REGOPT

Options     Examples     References

REGOPT controls the calculation and output of the regression diagnostics for OLSQ and some output of other commands. It replaces the old SUPRES and NOSUPRES commands.

REGOPT (BPLIST=<list of variables>, CALC, CHOWDATE=<date for splitting sample>,

                DWPVALUE=type, LMLAGS=<# of lags for LMAR test>,

                PRINT, PVCALC, PVPRINT, QLAGS=<# of Q-statistics>, RESETORD=value,

               SHORTLAB, STAR1=<value for *>, STAR2=<value for **>, STARS)

                list of output names or keywords ;

Usage

OLSQ can produce a massive number of diagnostics. REGOPT provides the user with extensive customization of this output, so that irrelevant diagnostics do not crowd relevant ones or require extensive time to calculate. The [PV]CALC and [PV]PRINT options are used along with a list of the diagnostic codes (@names) that one wishes to control. The keywords AUTO, HET, REGOUT, and ALL may also be used to control groups of diagnostics (instead of listing all the names). Other options (such as BPLIST and LMLAGS) control individual diagnostics that have no clear default. OPTIONS LIMCOL= and SIGNIF= also control the display. Note that "robust" diagnostics are available with the HI option in OLSQ.

Output

The following three examples illustrate the range of output available.

Three examples of controlling regression output with REGOPT

The data for these examples is a regression squared on time:

options crt; smpl 1,10; trend t; t2 = t*t;

Example 1: default option

olsq t2 c t; ? default

 

                                     Equation   1

                                     ============

                      Method of estimation = Ordinary Least Squares

 

Dependent variable: T2

Current sample:  1 to 10

Number of observations:  10

       Mean of dep. var. = 38.5000      LM het. test = .391605 [.531]

  Std. dev. of dep. var. = 34.1736     Durbin-Watson = .454545 [<.012]

Sum of squared residuals = 528.000  Jarque-Bera test = 1.01479 [.602]

   Variance of residuals = 66.0000   Ramsey's RESET2 = .850706E+38 [.000]

Std. error of regression = 8.12404   F (zero slopes) = 151.250 [.000]

               R-squared = .949765    Schwarz B.I.C. = 36.3245

      Adjusted R-squared = .943485    Log likelihood = -34.0219

           Estimated    Standard

Variable  Coefficient     Error       t-statistic   P-value

C         -22.0000      5.54977       -3.96412      [.004]

T         11.0000       .894427       12.2984       [.000]

Example 2: "short label" output

regopt(shortlab);

olsq t2 c t;

 

                                     Equation   2

                                     ============

                      Method of estimation = Ordinary Least Squares

 

Dependent variable: T2

Current sample:  1 to 10

Number of observations:  10

 

YMEAN 38.5000      S 8.12404             DW .454545 [<.012]     SBIC 36.3245

 SDEV 34.1736    RSQ .949765             JB 1.01479 [.602]      LOGL -34.0219

  SSR 528.000   ARSQ .943485         RESET2 .850706E+38 [.000]

   S2 66.0000  LMHET .391605 [.531]     FST 151.250 [.000]

 

           Estimated    Standard

Variable  Coefficient     Error       t-statistic   P-value

C         -22.0000      5.54977       -3.96412      [.004]

T         11.0000       .894427       12.2984       [.000]

Example 3: maximal output

regopt (pvprint,stars,bplist=(c,t),lmlags=2,qlags=2,noshort) all;

options signif=8;                                    ? increase width of displayed numbers

? maximal output except for DH and DHALT(require lagged dependent var.)

olsq t2 c t;

                                     

                                     Equation   3

                                     ============

                      Method of estimation = Ordinary Least Squares

 

Dependent variable: T2

Current sample:  1 to 10

Number of observations:  10

 

         Mean of dep. var. = 38.5000000

    Std. dev. of dep. var. = 34.1735765

  Sum of squared residuals = 528.000000

     Variance of residuals = 66.0000000

  Std. error of regression = 8.12403840

                 R-squared = .949764521

        Adjusted R-squared = .943485086

              LM het. test = .391604968 [.531]

             Durbin-Watson = .454545455 * [<.012]

Breusch/Godfrey LM: AR/MA1 = .850705917E+38 ** [.000]

Breusch/Godfrey LM: AR/MA2 = .850705917E+38 ** [.000]

    Ljung-Box Q-statistic1 = 3.33333333 [.068]

    Ljung-Box Q-statistic2 = 3.38842975 [.184]

                 ARCH test = .258229904 [.611]

                CuSum test = 1.26364964 ** [.003]

              CuSumSq test = .465909091 [.051]

                 Chow test = 53.5714286 ** [.000]

       Chow het. rob. test = 53.5714286 ** [.000]

    LR het. test (w/ Chow) = 26.4920970 ** [.000]

           White het. test = 3.38983051 [.184]

   Breusch-Pagan het. test = 1.74908036 [.186]

          Jarque-Bera test = 1.01478803 [.602]

         Shapiro-Wilk test = .869383609 [.098]

           Ramsey's RESET2 = .850705917E+38 ** [.000]

           F (zero slopes) = 151.250000 ** [.000]

            Schwarz B.I.C. = 36.3245264

  Akaike Information Crit. = 36.0219413

            Log likelihood = -34.0219413

 

           Estimated       Standard

Variable  Coefficient        Error          t-statistic          P-value

C         -22.0000000      5.54977477       -3.96412484      **  [.004]

T         11.0000000       .894427191       12.2983739       **  [.000]

 

                 Variance Covariance of estimated coefficients

                     C             T

C          30.80000000               

T          -4.40000000    0.80000000

 

                 Correlation matrix of estimated coefficients

                     C             T

C            1.0000000               

T          -0.88640526     1.0000000

 

ID     ACTUAL(*)   FITTED(+)                          RESIDUAL(0)

                                                                       0

1       1.0000     -11.0000    + *                       12.0000    +  |   +  0

2       4.0000     0.0000        +*                       4.0000    +  |  0+

3       9.0000     11.0000         +                     -2.0000    + 0|   +

4       16.0000    22.0000          *+                   -6.0000    0  |   +

5       25.0000    33.0000           * +                 -8.0000   0+  |   +

6       36.0000    44.0000             * +               -8.0000   0+  |   +

7       49.0000    55.0000                *+             -6.0000    0  |   +

8       64.0000    66.0000                   +           -2.0000    + 0|   +

9       81.0000    77.0000                     +*         4.0000    +  |  0+

10      100.0000   88.0000                       + *     12.0000    +  |   +  0

 

CUSUM PLOT

***** ****

CUSUM PLOTTED WITH C

UPPER BOUND (5%) PLOTTED WITH U

LOWER BOUND (5%) PLOTTED WITH L

 

    MINIMUM                                           MAXIMUM

  -8.04319191                                    10.72242260

    |-+--------------------0----------------------------+-|

3   |              L       |C       U                     |    

4   |            L         | C        U                   |    

5   |          L           |   C        U                 |    

6   |        L             |     C        U               |    

7   |      L               |         C      U             |    

8   |     L                |              C  U            |    

9   |   L                  |                   UC         |    

10  | L                    |                     U      C |    

    |-+--------------------0----------------------------+-|

  -8.04319191                                    10.72242260

    MINIMUM                                           MAXIMUM

 

CUSUMSQ PLOT

******* ****

CUSUMSQ PLOTTED WITH C

MEAN PLOTTED WITH M

UPPER BOUND (5%) PLOTTED WITH U

LOWER BOUND (5%) PLOTTED WITH L

 

    MINIMUM                                           MAXIMUM

  0.00000000                                      1.00000000

    |-+-------------------------------------------------+-|

3   | 2     M                       U                     | CL  

4   | 2            M                      U               | CL  

5   | LC                 M                      U         |     

6   |   L C                    M                      U   |     

7   |         2                      M                  U | CL  

8   |               L C                     M           U |     

9   |                     L        C              M     U |     

10  |                            L                      3 | CMU

    |-+-------------------------------------------------+-|

  0.00000000                                      1.00000000

    MINIMUM                                           MAXIMUM

 

show scalar;                            ? list of scalar results showing @names and % names

 

Class    Name     Description

-----    ----     -----------

SCALAR   @NOB     constant 10.00000000

         @FREQ    constant 0.00000000

         @YMEAN   constant 38.50000000

         @SDEV    constant 34.17357654

         @SSR     constant 528.00000000

         @S2      constant 66.00000000

         @S       constant 8.12403840

         @RSQ     constant 0.94976452

         @ARSQ    constant 0.94348509

         @LMHET   constant 0.39160497

         %LMHET   constant 0.53145697

         @DW      constant 0.45454545

         %DW      constant 0.012096704

         @JB      constant 1.01478803

         %JB      constant 0.60206250

         @RESET2  constant 8.5070592D+37

         %RESET2  constant 0.00000000

         @FST     constant 151.25000000

         %FST     constant 0.00000177754

         @SBIC    constant 36.32452638

         @AIC     constant 36.02194129

         @LOGL    constant -34.02194129

         @NCOEF   constant 2.00000000

         @NCID    constant 2.00000000

         @LMAR1   constant 8.5070592D+37

         %LMAR1   constant 0.00000000

         @LMAR2   constant 8.5070592D+37

         %LMAR2   constant 0.00000000

         @QSTAT1  constant 3.33333333

         %QSTAT1  constant 0.067889155

         @QSTAT2  constant 3.38842975

         %QSTAT2  constant 0.18374343

         @ARCH    constant 0.25822990

         %ARCH    constant 0.61133885

         @CSMAX   constant 1.26364964

         %CSMAX   constant 0.0031685821

         @CSQMAX  constant 0.46590909

         %CSQMAX  constant 0.050848751

         @CHOW    constant 53.57142857

         %CHOW    constant 0.00014913251

         @CHOWHET constant 53.57142857

         %CHOWHET constant 0.00014913251

         @LRHET   constant 26.49209701

         %LRHET   constant 0.00000026462

         @WHITEHT constant 3.38983051

         %WHITEHT constant 0.18361479

         @BPHET   constant 1.74908036

         %BPHET   constant 0.18599239

         @SWILK   constant 0.86938361

         %SWILK   constant 0.098324680

Options

BPLIST = list of variables for the Breusch-Pagan heteroscedasticity test.

CALC/NOCALC indicates whether the listed diagnostics (list of output names) should or should not be calculated and stored under @names.

CHOWDATE = starting date of second period for Chow test. The default is to split the sample exactly in half (if the number of observations is odd, the extra observation will be in the second period).

DWPVALUE=APPROX or BOUNDS or EXACT specifies what method will be used for computing the P-value for the Durbin-Watson statistic. The default depends on the current FREQ: APPROX for FREQ N, BOUNDS for other frequencies, including Panel data.

LMLAGS = maximum number of lagged residuals for Breusch-Godfrey LM test of general autocorrelation (AR or MA). The default is zero.

PRINT/NOPRINT indicates whether the diagnostics should be printed. PRINT implies CALC.

PVCALC/NOPVCALC indicates whether p-values should be calculated and stored under %names. PVCALC implies CALC. See Method for the distributions used to compute these P-values in particular cases.

PVPRINT/NOPVPRIN indicates whether p-values should be printed. PVPRINT implies PVCALC, PRINT, and CALC. Using this option will sometimes cause regression output to be printed in one column instead of two, unless SHORTLAB is used. Other things like wide numbers (OPTIONS NWIDTH=, SIGNIF=) may also cause single column output.

QLAGS= maximum number of autocorrelations for Ljung-Box Q-statistics (Portmanteau test of residual autocorrelation). The default is zero.

RESETORD= order of Ramsey’s RESET test. The default is 2.

SHORTLAB/NOSHORTL indicates whether short or long labels are used when printing all diagnostics.

STAR1= upper bound on p-value for printing at least one star (*), when STARS option is on. The default is .05. There can be up to 5 pairs of (STAR1,STAR2) values, which can apply to different sets of diagnostics. This option only applies to the diagnostics listed for the REGOPT command.

STAR2= upper bound on p-value for printing two stars (**), when STARS option is on. The default is .01 . This option only applies to the diagnostics listed for the REGOPT command.

STARS/NOSTARS indicates whether stars should be printed indicating significance of diagnostics. STARS implies PVCALC, except for regression coefficients (@T).

Examples

REGOPT (STARS,LMLAGS=5,QLAGS=5,BPLIST=(C,X,X2)) ALL;

turns on all possible diagnostic output, including VCOV matrix and residual plots.

REGOPT;

restores the default settings.

REGOPT (NOCALC) AUTO;

stops calculation of all the autocorrelation diagnostics (useful for pure cross-sectional datasets).

REGOPT (NOPRINT) RSQ FST;

suppresses printing of the R-squared and F-statistics. This is the same as the old TSP command SUPRES RSQ FST;

REGOPT (STARS,STAR1=.10,STAR2=.05) T ;

REGOPT (,STARS,STAR1=.05,STAR2=.02) AUTO ;

uses one set of significance levels for the t-statistics and another for the autocorrelation diagnostics.

Summary table of diagnostics/OLSQ output (@Name = value, %Name = p-value)

Group

Name

Description

None

LHV

Dependent variable name

 

SMPL

Current sample

 

NOB

Number of observations

 

COEF

Regression coefficients

 

SES

Standard errors

 

T

t-statistics

 

VCOV

Variance-covariance matrix

 

VCOR

Correlation version of VCOV

 

NCOEF

Number of coefficients

 

NCID

Number of identified coefficients (rank of VCOV)

REGOUT

YMEAN

Mean of dependent variable

 

SDEV

Standard deviation of dependent variable

 

SSR

Sum of squared residuals

 

S2

Estimated variance of residuals (SSR/(NOB-NCID))

 

S

Standard error of residuals (SQRT(S2))

 

RSQ

R-squared (squared correlation between actual and fitted)

 

ARSQ

Adjusted R-squared (adjusted for number of RHS variables)

AUTO

DW

Durbin-Watson statistic

 

DH

Durbin's h statistic (for single lagged dependent var.)

 

DHALT

Durbin's h alternative (for any lagged dependent)

 

LMARx

Breusch-Godfrey LM test for autocorrelation of order x

 

QSTATx

Ljung-Box Q statistic for autocorrelation of order x

 

WNLAR

Wald test for nonlinear AR1 restriction vs. Y(-1), X(-1)

 

ARCH

Test for ARCH(1) residuals

 

RECRES

Recursive residuals

 

CUSUM

CUSUM plot

 

CUSUMSQ

CUSUMSQ plot

 

CSMAX

CUSUM test statistic

 

CSQMAX

CUSUMSQ test statistic

 

CHOW

F-test for stability of coefficients (split sample)

 

CHOWHET

F-test for stability of coefficients with heteroskedasticity

 

LRHET

LR test for heteroscedasticity in split sample

HET

WHITEHT

White het. test on cross-products of RHS variables

 

BPHET

Breusch-Pagan het. test on user-supplied list of vars

 

LMHET

simple LM het. test on squared fitted values

None

FST

F-statistic for zero slope coefficients

 

RESETx

Ramsey’s RESET test of order x

 

JB

Jarque-Bera (LM) normality test

 

SWILK

Shapiro-Wilk normality test

 

AIC

Akaike Information Criterion

 

SBIC

Schwarz Bayesian Information Criterion

 

LOGL

Log of likelihood function

Method/Notes on specific diagnostics:

DW ignores sample gaps except when there is PANEL data. The DWPVALUE option can be used to choose one of the 3 methods of calculating its P-value. EXACT computes the (T-K) nonzero eigenvalues of the matrix:

and then uses the Farebrother/Pan method to compute the P-value from the DW and these eigenvalues.

The APPROX method is a small sample adjustment to the asymptotic distribution, using a nonlinear regression fit to the 5% dL (lower bound) table:

where phi is the cumulative normal. This usually provides a conservative test (i.e. P-value larger than the EXACT method, like the larger number from BOUNDS).

The BOUNDS method calculates the minimum and maximum possible P-values for a given DW, using the minimum and maximum possible sets of eigenvalues for K and T, stored as %DWL and %DWU. See Bhargava et al (1982) for more details on bounds. DW is not computed for OLSQ with explicit lagged dependent variable(s), since it is biased; DH and/or DHALT are computed instead.

The optional AUTO and HET diagnostics are not calculated for regressions with weights, instruments, or perfect fits; nor when there are any gaps in the SMPL (to simplify the processing of lags). Note that some of the later diagnostics grouped under AUTO are not strictly for autocorrelation but for heteroskedasticity or structural stability in datasets with a natural time ordering.

DH is not calculated when it involves taking the square root of a negative value. DHALT can be used in all cases (it uses the same regression as LMAR1).

LMARx prints a series of test statistics if LMLAGS is greater than 1. The sample size is adjusted downwards with each test, and the reported statistic is (p+k-1)*F, asymptotically distributed as chi-squared(p), where p is the number of lags. QSTATx also prints a series of test statistics (using QLAGS).

WNLAR is a Wald test for AR(1) residuals versus mis-specified dynamics (left out lagged dependent and independent variables). If the original equation was Y = A + XB , the regression

Y = A2 + XB + RHO*Y(-1) + D*X(-1)

is run, and the restriction D = -B*RHO is tested. This is asymptotically distributed as chi-squared with degrees of freedom equal to the number of non-singular coefficients on the lagged Xs.

ADF is no longer computed here. See the COINT command.

ARCH is a regression of the squared residual on the lagged squared residual.

RECRES are recursive residuals, calculated using a Kalman Filter (see the KALMAN command). You can display CUSUM and CUSUMQ plots by turning on the PLOTS option. RECRES can also be used for the Von-Neumann ratio test for autocorrelation.

CHOW is an F-test for parameter stability. The default is to split the sample into equal halves, but the CHOWDATE option can be used to choose an unequal split. If there are insufficient degrees of freedom in one of the halves, the test is still valid, but it is usually not very powerful. The CHOWHET test is robust to simple heteroskedasticity and is the MAC2 test from Thursby (1992).

LRHET is a likelihood ratio test for heteroscedasticity between the two periods in the same sample division as the Chow test. Note that the Chow test does not have the assumed F distribution under heteroscedasticity.

WHITEHT is a regression of the squared residual on cross-products of the RHS variables. If the model is

Y = B0 + B1*X1 + B2*X2

and the residuals are E , the regression

E*E = A0 + A1*X1 + A2*X2 + A3*X1*X1 + A4*X1*X2 + A5*X2*X2

is calculated (if there are sufficient degrees of freedom).

for this example.

BPHET is the same as WHITEHT, except the user specifies a presumably more general list of variables in the E*E regression with the BPLIST option. Note that the ARCH command with the GT option can also be used to estimate such general heteroskedastic regression models.

LMHET is the same as WHITEHT and BPHET, where the squared residuals are regressed on a constant term and the squared fitted values.

RESET is Ramsey’s RESET test, where the residuals are regressed on the original right hand side variables and powers of the fitted values. The default order (2) is basically a check for missing quadratic terms and interactions for the right hand side variables. It may also be significant if a quadratic functional form happens to fit outliers in the data.

JB is a powerful joint Lagrange Multiplier test of the residuals' skewness and kurtosis. It is asymptotically distributed as a chi-squared with two degrees of freedom under the null of normality. Small sample critical values are:

#obs

20

30

40

50

75

100

125

150

200

250

300

400

500

800

inf

5%

3.26

3.71

3.99

  • 4.26

  • 4.27

    4.29

    4.34

    4.39

    4.43

    4.51

    4.60

    4.74

    4.82

    5.46

    5.99

    10%

    2.13

    2.49

    2.70

    2.90

    3.09

    3.14

    3.31

    3.43

    3.48

    3.54

    3.68

    3.76

    3.91

    4.32

    4.61

    SWILK is a normality test based on normal order statistics, which has good power in small samples. Since it involves sorting the residuals, it may be quite slow in large samples. The test and its P-value are computed using Royston(1995), with code from Statlib.

    AIC (Akaike Information Criterion) and/or SBIC (Schwarz Bayesian Information Criterion) can be minimized to select regressors in a model, such as choosing the length of a distributed lag. SBIC has optimal properties, see Geweke (1981). In general, these can be defined as

    @AIC = tsp90016.gif@LOGL + @NCID*2

    @SBIC = tsp90016.gif@LOGL + @NCID*LOG(@NOB)/2

    OLSQ stores normalized versions of these, dividing each by @NOB .

    LOGL will include the sum of log weights if the OLSQ (WTYPE=HET,WEIGHT=x) option is used. The alternative is the default WTYPE=REPEAT.

    Distributions used for P-values:

    Note: in all cases, k is the number of identified coefficients in the model, including the intercept.

    Test Statistic

    Null

    Alternative

    Distribution

    Degrees of
    Freedom

    DW

    No autocorrelation

    Positive autocorrelation (usually)

    ratio of Qform

    --

    DH

    No autocorrelation

    --

    Normal

    --

    DHALT

    No autocorrelation

    --

    Normal

    --

    LMARx

    No autocorrelation

    Autocorrelation of order x

    Chi-squared

    p+ktsp90016.gif1

    QSTATx

    No autocorrelation

    Autocorrelation of order x

    Chi-squared

    p ?

    WNLAR

    AR(1) disturbance

    Other dynamics

    Chi-squared

    # rhs vars

    ARCH

    Homoskedasticity

    ARCH(1) disturbance

    Chi-squared

    1

    CSMAX

    Stable parameters

    Parameters change

    Durbin (1971)

    --

    CSQMAX

    Stable parameters

    Parameters change

    Durbin (1969)

    --

    CHOW

    Stable parameters

    Parameters differ between two periods

    F

    (k, nob-2k) usually

    CHOWHET

    Stable parameters; variances differ

    Parameters and variances differ between two periods

    F

    (k, nob-2k)

    usually

    LRHET

    Homoskedasticity

    Two variances for split sample

    Chi-squared

    1

    LMHET

    Homoskedasticity

    Heteroskedasticity related to @FIT**2

    Chi-squared

    1

    WHITEHT

    Homoskedasticity

    X-related Heteroskedasticity

    Chi-squared

    ((k+1)k) / 2) - 1

    BPHET

    Homoskedasticity

    Heteroskedasticity related to BPLIST

    Chi-squared

    #vars in BPLIST - 1

    FST

    Y= constant

    Specified regression model

    F

    (k, nob-k)

    JB

    Normal disturbances

    Non-normal

    Chi-squared

    2

    SWILK

    Normal disturbances

    Non-normal

    Shapiro-Wilk

    --

    RESETx

    No omitted power terms

    Higher order terms in Xs needed

    Chi-squared

    RESETORD

    T

    Slope coefficient =0

    Slope coefficient not zero

    T (OLS, IV)
    Normal (all other procs)

    nob-k
    --

    References

    Bhargava, A., L. Franzini, and W. Narendanathan, “Serial Correlation and the Fixed Effects Model,” Review of Economic Studies XLIX, 1982, pp.533-549.

    Brown, R. L., Durbin, J., and Evans, J. M., "Techniques for Testing the Constancy of Regression Relationships Over Time," Journal of the Royal Statistical Society - Series B, 1975, pp. 149-192.

    Durbin, J., "Tests for Serial Correlation in Regression Analysis Based on the Periodogram of Least Squares Residuals," Biometrika, 1969.

    Durbin, J., "Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test," Journal of Applied Probability, 8, 1971, pp. 431-453.

    Durbin, J., and Watson, G. S. "Testing for Serial Correlation in Least Squares Regression," Biometrika, 1951, pp.160-165.

    Farebrother, R. W., "Algorithm AS 153 (AS R52)", Applied Statistics 33, 1984, pp.363-366. Code posted on StatLib, with corrections.

    Harvey, Andrew, The Econometric Analysis of Time Series, 2nd ed., 1990, MIT Press.

    Geweke, John F., and Richard Meese, "Estimating Regression Models of Finite but Unknown Order," International Economic Review 22, 1981, pp. 55-70.

    Jarque, Carlos M., and Bera, Anil K., "A Test for Normality of Observations and Regression Residuals," International Statistical Review 55, 1987, pp. 163-172.

    Jayatissa, W. A., "Tests of Equality Between Sets of Coefficients in Linear Regressions when Disturbance Variances are Unequal," Econometrica 45, July 1977, pp. 1291-1292.

    Maddala, G. S., Introduction to Econometrics, 1988, Macmillan, Chapters 5, 6, 12.

    Royston, Patrick, "Algorithm AS R94, ", Applied Statistics 44, 1995.

    Savin, N.E., and Kenneth J. White, “Testing for Autocorrelation with Missing Observations.” Econometrica 46 (1978): 59-67.

    Shapiro, S. S.,and M. B. Wilk, "An Analysis of Variance Test for Normality (Complete Samples) ", Biometrika 52, 1965, pp.591-611.

    Shapiro, S. S., M. B. Wilk, and H. J. Chen, “A Comparative Study of Various Tests of Normality,” JASA  63 (1968): 1343-1372.

    Thursby, J., Journal of Econometrics, 1992.

    Statlib, http://lib.stat.cmu.edu/apstat/