Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00 00 0	000	0000 00	0000	00000	0

More Perils of Taylor Rules Work in Progress

Marco Bassetto¹ Christopher Phelan²

¹Federal Reserve Bank of Chicago and NBER

²University of Minnesota and Federal Reserve Bank of Minneapolis

October 13, 2011

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
• 0 00 0	000	0000 00	0000	00000	0

Motivation

• Sargent and Wallace (*JPE*, 1975): indeterminacy under interest rate pegs

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
• • • • •	000	0000 00	0000	00000	0

Motivation

• Sargent and Wallace (*JPE*, 1975): indeterminacy under interest rate pegs

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

• Conventional wisdom: solve with active Taylor rules

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
• O 0 0 0	000	0000	0000	00000	0

Motivation

- Sargent and Wallace (*JPE*, 1975): indeterminacy under interest rate pegs
- Conventional wisdom: solve with active Taylor rules
- The ability of hitting the interest rate target is taken for granted

(日)

More Discussion of Interest Rate Rules

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
	000	0000	0000	00000	0

Our Main Point

• An interest-rate peg sets the relative price of bonds and money

 In (non-strategic) monetary models, Fisher equation ensures low interest rates ⇒ low inflation

duction	The Environment	General Equilibrium
	000	0000

Intro

Game 0000 000 xtensions 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Conclusion O

Our Main Point

- An interest-rate peg sets the relative price of bonds and money
- In (non-strategic) monetary models, Fisher equation ensures low interest rates ⇒ low inflation
- When open-market operations are subject to bounds, the peg is subject to runs
- Taking such bounds into account reveals a strategic complementarity in the game induced by an interest rate rule

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
••• ••	000	0000	0000	00000	0

An Extreme Example

• Discount rate on government paper: 5%-10%

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00 00	000	0000	0000	00000	0
0					

An Extreme Example

• Discount rate on government paper: 5%-10% (German Reichsbank, 1922-23)

• Average 1922-23 inflation (annual rate): 1,400,000%

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
•• ••	000	0000 00	0000	00000	0

An Extreme Example

- Discount rate on government paper: 5%-10% (German Reichsbank, 1922-23)
- Average 1922-23 inflation (annual rate): 1,400,000%
- Fraction of T-Bills held by the Reichsbank in Nov 1923: 99.1%

(日)

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00 00 0	000	0000 00	0000	00000	0

A Less Extreme Example

 Fed just announced that we will hold rates at 0-0.25% until mid-2013

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
	000	0000 00	0000	00000	0

A Less Extreme Example

 Fed just announced that we will hold rates at 0-0.25% until mid-2013

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

- What if inflation increases? How long is this feasible?
- Can there be a run? What does it look like?

Introduction	The Environment	General Equilibrium	Game	Extensions	Concl
00 00 •	000	0000 00	0000	00000	0

Outline of Talk

- Set up simple Cash-In-Advance economy
- Analyze environment using standard general equilibrium tools: low inflation
- Revisit in a game setting, including bounds (and measurability restrictions): multiple equilibria

(日)

Discuss some extensions that get closer to reality

Introduction The Environment	General Equilibrium 0000 00	Game 0000 000	Extensions 00000	Conclusion O
------------------------------	-----------------------------------	---------------------	---------------------	-----------------

The Cast of Actors

- A continuum of households
- A government/central bank described as an automaton (rules)

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00	000	0000	0000	00000	0
00		00	000		
0					

Timing

- 1. Households enter period t holding w_{t-1} units of nominal assets (bonds and money).
- 2. Government pays off bonds with cash, and levies lump sum taxes T_t (in terms of cash).
- 3. Central bank is a "bond vending machine": sets (one-period) bond price Q_t . Get one bond out per Q_t dollars put in.
- 4. Households now have $m_t \equiv w_{t-1} T_t Q_t b_t$ dollars on hand.
- 5. Households split into workers and shoppers.
- 6. Worker produces y_t .
- 7. Shopper purchases c_t .
- 8. Shoppers face cash-in-advance constraint, $c_t P_t \leq m_t$.
- 9. Workers then produce g_t for government (which needs \overline{G}), paid in cash or bonds.

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00 00 0	000	0000 00	0000	00000	0

Preferences

$$\sum_{t=0}^{\infty} u(c_t) - (y_t + g_t)$$

・ロト・4回ト・4回ト・4回ト・4回ト

Assumptions: RRA > 1 around intended equilibrium

Introduction

General Equilibrium

Game 0000 Extensions 00000

Conclusion

General Equilibrium: Household Problem

• Taking $\{Q_t, P_t, T_t\}_{t=0}^{\infty}$, w_{-1} as given, households solve

$$\max_{c_t,m_t,b_t,y_t,g_t}\sum_{t=0}^{\infty}\beta^t[u(c_t)-(y_t+g_t)]$$

s.t.

$$Q_t b_t + m_t + T_t \le w_{t-1}$$
$$w_t = m_t + P_t (y_t + g_t - c_t) + b_t$$
$$P_t c_t \le m_t$$

and no-Ponzi condition.

oduction	The Envir
	000

onment General Equilibrium

Ga

.

ensions 000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Conclusion

General Equilibrium: Necessary Conditions from Household Optimization

$$u'(c_t) = 1/Q_t$$
$$\frac{P_{t+1}}{P_t} = \frac{\beta}{Q_{t+1}}$$

(Assume $Q_t < 1$)

 $P_t c_t = m_t$

roduction	The	Enviro
)	000	
)		

General	Equilibriu
0000	
00	

Game 0000 000 Extensions

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Conclusion O

General Equilibrium: Government Policy

ım

- A government policy is a sequence $\{Q_t, T_t\}_{t=0}^{\infty}$, as a function of the price sequence $\{P_t\}_{t=0}^{\infty}$ that satisfies
- Nonnegative bonds in the intended equilibrium:

$$T_t \leq B_{t-1} + P_{t-1}G_{t-1} + M_{t-1}(1 - \beta/Q_t)$$

• "Ricardian" policy (sufficient condition): there exist \bar{b} and $\alpha \in (0,1)$ such that and

$$|B_{t-1}/P_{t-1}| \geq \bar{b} \Longrightarrow T_t \geq \alpha B_{t-1}$$

Assumptions rule out commodity money (FTPL).

ntroduction	The	Environment	0
00	000		C
00			C

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Equilibrium Price Sequences

000

 Pretty remarkable. Still lots of equilibria (since P₀ not pinned) down), but all of them have the same inflation rate for every date:

$$\frac{P_{t+1}}{P_t} = \frac{\beta}{Q_{t+1}}$$

- Same consumption and welfare too
- Thus, if the government wants price stability ($P_{t+1} = P_t$ for all t), all it has to is be willing to borrow or lend at $(1 - \frac{1}{R})$

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00 00 0	000	0000 •0	0000	00000	0

Sunspots

- Yes, there can be sunspots if $Q_t\equiveta$
- Necessary condition becomes

$$\mathsf{E}[\frac{\mathsf{P}_t}{\mathsf{P}_{t+1}}|\mathcal{I}_t] = 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Expected (inverse) inflation, welfare fixed

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00	000	0000	0000	00000	0
Ō					

Back to the Reichsbank

• Was the Reichsbank just very unlucky with sunspots?

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclu
00 00 0	000	0000	0000	00000	0

Back to the Reichsbank

- Was the Reichsbank just very unlucky with sunspots?
- Need a better model of trade (especially between central bank and households)

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Introduction	The Environment	General Equilibrium	Game	Extensions
00	000	0000	0000	00000
00		00	000	
0				

Environment as a Game

- Households enter period with w_{t-1} money and/or bonds
- Gov't pays off bonds in cash and imposes lump sum taxes (in cash)
- Households unable to pay taxes are "flogged"
- Households access bond vending machine subject to bounds
- Bound has to depend on information up to this point (*P_t* is out)

(日)

- Interest rate $1/Q_t$ also must depend on info up to here
- Exact bound not so important. Assume $B_t \ge 0$.

roduction	The	Environm
	000	
)		

Game 0000 Extensions 00000

(日)

Conclusion O

Game (continued)

- Households split into a worker and a shopper, travel to separate islands
- Workers and shoppers are anonymous on the island
- Bonds cannot be transported to the island
- In each island, a Shubik market is present.

Introdu	iction
00	
00	
0	

Game	
0000	
000	

xtensions

(日)

Conclusion

The Shubik Stage of the Game

- Shoppers bid m_t (up to their holdings); aggregate bid: M_t
- Workers bid $y_t \ge \epsilon$; aggregate: Y_t
- Price is determined as $P_t = M_t / Y_t$
- Shopper receives $m_t Y_t / M_t = m_t / P_t$ unit of goods
- Worker receives $y_t M_t / Y_t = y_t P_t$ units of money

oduction	The Environment
	000

Game 0000 xtensions

Conclusion O

Back to the Center Island

- Government auctions $P_t \bar{G}$ units of money on another Shubik market
- · Households bid to produce for the government

Introduction	
00	
00	
0	

The Environment

General Equilibrium

Game 0000 000 ctensions 0000

Conclusion 0

The Intended Equilibrium

- Households act as price takers, solve the same problem as before
- Assuming that $B_t > 0$ in the desired equilibrium, it remains an equilibrium

Introduction	
00	
00	
0	

Game	Extensions
	00000
000	

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Conclusion

The Reichsbank Equilibrium

- Suppose you believe that all other households will not hold bonds in period *t*
- Fed monetizes government debt
- High money growth, high inflation, nobody lends at low nominal rate
- Government policy becomes a (high) money growth rule, get GE equilibrium of a high money growth rule

Intro	duction	1
00		
00		
0		

The Environment

General Equilibrium

Game Extensi

ensions DOO

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

The Reichsbank Equilibrium in Math

HH Euler equation now says

$$\frac{P_{t+1}}{P_t} \geq \frac{\beta}{Q_{t+1}}$$

- Equality is necessary only if $b_t > 0$
- New equilibrium:

•
$$B_t = 0$$
,

- $M_t = M_{t-1} + B_{t-1} + P_{t-1}G_{t-1} T_t$
- $M_t/P_t = C_t$
- •

$$u'(C_t) = \frac{P_t}{\beta P_{t-1}}$$

Introduction	
00	
00	
0	

The Environment

General Equilibrium

Game 0000 000 Extensions •0000

Conclusion O

Is this just about the Reichsbank?

• So far, two equilibria: intended equilibrium and hyperinflation

Introduction	
00	
00	
0	

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Conclusion O

Is this just about the Reichsbank?

- So far, two equilibria: intended equilibrium and hyperinflation
- Many frictions can lead to runs with lower inflation:
 - Long-term bonds
 - Limited participation
 - Rational inattention
 - Cost of accessing the market (going to the bond vending machine)

Introduction
00
00
0

The Environment

General Equilibrium 0000 00 Game 0000 000 Extensions 00000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Conclusion 0

Illustration: Limited Participation

- Same environment as before, except:
- Households divided into T groups
- Each group can only produce every T periods

oduction	The Envir
	000

nt General

m (

)

Extensions 00000

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Conclusion O

New household necessary conditions

•
$$u'(c_t^j) = \beta \lambda_t^j$$

• $1 = \lambda_{j+kT}^j P_{j+kT}$
• $Q_t \lambda_t^j \ge \beta \lambda_{t+1}^j, = \text{if } B_t^j > 0$

Introduction	
00	
00	
0	

Game 0000 000 Extensions 00000

Conclusion O

The Intended Equilibrium

- Borrowing constraint not binding
- $u'(C_t^j) = 1/\bar{Q}$
- $P_{t+1}/P_t = \beta/\bar{Q}$
- $P_t C_t^j = M_t^j$

Introduction	
00	
00	
0	

Game 0000 000 Extensions 000●0

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Conclusion O

The Intended Equilibrium

- Borrowing constraint not binding
- $u'(C_t^j) = 1/\bar{Q}$
- $P_{t+1}/P_t = \beta/\bar{Q}$
- $P_t C_t^j = M_t^j$
- Requires right initial distribution of wealth, right initial price level
- (Otherwise, more in general) periodic allocation and $P_{t+T}/P_t = \beta/\bar{Q}^T$

Introduction
00
00
0

The Environment

General Equilibrium

Game 0000 000 Extensions 0000

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Conclusion O

Run in period *t* only (Intuition)

- Only period-t producers borrowing constrained
- Other households cut back on bond purchases, but less
- CB is not completely cornering the market, but selling pressure emerges and money increases
- Inflation more limited

	Introduction 00 00 0	The Environment 000	General Equilibrium 0000 00	Game 0000 000	Extensions 00000	Conclusion •
--	-------------------------------	------------------------	-----------------------------------	---------------------	---------------------	-----------------

Conclusion

• Interest rate rules are subject to runs just as exchange rate pegs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Runs more severe if interest target is on a deep market
- How do we really achieve price stability?

Introduction	The Environment	General Equilibrium	Game	Extensions	Conclusion
00 00 0	000	0000	0000	00000	•

Conclusion

 Interest rate rules are subject to runs just as exchange rate pegs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Runs more severe if interest target is on a deep market
- How do we really achieve price stability?
- Commodity money fiscal policy? (back to Sargent)

Interpretation of Interest Rate Rules

Two interpretations of interest rate rules:

- "Prescribed guide for monetary policy conduct" (Svensson and Woodford, 2005)
 - Implementation is left to the wizards at the trading desk in NY

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Here: central bank strategy to achieve unique implementation of a desirable equilibrium.
 - We are muggles trying to make sense of the wizardry

Interpretation of Interest Rate Rules

Two interpretations of interest rate rules:

- "Prescribed guide for monetary policy conduct" (Svensson and Woodford, 2005)
 - Implementation is left to the wizards at the trading desk in NY

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Here: central bank strategy to achieve unique implementation of a desirable equilibrium.
 - We are muggles trying to make sense of the wizardry
 - Of course, as muggles we fail

▶ Go Back