nonparametric nature of the HAC covari-
ance matrix estimator, the order of the bootstrap approximation error is larger than
the typical order of the bootstrap approximation error for parametric estimators. Nev-
ertheless, the bootstrap provides improved approximations relative to the first-order
approximation. We also find that the choice of kernels plays a more important role
in our second-order asymptotic theory than in the conventional first-order asymptotic
theory because the order of the bootstrap approximation error depends on the bias of

the HAC covariance estimator. We note that an extension of the present results to

17



nonlinear dynamic models as well as further investigation of data-dependent methods

for selecting the optimal block length would be useful.
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Appendix
Notation

To simplify the notation, we will assume p = 1 throughout the appendix. In the proof for the
case p > 1, the scalar 8 in the current proof is replaced by an arbitrary linear combination of [.

denotes the Kronecker product operator. If « is an n-dimensional nonnegative integral, |a| de-
notes its length, i.e., |a| = Y27 |oy|. ||| denotes the Euclidean norm, i.e., ||z|| = (3, #2)1/2,
where z is an n-dimensional vector. We will write w(j/€) as w; for notational simplicity. x;(x)
denotes the jth cumulant of a random variable z. vec(-) is the column-by-column vectorization
function. vech(-) denotes the column stacking operator that stacks the elements on and below
the leading diagonal. For a nonnegative integral vector o = (o, aa, ..., v, let

pe = 90 o
oxft  Odxpn

¢ and [ are treated differently: ¢ denotes the lag truncation parameter and [ denotes an integer.
Let uy =y — 565%7 Uy =Y — 5}%; U = Yy — 5}%; Vp = 24Uy, Uy = 240, Uy = 24Uy, Wy = thCQ,

£ (1/T) S 0 §=0 v - 4 /T) S Ve W+ WiV >0
I (1) Zt 11%172 ~; j<0’ T (/1) Y vewp vy § <0
p oo @/T) Y —1”t+ﬂ’t J=0 VI, = E(”H—]}wt/& twvy) 20
J (T)S oy §<0 E(vw;_; +vw,_;) j<0
E(viyjv) j=0 { (1/T) S werjwy >0
. = 77 t v21’* — =1 ] t g ,
! { B( ! (1/T) 3 wewy_; <0

)

. , ) i , i ) )
Sro= oWy St = Xl St = 0wl
Sro= SNl (-, V8 = ST w VI, VS = Y ,w VI,
Vs = Z;i_oo VF]’, vQST - Zﬁ:_e WjVQFj.

Let Gr = (1/T) Y.}, wy and my = T=Y/23"" ;. Then the studentized statistic can be
written as

= VIS Y2(Br - By) = (GpS7'Gr) 2GSy mr.
We use the following notation for the bootstrap. Let

T b
1 1
my = —=Y (guf—wy) = =Y By,
ﬁt:l bk‘:l
1 & RN
By, = _Z(ZN,CH&N,CH*#*T) = _Z(@N’c“*“;)’
\/21':1 ti=
~ 1 & 3
By, = —= ) (Raglives —#7) 0 = yf =87,
\/21:1
1 1 ¢
t=1 k=1
1 o 1
Fy, = zZZNwﬂNkH - ZZ“’N’c“'
i=1 i=1

b b
A 1 = = Tk 1 * * *
S = EZBNkijk, Sy = BZBNkBij, Si = Var* (mk).
k=1
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Then the bootstrap version of the first-step and the second-step GMM estimators can be written
as
-1

b b b b
Br = B |3 FnVrp ) P gZFNkVTﬁZBM
k=1 k=1 k=1 k=1

A * * 1 * 1
= B+[G¥VrGy] 1G;VTTT

1< 1< R 1 <
O PSS Fv | ) FNST =) By,
b k=1 * b k=1 b k=1 * Tb k=1

1

~ ~ -1 N
_ 5+[G*T’3;—1G*T} G*T’S;‘l\/—Tm*T,

*
mr,

3 = B+

respectively.
Proofs of Lemmas

Next, we will present the lemmas used in the proofs of the theorems. Lemma A.1 produces
a Taylor series expansion of the studentized statistic fr. Lemma A.2 provides bounds on the
moments and will be used in the proofs of Lemmas A.3—-A.6. Lemma A.3 shows the limits and
the convergence rates of the first three cumulants of gr in (A.1), that will be used to derive
the formal Edgeworth expansion. Lemmas A.5 and A.6 provide bounds on the approximation
error. For convenience, we present Lemma B.1 that will be used in the proofs of Lemmas B.2
and B.3. Lemma B.2 shows the consistency and convergence rate of the bootstrap version of the
moments. Lemma B.3 shows the limits and the convergence rates of the first three cumulants
of the bootstrap version.

Lemma A.1:

fr
= a'mp+VY[(Gr—Gy) my]+c[vech(Sr — So)  my]
+d'[(Gr — Go)  vech(Sp — Sg)  mr] + € [vech(Sp — So)  vech(Sp — So)  my]
+0,((¢/T)*?)
= a'mp+VY[(Gr—Gy) my]+cvech(Sp — Sr)  myp] + < [vech(Sy — So)  my]
+d'[(Gr — Go)  vech(Sr — S7)  mr] + € [vech(S — Sp)  vech(Sp — Sp)  my]
+d'[(Gp — Go)  vech(Sp — Sg)  my] + € [vech(Sp — Sp)  vech(Sp — Sp)  my)
+€'[vech(Sp — Sy)  vech(Sp — Sp)  my] 4 €' [vech(Sp — So)  vech(Sp — Sp)  mo]
LO,((4/T)?)
gr + c'[vech(Sy — So)  mr] +d'[(Gr — Go)  vech(Sr — Sp)  mr)]
+€'[vech(Sp — Sp)  vech(Sp — So)  my] 4 €' [vech(Sp — So)  vech(Sp — Sp)  my]
+€'[vech(Sr — Sp)  vech(St — Sp)  mr] + O, ((¢/T)*/?), (A.1)

where a, b, ¢, d and e are q, ¢, ¢(¢* +q), ¢(¢*+q)/2, ¢*(¢*> +q) /2 and q((¢* +q) /2)?-dimensional
vectors of smooth functions of Gy and Sy, respectively.

Proof of Lemma A.1: (A.1) immediately follows from a Taylor series expansion of fr around
(mp, Gip, vech(St)')" = (01xq, G, vech(Sp)')’
and from Theorem 1 of Andrews (1991). Q.E.D.

Lemma A.2:
E|mz|™" = 0(1), (A.2)
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E|TY*(Gr - Go)|™™" = 0O(1), (A.3)

E|[(T/0)Y *vech(Sy — S7)||"? = 0O(1), (A.4)
E|(T/6)Y?*vech(VSr — VS| = 0O(1), (A.5)
E||T?vech(Sy — 87)||"/? = O(1). (A.6)

Proof of Lemma A.2: First, (A.2) and (A.3) immediately follow from the moment inequality of
Yokoyama (1980). Second, we will show (A.4). Note that

¢ [T/¢]
(T/OV?*(Sr—Sr) = (T/OV? Y w(T;=Ty) = (¢/T)"/? Z Wi
J—;
= (DY Wit > Wit > W), (A7)
i=0mod3 i=Tmod3 i=2mod3
where
1 it ¢
W; = 7 t (§e+l{vtv£ — BE(vv}) + ;wj[vtﬂ-v; — E(vijv) + vy, — E(vp, )]}

Note that the summands in each sum on the RHS of (A.7) are asymptotically independent by
construction. Thus,

ks 3
B |(/0"/2vech(Sr - Sp)||” = O(Elvech(W2) [£) = Y~ O(E|vech(Wa ()] £) (A8)

where
20 -1 2w -1 -1
Wy(1) =071 Z ijvtﬂ-v;, Wo(2) =01 Z Z wivy_j, Wa(3) = Z E(vgv” ;).
t=0+1 j=0 t=~0+1 j=—{+1 j=—0+1

Thus it suffices to show that, for i,j =1,2,...,q,

EW,()EE = 0(), (A.9)
EW,@@F = o), (A.10)
EW,@)F = o), (A.11)

where Wy (-)(*7) denotes the (i, j)th element of Wy(-). By Assumptions 1(a) and 1(f), it follows
that

EWy ()02 = o@? 3" Bluft e o)), (A.12)

ti<ta<--<t,

where 0 <t; <20 and k; =4,j for [ = 1,2, ...,7. Then the standard arguments used in proofs of
the moment inequality complete the proof of (A.9). The proof of (A.10) is analogous to that of
(A.9) and thus is omitted. By the mixing inequality of Hall and Heyde (1980, Corollary A.2),
it follows that for some d’ > 0

—1
E[Wy(3))|5 = Z E(wt/ )% =( Y af)2 =0(1), (A.13)
j=—0+1 j=—t+1

and thus (A.11) holds. Therefore, (A.4) immediately follows from (A.7)-(A.11). The proof of
(A.5) is analogous to that of (A.4) and thus is omitted.
Lastly, we will prove (A.6). Note that

TY2(Sp — Sp) = VSrTY2(Br — Bo) + V2SrTY2(3r — Bo)>. (A.14)
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Thus it follows from (A.5) and Minkowski’s inequality that
[BIVS|1" < [BIVSy = VSTV + [BIVSe ']V = O(*T~1/2) +0(1),  (A.15)

¢ ¢
[E] Y wi(V2L; = BE(VI))Y + B Y wi BV
j=—t j=—t

= O(UT'*) +0(0). (A.16)

Therefore (A.6) follows from (A.14), (A.15), (A.16), Assumption 1(i) and Holder’s inequality.
Q.E.D.

[BIV2Sr|]"

IN

Lemma A.3:
TY?k1(gr) = Qoo+ O(L™) +o(£T7Y/?), (A.17)
(T/0)(ra(gr) = 1) = Yoo +O(L/?), (A.18)
TY%k3(gr) = Koo — 30tee + O(L™) + o((T~1/?), (A.19)
(T/0O(ralgr) =3) = G +O(CV?), (A.20)
where
Qo = b i Elwy v +¢ i E[vech(vov;)  vj]

+c’ i E{vech[VS(E(wy)'VE(w))  E(wy)' Vg  v;}

1=—00

¢ T
.1
Yoo = 2Th_rgoz Z Z E{a'voc/[vech(viv;_; —=T;)  vg]}
j=—lik=—T
1L T
+2 lim T Z Z E{a’vge'[vech(vv;_; —T;)  vech(vgvy_; —T;)  vp,]}

T—o0
idl=—Li,km=—T

T ¢
1
+1}1_)r130€—T Z Z E{c'[vech(vov”; = T;) vj|c/[vech(vgvy_; —Tk) v},
jokym=—T i,l=—¢

oo T-1
. 1
Roo = Z E(a’voa’vl-a’vj)nLSTh_)n;of. | Z E{a'voa'v;b'[vech(w; — E(w,)) wvi]}
1,j=—00 i,j,k=—T+4+1
. I
+31}EI;OT Z E{a’voa’v;c/[vech(vv)_, —Tx) v}
ijkl=—T

T
.1 5 _
+31}£I;Oﬁ | 'kE TE{a’voa’vl-c’vech[VS(E(wo)’VE(wo)) E(wo)' V] vk},
i,jk=—

T e
= = > Y Bawalvalvevech(ovi  ~T1) v}

ij,kym=—Tl=—¢

T ¢
. 4
+lim Vgl Z Z E{a'voa'v;a'v;€'[vech(vyvp_; — T1)  vech(vmtry_p, — ) wo]}

i,7,k,m,o=—T l,n=—4

T ¢
. 6
+lim Vil Z Z E{a'voa'vic'[vech(vjv;,k —T%) vl]c'[vech(vmv;n,n —Tn) o)}

,7,l,myo=—T k,n=—4
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—121im

=

T ¢
Z Z E{a'voc'[vech(v;vj_ s, —T%) v}
jl=—T k=—¢

jl=— —
14

T
.1
—12 hmE_T Z Z E{a'voe’[vech(v;vj_j, —Tk) (0ivj_m —Im) va]}

Jlyn=—T k;m=—4¢

T ¢
,61im£% Z Z E{c'[(vov_; = T3) wvj]c'[(vkvi_; —T1)  vm]}.

Gykym=—T i,l=—2¢

Proof of Lemma A.3: First, we will prove (A.17). By Holder’s inequality and Lemma A.2, it
suffices to show that

T'?E[(Gr —Go) mr] = Y Elwy v]+0(T™), (A.21)
Tl/QE[vech(S'T — ST) mT] = i E[VeCh(’UQ’U;) Uj] + O(g—q) + O(gT_l), (A22)
Tl/QE[vech(S'T — ST) mT] = i E{vech[VS'(E(wo)’VE(wo))_1E(w0)’Vvo] ’Ui}

+_0(£1/2T—1/2), (A.23)
(T/¢)Elvech(Sr — Sr)  vech(Sy — Sr)  mrp] = o(1). (A.24)

First, (A.21) follows from several applications of the mixing inequality. Second, we will show
(A.22). We have

¢
T%E[ijvech(f‘jffj) mr
=0
- — T—il(j>i)—|j]1( > 0orj < —i) ,
= Zwi Z T Elvech(vov’;) vyl
i=0  j=—f—T+1
¢ T-1
= Zwi Z E[vech(vov’ ;) v;]4+00T™h)

i=0  j=—l—T+1

¢ T-1
= Z Z Elvech(vov’;) vl + O™ 9) + 0T~ )

i=0 j=—(-T+1
= 3 > Efvech(vov,) ]+ 0™ +0(T™). (A.25)
i=0 j=—o00

The first equality follows from strict stationarity. Repeated applications of the moment inequal-
ity of Yokoyama (1980) produce

‘ T—j e (4 | < —i
T -1l — 171 0 =
i Z i1(j >14) —|j|1(j > Oor j ) Elvech(vov’ ;)  vj]
=0 j:—E—T"rl

—2j—1 —(1/2)i

14 —Jj
= o7 Y wi| X e+ D lilal + > e
1=0

j=—-T j==2j j=—i

-1

[ T-1
+ 0N i+ el + D (i +4)ay
J=—(1/2)i+1 =0 j=it1

= o(T™). (A.26)
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for some r € (0,1), from which the second equality follows. Arguments analogous to the
proof of Theorem 10 of Hannan (1970, pp.283-284) yield the last two equalities. By symmetric
arguments, it follows that

E] _Z wjvech(T; —T;)  mr]

j=—t
= Z i Elvech(vov’ ;) vl + O™ %) +O((T™1). (A.27)

Hence, (A.23) follows from (A.25) and (A.27). Third, we will show (A.23). It follows from
(A.14), Assumption 1(i) and Lemma A.2 that
T%E[vech(S'T — S'T) mr)
= T2 E[vech(VS1(Br — Bo) + V2870(Br — 6o)?)  my]
= T%E[vech((VS'T — VS7)(Br — Bo)  mr)] + T%E[vech(VS'T(BT = o) mr)]
+T%E[vech (V2Sr — V2Sr)(Br — Bo)?)  mr]
+T%E[vech VQVQST(ﬁT*ﬁO) ) mr)]

= i E{vech[VS(E(wo)'VE(wo)) " E(wo) Vvg  v;]} + O(0/*T71/2), (A.28)

1=—00

which completes the proof of (A.23). Lastly, we will show (A.24).

(T/E)E[vech( —Sr)  vech(Sp — Sr)  my]

= (T/0)E[vech(Sy — S7) vech(Sr — Sr)  mr] + o(1)
¢ T
= (782 Z Z Elvech(viyiv; —T;)  vech(veyjvs — ') v,] +0(1)
i,j=—L1t,s,u=1
= O(PT'?) = o(1). (A.29)

Therefore, (A.17) follows from (A.21)—(A.24).
Next, we will prove (A.18). It follows from (A.17), Hélder’s inequality and Lemma A.2 that

ra(gr) —1 = E(g7) — [E(gr))* -1 ]
= 2B{a'mzyb'[(Gr — Gy) mr]} +2E{a'mrc[vech(Sr — Sr)  mr|}
+2E{a'mre'[vech(Sr — St)  vech(Sr —Sr)  mr]}
+E{c[vech(S7 — 1)  mp]}2 4+ 02T, (A.30)
Thus, we only need to analyze the first four terms on the RHS of (A.30). First, by repeated

applications of the mixing inequality as in the proof of moment inequalities (e.g, the proof of
Lemma 4 of Billingsley, 1968, pp.172-174), one can show that

TE{a’me’[(GT - GO) mT]} = O(l) (A31)
Second, it follows from arguments similar to the one used in the proof of (A.17) that

(T/E)E{a’mTc’[vech(S'T - Sr) mr|}
T T T
ZZZw]E{avtc [vech(vevl_; —Tj) v}
¢
! Z Z (1 = 7i,1) E{a’voc [vech(vivi_; = T')  wi]}

j=—Li,k=—T+1
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¢ T-1
= (! Z Z wjE{a'voc'[vech(viv;_; — T'y) vp]} + 0T

j=—Lik=—T+1

¢ T-1
= (! Z Z E{a'voc[vech(viv;_; — ;) wvg]} +O(%) +O(T")
j=—Cik=—T+1
¢ T-1 T-1
1}3206_1 Z Z Z E{a’voc/[vech(vevy,_; —T;) v} +0(C7"), (A.32)

j=—lt=—T+1 s=—T+1

(T/¢)E{a'mre'[vech(Sp — Sp)  vech(Sy — Sr)  mg]}

¢ T
1
= Z Z wiw;E{a'v.€e'[vech(v,v,_; —T;) vech(vivy_; —Tj) v}

i,j=—L7r,s,t,u=1

¢ T
1
= o7 Z Z wiw; (1 = 74 .u) E{a’vo€/ [vech(vsv,_; — Ti)  vech(vvp_; —Tj)  wu]}

i,j=—0 s,t,u=—T

¢ T
1
= 7 Z Z wiw; E{a’voe'[vech(vsv)_; —T;)  vech(vev;_; —Tj)  w,]}

i,j=—0 s,t,u=—T

+O(CPT™Y)

4 T
1
= T Z Z E{a’vge[vech(v,v,_; —T;) vech(vv;_; —T;)  w,]}

i,j=—0 s,t,u=—T
+O(~ ) + O(PT™)
T T
= lim T Z Z E{a'voe'[vech(vev,_; —Ty)  vech(vivi_; —Tj)  wu]}

T— o0
i,j=—L s, t,u=—T

+O(h, (A.33)
and

(T/0)E{c'[vech(S7 — S7) mr]}?

T ¢
= (72 Z Z wiw; E{c'[vech(vev,_; = T;)  wlc/[vech(v,vy,_; —Tj)  w,]}

t,s,u,v=14,5=—4

T ¢
= (! Z Z wiw; (1 = 75 k,m) E{c [vech(vov”; — T;)  vj]
Jokym=—T i,l=—¢
xc[vech(vgvy,_; — Tk) v}
T ¢
= (! Z Z wiw; E{c'[vech(vogv’_; —=T;) wvjlc'[vech(vgv),_; —T'x)  vnm]}
Jokym——T i,l=—¢
+O(UT ™)
T

¢
= (! Z Z E{c'[vech(vov’_; —T';) wv;lc/[vech(vgv)_; —Tx)  vy]}
Jokesm=—T i,l=—¢

FO() + 0T
T ¢
= lim ¢~'77! Z Z E{c'[vech(vov”; = T;) wj|c/[vech(vgvy,_; —Tk) v}

T—o0
Jkym==T i,l=—1¢

+O(01), (A.34)
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where 7; ;, = (1/T) min(max(|é|, |k, |i — k|),T) and 75+, = (1/T) min(max(|s|, ||, |u|,|s — |, |t —
ul,|u — s]),T). The proofs of (A.32), (A.33) and (A.34) are similar to that of (A.17) and thus
details are omitted. Therefore, (A.18) follows from (A.30)-(A.33).

Third, we will prove (A.19). By (A.17), (A.18) and

k3(gr) = E(gr) —3E(97)E(gr) + 2(E(gr))°, (A.35)

it suffices to show that
TY2E(g3) = koo + O™ 9) + o(0T~1/?). (A.36)

It follows from Assumption 1(i), Holder’s inequality and Lemma A.2 that

E(gr) = El(@@'mr)’]+3E{(a'mr)*b[(Gr — Go)"  mrl]}
+3E{(a’mr)*c[vech(Sy — S7)  mr]}
+3E{(a'my)*c [vech(Sr — S7)  mr]} +o((T1). (A.37)

The rest of the proof is similar to that of (A.17), and thus we will only show that

¢
T? E{(a'mr)2c| Z vech(T; —T;)  mr]}
j=—2t
T-1
= Tlim (1/T) Z E{a'vpa'v,c'[vech(vv;_j, — Tx)  ws]} (A.38)
e T,t,8,k=—T+1

It follows from arguments similar to the proof of (A.21) that

T3 E{(a’ T)Qc’[vech(S'T - Sr) mr]}
—1
= (1/7) Z Z w;(1 = 75¢0)E{a’voa’vsc! [vech(vivi—j — ;) wvy]}
s,t,u=—T41 j=—4
T-1 ¢
= (1/7) Z Z wjE{a'vpa’vsc’ [vech(vivy—; — L) v,]}+O(T™h)
s,t,u=—T+1 j:—E
T-1
= (yn > Z E{a'vpa'vec'[vech(vv,_j —T;)  v,]} +O(L77)
sty u=—T41 j=—4
T-1
= lim 77! Z Z E{a'vpa'v.c/[vech(viv;_; —T;)"  ws]} +0(L77). (A.39)

T—o0
Tt,s=—T+1 j=—4(

By arguments similar to the proof of Lemma 1 of Andrews (1991, pp.850-851), one can show
that the RHS of (A.39) equals the infinite sum of the product of two expectations plus some
finite number. By the mixing inequality, it follows that the infinite sum of the product of two
expectations is finite. Therefore, the RHS of (A.39) is well defined.

Lastly, we will show (A.20).

kalgr) —3 = 4E{(a’mT)3c’[vech(,§'T —Sr) mr]}
+4E{(a'my)*e/[vech(Sy — Sp)  vech(Sp — Sp)  my]}
+6F ((a’mT)Q{c’[vech(ST - Sr) mT]}2>

—12E{a'mrc’[vech(Sr — Sr)  mr]}
—12E{a'mye’[vec ST — S7) VeCh(ST —Sr) mrl}
—6E{c[vech(S7 — S7)  mr]}2 4+ O ?*T71), (A.40)

26



from which the desired result follows by similar arguments. Q.E.D.

Lemma, A.4:
Yy ()

= exp %92 + T2 (s (i6) — %(nm —3as)) — ;(922%0 + - 57600) ol : )| (A.41)

Plgr <) = W(z) + T pi(a) + (¢/T)pa(x) + o(¢/T). (A.42)

Proof of Lemma A.4: The proof of (A.41) follows from the standard arguments. (A.42) can be
obtained by inverting (A.41). Q.E.D.

Lemma A.5: Following Gotze and Kiinsch (1996), define a truncation function by
m(x) = Tz f(T7|lz]))/=

where v € (2/r,1/2) and f € C*°(0, 00) satisfies (i) f(z) = x for x < 1; (ii) f is increasing; and
(iii) f(x) =2 for x > 2. Let fjt denote fr with R; = (v}, ¥, vec(w;)') replaced by

RT (vt ,UI/,VeC(wT)/)/ = T((vg,ﬁé,vec(wt)’)’) :
Let \IJ; and \IJ;T denote the Edgeworth expansions of fjt and g}, respectively. Let 1/1;77“(95) and

1/;;77“(95) denote the characteristic functions of g/, and \IJ;T, respectively. Then

sup |P(fr < 2) = ¥r(z)] < C |5 2(0) =&} (O)I6]7 8 +O(E™) +o((T ™). (A.43)

|0|<T1—2/r

Proof of Lemma A.5: First, we will show that

s [P(fr<a)—Ur()| = swp [P(ff <2) - W) o). (A44)
Since .
P(@angw >Tv) < Y PURI>T) = o) (A.15)
it follows that
s |P(fr <2) - P(f} <x)| = O@') = o), (A.46)

Then it follows from Lemma A.2 and (A.45) that

Blmh —mrli < 2 E[lmelf I max | Rl > T7)]

IN

27 (E|jmr||¥)"? P( max [|Rq]| > T7)"/*
1<t<T
= o(T™? (A.47)

for j <r/2. Similarly, we obtain that

E|T?[(G) - Gf) = (Gr —Go N = o171/, (A.48)
E|(T/0)"*[vech(S). — S1) — vech(SL — S|P = o(T~Y/?), (A.49)
E||(T/0)"*[vech(VSy — VSr) — vech(VSy — VST NI = o(T=1?), (A.50)
E||TY?[vech(S}, — S1.) — vech(S), — S)F = o(T~/?), (A.51)
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for j <r/2. Thus it follows from Lemma A.2, (A.45), (A.47)-(A.51) that

sup | Up(z) — Uh(z)| = o(eT™Y). (A.52)

—oo<r<oo

Therefore (A.44) follows from (A.46) and (A.52).
Next, we will show that

sup| P(f} < @) = Ur(2)| = sup |P(g} < @) — W] p(2)| + O(7) + O(E*/2T7/%). (A.53)

Let

hh = gh 4+ c[vech(S — SI)  ml]+d[(Gr —Go)  vech(Sh — SI)  mlh]
+€'[vech(S). — 81)  vech(S] — T) mh)
+¢€'[vech(S), — S§)  vech(Sh —S1)  mh]
+€'[vech(S} — S8)  vech(S} —S)  mlh],
and let U}, 7(x) denote its Edgeworth expansion. Using the definition of Taylor series expansions,

Lemma A.2 and Markov’s inequality, P(| fjt — h;~| > (3/27=3/2) can be made arbitrarily small.
Thus we have

sup [P(f} < 2) = Wi(2)| = sup|P(h}y < 2) — W], ()] + O(£/2T=5/2). (A.54)
Since the difference between the Edgeworth expansions of g;, and of h; is O(S‘; — S}), it follows

that
sup [P(hl. < 2) — U}, 1(2)] = sup|P(g} < x) — U] ()| +O(79). (A.55)

Therefore, (A.53) follows from (A.54) and (A.55).
Lastly, it follows from the so-called smoothing lemma (e.g., Proposition C1 of Fan and Linton,
1997) that

sup |P(gh <a) =¥ ()| <C 0! 7(0) = &F 1(0)[16] 7 d6 + O(T~+2/"). (A.56)

|0|<T1—2/r
Therefore, Lemma A.5 follows from (A.44), (A.53) and (A.56) as r > 12. Q.E.D.

Lemma A.6: For 0 < e < 1/6,

/ME [0) £ (0) =98 +(0)16]71d0 = o(eT ™). (A57)

Proof of Lemma A.6: Write g} as
gp = amp+b[(Gr~Gl) mi]+c/[vech(S] — Sr)  mh]
+c/[vech(S) — Sr)  mi]+ d'[(GF — Gf)  vech(S] — S)  mj]
+d'[(GL — GY)  vech(S} — SL)  m]]

+¢€'[vech(S), — 81)  vech(ST. — ST)  ml]
+¢€/[vech(S), — 1) vech(ST. — ST)  mlh]
+¢€/[vech(S), — 1) vech(ST. — ST)  ml]
+¢€/[vech(S), — 1) vech(ST. — ST)  ml]

Il Il T
9r1t9ret+ .+ 9710
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Then a Taylor series expansion of F (exp(iﬁg})) around g}yQ + 9;73 + ...+ 9;",10 =0 yields

E(exp(ifg}.))

E(exp(ifgh. ;) + i0Elexp(i0g} ) (g} + 95 + 9h0)]

(i6)? .
TE[QXP(ZQQ;"J)@SJ;JQ;"B + 29;",19;",7 + 9;“23)]

(2'9)3
6

(i9)4E[ (109} )(4g8? g, + 4g] 6

oy Llexple 97.1)(497.197 5 + 497 191"77L 9T 19T3)]

+O(0'[E(ghy) + E(ghly) + ...+ E(g} o)) (A.58)

+

+ [exp(z@gT 1)(39T 19T 9 T 39T 19T 3t 39;"2,19;",4)]

+

We will analyze each term on the RHS of (A.58) in turn. First, it follows from Lemma 3.33 of
Gotze and Hipp (1983) that

v i / 4 ° ’ 2 2
E{exp(z‘eg;,n [H G platm)? + O (m(alm)* —3) - & (Bam)?) ]exp<%>}
= O((1+10) exp(~07)T ). (A59)

Second let ¥y denote the multivariate expansion of E(exp(ic'T~1/2 Zle X)) where X =

(a’ vt,vt ,(wt GT) ). Then an application of Lemma 3.33 of Goétze and Hipp (1983) with
¥ =(0,0,...,0) yields

) ) 10
‘E{EXP(WQ;rw 1)[“99;,2 ( 2) gT 19T oI}

((ie(w) B~ Gl mbl}+ S B (el — G m;}}>exp(%)

T
< TN " eol DO [E(exp(id' T2 Y " X1,) — vx]|
[ t=1
= O((1+16]° +10") exp(—0*)T '), (A.60)
where ¢, are the corresponding elements of a, b and Gj.

Third, we will show that

) ) ) . (10)? (i0)*
|z€E[exp(z€g;~71)[zﬁg;3 + (19)29;“,19;“,3 + 79;2,19;“,3 + ng“%lg;“,s]]

- ((w - l(¢9)3)E{c'[vech(S; — 85y ml)} + (0)2E{a'ml.c'[vech(S]. — ST)  ml]}

PO (et e veen(S) — §) )

6
O((1 + |0°) exp(—02)eT—17%). (A.61)

oy G (e fvech(5] = 5]) - mi]} ) exp(—56°)

Note that the first term of (A.61) can be written as a weighted sum of

: 3 7 4 ~
E{exp(iﬂg}yl)[iﬂ + (i0)%a'm}. + %(a’m})Q + %(a’m;)?’]c’[vech@; - I‘;) mh]} (A.62)

and that the rest of the terms can be written as a weighted sum of

i i0)4 . 2
E{[i6 — %(iﬁ)?’ + (i0)*a’'m T + ( Z) (a’ m;w)2 + %(a’m})?’]c’[vech@; - I‘;) m;]}exp(f%)
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We will apply Lemma 3.33 of Gotze and Hipp (1983) to (A.62) and (A.63). Let ¢y denote the
multivariate expansion of E(exp(i T2 3] V') where 9 = (6,0, ...,0) and

Y, = (@mb,mi, T 1/22vechvtv” E(vv;5)')

t=1

Then the difference between (A.61) and (A.62) are bounded by

T
T2 " eal D | E(exp(id' T2 V) = dby)| = O((1+[01°) exp(—6°)T' %), (A.64)

t=1

where ¢, are the corresponding linear combinations of @ and ¢. Thus (A.61) follows.
Fourth, by arguments analogous to the proof of (A.61), one can show that

|E[eXp(199T 1)(1991" 4t (Z) 9T 19T "l

(0~ 5(0))B{e/vech(Sh — 55)  mb]} + (0)° B{almb)*c[vech(S} ~ 55)  mb]})

92
x exp(~)]
= O((1+101°) exp(=62)eT~179), (A.65)
and
. i0 6 i0
|E[exp(z€g;~71)[ 2) (29T 19T 7t 9T 3) %9;"3191" 7t %QT 19;"23]

_ ((ZZ) (2E{a'myc/[vech(St — Sr)  my} + E{c/[vech(Sp — Sr)  mr]}?)

+(Zz) E{a'm}.e'[vech(S}. — S1)  vech(S} - S%)  ml]}

+%E{c’[vech(5‘q~ —S7) mrp]}? )exp(fa—;)|
= O((1+0]°) exp(—62)¢2T=3/27¢). (A.66)
Lastly, it follows from Lemma A.2 that

0*[E(ghy) + E(ghls) + ...+ E(gl)] = O(0*°T™?). (A.67)
Combining and integrating (A.59), (A.60), (A.61), (A.65), (A.66) and (A.67) produces the
desired result. Q.E.D.

Lemma A.7:
Lo g 5@ =52 @101 a0 = o7, (A.69)

Proof of Lemma A.7: We closely follow the proof of Gétze and Hipp (1996, pp.1927-1930). To
simplify the notation, we will omit the superscript 1. Let m = M logT for some M > 0. Let
N = [(T/6% 4+ 1)m?] for T® < |§] < T*~2/". Then m < N < T for sufficiently large T. Define

N T
*T_l/QZ’Ut, mT_N:T_1/2 Z Vt,

t=N-+1
N T
Gy — E(Gyn) = (1/T) Z ), Gr-n — E(Gr_n) = (1/T) Z (wy — E(wy)),
t=1 t=N-+1
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4 4
Sv—=Sv=> wiljn-T)), Sr-x—58r-n= > wilr-n-Ty),

j=—t j=—t
A~ ~ e A ~ A~ ~ e A ~
Sv=8v=>Y wlin-T;n), Sr-n—-Sr-n=> wjlr-n-Tjr )
j=—t j=—t
so that
mr = my-+mr_n,
Gr— Gy = Gn—E(GN)+Gr-n—E(Gr_n),
Sr—Sr = Sy—SNy+Sr-~n—Sr_n,
Str—St = Sy—Sv+Sr_n—Sr_N.
Write

gr = a'my + Q(mr,Gr, Sr, St, St).
Then a Taylor series expansion of ) around v; =0 and w; =0 for t = 1,2, ..., N yields
E exp(ifgr)
= E[exp(iﬁa’mT -+ iHQ(mT_N, GT—N, ST—N; ST—N; ST—N)

X Z V 0" Q (M- N, Gr— N, ST—N, ST—N, ST—N))]
a,B

+0(10|" E\Q(mr, Gr, St, Sr, S1) — Q(mr_N, Gr_N, ST—N, ST—N, ST—N)| X A.69)
where the power is element-by-element and the indices satisfy
no= (,u'ly"'y,u'N—‘rf—l707"'70)7 v = (1/17"'71/]\/707 "'70)7 |:u’| + |l/| < 5(T - 1)

First, we will consider the expansion terms in (A.69). Let

{30, dse—nyt = {J:myorv; >0},
I = {]E{l,,me}|]7j£|23m,k:1,,5(7"*1)},

and j; =inf I. Let s denote the smallest integer for which the inf is undefined. Let

Ay = H{exp(iﬁT‘l/Qa’vt cjel|j—gel <m} k=1,..s,
B, = H{exp(iﬂT‘l/Qa’vt JELjr+m4+1<j<jru—m—1}k=1,..,5s—1,
B, = H{exp(iﬁT‘l/Qa’vt cjel,j>js—m—1},
R = H exp(i0T~Y2a’v,) exp(i0Q(mr—_n, Gr—n, ST, ST-N, ST N )V W’ Q-
Jél

Then we can write
Elexp(ifa'mr + i0Q(mr—n, Gr-n, S1—N, SN, ST-N)

X ZU”U}UQW(WT—N,GT—N,ST—N,ST—N,ST—N)] = H ArBrR.  (A.70)

o, k=1

Note that |A;| < 1, |Bi| < 1, |[R| < T75~V7 and that Ay, By and R are measurable with

respect to f]]:f;:g, ]-"]]:fll, {Fi:35 &I, |l —j| < m}, respectively. By Assumption 1(d), it
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follows that

S

(] AuBiR] - E[]] E(AWF; : 1j — jil < 3m)By.R]|

k=1 k=1
s Jj—1 s
< D IE([T ArBr(A; = E(A;1F; 15— gkl <3m)) [T E(AIF;, 15— il <3m)Bi|
j=1 k=1 I=j+1

s j—1
= > B[] AxBr(B(A;|FS N UF ) — E(A|F; < |5 — il < 3m))
j=1 k=1
x I E(AlF;:1i—al <3m)B|
I=j+1
= O(T* exp(—dm)) = o(T~) (A.71)

for any arbitrary ca > 0 by choosing sufficiently large M. By the mixing inequality of Hall and
Heyde (1980), we obtain

|E[RH E(Ag|F; |7 — ji| < 3m)By]|
k=1

< T9E [[IBE(AlF - 0 < |5 — ji| < 3m)]

j=1
+7 [[ EIE(AK|F; : 0 < |j — ji| < 3m)| + 4T (¢/d) exp(—dm) (A.72)
j=1

for some c3 > 0. For |0| > d, we have E|E(Ax|F;,j # jr)| < exp(—d). Thus by Lemma 3.2 of
Gotze and Hipp (1983) and Assumption 1(d), it follows that

E|E(Ak|Fj, |7 =gkl <3m)| - < E[E(AR|F; + [7 = jkl # 0)] + O(T* exp(—dm))
< max(exp(—df?/T),exp(—d)) + O(T* exp(—dm))(A.73)
k=1

for arbitrary ¢ > 0 by choosing sufficiently large M.
Next, consider the remainder term in (A.69). It follows from Lemma A.2 that

Elmy|" = O(N/T)"), (A.75)
E|T'*(Gy = Go) = O(N/T)"), (A.76)
E|(T/0)*vech(Sy — Sy)I = O((N/T)"/?), (A.77)
E|(T/0)"?*vech(VSy — VSN)|" = O(N/T)"/?), (A.78)
E|TY?vech(Sy — Sy)|” = O((N/T)"/?) (A.79)
Using the definition of N and er > 2, we obtain that
0" E|Q(mr, Gr, St, S7, S7) — Q(mer—n, Gr—n, Sr—N, ST—N, ST_N)|”
_ O(ET/2|9|TNT/2T_T)
_ oW ?mT-"/?)  for || < T/?
- { o(|0]"¢"/>m™T=") for TY? < || < (/271 =
= o(¢T™h). (A.80)
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Lastly, it follows from (A.69), (A.71)-(A.73) and (A.80) that

Eexp(ifgr) = T°max(exp(—d6?/T), exp(—d))N'M 4+ O(T¢ exp(—dm)) + o({T™)
= o(lT™h (A.81)
for s > N/M and sufficiently large M, which completes the proof. Q.E.D.

Lemma B.1: For 1 < s <r/2,

0,(b=1/?), (A.82)
0,(b=1/2). (A.83)

E*[|[vec(Fw,) 1] — E{E*[vec(Fx, )II*T}
E*[| By, [I*] = E {E*[|I By, |I°1}

Proof of Lemma B.1: First we will prove (A.82). We can write the LHS of (A.82) as

T—¢ 14
(/T =4+ 1)) Y [vec(Fy)|I* = Ellvec(Fy)[|*] = (A/(T = £+ 1D))1/0) D fonr  (A84)
t=0 v=1
where -
fow = (1/0) > (Ivec(Fuer)I° = E([[vec(Fuet)[|*)) -
pn=0

Note that {vec(F#Hl,)}Z_:t is a triangular array of strong mixing sequence with mixing co-
efficients given by {a,.} where a,, is the mixing coefficient of the original variables. So is

lvec(Fue4s)||°. Thus it follows that
fow = Op(b712). (A.85)

Since the decay rate of the mixing coefficients is uniform in v, (A.85) also holds uniformly in v.
Hence (A.82) follows from (A.84) and (A.85).
Next we will prove (A.83). Note that the LHS of (A.83) is bounded by

T—20
0 ((1/(T€+1))ZIBtISEIEIS> (A.86)
t=0
T—20 R ~ R ~
+0 ((1/(T — 1)) B = 1Bel” — E(IBi]* ~ IBtIS)> (A.87)
t=0
FO (el = EClprl*) (A.88)

where B, = (~1/2 Z§:1 Oyyj and By = (/2 Z§:1 vy ;. First, the proof that (A.86) is O, (b~1/?)
is analogous to the proof of (A.82) and thus is omitted. Second, we will prove that (A.87) is
O, (b=1/2). A Taylor series expansion yields

IBell = |Bell = sl Bell*"2Fol% (Br — fo)- (A.89)
Thus we have
-0 3 -0 o
AT =+ )Y B = 1Bell* = QT = €+1) > s||Bel*2Fl? (Br — Bo).  (A.90)
t= t=0

By using arguments analogous to the one used in the proof of (A.82), it follows from the ergodic

theorem that
T—¢

WL = +1) S s Bel*2F, = Ous(1). (A.91)

t=0

33



Thus it follows from Assumption 1(i) that

T—¢
(/T =4+ 1) > (1Bl = 1Be]l*) = Op(b~/?). (A.92)
t=0
Similarly we obtain
T—¢ 3
(L/(T =+ 1)) > E(IB]l* = | Bil|*) = O(67/?). (A.93)
t=0

Hence it follows from (A.92) and (A.93) that (A.87) is O,(b~'/2). Third, we will prove that
(A.88) is O, (b=1/2). We can write u} as

T— EA
pr = (/T —-E0+1)) ) B
t=0
T—¢ T4
= (T —L+1)> B+ /(T —+1)> Fl"*(Br - 6)
tTe t=0
+/(T - L+1)) ZHW? (Br — Bo)*. (A.94)

t=

Thus we obtain
e ll® = Ellpr®

T—t
= O((U/(T = ¢+1)) Y IBlI* = E|Bill*)
t=0

T—¢
HO((U/(T = £+1) Y IEL2(Gr = Bo)|I* = EIEL(Br = Bo)l*). (A.95)

t=0
The rest of the proof is analogous to the proofs of (A.86) and (A.87). Therefore (A.83) follows
from (A.86), (A.87) and (A.88). Q.E.D.

Lemma B.2: Let G§ = E*(G%) and B}. and C}. denote the bootstrap version of B and C in
Lemma A.1 with Sy replaced by S7., respectively. Then

Gy = Go+0,(T7V?), (A.96)
Sk o= S+O0U™H 40,072, (A.97)

Proof of Lemma B.2: First, we will prove (A.96).

b

* * * * 1 *
G = E'[GI] = E'[; ) Fv] = E'[Fy]
k=1
Tt T—2¢
1 1 1
S F, = — - Wi+
e DI R ESPINDY
1 T
= S wHOUTTY) = Gr+0,(T),
t=1

Therefore, (A.96 follows from G — Gy = O,(T~/?).
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Next, we will prove (A.97). By definition, it follows that

Sy = Var* (mp) = Var'( ZBNk

1 1 '

E*(Bn,By,) = E*(By, By,) =

I
S
M“/\/\

1
b 4

o~
Il
—
~
o

It follows from Lemma B.1 that
Si — E[S7] = 0, (b™'/%).
Since % = O,(T~'/?), we have

14

E[S;] = E[BB)] = Y (1-j|/0E[wv ;] = S+0(™).

j=—t
Thus (A.97) follows from (A.101),(A.102) and (A.103).

Lemma B.3: Let

oy = TY’ki(g}),
o = (T/0(k5(gr) — 1) = (T/O(E*(97) — [E*(97)]* — 1),
Ky = TY2E*(g3%) = TV*{r3(g7) + 3E* (95 E" (g7) — 2|E"(97))°},

(r = (T/0(ki(97) —3).
Then

W = e+ TYE(Gh — GY) mi] + T2 E* [vech(Ss — Si)

+TV2e" B [vech(Sy — S5)  mip] + ol (¢T71/?)
= Qoo+ Op(71) + O, (b72) + 03 (eT71/2),
= Ve +2AT/OE @ mpb” (G — Gg) ]}
+2(T/¢)E*{a*' mic”[vech(Sy — S7)  mi]}

+2(T/0)E*{a*'mie* [vech(Sh — S5)  vech(S5 — S5)  mi]}

+(T/O)E*{c" [vech(S; — S7)  mi]}? +03(1),
= Yo +0p(1) +0p(1),

Ky = Koo+ T1/2 [(a*’ * )3] + 3T1/2E*{(a*’m})2b*’[(GT _ Go)/
+3TY2E*{(a*'m})2c* [vech(Sh — S%)  mi|}
+3T2E*{(a”'m}) c” [vech(S5 — S5)  mip} 4 o (¢T71/?)

= Foo + Op((72) + 0, (67%) + 05 ((T711?),

G = oo +AT/OE{(a”"m}) e [vech(Sy — S7)  mip]}

+4(T /0 E*{(a*'m%)3e [vech (S5 — S5)  vech(Sh — S%)  m3]}

+6(T/OB" (" mi)* e [vech(S7 — §7)  mi]}?)
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ZBM VBE*( BN1)> (iZBNk - \/5E*(BN1)> (A.99)

(A.102)

(A.103)

Q.E.D.

(A.104)

(A.105)

(A.106)



f12(T/€)E*{a*’m*Tc*’[vech(bf% - b:‘%) mrl}
—12(T/0) E*{a*'m3e*[vech (S5 — S3)  vech(S5 — S5)  mi]}
—6(T/0)E*{c”[vech(S5 — S3)  my]} + o3(1)

= (oo t0,(1) +0p(1), (A.107)

where o, Yoos Koo, and (s are defined in Lemma A.4.

Proof of Lemma B.3: The first equalities in (A.104)—(A.107) follow from Lemmas B.1 and B.2.
Thus we will show that the second equalities hold in the rest of the proof.
Part (a): Proof of (A.104). First, we introduce some notation for the proof. Let

0ir = TVBUE(Gh-Gy) mil,
by = TY2c"E*[vech(Sh — S%)  m),
afp = TY?c E*[vech(Sh — 55)  mi,
ar = TY?W'E[(Gr—Go) mr),

aor = TY2cElvech(Sy — Sr)  mr],
o3 = Tl/Qc’E[vech(gT - S’T) mr),

Al = b/ Z E[’LUQ ’Ui],

Agee = C Z Elvech(vov))  vj],
1,j=—00
Q3o = ¢ Y E{vech[VS(E(wo)VE(wo)) ™ E(w)'Vve] vi}.

Next, we will prove that

Ay — e = Op(€71) + O, (620712, (A.108)
Wy — Qase = Op(£71) + O, (6207 1/2), (A.109)
Whp — 0300 = O,(07Y) + O, (2712, (A.110)
Since Qoo = Qoo + Q200 + 300 and o = afp +adr + i, (A.104) follows from (A.108), (A.109)

and (A.110).
First, we will prove (A.108). From Lemma B.2, we have b* = b+ O(¢~!) + Op(b—l/Q) and
thus
O‘TT = \/Zb*/E*{[FNliE*(FNl)] BNl}
= bYE’[Fy, By,
— VE'Fy, Bn]+0,")+0,0b7'?)
= aj + 0, + 0,072, say. (A.111)

By combining (A.111) with

4
Elai | =bE [ﬁt Bt} =S (- il/OWEwe  v_j] = are +O(C7). (A.112)
j=—t

and o, — E[af] = 0,(b~'/2) from Lemma B.1, we obtain (A.108).
Second, we will prove (A.109). Similarly, we have ¢* = ¢+ O(¢{~') + O, (b~'/?) from Lemma
B.2 and thus

ajr = Vic*'E*[vech(By, By, — E*(Bn, By,)) Bn,]
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= Vi< E*[vech(By, By, — E*(Bn,By,))  Bw,] + Op(071) + 0,(b™"/?)
Vilc'E*[vech(By, By,)  Bn,]+ O,(¢71) + 0,(b7'/?)
= a3+ 0, + 0,73, say (A.113)

By combining (A.113) with

Elas,] = VIc'Elvech(B,B]) By
_ min ((max |i|, |[7]) (@ -7 > 0) + (|i| + [7])(i - j < 0),€)
]_Z_e< ] )
x E[vech (vov_;)  v_j]
v Ol (A.114)

and ab, — E[ab.] = O,(b~1/?) from Lemma B.1, we obtain (A.109).
Lastly, we will prove (A.110). Note that

b

Qi o 1 n n
Sp—5r = 7 > (BNk By, — B, BM)
k=1
= VSHB - B) + V2535 - B)? (A.115)
where
~ N7 b
VSt = TZ (Fn, By, + By Fu,)
k=1
_ 08
258 = EZ FnoFLL) S
- . _ 1
3 =8 = [GpveGy T Gy Ve —=m.

VT

First, note that

VS = B [vSi]+0;0677),

LS = B[R] 4 0y,
where
B [v[s‘;} — VIE'[Fy, By, + By Fi,] = E*[Fn, By, + B, Fiy.],
B [VQS“;} = (E*[Fx FY).
Second, note that
TV (6" = B) = [E*[GFIVr E*[G]) " E*[GF)Vems + 05(b71/?) (A.116)

since G — E*[Gy] = O3 (b~1/?) and
GyVrGy — E* |Gy Ve E*[Gy] = O3 (b71/3).
Thus it follows from (A.115)-(A.116) that

asp = Tl/Qc*/E*[vech(S}fg}) mr),
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* VeCh vSTTl/Q B* *B)“FVQSV%TUQ(E*

c'E
¢t B [vech

+O;(€1/2T_1/2)

x E*[Fi, ]V By,)
Qoo +Op(CPTV2) 4+ 0, (071) + 0, (b71/3),

Since

4
E |E[Fy, By, + B, Fi)| = VIEIFB]+ B/F]] =

j=—t

j=—o0
E[E"[Fn,]] E[F] = Elw,
it follows that
E*[Fy, By, + By,Fy,) = E [ B[Py, By, + By, i,
E*[Fn,] - E[E[Fy,]]
Hence, it follows from the moment inequality, Lemma B.1, (A.120)

agoo E [O‘;oo] + O;D(b_l/Q)

1=—00

Qe+ Op(671) + 0, (b71/2).

Therefore, (A.110) follows from (A.117), and ( A.122).
Part (b): Proof of (A.105). Let

YT (T/OE 2" mpb” (G — Gy)  my]},
ir = (/OB{mie wch(S; —Si) i),
vir = (T/0)E*{a*mie* [vech(S} — S})  vech(Sy —
Yar (T/O)E*{c"[vech(ST — S7)  m7]}?.

From Lemma B.2, we have a* = a + O(¢~!) + O, (b~'/2) and thus

¢/ E*{vech (E [P, Bly, + By, Fiy,] [E*[F&, IV E*[Fy, ]
By} + O5(0PT12) 4 067 + 0, (b7/2),

Z Elwov' j +vow' ;] +O0(™") =

c i E{vech[VS(E(w)' VE(w)) "E(wo)' Vg v} +O,(¢

( -3?) mil
(VSFT2(3 = B))  mi)+ 050212

¢ B {vech (B[ S5] [B*[GFIVr " (Gl (G Vemy ) mip}

-1

say. (A.117)

S (1 - 11/0 Blwovl; + vow]

VS + O(L7H)(A.118)
(A.119)

= 0,(b7'%),  (A.120)
= 0,(7%%.  (A.121)

and (A.121) that

)+ 0,67

(A.122)

Sr) mrl},

vir =P E*{a” By, b"[Fy, — E*(Fy,)]  Bn,} = 03(1)
Similarly,
v = (T/OE*{a"mpc”[vech(ST — S7)  m7l}
= E*{a*/BNl */[VeCh(BNlBEVI 7E*(BNlB§V1)) BNI]}
— E*{a/By,clvech(By, By, — E*(Bx,By,)) B} + 0p(™1) + 0,(671/2)
= Yoo T O FO,(07VF),  say.
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It follows from the moment inequality and Lemma B.1 that

Voo = E[VEOOH Op(b _1/2)

= lim - Z Z E{a'vyc [vech(v;v]_; —T;) v} + O0,(7) + O, (b7 "/?)

]_—E i,k=—T
= oo T Op(71) + O (07112). (A.123)
The result for 5 and v3; can be proved using similar arguments, and thus the proof is
omitted.
Part (c): Proof of (A.106). Let % = T'/2E*[(a*'m3)?] denote the second term on the RHS

of (A.106). Because the proof of Part (c) is analogous to the proofs of Parts (a) and (b), we will
only show that

kir= Y E(@uvoaviajv;) + O0p(t™) + 0y (b7/2). (A.124)
1,j=—00
By definition, we have

T—¢
Kkip = ("PE*[(@”By,)%] = (("2/(T—€+1)) [a(Bi+ B, — Bi — p7)l°,  (A.125)
t=0

where Et and Bt are defined in the proof of Lemma B.1. Thus it suffices to show that

T—¢ 0o
(EPHT—04+1)Y (@”B)* = Y E(avea'va'v;) + o, ((T7"/?),(A.126)
o t=0 2,]=—00
((PUT —0+1)Y [@7 (B — B = O0p(t71) + 0,(b71/3), (A.127)
= T—¢
(E2)T —0+1))Y (@'up)® = 0,1 +0,(b713), (A.128)
t=0

First, we will show (A.126). Since a HAC covariance matrix estimator converges at rate
O,(4/2T=1/2), it follows that
T—¢ 3 3
(1/(T = L+1) ) 2(@"B;)* — (V2 E(a” B;)?

=0

¢
0,3 (1 — min(max(i, j,li — 1), O)/O(1/(T — £+ 1)
i,j=0
T—t
x Z[a*’vta*’vt+ia*’vt+j — E(a™via v 0" 04 5)])
=0

O, (£2*17=1/2), (A.129)
By the moment inequality, it follows that
b—1
(1/b) Y ¢?E(a” B;)? Z E(a'vpa'via'vj) + o((T~/?). (A.130)
=0 1,J=—00

Thus (A.126) follows from (A.129) and (A.130). Next we will show (A.127) and (A.128). Using
arguments similar to the one used in the proof of Lemma B.1, we obtain

T—¢ T—¢
(E%/(T—Hl))Z[a*’(f?t—ét)] ((T—t+1)) Y {a”[F(Br—50)]}* = Op (T~ ) (A.131)
t=0 t=0
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and

~

—¢
(EPHT =04+ 1)Y (@pp)® = 2@ uz)? = 0, (£2073/?). (A.132)
t=
Thus (A.127) and (A.128) are satisfied. Therefore, (A.106) follows.
Part (d): Proof of (A.107). Part (d) can be proved using similar arguments and thus the
proof is omitted. Q.E.D.

[=)

Proofs of Main Theorems
Lastly, we will prove the main theorems.

Proof of Theorem 1: The result for the studentized statistic (3.2) follows from Lemmas A.5-A.7.
Note that the J test statistic can be written as

Jp = JH (A.133)
where
le—'/Q = _1/2 Zzt Txt

Then one can show that Lemmas A.1-A.7 with fr replaced by JT/ % hold except that a, b, c,

d and e now take different values. Thus the distribution of le/ % can be approximated by its
Edgeworth expansion in a suitable sense. A slight modification of Theorem 1 of Chandra and
Ghosh (1979) completes the proof of (3.3). Q.E.D.

Proof of Theorem 2: For iid observations, a modification of Theorem 1 with ¢ = 1 yields

sup |57 (Br = fo) < @) = Wr(@)] = o), (A134)
sg;o)|P(JT§:c)f\IJJ7T(x)| = oT™h). (A.135)

under Assumptions 1(b)(c)(d)(i), £ = 1 and Assumption 1(e) replaced by the standard Cramer
condition. It suffices to show that the conditions on R; = (v},vec(w;)")’ required for the Edge-
worth expansion of Theorem 1 are also satisfied for Qn, = (ijj vec(Fy,)') for j =1,...,0b

conditionally on the sample xr = {(z}, yt, zg)}le, uniformly for all xr in a set whose probabil-
ity tends to 1 as T' — oo. Without loss of generality, we check the conditions using By,. For
Assumption Al(b), we have

~

E*[By,| = E*[By,] = Z (ziu; — pi) = 0. (A.136)

r+n

For Assumption Al(c), it follows from Lemma A.0 that
r+n

o LTt |l 1L
B }T—MZE‘WZ =PIt

From the proof of Theorem 4.2 of Gétze and Kiinsch (1996),

E [E <o, (A.137)

B |By, |7 = B [B* By | 7] = 0,(6571/%). (A.138)

Combining the two results implies that the probability of E* |By, |r+n < 0o tends to unity.

By construction, the moving block bootstrap sample are based on the independent sampling
of By,. Therefore, Assumption A1(d) is trivially satisfied (with a probability one) using a sigma-
field defined by o(N;) for j = 1,...,b, conditionally on the sample xr. By the same reason,
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we can replace Assumption Al(e) by the standard Cramér condition and we only need to show
that the condition holds with probability tends to one. Using an argument that appeared in the
proof of Theorem 4.2 of G&tze and Kiinsch (1996), we have that

P sup |E*explitBy,]|<1—Cp=1—0o(T™) (A.139)
d<|t|<bl/2

for some 0 < ¢ < 1/2. Q.E.D.

Proof of Theorem 3: It follows from Lemmas A.3—-A.5, Lemmas B.2-B.3 and Theorems 1 and 2
that

sup |P(rr < x) — P*(11 4 < )] = O,({T7) + 0,07, (A.140)
zeRP
sup |P(|rr| < 2) = P*(I5. < 2)l = op(T71) + Op(£7), (A.141)
zeRP
sup |P(Jr < x) — P*(J5 <) = o(lT™')+O,(L™9). (A.142)
x>0
Then the standard Cornish-Fisher expansions arguments complete the proof. Q.E.D.
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Table 1
Empirical Size of Nominal 10% ¢ and J Tests
with Asymptotic and Bootstrap Critical Values

(1) Trapezoidal kernel

Asymptotic Bootstrap PSD
p To+1 TTest J Test t Test J Test
0.5 64 23.8 10.6 15.3 89 10.9
128 20.9 9.6 14.2 9.9 7.1
0.9 64 449 11.5 20.5 9.1 23.3
128 35.9 13.6 12.2 11.8 10.1
0.95 64 47.5 12.6 24.0 8.4 27.6
128 42.3 13.6 12.3 10.1 16.3
(2) Parzen (b) kernel
Asymptotic Bootstrap PSD
0 To+1 tTest J Test t Test J Test
0.5 64 22.5 9.4 14.6 7.7 3.0
128 20.8 8.8 13.7 9.0 4.7
0.9 64 44.3 10.3 22.4 8.1 18.2
128 35.9 13.6 12.2 11.8 7.8
0.95 64 48.2 14.0 23.8 9.7 21.2
128 41.5 13.6 11.9 10.6 13.6
(3) Truncated kernel
Asymptotic Bootstrap PSD
0 To+1 tTest J Test t Test J Test
0.5 64 23.0 10.5 15.4 8.2 14.0
128 20.8 10.1 13.0 9.6 12.2
0.9 64 42.3 8.5 19.8 7.0 33.0
128 32.6 10.0 11.7 8.7 30.2
0.95 64 45.1 10.2 21.6 7.3 36.8
12 37.9 10.3 11.0 9.5 34.7
(4) Prewhitened HAC
Bartlett QS PSD
p To+1 TTest J Test t Test  J Test
0.5 64 20.2 11.3 20.7 10.8 —
128 15.8 10.8 16.4 10.5 —
0.9 64 37.1 13.9 38.2 10.0 —
128 26.3 13.8 26.2 9.6 —
0.95 64 41.9 20.1 41.4 11.8 —
128 30.5 15.3 31.0 9.4 —

Notes: Numbers are in percent. “PSD” refers to the frequencies of the positive semidef-
inite correction procedure described in Section 3.
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Table 2
GMM Estimates of the Policy Rule Parameters

(a) Pre-Volcker Period: 1960:1-1972:2

Kernel Jé] ¥ J
None 0.834 0.274  13.075
(0.067) (0.087) (0.126)
Bartlett  0.871 0.392  22.206
(0.030) (0.073) (0.671)
QS 0.871 0.388  22.242
(0.030) (0.073) (0.673)

(b) Volcker-Greenspan Period: 1979:3-1996:3

Kernel v J
None 2.153 0.933 21.376
(0.379) (0.454) (0.625)
Bartlett  2.258 0.854  23.314
(0.148) (0.224) (0.726)
QS 2.280 0.803  34.607
(0.148) (0.216) (0.978)

Notes: Asymptotic standard errors for the estimates of § and 7, and asymptotic p
values for the J statistics are in parentheses. For the asymptotic confidence interval
based on the Bartlett and QS kernels, the data-dependent bandwidth estimator of
Andrews (1991) and the prewhitening procedure of Andrews and Monahan (1992) are
used. The estimated bandwidths are reported in Table 3. “None” indicates that the
inverse of the variance-covariance matrix is used as the weighting matrix.
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Table 3
90% Confidence Intervals of the Policy Rule Parameters

(a) Pre-Volcker Period: 1960:1-1972:2

Kernel 7 G Y
Asymptotic None 0 0.724,0.945) %0.131, 0.416
Bartlett 0.640 (0.822,0.921 0.272,0.512
QS 0.944 50.823, 0.920% 0.268, 0.507
HH Bootstrap None 2 (0.656,1.013)  (-0.027,0.575)
IS Bootstrap  Trapezoidal 2 (0.738,1.191)  (0.177,0.762)
IS Bootstrap  Parzen (b) 2 (0.693,1.161)  (0.150, 0.627)
IS Bootstrap  Truncated 2 (0.738,1.191)  (0.177,0.762)
(b) Volcker-Greenspan Period: 1979:3-1996:3
kernels 4 Jé] ol
Asymptotic None 0 1.530,2.776)  (0.187,1.680
Bartlett 1.227 (2.015,2.502 %0.485, 1.222§
QS 1.460 32.038, 2.523% 0.449,1.158
HH Bootstrap None 2 (1.070,3.263) (-0.927,2.738)
IS Bootstrap  Trapezoidal 2 (1.517,3.026) (-0.151,0.996)
IS Bootstrap _ Parzen (b) 2 (1.446,3.204) (-0.321,1.273)
IS Bootstrap  Truncated 2 (1.517,3.026) (-0.151,0.996)

Notes: “HH Bootstrap” denotes the bootstrap method of Hall and Horowitz (1996) and
“IS Bootstrap” denotes the bootstrap method proposed in the present paper. “None”
indicates that the inverse of the variance-covariance matrix is used as the weighting
matrix. ¢ denotes the bandwidth for the asymptotic confidence interval and the block
length for the bootstrap confidence interval. For the asymptotic confidence interval
based on the Bartlett and QS kernels, the data-dependent bandwidth estimator of
Andrews (1991) and the prewhitening procedure of Andrews and Monahan (1992) are
used. For the bootstrap confidence interval, the data-dependent procedure described in
Section 3 is used to select the block length.
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