

TSP 5.0 User’s Guide

Bronwyn H. Hall

and

Clint Cummins

 TSP International 2005

Copyright 2005 by TSP International

First edition (Version 4.0) published 1980.

TSP is a software product of TSP International. The information in this
document is subject to change without notice. TSP International assumes no
responsibility for any errors that may appear in this document or in TSP. The
software described in this document is protected by copyright. Copying of
software for the use of anyone other than the original purchaser is a violation
of federal law. Time Series Processor and TSP are trademarks of TSP
International.

ALL RIGHTS RESERVED

For further information, contact:

TSP International
PO Box 61015
Palo Alto, CA 94306, USA
phone: (650) 326-1927
fax: (650) 493-2912
http://www.tspintl.com/
email: info@tspintl.com

 Contents i

Table of Contents

PREFACE .. VIII

1. INTRODUCTION ...1

2. GETTING STARTED ...5

2.1 TOOLS YOU WILL NEED TO USE TSP ..5
2.1.1 On a personal computer...5
2.1.2 On a shared or network computer ...6

2.2 A LITTLE VOCABULARY ...6
2.3 A SIMPLE REGRESSION EXAMPLE ...7

3. TSP FUNDAMENTALS ...11

3.1 DESCRIBING THE SAMPLE OF OBSERVATIONS: FREQ, SMPL.................11
3.2 READING DATA INTO TSP: READ ...12

3.2.1 Reading data in free format within the program12
3.2.2 Reading data from an external file ..14

3.3 SELECTION OF OBSERVATION SUBSETS: SELECT, SMPLIF14
3.4 MISSING VALUES ..16
3.5 CREATING NEW SERIES WITH TRANSFORMATIONS: GENR16

3.5.1 Dummy variables and recoding ...17
3.5.2 Lags and leads ...19
3.5.3 Dynamic GENR..20

3.6 USEFUL STATEMENTS AT THE BEGINNING OF A TSP JOB21
3.7 THE ORDER OF STATEMENTS IN A TSP JOB ..22
3.8 THE NEXT STEP..23
3.9 AN EXTENDED EXAMPLE..23

4. INTERACTING WITH TSP ..33

4.1 BASIC OPERATION ...33
4.1.1 Beginning and ending a session...33

4.2 MODES OF OPERATION...34
4.2.1 Entering commands in Interactive Mode ...35
4.2.2 Requesting information: HELP, SHOW, etc.37
4.2.3 Methods of entering or reading data ...37
4.2.4 Saving selected output: OUTPUT, TERM, PrtSc.............................38
4.2.5 Sample session in interactive mode ...40

5. ESTIMATION OF LINEAR EQUATIONS..47

5.1 DESCRIPTIVE STATISTICS: MSD, CORR..47
5.2 ORDINARY LEAST SQUARES: OLSQ...48
5.3 REGRESSION OUTPUT...49

ii Contents

5.4 TWO-STAGE LEAST SQUARES: 2SLS, INST..53
5.5 LIMITED INFORMATION MAXIMUM LIKELIHOOD: LIML..........................55
5.6 FIRST-ORDER SERIAL CORRELATION: AR1 ...56

5.6.1 Instrumental variable estimation in AR1 ...58
5.7 DISTRIBUTED LAGS..58

5.7.1 Polynomial distributed lags ...59
5.7.2 What PDL does ..60
5.7.3 Shiller lags ...62

5.8 WEIGHTED REGRESSION: THE WEIGHT OPTION64
5.8.1 Normalization of weights ...65
5.8.2 Weighted descriptive statistics ...66

5.9 ROBUST STANDARD ERRORS IN THE REGRESSION PROCEDURES66
5.10 QUANTILE REGRESSIONS: LAD..67

6. MANIPULATION AND DISPLAY OF TSP VARIABLES69

6.1 USING THE RESULTS OF ONE PROCEDURE IN ANOTHER: COPY71
6.2 PRINTING SERIES AND OTHER VARIABLES: PRINT, WRITE...................72
6.3 GRAPHIC DISPLAYS OF DATA ...73

6.3.1 Plotting time series: PLOT, PLOTS, NOPLOT................................74
6.3.2 Graphs or scatter plots: GRAPH ...75
6.3.3 Plotting histograms: HIST ...76

6.4 SORTING DATA: SORT ..77
6.5 DUMMY AND TREND VARIABLES: DUMMY, TREND...........................79
6.6 COMPUTATION OF CAPITAL STOCK: CAPITL..80
6.7 DIVISIA INDICES: DIVIND ..81
6.8 NORMALIZATION OF SERIES: NORMAL..83
6.9 SEASONAL ADJUSTMENT: SAMA..83
6.10 PRINCIPAL COMPONENTS: PRIN..84

7. ESTIMATION OF NONLINEAR SYSTEMS OF EQUATIONS87

7.1 SPECIFYING THE MODEL: FRML, PARAM, ETC87
7.2 NONLINEAR LEAST SQUARES: LSQ..90

7.2.1 Single equation least squares...91
7.2.2 Multivariate regression and Seemingly Unrelated Regressions92
7.2.3 Nonlinear two-stage least squares: INST=......................................95
7.2.4 Linear or nonlinear three-stage least squares: 3SLS.......................95
7.2.5 Generalized Method of Moments ...99

7.3 FULL INFORMATION MAXIMUM LIKELIHOOD: FIML.............................100

8. TESTING HYPOTHESES..105

8.1 T-TESTS ...106
8.2 F-TESTS ...107
8.3 CHOW TESTS ...108
8.4 PSEUDO-F TESTS FOR 2SLS...109
8.5 LIKELIHOOD RATIO TESTS ..110

 Contents iii

8.6 NONLINEAR TWO- AND THREE-STAGE LEAST SQUARES -- QLR111
8.7 WALD TESTS FOR LINEAR/NONLINEAR RESTRICTIONS: ANALYZ113
8.8 LAGRANGE MULTIPLIER TESTS (SCORE TESTS)115
8.9 HAUSMAN SPECIFICATION TESTS ..116

9. ESTIMATION OF QUALITATIVE DEPENDENT VARIABLE MODELS

AND GENERAL ML ESTIMATION..119

9.1 TOBIT..121
9.2 PROBIT ...122
9.3 SAMPLE SELECTION: SAMPSEL ...123
9.4 MULTINOMIAL AND CONDITIONAL LOGIT: LOGIT125
9.5 ESTIMATION WITH AN ORDERED DEPENDENT VARIABLE.....................128

9.5.1 Ordered Probit: ORDPROB, INTERVAL128
9.5.2 Count Data Estimation: POISSON, NEGBIN................................129

9.6 GENERAL MAXIMUM LIKELIHOOD ESTIMATION: ML, EQSUB............130
9.6.1 ML PROC ..132

9.7 ML EXAMPLES ..133
9.7.1 OLS ..133
9.7.2 Box-Cox Transformation ...134
9.7.3 Frontier production function model...134
9.7.4 Nested Logit ...135
9.7.5 Switching regression..137
9.7.6 Bivariate probit model ...137
9.7.7 Hazard function ...138

10. NONLINEAR METHODS AND OPTIONS ...140

10.1 NONLINEAR METHODS FOR ESTIMATION ..140
10.2 GENERAL CONVERGENCE HINTS ..141
10.3 DIAGNOSTIC PRINTING: THE PRINT OPTIONS ...142
10.4 NUMERICAL ERROR HANDLING ..143
10.5 HESSIAN AND GRADIENT METHODS: HITER, HCOV...........................144
10.6 SQUEEZING: STEP, MAXSQZ..145
10.7 ITERATION OPTIONS: MAXIT, TOL ..146

11. ESTIMATION USING TIME SERIES DATA ...147

11.1 TECHNIQUES FOR TIME SERIES DATA ...147
11.1.1 Changing the frequency of a series: CONVERT148

11.2 BOX-JENKINS (ARIMA) MODELS ..149
11.2.1 Identification: BJIDENT..150
11.2.2 Estimation: BJEST...153
11.2.3 Forecasting: BJFRCST..153

11.3 AUTO-REGRESSIVE CONDITIONAL HETEROSKEDASTICITY155
11.4 THE KALMAN FILTER (KALMAN)..157
11.5 VECTOR AUTOREGRESSIONS (VAR)..159
11.6 TESTING FOR UNIT ROOTS AND COINTEGRATION161

11.6.1 Unit roots: UNIT ...161

iv Contents

11.6.2 Cointegration: COINT...163

12. CONTROLLING THE EXECUTION OF A TSP PROGRAM167

12.1 LOOPS: DO..167
12.2 LOOPS OVER NAMES: DOT ...168
12.3 USER PROCEDURES: PROC...170
12.4 STATEMENT LABEL AND GO TO STATEMENT: GOTO173
12.5 CONDITIONAL STATEMENTS: IF, THEN, ELSE...................................173
12.6 CONTROLLING PRINTED OUTPUT: REGOPT174

13. MATRIX COMPUTATIONS...175

13.1 MATRIX FORMATS ...176
13.2 CREATING A MATRIX ...177

13.2.1 Reading matrices: READ...177
13.2.2 Matrix results from TSP procedures: COPY178
13.2.3 Creating a matrix: MMAKE, UNMAKE....................................180
13.2.4 Making a matrix from other matrices: MFORM182

13.3 MATRIX ALGEBRA: MAT...183
13.3.1 MAT command and matrix operations184
13.3.2 Matrix functions with scalar output...186
13.3.3 Matrix functions with matrix output ..186
13.3.4 Matrix procedures: ORTHON, YLDFAC188

13.4 EXAMPLES USING MATRIX OPERATIONS ...189
13.4.1 A Hausman specification test ..189
13.4.2 Prediction error for the linear regression model190
13.4.3 Ridge regression..191

14. FORECASTING AND MODEL SIMULATION......................................193

14.1 CREATING EQUATIONS: FRML, FORM ...194
14.2 FORECASTING WITH AN EXPLICIT EQUATION: GENR195
14.3 FORECASTING LINEAR MODELS: FORCST ...196
14.4 SOLVING SIMULTANEOUS EQUATION MODELS197

14.4.1 Small nonlinear models: SIML..198
14.4.2 Large models – MODEL and SOLVE..199

DISPLAYING AND EVALUATING A FORECAST: ACTFIT211
14.5 MONTE CARLO SIMULATION: RANDOM..212

15. PANEL DATA..217

15.1 THE BASICS OF USING PANEL DATA..218
15.1.1 Reading in panel data..218
15.1.2 Unbalanced panels ..219

15.2 RANDOM AND FIXED EFFECTS MODELS -- THE PANEL PROCEDURE....221
15.3 ROBUST ESTIMATION WITH PANEL DATA..224

15.3.1 Obtaining panel-robust standard errors225
15.3.2 The PI matrix method ..225

 Contents v

15.3.3 Dynamic factor models with panel data228
15.3.4 GMM Estimation of panel data models.229
15.3.5 Using the MASK= option ..231

15.4 PANEL DATA AND NONLINEAR MODELS ...232
15.4.1 Multiplicative individual effects ..232
15.4.2 Qualitative dependent variable models (Probit and logit)233

16. STORING DATA ON EXTERNAL FILES ..237

16.1 USING EXTERNAL SEQUENTIAL FILES: READ, WRITE238
16.1.1 Data organization on external files ...238
16.1.2 Closing external files: CLOSE...240

16.2 SPREADSHEET FILES ..240
16.2.1 Writing spreadsheet files ...244

16.3 TSP DATABANKS ..246
16.3.1 Storing variables in a databank: OUT246
16.3.2 Documenting variables on a databank: DOC248
16.3.3 Retrieving variables from a databank: IN248
16.3.4 Databank utilities ..249
16.3.5 Using older databanks in TSP 5.0 ...250
16.3.6 Using Eviews/micro-TSP databanks in TSP..............................250

16.4 SAVING A WORK SESSION IN A FILE: SAVE, RESTORE.......................250

17. TIME SAVERS IN INTERACTIVE TSP..253

17.1 REVISION AND RE-EXECUTION OF COMMANDS253
17.1.1 Re-execution ..253
17.1.2 Modifying commands and fixing typos254
17.1.3 Adding and dropping variables ...256

17.2 READING COMMANDS FROM DISK ..257
17.2.1 Your TSP login file ..258

17.3 TALKING TO THE OPERATING SYSTEM (DOS OR UNIX).........................258
17.4 AUTOMATIC BACKUP AND RECOVERY ...258

A. BASIC RULES OF TSP ...261

A.1 RULES FOR COMPOSING TSP NAMES: ..261
A.2 RULES FOR COMPOSING TEXT STRINGS: ...261
A.3 RULES FOR COMPOSING NUMBERS: ..261
A.4 RULES FOR COMPOSING ALGEBRAIC FORMULAS:..................................262
A.5 RULES FOR COMPOSING TSP STATEMENTS: ...265
A.6 CHARACTER SET FOR TSP...266

B. DIFFERENCES BETWEEN TSP 5.0 AND EARLIER VERSIONS........267

B.1 SYNTAX AND GENERAL ENHANCEMENTS: ..267
B.2 PRINTING AND GRAPHICS ENHANCEMENTS: ...267
B.3 NEW OR SUBSTANTIALLY IMPROVED PROCEDURES267
B.4 CHANGES TO OTHER PROCEDURES...268
B.5 UPWARD INCOMPATIBILITIES...268

vi Contents

C. USING TSP ON A WINDOWS PERSONAL COMPUTER.....................269

C.1 WINDOWS PRODUCTS AVAILABLE...269
C.1.1 Auxiliary Programs ...270

C.2 USING TSP/GIVEWIN..270
C.2.1 Batch mode ..270
C.2.2 Interactive mode ..271
C.2.3 Filenames ..272
C.2.4 Graphics ..272
C.2.5 Other special features..272

C.3 USING DOS/WIN TSP OR WIN 32 TSP ...273
C.3.1 Batch mode ..274
C.3.2 Interactive mode ..275
C.3.3 Filenames in Windows (DOS/Win TSP only).............................275
C.3.4 Graphics (DOS/Win TSP only) ..275

C.4 USING TSP THROUGH THE LOOKING GLASS (TLG)276
C.5 USING THE ONLINE HELP SYSTEM ...277
C.6 COMMON PROBLEMS ...277

D. USING TSP ON THE APPLE MACINTOSH ...279

D.1 RUNNING TSP IN INTERACTIVE MODE ...279
D.2 RUNNING TSP IN BATCH MODE ..280
D.3 FILE FORMATS AND NAMES ...280
D.4 GRAPHICS IN MAC TSP: PLOT, GRAPH ..281

E. USING TSP ON A UNIX COMPUTER..283

F. REFERENCES ..285

INDEX ..300

 Contents vii

Table of Figures

FIGURE 2.1 SIMPLE TSP RUN..9
FIGURE 4.1 SAMPLE INTERACTIVE SESSION PLOT OUTPUT45
FIGURE 4.2 SAMPLE INTERACTIVE SESSION GRAPH OUTPUT45
FIGURE 5.1 ORDINARY LEAST SQUARES OUTPUT ...52
FIGURE 5.2 TWO STAGE LEAST SQUARES OUTPUT ...55
FIGURE 5.3 LIML OUTPUT ...56
FIGURE 5.4 SAMPLE PDL OUTPUT ..62
FIGURE 5.5 SHILLER LAG OUTPUT ..64
FIGURE 5.6 SAMPLE LAD OUTPUT ...68
FIGURE 6.1 EXAMPLE OF PRINT OUTPUT...73
FIGURE 6.2 SAMPLE PLOT OF ALMON DATA ...75
FIGURE 6.3 GRAPH OF CONSUMPTION FUNCTION ESTIMATES76
FIGURE 6.4 SAMPLE HIST OUTPUT...77
FIGURE 6.5 SAMPLE PRIN OUTPUT ..85
FIGURE 7.1 SAMPLE LSQ (MULTIVARIATE REGRESSION) OUTPUT94
FIGURE 7.2 SAMPLE THREE STAGE LEAST SQUARES OUTPUT98
FIGURE 7.3 SAMPLE OUTPUT FROM FIML ..103
FIGURE 9.1 COMPARATIVE TIMINGS IN SECONDS ..132
FIGURE 11.1 SERIES TO BE ANALYZED BY BOX-JENKINS151
FIGURE 11.2 SAMPLE OUTPUT FROM BJIDENT ...152
FIGURE 11.3 SAMPLE OUTPUT FROM BJFRCST ...155
FIGURE 11.4 OUTPUT FOR UNIT ROOT AND COINTEGRATION TESTS.......................164
FIGURE 11.5 TRACE TESTS FOR FINNISH DATA ...166
FIGURE 13.1 ARGUMENT TYPES FOR MATRIX...185
FIGURE 13.2 MATRIX OPERATORS...185
FIGURE 13.3 MATRIX FUNCTIONS – SCALAR OUTPUT ..186
FIGURE 13.4 MATRIX FUNCTIONS – MATRIX OUTPUT ..187
FIGURE 14.1 SAMPLE MODEL OUTPUT FOR KLEIN MODEL I201
FIGURE 14.2 SAMPLE 33 EQUATION TRADE MODEL ..203
FIGURE 14.3 33 EQUATION TRADE MODEL OUTPUT ..210
FIGURE 14.4 SIMULATING THE CHI-SQUARED DISTRIBUTION.................................214

viii Contents

Preface

The User’s Guide for TSP had its origins in the User’s Guide to Version 3.5,
co-authored by Bronwyn Hall and Robert Hall in 1980. Over the years, it has
been completely revised as the TSP program has been enhanced and expanded,
and the current edition represents a major revision. Contributions to earlier
versions of the manual were also made by Rebecca Schnake and editorial
contributions by Chris Hall, Lila Havens, Araya Niemloy, Margaret Reeves,
and Rossannah Reeves. We are very grateful to all these people for their
efforts.

This version is the first to be printed a new, more compact and convenient
format, and we hope you will find it useful. We have tried wherever we can to
document the sources of our procedures and algorithms in the scientific
literature, and you will find a comprehensive set of references to this literature
at the end of the volume.

Bronwyn H. Hall
Clint Cummins
February 2005

 1. Introduction 1

1. INTRODUCTION

TSP is a general-purpose computer language for econometric and statistical
data processing and estimation. The program can be used for any of the
following tasks:

 Applied econometrics, including teaching
 Macroeconomic research and forecasting
 Sales forecasting
 Financial analysis
 Cost analysis and forecasting
 Monte Carlo simulation
 Estimation and simulation of economic models

Currently, TSP is installed on thousands of computers worldwide -- from small
stand-alone personal computers to large mainframes and shared systems.
Although TSP was originally and continues to be developed primarily by
economists, there is nothing in its design limiting it to economic time series.
Any data consisting of repeated observations of the same variable for different
units may be analyzed with TSP.

The basic data object within TSP is the series. Each series has a name, and you
can request operations on all the observations just by mentioning the name of
the series. TSP provides convenient ways to enter series, to create new series
from existing ones, to display and print series, and to carry out statistical
analysis of the relations among series.

Some of the most important TSP features are:

• Both data and commands are entered in free format.

• Data can be transformed by convenient algebraic statements.

• Leads and lags are specified in a natural way.

• There are few restrictions on the order of the operations in a run.

• The output from one statistical procedure can easily be used as the
input to another.

2 Basics

All standard econometric techniques are available in an accurate and efficient
form: ordinary least squares, two-stage least squares (instrumental variables),
limited information maximum likelihood (LIML), polynomial and Shiller
distributed lags, autoregressive correction, and weighted least squares.

Advanced techniques are available, including nonlinear least squares,
estimation of GARCH models, Box-Jenkins estimation, multivariate
regression, three stage least squares, GMM, full information maximum
likelihood, estimation with qualitative dependent variables, Kalman filter
estimation, programmable maximum likelihood, and solution of linear and
nonlinear models.

A full set of matrix operations and the analytic differentiation procedures
makes it possible for you to program your own estimators easily.

Panel and cross-section data sets can be handled by TSP as easily as time
series. (Some users have gone as far as 1 million observations or more.)

TSP is a large software system and econometric language with many features,
and it is not possible or desirable to learn them all at once. This manual is
intended to provide an introduction to TSP and its most commonly used
features. It does not describe all of the procedures, nor indicate the full power
of the program as a language. For detailed information on each TSP command
and complete references to the econometric and statistical literature, consult
the TSP Reference Manual, available where you obtained this manual or from
the address at the front of this manual. For more complex examples and
solutions for special problems, see the TSP examples page on the TSP
International web site (http://www.tspintl.com). This web site also documents
the very latest features of the programs, as well as any known bugs and work
arounds.

You may find it helpful to know a little about how this guide is organized. The
guide is divided into 4 major sections plus appendices:

Section I: Chapters 1 - 4

Section I covers the basics of TSP. Chapter 2 proceeds on the assumption that
you are a complete TSP novice. We introduce some of the most basic ideas of
TSP and show you the input and the output for a simple but complete TSP job.
Chapter 3 covers the fundamental concepts of TSP in a more thorough way

 1. Introduction 3

and concludes with a more elaborate example. This example is also included

on the installation CD, under the name illus.tsp.

If you are using this program on a personal computer, there are two different
ways to work: with a batch input file that you edit before running the program,
or in an interactive mode. Chapter 4 introduces the basics of working in
interactive mode.

Beginning with TSP Version 4.5, it is also possible to use TSP within
Givewin, a Windows-interface utility that provides full graphics support for
TSP (including editing and printing) as well as a data and program editing
facility.1 Givewin allows both interactive and batch use of TSP. You can read
about using Givewin with TSP in Appendix C.2

Section II: Chapters 5 - 6

Section II, entitled Linear Estimation, describes the most commonly used
features of the program, such as linear regression models, and printing and
plotting the data. Methods discussed include ordinary least squares, two stage
least squares (instrumental variables), and obtaining simple statistics on your
variables.

Section III: Chapters 7 – 10

In Section III, we present the powerful and extensive range of tools in TSP for
nonlinear estimation. Methods covered include nonlinear single and multi-
equation least squares, general maximum likelihood, GMM, and qualitative
dependent variable models (Probit, Multinomial Logit, Tobit, and sample
selection). TSP’s nonlinear estimation methods are generally iterative and
make use of program-generated analytic gradients of the objective function,
which are more accurate and faster than numeric gradients. Section III also
discusses hypothesis testing and TSP’s flexible equation manipulation system.

1 Givewin is authored by Jurgen Doornik and David Hendry and distributed by Timberlake

Consulting (http://www.timberlake.co.uk). It is distributed with TSP at an additional charge.
Other econometrics programs than can be used within the Givewin environment include
PCGive, PCFIML, STAMP, and the Ox language. See the Givewin website at
http://www.nuff.ox.ac.uk/Users/Doornik/ for further information on these packages.
2
 Prior to TSP version 4.5, TSP through the Looking Glass (TLG), provided an interface

similar to the Givewin interface with all the standard Windows file handling and editing
features. Although this interface is still available, Givewin is preferred because of its better
graphics support.

4 Basics

Section IV: Chapters 11 – 16

Section IV discusses a series of more specialized and advanced procedures.
These include Box-Jenkins (ARIMA) procedures, GARCH estimation, the
Kalman filter, VAR estimation, cointegration testing, forecasting and model
simulation, matrix computations and controlling the order of execution of your
program. This section also treats the storage, reading, and writing of large
amounts of data.

Section V: Appendices

The first few appendices give the basic syntax rules of TSP, and a list of new
features in Version 5.0. These are followed by specific instructions for using
TSP on various platforms, such as DOS/Window PCs, Apple Macintosh, and
unix.

 2. Getting Started 5

2. GETTING STARTED

2.1 Tools you will need to use TSP

The hardware you will need to use TSP depends on whether you want to work
on your own personal computer or on a shared larger computer. One advantage
of TSP is that since essentially the same program runs on both types of
computers, you can develop your program on a smaller, cheaper personal
computer, and then move to a larger computer to take advantage of its greater

speed and data storage. TSP input files (.tsp files) are text files that are easily
uploaded (transferred to another computer) over a network connection.3

In addition to TSP, you will need one other piece of software to work
efficiently with the program: a text editor for preparing input and reading
output. If you run TSP under Windows, you can use Givewin to edit and run
your batch files, and examine the results.4 Contact your TSP supplier or TSP
International if you wish to order this program and failed to do so in your
original TSP order.

In this chapter, we assume that you know which computer you want to use and
have chosen the appropriate version of TSP for that computer. First we discuss
how to use the program on personal and networked computers. Then we give a
simple introductory example of a TSP program to help you get started.

2.1.1 On a personal computer

TSP runs on most personal computers that run Windows, DOS, Linux or Mac
OS. It also runs on some other unix systems.

You will probably find it convenient at first to work in interactive mode, as
described in Chapter 4. Interactive mode is good for trying things out, and for
quick one-time computations. Later, if you find yourself repeatedly typing the
same commands, you can use a separate text editor (such as Givewin, the DOS
EDIT command, Wordpad, or a word processing program) to edit your
commands and save them in a text file. If you use a word-processor to prepare

3
 Consult your local system consultant for information on how to upload if you are unfamiliar

with how to do it. Usually ftp is the method to use.
4
 Versions of TSP prior to Version 5.0 offered another Windows interface as well, TSP through

the Looking Glass (TLG). The Givewin interface is preferred due to its greater support for
graphics.

6 Basics

TSP programs, be sure to save the file as a DOS text or ASCII file. You can
submit your commands (program) to TSP as an INPUT file to be executed. In
Givewin, this is done simply by clicking on the “run” icon.5 Setting up a
session with an INPUT file and then using interactive mode to try new ideas is
often the most efficient way to work.

2.1.2 On a shared or network computer

We assume that you or someone else has successfully installed TSP. Separate
documents available from TSP International provide instructions for
installation. The usual shared or networked installation is either a unix system
(see Appendix E), or a networked Windows installation (see Appendix C).

2.2 A little vocabulary

Very little knowledge of computers is required to use TSP, but you will need
to know the following computer terms to understand this manual:

Memory. A computer has millions of characters of high-speed memory. As
your TSP job runs, all your data are in your computer's memory so that they
can be reached quickly. At the conclusion of the run, the computer forgets
everything in memory.

Disk. To save information between runs, the computer has space to store
millions of characters on magnetic disks. The time required to find something
on disk is several orders of magnitude longer than the time for memory, so
anything that will be used intensively is moved from disk to memory at the
beginning of a run.

File. Information on disk is stored in "files". TSP uses input files containing

commands and data (.tsp) , plain data files for use by different input files

(usually .txt, .dat or .raw), and output files containing your results (.out). As

indicated, normally TSP input files have the extension tsp and TSP output files

have the extension out. Data files may have any extension. TSP databanks

have the extension .tlb. Spreadsheet data files use .xls and .wks (and some
variations of those extensions).

Some basic TSP concepts that you will need to know are:

Series. A series is a set of observations on a variable, usually evenly spaced

5
 This icon is a tiny running man, shown on the main Givewin toolbar.

 2. Getting Started 7

over time. Annual observations on GNP are an example we will use
frequently. Monthly sales of a firm are another example. Cross-sectional,
survey, and panel data are also referred to as series.

Command (or Statement). To communicate your wishes to TSP, you use
commands. A command has a short, easy to remember name such as PRINT or
OLSQ, followed in most cases by a list of series.

Program. You assemble a group of commands into a program, and then ask
TSP to execute the program all at once. A program can consist of just a few
commands, each to be executed once, or a large number of commands and a
sophisticated structure for repeating some of them.

Input file. The input file contains your TSP program and the data required to
run it, or instructions as to where to find the data.

Output file. TSP creates an output file as it executes your program. The file
contains messages describing what TSP thinks are errors in your program or
data, memos to you about what TSP has done in the course of executing your
program, and your regression and other substantive results. When your
computer has finished the TSP run, you should examine the output file with
your text editor. If you are using Givewin, this is easily done because the
output window appears on the screen as the program runs.

2.3 A simple regression example

In the rest of this chapter, we present a simple example of running a regression
in TSP. The function of the commands are described briefly to give you a feel
for using TSP. Using this very simple TSP program as an example, you should
be able to set up a regression run of your own. The output for the program is

shown in Example 2.1. To learn more about the basics of TSP, continue on to
Chapter 3.

In the example run, we read two series of annual time series data (a sales
variable and Gross National Product (GNP) for 1976 to 1985), take their
natural logarithms, compute their means and standard deviations, and run a
simple linear regression of the log of sales on the log of GNP. Here is the
example:

8 Basics

OPTIONS CRT; ? simple example
FREQ A; SMPL 76,85;
LOAD SALES,GNP;
11.7 1706
13.7 1901
11.4 2151
12.3 2391
19.4 2608
20.4 2956
18.2 3051
25.3 3261
24.3 3639
28.3 3843
LSALES = LOG(SALES); LGNP = LOG(GNP);
MSD LSALES,LGNP; OLSQ LSALES C,LGNP;

Note that commands finish with a semicolon (;), which allows there to be more
than one command per line or continuation of a command across several lines.
If you are using TSP interactively, the semicolon at the end of each command
is not required, and the \ key is used to continue a long command to the next
line:

LOAD LABOR LABOR2 CAPITAL CAPITAL2 MATERIAL \
MATER2

If you are using TSP in batch mode, the semicolon at the end of each

command is required, and the \ key cannot be used:

LOAD LABOR LABOR2 CAPITAL CAPITAL2 MATERIAL
MATER2 ;

The function of each command in the simple TSP program above is as follows:

OPTIONS CRT; Keeps the output file width< 80 columns

? simple example A comment that is ignored by TSP

FREQ A; Specifies annual frequency for the data

SMPL 76,85; Sets the range of data - from 1976 to 1985

LOAD SALES,GNP; Reads two series using the nos. that follow

LSALES = LOG(SALES); Creates a new variable = log SALES

MSD LSALES,LGNP; Computes means & other statistics

OLSQ LSALES C,LGNP; Regresses LSALES on LGNP and a constant

 2. Getting Started 9

 TSP Version 5.0

 (1/17/05) TSP/GiveWin 4MB

 Copyright (C) 2005 TSP International

 ALL RIGHTS RESERVED

 02/12/05 11:55AM

 In case of questions or problems, see your local TSP

 consultant or send a description of the problem and the

 associated TSP output to:

 TSP International

 P.O. Box 61015

 Palo Alto, CA 94306

 USA

 PROGRAM

COMMAND ***

1 OPTIONS CRT; ? simple example

2 FREQ A; SMPL 76,85;

4 LOAD SALES,GNP;

4 11.7 1706

4 13.7 1901

4 11.4 2151

4 12.3 2391

4 19.4 2608

4 20.4 2956

4 18.2 3051

4 25.3 3261

4 24.3 3639

4 28.3 3843

4 LSALES = LOG(SALES); LGNP = LOG(GNP);

7 MSD LSALES,LGNP;

8 OLSQ LSALES C,LGNP;

 EXECUTION

Current sample: 1976 to 1985

 Univariate statistics

 =====================

Number of Observations: 10

 Mean Std Dev Minimum Maximum

LSALES 2.86666 0.33996 2.43361 3.34286

LGNP 7.88696 0.27326 7.44191 8.25401

 Sum Variance Skewness Kurtosis

LSALES 28.66657 0.11558 -0.053501 -1.67063

LGNP 78.86961 0.074670 -0.30857 -1.04519

 Equation 1

 ============

 Method of estimation = Ordinary Least Squares

Dependent variable: LSALES

Current sample: 1976 to 1985

Number of observations: 10

 Mean of dep. var. = 2.86666 LM het. test = 1.86919 [.172]

 Std. dev. of dep. var. = .339965 Durbin-Watson = 2.13492 [.424,.744]

Sum of squared residuals = .171653 Jarque-Bera test = 1.15536 [.561]

 Variance of residuals = .021457 Ramsey's RESET2 = 1.38103 [.278]

Std. error of regression = .146481 F (zero slopes) = 40.4785 [.000]

 R-squared = .834978 Schwarz B.I.C. = -3.83236

 Adjusted R-squared = .814351 Log likelihood = 6.13495

 Estimated Standard

Variable Coefficient Error t-statistic P-value

C -6.09956 1.41004 -4.32581 [.003]

LGNP 1.13684 .178685 6.36227 [.000]

END OF OUTPUT.

Figure 2.1 Simple TSP Run

 3. TSP Fundamentals 11

3. TSP FUNDAMENTALS

This chapter introduces some basic TSP concepts and describes commands for
setting up the sample of observations, reading data, making transformations,
and setting options. It concludes with a fairly large example illustrating these
concepts and some estimation methods, ranging from OLS to FIML.

3.1 Describing the sample of observations: FREQ, SMPL

Before beginning a TSP program, you need to specify the frequency of your
data and the number of observations with the FREQ and SMPL commands.
The FREQ command tells TSP how often a year each series is observed. For
example,

FREQ A ;

specifies annual data, observed once a year. Other frequencies TSP
understands are

Q Quarterly (four times per year)

M Monthly (12 times per year)

W Weekly (52 times per year)

num Any number less than 32,768 (example: 26 times per year)

N Undated (usually cross-sectional or survey data)

If no frequency is specified, TSP assumes the frequency N (none).

A special FREQ statement is available for panel data (time series-cross section
data). For details, see Chapter 15, on using panel data in TSP.

The SMPL command defines the set of observations to be used. For example,
in the simple run in the last chapter,

SMPL 76,85;

informed TSP that observations dated from 1976 through 1985 were to be
used. You only need to use a SMPL command when you want to change the
observations you are using. There must be a sample in effect before the first
operation on a series, but if you read data from a file without specifying a
SMPL, the sample is defined for you, based on the contents of the file.

12 Basics

Formats for dates (the SMPL endpoints) are:

Annual: the full year or the last digits of the year (for the twentieth and
twenty-first centuries). Examples: 2005, 1981, 1895, 82 (1982), 101 (2001).
200 would normally denote the year 2100 (using the default OPTIONS
BASEYEAR=1900), while 201 would be just the year 201.6 Negative years
are valid; they are "B.C.".

Quarterly, Monthly, Weekly, and numeric: the full year or the last two
digits of the year, colon, and the quarter, month, week, or period number.
Examples: 1972:1, 65:4, 80:11. Obviously, quarters beyond 4 and months
beyond 12 are invalid, as are negative or absent values.

No Frequency: use the observation numbers. Examples: 1, 2000.

More than one pair of dates may appear in a SMPL command. For example,

SMPL 59,70 72,83;

omits the year 1971. To omit several scattered observations, use SELECT or
SMPLIF (see Section 3.3).

The dates in a SMPL statement must be in ascending order -- SMPL 70,59;
would be invalid.

3.2 Reading data into TSP: READ

There are several ways to input your data into TSP. You can include it with the
program or put it in a separate file. The separate file can be in a variety of
formats, including spreadsheet and MicroTSP, Eviews, or stata. This chapter
describes the simplest and easiest methods, reading data within the TSP
program and reading data from an external file. See Chapter 16 for more
complex examples.

3.2.1 Reading data in free format within the
program

If you have only a few short series, you will probably find it convenient to read
the data in free format within the program. To read data in free format, use the

6 Therefore, TSP is year-2000 compliant, and can handle dates either before or after 2000.

 3. TSP Fundamentals 13

READ command followed by the names of one or more series (names can be
up to 64 characters long). The data follows immediately in free format,
observation by observation, with one column per series. The numbers are
separated from each other by blanks or commas. Here is the example from
Chapter 2:

FREQ A; SMPL 76,85;
READ SALES,GNP;
11.7 1706
13.7 1901
11.4 2151
12.3 2391
19.4 2608
20.4 2956
18.2 3051
25.3 3261
24.3 3639
28.3 3843

The data for SALES and GNP could also be read separately (by rows) if it was
more convenient. Semicolons after the data are optional:

FREQ A; SMPL 76,85;
LOAD SALES;
11.7 13.7 11.4 12.3 19.4 20.4 18.2 25.3 24.3 28.3 ;
LOAD GNP;
1706 1901 2151 2391 2608 2956 3051 3261 3639 3843 ;

If the number of data points does not correspond to the current sample, an
error message will note the discrepancy. Missing values can be entered as a
period (.), or the SMPL can be set to read in only those observations that are
available. For example, if you had data on imports (IMPT) only for 1977 and
later in the above example, use

SMPL 77,85;
LOAD IMPT;
35 42 67 85 90 92 97 120 126 ;

If you have a large volume of data, the commands and data can be moved to
the bottom of the program, after an END; statement which terminates the data
analysis. A NOPRINT; command after the END; statement will suppress

14 Basics

printing of the commands and data in the output file. This is recommended
after an initial run has checked for any error messages in loading the data. See
Section 3.6 for more details.

Matrices may also be loaded -- see READ in the Reference Manual or Section
12.2.1 in this manual for more information on loading and using matrices. The
matrix type and dimensions are required.

3.2.2 Reading data from an external file

For large datasets, you will probably read the data from a separate file created
with a text editor, written by another program, or copied from disk or the web.
To input the file, use the READ command with the FILE='filename' option.
(Note: TSP Options are always enclosed in parentheses following the
command name.) The following example would read a file containing just the
data from the example in Chapter 2:

READ(FILE='SALESGNP.DAT') SALES,GNP;

The file SALESGNP.DAT could look like the following (free format allows
more than one observation per line, or one observation split across more than
one line):

11.7 1706
13.7 1901
11.4
2151
12.3 2391 19.4 2608 20.4 2956
18.2 3051 25.3 3261 24.3 3639 28.3 3843

The next example would read the Excel file, SML.XLS. For information on
reading spreadsheet files, see Chapter 16.

READ(FILE='SML.XLS') ;

3.3 Selection of observation subsets: SELECT, SMPLIF

In addition to the SMPL command, the sample can also be selected by rules
based on the values of series using SELECT and SMPLIF commands. The
difference between SELECT and SMPLIF is that successive SMPLIFs nest
(define smaller and smaller subsets of observations) while successive SELECT
statements do not. For example, suppose you want to run a regression on only

 3. TSP Fundamentals 15

the positive values of the variable X, but these values are scattered throughout
a dataset with 200 observations. It would be tedious to specify all the gaps for
omitted observations in a SMPL statement. Instead, use SELECT:

SMPL 1,200;
SELECT X>0;
OLSQ Y C,X;

SELECT always refers to the most recent SMPL statement to define the
overall sample of observations -- any intervening SELECT or SMPLIF
statements are ignored. As a result, successive SELECT statements do not
"nest" within each other. Nesting is provided with the SMPLIF command,
which includes only those observations from the current sample which make
the selection criteria true. For example,

SMPL 1 200 ;
SMPLIF X>0 ;
OLSQ Y C X ;
SMPLIF X<=10 ;
OLSQ Y C X ;

is equivalent to

SMPL 1 200 ;
SELECT X>0 ;
OLSQ Y C X ;
SELECT X>0 & X<=10 ;
OLSQ Y C X ;

Note that the samples defined by SELECT and SMPLIF remain in effect until
the next SMPL, SELECT, or SMPLIF statement. The "full sample" in these
examples could be restored in one of two ways:

SMPL 1,200; or SELECT 1;

(because the value 1 makes the selection criterion true for all observations in
the previous SMPL statement).

In either a SMPLIF or a SELECT statement, the selection criterion can be any
expression like those used in GENR (see Section 3.5). When the expression is
evaluated for each observation, values that are positive will be treated as true

16 Basics

and values that are zero or negative as false.

3.4 Missing Values

TSP supports missing values in data series. In free format input files you
should indicate missing data by a period (.); in fixed format files you will have
to use another value and then recode that value to the missing value code (see
Section 3.5.1 for an example). TSP names the missing value code @MISS so
that you can refer to it in your program.

The WRITE statement also uses a period (.) to indicate missing values when
printing or writing output files. Procedures that transform data such as GENR
automatically propagate missing values for most operation when they are
present (missing values are also generated if there are arithmetic errors in the
transformations).

Many statistical procedures (MSD, OLSQ, INST, AR1) automatically delete
observations with missing values before executing. Others (the time series
procedures such as ARCH) print an error message if you attempt estimation
with missing data. A complete list of the procedures that cannot estimate gaps
in the data is given in the Reference Manual. You can use SELECT with the
MISS() function to skip missing observations:

SELECT .NOT. MISS(SALES) .AND. .NOT. MISS(GNP) ;

will choose only observations for which SALES and GNP are not missing for
the estimation procedure.

3.5 Creating new series with transformations: GENR

The GENR command creates a new series based on a formula you supply. For
example,

GENR Z=LOG(REV);

forms a new series called Z, the natural logarithm of REV. Series Z is defined
only for those observations in the current sample; any other observations of Z
that are used later will have a missing value code as their value. A missing
value code is also given to any observation that has an arithmetic error when
computed. For example, if one of the observations of REV were zero, Z would
be missing for that observation since the log of zero is undefined. If Z is used
later in another GENR, the missing value will propagate, that is, the new series

 3. TSP Fundamentals 17

will also have a missing value for that observation.

You can use parentheses without limit to indicate the order in which the
elements of the formula should be evaluated. The word GENR is not required;
you can omit it and just give the equation you want computed:

Z=LOG(REV) ;

A complete set of rules and functions (like CNORM(), GAMMA(), etc.) for
composing GENR formulas appears in Appendix A. Some common operations
are:

+ addition & and

- subtraction | or

* multiplication ~ not

/ division LOG() natural log

** exponentiation EXP() e to the power

= equal SQRT() square root

~= not equal LOG10() base 10 logarithm

> greater than ABS() absolute value

< less than MISS() missing value

>= greater than or equal <= less than or equal

Typical examples:

SUM = A+B;
AVEQ = Q1*ALPHA + Q2*(1-ALPHA);

If you are unsure about the effect of a GENR command and you don't
understand the precedence rules in Appendix A, use the PRINT, PLOT,
GRAPH, HIST, or MSD commands to check your transformations after
performing them.

3.5.1 Dummy variables and recoding

The logical operators such as = ^= > < >= <= & | ^ yield true/false (one/zero)
values. This is useful for creating dummy variables and recoding categorical
variables. The following example creates a dummy variable that is 1 when X is
positive, and zero otherwise:

XPOS = X>0;

18 Basics

This is much faster than the alternative with SELECT:

XPOS = 0; SELECT X>0; XPOS = 1; SELECT 1;

See also the DUMMY command (Section 5.6), which is useful for creating
large sets of dummy variables and seasonal dummies.

To recode a variable, include logical expressions (0/1) that are multiplied by
the value for each case. If the 0/1 expressions are mutually exclusive, only one
value will be selected (for the case that is true). For example, say EDUC has 3
categories, and we want to assign them the values 9, 12 and 16 respectively:

SCHOOL = (EDUC=1)*9 + (EDUC=2)*12 + (EDUC=3)*16;

To recode all negative values to zero, but leave positive values unchanged:

X = (X<0)*0 + (X>=0)*X;
or

X = (X>0)*X; or X = POS(X) ;

Operations with missing values are a little trickier, because most operations on
missing values yield a missing value. For example, to recode missing to -99:

SELECT MISS(X); X=-99; SELECT 1;

To recode missing values to zero, GENR can be used directly because 0*X is
zero, even when X is missing:

X = MISS(X)*0 + (.NOT.MISS(X))*X;
or

X = (.NOT.MISS(X))*X;

The operations that can handle missing values without generating a missing
answer are the following:

Expression Evaluates to

MISS(@MISS) True

0*@MISS 0

true .OR. @MISS True

false .AND. @MISS False

 3. TSP Fundamentals 19

To recode zeros to missing:

SELECT X=0; X=@MISS; SELECT 1;

In some computer packages, IF/THEN/ELSE statements are used for these
types of transformations, but TSP uses IF/THEN/ELSE for program control.
Be careful not to use IF/THEN/ELSE for recoding, since they operate on
scalars and not on series.

3.5.2 Lags and leads

A lagged series is indicated by putting the lag in parentheses with a minus
sign. For example,

FREQ M;
SMPL 72:1,85:12;
DA = AUTOS - AUTOS(-12) ;

computes the 12-month change in the monthly series AUTOS. Note that
AUTOS must be defined from 1971 through 1985 -- otherwise missing values
will be stored in DA. Leads (future values) are defined similarly to lags (past
values), except the number in parentheses is positive, e.g. AUTOS(24) is a
two-year lead. Lags and leads with series can be used in any command where a
plain series may appear. For example,

OLSQ Y C,Y(-1); ? regression of Y on Y lagged once

When there is a SMPL gap, lagged values of series still contain the true lagged
observations. For example,

SMPL 59,70 72,83;
Y=X(-1) ;

puts the value of X for the 1971 observation (not the 1970 observation) into
the observation of Y for 1972.

Here are some more GENR examples with lags and leads:

DP = LOG(P/P(-1)) ;

computes the rate of change of P in logs.

20 Basics

MOVA = (X(-2) + 2*X(-1) + 3*X + 2*X(1) + X(2))/9 ;

computes a moving average of the series X with variable weights, using both
lags and leads.

Note for Power Users: Entire equations can also be lagged. See Chapter 9 for
information.

3.5.3 Dynamic GENR

If the right-hand side of the GENR equation contains explicit lags (or leads) of
the left-hand side series, the series will be updated dynamically. Note that the
series must already be defined in the observation(s) preceding the current
sample (or following the current sample, in the case of leads). For example,

SMPL 1,10; SUM = X; SMPL 2,10; SUM = SUM(-1) + X;

creates SUM as the accumulated sum of variable X. This feature can also be
used to create autoregressive disturbance terms, dynamic simulations, capital
stocks (see also the CAPITL command), and net present values. The dynamic
GENR is much faster than using a DO loop to create sums. TSP always prints
a note if a dynamic GENR is computed. However, care should be taken to
avoid an unintentional dynamic GENR when redefining a series.

For example, the correct commands

SMPL 70,85;
MNEW = M(-1); M = MNEW;
or
GENR(STATIC) M = M(-1);

replace M with its lag, while the innocent-looking commands

SMPL 70,85; M = M(-1);

put the 1969 value of M into all observations 1970 through 1985 (probably not
what the user intended).

Dynamic GENRs can be computed backwards as well as forwards. For
example, a net present value can be computed by using a lead on the right
hand side:

 3. TSP Fundamentals 21

SMPL 95,2020; NPV = 0;
SMPL 95,2019; NPV = {NPV(+1) + CASH(+1)}/[1+R(+1)];

Note that the + sign is not required for leads.

When NPV is computed, a message warns that the dynamic recursion was
done in reverse (starting in the year 2019).

3.6 Useful statements at the beginning of a TSP job

The OPTIONS command is handy for customizing various TSP options.
Options that you use in most of your programs can be put in a LOGIN.TSP file
so they will load automatically (see Chapter 17). For example, if you have a
large dataset or model that requires more than the default 4MB of memory, use
a command such as:

OPTIONS MEMORY=12;

at the top of every run.

Plots of actual and fitted values and residuals are available for many statistical
procedures in TSP (ACTFIT, OLSQ, 2SLS, LIML, AR1, LSQ, and FIML).
Normally they are not printed. The PLOTS option tells TSP to produce plots
for subsequent procedures, while NOPLOT stops the plots. Example:

OPTIONS PLOTS;
? this is a common customization for regression output
REGOPT(PVPRINT,STARS) T;
OLSQ Y,C,X;
OPTIONS NOPLOT;

The HARDCOPY option specifies whether a header is to be printed at the top
of each page in the output file. The header contains space for a user name and
a 60-character title, which may be varied throughout the run. The default is not
to print a header or to page, since it is assumed that these will be added by the
program you use to print or display the output, if necessary. Example:

OPTIONS HARDCOPY ;
NAME KMARX 'FINAL RESULTS FOR DAS KAPITAL' ;

22 Basics

The title can be changed during the job by the TITLE command containing the
new title. Example:

TITLE 'Results for Transformations' ;

TITLE works even without the HARDCOPY option -- the title is just printed
directly to the output file, centered and doubly underlined.

More than one option may be specified on an OPTIONS statement. For
example:

OPTIONS MEMORY=40, PLOTS;

The ? character begins a comment -- TSP will ignore everything that follows it
until the end of the line. This is useful for reminding yourself what the
program is doing at the top and at any critical sections. For example:

OPTIONS PLOTS; ? This program tests models with dataset 4.

3.7 The order of statements in a TSP job

Although the ordering of a TSP program is very flexible, statements in a job
are generally executed in the order in which they appear. Thus, information
about inputs must be provided before they can be used. For example, GENR
statements for the variables in a particular regression must appear before the
OLSQ for that regression. Most users tend to group GENR statements in a job
together, but this is not required. A TSP job often has two main parts: a (data
analysis) program and a data loading section, separated by an END; statement.
In processing the job, TSP starts by reading the program and checking some
aspects of it, such as unbalanced parentheses in equations or unterminated DO
loops. When it reaches an END; statement it stops reading and begins
execution. At this point it has not yet read the data section. When it executes a
LOAD; statement in the program, it reads and checks the data until it finds
another END; statement or an end of file that marks the end of the data. Then
it continues executing the program.

Placing the data in a separate load section is not required. Data can be included
with a READ statement anywhere in the program. However, using a data
section can be more efficient in terms of memory usage. It is also very useful
for suppressing the automatic listing of the data and commands in the output
file (with the NOPRINT; command).

 3. TSP Fundamentals 23

3.8 The next step

How you proceed from this point (if you made it this far) depends on your
background. If this is your first statistical package, you should read the rest of
Chapter 3 and Chapter 4 carefully and then start on your own projects. If you
are familiar with statistical packages, you will probably plunge into running
TSP without much study, and consult the manual whenever you reach a dead
end. The Reference Manual is designed to make it easy to look up a command
and find out about its options, features, method used and some references for
further reading. We recommend that you browse through the manual
occasionally; you may be unaware of some of the things TSP can do.

3.9 An extended example

The example introduced here and used throughout the manual is built around a
simple illustrative macro model of the U.S. economy. The illustrative model
contains equations for five endogenous variables:

 CONS: Consumption in real terms
 I: Investment in real terms
 GNP: Real GNP
 R: Interest rate
 P: Price level--implicit GNP deflator

There are four behavioral equations and one identity:

1. A consumption function where consumption depends only on GNP.
2. An investment function where investment depends on its own lagged

value, GNP, and the interest rate.
3. A money demand function relating the interest rate to the velocity of

money.
4. A Phillips curve making the price level rate of change depend on its

own lagged value, GNP, and a time trend.
5. The GNP identity, stating that GNP equals the sum of consumption,

investment, and an exogenous variable called G that measures
government expenditures and net exports.

The other exogenous variables of the model are the money supply M, and the
time trend TIME.

The first step in the development of the model is to assemble the data. The data
section for the illustrative model is typical:

24 Basics

FREQ A; SMPL 1946,1975;
READ GNP CONS I ;
475.7 301.4 71
... etc. ...
1186.4 766.6 138.9;
READ EXPORTS ;
11.6 16.6 8.5 8.8 4.0 7.4 4.9 2 4.5 4.7 7.3 8.9 3.5 .9
... etc. ...
END ;

Now for some preliminary transformations of the data: first we want to create a
trend variable that is one in the first year and increments by one in each
succeeding year.

TREND TIME ;

creates a series called TIME. Next we perform some GENRs:

 P = P/100 ; LP = LOG(P) ;

The price index with 1972 = 100 is converted to one with 1972 = 1.0 by
dividing by 100. The second GENR statement creates a series LP as the natural
log of the price level.

G = GOVEXP+EXPORTS ;

This creates the variable G out of the standard variables GOVEXP and
EXPORTS from the National Income Accounts.

 R = RS ;

At the time the TSP input file was prepared, it was not clear whether a
short-term or a long-term interest rate was appropriate. Both were included in
the data (RS and RL). In later commands, R is used to stand for the interest
rate, whether short-term or long-term. This statement sets R equal to RS. A
complete set of results with R equal to RL could be obtained just by changing
this statement to GENR R = RL ;

PRINT GNP,CONS,I,RS,RL,P ;

 3. TSP Fundamentals 25

This statement simply prints these series in a table. It is a good idea to check
the transformed data to see that the manipulations were correctly specified.

SMPL 1948,1975;
MNEW = (M+M(-1))/2 ; M = MNEW;

Now we change the sample to begin in 1948 rather than 1946 because we are
going to use some lagged data in the computations. When we define the lagged
price change (DP1) below, we will need observations lagged twice, so we start
in 1948 rather than 1947. In the published data, M is the money stock at the
end of the year. Money in this model is the average during the year. This is
approximated by averaging the year-end value and the value at the end of the
previous year.

DP = LOG(P/P(-1)) ;
DP1 = DP(-1) ;

DP1 is the lagged rate of inflation.

SMPL 1949,1975 ; DM = LOG(M/M(-1)) ;

DM is the rate of change of the money stock. Multiplying DM by 100 would
give the percent rate of change. Because the first observation of the money
stock was zero, we need to start in 1949 to obtain good values of DM --
remember that M was redefined as a two year moving average earlier.

LGNPCUR = LOG(GNP*P) ;

LGNPCUR is the log of GNP in current prices.

With the data prepared, we can begin estimation of the equations of the
illustrative model by ordinary least squares and two-stage least squares. For the
consumption equation, the TSP command for regression is the following:

OLSQ CONS C,GNP ;

OLSQ computes the simple regression of CONS on GNP with an intercept.
Note how the intercept is specified: C is a built-in series in TSP consisting
entirely of 1's. C is used mainly to specify a constant or intercept in
regressions, but may be used anywhere that a series is valid in any TSP
statement. If C does not appear in the list of variables for a regression, the

26 Basics

regression will be estimated without an intercept; that is, the regression line
will be forced through the origin. In this respect, TSP is different from some
other regression programs.

The commands

FRML MPC GNP -1;
ANALYZ MPC;

define a hypothesis to be tested (that the coefficient of GNP is equal to one)
and then test it with a t-test performed by ANALYZ

To compute two-stage least squares estimates for the simple consumption
function, use:

LIST IVS C,G,LM,TIME;
2SLS(INST=IVS) CONS C,GNP;

The LIST command defines a TSP variable list (in this case the list of
instruments for the model, which will be used repeatedly in 2SLS and LSQ).
The INST= option in 2SLS specifies the list of instrumental variables for this
equation -- note that the constant, C, must be specified as an instrument
explicitly. Any exogenous variable that appears in the equation must also be in
the list of instruments; in this case, C is the only such exogenous variable.

We also estimate this equation with LIML (Limited Information Maximum
Likelihood), which is specified in the same way as 2SLS:

LIML(INST=IVS) CONS C,GNP;

Estimation of the investment equation is next. We hypothesize that investment
depends on the demand for capital services, which is the ratio of real GNP to
the rental price of capital. The rental price of capital, in turn, is the sum of the
rate of depreciation and the interest rate. The following statements form the
appropriate variables and carry out the estimation.

CONST DELTA 15 ;

defines a constant, DELTA, interpreted as the rate of depreciation and
assigned the value 15 (% per year).

 3. TSP Fundamentals 27

GENR GNPN = GNP/(DELTA+R) ;

creates the capital demand variable, GNPN. Note that constants may appear in
GENR statements (see also Section 6.1).

OLSQ I I(-1),GNPN ;

estimates the investment equation. It is followed by a nonlinear least squares
estimation of the same equation as an illustrative example. However, since the
equation in this version is really linear, there will be no difference in the
estimates. If DELTA has been specified as a parameter rather than a constant,
the estimation would be truly nonlinear.

The next OLSQ and 2SLS commands estimate a constrained version of the
interest-rate equation where the coefficients of LGNPCUR and LM are
required to be the same in magnitude but opposite in sign. The constraint is
imposed by combining them in LVELOC, the log of monetary velocity.

LVELOC = LGNPCUR-LM ;
OLSQ R C,LVELOC ;
2SLS(INST=IVS) R C,LVELOC ;

The final OLSQ and 2SLS commands estimate the inflation equation.

OLSQ DP DP1,LGNP,TIME,C ;
2SLS(INST=IVS) DP DP1,LGNP,TIME,C ;

OLSQ and 2SLS statements can appear in any order, not just in pairs as in this
example. It is usually more convenient to group the estimation statements for a
particular equation so that the output from the estimations appears adjacently.

Here is the TSP job for the illustrative model, which includes several
commands like LSQ, FIML, ANALYZ, and SIML that will be introduced in
later chapters. We have not included the full data set, but you can find the
complete program and data on the web site.

28 Basics

OPTIONS CRT;
NAME ILLUS50
'Sample Run for TSP 5.0: Illustrative Model from Manual' ;
?
FREQ A; ? Annual frequency.
SMPL 46 75 ; ? Sample is 1946 to 1975.
LOAD ; ? Read in data.
TREND TIME ;
?
? Data Transformations.
?
P = P/100 ; LP = LOG(P) ;
G = GOVEXP+EXPORTS ;
R = RS ;
PRINT GNP CONS I RS RL P ;
SMPL 48,75 ;
MNEW = (M+M(-1))/2 ; M = MNEW;
DP = LOG(P/P(-1)) ; DP1 = DP(-1) ;
SMPL 49,75 ; DM = LOG(M/M(-1)) ;
PRINT G M DM TIME DP ;
LGNPCUR = LOG(GNP*P) ; LM = LOG(M) ;
LVELOC = LGNPCUR-LM ; LGNP = LOG(GNP) ;
?
? Data is now generated; Try estimation on single equations.
?
SMPL 49,75 ;
OPTIONS PLOTS ;
TITLE 'OLSQ - Ordinary Least Squares' ; PAGE ;
OLSQ CONS C,GNP ;
?
? Test the hypothesis that the marginal propensity to consume
? is one.
FRML MPC GNP-1 ;
ANALYZ MPC ;
?
? Form a consumption equation for model estimation later.
FORM(COEFPREF=B) CONSEQ;
TITLE 'PRINT Example from Users Guide' ; PAGE ;
PRINT B1 CONSEQ @VCOV @RES;
?

 3. TSP Fundamentals 29

TITLE 'Engle-Granger Test for Cointegration' ; PAGE ;
SMPL 50,75 ;
DU = @RES-@RES(-1) ;
? Regress diff. residuals on trend and lag residual.
OLSQ(SILENT) DU C TIME @RES(-1) ; SET TSTAT = @T(3);
? Test with Dickey-Fuller distribution
CDF(DICKEYF,TREND,DF=@NOB,PRINT) TSTAT ; ?
? Plot the residuals from the consumption equation.
?
SMPL 49,75 ;
GENR CONSEQ CONSFIT ; RES = CONS-CONSFIT ;
PLOT (MIN=-25,MAX=25,VALUES,HEADER,BAND=STANDARD,
 INTEGER,BMEAN)RES * ;
?
? Estimation with correction for first order serial correlation.
?
AR1 CONS C,GNP ;
FORCST(PRINT) CONSP ;
OPTIONS NOPLOT ;
?
? Two stage least squares.
?
LIST IVS C G LM TIME ; ? Define a list of instrumental variables
?
TITLE 'INST - Instrumental Variable Estimation' ; PAGE ;
2SLS(INST=IVS) CONS C,GNP;
?
TITLE 'LIML - Limited Information Maximum Likelihood Estimation'
PAGE ;
LIML(INST=IVS) CONS C,GNP;
PAGE;
?
? Linear Estimation of Investment Equation.
CONST DELTA 15 ; GNPN = GNP/(DELTA+R) ;
OLSQ I I(-1),GNPN ;
FORCST(PRINT,DYNAM,DEPVAR = I) IFIT ;
?
? 'Nonlinear' Estimation of the same equation by OLS and 2SLS.
FRML INVEQ I = LAMBDA*I(-1) + ALPHA*GNP/(DELTA+R) ;
PARAM LAMBDA .05 ALPHA .2 ;

30 Basics

LSQ(PRINT) INVEQ ;
LSQ(INST=IVS) INVEQ ;
?
? Linear Estimation of Interest Rate Equation.
OLSQ R C,LVELOC ;
2SLS(INST=IVS) R C,LVELOC ;
PARAM D F;
UNMAKE @COEF D F; ? Starting values for INTRSTEQ below.
?
? Linear Estimation of Price Change Equation.
OLSQ DP DP1 LGNP TIME C ;
2SLS(INST=IVS) DP DP1,LGNP,TIME,C ;
PARAM PSI PHI TREND P0 ; ? Parameters of price change eqn.
? Set starting values for PRICEQ below.
UNMAKE @COEF PSI PHI TREND P0 ;
?
? These are the equations of the simultaneous equations model.
?
IDENT GNPID GNP-CONS-I-G ;
? The next equation was made by FORM earlier in the run.
? FRML CONSEQ CONS = B0 + B1*GNP ;
FRML INTRSTEQ R = D + F*(LOG(GNP)+LP-LM) ;
FRML PRICEQ LP = LP(-1) + PSI*(LP(-1)-LP(-2)) + PHI*LOG(GNP)

+ TREND*TIME +P0 ;
?
? Estimate by multivariate regression, assuming contemporaneous
? correlation of the residuals.
?
LSQ(STEP = CEAB) CONSEQ INVEQ INTRSTEQ PRICEQ ;
PRINT @FIT ;
?
? Estimate by nonlinear three stage least squares.
?
TITLE '3SLS - Three Stage Least Squares' ; PAGE ;
3SLS(PRINT,INST=IVS) CONSEQ INVEQ INTRSTEQ PRICEQ ;
?
? Estimate by Full Information Maximum Likelihood.
?
FIML(ENDOG=(GNP,CONS,I,R,LP)) GNPID CONSEQ INVEQ

INTRSTEQ PRICEQ ;

 3. TSP Fundamentals 31

?
? Test some nonlinear hypotheses about Long run coefficients.
?
FRML LR1 ALPHALR = ALPHA/(1.-LAMBDA) ;
FRML LR2 PHILR = PHI/(1.-PSI) ;
PAGE;
ANALYZ LR1 LR2 ;
PAGE;
?
? Simulate the model over the second half of the sample
? and plot the results.
?
SMPL 66 75 ;
SIML (PRNSIM,PRNDAT,TAG = S,ENDOG = (GNP,CONS,I,R,LP))
 CONSEQ INVEQ INTRSTEQ GNPID PRICEQ ;
PLOT (RESTORE, MAX=1500, MIN=500, LINES=(1000)) GNP G

GNPS H CONS C CONSS D ;
PLOTS ;
ACTFIT R RS ;
END ;
?
? START OF THE DATA SECTION
?
NOPRINT;
SMPL 46 75 ;
LOAD GNP CONS I ; ? GNP, CONSUMPTION,

INVESTMENT
475.7 301.4 71
468.3 306.2 70.1
487.7 312.8 82.3
... data continues...
1186.4 766.6 138.9
;
LOAD EXPORTS ; ? EXPORTS
11.6 16.6 8.5 8.8 4.0 7.4 4.9 2 4.5 4.7 7.3 8.9 3.5 .9
5.5 6.7 5.8 7.3 10.9 8.2 4.3 3.5 -.4 -1.3 1.4 -.6 -3.3
7.2 16.6 23.5 ;

LOAD GOVEXP ; ? GOVERNMENT

EXPENDITURES

32 Basics

91.8 75.4 84.1 96.2 97.7 132.7 159.5 170.0 154.9 150.9
152.4 160.1 169.3 170.7 172.9 182.8 193.1 197.6 202.7 209.6
229.3 248.3 259.2 256.7 250.2 249.4 253.1 252.5 254.3 257.4
 ;

...reads in M, P, RS -- full data set available on the web site...

LOAD RL ; ? LONG TERM INTEREST RATE.
2.53 2.61 2.82 2.66 2.62 2.86 2.96 3.2 2.9
3.06 3.36 3.89 3.79 4.38 4.41 4.35 4.33 4.26 4.4
4.49 5.13 5.51 6.18 7.03 8.04 7.39 7.21 7.44 8.57 8.83
 ;
END ;

 4. Interactive use 33

4. INTERACTING WITH TSP

This chapter provides a general overview of TSP's interactive mode. It is a
sufficient introduction for new users anxious to dive into their first session.
You will find additional convenience features discussed in Chapter 17, and
further information about the commands in the Reference Manual. A short
sample session has been included at the end of the chapter for added clarity

(Figure 4.1). If you use Windows, you may want to try the visual user
interface utility Givewin,™ which allows both batch and interactive modes of
running TSP.

4.1 Basic operation

You don’t really need to know much before jumping into your first interactive
session, but it's useful to have an idea of how to start, stop, and enter
commands. Also, having an understanding of the operating modes of the
program may affect how you approach it and will enable you to get the most
out of it.

4.1.1 Beginning and ending a session

The command you use to start running interactive TSP depends on how the
program was installed on your system; it will probably be "TSP" (on some
systems, you double-click on a TSP icon). If this doesn't work you will have to
consult your system manager. Once you have given the command (or double-
click), the following will appear:

Enter batch filename [or press Enter for interactive]:

Two responses are possible:

If you supply a filename here (such as prog2a), TSP will run in batch mode (in

this case, reading commands from prog2a.tsp and putting output in the file

prog2a.out). When TSP finishes, it will prompt for a new batch filename (or to
rerun the same batch file). If you are using a multitasking operating system
(such as unix, OS/2, Windows, or Mac), you can use a task switch key at this
point to view the output file and edit the input file, and then rerun TSP a
second time if necessary. Otherwise, you'll have to exit from TSP, give
commands to do these operations, and then restart TSP. (In this case, you
would be better off using the command tsp prog2a which will run TSP in
batch mode automatically and skip the prompt). Batch mode is recommended

34 Basics

if a long sequence of TSP commands is needed to estimate your model; it is
easier to revise and reproduce results this way.

If you press Enter (or Return on some keyboards) to the initial prompt, the
following will appear:

Enter TSP statements:
1?

You are now in the interactive mode of the program, and each command that
you enter will be executed immediately, and results will be displayed on the
screen.

It is possible to suppress execution of commands selectively; see the next
section and COLLECT in the Reference Manual. It is also possible to redirect
output; see Section 4.4 or the OUTPUT command in the Reference Manual.

If your last session ended abnormally, the following message should appear
before the first line number prompt.7

WARNING> Your previous TSP session was terminated abnormally.
Do you wish to recover it (y/n)? [y]

To end an interactive TSP session use either the EXIT or STOP command. But
first be sure to save any output you want. SAVE (see Section 4.3) saves all the
current TSP variables (but not the commands) so they can be restored later.
The batch-compatible commands that you entered will be saved in the file

BKUP.tsp. This file may be useful for starting your next session (with INPUT

or login.tsp). You can restart an interactive session (i.e. start over at line 1), by
using the CLEAR command. You can also use the SYSTEM command to
temporarily suspend your session to take care of other business on the
computer. See Chapter 17 for more information.

4.2 Modes of operation

TSP operates in several modes, all of which can be accessed by the Givewin
shell (see below in this section):

Interactive: One line at a time is executed, right after the command is entered.

7
 Chapter 17 discusses the automatic recovery system. See also the RECOVER section in the

Reference Manual.

 4. Interactive use 35

Control may be transferred between interactive and collect modes as often as
you like. In general, blocks of statements that are executed as a unit (PROCs,
DO loops, etc...) must be entered in collect mode. EXIT or STOP returns you
to the operating system, terminating TSP. CLEAR restarts an interactive
session (without saving anything). It is also possible to pass control
temporarily to the operating system without interrupting the interactive session
(SYSTEM command.)

Collect: Collect mode is entered from interactive mode by the COLLECT
command. Execution is suppressed until a group of commands has been
entered, and execution is requested (EXEC). The commands are then
processed and you are returned to interactive mode. EXIT returns you to
interactive mode without executing the collected lines. Reading a stream of
commands from an external file (with INPUT) is functionally the same as
COLLECT. With INPUT, execution is automatic when END or end-of-file is
reached. In either case, the commands read are incorporated into the interactive
session, and may be REVIEWed, EDITed, etc... later in the session.

Batch: In batch mode TSP reads and executes a previously prepared, complete
TSP input file. You create this input plain text (ASCII) file with a separate text
editor (such as the EDIT command in DOS, or a word processing program like
Microsoft Word, saving as a text only file). You can run your file via a batch
queue (multi-user systems), or while waiting at your PC/terminal. In either
case, TSP usually terminates when execution of the file is completed.

You may want to execute a short TSP program you have prepared, displaying
the output on the monitor. In this case, you could open TSP interactively, and
then immediately INPUT a previously prepared batch file.

Givewin (for Windows only): This visual interface shell works just like any
other Windows program. It allows you to edit multiple TSP input files using
standard Windows editing conventions (such as cut and paste). You can run
the files in batch mode by clicking a run button, and browse and print the
output. You can also use TSP interactively within Givewin; either way,
operation in Givewin means that you have access to its graphics capabilities
for plotting from within TSP.

4.2.1 Entering commands in Interactive Mode

There is not much difference between entering TSP commands in a file for
batch execution, and entering them in interactive mode -- just follow the usual
syntax. The main difference is that semicolons at the end of a line are not

36 Basics

necessary -- a carriage return defines the end of the command. You may
indicate that a statement takes more than one line by typing a backslash (\) at
the end of the line(s) that are to be continued.

However, statement-ending semicolons are still required in batch or INPUT
files that you use in the interactive session. Also, if you REVIEW any portion
of an interactive session, you will notice that they have been added for you. Of
course, you may enter more than one command per line in interactive mode if
you separate them with semicolons.

There are some features of TSP that may be especially useful when working
interactively. The first is that you can abbreviate TSP commands (and options).
The abbreviation must be unambiguous, and must not skip characters; it may
be any length (including 1). For example:

OLS valid abbreviation for OLSQ
BJ ambiguous -- could be BJEST, BJIDENT, BJFRCST
BJF valid for BJFRCST
Q valid for QUIT (no other "Q" commands)
FCST invalid for FORCST (skips characters)

You can use cursor keys to recall and edit lines that you've previously typed.
This is useful for correcting typographical errors, adding/dropping variables, or
repeatedly executing commands. The cursor keys work just like they do in
DOS EDIT, Notepad, or Wordpad:

Key Action

↑ recall previous line(s)
↓ recall later line(s)
→ move (cursor) right in current line
← move (cursor) left in current line
Home move (cursor) to start of line
End move (cursor) to end of line
Ins toggle typeover/insert mode (default: typeover)
Del delete character at cursor
Esc clear current line
Backspace delete character to left of cursor

For other methods of editing commands in interactive mode, please see
Chapter 17.

 4. Interactive use 37

4.2.2 Requesting information: HELP, SHOW, etc.

Several commands will give information on the current status of your session
or remind you of command syntax.

HELP TSP command

displays information about the syntax and function of a particular TSP
command. HELP by itself gives a list of TSP commands. If you are using a
Windows version of TSP, you can also obtain help via the TSP Help System
that is shipped with the program.

REVIEW first line, last line

redisplays a range of lines from your session.

FIND TSP command

displays all the lines in your session that begin with the specified TSP
command. This is useful when you want to EDIT or EXEC a command, but
you don't know its line number.

SHOW list of names and/or keywords

provides information about how TSP has stored specific items, or groups of
items in the symbol table. You can SHOW SERIES to find out which time
series you have stored, along with their frequencies, starting and ending dates,
and number of observations. You can also SHOW SMPL or FREQ to find out
the current settings of each.

DIR *

displays all the files in your current directory with the extension TSP; this can
be useful in conjunction with the INPUT command. DIR "alone" prompts for a
directory specification; you can display information about any file, from any
directory (as well as request information regarding size, date, etc.).

4.2.3 Methods of entering or reading data

The interactive mode of TSP offers a number of approaches to loading data. If
the data you need is not on disk in some usable form, the easiest method of
data entry is the ENTER command.

38 Basics

ENTER seriesname

prompts you to enter data based on the current sample and frequency. Any
number of data points may be entered per line. If a non-numeric item is
encountered (your fingers slip on the keyboard) it is ignored (along with any
numbers that follow it on the line). Numeric corrections to the values of a
series may be made with the UPDATE command. ENTER prompts for data
until enough numbers have been supplied to fill the current SMPL.

READ seriesname

also allows you to enter data from the keyboard, though no prompting will
occur (other than the current line number prompt), and nothing is stored until a
semicolon is entered; this is one of the few instances in which a semicolon is
required in interactive mode. Numeric errors not corrected immediately can
also be UPDATEd.

If the data you need is already stored on disk, you can use any of the following
methods to read it:

READ with the options FILE= and/or FORMAT=
INPUT the name of a file that contains a data section
IN databank
FETCH micro-TSP (or EViews) databank
RESTORE a SAVEd session

4.2.4 Saving selected output: OUTPUT, TERM,
PrtSc

As you use TSP interactively, you will often produce output on the screen that
you want to save for later examination or printing. You can save screen output
easily with the OUTPUT command.

OUTPUT filename

sends all output to the file "filename.out" until the TERMINAL command, or
another OUTPUT command is encountered. You can create as many output
files as you like during a session; each OUTPUT statement opens a new output
file and closes the previous one (if there was one). If the output filename
already exists (whether it was created earlier in the session or not), output will
be appended to the old file rather than creating a new file. For rules on

 4. Interactive use 39

specifying filenames, see OUTPUT in the command reference section.

It is not possible to send output to the terminal and an output file
simultaneously, but error and warning messages are displayed in both places so
you will know if something is seriously wrong. There are several solutions to
the "seeing your output and saving it, too" dilemma. Which is best depends on
how much of the output you want to see, and how much you are paying for
computer resources. For simplicity, the following examples save output from
one procedure only; all may be extended to handle any volume of output.

To print just the output on the screen, you can use the shift-printscreen keys in
either DOS or in a DOS window running TSP. You can also mark the screen
output in a DOS window and save it in Clipboard for later use.

If you are not certain that you want to save the results, you can execute the
procedure(s) first, and then repeat the command after issuing an OUTPUT
command if it looks good:

10? OLSQ CONS C GNP
 (regression output)
11? OUTPUT REGRESS (changes output to a file names REGRESS)
12? EXEC 10 (re-executes line 10, the OLSQ)
13? TERM (switches back to terminal output)

3. If you only need to see selected results from what you save, the following
method is faster. All output is sent to the file until TERM, and any other
variables created during execution may be examined with PRINT or SHOW.

10? OUTPUT REGRESS
11? OLSQ CONS C GNP
12? TERM
13? TSTATS(NAMES=@RNMS) @COEF @VCOV (Prints t-statistics)

4. This method takes the most steps, but avoids a wait during re-execution. The
system prompt character is shown as $. This may be different, for example, on
a PC the prompt is the disk drive letter (usually C> or D>):

 10? OUTPUT REGRESS
 11? OLSQ CONS C GNP
 12? TERM
 13? SYSTEM

40 Basics

 $ TYPE REGRESS.OUT
 (contents of regress.out)
 $ CONTINUE
 14?

You can look at the file with your editor instead of the TYPE command. You
can also print, delete, rename, or copy the file before continuing the use of
TSP. The TERM command is essential because it closes the file; if the file is
not closed when you try to look at it, it will either appear empty or be missing
the output you added since the last time it was closed.

4.2.5 Sample session in interactive mode

The following pages give a simple example of running TSP in interactive
mode. For information on advanced techniques in interactive mode, please see
Chapter 17.

 4. Interactive use 41

Enter TSP statements:

 1 ? input illusdat

Do you want the output displayed at the terminal (y/n)?
[y]

Current sample: 1961 to 1975
 6 ? review

 1. ? input 'illusdat';
 1. FREQ A;
 2. SMPL 61 75 ;
 3. LOAD GNP CONS I ;
 4. ? GNP, CONSUMPTION, INVESTMENT
 4. REGOPT(LMLAGS=2) LMAR ;
 5. ? TURN ON LMAR DIAGNOSTIC
 6. REVIEW;

 7 ? olsq cons c gnp

 Equation 1
 ============

 Method of estimation = Ordinary Least Squares

Dependent variable: CONS
Current sample: 1961 to 1975
Number of observations: 15

 Mean of dep. var. = 626.527
 Std. dev. of dep. var. = 105.195
 Sum of squared residuals = 1911.53
 Variance of residuals = 147.040
 Std. error of regression = 12.1260
 R-squared = .987662
 Adjusted R-squared = .986712
 LM het. test = .513322 [.474]
 Durbin-Watson = .616923 [.000,.002]
Breusch/Godfrey LM: AR/MA1 = 9.22897 [.002]
Breusch/Godfrey LM: AR/MA2 = 8.69666 [.013]
 Jarque-Bera test = .659462 [.719]
 Ramsey's RESET2 = 6.96993 [.022]
 F (zero slopes) = 1040.62 [.000]
 Schwarz B.I.C. = 60.3492
 Log likelihood = -57.6411

 Estimated Standard
Variable Coefficient Error t-statistic P-

42 Basics

value
C -63.3408 21.6135 -2.93061
[.012]
GNP .676823 .020981 32.2586
[.000]
 8 ? plot @res

This plot is produced in a separate window and is shown at the end of this run.

 9 ? normal gnp 72 2608.5

 10 ? normal cons 72 1621.9

 11 ? update gnp

Which observations do you wish to update? 74 85

Enter data for GNP
 1974? 2729.3 2695.0 2826.7

 1977? 2958.6 3115.2 3192.4

 1980? 3187.1 3248.8 3166 3277.7 3492 3573.5

 12 observations of GNP have been updated.

 12 ? update cons

Which observations do you wish to update? 74 85

Enter data for CONS
 1974? 1674 1711.9 1803.9

 1977? 1883.3 1961 2004.4 2000.4

 1981? 2024.2 2050.7 2145.9 2239.9 2312.6

 12 observations of CONS have been updated.

 13 ? save

 14 ? graph gnp cons ? Plot Consumption vs. GNP

This graph is produced in a separate window and is shown at the end of this
run.

 15 ? find olsq ? Look for all OLSQ commands thus far
 6. OLSQ CONS C GNP;

 4. Interactive use 43

 16 ? exec 6 ? Repeat the OLSQ under the new SMPL
 6. OLSQ CONS C GNP;

 Equation 2
 ============
 Method of estimation = Ordinary Least Squares
 Dependent variable: CONS
 Current sample: 1961 to 1985
 Number of observations: 25

 Mean of dep. var. = 1649.17
 Std. dev. of dep. var. = 385.115
 Sum of squared residuals = 19485.3
 Variance of residuals = 847.185
 Std. error of regression = 29.1064
 R squared = .994526
 Adjusted R squared = .994288
 LM het. test = .634874 [.426]
 Durbin Watson = .993869 [.001,.006]
 Breusch/Godfrey LM: AR/MA1 = 5.96885 [.015]
 Breusch/Godfrey LM: AR/MA2 = 6.52117 [.038]
 Jarque Bera test = 1.24251 [.537]
 Ramsey's RESET2 = 3.64755 [.069]
 F (zero slopes) = 4178.60 [.000]
 Schwarz B.I.C. = 6.91605
 Log likelihood = 118.705

 Estimated Standard
 Variable Coefficient Error t statistic P
value
 C 190.235 29.0447 6.54975
[.000]
 GNP .694874 .010750 64.6421
[.000]

17 ? retry 6 ? Change from OLSQ to AR1
 6. OLSQ CONS C GNP;
 >> r olsq ar1
 6. AR1 CONS C GNP;

 Equation 3
 ============
 FIRST ORDER SERIAL CORRELATION OF THE ERROR
 MAXIMUM LIKELIHOOD ITERATIVE TECHNIQUE

 CONVERGENCE ACHIEVED AFTER 11 ITERATIONS
 Dependent variable: CONS
 Current sample: 1961 to 1985
 Number of observations: 25

(Statistics based on transformed data) (Statistics based on original

44 Basics

data)

 Mean of dep. var. = 807.195 Mean of dep. var. = 1649.17

 Std. dev. of dep. var. = 171.116 Std. dev. of dep. var. = 385.115

Sum of squared residuals = 14785.7 Sum of squared residuals = 15034.9

 Variance of residuals = 642.855 Variance of residuals = 653.692

Std. error of regression = 25.3546 Std. error of regression = 25.5674

 R squared = .979573 R squared = .995846

 Adjusted R squared = .978685 Adjusted R squared = .995666

 Durbin Watson = 1.67542 Durbin Watson = 1.66861

Rho (autocorrelation coef.) = .536778

 Standard error of rho = .176223

 t statistic for rho = 3.04601

 Log likelihood = 115.425

 Estimated Standard

 Variable Coefficient Error t statistic P value

 C 155.104 46.8728 3.30903 [.001]

 GNP .682614 .017270 39.5257 [.000]

 18 ? exit ? Terminate the session

 4. Interactive use 45

60 65 70 75

-15

-10

-5

0

5

10

15

20

25 @RES

Figure 4.1 Sample interactive session PLOT output

Figure 4.2 Sample interactive session GRAPH output

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

1200

1400

1600

1800

2000

2200

CONS × GNP

 5. Estimation of Linear Equations 47

5. ESTIMATION OF LINEAR EQUATIONS

This chapter discusses several simple statistical models that involve linear
structural equations. The models include: descriptive univariate and bivariate
statistics (MSD), ordinary least squares (OLSQ), two-stage least squares
(2SLS), limited information maximum likelihood (LIML), least squares with
correction for serial correlation (AR1), and quantile estimation (LAD).

In these procedures the equation is defined implicitly by listing its variables.
The observations used for estimation are defined by the current sample (the
most recent SMPL, SELECT, or SMPLIF). Any observations containing
missing values are temporarily dropped from the sample for all procedures
except AR1 with the ML option. Most of the models allow the WEIGHT
option for general least squares estimates, and the ROBUST option for
standard error computations robust to heteroskedasticity. They also allow
distributed lag variables (polynomial, Shiller, or unconstrained). You can use
REGOPT (described fully in the Reference Manual) to control the calculation
and printing of numerous diagnostic statistics.

Chapter 9 discusses estimation with qualitative dependent variables (PROBIT,
TOBIT, LOGIT, SAMPSEL). Estimation methods for nonlinear and
simultaneous equation (linear and nonlinear) models are covered in Chapter 7
(LSQ, FIML, and GMM) and in Chapter 9 (ML). Chapter 8 describes
constructing hypotheses tests for linear and nonlinear models. Chapter 11
discusses estimation of time series models (ARIMA models, VAR and
GARCH-M estimation).

5.1 Descriptive Statistics: MSD, CORR

Before doing any regressions or using the more expensive (in terms of
computer time) estimation procedures, check your input and transformed data:
you can look for bad observations or outliers introduced by data entry error and
check that the data transformations did what you expected. If you don't have
much data, you can check it by using the PRINT command, but this method
may be overwhelming if you have several hundred observations.

TSP has several descriptive statistics procedures that conveniently summarize
large amounts of data for you. MSD prints a table of univariate statistics. MSD
(CORR) computes and prints a correlation matrix. MSD(COVA) produces a
covariance matrix. MOMENT computes an uncentered sum of squares and

48 Linear Estimation

cross products matrix. See Chapter 6 for a description of the graphics
procedures, including HIST, which prints and plots frequency bar charts.

MSD followed by a list of series will produce a table of means, standard
deviations, sums, variances, skewness, kurtosis, and maximum and minimum
values for all the series. Example:

MSD LSALES,LGNP;

The CORR, COVA, and MOMENT options work the same way, except that
they produce a matrix for the list of series provided. The moment of two
variables is their uncentered covariance -- the sum of cross products divided by
the number of observations.

MSD(CORR) LSALES,LGNP ;

would store the 2x1 vectors @MEAN, @STDDEV, @MIN, @MAX, @SUM,
@VAR, and the 2x2 matrix @CORR. (See section 6.1 for more information
about using @ variables.) The results computed by these commands are stored
for use in further analysis.

You can use the WEIGHT= option in MSD to provide a weighting variable for
the computations. (See Section 5.8.)

To obtain the median and interquartile range of the series use the ALL option
of the MSD command:

MSD (ALL) LSALES LGNP ;

5.2 Ordinary least squares: OLSQ

The first variable specified in the OLSQ command is the dependent variable
and the rest are the independent variables. Recall, for example, the
consumption function in the illustrative model:

CONS=a+b*GNP

a is a parameter that multiplies an implied variable, the constant, which always
has the value 1. In TSP, the constant has the special name, C (or
CONSTANT). It may be used in OLSQ or elsewhere without loading it as
data. The OLSQ statement for our consumption function is

 5. Estimation of Linear Equations 49

OLSQ CONS C,GNP ;

OLSQ computes the least squares regression coefficients and a variety of
associated statistics. These statistics include the standard error of the residuals
from the regression, the Durbin-Watson statistic, and the mean and standard
deviation of the dependent variable. The R-squared, R-squared adjusted for
degrees of freedom, and F-statistic for the hypothesis that all the coefficients
except the constant are zero are also printed.

You can plot the actual and fitted values of the dependent variable by
including PLOTS earlier in the program.

5.3 Regression output

All regression procedures in TSP produce output in the same format. We

describe the output here using the OLSQ command as an example (Figure

5.1). In later sections of the manual we will point out any differences you may
expect when using other estimation methods.

Using the standard textbook notation where yt is the dependent variable and Xt
is the vector of independent variables, et (the residual) is defined as

ˆ ˆ where = − =
t t t t t

e y y y X b

and where b denotes the estimated regression coefficients. To give the exact
formulas for the regression statistics in the TSP output, we define the sum of

squared residuals SSR and the total sum of squares SST:

2 2

1 1

2

1

ˆ()

()

= =

=

= = −

= −

∑ ∑

∑

T T

t t t

t t

T

t

t

SSR e y y

SST y y

The standard error of the regression is then given by

 /()= −s SSR T K

where T is the number of observations in the current sample and K is the
number of independent variables.

The R-squared is defined as the squared correlation coefficient between y and

50 Linear Estimation

yhat:

2
2 ˆ[cov(,)]

ˆvar() var()
=

⋅

y y
R

y y

R-squared is defined the same way for the 2SLS, AR1, LIML and PROBIT
commands; only the formulas for yhat and b are different. For an OLSQ
regression with a constant term, this squared correlation is equal to

1-SSR/SST. If yhat is constant, the R-squared will be zero. On the other hand,
if the regression yields a perfect fit of the dependent variable, the correlation
and the R-squared will be one; thus you can interpret the R-squared as the
fraction of total variance that is "explained" by the variables in your regression
other than the constant. It is also the squared cosine of the angle between the
actual and predicted y and yhat, once the means of y and X have been
removed.

The adjusted R-squared is the quantity called R-bar-squared in some texts.
The formula for it is given by:

2
2 (1) 1− + −

=
−

T R K
R

T K

For a regression with a constant term this can also be written as

2 /()
1

/(1)

−
= −

−

SSR T K
R

SST T

The adjusted R-squared has the advantage that it does not automatically
increase as variables are added to the regression since the numerator includes
an adjustment for the number of estimated coefficients (K). As more variables
are added to the regression with little or no additional explanatory power, it is
possible for this quantity to become negative.

The next few statistics in the output report the results of tests for the validity of
several assumptions of the linear regression model: homoskedasticity, lack of
serial correlation, correct functional form, and normality.

The LM heteroskedasticity test is a test for homoskedasticity of the residual
variances. It is computed by regressing the squared residuals on the squared
fitted values of the regression. The resulting TR

2 has a chi-squared distribution
with one degree of freedom.

 5. Estimation of Linear Equations 51

The Durbin-Watson statistic is described in Durbin and Watson (1951). A
useful discussion of its properties and how to interpret it is in Pindyck and
Rubinfeld (1991). The formula used by TSP to compute this statistic is

2

1

2

()−
=

−

=
∑

T

t t

t

e e

DW
SSR

This statistic is valid even if there are gaps in the SMPL (missing
observations), although in that case, it will be somewhat conservative. The p-
values printed next to the Durbin-Watson statistic are exact finite sample
values when the data are time series, and are an asymptotic approximation
when the data have frequency N. See REGOPT in the Reference Manual for
details.

If a lagged dependent variable is included in the right-hand-side variables, the
Durbin-Watson statistic is biased, so TSP prints two alternate statistics
described in Durbin (1970). These two statistics are labeled "Durbin's h" and
"Durbin's h (alt.)" respectively and they are asymptotically equivalent.

Sometimes h cannot be computed due to a negative square root. On the other

hand, the h alternative may have little power in small samples.

Ramsey’s RESET test is a Lagrange multiplier test of functional form,
computed by regressing the residuals on the independent variables and the
square of the fitted dependent variable. This version of the test has a chi-
squared distribution with one degree of freedom. The RESET test can also be
significant if there is a single outlier that is fit well by a quadratic function of
the right hand side variables X.

The Jarque-Bera test is a joint test for skewness and kurtosis of the
disturbances, asymptotically distributed as chi-squared random variable with
two degrees of freedom under the null of normality.

The individual t-statistics produced by TSP correspond to variable by variable
tests of exclusion restrictions: they are computed as the value of the coefficient
divided by its estimated standard error. This quantity is distributed as a
student’s t variable with (T-K) degrees of freedom. The t-statistic produced by
TSP represents a test of only one of many possible hypotheses about the
coefficient estimate: that it is zero. You may wish to test a different hypothesis,
i.e., that the coefficient is equal to a0. To construct the t-statistic for this test,

52 Linear Estimation

you can compute the following, either by hand or using SET or ANALYZ:8

0=t (coef - a)/(std. err.)

If the HI option is used with OLSQ, the series hi = diag(X(X'X)
-1

X') is stored
under the name @HI. This series is useful for detecting "influential
observations" (data errors, outliers, etc.). See the Reference Manual for details.

In the regression output, p-values are shown next to all test statistics produced.
These p-values are the probability of seeing a test statistic at least this large
when the null hypothesis is true. That is, small p-values imply rejection of the
null hypothesis. With the REGOPT procedure, you can obtain additional
regression diagnostics, such as: Breusch-Godfrey LM test for autocorrelation,
Ljung-Box Q-statistics, ARCH(1) test, recursive residuals, Chow test for
parameter stability, White or Breusch-Pagan heteroskedasticity tests, Shapiro-
Wilk normality test, and Akaike and Schwarz Information Criteria (used for
selecting lag length or sets of regressors). Try issuing a REGOPT (PVPRINT,
STARS, LMLAGS=2, QLAGS=2, BPLIST=C) ALL; command before using
OLSQ to see the range of available diagnostics. See the Reference Manual for
further details.

Figure 5.1 Ordinary Least Squares Output

8
 See Chapter 8 on hypothesis testing for more detail.

 Equation 1

 ============

 Method of estimation = Ordinary Least Squares

Dependent variable: CONS

Current sample: 1949 to 1975

Number of observations: 27

 Mean of dep. var. = 519.033 LM het. test = .783303 [.376]

 Std. dev. of dep. var. = 147.459 Durbin-Watson = .461739 [.000,.000]

Sum of squared residuals = 3958.17 Jarque-Bera test = 3.29859 [.192]

 Variance of residuals = 158.327 Ramsey's RESET2 = 16.7953 [.000]

Std. error of regression = 12.5828 F (zero slopes) = 3545.79 [.000]

 R-squared = .992999 Schwarz B.I.C. = 108.941

 Adjusted R-squared = .992719 Log likelihood = -105.645

 Estimated Standard

Variable Coefficient Error t-statistic P-value

C -17.8024 9.33496 -1.90707 [.068]

GNP .633919 .010646 59.5465 [.000]

 5. Estimation of Linear Equations 53

5.4 Two-stage least squares: 2SLS, INST

In the 2SLS statement, the dependent variable and independent variables are
listed exactly as for OLSQ. However, they are preceded by the 2SLS options,
which include the required list of instrumental variables. For example, in the
illustrative model, government expenditures, G, the logs of the money supply,
LM, and the trend variable, TIME, are considered as exogenous and may serve
as instruments. The appropriate statement is

2SLS(INST=(C,G,TIME,LM)) CONS C,GNP;

Note that INST is an alias of 2SLS, so that the following command is identical
to the previous:

INST(INST=(C,G,TIME,LM)) CONS C,GNP;

The constant C should always be used as an instrument. Two-stage least
squares is 2SLS with all of the exogenous variables in the complete model
(and no other variables) listed as instruments. Valid estimation can be based on
a smaller number of instruments when the complete model involves many
exogenous variables. Valid estimation can also be performed even when the
rest of a simultaneous model is not fully specified. In these cases, the estimator
is usually termed instrumental variables, rather than two-stage least squares.
Of course, there must be at least as many instruments as the number of
right-hand side variables.

The output of 2SLS for the consumption function in the illustrative model is

shown in Figure 5.2. All statistics relating to residuals are calculated from the
same formulas as OLSQ. The residuals are the "structural residuals",

not the "second-stage residuals", which would be obtained by doing two-stage
least squares literally in two stages (this would involve replacing some
column(s) of X with predicted values from a first stage).

Here are the equations used by 2SLS to compute the estimated coefficients and

their standard errors. Let Z be the matrix of values of the instruments, and y

and X be the dependent and independent variables. The coefficient estimates
are

 b = [X'Z(Z'Z)
-1

Z'X]
-1

X'Z(Z'Z)
-1

Z'y

ˆ= −e y Xb

54 Linear Estimation

The variance-covariance matrix of these coefficient estimates is given by

V(b) = s
2
[X'Z(Z'Z)

-1
Z'X]

-1

If the number of instruments Z is equal to the number of right-hand-side

variables X, the classical instrumental variable estimator results:

b = [Z'X]
-1

Z'y

This follows easily from the previous formula for b, since for this case

[X'Z(Z'Z)
-1

Z'X]
-1

 = (Z'X)
-1

(Z'Z)(X'Z)
-1

and four of the matrices cancel.

The objective function for 2SLS is not the ordinary sum of squared residuals,
but rather the sum of squared residuals after projection onto the instruments
(labeled E'PZ*E in the output):

e'PZe = e'Z(Z'Z)
-1

Z'e

When the number of instruments (columns in Z) is equal to the number of Xs

(coefficients to be estimated), the model is exactly identified and Z’e will be
zero. When the number of instruments is greater than the number of
coefficients, a test for overidentification is available, defined as

2

'

ˆ()σ
=

−
Z

overident

e P e
F

m k

where m is the number of instruments and k the number of coefficients. This
test is approximately distributed as F(m-k, N-k).

 5. Estimation of Linear Equations 55

Figure 5.2 Two Stage Least Squares Output

5.5 Limited information maximum likelihood: LIML

The LIML command computes maximum likelihood estimates for a linear
model with endogenous variables on the right-hand side (and normally
distributed disturbances). It is specified like the 2SLS command with
instruments given in the options list. The advantages of LIML over 2SLS are
asymptotic efficiency and a small sample distribution with less bias. The
FULLER option allows for additional small-sample corrections (see the
Reference Manual or Online Help System for details). The disadvantage of
LIML is that the estimates are more sensitive to specification error in the lists
of included and excluded variables. (See Section 7.3 for estimation of
nonlinear LIML models.) For the illustrative model, we have:

LIML(INST=(C,G,TIME,LM)) CONS C,GNP;

The output from this command is shown in Figure 5.3. The differences from
the output for OLSQ and INST are the estimate of λ (the LIML eigenvalue),
weak IV diagnostics (the estimated concentration parameter and the Cragg-
Donald statistic), and the finite sample standard errors due to Bekker (1994).

 Equation 4

 ============

 Method of estimation = Instrumental Variable

Dependent variable: CONS

Endogenous variables: GNP

Included exogenous variables: C

Excluded exogenous variables: G LM TIME

Current sample: 1949 to 1975

Number of observations: 27

 Mean of dep. var. = 519.033 Adjusted R-squared = .992719

 Std. dev. of dep. var. = 147.459 Durbin-Watson = .464998 [.000,.000]

Sum of squared residuals = 3965.29 F (zero slopes) = 3514.83 [.000]

 Variance of residuals = 158.612 F (over-id. rest.) = 9.17008 [.001]

Std. error of regression = 12.5941 E'PZ*E = 2908.96

 R-squared = .992999

 Estimated Standard

Variable Coefficient Error t-statistic P-value

C -19.7149 9.40495 -2.09622 [.036]

GNP .636178 .010731 59.2860 [.000]

56 Linear Estimation

In this example, both weak instrument tests are large and indicate that weak
instruments are not likely to be a problem for this estimation. However the F-
statistic for the overidentifying restrictions also suggest that the instruments are
invalid. For more information on these statistics see the TSP Reference Manual
and Hansen, Hausman, and Newey (2004).

Figure 5.3 LIML Output

5.6 First-order serial correlation: AR1

When the disturbances of a linear regression model are autocorrelated, the
coefficient estimates of ordinary least squares are inefficient, and the standard
error estimates are biased. The AR1 procedure provides several methods to
obtain efficient estimates of an equation whose disturbances are autocorrelated
of order one, that is, the observed disturbance is

where et is homoskedastic and not serially correlated. For a discussion of the
efficiency gains from the serial correlation correction and some Monte-Carlo
evidence, see Rao and Griliches (1969). To estimate the consumption function
in the illustrative model with a correction for serial correlation, replace OLSQ
with AR1:

 Method of estimation = LIML

Dependent variable: CONS

Endogenous variables: GNP

Included exogenous variables: C

Excluded exogenous variables: G LM TIME

Current sample: 1949 to 1975

Number of observations: 27

 Mean of dep. var. = 519.033 R-squared = .992999

 Std. dev. of dep. var. = 147.459 Adjusted R-squared = .992719

Sum of squared residuals = 4063.75 Durbin-Watson = .465556 [.000,.000]

 Variance of residuals = 162.550 F (over-id. rest.) = 31.0720 [.000]

Std. error of regression = 12.7495 Lambda (eigenval.) = 3.70192

 Concentration parameter = 1621.59

Cragg-Donald F-stat for Z2 in Reduced Form = 540.529

 Estimated Standard

Variable Coefficient Error t-statistic P-value

C -25.1644 10.0244 -2.51031 [.012]

GNP .642613 .011477 55.9903 [.000]

Standard Errors computed from finite sample correction (Bekker)

1ρ −= +
t t t

u u e

 5. Estimation of Linear Equations 57

AR1 CONS C, GNP;

The default method of estimation is exact maximum likelihood. This method
includes the first observation with a special weight, rather than simply
dropping it, and imposes the stationarity requirement on the estimate of the
serial correlation parameter by requiring the estimated ρ to be between -1 and
1. The small sample properties of this estimator, particularly its RMSE, are
preferable to those of the conventional GLS procedures, unless there is a
lagged dependent variable on the RHS.

When there is a lagged dependent variable, the “GLS" objective function is the
default, because exact ML estimates will have a small sample bias. GLS drops
the first observation, and is the same as nonlinear least squares on a rho-
differenced equation. This method also can be requested for any model using
the OBJFN option:

AR1 (OBJFN=GLS) CONS C GNP;

The GLS objective function is known to have multiple local optima in many
cases, especially when there is a lagged dependent variable on the RHS, so a
grid search is used by default to locate starting values, and then iterations are
used to find the accurate global optimum.

A similar technique can be used to estimate higher order AR(p) (p>1)
processes. The FORM(NAR=p) and LSQ commands make this easy (see
Section 7.2.1 for more details on LSQ and the Reference Manual for details on
FORM). Here is an example of AR(2) estimation (without a grid search to
check for multiple local optima):

FORM (NAR=2) CAR2 CONS C GNP;
SMPL 51,75; ? DROP FIRST 2 OBSERVATIONS
LSQ CAR2;

All these methods produce the usual regression output; the summary statistics
are based on the ρ-transformed variables, while the plot displays the actual
dependent variable (untransformed) and the corresponding fitted value, i.e.

1 1 1 1
ˆ ˆˆ () (| , , , ,)

t t t t t t t t
y X b y X b E y X y X bρ ρ− − − −= + − =

Note that this is the same equation used to do a static forecast of the AR1
model (see Chapter 14). If the model is true, the residuals, yt-yhatt, will be
uncorrelated. These actual and fitted values may be displayed in a plot with the

58 Linear Estimation

PLOTS option.

5.6.1 Instrumental variable estimation in AR1

Two-stage least squares and instrumental variable estimation with a serial
correlation correction may be obtained using AR1 with the INST option,
although only the GLS objective function is available. Several considerations
in obtaining consistent estimates in this case are discussed by Fair (1970). To
estimate the consumption function in our model by nonlinear two-stage least
squares, we use

AR1(INST=(C,G,LM,TIME)) CONS C,GNP;

AR1 automatically adds lagged variables (in this example, CONS(-1) and
GNP(-1)) to the list before estimating in order to ensure consistent estimation.
To override this option and specify a complete list of instruments yourself, use
the NOFAIR option:9

AR1(NOFAIR,INST=(C,G,LM,TIME,GNP(-1),CONS(-1))) CONS
C,GNP;

Note that exactly the same model can be estimated by the LSQ command with
instruments on a rho-differenced equation, like the example above with
FORM.

5.7 Distributed lags

A distributed lag refers to the inclusion of more than one lag of a regressor (X
variable) in a regression function. Many lags of a single variable may be easily
included in the linear estimation procedures (OLSQ, 2SLS, LIML, AR1,
PROBIT, TOBIT) of TSP. For example,

OLSQ CONS C GNP GNP(-1)-GNP(-15) ;

9 This option is named after Ray Fair, who pointed out that the lagged dependent and

independent variables should be in the instrument list to obtain consistent estimates.
Fair retracted this claim in 1984 and it has since been disproved by Buse (1989).
However, the alternate instruments required for consistency would involve
pseudo-differencing with the estimated ρ, which is tedious to do by hand. Buse also
showed that the most efficient estimator asymptotically in this case also includes the
lagged excluded exogenous variables, but he cautions that in small samples this may
quickly exhaust the degrees of freedom.

 5. Estimation of Linear Equations 59

specifies a regression of consumption on GNP and 15 quarters of GNP lagged
for the illustrative model. Note that OLSQ prints the Schwarz Bayesian
Information Criterion and/or the Akaike Information Criterion, which may be
used to select the length of an unconstrained distributed lag. A regression like
this (with many unconstrained lags) frequently produces coefficient estimates
that are highly imprecise and jump around from period to period. This has led
econometricians to invent ways of smoothing the coefficient estimates. TSP
supports two of these techniques: polynomial distributed lags, invented by
Almon (1965) and Shiller lags, due to Shiller (1973).

5.7.1 Polynomial distributed lags

You can include PDL variables in any linear equation in TSP by including a
variable or variables with a lag specification in parentheses in the list of
independent variables. This lag specification has the form (n,p,constraint),
where

n Number of terms in the polynomial (degree plus one)

p Number of lags in the lag distribution

constraint Endpoint constraints: BOTH (2 constraints)
 FAR (1 constraint)
 NEAR (1 constraint)
 NONE (no constraints)

The number of parameters associated with the distributed lag is n less the
number of constraints; this must be positive and less than or equal to p. Note
that the number of lags includes the current observation, i.e., the lagged
variables are (t,t-1,t-2,..., t-p+1).

Examples:

OLSQ CONS C,GNP(4,16,FAR) ;

specifies a regression of CONS on a distributed lag of GNP covering 16
quarters, having terms up to the third power, and obeying the far endpoint

constraint. The output is shown in Figure 5.4.

OLSQ CONS C,GNP(4,16,FAR),R(4,24,NEAR) ;

specifies an additional distributed lag on R covering 24 quarters and a near

60 Linear Estimation

endpoint constraint.

OLSQ CONS C,GNP(-1)(4,16,NONE);

forms a PDL of GNP that starts with the first lagged observation instead of the
current observation.

When you use PDL variables in an instrument list, the choice of instruments
depends on whether the variable is treated as exogenous or endogenous. If it is
treated as exogenous, you want the scrambled variables described in the next
section as instrumental variables. These could be specified by listing the names
of the variables created by the "scrambling" process, i.e., in the above
example, @PDL1, @PDL2, @PDL3. If PDL were treated as endogenous, it
would suffice to ensure that there were enough instrumental variables in the
list to meet the rank condition for identification -- at least as many as the
number of variables in the regression after scrambling.

5.7.2 What PDL does

Each PDL term stands for a distributed lag of the form

0 1 1 1 1...
t t p t p

b x b x b x− − − ++ + +

The polynomial specification requires that bi lie on a polynomial in i:

(1)

1 2

(1) (1)
...

(1) (1)

n

i n

i i
b a a a

p p

−
 + +

= + + + + +

This implies constraints on the coefficients of x and its lags imposed by
defining a new set of n variables zt that are linear functions of the x variables.
The actual functions differ slightly from what is implied by the above
equations; see the Cooper (1972) article for details (Lagrangian interpolation
polynomials are used). The variables z1t,...,znt enter the regression as ordinary
independent variables (labeled @PDL1, @PDL2, and so forth in the
regression results). Their coefficients are estimates of the parameters a1,...,an.
After running this regression, TSP computes the corresponding estimates of
the lag distribution coefficients b0, b1,...,bp-1 from the polynomial. The standard
errors of the bi are computed from the covariance matrix of the ai using the
delta method. In addition, the mean lag and the sum of the lags are presented
along with their standard errors. The expressions defining them are

 5. Estimation of Linear Equations 61

1

0 1 1

0

0 1 1

...

0 1 ... (1)

p

i p

i

p

sumlag b b b b

b b p b
meanlag

sumlag

−

−
=

−

= = + + +

⋅ + ⋅ + + −
=

∑

If the lag coefficients change sign, the mean lag computed by this formula has
little meaning.

If endpoint constraints are imposed, the procedure is modified slightly. The
near constraint sets a hypothetical b-1 to zero. TSP imposes this by dropping
the first variable from the regression. The far constraint sets a hypothetical bp
to zero. TSP imposes this by subtracting the last variable from each of the
others and dropping the last variable from the regression.

62 Linear Estimation

Figure 5.4 Sample PDL Output

5.7.3 Shiller lags

Constraining lag coefficients to lie exactly on a low-order polynomial often
seems quite arbitrary, since there is no a priori reason for the functional form.
The Shiller lag technique is a method for imposing smoothness on the lag

 Method of estimation = Ordinary Least Squares

Dependent variable: CONS

Current sample: 1956:1 to 1982:1

Number of observations: 105

 Mean of dep. var. = 125.845 LM het. test = 16.7143 [.000]

 Std. dev. of dep. var. = 33.9618 Durbin-Watson = .150856 [.000,.000]

Sum of squared residuals = 3536.33 Jarque-Bera test = .981780 [.612]

 Variance of residuals = 35.0132 Ramsey's RESET2 = .032653 [.857]

Std. error of regression = 5.91719 F (zero slopes) = 1108.32 [.000]

 R-squared = .970519 Schwarz B.I.C. = 342.933

 Adjusted R-squared = .969644 Log likelihood = -333.625

 Estimated Standard

Variable Coefficient Error t-statistic P-value

C -8.09229 2.44011 -3.31636 [.001]

GNP .141122 .010558 13.3664 [.000]

GNP(-1) .091974 .578013E-02 15.9121 [.000]

GNP(-2) .052734 .340423E-02 15.4908 [.000]

GNP(-3) .022431 .364670E-02 6.15115 [.000]

GNP(-4) .946214E-04 .447778E-02 .021131 [.983]

GNP(-5) -.015247 .483957E-02 -3.15047 [.002]

GNP(-6) -.024564 .463867E-02 -5.29553 [.000]

GNP(-7) -.028828 .400767E-02 -7.19324 [.000]

GNP(-8) -.029010 .317856E-02 -9.12661 [.000]

GNP(-9) -.026079 .251967E-02 -10.3503 [.000]

GNP(-10) -.021009 .247233E-02 -8.49747 [.000]

GNP(-11) -.014768 .298179E-02 -4.95270 [.000]

GNP(-12) -.832846E-02 .354392E-02 -2.35007 [.021]

GNP(-13) -.266103E-02 .376653E-02 -.706494 [.482]

GNP(-14) .126346E-02 .338759E-02 .372967 [.710]

GNP(-15) .247410E-02 .219610E-02 1.12659 [.263]

*** NOTE: Some of the coefficients above were estimated with a PDL

Distributed Lag Statistics for: GNP

Almon lag

Degree of polynomial: 3

Number of terms: 4

Endpoint constraints: FAR

…………Graph of estimated PDL Coefficients………..

 0.1416 0.2618E-02 54.09 Sum of lag coefficients

 -7.623 1.732 -4.401 Mean lag (in periods)

 5. Estimation of Linear Equations 63

coefficients without using an exact polynomial. The idea of the method is to
impose a "smoothness" prior on the coefficients and estimate using Bayesian
techniques. For a full discussion of the method, see Shiller (1973).

To use the Shiller lag procedure, you must specify a degree of differencing
(this is similar to the polynomial degree specified in PDL), the number of lags
of the X variable to include in the regression, the endpoint restrictions, and the
value of the smoothness prior that you wish to use. For example, the command

OLSQ CONS C,GNP(3,16,NONE,.0025)

specifies a 2nd degree Shiller lag for GNP with no endpoint restrictions and a
prior variance on the differenced coefficients equal to .0025. The output from

this command is shown in Figure 5.5.

The prior variance on the differenced lag coefficients is what controls the
smoothness of the distribution; a prior variance equal to zero yields PDL
estimates, while a very large prior variance will give unconstrained lag
coefficients. Other values yield answers between the smoothness of a
polynomial and the jagged nature of unconstrained lags. One possibility is to
use the sample variance of the unconstrained lag coefficients as a prior; this
option is provided if you use a -1 as the prior variance.

One way to interpret Shiller lags is as a generalization of the PDL method. For
example, the command

OLSQ CONS C,GNP(4,16,FAR,0)

estimates the same regression as the first example in section 4.7.1, since it
specifies that the fourth degree differences of the coefficients should be
precisely zero (with no error). This guarantees that all the coefficients will lie
on a third degree polynomial, as for a PDL.

64 Linear Estimation

Figure 5.5 Shiller Lag Output

5.8 Weighted regression: the WEIGHT option

The weighted least squares estimator is useful when the variance of the
disturbances in a regression differs across observations. It is most frequently
used in cross-section regressions where the units of observation differ in scale

 Method of estimation = Ordinary Least Squares

Dependent variable: CONS

Current sample: 1956:1 to 1982:1

Number of observations: 105

 Mean of dep. var. = 125.845 LM het. test = 15.7116 [.000]

 Std. dev. of dep. var. = 33.9618 Durbin-Watson = .153127 [.000,.000]

Sum of squared residuals = 3513.56 Jarque-Bera test = .873858 [.646]

 Variance of residuals = 39.9268 Ramsey's RESET2 = .080606 [.777]

Std. error of regression = 6.31877 F (zero slopes) = 182.272 [.000]

 R-squared = .970709 Schwarz B.I.C. = 372.845

 Adjusted R-squared = .965384 Log likelihood = -333.286

 Estimated Standard

Variable Coefficient Error t-statistic P-value

C -7.95317 2.62399 -3.03094 [.003]

GNP .136131 .015219 8.94457 [.000]

GNP(-1) .090098 .696157E-02 12.9421 [.000]

GNP(-2) .052529 .527835E-02 9.95187 [.000]

GNP(-3) .023264 .652659E-02 3.56451 [.001]

GNP(-4) .179217E-02 .694711E-02 .257974 [.797]

GNP(-5) -.012814 .647880E-02 -1.97786 [.051]

GNP(-6) -.021813 .574975E-02 -3.79365 [.000]

GNP(-7) -.026561 .538716E-02 -4.93038 [.000]

GNP(-8) -.028239 .571193E-02 -4.94390 [.000]

GNP(-9) -.027649 .653755E-02 -4.22921 [.000]

GNP(-10) -.025167 .736512E-02 -3.41712 [.001]

GNP(-11) -.020847 .761135E-02 -2.73889 [.007]

GNP(-12) -.014557 .677608E-02 -2.14831 [.034]

GNP(-13) -.612761E-02 .539660E-02 -1.13546 [.259]

GNP(-14) .456186E-02 .832647E-02 .547874 [.585]

GNP(-15) .017554 .017924 .979364 [.330]

*** NOTE: Some of the coefficients above were estimated with a Shiller lag

Distributed Lag Statistics for: GNP

Shiller lag

Degree of polynomial: 2

Degree of differencing: 3

Prior smoothness std.dev. (xi): 0.25000E-02

Current smoothness std.dev. : 0.65262E-03

Residual std.dev. used (sigma): 6.0999

----- Graph of estimated lag coefficients -----------

 0.1422 0.2932E-02 48.48 Sum of lag coefficients

 -6.976 2.250 -3.101 Mean lag (in periods)

 5. Estimation of Linear Equations 65

or size -- for example, a cross section of states in the United States.

You can obtain weighted least squares in TSP by using the WEIGHT option in
the linear regression procedures (OLSQ and INST). WEIGHT= should appear
as an option in parentheses between the command name and the name of the
dependent variable. After the = sign, put the name of a series whose values are
proportional to the inverses of the variances of the disturbances in the
regression. In cross section across political units, the weight variable should be
the reciprocals of populations if the variables are sums or aggregates, and
should equal population if the variables are measured per capita. For example,
if YOUNG is the fraction of young adults living by themselves (a per capita
variable) and POP is population, the following command estimates a
regression using population values for the variables:

OLSQ (WEIGHT=POP) YOUNG,C,URBAN,
CATHOLIC,ABORTION,SERVEMP,SOUTH ;

Two sets of summary statistics are reported, one based on weighted residuals
computed by applying weighted least squares estimates to the weighted data,
and and one based on unweighted residuals, computed by applying the
weighted least squares estimates to the original data.

Note that both sets are based on the weighted least squares coefficients, which
are minimum variance among all linear unbiased estimators if the weights are
correct. The weighted residuals satisfy the usual properties of residuals and are
the proper basis for statistical testing. The unweighted residuals describe the
departure of the actual data from the regression function in their original units.
TSP computes all the standard regression statistics for the weighted residuals
and a subset of them for the unweighted residuals.

5.8.1 Normalization of weights

TSP divides the weights provided by the user by a constant so that the sum of
the weights equals the number of observations. Observations given weight zero
are not counted. This normalization does not affect the regression coefficients
or most of the statistics. It leaves the magnitudes of the weighted data and
weighted residuals the same, on average, as the unweighted data and residuals.
Normalization may be suppressed with the UNNORM option. With
UNNORM, if the weights are all large, the residuals, sum of squared residuals,
residual variance, standard error, and implied number of observations will all
be correspondingly large.

66 Linear Estimation

5.8.2 Weighted descriptive statistics

The WEIGHT= option may be used with any MSD statement to obtain
weighted means, standard deviations, covariances, correlations, and moments.
The data are multiplied by the square roots of the weight variable before the
statistics are computed. The weights are normalized so that they sum to the
number of observations; the UNNORM option is not available. Here is an
example of using the WEIGHT= option:

MSD (WEIGHT=POP,CORR) YOUNG,C,URBAN,
CATHOLIC,ABORTION,SERVEMP,SOUTH ;

5.9 Robust standard errors in the regression procedures

When you know the form and size of the heteroskedasticity in your data, you
can use WEIGHT to obtain consistent estimates of the standard errors of your
model. However, this is often not the case. The ROBUST option causes TSP
to compute standard errors that are consistent even in the presence of unknown
heteroskedasticity, by using the data to estimate its magnitude. Econometric
references for this technique are White (1980a), White (1982), and
Chamberlain (1984). Note that in general, White gives two terms in his
formulae, the second of which vanishes if the model is correctly specified up to
an additive error. TSP computes only the first term.

To obtain these heteroskedastic-consistent estimates of the standard errors of
your model, include the option ROBUST on an OLSQ, 2SLS, or LSQ
statement (see Chapter 7). For example,

OLSQ(ROBUST) CONS C GNP ;

computes the standard errors and variance estimate shown below for our

illustrative example (compare to the conventional estimates in Figure 5.1).

For standard errors that are robust to simple autocorrelation, use the
GMM(NMA=n) command. For example:

FORM HAC CONS C GNP;

 Estimated Standard

Variable Coefficient Error t-statistic P-value

C -17.8024 11.3535 -1.56800 [.129]

GNP .633919 .013560 46.7507 [.000]

Standard Errors are heteroskedastic-consistent (HCTYPE=2).

 5. Estimation of Linear Equations 67

GMM(HET,NMA=2,INST=(C,GNP)) HAC;

5.10 Quantile regressions: LAD

The ordinary least squares estimator is optimal when the disturbance in the
equation is normally distributed. But when the disturbance is not normally
distributed, other estimators are better. If the distribution is known, the
efficient estimator is maximum likelihood with the correct distribution
function. However, in many cases, you may suspect that your data distribution
is "fat-tailed" or contains outliers, without knowing exactly its form. In this
setting, the LAD estimator, which minimizes the sum of absolute deviations of
the residuals, may be more efficient. The LAD estimator is also known as the
L1 regression, least absolute residual (LAR), least absolute error (LAE), and
minimum absolute deviation (MAD). See Chapter 22 of Judge et al (1988) for
a discussion of its properties.

To estimate by least absolute deviations in TSP, use the LAD command like
the OLSQ command. For example,

LAD CONS,C,GNP ;

Sample output from the LAD command is shown in Figure 5.6 below. Note
that standard errors are computed using bootstrap replications; the default
number may be changed via the NBOOT option. See the Reference Manual for
details on this and on the use of LAD for quantile regression and regression
with a censored or truncated dependent variable.

68 Linear Estimation

Figure 5.6 Sample LAD Output

 Method of estimation = Least Absolute Deviations

Dependent variable: CONS

Current sample: 1949 to 1975

Number of observations: 27

 Mean of dep. var. = 519.033 R-squared = .992999

 Std. dev. of dep. var. = 147.459 Adjusted R-squared = .992719

Sum of squared residuals = 3992.70 Durbin-Watson = .465237

 Variance of residuals = 159.708 Schwarz B.I.C. = 108.643

Std. error of regression = 12.6376 Log likelihood = -105.347

 Sum of absolute residuals = 245.776

 Mean of absolute residuals = 9.10282

MSS / mod. Glejser het test = 0.336190 [.562]

 Standard

Parameter Estimate Error t-statistic P-value

C -20.6717 17.5460 -1.17814 [.250]

GNP .638051 .023937 26.6559 [.000]

Standard Errors computed from 200 bootstrap replications

 6. Manipulation and Display of TSP Variables 69

6. MANIPULATION AND DISPLAY OF TSP
VARIABLES

In the first few chapters of this manual, you learned how to read data into TSP,
transform the data, and run simple linear regressions. Because TSP is a
programming language tailored to the needs of econometricians, it can do
much more than this. This chapter introduces some convenient features of the
program for printing, plotting, sorting, and manipulating the data and
regression results. It also describes a few procedures that perform certain
specialized computations automatically, such as accumulating a capital stock
from an investment series, Divisia indices, and seasonal adjustment.

To describe the full power of some of these procedures, we need to introduce
the concept of a TSP variable type. You have already encountered the basic
TSP type:

Series -- Time-series, cross-sectional or panel data. This variable is stored with
both a frequency and starting date (or starting observation number, in the case
of undated series). Observations outside the SMPL are treated as missing for
the procedure being executed, even if they exist in data storage. Exceptions to
this rule are lags and leads, which are obtained from outside the current SMPL.
If you try to use a series whose frequency differs from the frequency specified
by the current FREQ statement, TSP will give you an error message (unless
you use CONVERT). Series are usually created with the READ, GENR and
UNMAKE commands.

Besides the basic series variables, TSP allows the following kinds of variables:

Scalars -- These are variables that take on a single value. TSP distinguishes

between two types of scalars: Consts and Params. Consts are ordinary scalars
that are considered fixed or constant. They can be created by SET, CONST,
UNMAKE, or even MATRIX statements, or as results from an estimation

procedure. Params are a special type of scalar that are considered to be
estimable coefficients in a TSP equation. They are declared (and optionally

given starting values) in PARAM statements. Any Param can be made a

Const (that is, can be held fixed for estimation) simply by changing its type
with a CONST statement.

70 Linear Estimation

Just as GENR is used to do computations on time series, SET may be used to
do computations on scalar variables and scalar elements of matrices and series.
The rules for composing SET statements are the same as those for composing
GENRs, except that the right-hand side must be a scalar-valued expression.
Numbers or variable names in parentheses are used as subscripts in SET, while
they would be interpreted as lags or leads in GENR. Such names are at most 4
characters for a single subscript, or 2 characters each for a double subscript
(see Appendix A).10 Some examples:

SET XMEAN = @MEAN(1) ;
SET XMAT(2,3) = 1.0 ;
SET XMAT(I,JJ) = Z(I)*W(JJ) ;
SET I1 = I-1;
SET XSIM(I) = XSIM(I1)*EXP(1.0+DELTA) ;

Matrices -- These include vectors as a special case and are described in more
detail in Chapter 13. There are four kinds of matrices: general, symmetric,
upper triangular, and diagonal. Matrices are created with the MMAKE,
MFORM, READ, and MAT commands, and by many estimation procedures.

Lists -- Lists of TSP variable names. They are stored as the output of some
procedures and may be created by using the LIST command. The name of a
list can be used anywhere in TSP that a list of variable names can be used.
Lists can be manipulated, changed, and even lagged. See the Reference

Manual for details.

10

 Subscript expressions like XSIM(I-1) are not allowed. (See the description of SET in the

Reference Manual.) Two-dimensional matrices can have a single or double subscript (if it's a
single subscript, the matrix is treated as a stacked series of columns). Scalars and subscripted
vectors and matrices may be included in GENR statements also; they will be treated as though
they have the same value for all observations, rather than being subject to the control of the
current sample. Scalars and subscripted variables are legal syntax for command options and
arguments that require a single value.

Equations -- Explicit (and often nonlinear) formulas for model estimation and
simulation, usually created with FRML or IDENT statements (see Chapter 7).

 6. Manipulation and Display of TSP Variables 71

Equations are similar to GENR statements, except that they are not computed
immediately when encountered; they are used only after the model is specified
and the estimation or simulation command is invoked using their names as
arguments. Equations may be printed, used for estimation and simulation, and
computed by GENR or SET. Equations are also created from estimated linear
models (FORM), and from operations on other equations (EQSUB and
DIFFER).

6.1 Using the results of one procedure in another: COPY

Often, the computations you want to do depend on the results of a previous
procedure. It can be tedious and time-consuming to run the first computations
in one program and then enter those results by hand into a second program
before proceeding. TSP provides a solution to this problem by automatically
storing many of its most important results in data storage for use in later
computations. They are given key names that always begin with the character
@ so they will not be confused with the names of variables in your program.

For example, after every regression, two series are available in data storage:
one called @FIT, the fitted values of the dependent variable, and one called
@RES, the residuals (actual minus fitted values).11 These series remain in data
storage until they are replaced by another regression procedure. They can be
used just like any other series before they are replaced. If you wish to save
them, include a GENR or COPY statement after your regression:

OLSQ CONS C GNP ;
GENR CONSFIT = @FIT ; or COPY @FIT CONSFIT;

Other results you might want from a regression are: the estimated coefficients,
stored as a vector called @COEF; the sum of squared residuals, stored as a
scalar called @SSR; the standard error of the residuals, stored as a scalar
called @S; and the variance covariance of the estimates, stored as a symmetric
matrix called @VCOV. Almost all regression results are available in this form.
See the Reference Manual for lists of the results available under each
procedure.

Procedures other than the estimation procedures also store some of their results

11

In multi-equation estimation with LSQ and FIML, @RES is stored as a matrix, but

the column for a particular equation can be accessed easily with the UNMAKE
command (see Chapter 13).

72 Linear Estimation

in data storage. For example, the MSD procedure stores the variable means,
standard deviations, etc., in vectors named @MEAN, @STDDEV, etc.

COPY works with all TSP variable types except lists; use the LIST command
to copy a list. For example:

LIST NEWLIST OLDLIST;

places the list defined by OLDLIST in storage under the name NEWLIST.

6.2 Printing series and other variables: PRINT, WRITE

WRITE and PRINT are synonyms. They are used to write or display any type
of TSP variable; you can include different variable types in the same WRITE
statement and each will be written using an appropriate format. The number of
variables in one WRITE statement is limited only by the amount of working
space and space available for the command line.

Here is an example showing the output format for the main TSP variable types.
We print the items B1 (a scalar), CONSEQ (an equation), @VCOV (a
symmetric matrix), and @RES (a series):

PRINT B1 CONSEQ @VCOV @RES;

Output from this example is shown in Figure 6.1.

When planning the format of your output, an important consideration is
readability. Accordingly, when all the items are series, they are produced in
table format with as many series per line as will conveniently fit on the page
width specified for the current job. The first column of each table will contain
the date or observation ID to label the observations. For items that are not
series, each will be shown in a separate table. This gives you flexibility in
arranging the tables in your output.

If any of the series or other variables have missing values, the number(s) in
question will show a period (.) instead of a value.

 6. Manipulation and Display of TSP Variables 73

Figure 6.1 Example of PRINT Output

6.3 Graphic displays of data

Frequently the best way to begin the analysis of a new set of data is by
graphing it, either series by series or in more complex ways. TSP provides
several routines for the graphical analysis of data: PLOT for one or more time
series (assuming that the X axis is time), GRAPH for two variable plots (Y vs.
X), and HIST for frequency distributions.

In most personal computer and unix versions of TSP, the plots produced by
GRAPH and PLOT are displayed on the screen using high resolution graphics,
and can be printed with software supplied with the program.

B1 = 0.63392

EQUATION: CONSEQ

 FRML CONSEQ CONS = B0 + B1*GNP

 @VCOV

 1 2

 1 307.86159

 2 -0.41535 0.00057296

 @RES

1949 27.58024

1950 18.37168

1951 -4.86451

1952 -10.30162

1953 -11.86818

1954 0.00000

1955 -2.02385

1956 0.24342

1957 0.92301

1958 6.11628

1959 2.51999

1960 3.55599

1961 0.95206

1962 -6.29457

1963 -7.95699

1964 -8.53979

1965 -11.99944

1966 -19.15601

1967 -19.09194

1968 -17.02998

1969 -12.25735

1970 3.47583

1971 5.93063

1972 6.45060

1973 0.00000

1974 7.98380

1975 30.28837

74 Linear Estimation

6.3.1 Plotting time series: PLOT, PLOTS, NOPLOT

PLOT produces a plot of one or more time series against time or against the
observation number if the series is undated. For graphics plots, just specify the
list of series you wish plotted (the formatting can be changed using Givewin’s
graphics editing features or options on the PLOT command). For character
(paper) plots, the user specifies the series to plot and the character to use for
each series in the plot. PLOT is followed by a series name, the character to use
in plotting the series, possibly a second series name and a second character,
and so on. Up to nine series may be plotted. The characters may be anything
but $. ; ' " , . For example:

PLOT GNP CONS ; ? graphics plot
PLOT GNP,*,CONS,X ; ? character-based plot

Various parameters that control the appearance of the plot may be specified in
an options list in parentheses following the word PLOT. These options are
shown in the Reference Manual, although you may not need them if you like
the appearance of the plot with the default settings. The default has a box
around it but no vertical lines within the box, the maximum and minimum
value are labeled, and the observations ID and series value are printed down
the right and left side respectively.

For convenience, the PLOT options that you specify are retained in the next
PLOT(s) until overridden either explicitly or by including the option
RESTORE in the list. RESTORE resets the options at their default values.

Here are some additional examples of the PLOT command.

PLOT GNP GNPS CONS CONSS ; ? Graphics versions
PLOT RESID ;

or

? Character-based versions
PLOT(MIN=500,MAX=1500,LINES=(1000)) GNP G GNPS H CONS C

CONSS D ;
PLOT(MIN=-25.,MAX=25.,BMEAN,HEADER,VALUES,BAND=STANDA

RD,INTEGER) RESID * ;

There is also a command called PLOTS which "turns on" plots of residuals for

 6. Manipulation and Display of TSP Variables 75

all further estimation commands such as OLSQ, 2SLS, LIML, AR1, LSQ,
FIML. The NOPLOT command "turns off" the residual plots. These automatic
plots are useful for checking the fit of the model.

Figure 6.2 shows a plot produced by the Givewin version of TSP (using the
Almon (1965) data on expenditures and appropriations).

Figure 6.2 Sample Plot of Almon Data

6.3.2 Graphs or scatter plots: GRAPH

GRAPH produces a scatter plot of one series against another. As in the case of
PLOT, GRAPH produces either high-resolution graphics (in most PC and unix
versions) or printer character plots. List the x-axis series is first, and then as
many y-axis series as you wish to include. For example, to obtain plots of
actual and fitted values from a regression, use

OLSQ CONS C YD ;
GRAPH YD CONS @FIT ;

The above example produces a conventional graph of the actual and fitted
values of CONS against the right-hand-side variable YD. The example below,

from the illustrative model, generated the plot in Figure 6.3:

55 60 65

2000

3000

4000

5000

6000

Quarterly US Data on Expenditures and Appropriations

EXP APP

76 Linear Estimation

GRAPH (title="Compare Consumption Function Estimates")
 GNP CONS OLS LAD KERNEL ;

500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250

300

350

400

450

500

550

600

650

700

750

Compare Consumption Function Estimates

CONS × GNP
LAD × GNP

OLS × GNP
KERNEL × GNP

Figure 6.3 Graph of Consumption Function Estimates

6.3.3 Plotting histograms: HIST

HIST produces histograms (bar charts or frequency distributions) of series. It is
convenient for obtaining a rough picture of the univariate distribution of your
data. For example, from the illustrative model,

HIST (TITLE=”Distribution of short term interest rates’) RS; ?

produces a bar chart with ten bars, indicating the number of observations
distributed in sections along the range of the series RS. Figure 6.4 shows the
resulting histogram:

 6. Manipulation and Display of TSP Variables 77

Figure 6.4 Sample HIST Output

Several options are available to control the number of bars, the range of the
series, and the labeling and placement of the bars. These options described in
the Reference Manual. For example,

HIST(DISCRETE) MERGYR;

produces a histogram of the variable MERGYR. Because the option
DISCRETE was set, TSP creates a different bar for each unique value of
MERGYR, on the assumption that it takes on only a small number of discrete
values.

6.4 Sorting data: SORT

You can sort any individual series in ascending or descending order with the
SORT command:

SORT X ; or SORT(REVERSE) X ;

You can also sort some or all of your series using a single series to determine

0 1 2 3 4 5 6 7 8 9 10 11 12

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Distribution of Short-Term Interest Rates

78 Linear Estimation

the sort order followed by the list of the series to be sorted. For example, a set
of panel data for ten countries, in which each country has three years of data
(year 1 for all the countries, followed by year 2 for all the countries, etc.),
could be reordered so that all the years for each country are adjacent:

KEY = COUNTRY*10+YEAR ;
SORT (ALL) KEY ;

The original order of the data was

 COUNTRY YEAR KEY
 1 1 11
 2 1 21
 . . .
 10 1 101
 1 2 12
 2 2 22
 . . .
 10 2 102
 1 3 13
 2 3 23
 . . .
 10 3 103

and the new order will be

 1 1 11
 1 2 12
 1 3 13
 2 1 21
 2 2 22
 2 3 23
 . . .
 10 1 101
 10 2 102
 10 3 103

 6. Manipulation and Display of TSP Variables 79

6.5 Dummy and trend variables: DUMMY, TREND

Dummy variables are series that are either zero or one in a given observation.
They are typically used to measure things that are on or off (true or false). For
example, the dependent variable of a Probit model is a dummy variable (see
Section 9.2), and the constant term C in a regression is a dummy variable that
is always "on". Dummy variables can be created in several ways. They can be
LOADed directly, in which case a special convention for inputting repeated
values (*) may be useful:

SMPL 1,20; READ D10; 10*1 10*0;

They can also be created in pieces under different SMPL statements. For
example (also see TREND below):

SMPL 1,10; D10=1;
SMPL 11,20; D10=0;

Dummy variables can also be based on the values of other series. We have
already seen examples of this in Section 3.5.1, where logical (true/false)
expressions are used in a GENR command:

XPOS = X > 0 ;
or

GENR X1 = (X = 1);

Often the series in question takes on several distinct values or categories, and
we would like to create a set of dummy variables (one for each category in the
original series). This is easily done with the DUMMY command. For example,
if the series EDUC takes the values 1, 2, and 3,

DUMMY EDUC;

would create the dummy variables EDUC1, EDUC2, and EDUC3. This would
be equivalent to the commands:

EDUC1 = (EDUC=1); EDUC2 = (EDUC=2); EDUC3 = (EDUC=3);

DUMMY can easily create seasonal dummy variables. In fact, this is the
default if the DUMMY; command is given (with no argument), and FREQ Q
or M is in effect. The series Q1-Q4 or M1-M12 are created. Other DUMMY

80 Linear Estimation

options are available to exclude the last dummy variable, and to save the
names of the new variables in a TSP list. See the Reference Manual for details.

Another standard variable is the time trend, which typically equals 1, 2, 3, etc.
This is created with TREND:

TREND T;

A trend variable is useful for estimating a deterministic trend component in a
regression. It can also be useful for creating time-dependent dummy variables.
The first dummy variable example above could have been created with:

SMPL 1,20; TREND T; D10 = (T <= 10);

The PERIOD= option in TREND allows the series to repeat with the specified
periodicity. This is useful with balanced time-series/cross-section data, to make
the trend start over at 1 for each individual. See the Reference Manual for
details.

6.6 Computation of Capital Stock: CAPITL

In working with economic time series data, we are frequently given a gross
investment series from which we wish to calculate the corresponding capital
stock series based on an assumption about depreciation rates. The CAPITL
command enables you to perform this computation easily in TSP. For example,
if you have an annual investment series, I, and a depreciation rate of 10 percent
per annum, you can compute a series of beginning-of-period capital stock, K,
with the following command:

CAPITL I .10 K ;

The above CAPITL statement assumes that the value of the capital stock at the
beginning of the SMPL was zero and that you wished to build it up from that
point. Options are available to alter those assumptions. For example,

SMPL 58:1 83:2 ;
CAPITL (BENCHVAL=145.4,BENCHOBS=70:1) QINV .025 K ;

uses quarterly investment figures to compute capital stock, assuming that the
first quarter of 1970 has a beginning period value of 145.4. Note that since this
was quarterly data we used a depreciation rate of 0.025 to correspond to ten

 6. Manipulation and Display of TSP Variables 81

per cent per annum.

CAPITL calculates a capital stock series from a gross investment series, using
a perpetual inventory and a constant rate of depreciation. Let I be gross
investment, K be the capital stock, and δ be the rate of depreciation. Then
CAPITL computes

1 1(1)
t t t

K K Iδ − −= − +

or

1(1)
t t t

K K Iδ −= − + (if the END option is used).

TSP starts from a capital stock benchmark at a specified observation. If the
benchmark is in the middle of the sample as in our second example above,
CAPITL also applies the reverse version of the formula,

1() /(1)
t t t

K K I δ+= − −

or

1 1() /(1)
t t t

K K I δ+ += − − (if the END option is used).

to compute values of the capital stock in periods before the benchmark.

A dynamic GENR statement is useful for simple explicit capital stock
calculations. The first CAPITL example could be performed with the
following statements:

SMPL 46,87; K=0; ? initialize capital stock to zero
SMPL 47,87; K = .9*K(-1)+I(-1); ? compute capital stock recursively

6.7 Divisia Indices: DIVIND

Another commonly needed manipulation of economic time series data is the
computation of aggregate price indices from several underlying series. In TSP,
you can use DIVIND to compute Divisia Indices, which have several desirable
properties as index numbers:

1. They are chain-linked Laspeyres Indices, that is, for each year the
current prices are used as a base in estimating the rate of growth to
the following year.

2. They are also chained Paasche and Fisher Indices.

82 Linear Estimation

3. They are symmetric in prices and quantities.
4. If you reverse time and compute the indices backwards, you obtain

the same result.
5. If you form indices of subgroups of the prices and quantities and

then combine them using the Divisia method, the resulting index is
the same as aggregating in one step from the original series.

These properties are contained in an unpublished note by W. M. Gorman
(1970). For a more accessible discussion of their properties and a list of
references, see Jorgenson and Griliches (1971) or Diewert (1976).

A Divisia index of prices is obtained by cumulating (over time) a weighted
sum of the rates of change of the component prices. The weights are the
current shares of the component goods in the total current expenditure on all
the goods in the index. If we have N goods at time t with prices p1t,...,pNt and
quantities q1t,...,qNt, the rate of change of the logarithm of the Divisia price
index pt is given by

1 , 1

1

log log (log log)
N

t t it it i t

i

p p w p p− −
=

− = −∑

The Divisia index of quantity can be obtained by applying the same strategy to
quantities in place of prices, or, alternatively, by dividing total expenditure by
the price index. However, the two quantity indices will not be exactly the
same. If a quantity is zero or missing, that good is temporarily dropped from
the index.

In TSP, the weights wit used for calculating the index may be computed in
three ways:

1. Arithmetic weights (ARITH option) are the arithmetic average of the
expenditure shares (pitqit/Σpjtqjt) in each of the two periods for which
we are computing a rate of change.

2. Geometric weights (GEOM option) are the geometric average of the
expenditure shares.

3. Combined weights (COMB option) combines the two weight
computations given above, that is, they are a geometric average of the
arithmetic weight, the share this period, and the share last period.

Here is an example of a Divisia command:

 6. Manipulation and Display of TSP Variables 83

DIVIND (WEIGHT=ARITH,TYPE=P,PNORM=67) PIND, QIND, PS,
QS, PND, QND, PD, QD ;

This command computes the indices PIND and QIND from the three pairs of
inputs S, ND, and D. Price indices are computed and the quantity indices
derived (TYPE=P). The index is normalized to one in 1967.

The default values of the DIVIND options are the following:

TYPE=Q, WEIGHT=COMB, QNORM=1, PNORM=1, NOPRINT,
QVAL=1, PVAL=1

This means that quantity indices are to be computed using combined share
weights, the first observation is to be normalized to have a quantity index of
one, and the results are not to be printed. The computed indices will be stored
in data storage under the names you gave the first two arguments. For further
details on the options, see the Reference Manual.

6.8 Normalization of Series: NORMAL

NORMAL normalizes a series so that a chosen observation has an assigned
value. It accomplishes this by dividing all observations of the series by the
same number. After the word NORMAL, list the name of the series, the
observation identifier of the base observation, and the value to be assigned.
The normalized series will replace the original series. For example:

NORMAL CPI,75,100 ;

This is equivalent to the following statements:

SET CPI75 = CPI(75); GENR CPI = 100*CPI/CPI75;

6.9 Seasonal Adjustment: SAMA

TSP provides a simple moving average method for performing the seasonal
adjustment of series. If seasonally adjusted data is very important in your work,
you may wish to survey the literature in this area and make use of a more
sophisticated or extensive program such as X-11 from the Census Bureau. A
good place to start might be with Census Bureau (1976), in the references.

There are several seasonal adjustment methods other than the "ratio to a
moving average". The proper method depends on the theoretical data

84 Linear Estimation

generation process. Alternate methods include linear or log regression on
seasonal dummies and inclusion of seasonal variables in the structural model.
Seasonal dummy variables can be created easily with the DUMMY command.
TSP provides the SAMA command because it would be difficult to compute
with simple regressions; the other methods may be just as valid and they
require little programming effort.

SAMA performs seasonal adjustment on quarterly or monthly time series. For
example, suppose you have quarterly data on GNP from 1948 through 1982.
You could seasonally adjust this series, store and print it with the following
command:

FREQ Q ; SMPL 48:1 82:4 ;
SAMA(PRINT) GNPQ GNPQA ;

For details on the computations, see the TSP Reference Manual.

6.10 Principal Components: PRIN

Economic time series, particularly those for aggregate data, are frequently
highly collinear; there is often very little information in a fourth or fifth series
after you know the first three. Factor analysis with principal components can
be a useful way of examining the similarities of data series. Principal
components are a set of series constructed to explain as much variance of the
original series as possible. Users of this procedure should be familiar with the
method and uses of principal components, described in standard texts such as
Harman (1976) and Theil (1971).

Here is an example of a PRIN command in TSP:

PRIN (NAME=PC,NCOM=3,FRAC=.95) I TIME CONS GOVEXP
EXPORTS;

It specifies that three principal components are to be found of the five variables
I, TIME, CONS, GOVEXP, and EXPORTS. If 95% of the variance of the five
variables can be explained by fewer than three components, the program will
stop there. The number of principal components actually constructed in any
given procedure is the minimum of the number requested, the number needed
to explain FRAC of the variance, and the number of series.

In the example given, only two principal components were actually

 6. Manipulation and Display of TSP Variables 85

constructed: the first was highly correlated with the level variables I, CONS,
and GOVEXP, which in turn were highly correlated (over 95 per cent) with
TIME. The second had negligible correlation with these variables and was
almost entirely related to EXPORTS. Note that this example is illustrative only
– this is probably not an appropriate way to analyze these data. The behavior
of the first component suggests that is might be appropriate to check for unit
roots and cointegration of the series.

In this example the principal components found will be stored under the names
PC1, PC2, PC3, etc., for further use in the program. You may use any legal
TSP name as the name for the principal components, but the names generated
by adding the numbers must also be legal TSP names (that is, of length of less
than 64 characters).

Figure 6.5 Sample PRIN Output

 PRINCIPAL COMPONENTS
 ====================

VARIABLES: I TIME CONS GOVEXP EXPORTS

Number of Observations: 27

 Correlation Matrix

 I TIME CONS GOVEXP EXPORTS

I 1.00000

TIME 0.91598 1.0000

CONS0 0.93814 0.98651 1.0000

GOVEXP 0.89665 0.95941 0.94290 1.00000

EXPORTS -0.078275 0.11609 0.11246 -0.030001 1.00000

Component Name Eigenvalue Cumulative R-Squared

 1 PC1 3.8217914 0.76435829

 2 PC2 1.0291798 0.97019425

 Factor Loadings

 PC1 PC2

I 0.95777 0.12713

TIME 0.98915 -0.077151

CONS 0.99047 -0.071962

GOVEXP 0.97116 0.071084

EXPORTS 0.043276 -0.99842

 7. Nonlinear estimation 87

7. ESTIMATION OF NONLINEAR SYSTEMS
OF EQUATIONS

In Chapter 5, you learned how to estimate various types of linear single
equation models in TSP. These models were specified implicitly by listing the
dependent variable and independent variables after the name of the estimation
method (OLSQ, 2SLS, LIML, or AR1). Although this shorthand method of
specifying a model is convenient, in order to estimate nonlinear models, you
have to be more specific about the form of your equation(s).

Two procedures in TSP estimate general nonlinear models with additive
disturbances: LSQ and FIML. LSQ is a minimum distance estimator that can
be used to compute nonlinear single equation least squares, nonlinear
two-stage least squares, nonlinear multivariate regression, SUR (seemingly
unrelated regressions), nonlinear three-stage least squares, and some
Generalized Method of Moments (GMM) estimators.

FIML obtains full information maximum likelihood estimates for a nonlinear
simultaneous equation model whose disturbances are jointly normally
distributed. For maximum likelihood on models with other distributions, use
the general maximum likelihood (ML) procedure discussed in Chapter 9. Both
LSQ and FIML can be used on linear as well as nonlinear models.

In this chapter we describe how to specify the equations of a model to be
estimated and then discuss estimation with LSQ and FIML. In Chapter 8 we
discuss hypothesis testing with applications for LSQ and FIML, and in Chapter
10 we describe the minimization techniques and convergence options used in
all the nonlinear procedures.

7.1 Specifying the model: FRML, PARAM, etc

The first step in estimating a nonlinear model is to define the equations. The
FRML statement is used to define TSP equations for estimation or other
computations. To use FRML, you supply an equation in algebraic form (as in
GENR) except that it is preceded by a name given to the equation when it is
stored. Equations are referred to by their names when estimated and can be
printed with the PRINT command.

For example, the FRMLs from the complete illustrative model at the end of

88 Nonlinear Estimation

Chapter 3 are

FRML CONSEQ, CONS=A + B*GNP ;
FRML INVEQ, I=LAMBDA*I(-1) + ALPHA*GNP/(DELTA+R) ;
FRML INTRSTEQ, R=D + F*(LOG(GNP)+LP-LM) ;
FRML PRICEQ, LP = P(-1) + PSI*(LP(-1)-(LP(-2)) + PHI*LGNP +

TREND*TIME + P0 ;

The rules for composing FRMLs are the same as for GENRs (see Chapter 3).
The first FRML, CONSEQ, could be used to estimate a simple linear
regression of CONS on GNP and a constant term by specifying two additional
statements:

PARAM A,B; LSQ CONSEQ;

There is an implied additive disturbance term during estimation with LSQ or
FIML. For example, the model estimated by the previous command is the
following:

CONSt = α + βGNPt + εt

If you are using simple linear equations, the FORM command can be used to
choose parameter names automatically. For example, the command

FORM CONSEQ CONS C GNP;

would form the consumption equation and declare its parameters; it is
equivalent to the two following statements:

FRML CONSEQ CONS = CONSEQ0 + CONSEQ1*GNP;
PARAM CONSEQ0 CONSEQ1;

FRMLs can also be used to specify functions of estimated parameters for
testing (ANALYZ, Section 8.7), to specify formulas for equation substitution
(EQSUB, Section 9.6) or differentiation (DIFFER, in the Reference Manual),
and to specify log-likelihood equations (ML, Section 9.6). When used in this
way, the equations do not have an implied additive disturbance.

Logical expressions may be included in FRMLs, but be aware that this will
generally introduce a finite number of points at which your equation will not
be differentiable. You can estimate or simulate with such an equation, but
gradient methods may have difficulty converging if you happen to land on or

 7. Nonlinear estimation 89

near one of those points. The usual proofs of consistency, efficiency, and
asymptotic normality will not go through in this case. However, such equations
can be convenient when performing model simulations, and you may find them
useful on occasion.

There are two ways to define a TSP equation: with the dependent variable on
the left-hand side as in a GENR (a normalized equation), or as an
unnormalized expression with no equal sign and no left-hand variable. An
example of the latter would be

FRML CONSEQ2, CONS-A-B*GNP ;

This equation specifies the same model as the first version of CONSEQ, but as
though it were written

εt = CONSt - α - βGNPt

Unnormalized FRMLs are used by FIML, LSQ, GMM, and SIML to handle
models that are nonlinear in the endogenous variables, for example, to specify
an orthogonality condition for GMM estimation (see section 7.2.5). Here is an
example of this kind of equation, where the dependent variable is a general
expression:

yt/qt = α + εt

The equation above should be defined as:

FRML EQR, Y/Q - A;12

The primary difference between using normalized and unnormalized equations
in LSQ or FIML is that unnormalized equations do not have a well-defined
left-hand side variable associated with them, so certain goodness-of-fit
statistics such as R2 cannot be computed.

ANALYZ and EQSUB also accept unnormalized equations. SOLVE will not
accept unnormalized equations and returns an error message if it encounters

12 If it were written as FRML EQR Y/Q = A; , the = sign would be interpreted as a

logical operator:

FRML EQR, Y/Q .EQ. A ;

which means something entirely different from what was intended

90 Nonlinear Estimation

one.

A special form of FRML, called IDENT, is available to specify identities in a
FIML model. These identities do not contain parameters to be estimated, nor
do they have disturbances, but they are necessary to complete the model, that
is, to insure that the model has a square Jacobian matrix (as many equations as
there are endogenous variables). This condition is necessary for both FIML
and SIML. (SIML actually treats FRMLs and IDENTs identically, but it may
be useful to use IDENT statements instead of FRMLs for documentation
purposes.) IDENT statements are given exactly like FRML statements except
that they begin with the word IDENT instead of FRML. For example, the
illustrative model is completed by a single identity relating GNP and
consumption:

IDENT GNPID GNP=CONS+I+G ;

Information about the symbols in a FRML is provided in separate PARAM
and CONST statements, for parameters to be estimated and constants,
respectively. It is usually desirable to provide plausible numerical values for
the parameters as starting points for estimations. Constants must be assigned
values before estimation. For example, in the illustrative model (see Chapter
3),

PARAM A –18 B .62 LAMBDA .6 ALPHA 1 D –20 F 8 PSI .3 PHI .1
TREND -.002 P0 -.6 ;

CONST DELTA 15 ;

The parameters need not be in order and may be defined in several PARAM
and CONST statements. The only difference between a PARAM and a
CONST is that PARAMs are estimated and CONSTs are not. Once parameters
have been declared in a PARAM statement, they retain their estimability even
if they are given new values by SET or UNMAKE commands. Parameters also
retain their values from the most recent estimation. Parameters can be fixed at
their current values by declaring them in a CONST statement. This will cause
them to be treated as fixed until they are specified on a new PARAM
statement.

7.2 Nonlinear least squares: LSQ

LSQ estimates single and multiple equation linear and nonlinear regression
models. Depending on the number of equations and the specification of

 7. Nonlinear estimation 91

instrumental variables, several different econometric estimators are available
with the LSQ command: nonlinear least squares, seemingly unrelated
regression, nonlinear two stage least squares, three stage least squares, and
generalized method of moments. Each estimator has a slightly different
objective function which is minimized by means of iterative methods for
nonlinear models. Details on the iterative techniques are in Chapter 10.

7.2.1 Single equation least squares

If LSQ is supplied with the name of just one FRML, and no instruments are
specified, single equation least squares is the resulting estimator. For example,

LSQ CONSEQ;

estimates the consumption equation described earlier, assuming that A and B
have been declared as PARAMs, and the series CONS and GNP have been
properly defined over the current sample. In this example, the model is linear,
so LSQ does not iterate, and the results are exactly the same as the command

OLSQ CONS C GNP;

OLSQ is easier to use for this model if you only want single equation
estimation, but using LSQ automatically sets up starting values for a
subsequent multiple equation estimation (which requires specifying the
FRMLs).

For nonlinear least squares, the objective function is the sum of squared
residuals (SSR). Minimizing SSR is equivalent to maximizing the likelihood
function if the error in the equation is additive and normally distributed. The
iteration technique is Gauss's method: derivatives of the equation residual with
respect to each parameter are formed analytically. The current residual is
regressed on the derivatives, and the resulting regression coefficients are the
proposed changes in the parameters. It is possible to show that these
coefficients will be zero if and only if the current parameters are at a local
minimum of SSR. If the model was linear and the parameters had zero starting
values, the first iteration would involve regressing the dependent variable
(which equals the current residual) on the independent variables (which equal
the derivatives of the residual with respect to the parameters, with a change of
sign). For general nonlinear models, both the current residual and the
derivatives will be functions of the current parameter values, but the procedure
works the same, iterating until the derivatives are orthogonal to the residuals
and the SSR is minimized.

92 Nonlinear Estimation

A simple example of a nonlinear equation is the direct estimation of an AR1
model:

FRML CONSAR1 CONS = A + B*GNP + RHO*(CONS(-1) - (A +
B*GNP(-1)));

PARAM A,B,RHO;
LSQ CONSAR1;

Note that this method of estimating an AR(1) model drops the first
observation, like the AR1 procedure with the OBJFN=GLS option. Also see
Section 5.6 for a more general and easier way to generate FRMLs for AR(p)
estimation.

7.2.2 Multivariate regression and Seemingly
Unrelated Regressions

If a model has two or more regression equations, it is likely that the
disturbances from the two are correlated. If so, the technique of multivariate
regression generally gives more efficient estimates than regression applied
separately to each equation. Further, if two or more equations share the same
parameter(s), they must be estimated jointly to impose these cross-equation
constraints. This feature is particularly useful in estimating systems of demand
equations derived from a utility function or a production function.

Multivariate regression is the simplest multiple equation estimator. It assumes
there are no simultaneity problems with endogenous variables on the right-
hand side of the equations. 3SLS and FIML are appropriate for joint estimation
of equations with (or without) simultaneity; FIML will also estimate SUR
models, often using less computer memory than LSQ.

An example of LSQ from the illustrative model (see Chapter 3) is

LSQ CONSEQ,INVEQ,INTRSTEQ,PRICEQ ;

This command specifies joint estimation of all four behavioral equations of the

model. The output from this command is shown in Figure 7.1.

The multivariate least squares method is a generalized least squares method:
the disturbances of the model are assumed to be independent across
observations, but to have free covariance across equations. A consistent

 7. Nonlinear estimation 93

estimate of this covariance matrix is formed in some way or supplied to the
procedure, and this estimate is used to weight the observations when the
equations are re-estimated. The objective function can be written as

1() () '() ()
T

Q b e b S I e b
−= ⊗

where e(b) is the vector of stacked residuals (a function of the parameters b), S
is an estimated covariance matrix of the disturbances and IT is the identity
matrix of order of the number of observations. If S is recomputed from b(i) at
each iteration, this estimator is the same as the maximum likelihood estimator
when the disturbances are multivariate normal.

Although any consistent estimator of S gives consistent parameter estimates for
multivariate regression, the default method recomputes S from the estimated
residuals at each iteration. This method has some desirable properties: in the
case of consumer or factor demand systems, for example, this method yields
estimates that are invariant with respect to which share equation is dropped.

If you want conventional Seemingly Unrelated Regressions estimates (two-
step, rather than maximum likelihood), you can use SUR, which is an alias for
LSQ with certain options preset. SUR obtains a consistent estimate of S, and
then iterates only on b until convergence is obtained. More precise control over
the initial estimate of S and over iteration on S is possible with the WNAME=
and MAXITW= options (explained in detail in the Reference Manual).

94 Nonlinear Estimation

Figure 7.1 Sample LSQ (multivariate regression) Output

EQUATIONS: CONSEQ INVEQ INTRSTEQ PRICEQ

MAXIMUM NUMBER OF ITERATIONS ON V-COV MATRIX OF RESIDUALS = 20

NOTE => The model is linear in the parameters.

Working space used: 3923

 STARTING VALUES

 B0 B1 LAMBDA ALPHA D

VALUE -17.80237 0.63392 0.69519 0.93262 -6.49935

 F PSI PHI TREND P0

VALUE 8.28104 0.96267 -0.036751 0.0020400 0.21353

F= 7.7250657561 FNEW= 7.5365117353 ISQZ= 1 STEP= 1. CRIT= 6.8450

------ iteration output -------

F= 7.2004917984 FNEW= 7.2004909522 ISQZ= 1 STEP= 1. CRIT= .25361E-04

CONVERGENCE ACHIEVED AFTER 17 ITERATIONS

 83 FUNCTION EVALUATIONS.

 Residual Covariance Matrix

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 148.65135

INVEQ -69.32294 183.88108

INTRSTEQ 1.28343 0.93891 1.12461

PRICEQ 0.31574 -0.29112 0.0084148 0.00099038

 Weighting Matrix

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 0.082019 0.037881 -0.012755 -0.13640

INVEQ 0.081230 -0.0096816 0.086872

INTRSTEQ 0.95436 -0.55702

PRICEQ 85.55566

 Covariance Matrix of Transformed Residual

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 27.00000

INVEQ 3.86193D-15 27.00000

INTRSTEQ -1.60733D-15 -3.71773D-16 27.00000

PRICEQ -1.23344D-14 -1.17009D-14 -9.12410D-16 27.00000

Number of observations = 27 Log likelihood = -169.683

 Schwarz B.I.C. = 193.094

 Standard

Parameter Estimate Error t-statistic P-value

B0 -23.3072 8.36041 -2.78780 [.005]

B1 .640115 .955276E-02 67.0084 [.000]

LAMBDA .620197 .094824 6.54053 [.000]

ALPHA 1.15557 .281119 4.11060 [.000]

D -6.37858 1.17706 -5.41906 [.000]

F 8.19093 .890868 9.19433 [.000]

PSI -.456334 .128849 -3.54162 [.000]

PHI .647412 .075012 8.63074 [.000]

TREND -.019354 .259267E-02 -7.46476 [.000]

P0 -3.96640 .461670 -8.59142 [.000]

Standard Errors computed from quadratic form of analytic first

derivatives (Gauss)

----followed by equation by equation output

 7. Nonlinear estimation 95

7.2.3 Nonlinear two-stage least squares: INST=

A nonlinear equation from a simultaneous model can be estimated by LSQ
using a method developed by Amemiya (1974). The objective function for
estimation is the sum of squared fitted residuals, where the fitted residuals are
the fitted values from a regression of the true residuals on the instrumental
variables. If the equation is linear in its parameters, this amounts to standard
two-stage least squares, and LSQ will not iterate. If it is nonlinear, the
estimates are consistent but not generally asymptotically efficient (relative to
nonlinear three-stage least squares or FIML).

Nonlinear two-stage least squares in TSP is invoked by the INST= option.
INST is followed by a list of instrumental variables in parentheses. For
example, to estimate the investment function in the illustrative model of
Chapter 3,

LSQ(INST=(C,G,LM,TIME)) INVEQ ;

7.2.4 Linear or nonlinear three-stage least
squares: 3SLS

Three-stage least squares is an instrumental variable method for estimating a
system of simultaneous equations where there may be endogenous variables on
the right-hand side as well as contemporaneous correlation of the disturbances.
The advantage of 3SLS over FIML is that the model does not have to be
completely specified; the estimates for the equations and parameters can be
consistent even if the exact form of the rest of the model is unknown. For
example, you may have a set of equations describing the quantities demanded
of certain goods as a function of the prices of goods. Prices may be determined
as part of a larger economy that you do not wish to model explicitly. With the
choice of suitable instruments, you could estimate the demand equations
consistently without specifying the complete model. FIML would require
specification of the price equations, although of course you could always do
LIML using FIML by specifying a price equation that is a linear function of all
the instruments.

To specify three-stage estimation use the INST= option and a list of equation
names with 3SLS (or LSQ). For example, to estimate part of the illustrative
model by three-stage least squares,

96 Nonlinear Estimation

3SLS(INST=(C,G,LM,TIME)) CONSEQ,INTRSTEQ,PRICEQ;

The output from this example is shown on the following pages. (Figure 7.2)

The options for three-stage least squares are the same as those for univariate
and multivariate regression. To request iteration over the covariance matrix of
the residuals, use the MAXITW= option.13 MAXITW=0 is the default.

3SLS estimates a set of equations by the same technique described for
nonlinear two stage least squares, but considers the covariances across
equations as well. The criterion for estimation is the sum of squared
transformed fitted residuals. For each observation, fitted residuals are formed
as the fitted values from regressions on instrumental variables. These are
transformed by multiplying by the square root of the covariance matrix of the
residuals. The contribution of the observation to the criterion is then the sum of
squared values of these transformed fitted residuals.

For further details on the properties of this estimator, see Jorgenson and
Laffont (1974) and Amemiya (1977). The NL3SLS estimator discussed by
Amemiya is slightly more general in its choice of instruments than
Jorgenson-Laffont; TSP uses the form specified by the latter where the same
set of instruments is used for all equations. See GMM in the Reference Manual
for two methods of specifying different instruments for each equation. The
method of estimation is described in Berndt, Hall, Hall, and Hausman (1975).
If the model is linear in its parameters and variables, three-stage least squares
estimates are asymptotically efficient.

The three-stage estimation criterion requires an estimate of the residual
covariance matrix. TSP obtains this by carrying out an initial estimation with
the covariance matrix set equal to an identity matrix. If there are no parameters
in common among the equations, these initial estimates are just the two-stage
estimates. Then the covariance matrix is estimated from the true (not fitted)
residuals from the initial estimates. Unless the user specifies otherwise, this
estimate of the covariance matrix will be held fixed while the parameters are
re-estimated to obtain three-stage least squares estimates.

13

Note that iteration with MAXITW>0 may require a large number of iterations to converge. It

is normally helpful only in demand systems to obtain estimates invariant to which share
equation is dropped.

 7. Nonlinear estimation 97

 THREE STAGE LEAST SQUARES

 =========================

EQUATIONS: CONSEQ INVEQ INTRSTEQ PRICEQ

INSTRUMENTS: C G LM TIME

MAXIMUM NUMBER OF ITERATIONS ON V-COV MATRIX OF RESIDUALS = 0

NOTE => The model is linear in the parameters.

Working space used: 4441

F= 3626.2758582 FNEW= 3561.9232085 ISQZ= 0 STEP= 1. CRIT= 64.353

CONVERGENCE ACHIEVED AFTER 1 ITERATIONS

 2 FUNCTION EVALUATIONS.

END OF TWO STAGE LEAST SQUARES ITERATIONS (SIGMA=IDENTITY). THREE STAGE

LEAST SQUARES ESTIMATES WILL BE OBTAINED USING THIS ESTIMATE OF SIGMA:

 RESIDUAL COVARIANCE MATRIX

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 146.86262

INVEQ -66.47420 185.26175

INTRSTEQ 1.42782 -0.25296 1.12389

PRICEQ -0.077880 0.13425 0.0040156 0.00050308

F= 33.574061600 FNEW= 33.029434947 ISQZ= 0 STEP= 1. CRIT= .54463

CONVERGENCE ACHIEVED AFTER 1 ITERATIONS

 4 FUNCTION EVALUATIONS.

--------continued on next page -----

98 Nonlinear Estimation

Figure 7.2 Sample Three Stage Least Squares Output

 THREE STAGE LEAST SQUARES

 =========================

 Residual Covariance Matrix

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 147.57391

INVEQ -67.94115 186.02693

INTRSTEQ 1.40383 -0.47859 1.12388

PRICEQ -0.11551 0.17869 0.0033926 0.00064413

 Weighting Matrix

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 0.082517 0.036336 -0.010321 0.014659

INVEQ 0.080277 -0.0024068 -0.032191

INTRSTEQ 0.94958 -0.20911

PRICEQ 51.28644

 Covariance Matrix of Transformed Residuals

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 27.13077

INVEQ -0.20479 26.92743

INTRSTEQ -0.059263 -0.46166 27.04051

PRICEQ -4.15961 3.11028 -0.26982 31.87350

Number of observations = 27 E'PZ*E = 33.0294

 Standard

Parameter Estimate Error t-statistic P-value

B0 -21.5643 8.92636 -2.41580 [.016]

B1 .638235 .010190 62.6309 [.000]

LAMBDA .708188 .157971 4.48301 [.000]

ALPHA .893806 .466509 1.91595 [.055]

D -6.57444 1.18326 -5.55619 [.000]

F 8.33843 .895622 9.31021 [.000]

PSI 1.12213 .319314 3.51421 [.000]

PHI -.090421 .194599 -.464651 [.642]

TREND .351033E-02 .673604E-02 .521127 [.602]

P0 .543581 1.18972 .456899 [.648]

Standard Errors computed from quadratic form of analytic first

derivatives (Gauss)

Equation: CONSEQ

Dependent variable: CONS

 Mean of dep. var. = 519.033

 Std. dev. of dep. var. = 147.459

Sum of squared residuals = 3984.50

 Variance of residuals = 147.574

Std. error of regression = 12.1480

 R-squared = .992999

 Durbin-Watson = .466537 [.000,.000]

------ followed by more equation by equation output ------

 7. Nonlinear estimation 99

7.2.5 Generalized Method of Moments

3SLS coincides with the GMM estimator of Hansen (1982) when the errors are
serially independent and the same instruments are used for each equation. In
Hansen's notation, the GMM estimator sets the orthogonality conditions

ut(b,y,X) ⊗ zt as close to zero as possible using the estimated variance of this
vector as the metric. To perform this type of estimation in LSQ, define each
element of the vector u as a normalized or unnormalized equation using
FRML. The vector of z's are specified as instruments in the INST list. The
nonlinear three stage least squares estimates obtained are consistent and
asymptotically efficient, and are also numerically identical to those obtained by
the corresponding GMM estimator (for the default NOHET and NMA=0
options).

As an example, consider the simplest version of the Hansen-Singleton model
[Hansen and Singleton (1982); for a simple presentation of the Euler equation
for this type of model, see Hall (1978)]: a consumption-based asset pricing
model where investors have a utility function of the constant relative risk
aversion form. Denote consumption in period t as Ct and the one period return
on asset j as xjt. Then the representative agent model of intertemporal utility
maximization implies the following population Euler equations in equilibrium:

{ }1[(/) 1] 0
t t t jt mt

E C C x zαβ − − =

where β is the discount rate and the zmt, m=1,...,M are in the agent's
information set at time t (they may include such things as lagged asset prices
and consumption). In Hansen's notation ut is the expression in the square
brackets and the z's are the instruments.

This version of the Hansen-Singleton model can be easily estimated in the
3SLS procedure of TSP; the estimates coincide with GMM estimates, provided
there is no serial correlation in the u's (which will be true if the assets in u are
stocks or other one period assets). Here is how to set up the problem when
there are two assets and you wish to use four lags as instruments:

LIST LAGXS C X1(-1)-X1(-4) X2(-1)-X2(-4) ;
LIST UEQS U1EQ U2EQ ;
FRML U1EQ BETA*(CONS/CONS(-1))**ALPHA * X1(-1) - 1 ;
FRML U2EQ BETA*(CONS/CONS(-1))**ALPHA * X2(-1) - 1 ;
PARAM BETA 1 ALPHA -1 ;
GMM(HET,INST=LAGXS) UEQS ;

100 Nonlinear Estimation

The preceding GMM example allows for conditional heteroskedasticity of the
disturbances (the option HET, which is the default), but not for serial
correlation. If the asset returns in the previous example were based on
multi-period rather than one-period returns, there is no reason to expect that
the covariance of the marginal utility of consumption with these returns will
not be correlated across the periods comprising the multi-period returns (see
Hansen and Singleton, section 2 for a further discussion of this point). In this
case the estimates obtained by GMM will be consistent but not asymptotically
efficient, since they use the "wrong" covariance matrix of the orthogonality
conditions as a weighting matrix. For this case, the NMA option of the GMM
command allows you to compute the correct weighting matrix automatically.

Suppose that in the previous problem you wanted to use a covariance estimate
that incorporates moving average disturbances of second order. You would use
the NMA option to specify this:

GMM(HET,NMA=2,INST=LAGXS) UEQS ;

Among others, Newey and West (1987) pointed out that the original estimate
proposed by Hansen and Singleton in this case is frequently not positive
definite in finite samples and proposed the use of declining weights to
guarantee positive semi-definiteness. TSP offers two choices of spectral
density kernels (KERNEL=BARTLETT or PARZEN) to compute these
weights; the default choice is BARTLETT.

7.3 Full information maximum likelihood: FIML

FIML is the asymptotically efficient estimator for linear and nonlinear
simultaneous models, under the assumption that the disturbances are
multivariate normal. When this assumption fails, FIML may still be
asymptotically efficient; see White (1982) or Gourieroux, Montfort, and
Trognon (1984) for a discussion of when this will be true.

Because FIML operates on the model as a whole, the model must be complete
-- it must have as many equations as endogenous variables. Thus in addition to
the behavioral equations containing unknown parameters, FIML must be
supplied with any identities that involve the endogenous variables. Identities
provide a convenient way of entering repeated functions of endogenous
variables into several equations; another way is the EQSUB command.

 7. Nonlinear estimation 101

In FIML, the endogenous variables are listed in parentheses after the
ENDOG= keyword. The corresponding instruments are then defined
implicitly. For example, the illustrative model is estimated by FIML:

FIML(ENDOG=(CONS,I,R,LP,GNP))
CONSEQ,INVEQ,INTRSTEQ,PRICEQ,GNPID;

The results of executing this FIML command are shown in Figure 7.3 on the
following pages.

The objective function for FIML is the log likelihood, which involves the log
of the determinant of the residual covariance matrix, and the log of the
determinant of the Jacobian (the derivatives of the residuals with respect to the
endogenous variables).14 If there no simultaneity and no nonlinear functions of
the endogenous variables appear in the equations, the Jacobian term drops out,
and the model is equivalent to multivariate regression.

FIML can be used to estimate nonlinear LIML models (see Section 5.5 for
linear LIML models). In addition to the FRML for the equation of interest,
FRMLs must be specified for each of the remaining endogenous variables. To
make this a LIML model, these FRMLs should be linear in the instruments and
there should be no constraints among their parameters. For example, to
estimate the nonlinear AR1 equation of Section 7.2.1 with LIML:

FRML CONSAR1 CONS = A + B*GNP + RHO*(CONS(-1) -
(A+B*GNP(-1));

PARAM A,B,RHO;
? Eq for GNP as function of the instruments:
FORM GNPEQ GNP C G LM TIME CONS(-1) GNP(-1);
LSQ(SILENT) CONSAR1 ; ? Obtain starting values
LSQ(SILENT) GNPEQ ; ? for parameters using LSQ
? Then estimate LIML model using FIML
FIML(ENDOG=(CONS,GNP)) CONSAR1,GNPEQ;

By default, the standard errors for the FIML structural parameters are
computed from the matrix of sums of squares of the outer products of the
gradient of the likelihood function with respect to both the structural

14

Note that because all of TSP’s nonlinear routines use minimization algorithms, the actual

objective function used is the negative of the log likelihood. Final output for FIML and other
procedures displays the correct value, however.

102 Nonlinear Estimation

parameters and the unique elements of the inverse residual covariance matrix
(the BHHH matrix). These standard errors are consistent and generally larger
than those calculated in versions of TSP prior to 4.1, which were computed
from the submatrix for the structural parameters only. For instance, the LIML
example above has nine structural parameters and three covariance parameters
(NEQ*(NEQ+1)/2).

Technical note: Calzolari and Panattoni (1988) studied eight alternate FIML
standard error formulas and demonstrated the consistency and good
small-sample performance of the FIML standard errors computed in TSP 4.1
and later versions.15 They also showed that the R ("Gauss") matrix provided an
inconsistent estimate of the standard errors when the model was nonlinear.16
The R matrix is still used for iterations (HITER=G), but is not available for
standard errors because of this inconsistency. Although HITER=C provides
quadratic convergence close to the optimum and can be dramatically better
than HITER=G, FIML uses HITER=G as the default, because Calzolari and
Panattoni found it tends to perform better when the starting values are far from
the optimum. HCOV=C (Hessian based on numerical second derivatives from
analytic first derivatives) provides generally smaller standard errors than the
default HCOV=B. Calzolari and Panattoni found that HCOV=B is usually
closer to the true finite sample distribution of the parameters.

15 The standard errors computed in TSP versions prior to 4.1 were not technically consistent,

but have been shown to have reasonably good small-sample properties. TSP Version 4.1 was
released in 1986, so it is unlikely you are using any version released prior to that date.
16

 This matrix was used by TSP 4.0 when the number of parameters was larger than the number

of observations (in which case the BHHH matrix will be singular, since its rank will be less
than its order).

 7. Nonlinear estimation 103

Figure 7.3 Sample Output from FIML

 Full Information Maximum Likelihood

 ===================================

Equations: CONSEQ INVEQ INTRSTEQ PRICEQ

Identities: GNPID

Endogenous variables: GNP CONS I R LP

NOTE => The model is linear in the parameters.

Working space used: 3195

F= 215.27935000 FNEW= 209.93076621 ISQZ= 2 STEP= 2. CRIT= 6.4751

------ iteration output --------

F= 197.96652132 FNEW= 197.96647921 ISQZ= 1 STEP= 1. CRIT= .44381E-04

CONVERGENCE ACHIEVED AFTER 20 ITERATIONS

 96 FUNCTION EVALUATIONS.

 Residual Covariance Matrix

 CONSEQ INVEQ INTRSTEQ PRICEQ

CONSEQ 147.01288

INVEQ -64.17971 187.49251

INTRSTEQ 1.56699 -0.85116 1.12552

PRICEQ 0.31721 -0.30545 0.0090306 0.0010215

Number of observations = 27 Log likelihood = -197.966

 Schwarz B.I.C. = 221.377

 Standard

Parameter Estimate Error t-statistic P-value

B0 -15.5706 34.5910 -.450133 [.653]

B1 .631141 .041342 15.2664 [.000]

LAMBDA .728881 .418846 1.74021 [.082]

ALPHA .835629 1.27397 .655926 [.512]

D -6.77371 5.58569 -1.21269 [.225]

F 8.49063 4.04847 2.09724 [.036]

PSI -.501316 1.07288 -.467260 [.640]

PHI .658728 .553451 1.19022 [.234]

TREND -.020250 .016572 -1.22195 [.222]

P0 -4.02511 3.41453 -1.17882 [.238]

Standard Errors computed from covariance of analytic first derivatives

(BHHH)

-------- equation by equation output -------

 8. Testing Hypotheses 105

8. TESTING HYPOTHESES

After you have estimated a model using one of the methods described in earlier
chapters, you may want to test some hypotheses about the estimated
parameters of the model. For example, you may want to test whether one or
more variables belong in an equation, or whether the parameters satisfy some
linear or nonlinear constraint. TSP has many methods for performing such
tests, and in this chapter, we outline some of them; your ingenuity may find
others.

Hypothesis testing of linear or nonlinear constraints on the parameters of
econometric models can generally be performed using one of three methods.
These methods are: the likelihood ratio (which compares constrained and
unconstrained estimates), the Wald test (based on the unconstrained estimates),
and the Lagrange multiplier, or LM, test (based on the constrained estimates).17
In different situations, you may find one or the other of these tests easier to
compute. Although all are asymptotically equivalent, in finite samples the
results will differ (except in very specific simple cases). For example, in the
case of linear constraints in a generalized least squares model, the three
statistics obey the following inequality:

Wald ≥ LR ≥ LM

In this chapter we outline the tests that can be used with the linear estimation
methods: the t-test, F-test, and a special version of the F-test called the Chow
test. Then we discuss the tests available for testing nonlinear hypotheses, and
linear or nonlinear hypotheses about nonlinear models. These fall into two
basic classes, depending on the form of the hypothesis: the likelihood ratio and
quasi-likelihood ratio test, and the Wald test. The t-test and F-test for linear
models, and the Wald test for nonlinear models can all be done with the
ANALYZ command. Finally we briefly discuss the Lagrange multiplier
(score) test.

The LM test is an example of a type of test called a "specification test", for
which a specific alternate hypothesis is often not available. Another large class
of specification tests may be generated by a principle enunciated by Hausman
(1977). The Hausman test is discussed in section 8.9 and an example is given
in Section 13.4.1.

17

See the excellent article by Engle (1985) for further information and references.

106 Nonlinear Estimation

Classical hypothesis testing involves accepting or rejecting decisions based on
tabulated significance levels for the theoretical distribution of the test statistic.
TSP provides these tables in the form of a procedure (CDF) so that you can
easily find the p-level for any test statistic you calculate. The Student's t, F,
chi-squared, normal, and bivariate normal distributions are available. CDF also
contains distributions for the Dickey-Fuller tests for unit roots and the
Engle-Granger cointegration tests, which are discussed in Chapter 11.

8.1 t-tests

The simplest hypothesis test is the t-test, usually a test for equality of a single
coefficient in your model with some prespecified value, the most common
being zero. TSP always prints out the value of the statistic for the t-test of zero
in the table of regression results.

In general, t-tests on single coefficients are of the form

(estimated coeff - hypothesized value)/(estimated std error)

For the standard case of testing against zero, this simplifies to the ratio of the
estimated coefficient to its standard error. For example, if you want to test the
hypothesis that the coefficient on X1 is one:

OLSQ Y C X1 X2 X3;
? T-test done manually:
SET TTEST = (@COEF(2)-1)/@SES(2);
? X1 is the second variable in @COEF and @SES
SET DFT = @NOB - @NCID;
? degrees of freedom - to compute the P-value
CDF(T,DF=DFT) TTEST; ? print TTEST and its P-value

You can do the same thing more easily using the ANALYZ procedure
(described below):

FRML TEST1 X1-1; ? Hypothesize that X1=1
ANALYZ TEST1; ? Compute F-test (1, .)

For this example, an even easier way to compute the test is to rewrite the
model so that the hypothesis of interest is a t-test for a zero coefficient:

YX = Y-X1 ; ? Impose the constraint that the coeff of X1 is 1

 8. Testing Hypotheses 107

OLSQ YX C X1 X2 X3 ;

For this OLS estimation, the t-test for X1=0 is now a test that the coefficient in
the original model was 1, and can be read off the regression output.

T-tests of the above kind, both simple and complex, may be performed on the
results of any TSP linear or nonlinear estimation procedure. For some
estimation methods, mostly nonlinear models, the resulting statistic will not be
a t-statistic, but an asymptotically normal variable. The distribution of that
statistic is almost the same as a two-tailed t-statistic based on more than 50
observations and provides a less conservative test in small samples. For certain
time series regressions (those using integrated variables), tests like the above
result in a Dickey-Fuller test, rather than a t-test.(See Section 11.6.)

T-tests can also be computed and displayed for estimators you have
programmed with matrix procedures. Just supply the TSTATS command with
the names of the coefficient vector and the variance-covariance matrix, and
TSTATS will print a standard regression output table. For example:

TSTATS (NAMES=(BETA1-BETA7)) BETA VARB;

prints a table of the seven BETA coefficients, together with their standard
errors (the square roots of the diagonal elements of VARB) and t-statistics for
the hypothesis that each of them is zero.

8.2 F-tests

F-tests are commonly used to test linear hypotheses which involve more than
one coefficient. The simplest way to compute F-tests is to use the ANALYZ
command, where you write one FRML for each restriction. ANALYZ will
compute the value of each restriction, the F-statistic for all the restrictions as a
joint test, and the implied constrained values of the original coefficients.18 For
example, to test that the sum of the coefficients on X1 and X2 equals one, use
the following commands:

OLSQ Y C X1 X2 X3;
? write the restriction so that the value would be zero
? if the restriction is true:
FRML SUM1 X1+X2 - 1;

18

 When used after a command other than OLSQ, ANALYZ computes an asymptotic chi-

squared test.

108 Nonlinear Estimation

ANALYZ SUM1;

Another way to test linear hypotheses is to estimate the unconstrained model,
then impose the null hypothesis and estimate a constrained version of the
model. In this case an F-statistic (with numerator degrees of freedom equal to
the number of constraints and denominator degrees of freedom equal to the
degrees of freedom in the unconstrained model) can be computed from the
sum of squared residuals of the two models. Our example above had one
constraint, that the sum of b1 and b2 was unity (where b1 and b2 are the
coefficients of X1 and X2, respectively). We can write this constraint as b1=(1-
b2), so we can impose this by regressing (Y-X1) on C, (X2-X1), and X3. The
commands for this test are:

OLSQ Y C X1 X2 X3 ; ? Unrestricted Model
SET SSRU = @SSR ;
SET DFU = @NOB-@NCID ; ? Sum of squares and deg. of freedom
GENR YX1 = Y-X1 ; ? create variables
GENR DX = X2-X1 ; ? for restricted model.
OLSQ YX1 C DX X3 ; ? run restricted model.
SET FSTAT = ((@SSR-SSRU)/1)/(SSRU/DFU) ;
CDF(F,DF1=1,DF2=DFU) FSTAT ;? Print out p-value for F-statistic.

TSP's internal variable @NOB contains the number of observations in the
current SMPL and is always available for use in computations. @NCID is the
number of estimated coefficients. Note the use of CDF to print out the
significance level associated with this F-statistic.

One advantage of this last technique is that it easily encompasses situations
where there may be many constraints, particularly situations consisting of
several zero restrictions on variables. It is a variation on the quasi-likelihood
ratio techniques discussed in the section on nonlinear two- and three-stage
least squares.

8.3 Chow tests

Chow tests are a special form of F-test that check the stability of regression
coefficients over two or more subsamples of the data. This is normally done by
running a regression for the whole sample, then running the same regression
for subsamples, and comparing the sums of squared residuals (SSRs). An
F-test for the constraint that the two sets of coefficients are equal can be
computed from the SSRs. However, TSP automates this particular form of the

 8. Testing Hypotheses 109

F-test, using the options CHOW and CHOWDATE in the REGOPT
procedure. Here is a simple example of a Chow test, both automated and
manual:

SMPL 47:1 80:1;
REGOPT(CHOWDATE=60:2) CHOW;
? The two periods are 47:1-60:1; 60:2-80:1
OLSQ Y C X; ? The Chow test is computed automatically.

To compute this F-statistic “by hand”, run the unconstrained and constrained
regressions, and then form the F ratio:

? estimate for the whole sample.
SMPL 47:1 80:1 ;
SET DF = @NOB-4 ;
OLSQ Y C X ;
SET SSR0 = @SSR ;

? estimate for subperiod 1.
SMPL 47:1 60:1 ;
OLSQ Y C X ;
SET SSR1 = @SSR ;

? estimate for subperiod 2.
SMPL 60:2 80:1 ;
OLSQ Y C X ;
SET SSR2 = @SSR ;

? compute and print the Chow test.
SET CHOW = (SSR0-SSR1-SSR2)*DF/(2*(SSR1+SSR2)) ;
CDF (F,DF1=2,DF2=DF) CHOW ;

8.4 Pseudo-F tests for 2SLS

The 2SLS residuals are asymptotically normal, and can be used to form a
pseudo-F test that has an approximate F distribution, following Startz (1983).
The main difference is that the 2SLS objective function @PHI (e'PZe) is used
in the numerator instead of @SSR. The previous F test example can be used to
illustrate the pseudo-F test:

110 Nonlinear Estimation

2SLS Y C X1 X2 X3 | C Z1-Z3 ; ? Unrestricted model
SET PHIU = @PHI ; SET S2U = @S2 ;
SET DFU = @NOB-@NCID ;
GENR YX1 = Y-X1 ; GENR DX = X2-X1 ;
2SLS YX1 C DX X3 | C Z1-Z3 ; ? Restricted model
SET PSEUDOF = ((@PHI-PHIU)/1)/S2U ;
CDF(F,DF1=1,DF2=DFU) PSEUDOF ;

Chow tests can also be performed with this methodology, but be careful to
expand the instrument list for the restricted model (the one estimated on the
whole period) by multiplying it by subsample dummies. This makes the
instruments the same for all models being compared:

? set up the subsample dummies.
SMPL 47:1 80:1 ; LOW = 0 ; HIGH = 0 ;

? estimate for subperiod 1.
SMPL 47:1 60:1 ; LOW = 1 ;
2SLS Y C X | C Z ;
SET PHI1 = @PHI ; SET SSR1 = @SSR ;

? estimate for subperiod 2.
SMPL 60:2 80:1 ; HIGH = 1 ;
2SLS Y C X | C Z ;
SET PHI2 = @PHI ; SET SSR2 = @SSR ;

? estimate over the whole sample (restricted model)
SMPL 47:1 80:1 ;
ZLOW = Z*LOW ; ZHIGH = Z*HIGH ;
2SLS Y C X | LOW HIGH ZLOW ZHIGH ;
SET PHI0 = @PHI ;

? compute and print the pseudo-F version of the Chow test.
SET DF = @NOB-4 ;
SET PFCHOW = ((PHI0-PHI1-PHI2)/2) / ((SSR1+SSR2) / DF) ;
CDF (F,DF1=2,DF2=DF) PFCHOW ;

8.5 Likelihood ratio tests

In many ways, the likelihood ratio test is conceptually the easiest of the tests

 8. Testing Hypotheses 111

we consider in this chapter. It can be used for any model that is estimated by
maximum likelihood. In TSP, this includes OLSQ, AR1, BJEST, LSQ without
instrumental variables (nonlinear least squares or multivariate regression),
FIML, PROBIT, TOBIT, SAMPSEL, LOGIT, and ML. For these methods,
TSP prints out a value of the logarithm of the likelihood evaluated at the
estimated parameters and stores it under the name @LOGL.

If L1 is the value of the likelihood function for the maximum of the
unconstrained model and L 0 is the value when the constraints are imposed,
then the likelihood ratio test is computed as

LR = 2(L1-L0)

This test is always positive (or zero) since the likelihood of the unconstrained
model is at least as high as that of the constrained model. The LR statistic is
distributed asymptotically as a chi-squared variable with degrees of freedom
equal to the number of constraints. For further information on the asymptotic
properties of this statistic in nonlinear models estimated by maximum
likelihood, see Gallant and Holly (1980).

To compute this test in TSP, save the two values of @LOGL for the
unconstrained and constrained estimates, difference them, and multiply by 2.
You can use CDF with the chi-squared distribution to obtain the associated p-
value.

8.6 Nonlinear two- and three-stage least squares -- QLR

A quasi-likelihood ratio test can be used for hypothesis testing in a nonlinear
model estimated by two- or three-stage least squares. This type of test is
discussed in Gallant and Jorgenson (1979). The tests are based on the principle
that if an estimated function of the data is asymptotically normally distributed
with a variance-covariance matrix that can be consistently estimated, it is
possible to construct a variable that is chi-squared distributed from this
function of the data. In the cases discussed here, the function in question is the
vector of differences between the residuals under the null and the residuals
under the alternative, which has expectation zero under the null. The
appropriate covariance matrix estimate is the minimum distance weighting
matrix under the most unrestricted model.

The QLR test which Gallant and Jorgenson propose for three-stage least
squares is the following:

T = n (Q0 - Q1)

112 Nonlinear Estimation

where Q0 is the value of the minimum distance criterion for the null
hypothesis, Q1 its value for the maintained hypothesis, and n the number of
observations. The formula for the minimum distance function Q(b), b a vector
of parameters, is

1() '() ()
Z

Q e b S P e b
−= ⊗

where e(b) is the stacked vector of residuals from the model, S a consistent
estimate of the covariance of the disturbances, and PZ the projection matrix of
the instruments, Z(Z'Z)

-1
Z'. LSQ minimizes nQ(b) when it is doing three-stage

least squares and prints it as F =, FNEW =, and E'HH'E. It may be retrieved
under the name @PHI after convergence.

A cautionary note on testing with a minimum distance criterion: the statistic
can be ill-behaved (have the wrong sign) if the estimate of S is not held
constant across the null and maintained hypotheses. To do so, obtain a
consistent estimate of S using nonlinear two-stage least squares and then
maintain that estimate as a constant weighting matrix while doing three-stage
least squares on the two models. For example:

3SLS(INST=(Z1,Z2,...),MAXITW=0) MEQ1 MEQ2 ... ;
COPY @COVU S ;
3SLS(INST=(Z1,Z2,...),MAXITW=0,WNAME=S) EQ1 EQ2 ... ;
SET Q0 = @PHI ;
3SLS(INST=(Z1,Z2,...),MAXITW=0,WNAME=S) MEQ1 MEQ2 ... ;
SET Q1 = @PHI ;

SET TEST = Q0-Q1 ;
CDF (CHISQ,DF=# constraints) TEST ;

Q0 is the objective function for the null hypothesis and Q1 is the maintained
hypothesis. The first estimator is nested within the second, hence Q0 ≥ Q1,
and the test is necessarily positive. This test is asymptotically chi-squared with
degrees of freedom equal to the number of restrictions imposed, that is, the
number of parameters in the second model minus the number in the first.

For two-stage least squares the objective function used by TSP is

() (1/) () ' ()
Z

Q b n e b P e b=

In this case, the same kind of test can be computed as

T = n (Q0 - Q1)/s
2

 8. Testing Hypotheses 113

where s
2 is a consistent estimate of the variance of the disturbance (in

particular, one may use the standard error squared of the two stage estimate of
the maintained hypothesis). In TSP, nQ(b) is stored as @PHI when two stage
least squares estimates are obtained with LSQ, so that a QLR test for two-stage
least squares can be done in the following way:

LSQ(INST=(Z1,Z2, ...)) MEQ1 ;
SET S2 = @S*@S ; SET Q1 = @PHI ;
LSQ(INST=(Z1,Z2, ...)) EQ1 ;
SET Q0 = @PHI ;
SET TEST = (Q0-Q1)/S2 ;
CDF (CHISQ,DF=# constraints) TEST ;

8.7 Wald tests for linear/nonlinear restrictions: ANALYZ

The likelihood ratio and quasi-likelihood ratio tests, which compare the
estimates of a constrained and unconstrained version of the model, are best
suited to testing hypotheses of the form

b = f(g)

that is, some larger set of parameters b is expressed as a set of nonlinear
functions of a smaller set g. When the constraint is expressed this way, it is
usually easy to write the equations for both the unconstrained and constrained
models. However, likelihood ratio tests have the disadvantage of requiring the
estimation of both forms of the model, which can become expensive (in terms
of CPU time) for large nonlinear models.

The Wald test provides an alternate method for performing the same test.
Asymptotically it is the same as the likelihood ratio test if the null hypothesis is
true, although it may differ quite a bit in practice. Choosing among these tests
is not straightforward. See Gallant and Holly (1980) and Berndt and Savin
(1977) for further discussion.

In TSP, the Wald test can be done with ANALYZ; it is a generalization of the
t- and F-tests described above. This test is also known as the delta method in
nonlinear contexts. Suppose the hypothesis to be tested can be written as

h(b) = 0

where b is the vector of parameters of the unconstrained model and h(b) is a
set of m nonlinear constraints on those parameters. Given a set of estimates b

and the associated covariance estimate V(b), ANALYZ computes the

114 Nonlinear Estimation

constraints h(b) (a row vector) and their covariance matrix:

[()] ' ()
h h

V h b V b
b b

∂ ∂
=

∂ ∂

all evaluated at the estimated b vector. From h(b) and its variance we form a
test statistic

1() [()] () 'T h b V h b h b−=

This test statistic is distributed asymptotically as a chi-squared variable with
degrees of freedom equal to m under the null hypothesis (when the constraints
hold). The p-value of χ2

(m) is printed; if you are testing at the .05 significance
level, and the p-value is less than .05, the null hypothesis is rejected.

ANALYZ computes this test if you specify the constraints h(b) as FRMLs in
unnormalized form (no left-hand side variable or equal sign), estimate the
unconstrained model, and then issue an ANALYZ command with the names of
FRMLs as arguments.

Gallant and Jorgenson give an example of testing for symmetry in a translog
consumer demand system with three goods (two equations to be estimated).
The TSP commands to compute this example are:

FRML EQ1 Y1 = (A1 + B11*LNP1 + B12* LNP2 + B13*LNP3 +
B1T*TIME)/

 (-1 + (B11+B21+B31)* LNP1 + (B21+B22+B23)*LNP2
 + (B31+B32+B33)* LNP3 + (B1T+B2T+B3T)*TIME) ;
FRML EQ2 Y2 = (A2 + B21*LNP1 + B22* LNP2 + B23*LNP3 +

B2T*TIME)/
 (-1 + (B11+B21+B31)* LNP1 + (B21+B22+B23)*LNP2
 + (B31+B32+B33)* LNP3 + (B1T+B2T+B3T)*TIME) ;
PARAM A1 A2 B11-B13 B21-B23 B31-B33 B1T B2T B3T ;
LSQ (INST=(...list of instrumental variables...)) EQ1 EQ2 ;
FRML SYM1 B12-B21 ;
FRML SYM2 B13-B31 ;
FRML SYM3 B23-B32 ;
ANALYZ SYM1 SYM2 SYM3 ;

ANALYZ results consist of a table with the computed differences of the
symmetry parameters and their implied standard errors. The value of the Wald
test, degrees of freedom, and p-value follow.

 8. Testing Hypotheses 115

8.8 Lagrange Multiplier Tests (Score Tests)

The Lagrange Multiplier test is generally based on the magnitude of the
derivatives of the likelihood function with respect to the constraints evaluated
at the constrained estimates. Sometimes you may find this test easier to
compute, particularly when the alternate hypothesis is not well specified.

As Breusch and Pagan (1979) among others have shown, many LM tests can
be computed as the number of observations times the R2 from a particular
regression depending on the hypothesis to be tested. For example, suppose you
have estimated an equation (linear or nonlinear) under the assumption that the
disturbances are homoskedastic and wish to test for heteroskedasticity as an
unknown function of the exogenous variables. This unknown
heteroskedasticity can be modeled as a polynomial function of the Xs:

2 2 2

0 1 1 2 2 12 1 2 11 1 22 2 ..
t t t t t t

a a X a X a X X a X a Xσ = + + + + + +

A test for heteroskedasticity of σ2 is a test that a1=a2=a12=...=0 in this
equation. The test is performed by regressing a consistent estimate of σ2 on the
exogenous variables of the model and their powers, and computing the TR2 of
the regression, where T is the sample size:

OLSQ Y C X1 X2 ;
USQ = @RES*@RES ;
X1X2 = X1*X2 ; X1SQ = X1*X1 ; X2SQ = X2*X2 ;
OLSQ(SILENT) USQ C X1 X2 X1X2 X1SQ X2SQ ;
SET TRSQ = @NOB*@RSQ ;
CDF (CHISQ,DF=5) TRSQ ;

This particular LM test has been automated and is more easily computed using
the WHITEHT option on REGOPT:

REGOPT(PVPRINT) WHITEHT;
OLSQ Y C X1 X2;

In the case of qualitative dependent variable models, the same method can be
used, but with the derivative of the model with respect to σ2 substituted for the
dependent variable USQ. Here is a more complex example based on the
sample selection model described in Section 9.3 of this manual:

Suppose that you wish to test for heteroskedasticity of the disturbance e2 in the
sample selection model, using the form

116 Nonlinear Estimation

σ
2
 = G(α + Xtγ)

where G is an arbitrary monotonic transformation. Then (see Lee and Maddala
1985, Poirier and Ruud 1983) a simple LM test can be obtained by regressing
the partial of the likelihood function with respect to σ2 (evaluated at the
maximum likelihood estimates obtained under homoskedasticity) on the Xt's
and their powers and examining the TR2 from that regression. In this case, the
partial of the log likelihood function for a single observation with respect to σ2
can be shown to be proportional to:

ω = (e2t/σ)
2
 - 1 - ρ(e2t/σ)λt

where λt is the inverse Mills ratio for the observation, stored by the SAMPSEL
procedure as a series. The LM test for γ = 0 is a test for:

2

log
'() 0

t

L
G a X

σ

∂
=

∂

where the degrees of freedom for the test are the number of regressors in Xt
and all quantities are evaluated at the maximum likelihood estimates obtained
under the null hypothesis. Note that since G'(α) does not vary across
observations, it drops out of the R2 in the test, so that the exact monotonic
transformation does not matter. The test is obtained by regressing ω on Xt and
Xt

2 and examining the TR
2 from that regression. Here is an example of how to

code this test in TSP:

SAMPSEL IN79 C LOGE76 | DLE7679 C LOGE76 ;
? List of names of sample selection coefficients:
LIST SSCOEF DO D1 BO B1 SIGHAT RHOHAT ;

UNMAKE @COEF SSCOEF ;
SMPLIF IN79 ; ? Choose observed data.
UHAT = @RES/SIGHAT ; ? Standardized residuals.
DLOGL = UHAT*UHAT - 1 - RHOHAT*UHAT*@MILLS ;
LOGESQ = LOGE76*LOGE76 ;
OLSQ DLOGL C LOGE76 LOGESQ ; ? Compute LM test.
SET TRSQ = @NOB*@RSQ ;
CDF (CHISQ,DF=2) TRSQ ;

8.9 Hausman Specification Tests

The Hausman specification test is based on the comparison of an estimator

 8. Testing Hypotheses 117

which is efficient (or more efficient) under the null hypothesis but inconsistent
under the alternative with an estimator which is consistent (and less efficient)
under both hypotheses. This principle may be applied in many settings; useful
applications are testing for the exogeneity of instruments or testing for random
versus fixed effects in panel data. When applied to the simultaneous equations
setting to test for exogeneity, it is often called a Hausman-Wu test.

A general example of a Hausman test in TSP is given in Section 13.4.1, after
we have presented matrix operations and matrices. Some classic applications
of the Hausman test are tests for random versus fixed effects in panel data
(now computed automatically in the PANEL procedure) and tests for the
independence of irrelevant alternatives in the Logit model (Hausman-
McFadden 1984), for which an example is given at the end of Chapter 9.

 9. Qualitative dependent variable models 119

9. ESTIMATION OF QUALITATIVE
DEPENDENT VARIABLE MODELS AND

GENERAL ML ESTIMATION

Economists frequently encounter a research problem where the dependent
variable of the structural model is not directly observed. For example, the
actual value of the variable may be observed only part of the time and whether
or not it is observed may depend on its value or on the values of other
variables. Alternatively, you may observe a variable that takes on several
discrete values related to an underlying unobserved dependent variable. This is
the case, for example, when modeling the choice among alternatives such as
different types of products or different modes of transportation. For these
models, ordinary least squares or other standard econometric estimators are not
appropriate, because of the limited or qualitative nature of the observed
dependent variable.

The estimators described in this chapter are the following:

TOBIT -- The dependent variable is observed only when it lies above (or
below) some threshold value.

PROBIT -- Only the sign (+/- or 1/0) of the dependent variable is observed, or
the dependent variable only takes on two values (binary probit).

SAMPSEL -- The dependent variable is not observed when another
unobserved variable in the model lies below a threshold value (this is a
generalization of Tobit, where one equation is a Tobit equation and the other is
a Probit).

LOGIT -- The dependent variable is the index of a choice among several
discrete alternatives (e.g., 1, 2, or 3). There is a "value equation" for each
alternative, and the one chosen has the highest value, although actual values
are not observed. TSP will estimate models involving characteristics of the
choice (conditional logit), the chooser (multinomial logit) or both (mixed
logit).

ORDPROB -- The dependent variable is a choice among ordered discrete

120 Nonlinear Estimation

alternatives (usually 0,1,2,…). A set of ordered threshold values determine
which category is chosen. This includes binary Probit as a special case.

POISSON -- The dependent variable is an integer count (0 or positive). The
mean is an exponential function of the explanatory variables, and the variance
equals the mean.

NEGBIN -- Same as Poisson, except the variance is proportional to the mean
(NegBin 1), or a quadratic function of the mean (NegBin 2).

ML -- ML performs maximum likelihood estimation of any model for which
the likelihood function can be written in a FRML, or evaluated in a PROC. It
includes all of the above estimators as special cases.

The first seven procedures are designed for structural equations where the
underlying dependent variable is linear in the parameters. Nonlinear structural
equations can be specified for the models estimated by these procedures by
writing the likelihood explicitly and using ML. All of the models are estimated
by maximum likelihood, using common nonlinear maximization algorithms
(see Chapter 10 for a discussion of nonlinear methods).

TOBIT, PROBIT, SAMPSEL, and ORDPROB models have normally
distributed structural disturbances. The disturbances in the LOGIT model have
the Generalized Extreme Value distribution (see Manski and McFadden
(1981), Maddala (1983), or Train (1986) for further information about this
distribution). Estimates obtained from the binary logit model are extremely
close to those obtained by probit, up to the implied standard deviation of the
disturbances (approximately 1.6 versus 1.0).

Standard errors robust to misspecification of the error term may be obtained
for all models by including the HCOV=W or HCOV=NBW option. They are
computed using the first and second derivatives of the likelihood function.
However, be aware that recent Monte-Carlo work [Calzolari and Fiorentini
(1990); Griffiths, Hill, and Pope (1987); Calzolari and Panattoni (1988)] has
shown that neither the outer product (HCOV=B) nor the robust estimate
(HCOV=W) are as accurate as the matrix of second derivatives (HCOV=N) in
finite samples (approximately 100 observations) when the disturbances are
truly normal. The outer product of the analytic gradients tends to overestimate
the variance, and the robust estimate to underestimate it. For details, consult
the articles cited.

 9. Qualitative dependent variable models 121

9.1 TOBIT

The Tobit estimator was proposed by James Tobin (1958) when he was
analyzing household expenditure on automobiles. The observed expenditure
for many households was zero, implying that the desired quantity of
automobile services was below the minimum price of a car. In this situation,
estimation of a an expenditure model using ordinary least squares will result in
coefficients biased toward zero. An alternative is the Tobit model, specified in
the following way:

Y* = Xb + ε defines a latent variable Y*

Y = Y* if Y* > 0

Y not observed if Y* ≤ 0

For example, Y* might be desired automobile expenditure and Y the actual
expenditure observed.

TOBIT is specified like OLSQ, with the dependent variable and a list of
independent variables. For example,

TOBIT CAREXP C,INCOME,MARSTAT;

In addition to the coefficient estimates, the output will include an estimate of
SIGMA, the standard deviation of the disturbances ε. SIGMA is estimated
jointly with the regression coefficients, implying that the standard error
estimates for the coefficients and SIGMA are consistent estimates.

TOBIT assumes that any observations for which the dependent variable takes
on a zero or negative value are observations not observed. You can easily
estimate a model where the cutoff value is different from zero, or where
observations with large values are those not observed, by using options. For
example, if your dependent variable is Y, to use a cutoff value of THRESH
other than zero, use

TOBIT (LOWER=THRESH) Y C X ;

If you want a ceiling for Y rather than a floor, then use

TOBIT (UPPER=THRESH) Y C X ;

122 Nonlinear Estimation

TOBIT produces and stores the same output as OLSQ, except for some of the
summary statistics (R-squared, Durbin-Watson, and F-statistic). The residuals
for the nonmissing dependent variable observations are stored in @RES and
may be printed or plotted. Values of @RES for the missing observations will
be stored as missing.

See Maddala (1983), Chapter 6, and Amemiya (1986), Chapter 10, for further
information on the Tobit model. The model estimated by the TOBIT procedure
is Amemiya's Type I Tobit. Also see the Reference Manual for information on
doing Tobit estimation with grouped data using the WEIGHT option.

9.2 PROBIT

Probit is used for analyzing the determinants of a choice between two discrete
alternatives, such as working/not working. Since the dependent variable is not
continuous, ordinary least squares is not appropriate. Instead, the dependent
variable may be treated as an indicator of the sign of a latent continuous
dependent variable. That is, the latent variable Y* is given by the following
regression equation, but only Y (=0 or 1) is observed:

Y
*
= Xβ + ε

Y = 1 if Y
*
 > 0

Y = 0 if Y
*
 ≤ 0

Often this latent variable has a meaningful interpretation, such as the net value
of choice one (e.g., employment) versus choice zero (e.g., unemployment).
Since the numerical scale of the latent variable is unobservable, the model is
identified by normalizing the standard deviation (SIGMA) of the disturbance
(ε) to one. The estimated coefficients in a Probit regression are not as easy to
interpret has those for a linear or Tobit regression. For this reason, PROBIT
also prints and stores a matrix, @DPDX, that contains the sample mean of the
derivative of the probabilities Y=0 and Y=1 with respect to each independent
variable.

Here is an example of a PROBIT command:

PROBIT WORKING C SCHOOL EXPER RURAL IND;

Output from PROBIT is similar to that for most of the regression procedures
except that a quantity called “scaled R-squared” is also printed. This measure,

 9. Qualitative dependent variable models 123

due to Estrella (1996), is a generalized goodness of fit measure for a wide class
of nonlinear models. It is computed by the following formula:

(2 /) log1 (log / log) cN L

u c
L L

−−

where logLu is the likelihood of the estimated model and logLc is the likelihood
for a model with intercept only. This statistic has the familiar properties of an
R-squared statistic: 1) it takes values on the unit interval with zero
corresponding to no explanatory power and one to perfect explanatory power;
2) It is is based on the likelihood ratio statistic for the hypothesis that the
coefficients of all the explanatory variables except the constant are zero; 3) Its
derivative with respect to the test statistic is similar to that for the
corresponding linear case; see Estrella (1996) for the details.

PROBIT can also estimate the selectivity bias in any kind of selection model,
so that a correction can be computed for a two-stage estimator of such a model;
in fact, PROBIT automatically stores a vector of estimated “Mills’ ratios” in
@RMILLS. See the example in the SAMPSEL section below.

9.3 Sample Selection: SAMPSEL

The sample selection model is a generalization of the Tobit model when
observability of the dependent variable (and possibly the independent
variables) in the regression equation is affected by factors other than the value
of the dependent variable. In the typology of Amemiya, this is a Type 2 Tobit
model. In the original examples developed by Heckman (1974), Griliches,
Hall, and Hausman (1978), Hanoch (1980), and others, the regression equation
is the log of wages on schooling and experience. Obviously wages are only
observed for people in the labor force, and labor force participation is
governed by a separate probit equation describing the reservation wage. This
equation is also called the selection equation; when its dependent variable is
equal to one, the dependent variable in the regression equation is observed.

The sample selection model connects the two equations by estimating a
correlation ρ between their disturbances. This correlation is implied, for
example, when an unobserved characteristic of the individual enters both the
wage and selection equations. When ρ is nonzero, estimation of the regression
equation in the selected sample where it is observed would result in biased
coefficients. To be precise, the model estimated by SAMPSEL is the
following:

124 Nonlinear Estimation

y1 = X1 b1 + e1 (y1 not observed)

d1 = 1 if y1>0

 = 0 if y1≤0

y2 = X2 b2 + e2 if d1=1

 not observed if d1=0

Var (e1) = 1 Var (e2) = σ
2
 Corr(e1,e2) = ρ

The selection (probit) equation and the regression equation are both specified
on the SAMPSEL command, separated by a vertical bar (|), with the variables
from the probit equation first. The wage and labor force participation example
mentioned above would be specified as:

SAMPSEL INLABF C SCHOOL EXP MARST | LWAGE C SCHOOL EXP ;

where INLABF is a zero/one variable (d1) and LWAGE is the logarithm of the
wage (y2).

The σ (SIGMA) and ρ (RHO) parameters are estimated jointly with the
coefficients of both equations. SAMPSEL stores the fitted probabilities and
implied inverse Mills ratio for the probit equation, as well as the residuals for
the observed subset of observations. See the Reference Manual for further
information about SAMPSEL's output.

Consistent estimates of the sample selection model can also be obtained with
Heckman's two-stage method. This method involves estimating the selection
equation with PROBIT, and using the inverse Mills ratio function of the probit
residuals (stored by PROBIT in @MILLS) as an extra variable in a regression
over the selected sample. For example, the example model described above
could be estimated by the following commands:

PROBIT INLABF C SCHOOL EXP MARSTAT;
SMPLIF INLABF;
OLSQ(ROBUST) LWAGE C SCHOOL EXP @MILLS;

Unfortunately, the conventionally estimated standard errors for the coefficients
obtained by OLSQ in this case are not consistent estimates. Better estimates

 9. Qualitative dependent variable models 125

can be obtained, however, by using the ROBUST option in OLSQ to compute
heteroskedastic-consistent standard errors, although even these estimates do
not correct for the fact that the inverse Mills’ ratio contains estimated
parameters. A second consideration is that the Heckman procedure is not fully
efficient, because it is a two-step procedure with a non-diagonal information
matrix. Therefore, the maximum likelihood procedure SAMPSEL will produce
more efficient estimates (under the assumption of normal disturbances). See
Section 8.8 for an example of testing for heteroskedasticity with SAMPSEL.

In practice, extra identifying variables in the selection equation are useful.
Without them, the @MILLS term in the regression equation can be a proxy for
left-out nonlinear functions of the right-hand-side variables. Accordingly, a
correct functional form specification of the regression equation is quite
important, as is the validity of the normality assumption. For information on
estimating this model semi-parametrically, see the article by Powell in Volume
IV of the Handbook of Econometrics.

It is also possible to use SAMPSEL to estimate models where only the selected
sample is observed (the dependent variable in the selection model is always
one for the observed data). See Bloom and Killingsworth (1985). However,
identification of the parameters of the selection equation comes entirely from
the implied weighting of the observed data by the normal cumulative
distribution function, because there is no longer a separate probit equation in
the likelihood function. In practice, this makes it difficult to obtain
convergence.

9.4 Multinomial and conditional logit: LOGIT

When the dependent variable involves two or more discrete choices, the logit
model can be a good way of examining the determinants of these choices. In
the case of only two choices, it provides an alternative to the probit model;
estimates from the two models will be very similar (see below). Logit models
have different names and slightly different specifications, depending on
whether the data or coefficients are choice-specific or chooser-specific.
Multinomial logit has chooser-specific regressor variables and their
coefficients vary over the choices. Conditional logit has choice-specific
regressor variables and their coefficients are equal over all choices. Mixed
logit involves both types of data and coefficients.

McFadden (1973, 1976, 1985) pioneered the use of the logit model in
econometrics. The underlying model for most econometric applications
involves latent value (utility) equations for each choice. For example, the

126 Nonlinear Estimation

following latent value equations apply to a model with three choices, with
multinomial variable X that has coefficients (β1,β2,β3) and conditional variables
(Z1,Z2,Z3) that have coefficients γ:

V1 = a1 + Xβ1 + Z1γ + e1

V2 = a2 + Xβ2 + Z2γ + e2

V3 = a3 + Xβ3 + Z3γ + e3

The latent values V1,V2,V3 are not observed, but the chosen alternative is the
one with the highest value. If alternative 2 is chosen, for example, we know
that V2 > V1 and V2 > V3. If the disturbances e1,e2,e3 have the Generalized
Extreme Value distribution, the observed choice probabilities have the form

1

exp()
Pr(|)

exp()

i i i

J

j j j

j

a X Z
i chosen choice set J

a X Z

β γ

β γ
=

+ +
=

+ +∑

In this case, the likelihood function is computationally simple, and the
estimation method converges rapidly.

The LOGIT command resembles a regression command with the dependent
variable followed by a list of the choice-specific (conditional) variables, and
then a list of chooser-specific (multinomial) variables. The two lists are
separated by a |. For example, the model outlined above is estimated with the
command:

LOGIT(NCHOICE=3,COND) Y Z | C X ;

When multinomial variables are used, the model is identified by normalizing
the multinomial coefficients of the first choice to zero. In the case of two
alternatives, this provides compatibility with the PROBIT command, which
effectively uses the same normalization; although the coefficients are larger in
LOGIT by a factor of approximately 1.6, due to the larger standard deviation
of the GEV disturbances.

Conditional logit models may have a variable number of choices per chooser,
because it is the regressor variables that vary for each choice, while the
coefficients are fixed across choices. When setting up data for this model, use
one observation for each choice, instead of one observation per chooser. An
additional variable, either case number, or number of choices, is used to keep

 9. Qualitative dependent variable models 127

the observations for each chooser together. See the Reference Manual for
details. Remember that the constant C is not a legal conditional variable since
it does not vary across choices. Choice-specific intercepts may be obtained by
specifying C as a multinomial variable (after the |).

The basic logit model has a well-known shortcoming, the "Independence of
Irrelevant Alternatives" property, sometimes called the "Blue Bus/Red Bus"
problem. That is, in this model the ratio of probabilities between any two
choices is unaffected by the availability of a third choice. This property derives
from the independence assumption on the ei that is necessary to generate the
logit probabilities. Hausman and McFadden (1984) offer a specification test
for the consistency of logit estimates with the IIA property. If this test rejects,
there are two possible solutions to this problem within the logit framework; the
alternative is to use a more flexible joint distribution for the eis that allows
correlation among them such as the multivariate normal distribution, although
this is more difficult to implement.19

The nested logit model is another way to structure the alternatives so that some
are "closer" to each other than others. Although this model is not currently
implemented in TSP, it can be consistently estimated by using the
conventional LOGIT procedure in stages. The first stage would estimate the
bottom branch of a set of choices, and the succeeding stages would include a
predicted "inclusive value" based on the estimates of lower stages in the set of
independent variables. See Train (1986) or Manski and McFadden (1982) for
details. Also see Section 9.6.10 for an example of how to estimate the nested
logit model directly using the ML procedure and the TSP examples on the web
site for a more complex nested logit example.

Another method to avoid the IIA problem within the logit framework uses the
fact that logit models can be used to describe any set of choice probabilities,
not just those implied by the utility model and the GEV distribution
(McFadden 1975). In particular, to allow correlation among choices, include
variables describing other alternatives in the latent value function for one
alternative. The defect of this approach is that it does not specify how many or
which variables should be added, and therefore may require estimation of a
large number of parameters. Having a model of the possible relationships
among choices will help here.

19

 See the advanced examples on the TSP website for multivariate probit estimation, and

example 9.7.6 in this chapter for bivariate probit.

128 Nonlinear Estimation

9.5 Estimation with an Ordered Dependent Variable

In some models, the available outcomes have a natural ordering, such as when
a person has a low (coded as 0), moderate (1) or high (2) income. If the
boundaries between these categories are known, or the categories have a
natural scale, it could be estimated with a series of one or two-limit Tobit
expressions. If the outcomes have natural units, such as the number of doctor
visits, or the number of patents, then count data models are appropriate (see
the next section). The common feature of the models in this section is that
there is a single latent variable and hence only one disturbance, although there
are multiple possible outcomes. This is in contrast to the multivariate or
multinomial logit considered earlier and arises from the fact that the data have
a natural ordering.

9.5.1 Ordered Probit: ORDPROB, INTERVAL

Ordered Probit handles the case where the (ordered) boundary values are
unknown, and must be estimated. INTERVAL is just like Ordered Probit, but
where the boundary values are known. In this case they must be supplied to the
procedure using the LOWER and UPPER options; see the Reference Manual
for details on using INTERVAL.

In the model estimated by the ORDPROB procedure, there is a single latent
variable (Y*) that is not observed and which has a conditional normal
distribution:

Y
*
 = Xβ + ε ε ~ Normal (0,1)

20

The observed data is assumed to be generated from Y* in the following way:

Y = 0 if µ0 ≤ Xβ + ε < µ1

Y = 1 if µ1 ≤ Xβ + ε < µ2

Y = 2 if µ2 ≤ Xβ + ε < µ3

and so forth (Y is allowed to take on an arbitrary but finite number of values).
The smallest µ is assumed to be negative infinity and the largest µ is assumed
to be positive infinity, while the remainder are parameters to be estimated.
However, without loss of generality we can set µ1 equal to zero, so the model is

20

The variance is normalized to one because the scale of the underlying dependent

variable is not observed, just as in the binary Probit model.

 9. Qualitative dependent variable models 129

normalized in the same way as the binary Probit model when Y takes on only
two values.21 Therefore the total number of µs to be estimated is the number of
values which Y takes on less 2. The estimated µs (called MU) will be shown in
the table of coefficient estimates in the output.

Among other uses, Ordered Probit models are useful for estimating the
determinants of response to questions posed with a Likert scale. For example,
suppose the responses to a survey question about the success of a joint venture
are coded 1 through 5 with 1=very successful, 2=moderately successful, and so
forth. Then we could define the variable ANSWER with values equal to 0
through 4 (1 through 5 would also work fine) and estimate the relationship
between success and its determinants using an ORDPROB statement of the
following kind:

ORDPROB ANSWER C X1 X2 ;

Interpretation of the estimated coefficients of an ordered probit model can be
slightly tricky, since the effect of increasing the value of a regressor on the
probability of Y taking on a particular value is that variable’s coefficient
multiplied by the difference in the densities at the two end points of the cell:

1

Pr()
[() ()]

j j

d Y j
X X

dx
φ µ β φ µ β β

+

=
= − − −

where φ denotes the normal distribution function. Obviously the sign of this
derivative can be different from the sign of β in some cases. For further details,
see Maddala (1983) or Greene (3rd edition, Chapter 19).

9.5.2 Count Data Estimation: POISSON, NEGBIN

Some dependent variables are integer counts, such as the number of patents or
number of accidents. Besides being integers, they are never negative (although
they may often be zero), and their variance often increases with their mean.
The Poisson and Negative Binomial use an exponential mean function exp(Xβ)
to guarantee that the mean cannot be negative. The Poisson model assumes the
variance equals the mean (“equidispersion”). The Negative Binomial model

21

This normalization implies that in general, you will wish to include an intercept (C)

in your list of independent variables, just as you would for PROBIT.

130 Nonlinear Estimation

assumes the variance is larger than the mean (“overdispersion”). In negative
binomial model 1, the variance is proportional to the mean, while in negative
binomial 2, the variance is a quadratic function of the mean.

Both of these models are similar to weighted nonlinear regressions, where the
weights are functions of exp(Xβ). This suggests that plain nonlinear regression
could be used if the variance is independent of the mean (a form of
“underdispersion”). Poisson and negative binomial estimation have the
advantage over unweighted nonlinear regression in that they will fit the lower
counts more tightly, at the expense of a worse fit for the higher counts. Of
course, they have the additional advantage of being the most efficient estimator
when the true distribution of the data is Poisson or negative binomial.

The POISSON and NEGBIN commands are invoked just like ordinary least
squares, with the dependent variable followed by the list of regressors or
independent variables. For example, to estimate a model where the number of
patents applied for is a function of R&D spending, firm size, and the industry,
use the following commands:

POISSON PATENTS LOGR LOGE SCISECT ;
NEGBIN (MODEL=1) PATENTS LOGR LOGE SCISECT ;
NEGBIN (MODEL=2) PATENTS LOGR LOGE SCISECT ;

All the usual nonlinear options may be included in these commands. The
POISSON procedure produces a test for the hypothesis that the conditional
mean of the data equals the conditional variance (which is an implication of
the Poisson specification). If this test rejects, the coefficient estimates may still
be consistent, but HCOV=N type standard errors would be quite
underestimated (for this reason, POISSON uses the consistent HCOV=W by
default). In this case, you may wish to consider using a negative binomial
specification.

9.6 General Maximum Likelihood Estimation: ML, EQSUB

The ML procedure provides a very general estimation method. You write the
likelihood function for an observation in a FRML statement, and TSP
maximizes it with respect to the parameters it contains, using the data in the
current sample. ML is quite powerful. It can compute analytic first and second
derivatives for use in iteration and in computing standard error estimates. For
example, the following commands will estimate a binary probit model (an
improved version of this example is discussed later in this section):

 9. Qualitative dependent variable models 131

FRML EQL LOGL = LOG((1-WORK)*CNORM(-A-B*X) +
WORK*(1-CNORM(-A-B*X)));

PARAM A,B;
ML EQL;

The automatic differentiation in ML is a great advantage over coding the
derivatives by hand in Fortran, Gauss, or Matlab (and especially in debugging
them). The disadvantage is that execution time is slower and numerical error
handling more difficult, so take care when writing the likelihood function to
minimize these problems.

Execution time can be reduced by simplifying the FRML as much as possible,
and eliminating repeated terms. Repeated terms are best handled with the
EQSUB (equation substitution) command, which guarantees that the repeated
term will be evaluated only once. EQSUB is also useful for changing the list of
explanatory variables in different parts of the likelihood function, so that it is
not necessary to rewrite the general equation. See the Reference Manual for a
fuller discussion of the power of EQSUB. Numerical errors are often reduced
by simplifying the function, but be careful to avoid operations like taking the
log of zero.

For example, the above probit could be rewritten in two ways. The first
involves minimum execution time, but may fail because of an attempt to take
the log of zero. It is the model above, with the CNORM(-A-B*X) term defined
in another equation, and its coefficient (called WORKYN) evaluated outside
the FRML since it depends only on the data and not on the parameters. The
EQSUB command is not strictly necessary here, but it is useful for changing
the variables in the model and avoiding repeated evaluation.

WORKYN = (1-WORKING) - WORKING ; ? recode (0,1) -> (1,-1)
FRML CNXB CNORM(-A-B*X);
FRML EQL LOGL = LOG(WORKING + CNXB*WORKYN);
EQSUB EQL CNXB;
? Substitute the expression for CNXB into the model.
PARAM A,B;
ML(HCOV=N) EQL;

The second way of writing the LOGL equation avoids the log of zero, but may
take slightly more execution time. Generally, this approach is preferred for
larger models where extreme values can result in negative arguments to the
LOG function. In this example, the function LCNORM(u) =

132 Nonlinear Estimation

LOG(CNORM(u)) and the relationship CNORM(u) = 1-CNORM(-u) are used.

NOWORK = WORKING = 0; ? (0,1) -> (1,0)
FRML XB A+B*X;
FRML EQL LOGL = NOWORK*LCNORM(-XB) +

WORKING*LCNORM(XB);
EQSUB EQL XB;
PARAM A,B;
ML(HCOV=N) EQL;

See the table below for comparative timings using these two methods. Several
other considerations for writing LOGL equations for ML are discussed in the
Reference Manual.

Figure 9.1 Comparative Timings in Seconds

Method Iterations 386
16Mhz

Pentium
266 Mhz

Pentium
526 Mhz

Observations 385 10,000 10,000

Canned Probit 10 5.9 2.3 0.5

ML example 1 11 98.1 9.0 3.4

ML example 2 11 10.0 4.3

As in LSQ, the likelihood function equation for the ML procedure may contain
logical expressions (such as WAGE>0 or GAMMA*(1-BETA)<=0). However,
be aware that if these logical expressions contain parameters to be estimated,
the likelihood function will not be differentiable over the whole parameter
space, and will not satisfy the usual regularity conditions that guarantee the
consistency and asymptotic normality of maximum likelihood estimates.
Therefore, take extra care in computing estimates with this type of likelihood
function (try several sets of starting values, etc.).

9.6.1 ML PROC

Some likelihood functions are difficult to write in terms of a single FRML,
especially time series models with recursive state variables, like GARCH and
models with MA(q) residuals. Other models in this class are the Kalman Filter
with hyperparameter estimation, simulation estimators like Multivariate Probit,
and models with concentrated likelihood functions (although these can often
be done in unconcentrated form). For these models, you write a PROC which
evaluates the log likelihood, taking as many commands as are necessary, and

 9. Qualitative dependent variable models 133

store the value of the likelihood in the scalar @LOGL. You then tell ML the
name of the PROC and give it a list of the parameters to be estimated. It uses
numeric derivatives, so it will not be as fast as the FRML method above, but at
least it is feasible. For example, the PROBIT model above can be estimated
(rather slowly) with:

PARAM A,B;
ML MYPROB A,B;
PROC MYPROB;

LOGL = LOG(WORKING + CNORM(-A-B*X))*WORKYN);
MAT @LOGL = SUM(LOGL);

ENDPROC;

Please see the TSP web page for more advanced examples of ML PROC.
There is also a simple ML PROC example in the TSP Reference Manual under
KALMAN, which shows one way to impose inequality constraints in the
Kalman Filter model.

9.7 ML examples

This section presents some examples of using ML. Some of these examples are
already built into TSP, like OLSQ, so normally you will not need to use them.
However, they can be convenient if you wish to modify the basic linear index
function in some way, or estimate a model that has common parameters in the
variance and the regression function. These examples are intended to give an
idea of the power of ML, and to provide hints about how to write the
likelihood function. See the previous section for an extensive Probit example
and the TSP website for many more examples of how to use the ML
procedure.

9.7.1 OLS

Here is ordinary least squares done with ML. This is not a recommended way
to do OLSQ!

FRML EQ1 LOGL = LOG(SIGI) + LNORM((Y-XB)*SIGI);
FRML EQXB1 XB = B0 + B1*X;
EQSUB(NAME=OLS) EQ1 EQXB1;
PARAM B0 B1 SIGI; SET SIGI = 1;
ML(HITER=N,HCOV=NBW) OLS;

134 Nonlinear Estimation

9.7.2 Box-Cox Transformation

Nonlinear regression is inappropriate for this model because the dependent
variable is not a linear function of the disturbance. To use the ML command
instead, you need to write the log likelihood, including the Jacobian.

LY = LOG(Y);
FRML EQB LOGL
 = LOG(SIGI) + LNORM(RESID*SIGI) + (LAM-1)*LY;
EQSUB EQB RESID;
PARAM A,1 B,1 LAM,.5 SIGI,1;
ML(HITER=N,HCOV=NBW) EQB;

Note that it is easier to do Box-Cox via FIML, since it will automatically
include the same Jacobian term as above. The unnormalized equation for Box-
Cox is the following:

FRML RESID (Y**LAM - 1)/LAM - (A + B*X);
FIML(ENDOG=Y) RESID;

9.7.3 Frontier production function model

The model is the following:

y = f(x,b) + e

e = -u + v

v ~ N(0,σ
2
); u>=0

For a frontier cost model use e = u + v. See Maddala (1983) pp. 194-196. Note
that the regularity conditions for asymptotic normality are not satisfied by this
model.

FRML RESID E = Y - A - B*X;
PARAM A,B;
FRML FRONTP LOGL = LOG(2) + LOG(SIGI) + LNORM(E*SIGI) +

LCNORM(-E*LAMBDA*SIGI);

? for a cost model, there would be no minus sign here.
PARAM LAMBDA,SIGI;
EQSUB FRONTP RESID;

 9. Qualitative dependent variable models 135

? crude starting values from OLS -- there are better ones available
OLSQ(SILENT) Y C X; UNMAKE @COEF A,B;
SET SIGI = 1/@S; SET LAMBDA = .1;

ML FRONTP;

9.7.4 Nested Logit

This example does nested Logit using ML, and includes an example of testing
for IIA. See the web site http://www.tspintl.com for a more complex and
general example.

The example below is for the simplest nested logit model, where the top
branch is a choice between alternative 1 (with characteristics X1) and the
lower branch. The lower branch is a choice between alternative 2 (with char.
X2) and alternative 3 (with char. X3). Alternatives 2 and 3 are correlated; the
inclusive value parameter is denoted lambda. Note that the coefficients of the
lower branch must be multiplied by lambda to obtain estimates that can be
compared to ordinary MN logit.

The likelihood for an individual observation is

LOGL = D(1 chosen)L(1|X) + D(2 chosen)L(2|X)
 + D(3 chosen)L(3|X)

where D(.) is a zero-one variable denoting which choice was made, and L(i|X)
is the likelihood of that choice conditional on the Xs.

Useful references are Maddala (1983), p. 71 (with lambda=1-sigma) and
McFadden (1987), pp. 63-82.

? Define Nested Logit Model.
DOT 1-3 ;

FRML XB.N (BETA.2+BETA1*X.1+BETA2*X.2)/LAMBDA ;
ENDDOT ;
FRML SUM23 EXP(XB2N) + EXP(XB3N) ;
FRML DENOM EXP(XB1N) + SUM23**LAMBDA ;
FRML NLOGIT -LOG(DENOM) + Y_1*XB1N
 + Y_2*((LAMBDA-1)*LOG(SUM23)+XB2N)
 + Y_3*((LAMBDA-1)*LOG(SUM23)+XB3N) ;
EQSUB NLOGIT DENOM SUM23 XB1N-XB3N ;

136 Nonlinear Estimation

TITLE "Multinomial Logit using Nested Logit Likelihood' ;
PARAM BETA02 -1 BETA03 -1 BETA1 1 BETA2 1 ;
CONST BETA01 0 ; ? One of the intercepts must be set to zero.
CONST LAMBDA 1 ; ? Collapses to MN Logit model when lambda=1.
? These estimates are for the null hypothesis.
? They are efficient if IIA holds (lambda=1).
ML NLOGIT ;
? Save results for the Hausman-McFadden test below.
COPY @LOGL LOGL0 ;
COPY @COEF BETAE ;
COPY @VCOV VCOVE ;

TITLE 'Nested Logit Model with upper branch 1, (2,3)' ;
PARAM LAMBDA ;
ML NLOGIT ;
COPY @LOGL LOGL1 ;

TITLE 'Wald-type test for IIA' ;
FRML WALD4IIA 1-LAMBDA ;
ANALYZ WALD4IIA ;

TITLE 'Likelihood ratio test for IIA' ;
SET LR4IIA = -2*(LOGL0-LOGL1) ;
CDF (CHISQ,DF=1) LR4IIA ;

? Hausman-McFadden Test for IIA (dropping first alternative).
? Note that proc haustest adjusts for coefficients that are not
? identified in the reduced (consistent) model. (beta02)
? First we estimate the lower branch of the model; estimates are
? consistent even if IIA property does not hold.
FRML NLOGIT2 -LOG(SUM23) + Y_2*XB2N + Y_3*XB3N ;
EQSUB NLOGIT2 SUM23 XB2N XB3N ;
CONST LAMBDA 1 ;
SELECT Y>1 ; ? Sample: subset that chooses 2 or 3.
ML (SILENT) NLOGIT2 ;

TITLE 'Hausman-McFadden Test for IIA' ;
COPY @COEF BETAC ; COPY @VCOV VCOVC ;
? See section 13.4.1 for this procedure.

 9. Qualitative dependent variable models 137

HAUSTEST BETAE VCOVE BETAC VCOVC ;

9.7.5 Switching regression

A disequilibrium model can be estimated using switching regression. The
observed quantity, Y, is the minimum of the quantity supplied (equation 1) and
the quantity demanded (equation 2). The sample selection is unknown, i. e., for
any given observation on price and quantity, it is not known whether it is
supply or demand constrained. Reference: Maddala (1983), p.298 (10.21).

FRML U1EQ U1 = (Y-(B01-B11*P-B21*X1)) ;
FRML U2EQ U2 = (Y-(B02-B21*P-B22*X2)) ;
FRML LOGLEQ LOGL = LOG((NORM(U2/SIG2)/SIG2) *

(1-CNORM(U1/SIG1))
 + (NORM(U1/SIG1)/SIG1) *

(1-CNORM(U2/SIG2))) ;
EQSUB LOGLEQ U1EQ U2EQ ;

? Use OLS to obtain starting values for ML estimation.
OLSQ Y C P X1 ;
UNMAKE @COEF B01 B11 B12 ;
SET SIG1 = @S ;
OLSQ Y C P X2 ;
UNMAKE @COEF B02 B21 B22 ;
SET SIG2 = @S ;

? Now do MLE on switching regression model.
PARAM SIG1 SIG2 B01 B02 B11 B12 B21 B22 ;
ML LOGLEQ ;

9.7.6 Bivariate probit model

? Uses the CNORM2(z1,z2,rho) function.
? Make the X*B1 and X*B2 equations, in the form
? FRML EQ1 XB1 = B1_0 + B1_X1*X1 + B1_X2*X2 + ...

FORM(VARPREF=B1_,PARAM) EQ1 XB1 XS;
LIST B1S @RNMSF;
? PARAM names from FORM are stored in @RNMSF
FORM(VARPREF=B2_,PARAM) EQ2 XB2 XS;
LIST B2S @RNMSF;

138 Nonlinear Estimation

? Log likelihood, which uses CNORM2().
? Notation follows Greene's "Econometric Analysis", 2nd ed., p.661.
FRML BIVPROB LOGL = LOG(CNORM2(Q1*XB1, Q2*XB2,

Q12*RHO));
EQSUB BIVPROB EQ2 EQ1;

? The Q1 and Q2 variables exploit the symmetry of the bivariate
? normal density. They allow the probability to be evaluated by
? CNORM2, which integrates the lower left quadrant. The probability
? of all but Y1=0 & Y2=0 are other quadrants, but they can be
? translated to the lower left quadrant by using Q1 and Q2.
Q1 = 2*Y1 - 1; ? Q1=1 IF Y1=1; Q1=-1 IF Y1=0;
Q2 = 2*Y2 - 1;
Q12 = Q1*Q2;
PARAM RHO;

? Starting values via individual probits
PROBIT(SILENT,MILLS=MILLS1) Y1 XS; UNMAKE @COEF B1S;
PROBIT(SILENT,MILLS=MILLS2) Y2 XS; UNMAKE @COEF B2S;
CORR(SILENT) MILLS1 MILLS2; SET RHO = @CORR(2,1);
ML(HITER=N,HCOV=WN) BIVPROB;

9.7.7 Hazard function

This log-linear hazard rate example is a variation of the Weibull model. See
Lancaster’s book (1997) for further information.

P(X,t) is the conditional probability that an individual who is employed at time
t is still employed at time t+1 (employment hazard rate).

 P(X,t) = 1/[1+exp(Xb + a*t)]

For a person who become unemployed at time T, the likelihood function is

P(X,1)*P(X,2)*...*P(X,T-1)*[1-P(X,T)]

SMPL 1 NOBS ;
T = INT(EXP(LOGT)+.999) ;
MSD T LOGT X ;
HIST (DISCRETE,NBINS=100,WIDTH=1) T ;
SMPLIF T>=0 & T<21 ;

? The program below shows how to automate the likelihood function

 9. Qualitative dependent variable models 139

? construction if you know the maximum number of periods of
? observation.
? FRML HAZARD LOGL = TERMS +(XB + A*T) - LOG[1+EXP(XB +

A*T)];
? TERMS + LOG[1-P(X,T)]

FRML TRICK MORE = TERMS;
SET TI = 0;
DOT 1-20; ? E.g., the maximum for T is 20
SET TI = TI+1;
SET T. = TI; ? T1=1, T2=2, etc.
FRML TERMS -(T>T.)*LOG(1+EXP(XB + A*T.)) + MORE;
? this term is non-zero if t > t.
EQSUB HAZARD TERMS TRICK;
? the trick turns more back into terms
ENDDOT;
PRINT HAZARD ;
FRML XB B0 + B1*X ; ? Xb formula -- user-defined
 ? t is the "dependent variable"
FRML LAST TERMS = 0;
EQSUB HAZARD LAST XB;

? Maximum likelihood estimation.
ML (MAXIT=50) HAZARD;

140 Nonlinear Estimation

10. NONLINEAR METHODS AND OPTIONS

The estimation procedures described in the previous chapters -- LSQ, FIML,
PROBIT, TOBIT, SAMPSEL, LOGIT, and ML, involve iterative methods. In
this chapter, we describe the methods used to converge to a solution. Many
options are available in the event that convergence is difficult to obtain, while
other options allow the calculation of alternate standard errors for the estimated
parameters.

10.1 Nonlinear methods for estimation

All of TSP's nonlinear statistical techniques involve the minimization of a
criterion function, Q, over the parameters. For single equation least squares the
criterion is the sum of squared residuals, while other estimators use more
complicated criteria such as (minus) the log of the likelihood function. The
minimization strategy is always the same and we give a brief summary of it
here. In general, the methods used are gradient methods and make use of
analytic derivatives of the model obtained internally by TSP. The user may
request numeric derivatives with the GRAD= option (see the Reference

Manual for details).

Consider the objective function Q as a function of the parameter vector b:

Q(b). Let d be a vector of the same dimension as b with the property that Q
decreases in the direction defined by d. By a Taylor series expansion, d will be
approximately equal to H-1

g, where g is the gradient of the function Q with
respect to b and H an approximation to the Hessian matrix (the second
derivatives of Q with respect to b). Q(b+εd) will be a decreasing function of
the scalar ε, at least for very small values of ε, since g is a gradient and H is
positive definite.

TSP proceeds iteratively in the following way: at the beginning of iteration i,
parameter values bi-1 are available. TSP computes the change vector d from
g(b) and H(b). Next it checks for convergence, defined as sufficiently small
elements of d. For each parameter (indexed by j), |dj| must be less than a
prescribed tolerance, TOL, or |dj/bj

i-1
| must be less than the same tolerance.

The exact formula used is

1| | | | *10)−≤ +i

j jd TOL b TOL

If convergence has not been achieved, TSP goes on to find a better set of

 10. Nonlinear Minimization Methods and Options 141

parameters, bi. It first tries

b
i
 = b

i-1
 + d

If bi is better, i.e., if

Q(b
i
) < Q(b

i-1
),

the iteration is complete and the next one begins with the parameter b
i.

Otherwise, TSP begins to try parameter vectors of the form

 b
i
 = b

i-1
 +ε d

first for the stepsize ε = 1/2, then ε = 1/4, and so on. This process is called
"squeezing" and continues until a better b

i is found or a squeeze limit is
exceeded. If squeezing is successful, TSP goes on to a new iteration. If it fails,
iteration stops and a message is printed. The whole iteration process continues
until convergence, or until the iteration limit, MAXIT, is reached. Results are
printed whether or not convergence has been achieved, since the process is
often close to convergence (how close can be seen by examination of the last
value of CRIT=, which is approximately equal to the average error in the
parameters squared). These results need to be interpreted with care, and are
statistically meaningless if the process is far from convergence.

10.2 General convergence hints

Several options control this iteration process, and may be useful for reaching
convergence in highly nonlinear or barely identified models. In general,
starting values are most critical for success with difficult problems, but
iteration methods may help somewhat. Starting values obtained from alternate
consistent estimators, such as those based on smaller incomplete models are
usually useful. An example would be to use single equation estimates before
estimating all the equations jointly. Problem parameters are identified by
checking the CHANGES (d) row in the output for especially large values.
These parameters can be held fixed by use of the CONST statement, reducing
the dimension of the parameter vector until the remaining parameters have
converged. Then the problem parameters can be re-entered with a PARAM
statement, possibly with additional experimentation in their starting values.
Large CHANGES values can also indicate lack of identification in the current
data set, even if the model is theoretically identified.

Grid searches can be performed to obtain starting values for critical
parameters. DO loops are ideal for this purpose, since the index and step
variables need not be integers (see Section 12.1 for more information on DO).

142 Nonlinear Estimation

For example, AR1(METHOD=HILU) Y C X; could be done with:

FRML EQA Y = A + B*X + RHO*(Y(-1)-A-B*X(-1));
PARAM A,B;
DO RHO = -.95 TO .95 BY .1;
 LSQ EQA;
ENDDO;

Iteration options can also help obtain convergence for some models. These
options are explained in detail below; they are also discussed in the
NONLINEAR section of the Reference Manual.

10.3 Diagnostic printing: the print options

The first step in tackling a difficult convergence problem is to insure you are
getting enough diagnostic output.

The SILENT option suppresses all iteration output, except a possible
non-convergence message with full display of function values and changes in
the last iteration. It is useful only when convergence is certain. A more useful
option for general use may be the TERSE option, which reduces the printout to
only the value of the criterion function at convergence and the usual table of
estimated coefficients and their standard errors. This option is convenient
when you are performing a series of estimations and already know that the
model is well-behaved.

Slightly more output is provided by the default NOPRINT option, which
displays the starting values. For each iteration, it prints the function values F =

Q(b
i-1

) and FNEW = Q(b
i
), squeeze level (ISQZ, STEP or STEPSIZE = ε), and

gradient norm (CRIT or CRITERION = g'H
-1

g or d'Hd). The gradient norm is
the length of the gradient in the metric of the Hessian approximation. This
should always decrease; otherwise, convergence will be difficult to obtain. At
convergence, the number of iterations and function evaluations (the value of Q
corresponding to different values of b) is displayed.

The PRINT option includes all the above output, along with current parameter
values and their changes (the d vector) at each iteration. The complete list of
iteration options is also displayed at the start.

The VERBOSE option displays g, H, and H-1 at each iteration and is useful
mainly for debugging especially difficult problems.

 10. Nonlinear Minimization Methods and Options 143

10.4 Numerical error handling

Some nonlinear equations involve functions sensitive to bad or unrestricted
parameter values. For example, SQRT is defined only for non-negative values,
LOG is defined only for positive values, and EXP typically causes problems
for arguments larger than about 88 (on most computers). Again, starting values
are important, but some diagnostic output is provided to help solve the
problem. When numeric errors are encountered, the offending observation
number and argument value are printed for the first 10 occurrences. If this
occurs during a derivative evaluation, the number(s) of the parameter(s)
involved are printed.

TSP requires that the starting values be good enough so that no numeric errors
are encountered in the initial function and derivative evaluation, although it
allows them during the stepsize search. A valid Q value is required for testing
iterative improvement, while a valid d (i.e., g and H) is required for calculating

b
i. Otherwise it is not possible to do any iterations. If there are outliers in the

dataset, it may be useful to drop them from the sample (at least until better
starting values are found).

During iterations, numeric errors in evaluating Q are not a problem, since ε is
squeezed repeatedly until the numeric errors stop. Eventually bi will be close
to the valid bi-1 if squeezed far enough. Numeric errors in derivatives are still a
potential problem, but are less likely to occur since the derivatives are only
evaluated when a valid and improved Q has been found.

If a problem requires restricting a parameter to a certain range, often the best
solution is to enter the parameter in a functional form, making this restriction
explicit. For example, if a parameter is restricted to be non-negative, it can be
entered into the equation(s) as its square (for example, B*B instead of just B).
To restrict a parameter B to the range [a,b], use the function
a+(b-a)*CNORM(B). ANALYZ can be used after estimation to obtain a
standard error for the parameter of interest using the delta method.

You may find writing this parameter using EQSUB useful in this case. For
example, suppose you want to estimate a regression model where the
parameter B lies between zero and one. Use the following commands:

FRML B CNORM(D) ; ?Constrains B; D can take on any value.
FRML EQ Y = A + B*X ; ? Model and substitution for B.
EQSUB EQ B ;

144 Nonlinear Estimation

PARAM A D ; ? A and D are parameters of model.
LSQ EQ ; ? Estimate
ANALYZ B ; ? Derive estimate of B and its standard error.

10.5 Hessian and gradient methods: HITER, HCOV

Iteration algorithm options give variations in computing H and g, the
components of d. (For more information on the numerical analysis of the
problem see Gill, Murray, and Wright 1981.) The HITER=B or N or G or D
option specifies the method of approximating H during the iterations. This
may be different from HCOV=, which specifies the method of approximating
H when computing the covariance matrix (and thus standard errors) for the
parameters at convergence. The HCOV= option allows for printing more than
one set of standard errors (and asymptotic t-statistics) for a given set of
estimated coefficients, by specifying an option like HCOV=NBW instead of
just HCOV=N. Depending on the estimation command (LSQ, FIML,
PROBIT, ML, etc.), the available options for HITER= and HCOV= vary.
Check the Reference Manual for further details.

HITER=B ("BHHH") specifies use of the Berndt-Hall-Hall-Hausman method.
It uses the covariance of the analytic gradients for each observation to form H.
It has the advantage of being easy to compute and is guaranteed non-negative
definite as long as the number of observations is greater than the total number
of parameters.

HITER=N ("Newton") uses analytic second derivatives to form H. This may
be time-consuming to compute for nonlinear models, but provides faster
convergence near the solution.

HITER=G ("Gauss") is standard for LSQ and FIML, and involves a quadratic
form in the derivatives of the residuals with respect to the parameters, around
the estimated residual covariance matrix.

HITER=D ("DFP") uses the Davidon-Fletcher-Powell method to update H at
each iteration based on the gradient and parameter changes (the initial H is an
identity matrix). It also implies the use of numeric derivatives to compute g.
Analytic derivatives are the default method for computing g. HITER=D is only
useful in the most extreme cases, for bad starting values, because it is very
slow. The SYMMETRI option specifies use of the most accurate (and
time-consuming) numeric derivatives.

 10. Nonlinear Minimization Methods and Options 145

HITER=F (“BFGS”) uses the Broyden-Fletcher-Goldfarb-Shanno algorithm
with analytic first derivatives and a rank one update approximation to the
Hessian (like DFP, but somewhat improved).

There are two HCOV= options that are not used for HITER= :

HCOV=W ("Eicker-White") computes standard errors based on a combination
of the BHHH and Newton matrices. Useful for some forms of misspecification
in maximum likelihood estimation and for heteroskedastic errors in all
estimation procedures.

HCOV=R ("Robust") computes standard errors robust to heteroskedasticity.
Used in LSQ only, this is equivalent to the old ROBUST option, and is a
synonym for the W option.

10.6 Squeezing: STEP, MAXSQZ

The algorithm that generates successive values of the stepsize is chosen by the
STEP option. The default STEP method depends on the HITER option and on
the estimation procedure. The available methods are CEA, BARD, CEAB,
BARDB, and GOLDEN.

STEP=CEA is the simplest method. ε = 1, .5, .25, ..., 2**(-ISQZ). This is the
default for HITER=N and HITER=B (procedures like PROBIT and ML).

STEP=BARD uses a local quadratic approximation to the function value based
on the previous value of ë. It is also bounded in the interval [.75ε,.25ε]. A
typical sequence could be ε = 1, .25, .0625, This is the default for LSQ with
HITER=G.

STEP=CEAB is the same as CEA, but if ε = 1 improves the objective function,
ε = 2, 4, ... etc. are used to see if they result in further improvement. This
method may be useful if ε = 1 is always improving the function, but only
slowly, and the elements of d always have the same sign. This is FIML's
default with HITER=G.

STEP=BARDB is the analogous extension to ε > 1 for BARD.

STEP=GOLDEN is a bracketing method that tries smaller and larger ε values
even after a ε has been found which improves the objective function. The
bracketing stops with the current best value of ε when MAXSQZ is reached or

146 Nonlinear Estimation

when ε has been determined up to the tolerance specified in the SQZTOL
option. The default value of SQZTOL is 0.1. GOLDEN is the default for
HITER=D.

The MAXSQZ option limits the total number of ε values attempted in a given
iteration. The default value of MAXSQZ is 10 for all STEP options except
GOLDEN, where the default value is 20. If ISQZ > MAXSQZ, the message
"FAILURE TO IMPROVE OBJECTIVE FUNCTION (MAXSQZ)" will
appear. Increasing MAXSQZ will not automatically eliminate this problem;
first check the CHANGES row to see which parameters are causing the
trouble. Better starting values for those parameters may help.

10.7 Iteration options: MAXIT, TOL

The MAXIT option specifies the maximum number of iterations. The default
is 20 for all procedures. If MAXIT is exceeded, the message
"CONVERGENCE NOT ACHIEVED AFTER n ITERATIONS" will appear.
It may be useful to increase MAXIT if you have many parameters. However, if
the CRIT value (section 10.3) is not decreasing smoothly, the objective
function may be very non-quadratic near the current parameter values, so
changing MAXIT may not help (again, better starting values may help).

The TOL option checks for convergence at the start of each iteration (section
10.1). The default value is 0.001 for all procedures. Usually there is little
reason to increase TOL, except possibly to reduce the number of iterations in
preliminary runs. TOL can be decreased if extremely accurate parameter
values are desired.

 11. Estimation Using Time Series Data 147

11. ESTIMATION USING TIME SERIES DATA

The analysis of discrete time series data is central to econometrics, particularly

macroeconometrics. The original name of TSP itself (Time Series Processor)
recognizes this fact. All procedures in TSP are designed to operate on time
series as well as on other kinds of data. This chapter describes the procedures
in TSP specific to time series data, and gives some hints on working with such
data.

You have already encountered the simplest of such procedures in AR1: the
Almon and Shiller distributed lag variables, and the Durbin-Watson and
Durbin (1970) test procedures for autocorrelation of the disturbances of a
regression model. This chapter describes many more: identification,
estimation, and simulation of a simple time series process using Box-Jenkins
techniques, estimation of a vector (the VAR procedure), estimation of
GARCH-M (Generalized Auto-Regressive Conditional Heteroskedasticity with
a conditional Mean term) models, estimation with a Kalman Filter, and testing
for unit roots and cointegration (COINT/UNIT).

We first review the basics of time series in TSP (such as operations on lags and
leads), and then discuss methods for estimating a single time series process
using the Box-Jenkins (ARIMA) methodology. This is followed by
descriptions of two other models that are widely used in the estimation of time
series models: the GARCH-M model, which allows for conditional
heteroskedasticity of the disturbances, and the Kalman Filter model, which is a
form of time-varying parameter model. We then discuss the use of vector
autoregressions (VARs) to estimate dynamic linear relationships among
several time series variables. The last subject is unit root and cointegration
testing.

11.1 Techniques for time series data

Chapter 3 introduced the basic features that make time series data easy to
handle in TSP: the FREQ command and lagged variables. This section reviews
these concepts and gives a bit more information on using time series in TSP.

FREQ is used to specify the frequency of time series data; having done that
enables you to specify observations using a convenient date format such as
75:4 for the 4th quarter of 1975 (rather than having to use the sequence
number of the observation). Currently, TSP allows the use of annual, quarterly,

148 Advanced Methods

monthly, weekly or undated data, as well as a special frequency structure
called panel for time series-cross section data (see Chapter 15 for more
information on this). A frequency is a characteristic permanently attached to
each time series (and stored with the series in any databank), so that TSP can
always check that you are using series that conform (are of the same
frequency) to the current working FREQ and SMPL you have specified. You
can convert series from one frequency to another with the CONVERT
command (see Section 11.1.1).

It is easy to lead or lag a variable in TSP. The notation X(-1), X(-2), etc. means
the observation on X is one, two, or more periods prior to the current one. In
computing this, the current SMPL is ignored. That is, if the SMPL is 1960 to
1972, 1976 to 1990, the value of X(-1) in 1976 is that for 1975, not that for
1976. In this case, if you specify X(-1) and the observation for 1975 is missing,
you will receive a warning for some procedures and an error for others.

The notation X(+1) or X(1) denotes the observation on X one period after the
current one. Missing values for leads are handled in the same way as for lags.
One feature of TSP you may find useful if you want to include many lags in a
regression or other procedure is the ability to specify a variable list with lags.
For example, the expression X(-1)-X(-16) means all the variables X(-1) X(-2)
X(-3) ...X(-15) X(-16). See LIST in the Online Help System or Reference

Manual for more on specifying variable lists.

11.1.1 Changing the frequency of a series:
CONVERT

Sometimes data is organized as monthly observations but you wish to use
quarterly data for analysis. Or perhaps some of your series are quarterly but
one series is available only annually. The CONVERT procedure can change a
series frequency to a new frequency. It uses one of several methods: averaging
the data (the default); choosing the first, last, or middle observations; or
summing the data. Each method is appropriate for different kinds of data. A
flow variable such as investment would be summed to obtain the total
investment in the new longer period, but a stock variable might be averaged or
the first or last observation chosen depending on the importance of timing in
your use of the variable.

To convert a sales series from monthly to quarterly, use the following sequence
of commands:

FREQ Q ; SMPL 75:1 82:4 ;

 11. Estimation Using Time Series Data 149

CONVERT (SUM) SALES ;

SALES was a monthly series running from 75:1 to 82:12 ; We specified the
sample as quarterly and gave the new range in terms of quarters so the
CONVERT procedure would know that we wanted to convert from monthly
(the frequency of SALES) to quarterly (the current frequency). Because it
would be confusing (and risky) to mix frequencies in a series, CONVERT
ignores the current sample range and converts the whole series no matter what
you have specified as the SMPL.

If you want to preserve the old version of the series and save the new one, use
this form of CONVERT:

CONVERT(SUM) SALESQ = SALES ;

Be aware, however, that you will not be able to use the old series SALES in
other procedures after the new frequency has been specified. Series with
different frequencies cannot be mixed in the same procedure (with the
exception of CONVERT, of course).

When converting from a lower frequency, straight line interpolation can be
used to compute the intervening points. Use the INTERPOL option to do this.
The other convert options (SUM, etc.) can also be used.

FREQ M ; SMPL 75:1 82:12 ;
CONVERT(INTERPOL) SALESM = SALES ;

FREQ W (weekly) can be converted to quarterly, but not to monthly.

11.2 Box-Jenkins (ARIMA) models

One disadvantage of using structural econometric models for forecasting is that
you need to know a great deal about the variables being modeled. In particular,
to obtain a simulation over several periods in the future, you need to know the
values for all the exogenous variables in the model over the forecast period.
For this and other reasons, some forecasters use the ARIMA (AutoRegressive
Integrated Moving Average) or Box-Jenkins forecasting method. This method
only uses a series' own lagged values to forecast its future values. If the series
follows a stationary stochastic process without too much drift or noise, this
method can work well, at least over the short term. (See Section 11.6 for
discussion of testing for unit roots in the process.) ARIMA models can be
thought of as a sophisticated extrapolation method.

150 Advanced Methods

In this section, we discuss how TSP obtains univariate ARIMA forecasts. We
strongly recommend that users who are interested in this technique refer to one
of the standard references for further details. The basic reference on the subject
is Box and Jenkins (1976). Two other elementary books that focus on this
method are Nelson (1973) and Van Daele (1983). The Pindyck and Rubinfeld
text is also recommended; Section 3 of this bood is entirely devoted to time
series models.

Box-Jenkins forecasting is traditionally divided into three parts: identification
(determining the form of the time series process the variable follows),
estimation (estimating the parameters of the process), and forecasting
(extrapolating the process beyond the estimation period using the estimated
parameters). In TSP these three steps correspond to the procedures BJIDENT,
BJEST, and BJFRCST. Because these procedures have most of the same
options, and share their values, once you have specified a set of options for
BJIDENT, they are automatically assumed for any subsequent Box-Jenkins
procedure, unless explicitly changed.

11.2.1 Identification: BJIDENT

Suppose you have a product’s monthly sales data from 1978 through the
middle of 1987, and you assume that whatever time series process generated
the data is stationary (at least after differencing). Such a series is shown in

Figure 11.1. To look at some characteristics of this process, you can use a
BJIDENT command to display the autocorrelations and partial autocorrelations
of the series:

BJIDENT (NDIFF=1,NSDIFF=1,NLAG=12,NLAGP=12) MSALES ;

Since you suspect that the original series may not be stationary, the NDIFF
option specifies that the correlations be computed for the first differenced
series, as well as for the original series. Similarly, the NSDIFF option specifies
that seasonal differencing is to be performed. BJIDENT determines the
periodicity of the seasonal factor from the frequency of your current sample; in
this case the FREQ is monthly, and observations 12 periods apart would be
differenced. If you have not specified a FREQ as part of your SMPL, you will
have to supply the seasonal span as the NSPAN option on the BJIDENT
command.

NLAG and NLAGP options specify the number of autocorrelations and partial
autocorrelations to be computed, that is, the length of the lag over which they

 11. Estimation Using Time Series Data 151

are to be computed. The default value is 20.

BJIDENT's output consists of plots of the series, both differenced and
undifferenced, followed by a printout of autocorrelations and partial
autocorrelations, their standard errors, and Q-statistics (Ljung-Box statistics,
see Harvey (1993), p. 212) for the hypothesis that all autocorrelations of higher
order are zero. Correlations are also plotted in what is called a correlogram and
a partial correlogram. These can be quite useful in trying to determine the form
of the process. Consult Box and Jenkins or Nelson for examples of the
correlograms associated with various time series processes. The
autocorrelations, partial autocorrelations, and inverse autocorrelations are also
stored under the names @AC, @PAC, and @IAC.

Some of the output of BJIDENT is given in Figure 11.2, which shows the
autocorrelations and partial autocorrelations for the series after it has been first
differenced and seasonally differenced at lag 12. In our example, the series
appears to be nonstationary in levels but stationary in first differences. There
appears to be a seasonal effect at 12 month intervals. The correlogram for the
first differenced series suggested that the data be fit by a first order moving
average error process, since there were no significant autocorrelations after the
first.

Figure 11.1 Series to be analyzed by Box-Jenkins

75 80 85

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8 Monthly Auto Sales

152 Advanced Methods

Figure 11.2 Sample output from BJIDENT

 12

Series: (1-B)(1-B) MSALES

 Mean = -0.21863640E-02

 Std. Error = 0.13924593

 Lags

Autocorrelations -0.989E-01-0.218 0.739E-01-0.433E-01

Standard Errors 1- 4 0.774E-01 0.781E-01 0.817E-01 0.821E-01

Q-statistics 1.66 9.79 10.7 11.1

.........

Autocorrelations 0.461E-01-0.740E-01-0.405E-01-0.319

Standard Errors 9-12 0.845E-01 0.846E-01 0.850E-01 0.851E-01

Q-statistics 16.9 17.9 18.2 36.7

 12

Autocorrelation Function of: (1-B)(1-B) MSALES

 -1.00 -0.33 0.33 1.00

 |-+---------+----0----+---------+-|

 1 | +R| + | -0.098943

 2 | R+ | + | -0.21792

 3 | + |R+ | 0.073865

 4 | +R| + | -0.043341

 5 | R | + | -0.14271

 6 | + |R+ | 0.061075

 7 | + |R+ | 0.064999

 8 | + |R+ | 0.055744

 9 | + |R+ | 0.046130

 10 | +R| + | -0.074030

 11 | +R| + | -0.040502

 12 | R + | + | -0.31860

 |-+---------+----0----+---------+-|

 -1.00 -0.33 0.33 1.00

 12

Partial Autocorrelation Function of: (1-B)(1-B) MSALES

 -1.00 -0.33 0.33 1.00

 |-+---------+----0----+---------+-|

 1 | +R| + | -0.098997

 2 | R+ | + | -0.23109

 3 | + R + | 0.026145

 4 | +R| + | -0.086823

 5 | R | + | -0.14541

 6 | + R + | -0.0033774

 7 | + R + | 0.012400

 8 | + | R | 0.10190

 9 | + |R+ | 0.068641

 10 | +R| + | -0.056928

 11 | + R + | -0.021635

 12 | R + | + | -0.42469

 |-+---------+----0----+---------+-|

 -1.00 -0.33 0.33 1.00

 11. Estimation Using Time Series Data 153

11.2.2 Estimation: BJEST

Using the results of BJIDENT as a guide to the specification of the model, you
can then estimate the parameters of this model with BJEST. For our example,
the appropriate command might be

BJEST (CUMPLOT,NBACK=5,NMA=1,NSDIFF=1,NDIFF=1) MSALES ;

This specifies a first-order moving average model on first differenced data,
with no seasonal components. Note that you do not need to specify any options
that remain the same from a previous BJ command; in this case we did not
need to set NDIFF or NSDIFF to 1 if this command had followed the
BJIDENT command given above.

The NBACK option specifies the number of backforecasted residuals that
should be used to start the process and generate the initial conditions; since we
are using a moving average process of order one here, only the first will be
nonzero, so NBACK can be set to a small number. In the case of
autoregressive or mixed processes, you should use a much larger value. Other
options control the behavior of the iteration process and the appearance of the
output; consult the Reference Manual to learn more about them.

In BJEST's output, the usual TSP estimation results are shown for the residuals
from the fitted model, along with a table of parameter estimates (only two in
this case, the moving average parameter θ and the seasonal moving average
parameter δ), followed by some statistics concerning the variable in question).
In the example, the model that fit the data was the following:

where ε is a white noise process and L is the lag operator (Lyt = yt-1).

22 This is
followed by a plot of the cumulated periodogram of the residuals so you can
see how well the white noise assumption of the model is satisfied. In our
example, both the periodogram and the Q-statistics for serial correlation
suggest that the residuals are not quite white noise, although they are close.

11.2.3 Forecasting: BJFRCST

Immediately following a Box-Jenkins estimation, you can perform a forecast
based on the estimated time series model using the BJFRCST command. This

22

 Box and Jenkins use the notation B for the backward lag operator and we follow them in the

TSP output. This manual uses lag notation that is more familiar to economists, L.

12 12

(.072) (.055)
(1)(1) (1 .365)(1 .625)ε− − = − −

t t
L L S L L

154 Advanced Methods

forecast will be computed starting in any time period or range of time periods
you specify; it will go forward for the number of periods given by the
NHORIZ option. Confidence bounds will also be computed for the forecast.
An example for the series we modeled above is:

BJFRCST (NHORIZ=10,ORGBEG=87:6,ORGEND=87:7) MSALES ;

This computes two 10-month forecasts, starting in June and July of l987.
Unless requested not to, BJFRCST will also plot the forecasts and their
standard error bounds.

The plot of output from this BJFRCST is shown on the following pages in

Figure 11.3. The model chosen for the variable MSALES was the one
estimated in the previous section. This model is used to generate the forecasts,
using the actual value in June l987 as an initial condition for MSALES(-1).
Note the 95% confidence bounds that are also plotted. As may be expected, the
information contributed by this model, roughly a random walk with a large
measurement error, is very small, and the standard errors are correspondingly
large.

If you do a forecast based on some previously estimated time series process,
you can also supply the parameters of the model directly to BJFRCST. Consult
the Reference Manual or online Help System for further details on the notation
(which is that of Box and Jenkins). An example for a simple moving average
process is:

BJFRCST (NMA=1, NSDIFF=0, NDIFF=1, NHORIZ=12, ORGBEG =
84:1, ORGEND = 84:3) SALES S 4.021 THETA(1) -0.78 ;

In this command, the first difference of SALES will be forecasted for the
period January 1984 to March 1984 using an MA(1) model with a coefficient
of -0.78 and a disturbance whose standard error is 4.021:

2

1 10.78 ~ (0,4.021)− −= + − Ν
t t t t t

Y Y e e e

 11. Estimation Using Time Series Data 155

Figure 11.3 Sample Output from BJFRCST

11.3 Auto-Regressive Conditional Heteroskedasticity

The ARCH model originated by Engle, and its many elaborations, are widely
used in econometrics to estimate models of time series processes where the
variance of the disturbance is dependent in a simple way on the behavior of the
preceding observations, but the conditional mean of the disturbance is still
equal to zero. ARCH processes appear to describe many observed
macroeconomic data series, such as exchange rates and stock market returns,
quite well.

ARCH will estimate not only the basic ARCH model, but also more
complicated models which allow the variance of the disturbance to follow both
an autoregressive and a moving average process and to be conditional on other
series. This latter feature makes ARCH suitable for heteroskedastic data of any
kind, not just time series. In addition, the conditional mean of the dependent
variable can depend on the standard deviation of the variance of the
disturbance (the full GARCH-M model). These models are more fully
discussed in Engle (1982, for ARCH), Bollerslev (1986, for GARCH and its
identification), and McCurdy and Morgan (1988, for GARCH-M). A fuller
discussion of models TSP can estimate is given in the Reference Manual
(under the ARCH command).

84 85 86 87 88 89

6.0

6.2

6.4

6.6

6.8

7.0

7.2

Box-Jenkins Forecast for Monthly Sales

156 Advanced Methods

Here is an example of simple ARCH model estimation of an index of stock
prices, where there are no independent variables, and the variance of the
disturbance is assumed to follow an autoregressive process of order 3:

ARCH(NAR=3) RM C ;

This command estimates the following model by maximum likelihood
(denoting the stock price series RM by yt):

t 0 t

t t

2 2 2

t 0 1 1 2 2 3 3

y

 ~ N(0,h)

 h a a a a

η ε

ε

ε ε ε− − −

= +

= + + +t t

The coefficients estimated by this command are η0, the average stock return,
and α0, α1, α2, α3, the parameters of the ARCH process. These coefficients are
labeled ALPHA0, ALPHA1, etc. in the output. Because the estimation of
ARCH models can be prone to numerical problems arising when estimated
variances are negative, zero, or very large, the ARCH procedure constrains
ALPHA0 to be nonnegative, and the other ALPHAs to be bounded between
zero and one. See the Reference Manual for details on the methods used to
impose these constraints.

ARCH models can also have regressors; that is, the conditional mean of the
dependent variable can be a function of other variables, just as in ordinary
linear regression. For example, consider a market beta model where the return
on a stock (R) is a function of the return on the market (RM), and the variance
of its return follows an ARCH process:

ARCH(NAR=3) R C RM ;

Because of ARCH's ability to estimate a model where the variance of the
disturbance depends on a set of regressor variables, ARCH can also be used to
estimate an ordinary weighted least squares model by ML, even when there is
no dependence across the observations. For example, here is a model with
size-related heteroskedasticity:

 11. Estimation Using Time Series Data 157

0 1 1 2 2

0 1

~ (0,)

η η η ε

ε

= + + +

= +

t t t t

t t

t t

y x x

N h

h a a g

where gt is the size of the tth observation.

ARCH can estimate this model (called OLS-W by TSP) with the command

ARCH (GT=G) Y C X1 X2 ;

G denotes the series that contains the size variable. The GT option is used to
specify a list of series that will enter into the regression function for the
variance ht. Note that the constant (C) is automatically included in this list of
series via the a0 parameter, so you should not include it.

11.4 The Kalman Filter (KALMAN)

Strictly speaking, the term Kalman Filter refers to an estimation method
commonly used to estimate "state-space" models, rather than the model itself.
This class of models consists of two parts: the transition equation, which
describes the evolution of a set of state variables, and the measurement
equation, which describes how the data actually observed is generated from the
state variables. Its importance in economics is partly due to its ability to model
time-varying parameters in an intuitively appealing way.

In addition, the Kalman Filter estimation method is an updating method that
bases the regression estimates for each time period on last period's estimates
plus the data for the current time period; that is, it bases estimates only on data
up to and including the current period. This makes it useful for investigating
structural change in parameters or constructing forecasts based only on
historical data.

As with many time series methods economists use (such as ARIMA models),
State Space Models originated in the engineering literature (Kalman 1960) and
were imported into economics by Rosenberg (1968) among others. A good
reference is Harvey (1981); there is also a special issue of the Annals of

Economic and Social Measurement (October 1973) on time-varying
parameters. A more elementary reference is Maddala (1977), Chapter 17.

Using the notation in Harvey (1981), the model KALMAN estimates can be

158 Advanced Methods

written in the following way (assuming a single dependent variable for
simplicity):

1

2

2

2

0 0 0

~ (0,)

~ (0,)

~ (,)

ξ

η

ξ σ

η σ

α σ

−

= +

= +

t t t t

t t t

t

t t

y Z a

a Ta

N

N Q

a N P

yt is the dependent variable and there are m independent variables Zt. The first
equation is an ordinary regression equation with time-varying parameters. The
second equation defines the evolution of these parameters. Note that matrices
St and Rt in Harvey's notation have been set to identity matrices and matrix Tt
to a constant matrix in this use of the Kalman Filter.

When estimating this model in TSP, you can optionally supply the matrices T
(the transition matrix BTRANS), Qt (the variance of the transition equation
VTRANS), P0 (the variance of the prior distribution on the parameter vector
VBPRIOR), and the vector α0 (the mean of the prior on the coefficients
BPRIOR). If you fail to supply any of them, reasonable defaults will be used.

For example, the simplest KALMAN command looks like this:

KALMAN CONS C GNP ;

The above command estimates the regression of consumption on GNP in a
recursive manner, allowing the coefficient of GNP and the constant to evolve
as random walks (with a signal-to-noise ratio of 1). These coefficients are the
model's "state" variables, and consumption is the measured variable. The
intercept and GNP series are treated as known fixed constants. In Harvey's
notation, the model is

1

2(0,)

ξ

η

η σ

−

= +

= +

∼

t t t t

t t t

t

y Z a

a a

N I

α0 will be estimated from the first m data observations, where m is the number
of coefficients in αt.

 11. Estimation Using Time Series Data 159

A slight generalization of this random walk parameter model is the
Cooley-Prescott (1973) adaptive regression model, which has had some
success in forecasting. You can estimate this model with the command

KALMAN(VTRANS=SIGMAV) CONS C GNP ;

SIGMAV corresponds to Cooley and Prescott's Σv, the variance of the errors in
the transition equation. In the absence of specific prior information on the form
of this matrix, they suggest using a diagonal matrix whose elements represent
the relative variability of the regression's different coefficients. This idea could
also be used to mix time-varying parameters with constant parameters (by
setting their variances to zero) in the same regression.

KALMAN always calculates recursive residuals; these residuals can also be
obtained with OLSQ when the REGOPT(CALC) RECRES; command is in
effect. However, KALMAN can also print the evolving coefficients of the
recursive model:

KALMAN(NOETRANS,PRINT) CONS C GNP ;

The Reference Manual discusses the KALMAN procedure further; useful
features of the KALMAN command not discussed here but described in that
manual include the stochastically convergent parameter model, the use of
priors in estimating Kalman Filters, and the ability to estimate several
measurement equations simultaneously.

11.5 Vector Autoregressions (VAR)

A vector autoregression model is the unconstrained reduced form of a dynamic
simultaneous equations model; that is, it expresses a vector of endogenous
variables as linear functions of their own and each other's lagged values.
Contemporaneous and lagged exogenous variables may also be included in the
system. This style of simultaneous equation modeling was introduced into
econometrics by Sims (1980) and is now widely used for small to
medium-sized macroeconometric models, particularly for forecasting.

Estimation of an unconstrained vector autoregression is quite straightforward,
even in the presence of contemporaneous correlation of the disturbances.
Consider the following VAR:

Yt = B1 Yt-1 + B2 Yt-2 + + GXt + Et

160 Advanced Methods

where Yt is an n by 1 vector of endogenous variables, the B's are n by n
matrices of coefficients, G is an n by m matrix of coefficients, Xt is an m by 1
vector of exogenous variables, and Et is an n by 1 vector of disturbances.
Because the same list of right-hand side variables (all the lags of the Yt) appear
in the n equations, this set of equations can be estimated consistently and
efficiently by ordinary least squares; there is no need for joint estimation.

Although you could use OLSQ to estimate a VAR model one equation at a
time (listing all the relevant lagged variables for each estimation), TSP
provides the VAR command to make this process easier. VAR also provides
some regression output specific to the VAR methodology, such as impulse
response functions and forecast error variance decompositions. For example,
suppose you wish to estimate the vector autoregression for the six variables
money, real GNP, unemployment, wages, price level, and import prices
described in the Sims paper. You would use:

VAR(NLAGS=4) M,RGNP,U,W,P,PM ;

The above command produces as output the regression coefficients for the six
ordinary least squares regressions of each dependent variable on four lags each
of M, RGNP, U, W, P, and PM (24 coefficients for each equation), along with
the log of the likelihood function under the multivariate normal assumption on
the disturbances. In addition, the program will display (and store under the
name @IMPRES) the response of each endogenous variable to
Choleski-factored shocks in the given order over ten periods (the impulse
response function).

Exogenous variables may be included in the vector autoregression, and
calculation of the impulse response function can be modified with options. For
example, the command

VAR(NLAGS=2,NHORIZ=5,SHOCK=UNIT) M GNP | C CONS P ;

specifies that M and GNP are regressed on the lagged variables M(-1), M(-2),
GNP(-1), GNP(-2), the constant, CONS, and P. The impulse response function
will be calculated for only five time periods and a unit shock to the
endogenous variables will be used. Except for computation of the impulse
response, the VAR command above is equivalent to:

OLSQ M M(-1) M(-2) GNP(-1) GNP(-2) C CONS P ;
OLSQ GNP M(-1) M(-2) GNP(-1) GNP(-2) C CONS P ;

 11. Estimation Using Time Series Data 161

VAR automatically computes block exogeneity tests to see if lags of the other
endogenous variables enter a given equation significantly. In the bivariate
example above, these are Granger causality tests (F tests) for GNP(-1) and
GNP(-2) in the M equation, and for M(-1) and M(-2) in the GNP equation.

A common use of VARs is as a base case for more restricted structural models
of lag relationships of a set of endogenous variables. With TSP's ANALYZ
procedure it is possible to calculate an asymptotic test statistic for a joint
hypothesis on the reduced form VAR coefficients. This hypothesis can be
linear or nonlinear. For example, suppose you wish to test that the coefficients
on the lagged Ms and GNPs are proportional in the two VAR equations given
above. You could use the following set of commands to perform the task:

VAR(NLAGS=2) M GNP | C CONS P ;
? Give the estimated coefficients names in a list.
LIST CNAMES B11-B14 G11-G13 B21-B24 G21-G23 ;
FRML PREQ1 B11/B21 - B12/B22 ; ? Proportionality constraints
FRML PREQ2 B12/B22 - B13/B23 ;
FRML PREQ3 B13/B23 - B14/B24 ;
? Compute a joint hypothesis test with 3 degrees of freedom:
ANALYZ (NAMES=CNAMES,COEF=@COEF) PREQ1-PREQ3 ;

11.6 Testing for Unit Roots and Cointegration

11.6.1 Unit roots: UNIT

Simply stated, the test for a unit root in a time series yt is the test that a
regression of yt on yt-1 yields a coefficient of one. This test is complicated by
several features arising from the nonstationarity of yt under the null hypothesis:

1) The ordinary t-statistic does not have the usual distribution, so you
cannot use tables of t-statistics to find its p-value.

2) The correct distribution depends on nuisance parameters in the
regression, in particular, whether the constant or the time trend is
included.

In a well-known paper, Dickey and Fuller (1979) suggest a method for
computing a test for a unit root in a time series, and present critical values for
their proposed tests with and without a trend variable included. The method
consists of running the stationary regression yt-yt-1 on yt-1 either with or without

162 Advanced Methods

a constant and time trend and testing whether the coefficient of yt-1 is zero.
They provide the appropriate critical values for such a test in a table. Since the
distribution of the resulting t-statistic generally depends on the value of the
intercept in the model unless a time trend is included, most researchers choose
to include both a constant and a time trend and then use the tables appropriate
for that case.

Since then, a large literature on unit root tests has appeared, describing many
alternative tests (some of which are variations of the above). The COINT
command in TSP can compute 3 different types of unit root tests: the Dickey-
Fuller (tau), Phillips-Perron (Z, "nonparametric"), and Weighted Symmetric.
Each allows for various exogenous variables like time trends and seasonal
dummies/trends, and each allows for a series of "augmenting" lags to control
for additional serial correlation. See the references and the Reference Manual
under COINT for further information.

For example, suppose you want to test whether consumption in Chapter 3's
Illustrative Model has a unit root (is integrated of order 1). The following set
of statements will perform the (augmented) Weighted Symmetric and Dickey-
Fuller tests and print their approximate (asymptotic) P-values:

SMPL 49 75 ;
UNIT CONS;

In this example, UNIT chooses 2 augmenting lags for the WS test and 10 lags
for the DF; the P-values are 0.89 and 0.73 respectively, so the null hypothesis
of a unit root would not be rejected at the 0.05 level. The output of the UNIT

tests for both CONS and for GNP are shown in Figure 11.4.

Alternately, the Dickey-Fuller test could be computed "by hand"!

SMPL 50 75 ;
DCONS = CONS-CONS(-1) ;
OLSQ DCONS CONS(-1) C TIME;
CDF(DICKEYF) @T(1) ;

The above example assumes that there is no further serial correlation since it
does not add lagged y differences to the model. The resulting statistic was
-1.36 with a corresponding asymptotic P-value of 0.84, so the null of a unit
root is accepted at the 5 per cent level. Options for CDF allow you to compute
the P-values without assuming the presence of a trend or constant. See the

 11. Estimation Using Time Series Data 163

references and the Reference Manual for further details. Also be aware that the
residuals from the Dickey-Fuller regression should be serially uncorrelated for
the test to be valid, although they do not generally need to be homoskedastic
(Phillips 1987).

The Weighted Symmetric test is recommended over the Dickey-Fuller test,
because it has (sometimes only slightly) higher power (see Pantula, Gonzalez-
Farias, and Fuller 1994). That is, the WS test is more likely to reject the unit
root (null hypothesis) when it is in fact false. The Phillips-Perron test is a
variant of the Dickey-Fuller which tackles the problem of additional serial
correlation in the residuals by using a GMM-type method to compute a
residual variance that is "robust" to autocorrelation. The default is to compute
the Weighted-Symmetric and Dickey-Fuller tests only.

11.6.2 Cointegration: COINT

Cointegration modeling of time series is a methodology pioneered by Engle
and Granger (1987). Two or more time series are said to be cointegrated if a
linear combination of them is I(0) (is stationary, or has all roots outside the unit
circle) even though individually they are each I(1). Thus the hypothesis of
cointegration consists of two parts: tests for I(1) of the individual series and
I(0) of a linear combination. Usually the term cointegration testing refers only
to the second part of the hypothesis; the test is performed conditional on the
fact that each component series is I(1). Although this hypothesis sounds
different from the hypothesis of a unit root, the practice of testing for
cointegration is quite similar. TSP gives the P-values for the Engle-Granger
versions of these tests in the CDF procedure under the DICKEYF option.

As an example, consider testing that real consumption and real GNP from the
Illustrative Model are cointegrated. It is easy to establish that each is I(1)
separately (with asymptotic P-values of .89 and .99). The TSP commands to
evaluate the second part of the hypothesis are the following:

SMPL 49 75 ;
COINT(TERSE,ALLORD) CONS GNP;
? Note that this command performs all the individual unit root tests

before testing for cointegration.

The output from this command is shown in Figure 11.4. When CONS is the
dependent variable of the cointegrating regression, COINT chooses 9
augmenting lags, and obtains a test statistic of -2.07, which has a P-value of
0.74. When GNP is the dependent variable, 10 augmenting lags are chosen,

164 Advanced Methods

and the test statistic and P-value are -1.17 and 0.97 respectively. So the null
hypothesis of a unit root in the cointegrating regression cannot be rejected at
the .05 level in either test. We can conclude that the linear combination of
CONS and GNP is not I(0), so they are not cointegrated (at this significance
level).

Figure 11.4 Output for unit root and cointegration tests

If the COINT test of CONS on GNP were done manually, without the search
for augmenting lags, it would look like this:

SMPL 49 75 ;
OLSQ CONS GNP C TIME ; ? the cointegrating regression
SMPL 50 75 ;
DRES = @RES-@RES(-1) ;
OLSQ DRES @RES(-1) ; ? Engle-Granger test is a
? Dickey-Fuller test on residuals from the cointegrating regression.
CDF(DICKEYF,NVAR=2) @T ;

In the above example, consumption is regressed on a constant, time, and GNP
to obtain the cointegrating vector, residuals are constructed, and then the

 Summary of Unit root tests

 Test Statistics

 GNP CONS

Wtd.Sym. -1.50690 -0.52491

Dickey-F -1.75488 0.35523

 P-values

 GNP CONS

Wtd.Sym. 0.88954 0.99345

Dickey-F 0.72610 0.99648

 Number of lags

 GNP CONS

Wtd.Sym. 2.00000 2.00000

Dickey-F 10.00000 10.00000

 Summary of Engle-Granger (tau) cointegration tests

Dep.Var. TestStat P-value Num.lags

GNP -2.07152 0.74083 9.00000

CONS -1.17088 0.96513 10.00000

 11. Estimation Using Time Series Data 165

first-differenced residuals are regressed on the lagged residual. Under the
hypothesis of stationarity, the coefficient on this variable should not be zero;
the t-statistic for this hypothesis is the Engle-Granger statistic. One
complication is that the actual value of the Engle-Granger statistic (although
not its distribution) will be affected by the choice of left-hand variable in the
first regression (consumption or GNP); COINT with the ALLORD option
computes both tests.

To compute the asymptotic P-value manually for the Engle-Granger statistic,
use the DICKEYF option of the CDF procedure with the NVAR option to
specify the number of cointegrating variables used in computing the test
statistic. TSP provides P-values for cointegrating regressions with up to 6
variables, using the response surface estimates given by MacKinnon (1990,
1994). For this example, the value of the statistic with no augmenting lags was
-1.364, with a P-value equal to 0.839. If we had put GNP on the left-hand side
of the original regression, the corresponding value of the statistic would have
been -1.366, with a P-value of 0.838, so in this case, the choice of left hand
variable did not matter. The null hypothesis of a unit root in the cointegrating
regression would not be rejected at the 5 per cent level, so we could not
conclude that these variables are cointegrated. Note that the test can be
sensitive to the estimation sample. If a period of 1950-1975 is used for the
cointegrating regression rather than 1949-1975, the unaugmented P-values are
.00097 and .029, which would lead to the conclusion that cointegration does
exist.

COINT computes the Engle-Granger test by default. A second type of
cointegration test that can be performed by the COINT command is the
Johansen-Juselius (maximum likelihood) test. This involves testing for a
particular restriction on the coefficient matrix of lagged dependent variables in
a VAR. It is actually estimated by running two VARs and obtaining the
eigenvalues for a function of their joint residual covariance matrix. Then
likelihood ratio tests (with finite sample corrections) are made to check for the
number of cointegrating vectors of the original system. The Johansen-Juselius
test is often "oversized" (i.e. a P-value of .01 may be printed when the true
rejection frequency would be about 0.10), implying that "too much"
cointegration (or too many cointegrating vectors) tend to be found. For
example:

SMPL 58:2 84:3;
COINT(JOH,SEAS,NOTREND,NOEG,NOUNIT,MAXLAG=1,MINLAG=1)

Y1-Y4;

166 Advanced Methods

This command computes the trace tests for the Finnish data from the Johansen-
Juselius(1990) paper. Note that COINT computes the tests with the finite
sample adjustment, but this doesn't affect the results much (at least in this case
of autoregressive order 2). In this case, we would conclude at the 5 per cent
level that there are 2 cointegrating vectors (because the first 2 nulls are rejected
and the third is accepted). The P-values are interpolated from Osterwald-
Lenum (1992) Table 1.1* (because a constant term is included, and Table 1.1*
is more conservative that Table 1). The table is shown below.

Figure 11.5 Trace Tests for Finnish Data

Eigenvalue

Null

hypothesis

Trace test

without

adjustment

Trace test

with

adjustment

P-value

.31 r=0 76.13 70.28 .0003

.23 r<=1 37.65 34.75 .023

.073 r<=2 11.00 10.16 .43

.029 r<=3 3.11 2.87 .44

 12. Controlling execution 167

12. CONTROLLING THE EXECUTION OF A
TSP PROGRAM

This chapter describes TSP statements that control the program's order of
execution. They help advanced users who use TSP as a programming language
for solving complex and nonstandard problems. Be aware that although many
of the statements resemble Fortran or other high-level language statements,
they will not execute as quickly as the corresponding Fortran statements would
after being compiled. The advantage of programming within TSP is
convenience, but this convenience comes at some cost in execution time.

The statements covered in this chapter allow you to control the amount of
printed regression output (REGOPT), or the order of execution of the program
(GO TO, IF, THEN, ELSE). We describe two kinds of loops: ordinary DO
loops and the more flexible DOT loops. Finally, we discuss how you can write
a TSP procedure that can be used in multiple TSP programs to perform a task
that you do often.23

12.1 Loops: DO

The DO statement offers a convenient method to execute a group of TSP
statements several times, using a variety of parameter values or making some
other change each time. All the statements between DO and ENDDO are
executed repeatedly according to information provided in the DO statement. In
its fullest form, DO uses a counter variable set equal to a lower limit,
increments by a fixed amount each time through the loop and stops when an
upper limit is reached. The statement has the form DO followed by the name
of the counter variable, an = sign, the lower limit, TO, the upper limit, BY, the
increment. For example,

DO I=1 TO 7 BY 1;

specifies that I is the counter, it starts at one and goes through 7 in steps of
one. Shorter forms of the DO statement are available; if BY is omitted, the
increment is taken to be one; for example,

23

If you are using TSP interactively, the commands described in this chapter (except

REGOPT) must be entered in COLLECT mode, so they can be executed together. See
Chapter 17 for more information on interactive use.

168 Advanced Methods

DO I=1 TO 7;
or

DO I=1,7;

have the same effect as the previous example. If everything except DO is
omitted, the loop is executed just once. This last type of DO loop provides a
useful extension of the IF statement (see section 12.5). For example,

OLSQ Y C,X;
IF @DW <= 1.5; THEN; DO;

SET RHO = 1.0-@DW/2 ;
GENR YT = Y - RHO*Y(-1);
GENR XT = X - RHO*X(-1);
GENR CT = 1-RHO;
OLSQ YT CT,XT;

ENDDO;

In this example, the Durbin-Watson statistic is examined and an autoregressive
transformation of the data is carried out if there are signs of positive
autocorrelation of the residuals.

12.2 Loops over Names: DOT

The DOT statement is like a DO statement, except the index has a set of
character values (names or numbers) which can be substituted into names
where a dot (.) appears. For example,

DOT A B C ; is equivalent to: PRINT PA;
PRINT P. ; PRINT PB;

ENDDOT ; PRINT PC;

This makes it possible to repeat one or more statements for each of the sectors
in a multisectoral body of data. To do this, the names of the series must all
have the form of a generic part, common for that series across all the sectors,
and a sector part, common across all the series for that sector. This is a
conventional way to identify multisectoral data. For example, the generic
names might be DW, (rate of change of wages), U (unemployment), and DP
(rate of change of prices). The sector names might be US (United States), UK
(Britain), SE (Sweden), and DE (Germany). USE would denote unemployment

 12. Controlling execution 169

in Sweden, and DPDE would be the rate of change of prices in Germany.

If data are set up in this way, TSP statements may be written with just the
generic parts of the names, followed by a dot (.). TSP substitutes the various
sector names for the dot and executes the statements repeatedly for all sectors.

The DOT statement indicates the beginning of a set of statements to be
executed repeatedly in this fashion. DOT is followed by a list of the sector
names. Examples:

DOT US UK SE DE ;

DOT 1 2 3 4;

DOT 1-4;

LIST SUBS 1-4; DOT SUBS;

LIST(FIRST=1,LAST=4) SUBS; DOT SUBS;

The end of the set of statements is marked with an ENDDOT; . To specify a
regression of DW on U and DP for each of the four countries in the above
example, use

DOT US UK SE DE ;
OLSQ DW. C,U.,DP.;

ENDDOT;

Any number of statements may appear between DOT and ENDDOT. TSP
cycles through them as many times as there are sectors in the DOT statement.
Any TSP statement may contain dotted series names. Series names without
dots (for example C in the OLSQ statement) are used directly and are not
concatenated with the sector name.

Dots may appear any place within a variable name, including the first
character, although names that contain only numbers and a dot (.) should not
be used since they will be confused with real numbers. For example, .2 is
illegal. A name that consists of only a dot (.) is allowed, however. Here is an
example where the mean is removed from each of several variables:

DOT S E K ;

170 Advanced Methods

MSD (NOPRINT) . ; ? Note the use of a “.” all by itself
. = . - @MEAN ;

ENDDOT ;
? The variables S, E, and K are now centered around zero
? (each of them has had its mean subtracted).

Double dots (two DOT loops that are nested) are also possible and can be a
powerful technique. The next example evaluates a set of equations for the
variables R1-R4, S1-S4 and Q1-Q4. It stores the results in variables with the
tag FIT:

DOT (CHAR=%) S R Q ;
DOT 1 2 3 4 ;

GENR EQ.. .FIT. ;
ALT.. = B.% * .FIT. ;

ENDDOT ;
ENDDOT ;

The new variables are SFIT1-SFIT4, RFIT1-RFIT4, and QFIT1-QFIT4; note
that the dots are evaluated in order within a name. Note also the use of the
CHAR option to specify which dot is meant when there are two levels of dots.
In this case B.% denotes BS, BR, and BQ as the outer loop index changes.

The DOT command has several options which allow the best features of DO
and DOT loops to be combined, and give more control over single-dotted
names in nested DOT loops; examples are given in the Reference Manual.

12.3 User Procedures: PROC

Another useful way to group TSP statements together for repetitive use is the
user procedure. The group is given a name, then the name can be used
anywhere in the TSP program to stand for the whole group of statements.

The beginning of a procedure is marked by PROC followed by the name of the
procedure. All the statements following PROC are incorporated in the
procedure, up to ENDPROC (or ENDP), which marks the end. Example:

PROC REGAFT;
ACTFIT @LHV,@FIT;
COVA @LHV,@FIT;

ENDP;

 12. Controlling execution 171

REGAFT; could be invoked after a regression to carry out the ACTFIT
comparison and print the COVA results. For example,

OLSQ CONS,C,GNP;
REGAFT;

executes the REGAFT procedure for this regression. The effect is as if the two
statements in the body of REGAFT had been placed after OLSQ instead.

User procedures may have arguments. These are variable names defined in the
PROC statement which stand for the actual names used when the procedure is
invoked. Any number of arguments may be listed after the name of the
procedure in the PROC statement. When the procedure is invoked elsewhere
in the TSP program, the same number of actual variables must be listed after
the procedure name. A TSP list variable may be a procedure argument. This
provides a way to pass a variable number of series to a procedure for
processing. The LENGTH command may be used inside the procedure to
count the number of items in the list.

Each time the procedure is invoked, TSP sets up a correspondence between the
argument names used in the procedure definition and the variable names
specified in the invocation.

PROC PCNTCH X,Y;
GENR Y=100*(X-X(-1))/X(-1);

ENDP ;

PROC PCNTCH computes Y as the percent rate of change of X. For example,
to compute the percent change of GNP and call it GNPPCH, specify:

PCNTCH GNP,GNPPCH;

The next example is an alternative to the first example (REGAFT), and shows
the use of a list as an argument:

PROC REGF VARS;
OLSQ VARS;
ACTFIT @LHV,@FIT;
COVA @LHV,@FIT;

ENDP REGF;

172 Advanced Methods

LIST V1 CONS C GNP; ? using PROC REGF
REGF V1;

The next procedure computes a moving average of X length LEN over the
current SMPL and returns them in XMA:

PROC MA X,LEN,XMA ;
LOCAL LAST LAG ;
XMA=X ;
SET LAST=1-LEN ;
DO LAG=LAST TO -1 ;
XMA = XMA+X(LAG) ;
ENDDO ;
XMA=XMA/LEN ;

ENDPROC ;

Using this procedure, the command

MA R,2,RMA;

is equivalent to

RMA = (R+R(-1))/2;

Note the use of the LOCAL statement to name some variables that are only
allocated temporary storage during the execution of procedure MA. This can
be convenient if variables named LAST or LAG are in your main TSP
program. The LOCAL option should be used if you wish to build a library of
procedures and don't want conflicts among the variable names they use and
those in the programs that might use the procedures.

One TSP procedure may invoke another and this may proceed to any depth.
All TSP procedures are defined at the time that the program is read and
printed, and before it is executed. Therefore, the definition of a procedure may
appear in a program later than the first place that it is invoked. If errors occur
during the execution of a PROC, the line number where each nested PROC
was called is printed to aid in diagnosing the problem.

Note: See the TSP examples on the TSP web site www.tspintl.com for many
more complex PROC examples.

 12. Controlling execution 173

12.4 Statement Label and Go To Statement: GOTO

Any statement in TSP may be given a label, which is just a number placed
before the command name. The normal order of execution of statements can be
modified with a GOTO (or GO TO) statement. GOTO is followed by a
statement label (number) and causes that statement to be executed next.
Execution then proceeds in normal order from that statement. GOTO
statements are most useful in conjunction with the IF statement. Together, they
can control the execution of a program using the results of computations in the
program.

Note: Be careful using GOTO statements to transfer to an earlier part of the
program. They can cause infinite loops.

12.5 Conditional Statements: IF, THEN, ELSE

The conditional statements IF, THEN, and ELSE can be used to specify that
some statements in your program are to be skipped or executed only in some
situations. IF evaluates a scalar expression. Usually the next statement is
THEN; followed by a statement to be executed if the scalar expression is
"true" (greater than 0). The statement after that may be ELSE; followed by a
statement to be executed if the expression is "false" (less than or equal to 0). In
other words, the scalar expression defines a logical condition; one statement is
executed if the condition is "yes" and another if it is "no". Recall that TSP has
relational and logical operators that create and manipulate zero-one variables,
which can be used in an IF statement.

Examples:

IF .NOT. @IFCONV; THEN; GOTO 100;

Control is transferred to statement 100 if the previous estimation procedure did
not converge; otherwise GOTO 100 is skipped and the next statement after it is
executed.

IF LAMBDA>16; THEN;
PRINT ALPHA,BETA;

ELSE;
PRINT LAMBDA;

The expression LAMBDA>16 has the value 1.0 (TRUE or “yes”) if
LAMBDA exceeds 16, in which case ALPHA and BETA will be printed;

174 Advanced Methods

otherwise LAMBDA itself will be printed. LAMBDA must be a scalar, not a
series (unless the sample has been set so that only one observation is included).
Use the SELECT or GENR statements with logical expressions to perform
conditional transformation on series (see Chapter 3).

Avoid using IF to define loops -- the DO statement (Section 12.1) is a better
way to accomplish the same thing. If a collection of several statements is to be
executed conditionally, the statements may be enclosed by DO and ENDDO
statements (again, see Section 12.1). This avoids GOTO statements, which
usually make a program difficult to read and are unnecessary in a well-written
program.

12.6 Controlling Printed Output: REGOPT

TSP allows users to specify which results are to be printed in many procedures
(mainly the estimation procedures). A complete table of results available from
each procedure appears in the Reference Manual. Note that results can be
stored without being printed under names beginning with @, like @RES,
@FIT, @COEF, @SSR, etc.

REGOPT enables you to change the standard selection of results to be
calculated and printed. REGOPT(NOPRINT) followed by a list of code names
tells TSP to print everything but the results specified by the code names. The
suppression of the results takes effect when the REGOPT(NOPRINT)
statement appears, and may be turned off at any point by a REGOPT(PRINT)
statement. REGOPT; by itself restores the default selection. The complete list
of code names available is given in the Reference Manual, and a partial list is
given in Section 13.2.2 of this manual. Here is an example:

REGOPT(NOPRINT) @YMEAN,@SDEV,@ARSQ,@FST;

causes the dependent variable mean and standard deviation, adjusted
R-squared, and F-statistic to be omitted from the output in all subsequent
estimation procedures.

Many estimation procedures support the TERSE option, which suppresses all
the printout except for the log likelihood value, the coefficient estimates, and
their standard errors. To suppress all print output, use the SILENT option
(results will just be stored under their internal names). This option is especially
useful when doing many repeated estimations in a Monte-Carlo simulation
experiment.

 13. Matrix Computations 175

13. MATRIX COMPUTATIONS

Earlier in this manual we mentioned that one of the several TSP variable types
available is the matrix. This chapter shows how to create matrices, combine
them with other data in your TSP program, and perform computations on
them. The advantage of working with matrices in TSP is that it facilitates
computation of estimators not provided as "canned" procedures within TSP.
We give some examples of these estimators later in this chapter.

Here is a simple application involving matrices that illustrates how they can be
used to compute a residual covariance matrix:

OLSQ INV1 C F1 K1 ;
COPY @RES E1 ; ? Save residuals from equation (1).
OLSQ INV2 C F2 K2 ;
COPY @RES E2 ; ? Save residuals from equation (2).
MMAKE E E1 E2 ; ? Make a T by 2 matrix of residuals.
? Form the 2 by 2 covariance matrix of these residuals:
MAT RESCOV = (E'E)/@NOB ;
PRINT RESCOV ; ? Print the matrix.

In the above example, we form an estimate of a asymptotic residual covariance
matrix for a two-equation model estimated by ordinary least squares. E1 and
E2 contain the residual series for each equation; each can be thought of as a T
(where T is the number of observations) by 1 vector. MMAKE combines the
two series to make a T by 2 matrix:

E = [E1 E2]

The next command, MAT, is a matrix computation command. It calculates the
2 by 2 matrix RESCOV as the cross-product matrix of the residual matrix E
divided by the number of observations in the regressions. This matrix is an
estimate of the covariance of the disturbances in the two equations. The result
is displayed by PRINT. PRINT can be used for matrices as well as for
variables of any other type in TSP.

This simple example introduces combining matrix operations with other
information in your TSP program. Before giving any more examples, we give
an overview of the matrix facilities available in TSP: the types of matrices

176 Advanced Methods

available, how to create or input matrices, and how to compute using matrices .

13.1 Matrix formats

To economize on matrix storage and computation, TSP stores matrices of
several different types in different ways, and uses only the unique and
non-zero elements of a matrix to save on computations. For the most part, you
need not be aware of this; the program takes care of it for you. When you load
matrices, however, it is sometimes helpful to label the matrix type to save data
entry. You will also notice that the format of the printed output of matrices will
vary by matrix type. The matrix types recognized by TSP are the following:

GENERAL -- A general matrix may have any rectangular form (any number
of rows and columns). Any matrix can be loaded or used as a general matrix,
even one that has a special form. A vector has only one row or only one
column. Some matrix operations allow series to be used as vectors (provided
that the number of observations in the current sample conforms to the other
matrices in the procedure). When they are used in matrix procedures, scalars
are treated as special cases of general matrices with number of rows and
columns equal to one.

TRIANG -- A triangular matrix contains meaningful elements on and above
the diagonal and zeroes below the diagonal. TSP stores only the diagonal and
above diagonal elements. This corresponds to an upper triangular matrix; if
you wish a lower triangular matrix, use the transpose of this matrix in all your
operations. When a triangular matrix is printed out, elements below the
diagonal are blank.

SYM -- A symmetric matrix has the same elements above the diagonal as
below the diagonal. TSP stores only the elements below the diagonal and
expands the matrix before it is used. When the matrix is printed out, the
elements above the diagonal are blank.

DIAG -- A diagonal matrix is any square matrix with nonzero or zero elements
on the diagonal and zero elements everywhere off the diagonal. Diagonal
matrices are obviously also triangular and symmetric. TSP stores only the
diagonal of this type of matrix, and expands the matrix before it is used. It can
be created or reformed from a vector (the diag operation from matrix algebra)
using the procedure MFORM or the matrix function DIAG(). If GAMMA is a
vector of length 5, examples showing how to form the matrix diag(GAMMA)
are the following:

 13. Matrix Computations 177

MFORM(NROW=5,TYPE=DIAG) DG=GAMMA ;

or

MAT DG = DIAG(GAMMA) ;

The resulting 5 by 5 diagonal matrix DG has zeros everywhere except along
the main diagonal, where DG(1,1) = GAMMA(1), DG(2,2) = GAMMA(2),
and so forth.

An identity matrix may also be formed in this way, but it is more easily formed
with the IDENT() function:

MAT ID = IDENT(5) ;

13.2 Creating a matrix

There are three ways to create a matrix in a TSP program: read it in with your
input data, obtain it as the result of a TSP procedure, or form it from a group of
time series or other data. The next three sections describe each of these
methods.

13.2.1 Reading matrices: READ

Matrices can be read just like series with two important differences: the current
SMPL does not apply to them and options on the READ command tell the
program the matrix's format. These options are the matrix type
(TYPE=GENERAL, SYMMETRI, TRIANG, or DIAG), number of rows
(NROWS=), number of columns (NCOL=), and whether the full matrix or
just the significant elements are being loaded (FULL/NOFULL).

Here is an example of reading a general matrix:

READ (NROW=4,NCOL=3) COEFMAT ;
.32 0.5 1.3
.30 0.4 1.35
.25 0.61 1.1
.28 .55 1.23
;

The data should consist of all the elements of the first row followed by all the
elements of the second row, and so on, with a ";" at the end of the last column.

178 Advanced Methods

In this example, we entered each row of the matrix on a separate line to make
it easy to read and to check, but this is not required.

The next two examples of reading a symmetric matrix produce the same result;
they demonstrate the FULL option.

READ (NROW=3,TYPE=SYM) COVAR ;
4.6
2.3 5.1
0.9 2.1 3.9 ;

READ (NROW=3,TYPE=SYM,FULL) COVAR ;
4.6 2.3 0.9
2.3 5.1 2.1
0.9 2.1 3.9;

The FULL option is used mainly when the matrix is already in this format
because it was obtained from a source other than TSP, and you do not want to
remove the redundant elements.

Matrices do not have to be read in free format, as they were in these examples;
you can use any of the formats described for the READ command in the
Reference Manual or in Chapters 3 and 16 of this manual.

13.2.2 Matrix results from TSP procedures: COPY

The second way to create a matrix is to obtain it from the results of a matrix
procedure or a statistical procedure. For example, to use the estimated
covariance matrix from an estimation procedure later in your TSP program, the
command

COPY @VCOV Q;

will save the matrix for later use under the name Q.

All results which can be obtained in this way are listed in the Reference

Manual or online Help System under the Output Section for each procedure.
The exact dimensions and type of matrices concerned are also given. Most of
the results available are printed by the estimation procedures (OLSQ, 2SLS,
LIML, AR1, LSQ, FIML, etc.) and are only available for use until the next
estimation procedure, since the same temporary names (beginning with @) are
reused for all procedures.

 13. Matrix Computations 179

Some of the standard matrix results stored after estimation procedures are:

@COEF the vector of coefficient estimates
@SES the vector of standard errors of the coefficients
@VCOV the estimated variance-covariance matrix
@VCOR the correlation matrix corresponding to @VCOV24

@LAGF the vector of estimated lag coefficients (if a PDL
variable was used)

All the results below are stored as vectors rather than scalars if a
multi-equation model was estimated, so they may be manipulated as matrices:

@SSR the sum of squared residuals
@S2 the estimated variance of the residuals
@S the standard error of the residuals
@RSQ the R-squared
@DW the Durbin-Watson statistic
@YMEAN the mean of the dependent variable
@SDEV the standard deviation of the dependent variable

These additional results are stored as scalars for the single equation models
only:25

@FST the F-statistic
@ARSQ the adjusted R-squared or R-bar-squared
@DH Durbin's h statistic (for a lagged dependent variable)
@DHALT Durbin's alternate statistic (for lagged dep. variables)
@LOGL Log of likelihood function
@AIC Akaike Information Criterion
@SBIC Schwarz Bayesian Information Criterion
@LMHET Lagrange multiplier test for heteroskedasticity
@RESET2 Ramsey’s RESET test of functional form
@JB Jarque-Bera statistic

Residuals @RES and fitted values @FIT are stored as matrices (rather than

24 REGOPT(CALC) VCOR; must be in effect for this to be retrievable.
25 LSQ, GMM, and FIML do not store @YMEAN, @SDEV, @FIT, @RSQ, etc. for

unnormalized equations (those without explicit dependent variables).

180 Advanced Methods

series) if a multi-equation model is being estimated. The number of rows in
these matrices is equal to the number of observations and the number of
columns is equal to the number of equations.

The multi-equation estimation procedures (VAR, LSQ, SUR, GMM, 3SLS,
FIML) also store:

@COVU the covariance matrix of the residuals.

Most nonlinear procedures (LSQ, FIML, PROBIT, ML, etc.) store:

@IFCONV convergence flag (1=converged, 0=not converged)
@GRAD gradient vector w.r.t. the parameters at convergence

The procedures for simple statistics, MSD, CORR, COVA, and MOM, also
store their results as matrices. Here is a partial list of useful results:

@MEAN Vector of series means
@STDDEV Vector of series standard deviations
@MIN Vector of series minimums
@MAX Vector of series maximums
@SUM Vector of series sums
@VAR Vector of series variances
@COVA Covariance matrix

See the Reference Manual or online Help System for a complete list of results
available in each procedure.

13.2.3 Creating a matrix: MMAKE, UNMAKE

The third way to create a matrix is to assemble one from a set of time series or
scalars. MMAKE makes each series into a column of a matrix. To use this
command follow the name of the matrix by the names of the series that will go
into the matrix. The current SMPL controls the selection of observations from
the series. For example, if the following series had been loaded,

SMPL 1,3;
LOAD X; 1,2,3;
LOAD Y; 4,5,6;
LOAD Z; 7,8,9;

 13. Matrix Computations 181

then the program could have

MMAKE M X,Y,Z;

which would create the matrix M shown below:

 1 4 7

 M = 2 5 8

 3 6 9

To stack the three series into a 9x1 vector, you could use MFORM to reshape
M:

MFORM(NROW=9,NCOL=1) S=M ;

Alternatively, you could use the VERT option on MMAKE:

MMAKE(VERT) S X,Y,Z ;

Either way, the matrix S = [1 2 3 4 5 6 7 8 9]’ would be created.

The inverse of MMAKE is UNMAKE. To store the columns of a matrix as
individual series, use UNMAKE followed by the name of a matrix and then
the names for the new series. The operation must be conformable; that is, the
number of rows in the matrix must be equal to the number of observations in
the current SMPL and the number of columns must be equal to the number of
series names given.

Below is an example that undoes the first MMAKE X,Y,Z:

UNMAKE M,A,B,Q;

After execution, A,B, and Q are time series that are identical to the original X,
Y and Z.

To turn a matrix back into a series, use UNMAKE with a single series name.
For example, to create a stacked series T after stacking using MMAKE
(VERT),

SMPL 1, 9 ;

182 Advanced Methods

UNMAKE S T ;

MMAKE and UNMAKE also operate on scalar variables; in this case the first
argument is a vector. This is useful for operations on starting values or
parameter estimates. For example,

OLSQ Y C X1-X10;
PARAM B0-B10;
UNMAKE @COEF B0-B10;

places the OLS estimates of the coefficients into the scalars B0, B1, B2, ... for
further use.

MMAKE can also be used to concatenate matrices. For example, suppose that
you have matrices Z1 (3 by 2), ZIT (2 by 3), and Z2 (3 by 3). The command

MMAKE NEWZ Z1 Z2 ;

makes the 3 by 5 matrix

NEWZ = [Z1 Z2]

The command

MMAKE(VERT) NEWZT ZIT Z2 ;

makes the 5 by 3 matrix

1

2

=

Z T
NEWZT

Z

13.2.4 Making a matrix from other matrices:
MFORM

We have already given a few examples of the use of MFORM to copy or
reformat matrices. It can also be used to change the type of matrix (from
symmetric to general, for example):

MFORM(TYPE=GEN) YMAT ;

The above example takes YMAT, a symmetric matrix stored as a lower

 13. Matrix Computations 183

triangle, and fills out the elements above the diagonal in the appropriate way,
storing the matrix under the same name. To change its name to GMAT at the
same time, use

MFORM(TYPE=GEN) GMAT = YMAT ;

MFORM can also be used to create block diagonal matrices from other
matrices; for example, the command

MFORM(BLOCK) NEWMAT = OLDMAT1 OLDMAT2 OLDMAT3 ;

forms the matrix NEWMAT from three matrices (all of which are normally
square matrices, but need not be) using the block diagonal format. If
OLDMAT1 is 2 by 2, OLDMAT2 is 3 by 3, and OLDMAT3 is 4 by 4, the
new matrix NEWMAT will be a 9 by 9 general matrix, with zeroes in the
appropriate locations.

13.3 Matrix algebra: MAT

In TSP you can perform algebraic operations with matrices just the way you
can with series, using the same kind of easily specified formulas or equations.
For example, the command

MAT B = (X'X)"X'Y ;

computes a vector of regression coefficients and stores them in B, given a
matrix of data for the regressands in X and a vector of data for the regressor in
Y. Note the use of the operator ' (apostrophe) to specify the transpose of X, and
the operator " (quotation mark) to specify the operation of matrix inversion. Of
course, you are unlikely to use this particular matrix equation, since TSP
performs this operation automatically when you specify an OLSQ command,
which uses a more accurate algorithm. To use OLSQ to compute this
expression without creating print output, use the following:

UNMAKE X X1 … XK ;
OLSQ (SILENT) Y X1 …. XK C ; ? X1, etc are columns of X
COPY @COEF B ;

In the next few sections, we describe in more detail how to perform
calculations using matrices. Matrix operations basically fall into three classes:
ordinary operators (multiplication, addition, etc.), functions of matrices that

184 Advanced Methods

yield scalars or matrices as output, and matrix procedures which have two or
more arguments. Only the latter cannot be included in matrix equations
specified in the MAT command and must be specified using separate
commands. We begin with the operations and functions that can be used with a
MAT statement, and then describe the stand-alone procedures.

13.3.1 MAT command and matrix operations

TSP provides a variety of operations on matrices, including multiplication,
inversion, factorization, calculation of eigenvectors, and eigenvalues, and so
forth. All these operations may be specified in matrix equations preceded by
the word MAT; these equations are just like the variable transformations
performed by GENR, except for two things: they do not operate under control
of the current SMPL and the result from MAT equations is stored as a matrix.
The MAT procedure checks the matrices for conformability of the operations
and gives an error message if the operation specified is not possible. Often
printing the matrices in question will reveal why the operation cannot be
performed.

Appendix A gives a complete list of TSP operators and what they mean. In this
section we list these operators and how they are interpreted in the MAT
command. All the ordinary operators and functions used in TSP equations can
also be used in the MAT command. They operate on an element-by-element
basis (and hence require conforming matrices if they are binary operators).
There is one important exception to this, the multiply operator * . For
simplicity, this operator denotes the usual matrix multiplication, and
element-by-element multiplication (the Hadamard product) is denoted by the
operator % .

In the descriptions of the matrix operators that follow, we use the following
symbols to denote the inputs and outputs of operations:

 13. Matrix Computations 185

Figure 13.1 Argument types for MATRIX

Symbol Description of variable

s Scalar or subscript variable
i Integer scalar
m Any matrix (if scalar, treated as 1 by 1 matrix)
qm Square matrix, N by N
sm Symmetric matrix, assumed positive semi-definite
dm Diagonal matrix, assumed positive semi-definite
tm Upper-triangular matrix, assumed positive semi-

definite
v Column vector, N by 1

The additional symbolic operators understood by the MAT are shown below.
Remember that the operands must be conformable for the operations that you
request; TSP will check the dimensions for you and refuse to perform the
computation if this condition is violated.

Figure 13.2 Matrix operators

Operation Description

m*m Matrix product
m*s or s*m Scalar multiplication
m’ Matrix transpose
m’m Matrix transpose with implied matrix product
qm” Matrix inverse (also causes @DET, the determinant of qm,

to be stored)
qm”m Matrix inverse with implied matrix product
m#m Kronecker product
m%m Hadamard product (element by element multiplication)

When TSP processes a MAT command, it recognizes several operations where
great savings of computation time can be made by eliminating duplicate
calculations. These situations include, but are not limited to, the cross-product
operation (which generates a symmetric matrix) and the calculation of a
quadratic form (the expression A*B*A'). This occurs even when the arguments
to these expressions are complicated expressions themselves. Thus, you should
be careful to express any such complex arguments in the same way whenever
they appear in the matrix expression. For example, the following matrix
equation computes the well-known test for a set of linear restrictions on
estimated regression coefficients (H0: Rb = b0):

186 Advanced Methods

MAT CHI = (R*B-B0)'(sigsq*(R*(X'X)"R'))"(R*B-B0) ;

Both quadratic forms in this expression will be recognized and computed as
such, and the expression R*B-B0 will be computed only once.

13.3.2 Matrix functions with scalar output

The following functions take matrices as their input and produce scalars as
output:

Figure 13.3 Matrix functions – scalar output

Function Output

type

Description

DET(qm) s Determinant (truncated to zero when <1.E-37)
LOGDET(qm) s Log of (positive) determinant, no truncation
TR(qm) s Trace (sum of diagonal elements)
MIN(m) s Element with minimum value
MAX(m) s Element with maximum value
SUM(m) s Sum of elements
NROW(m) i Number of rows
NCOL(m) i Number of columns
RANK(m) i Rank (number of linearly independent columns or

rows)

These functions may be used anywhere in a MAT statement where scalars are
allowed, keeping in mind that a scalar is also a 1 by 1 matrix.

13.3.3 Matrix functions with matrix output

The following functions are matrix-to-matrix; that is, they take a matrix,
perform some computation on it, and produce another matrix as output:

 13. Matrix Computations 187

Figure 13.4 Matrix functions – matrix output

Function Output

type

Description

CHOL(sm) tm Choleski factorization (matrix square root)
YINV(sm) sm Positive semi-definite inverse using CHOL()
IDENT(i) dm Creates an identity matrix of order i
EIGVAL(qm) v Computes the vector of eigenvalues of qm. If qm

is not symmetric positive semi-definite, the
imaginary parts of the eigenvalues are stored as
@EIGVALI.

EIGVEC(qm) qm Computes the matrix of eigenvectors (columns).
If qm is not symmetric positive semi-definite, the
imaginary parts of the eigenvalues are stored as
@EIGVECI. @EIGVAL and @EIGVALI will
also be stored automatically. EIGVAL and the
corresponding EIGVEC are sorted high to low

VEC(m) v Creates a vector of all the elements of m, column
by column.

VECH(m) v Creates a vector of all the unique elements of m,
column by column:
qm N*N elements
sm,tm N*(N+1)/2 elements
dm N elements

DIAG(m) dm Creates a diagonal matrix from a matrix:
qm, sm, tm take the diagonal from input matrix
v convert the vector to a diagonal matrix
s illegal; use s*IDENT(i) to create a diagonal
matrix

SYM(qm) sm Creates a symmetric matrix from a square matrix
(the upper triangular elements are ignored).

GEN(qm) m Creates a general matrix from a symmetric or
diagonal matrix.

SER(m) series Creates a series from a vector (same as
UNMAKE v series ;). If used this function must
be the outermost (last) function, and the length of
v must match the number of observations in the
current SMPL.

188 Advanced Methods

13.3.4 Matrix procedures: ORTHON, YLDFAC

Several matrix procedures have more than one output and therefore cannot be
used in MAT. These procedures are YLDFAC for performing an LDL
decomposition (factorization of a semi-definite matrix), and ORTHON for
matrix orthonormalization. You can use them like an ordinary TSP command
with arguments; the input arguments are the names of matrices and the output
arguments will be stored as matrices.

There are two procedures available for factorization (generalized square root)
of symmetric matrices: the CHOL function performs a Choleski
decomposition, and YLDFAC performs an LDL decomposition.

MAT S = CHOL(A) ;

finds an upper triangular matrix S such that A = S'S. If A is a symmetric
positive semi-definite matrix, there must exist such an S. The number of
nonzero elements on the diagonals of S will be equal to the rank of A. Note
also that A-1 = S-1(S')-1.

YLDFAC A D U ;

finds a diagonal matrix D and an upper triangular matrix U such that A =
U'DU. This decomposition always exists if A is symmetric; the diagonal
elements of D are functions of the eigenvalues (characteristic roots) of A. The
number of nonzero diagonals of D is the rank of A, and the sign of the
diagonals indicate whether the matrix A is positive definite (all positive),
negative definite, or indefinite.

If DHALF is a diagonal matrix of whose elements are the square roots of the
corresponding elements of D, then the relationship between S and U is S =
DHALF*U. This makes it obvious that S is only defined when the elements of
D are non-negative.

Orthonormalization is a transformation of a data matrix so that its columns are
orthogonal and have a unit norm. This transformation is used by TSP's
regression calculation to improve the accuracy of the results. The appropriate
transformation is obtained by forming the cross product of the data matrix,
X'X, factoring it to obtain the triangular matrix S, inverting S and using it to
transform the original data:

 13. Matrix Computations 189

Z = X S
-1

Since X'X = S'S, the resulting matrix Z will have the property

Z'Z = S
-1

' X'X S
-1

 = I,

that is, the columns of Z will be orthonormal. The form of the command is

ORTHON X SINV Z ;

where X is the input matrix, SINV is the name to give its inverse square root,
and Z is the name to give the orthonormalized X.

13.4 Examples using matrix operations

The best way to learn how to use TSP matrix operations is to look at examples,
as it is not always obvious how to do what you want. This section presents
some solutions to common computation problems not yet implemented in TSP
procedures. They include performing a Hausman specification test, computing
the prediction error for a simple linear model, and computation of a ridge
estimator for the linear regression model.

13.4.1 A Hausman specification test

A Hausman test compares two sets of estimates of the same parameters using
the same data: one obtained using an efficient estimation technique assuming
the specification is correct, and another obtained by an estimation method that
is consistent even under a set of alternate hypotheses about the specification.
The test is computed by differencing the two sets of parameter estimates and
standardizing the vector of differences by the difference in the covariance
matrices of the two sets of estimates. The quadratic form computed this way is
asymptotically chi-squared with degrees of freedom equal to the number of
parameters being tested (with certain caveats that we will mention later).

To compute this test in TSP, we assume that somewhere you have obtained
efficient estimates of the parameters, BEFF, and their variance, VEFF. Least
squares or some other regression procedure is used to obtain consistent
estimates of the parameters under a wide variety of misspecifications of the
error term; these estimates are obtained immediately before you perform the
test so they will be named @COEF and @VCOV. The Hausman test is
computed by the following matrix operations:

MAT DVAR = @VCOV-VEFF ;

190 Advanced Methods

MAT K = RANK(DVAR) ;
MAT HTEST = (@COEF-BEFF)'YINV(DVAR)*(@COEF-BEFF) ;
CDF(CHISQ,DF=K) HTEST ;

The order of subtraction is important for the variance estimates, since the
asymptotic variance of the efficient estimate must be less than or equal to that
of the consistent estimate (in the matrix sense). However, frequently in
practice, some elements of DVAR are negative on the diagonal. If this is the
case, the test should be computed only for those parameters corresponding to
positive diagonal elements, with a corresponding correction to the degrees of
freedom. The program shown above does this automatically, since it sets the
degrees of freedom equal to the rank of DVAR. The matrix inversion function
YINV() will automatically perform a generalized inverse that sets the linearly
dependent rows and columns of the inverse to zero.

13.4.2 Prediction error for the linear regression
model

When regressors in the classical linear regression model are fixed constants
and the disturbances outside the sample are assumed to be drawn from the
same distribution as those within, the variance of the predictor from this model
has two pieces. The first is due to the variance of the disturbance and the
second to the variance of the estimate of the coefficients. If X is the matrix of
in-sample regressors, X0 is the data for the prediction sample, and s2 is the
variance of the disturbances, the equation for the prediction error variance is

2 1

0 0(') '− = + V s I X X X X

You can use this formula to compute standard error bounds for a forecast of a
linear regression model in TSP using matrix operations. Suppose that you have
run an OLSQ for the historical period 1958 to 1982 and now wish to forecast
through to 1990 using values of the exogenous variables previously projected.
The forecast itself can be computed (without printing in this case) immediately
following the regression:

SMPL 58,82;
OLSQ Y C X1 X2;
SMPL 83 90 ;
FORCST YPRED ;

Now use the following matrix commands to construct an estimate of the
prediction error:

 13. Matrix Computations 191

? Make a matrix of the data for the forecast time period:
MMAKE X @RNMS ;
? Compute the prediction error.
MAT PREDERR = SER(SQRT(@S2+VECH(DIAG(X*@VCOV*X')))) ;
? Plot the forecast with standard error bands for the prediction error:
PLOT(BAND=PREDERR) YPRED ;

Note the use of the SER function to convert the output of the computation into
a series, and the VECH and DIAG functions to extract the diagonal elements
of X*@VCOV*X'.

13.4.3 Ridge regression

Ridge regression is a Bayesian estimator of a linear regression model, with a
prior of zero on all coefficients. Ridge estimators have also been viewed by
some observers as a way of overcoming multicollinearity in the independent
variables. For a discussion of these estimators, see Judge et al.(1980), pp.
452-501. A ridge estimator of the coefficients β from a linear regression model

y = Xβ + ε

has the form

b = (X'X + γI)
-1

 X'y

where γ is a positive scalar (which can be computed in a number of ways) and
I the identity matrix of order of the number of independent regressors. It can be
seen easily that the effect of adding a positive constant to all the diagonal
elements of X'X will be to reduce the tendency for X'X to be singular or nearly
singular.

The example we give of computing a ridge estimator in TSP uses a formula for
the scalar γ suggested by Sclove (1973) and described in Amemiya (1985). It is
an empirical Bayesian estimator. The prior is that the coefficients are zero with
a variance estimated from the data as the sums of squared of the fitted values
of y divided by the trace of the X'X matrix. The γ coefficient in this case is a
consistent estimate of the residual variance divided by the variance of the
coefficient prior. The example below forms an estimate of γ by performing a
conventional OLS regression, computing estimates of the variances, and using
the matrix algebra routines to run the ridge regression.

? Ordinary least squares on original data.

192 Advanced Methods

OLSQ Y C X2 X3 X4 X5 ;
COPY @COEF ALPHA ;

? Compute the Sclove coefficient gamma.
MMAKE X @RNMS ;
MAT GAMMA = (@SSR/@NOB)/((Y'Y-@SSR)/TR(X'X)) ;

? Now form the estimator
MAT AHATSTAR = (X'X+GAMMA*IDENT(@NCOEF))" X'Y ;
PRINT GAMMA ALPHA AHATSTAR ;

 14. Forecasting and Simulation 193

14. FORECASTING AND MODEL
SIMULATION

Often the primary goal of an econometric study is to produce a model for
forecasting an economy's future behavior, a sector in an economy, or even the
behavior of an individual firm. Two common approaches to this problem are
the structural model method and the time series (ARIMA or VAR) methods.
Both methods can be used in TSP. A discussion of the pros and cons of these
two methods is beyond the scope of this manual; an excellent reference that
describes both methods, emphasizing their forecasting aspects is the Pindyck
and Rubinfeld text.

Chapter 11 introduced the time series methods of forecasting variables using
ARIMA or VAR models. In this chapter, we discuss how to use the structural
model forecasting methods in TSP. First we give an overview of the steps in
constructing a forecasting model of any type, then we describe methods for
forecasting a single variable, and finally we describe the model solution
procedures used for multi-equation models.

There are usually three major steps in producing a forecast:

1. Define a model with one or more equations giving a reasonably good
description of the variables of interest over a recent time period. The model
can come from any source, although multi-equation models must be
expressible in TSP equations (FRMLs). In particular, the model may arise
from a series of estimations within TSP, both nonlinear and linear. The
dimensions and quality of the model are your choice. If you want to use
ARIMA models, use BJIDENT to help you choose the model.

2. Choose a forecast period and make some assumptions about the behavior of
the exogenous variables in the model over this period. In an ARIMA forecast,
there are no exogenous variables in the model, so you can skip this step.

3. Using projected values of the exogenous variables and the model you have
chosen, choose one of TSP's forecasting or simulation procedures to compute
the endogenous variables of the model one period at a time. Lagged
endogenous variables may be determined from either the previous forecasts
(dynamic simulation -- this method will always be used for ARIMA or VAR
forecasts), or may be actual realizations of the variable (static or historical

194 Advanced Methods

simulation).

TSP provides several procedures and techniques to compute the forecast and
display the results. These techniques can be divided into two major groups,
single equation (single variable) forecasts, and the solution of simultaneous
equations models. We describe the former first, and then describe the model
solution procedures, SIML and SOLVE.

14.1 Creating equations: FRML, FORM

Chapter 7 described how FRML can be used to make TSP equations. Any
equation thus created can be used in forecasting with the proviso that equations
for SOLVE must be normalized (have a left-hand side variable). Note that

logical expressions like Y>0 may also be included in the equations of a
simulation model.

It is also important to remember that equations used in simulation must have
unknown parameter values defined in some way beforehand. This can be done
by using a SET or PARAM statement to supply a value, for example,

FRML GNPGROW GNP = (1+ALPHA)*GNP(-1) ;
SET ALPHA = .15 ;

You can also estimate the equation earlier in your TSP program; in this case,
the parameter will retain its estimated value when the simulation is performed.
For example, using the same equation for GNP growth as above,

PARAM ALPHA ;
LSQ GNPGROW ; ? at the conclusion of the estimation, ALPHA
 ? will contain its estimated value.

Databanks are also useful for saving parameter values after an estimation. If
the estimated value of ALPHA were 0.123, the equation GNPGROW would
now be interpreted by GENR, SIML, or SOLVE as

FRML GNP = 1.123*GNP(-1) ;

FRML works well when estimating nonlinear models, but many equations will
be estimated by linear methods, so it may be convenient to construct linear
equations automatically. FORM does this easily:

 14. Forecasting and Simulation 195

OLSQ CX C W P P(-1) ;
FORM CONS ;

This example estimates a consumption equation by ordinary least squares and
forms an equation named CONS as though you had entered the following
FRML statement:

FRML CONS CX=16.6+.81*W+.017*P+.216*P(-1);

[assuming that the coefficient vector estimated in the OLSQ procedure was
(16.6, .81, .017, .216)].

FORM may be used after any linear estimation procedure: OLSQ, 2SLS,
LIML, LAD, or AR1. If it is used following an AR1 estimation, the term
involving the estimated ρ times the lagged residual is automatically added (see
Section 14.3). FORM can also be used to create unnormalized equations and to
create equations with parameter names rather than values. See the Reference

Manual for details.

14.2 Forecasting with an explicit equation: GENR

The simplest way to forecast a single variable is with GENR, if an explicit
equation has already been defined. For example, the following two sets of
statements are equivalent in their result:

SMPL 83 90 ;
GENR GNPFIT = A0 + A1*POP + A2*IMPT ;

SMPL 83 90 ;
FRML GNPEQ GNP = A0 + A1*POP + A2*IMPT ;
GENR GNPEQ GNPFIT;

This method even works when the variable to be forecast depends on its own
lagged values (which is described below), because GENR will operate
dynamically. The alternate method for computing single equation forecasts,
FORCST, can be used for either static or dynamic simulation. In addition,
FORCST does not require that you specify the equation beforehand; it can be
computed directly from a previous linear estimation.

196 Advanced Methods

14.3 Forecasting linear models: FORCST

FORCST will do a forecast immediately following any single equation linear
estimation command in TSP (OLSQ, 2SLS, LIML, LAD, or AR1) without
requiring FORM or a FRML. This also works on PROBIT and TOBIT models,
although you may wish to transform the predicted latent variable.

Here are some examples:

FREQ A ; SMPL 48 56 ;
OLSQ IMPT C GNP RELP ;
FORCST(PRINT) IMPFIT ;

In this example, the forecast is computed over the estimation sample and
therefore IMPFIT is simply the fitted values of IMPT (equal to the
automatically stored @FIT series). It is generally true that if you compute a
static forecast over the same sample as the regression, the output of FORCST
will be the fitted values from the regression.

FREQ A ; SMPL 48 82 ;
AR1 (METHOD=CORC,PRINT) IMPT C GNP RELP ;
SMPL 83 90 ;
FORCST(PRINT) IMPFOR ;

This example illustrates the computation of a dynamic forecast when the errors
are serially correlated. Projected values of GNP and RELP must exist for the
period 1983 to 1990; the simulation uses the last historical period (1982) to
calculate a presample residual. For this kind of model, the forecasting equation
is

1 1 2
ˆ ˆ where ρ ρ− − −= + =

t t t t t
y X b e e e

The initial condition for e is the presample residual.

FREQ A ; SMPL 48 82 ;
OLSQ IMPT C IMPT(-1) GNP ;
SMPL 83 90 ;
FORCST IMPDYN ;

This example shows forecasting when there is a lagged dependent variable in
the model. Since IMPT has been referred to explicitly with a lag on the
right-hand side of the original equation, the dynamic forecast will

 14. Forecasting and Simulation 197

automatically use the predicted values of IMPT in the next period's forecast.
To use this feature, you must refer to the lagged endogenous variables as
IMPT(-1); use of a computed variable, such as IMPTL1 = IMPT(-1), will not
have the same effect.

It is also possible to use FORCST independently of any estimation command;
in this case you must explicitly supply the procedure with all the information it
needs to compute the forecast:

FORCST(DYNAM,COEF=BETA,RHO=R,DEPVAR=IMPT) IMPFIT C
GNP RELP ;

In this example, BETA is the vector of estimated coefficients of the
independent variables, R the estimated value of the serial correlation
coefficient, IMPT the name of the original dependent variable (needed for
dynamic forecasts), IMPFIT the name to be given to the forecasted variable,
and C, GNP, and RELP are the independent variables in the forecasting
equation. The coefficients BETA must be supplied in the same order as the list
of independent variables.

14.4 Solving simultaneous equation models

TSP provides two quite different procedures for the solution of simultaneous
equation models. The methods differ in their speed of convergence, use of
computer storage and time, and ability to handle highly nonlinear or very
simultaneous models.

The most general and powerful procedure is SIML, which uses Newton's
method applied to nonlinear equation solution. The model is specified just like
FIML. SIML does not require normalized equations nor that the model be
ordered in a particular way, and uses analytic derivatives of the model in the
solution process. For linear models, SIML converges in one iteration, and is
very fast for multiperiod models. For highly nonlinear models, Newton's
method (Gauss-Newton) may be the only method in TSP that can provide a
solution. The cost of this power is considerable use of computer storage
compared with other model solution techniques. Consequently, SIML may not
be the method of choice for more than 50 equations. TSP does not explicitly
limit the number of equations, but you may not have enough memory
available. You may also be limited by TSP’s (relatively large) limits on the
number of unique variable names/arguments in the collected model and on the
number of variables in a TSP session. Use the SHOW command to see what

198 Advanced Methods

these limits are in your version of TSP.

For large economic models, particularly sparse models with some sort of block
structure, SOLVE will be more suitable. To use this procedure, first collect the
equations of the model using MODEL to determine the best order for solution.
The equations must be "normalized", i.e., each endogenous variable must
appear once and only once on the left-hand side of an equation. MODEL
determines how the equations are to be arranged into recursive and
simultaneous blocks for solution. SOLVE will evaluate the recursive blocks
(blocks in which every equation uses only previously computed endogenous
variables as input) and will solve the simultaneous blocks either by the
Gauss-Seidel method or by the more powerful Fletcher-Powell method. This
method of model solution is suitable for most large economic models, which
tend to be sparse, fairly linear, and separable into blocks. (It has been used on
models with more than 400 equations.) However, convergence of the
simultaneous blocks is not guaranteed, since it does not compute any analytic
derivatives.

Details on using these two procedures are given below.

14.4.1 Small nonlinear models: SIML

SIML invokes Newton's method; it has the same form as FIML described in
Chapter 7: SIML, followed by options including ENDOG=(list of endogenous
variables), followed by a list of equations, including identities. Unlike FIML,
SIML treats IDENTs the same as FRMLs (see Section 7.1). For example, the
solution of the illustrative model is specified by

SIML(ENDOG=(GNP,CONS,I,R,LP))
CONSEQ,INVEQ,INTRSTEQ,GNPID,PRICEQ;

The default values of the options are Newton's method, no storage of the
results, and a dynamic simulation. A static simulation is often used when
simulating over a historical period: it uses actual realized values of the lagged
endogenous variables rather than obtaining them from the simulation of the
previous period. The default for printing is to print a one line summary of each
iteration and a table of the solved variables at the end.

An example of SIML that stores the results and prints the input data is

SIML(PRNDAT,TAG=S,ENDOG=(GNP,CONS,I,R,LP))
CONSEQ,INVEQ,INTRSTEQ,GNPID,PRICEQ;

 14. Forecasting and Simulation 199

After this model has been solved, the solved series are stored under the names
GNPS, CONSS, IS, etc. Further details on the options available with SIML are
given in the Reference Manual.

Newton's Method

The method used by SIML for solution of nonlinear simultaneous equation
models is a variant of Newton's method. Obviously, if a simultaneous model is
linear, it can be solved directly by matrix inversion. That is, the solution to the
matrix equation

A x = b

is

x = A
-1

b.

Newton's method applies this idea to the iterative solution of nonlinear models.
At each iteration, the model is linearized in its variables around the values
from the previous iteration. The linearized model is solved by matrix
inversion. In terms of the equation above, A is the Jacobian of the model with
respect to the variables, b the vector of model values at the previous iteration
and x the direction vector of changes in the variables to be computed.

The resulting vector of changes is used as a direction vector in a linear search
for better values of the variables, as in the other iterative procedures such as
LSQ. A deviation is computed for each equation by substituting the current
values of the variables; at the solution, all the deviations will be zero. The
criterion for the search is the sum of squared deviations of the equations; it is
printed as F = (the initial value) and FNEW = (the value after the iteration) in
SIML's output. Unless a solution has been achieved, there will be a better set
of values somewhere along the direction vector. The actual choice of the new
set of variable values is made by the same methods used in nonlinear
estimation and is described in Chapter 10. For a further description of
Newton's method, see Saaty and Bram (1964) or Ortega and Rheinboldt
(1970).

The POS function can be used to constrain the solved values to be
non-negative.

14.4.2 Large models – MODEL and SOLVE

Large models require two steps (procedures) for solution -- MODEL and
SOLVE. MODEL is used to group the equations into smaller blocks, and

200 Advanced Methods

SOLVE seeks the solution using this structural information. Several SOLVE
commands can use the same MODEL (using different scenarios of exogenous
variables or parameter values, for example). SOLVE uses the same iteration
and TAG options as SIML.

Ordering equations: MODEL

MODEL groups the equations of a model into blocks and saves this structure
under a model name. We use the basic Klein Model I as a simple example.
This model consists of three behavioral equations and four identities. There are
seven endogenous variables (CX, I, W1, P, K, W and E), three lagged
endogenous variables (P(-1), K(-1), and E(-1)), and four exogenous variables
(G, TIME, TX, and W2). The equations may be estimated by a single equation
method, using FORM to construct a TSP equation, or they may be specified
with FRMLs and estimated with multi-equation methods. We assume that we
will use two-stage least squares, and specify the model as follows:

LIST IVK C P(-1) E(-1) K(-1) G TIME TX W2;
2SLS(INST=IVK) CX C,W,P,P(-1);
FORM CONS ;
2SLS(INST=IVK) I C,P,P(-1),K(-1);
FORM INV ;
2SLS(INST=IVK) W1 C,E,E(-1),TIME;
FORM WAGES ;
IDENT WAGE W=W1+W2;
IDENT BALANCE P = CX+I+G - (TX+W) ;
IDENT PROFIT E = P+TX+W1 ;
IDENT CAPSTCK K=K(-1)+I ;

LIST KLEIN CONS INV WAGES WAGE BALANCE PROFIT CAPSTCK ;
LIST KENDOG CX I W1 W E P K ;
MODEL KLEIN,KENDOG,KLEINC ;

MODEL takes the model specified in the list of equations KLEIN and the list
of endogenous variables KENDOG, and orders the equations into a recursive
block structure. An ordering of this kind provides increased understanding of
the model structure and provides efficient solution. The recursive block
ordering for the system is formed by operations on the "adjacency" matrix of
the system, a matrix of ones and zeroes relating the dependent variables in the
system to the equations in which they appear.

See Steward (1962) for further explanation of this procedure and for details of

 14. Forecasting and Simulation 201

the specific algorithm employed in obtaining the ordering. The method
involves viewing the adjacency matrix as a network and systematically seeking
closed loops that define systems of simultaneous equations.

The output for the MODEL example is shown in Figure 14.1. The column
labeled Blk shows the number of each block of equations and the type (S for
simultaneous and R for recursive). The X's mark the equations in which each
dependent variable appears.

Because this model is completely simultaneous except for the capital stock
equation, there is one block with six equations, followed by the equation that
determines the new level of capital stock from investment. This last equation
could be left out of the model without affecting the results in any way, since
the level of the capital stock has no impact on output in this version of the
model.

Having ordered this model, the procedure then stores the ordered list of
equations and variables under the name KLEINC.

Figure 14.1 Sample MODEL Output for Klein Model I

Solution: SOLVE

SOLVE causes the model saved by a MODEL statement to be solved. The
only required argument is the name of the ordered model. For each time period
in the sample, each block is solved separately in the order determined by
MODEL. The recursive blocks are always solved in one iteration via the
equivalent of GENR. Three methods are provided for solving the simultaneous
blocks: the Gauss-Seidel, Jacobi, and Fletcher-Powell algorithms.

Block structure of KLEINC

Block # Recursive # Simultaneous

 # equations equations

 1 6

 2 1

Blck Eq# Equation Dep.Var. 1234567

 1S 1 INV I X X

 1S 2 WAGE W X X

 1S 3 PROFIT E XX X

 1S 4 BALANCE P XX XX

 1S 5 CONS CX X XX

 1S 6 WAGES W1 X X

 2R 7 CAPSTCK K X X

202 Advanced Methods

Gauss-Seidel and Jacobi methods

Solution by the Gauss-Seidel method is the default, and it could be invoked for
the Klein model in the following way (TAG is optional):

SOLVE(TAG=S) KLEINC;

The option METHOD=JACOBI specifies that a variant of the Gauss-Seidel
method called the Jacobi method (see pp. 217-220 of Ortega and Rheinboldt)
is to be used. This method does not update the endogenous variables
immediately while the simultaneous block is being computed, but waits until
the beginning of the next iteration and updates them all at once.

Fletcher-Powell method

To use the Fletcher-Powell method to solve the simultaneous blocks of a
model, include the METHOD=FLPOW option in SOLVE:

SOLVE(METHOD=FLPOW) KLEINC ;

The Fletcher-Powell method is described in Fletcher and Powell (1963); it is
useful when the Gauss-Seidel method does not converge. It uses numeric
derivatives with respect to the endogenous variables (as opposed to SIML,
which uses analytic derivatives).

Example: a 33-equation model

Figure 14.2 shows a sample TSP job for the solution of a rather complex 33-
equation model with 6 structural equations and 27 identities. The first three
pages show the TSP input for the model:

The data (10 observations in the example) are read from an external file, 6
variables per record, 14 records per observation. Some normalizing constants
are defined.

The identities are specified; note that the equations are normalized, i.e., there is
only one endogenous variable on the left-hand side of each equation, and each
endogenous variable appears only once on the left-hand side. The six
behavioral equations are defined, together with parameter values previously
estimated by FIML over the whole sample. The endogenous variables and
equation names are put into LISTs.

 14. Forecasting and Simulation 203

MODEL is executed to produce a collected model, TRADEC, to be input to
SOLVE. We show the output of MODEL on the following page. This output
shows the best order of solution of the model: the procedure has determined
that the first 9 equations are recursive, the next 15 are a simultaneous block,
and the last 9 are recursive once the previous 24 have been solved.

An inspection of the model confirms this: the first 7 equations involve only
exogenous and lagged endogenous variables, equation IDFIO involves V and
N, already determined by IDV and IDF9, equation IDRK involves RP, already
determined by IDRP. Then we start the simultaneous block. Following this
block is a series of equations that are essentially superfluous to the model: the
whole thing could be solved without the last recursive section and then these
equations could be computed using simple GENRs (in the order listed).

The following page shows the start of the solution procedure. Recursive blocks
always take only one iteration, so no message is printed; the convergence
messages shown correspond to the simultaneous blocks for the two periods. If
we had used the PRINT option, there would also be a printout of SSR (sum of
squared residuals) showing the golden section stepsize search method
searching for the optional stepsize for each Fletcher-Powell iteration on the
simultaneous block. Unlike the quasi-Newton minimization methods used
elsewhere in TSP, the Fletcher-Powell algorithm does not have a natural
stepsize of approximately unity.

Figure 14.2 Sample 33 equation trade model

NAME TRADESOL '33 EQUATION TRADE MODEL' ;
FREQ A ; SMPL 64 73 ;
READ (FILE='TRADESOL.DAT',FORMAT='(6G12.5)')
 ACDP AK AKD AKL CC CE
 CG DG DLDT DP DR E
 EI EJ EL ER ET EX
 G HLT HR I IG IM
 K KD L LD LE LG
 LH LJ LR LU M N
 NRE NW P PC PCE PCG
 PDP PEX PF PG PI PIG
 PIM PKD PL PLD PLE PLG
 PLR PR R RDP RE RIM RK
 RL RP RT RV RW SHRC
 SHRDP SHREX SHRFC SHRIM SHRKD T
 TDP TIM TK TL TP TV
 TW V VCR VIR W ;
?

204 Advanced Methods

? SET THE CONSTANTS AND PARAMETERS FOR THE RUN.
?
SET NKD=166.92656 ;
SET NLD=252.81388 ;
SET NIM= 20.331 ;
SET NDP=419.56444 ;
SET NEX= 20.507 ;
SET NT= 0.0 ;
SET NL= 0.8464 ;
?
? EQUATIONS OF THE 33 EQUATION MODEL.
?
IDENT IDSDP DP=SHRDP*PLD*LD/PDP ;
? PROPER NORMALIZATION (BUT DOES NOT CONVERGE AS WELL):
?IDENT IDSIM PLD=-(PIM*IM)/(LD*SHRIM) ;
IDENT IDSIM PL=PL+SHRIM+PIM*IM/(PLD*LD) ;
? PROPER NORMALIZATION:
?IDENT IDSKD LD=-(PKD*KD)/(PLD*SHRKD) ;
IDENT IDSKD L=L+SHRKD+PKD*KD/(PLD*LD) ;
IDENT IDSC PC=(PL*LJ*SHRC)/(CC*(1-SHRC)) ;
IDENT IDSFC CC=(SHRFC*(1+NW)*W(-1)-PL*LJ)/PC ;
IDENT IDF7 PDP=PC/ACDP ;
IDENT IDF8 LJ=LH-L ;
IDENT IDF9 N=(M*PI*AKL+PI(-1)*AK(-1)-PI*AKL
 -((1-TK)*((PKD*AKD)-TP*PI(-1)
 *AK(-1))))/(-PI(-1)*AK(-1)) ;
IDENT IDF10 NW=(-V-N*PI(-1)*AK(-1)*K(-1)
 + (PI*AKL-PI(-1)*AK(-1))*K(-1)
 -(1-TV)*(EI+VCR+VIR+NRE)
 -EJ+RV+TW*W(-1))/(-W(-1)) ;
IDENT IDF11 PEX=-(PDP*DP-PLD*LD-PKD*KD-PIM*IM)/EX ;
IDENT IDF12 IM = ((1+TDP)*PDP*DP-PC*CC+PCE*CE-PCG*CG
 -PIG*IG-PI*I)/(-TIM*PIM) ;
? DEPENDENT ON PROPER NORMALIZATION ABOVE:
?IDENT IDF13 PL=(PLD*LD+PLE*LE+PLG*LG+PLR*LR)*(1-TL)/L
;
IDENT IDF13 PLD=(PL*L/(1-TL)-PLE*LE-PLG*LG-PLR*LR)/LD ;
? DEPENDENT ON PROPER NORMALIZATION ABOVE:
?IDENT IDF14 L=LD+LE+LG+LR+LU ;
IDENT IDF14 LD=L-(LE+LG+LR+LU) ;
IDENT IDF16 R=(PEX*EX-PIM*IM+VCR+VIR+PLR*LR-ER-
HR+NRE-ET)/PR+R(-1) ;
IDENT IDDG DG=E+EL+ER+EI+EJ-
(RDP+RIM+RP+RK+RL+RW+RT+RE+RV);
IDENT IDDR DR=PEX*EX-PIM*IM+VCR+VIR-ER-HR+PLR*LR+NRE ;
IDENT IDE E=PCG*CG+PIG*IG+PLG*LG ;
IDENT IDG G=(DG+ET)/PG+G(-1) ;
IDENT IDKD KD=AKD*K(-1);
IDENT IDPF PF=PF(-1)*EXP(0.5*(
 ((PC*CC)/(PC*CC+PL*LJ)+(PC(-1)*CC(-1))/

 14. Forecasting and Simulation 205

 (PC(-1)*CC(-1)+PL(-1)*LJ(-1)))
 *LOG(PC/PC(-1))
 +((PL*LJ)/(PC*CC+PL*LJ)+(PL(-1)*LJ(-1))/
 (PC(-1)*CC(-1)+PL(-1)*LJ(-1)))
 *LOG(PL/PL(-1)))) ;
IDENT IDRDP RDP=TDP*PDP*DP ;
IDENT IDRE RE=PCE*CE-PLE*LE ;
IDENT IDRIM RIM=TIM*PIM*IM ;
IDENT IDRK RK=TK*(PKD*KD-RP)+TV*(EI+VCR+VIR+NRE);
IDENT IDRL RL=TL*(PLD*LD+PLE*LE+PLG*LG+PLR*LR);
IDENT IDRP RP=TP*PI(-1)*AK(-1)*K(-1);
IDENT IDRW RW=TW*W(-1);
IDENT IDV V=(PI*AKL-PI(-1)*AK(-1))*K(-1)
 +(PG-PG(-1))*G(-1)+(PR-PR(-1))*R(-1);
?
? BEHAVIORAL EQUATIONS FOR THE CONSUMPTION SIDE OF
? THE MODEL AND THEIR PARAMETER ESTIMATES.
? SPECIFICATION: SYMMETRIC, CONVEXITY IMPOSED
?
FRML INTER1 SHRFC
 =((AX0+BON*LOG((PF*P)/
 ((1+NW)*W(-1)+LDA*(EL-HR-RT)+DEL*PL*LH))
 +BOT*(T-NT))/
 (-1+BNN*LOG((PF*P)/
 ((1+NW)*W(-1)+LDA*(EL-HR-RT)+DEL*PL*LH))
 +BNT*(T-NT)))*
 (1+(LDA*(EL-HR-RT)+DEL*PL*LH)/((1+NW)*W(-1)))$
FRML INTRA1 SHRC=AC+BCC*LOG(PC/(PL/NL)) ;
PARAM AX0 -.122007 BON -.0242706 LDA 7.85130
 DEL 7.85130 BNN -.197991 BNT .00143592
 BOT .000149361 ;
PARAM AC .148803 BCC .0155448 ;
?
? BEHAVIORAL EQUATIONS FOR THE PRODUCTION SIDE OF
? THE MODEL AND THEIR PARAMETERS.
?
FRML CODP SHRDP=ADP+(LDPKD*DKD
 -AKS*ADP)*LOG((KD*NEX)/(NKD*EX))
 +(LDPKD*LDPKD*DKD+LDPIM*LDPIM*DIM+DDP
 -ADP*(ADP-1))*LOG((DP*NEX)/(NDP*EX))
 +BDPT*(T-NT);
FRML COKD SHRKD=AKS
 +(DKD-AKS*(AKS-1))*LOG((KD*NEX)/(NKD*EX))
 +(LIMKD*DKD-AKS*AIM)*LOG((IM*NEX)/(NIM*EX))
 +(LDPKD*DKD-AKS*ADP)*LOG((DP*NEX) /(NDP*EX))
 +BKDT*(T-NT);
FRML COIM SHRIM=AIM+(LIMKD*DKD
 -AKS*AIM)*LOG((KD*NEX)/(NKD*EX))
 +(LIMKD*LIMKD*DKD+DIM
 -AIM*(AIM-1))*LOG((IM*NEX)/(NIM*EX))

206 Advanced Methods

 +(LDPKD*LIMKD*DKD
 +LDPIM*DIM-AIM*ADP)*LOG((DP*NEX)/
 (NDP*EX))+BIMT*(T-NT) ;
FRML COT DLDT=AT+BKDT*LOG((KD*NEX)/(NKD*EX))+
 BIMT*LOG((IM*NEX)/(NIM*EX))
 +BDPT*LOG((DP*NEX)/(NDP*EX))+BTT*(T-NT);
PARAM AT -.02217 BTT .0001963 ;
PARAM AKS -.6373 DKD 1.260 LIMKD .0881 AIM -.0794
 LDPKD -1.020 ADP 1.638 ;
PARAM BKDT -.0046 DIM -.0262 LDPIM -.4053 BIMT .0006
 DDP .0320 BDPT .0048 ;
?
? THIS IS THE LIST OF ENDOGENOUS VARIABLES
? IN THE MODEL.
?
LIST ENDOGL E KD RE RP RW V N NW RK
 LJ LD PDP SHRC CC PF PLD
 SHRDP SHRKD SHRIM
 L PL DP SHRFC PC
 PEX R DLDT DR RDP RIM RL DG G ;
?
? THIS IS THE LIST OF EQUATIONS IN THE MODEL;
? THE ORDER CORRESPONDS
? TO THE ORDER OF SOLUTION DESIRED.
?
LIST TRADEM IDE IDKD IDRE IDRP IDRW IDV IDF9 IDF10 IDRK
 IDF8 IDF14 IDF7 INTRA1 IDSFC IDPF IDF13

 CODP COKD COIM
 IDSKD IDSIM IDSDP INTER1 IDSC
 IDF11 IDF16 COT IDDR IDRDP
 IDRIM IDRL IDDG IDG ;
?
? THIS COLLECTION OF THE MODEL IS SUPERFLUOUS
? SINCE WE HAVE ALREADY ACHIEVED THE DESIRED ORDERING.
?
COLECT TRADEM ENDOGL TRADEC ;
SMPL 65 66 ;
SOLVE(STATIC,TAG=S,MAXIT=80) TRADEC ; PRINT @IFCONV;
SOLVE(STATIC,METHOD=FLPOW,TAG=F,MAXIT=50,SQZTOL=.001)
TRADEC ; PRINT @IFCONV;
?
? SOLVE THE FIRST 2 BLOCKS (24 EQUATIONS) BY
? NEWTON'S METHOD.(WITH DEFAULT STARTING VALUES).
?
SIML (STATIC,ENDOG=(E KD RE RP RW V N NW RK
 LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM
 L PL DP SHRFC PC))
 IDE IDKD IDRE IDRP IDRW IDV IDF9 IDF10 IDRK
 IDF8 IDF14 IDF7 INTRA1 IDSFC IDPF IDF13

 14. Forecasting and Simulation 207

 CODP COKD COIM
 IDSKD IDSIM IDSDP INTER1 IDSC ;
PRINT @IFCONV;
?
? SOLVE THE FIRST 2 BLOCKS (24 EQUATIONS) BY
? NEWTON'S METHOD. (WITH STARTING VALUES FROM
?GAUSS-SEIDEL).
?
DOT E KD RE RP RW V N NW RK
 LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM
 L PL DP SHRFC PC;
 .SAV = .;
 . = .S; ? USE SOLVED VALUES AS STARTING VALUES
ENDDOT;
SIML (STATIC,TAG=N,ENDOG=(E KD RE RP RW V N NW RK
 LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM
 L PL DP SHRFC PC))
 IDE IDKD IDRE IDRP IDRW IDV IDF9 IDF10 IDRK
 IDF8 IDF14 IDF7 INTRA1 IDSFC IDPF IDF13
 CODP COKD COIM
 IDSKD IDSIM IDSDP INTER1 IDSC ;
PRINT @IFCONV;
?
? PRINT THE RESULTS FROM ALL THREE METHODS.
?
TITLE 'COMPARE RESULTS FROM GAUSS, FLPOW, AND NEWTONS
METHOD' ;
PAGE ;
DOT E KD RE RP RW V N NW RK
 LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM
 L PL DP SHRFC PC;
 . = .SAV; ? RESTORE ORIGINAL VARIABLES
 PRINT .N .S .F . ;
ENDDOT;

208 Advanced Methods

Block structure of TRADEC

Block # Recursive # Simultaneous

 # equations equations

 1 9

 2 15

 3 9

 111111111122222222223333

Blck Eq# Equation Dep.Var. 123456789012345678901234567890123

 1R 1 IDE E X

 1R 2 IDKD KD X

 1R 3 IDRE RE X

 1R 4 IDRP RP X

 1R 5 IDRW RW X

 1R 6 IDV V X

 1R 7 IDF9 N X

 1R 8 IDF10 NW XXX

 1R 9 IDRK RK X X X

 2S 10 IDF8 LJ X X

 2S 11 IDF14 LD X X

 2S 12 IDF7 PDP X X

 2S 13 INTRA1 SHRC X X X

 2S 14 IDSFC CC X X X X XX

 2S 15 IDPF PF X XX X X

 2S 16 IDF13 PLD X X XX

 2S 17 CODP SHRDP X X X

 2S 18 COKD SHRKD X X X

 2S 19 COIM SHRIM X X X

 2S 20 IDSKD L X X X X X

 2S 21 IDSIM PL X X X X

 2S 22 IDSDP DP XX XX X

 2S 23 INTER1 SHRFC X X X X

 2S 24 IDSC PC X XX X X

 3R 25 IDF11 PEX X XX X X X

 3R 26 IDF16 R XX

 3R 27 COT DLDT X X X

 3R 28 IDDR DR X X

 3R 29 IDRDP RDP X X X

 3R 30 IDRIM RIM X

 3R 31 IDRL RL X X X

 3R 32 IDDG DG X XXX X XXXX

 3R 33 IDG G XX

Current sample: 1965 to 1966

 SIMULATION OF THE MODEL TRADEC

 ==============================

 METHOD = Gauss-Seidel

Number of Equations in the model = 33

Number of Blocks in the model = 3

 Block # Number of Equations

 1 9

 2 15

 3 9

ITERATION LIMIT IN BLOCK 2

LAST SUM OF SQUARED RESIDUALS = 0.10432128

PROGRAM CONTINUING USING LAST VALUES COMPUTED.

ITERATION LIMIT IN BLOCK 2

 14. Forecasting and Simulation 209

LAST SUM OF SQUARED RESIDUALS = 0.24700841E-01

PROGRAM CONTINUING USING LAST VALUES COMPUTED.

 320 FUNCTION EVALUATIONS.

THE SOLVED VARIABLES ARE STORED WITH A TAG: S

 SIMULATION RESULTS

....printout of results

 @IFCONV

1965 1.00000

1966 1.00000

 SIMULATION OF THE MODEL TRADEC

 ==============================

 METHOD = Fletcher-Powell

Number of Equations in the model = 33

Number of Blocks in the model = 3

 Block # Number of Equations

 1 9

 2 15

 3 9

Working space used: 4129

 STARTING VALUES

......

F= .4655745E-03 FNEW= .4628242E-03 ISQZ= 1 STEP= 1. CRIT=

.29951E-05

CONVERGENCE ACHIEVED AFTER 13 ITERATIONS

 1020 FUNCTION EVALUATIONS.

F= .8875898E-03 FNEW= .8853670E-03 ISQZ= 1 STEP= 1. CRIT=

.22314E-05

CONVERGENCE ACHIEVED AFTER 38 ITERATIONS

 4138 FUNCTION EVALUATIONS.

THE SOLVED VARIABLES ARE STORED WITH A TAG: F

 SIMULATION RESULTS

.....printout results

 @IFCONV

1965 1.00000

1966 1.00000

 SOLVE THE MODEL BY NEWTONS METHOD USING DEFAULT STARTING VAL

 ==

....... 1965 did not converge......

CONVERGENCE NOT ACHIEVED AFTER 20 ITERATIONS

 PERIOD: 1965

 @IFCONV

1965 0.00000

1966 1.00000

 SOLVE WITH NEWTONS METHOD USING GAUSS-SEIDEL STARTING VALUES

 ==

210 Advanced Methods

 MODEL SIMULATION

 ================

 STATIC SIMULATION

Working space used: 9487

 STARTING VALUES

.....

F= .6452811E-12 FNEW= .1875796E-24 ISQZ= 0 STEP= 1. CRIT=

.64528E-12

CONVERGENCE ACHIEVED AFTER 3 ITERATIONS

 6 FUNCTION EVALUATIONS.

F= .5294763E-14 FNEW= .3275911E-25 ISQZ= 0 STEP= 1. CRIT=

.52948E-14

CONVERGENCE ACHIEVED AFTER 3 ITERATIONS

 12 FUNCTION EVALUATIONS.

THE SOLVED VARIABLES ARE STORED WITH A TAG: N

 SIMULATION RESULTS

......output omitted

 @IFCONV

1965 1.00000

1966 1.00000

 COMPARE RESULTS FROM GAUSS, FLPOW, AND NEWTONS METHOD

 ===

 EN ES EF E

1965 137.00119 137.00119 137.00119 137.00999

1966 156.81017 156.81017 156.81017 156.81000

......output omitted

 GN GS GF G

1965 316.92780 317.54471 317.71494 317.38000

1966 327.72321 327.86340 323.81900 327.85001

 Compute correlation across solutions with actual values

 ===

Current sample: 1965 to 1965

Current sample: 1965 to 1965

Current sample: 1 to 33

 Results of Covariance procedure

 ===============================

Number of Observations: 33

 Correlation Matrix

 SOLN SOLS SOLF ACTUAL

SOLN 1.00000

SOLS 0.99998 1.00000

SOLF 0.99946 0.99964 1.00000

ACTUAL 0.99949 0.99966 0.99999 1.0000

Figure 14.3 33 Equation Trade Model Output

 14. Forecasting and Simulation 211

Displaying and evaluating a forecast: ACTFIT

The first step in evaluating a forecast is probably to print or plot it. If you are
using the single equation FORCST, this is easily accomplished by including
the PRINT option on the statement:

FORCST(PRINT) SALESF ;

This option prints information about the equation it is using for the forecast
and a time series plot of the forecasted variable over the time period in
question. The plot also shows the values of the variable on the right-hand side.
On a PC, to see a high-resolution graphics plot use the command :

PLOT SALES SALESF ;

If you use SOLVE or SIML to obtain the forecast, plotting will not be
automatically available, although you can obtain a table of the solved values by
use of the PRNSIM option. To get plots, save the simulated values with a
TAG= option (for example, CXS, IS, etc.) and use the PLOT procedure
described in Chapter 6:

PLOT CX A CXS S ; ? printer format
PLOT CX CXS ; ? high-resolution graphics

This example assumes that the simulation has been done over a historical
period, so that both actual (CX) and solved (CXS) values of consumption are
available and may be plotted on the same scale for comparison. Of course, if
you did not know CX for the forecasting period, you could simply plot CXS.

Standard references for the evaluation of forecasts are: Theil (1961 and 1966)
and Pindyck and Rubinfeld (1976). Some of the measures discussed by Theil
in Chapter 2 of his 1966 book have been incorporated into TSP in the ACTFIT
procedure. You can use this procedure to compute a set of statistics such as the
root mean square error, the inequality coefficient (U), and a decomposition of
the sources of forecast error. The command is

ACTFIT CX CXS ;

Once again, the historical values of the variable are required to make this
comparison. If the option PLOTS has been turned on, ACTFIT also plots the

212 Advanced Methods

two variables and their difference.

Note: Theil’s 1961 and 1966 definitions of U differ; Pindyck and Rubinfeld
use the 1961 definition. TSP prints both versions of U.

14.5 Monte Carlo Simulation: RANDOM

Random variables are useful in a variety of situations, from checking the
statistical properties of an econometric or simulation model to computing
bootstrap standard errors when analytic formulas are not available. This type of
procedure is often referred to as Monte Carlo analysis, and is easily
programmed in TSP. For example, to draw a series E of independent standard
normal variates, use the following command:

RANDOM E ;

To draw 3 series X1, X2, X3 that have a multivariate normal distribution with
mean XMEAN (a length 3 vector) and variance matrix XVAR (a symmetric
matrix of order 3), use this command:

RANDOM (VMEAN=XMEAN,VCOV=XVAR) X1-X3 ;

Random can also be used to generate series from uniform, Poisson, Cauchy,
exponential, Laplace, student's t, gamma, negative binomial, and arbitrary
empirical distributions. See the Reference Manual for details on the options
necessary.

Two useful examples appear in Chapter 9: in section 9.6.3, we simulate an
ARCH model using the standard normal distribution and a dynamic GENR. In
section 9.6.7, we show how to use uniform random variables and the inverse
distribution function to generate random variates from an arbitrary distribution
function, in this case, the Type I Extreme Value Distribution [exp(-exp(-u))].

The example below uses the random number generator to make a chi-
squared(3) random variable and then plots the "empirical" distribution of this
random variable on the same scale as the theoretical distribution (computed by

CDF). The plot is shown in Figure 14.4.

SMPL 1 100 ;
RANDOM E1-E3 ; ? Make 3 indep. normal RVs.

 14. Forecasting and Simulation 213

? Chi-squared variable=sum of squares of normal RVs.
CHI3 = E1*E1+E2*E2+E3*E3 ;

? These statements make the empirical distribution function of chi3
SORT CHI3 ;
TREND T ;
P = T/@NOB ; ? p = 1/n,2/n,etc. is the height at the

corresponding value chi3.
SET MAXC = 1+INT(1.1*CHI3(@NOB)); ? maxc is the upper

limit of the graph.

? Make the theoretical chi-squared(3) distribution function using CDF
CHIVAL = MAXC*(T-1)/(@NOB-1) ;
CDF(CHISQ,DF=3,LOWTAIL) CHIVAL CHIDF3 ;

GRAPH(PAIR,LINE,TITLE="Reference vs Actual Distribution")

CHIVAL,CHIDF3 CHI3,P ;

214 Advanced Methods

Figure 14.4 Simulating the chi-squared distribution

Most Monte Carlo analysis involves making a large loop and accumulating
statistics on functions of random variables. As an illustration of how to do this
in TSP, the distribution of the OLS regression coefficients can be checked
under the standard assumptions of fixed Xs and normal residuals.

SET NTRIAL=100; SET NOB=50; SET NX=2;
SMPL 1,NOB;

? generate X series; use SEEDIN to make results reproducible.
RANDOM(MEAN=5,SEEDIN=49824) X;
YHAT = 3 + 4*X; ? generate true values of Y series

 14. Forecasting and Simulation 215

MFORM(NROW=NX,NCOL=1) BMEAN=0;
MFORM(NROW=NX,TYPE=SYM) BPROD=0;

? suppress all OLS output.
REGOPT(NOPRINT) @LOGL,@COEF,@SES;
DO TRIAL = 1,NTRIAL;

RANDOM(STDEV=2) E; ? generate disturbances E
Y = YHAT+E;
OLSQ(SILENT) Y C X;
MAT BMEAN = @COEF+BMEAN ; ? sum coeff. estimates
MAT BPROD = BPROD+@COEF*@COEF' ; ? cross products

ENDDO;
MAT BMEAN = BMEAN/NTRIAL ;
MAT BVAR = BPROD/NTRIAL - BMEAN*BMEAN' ;
REGOPT; ? reset output suppression.
TSTATS(NAMES=@RNMS) BMEAN BVAR;

For lengthy Monte Carlo studies, it may be useful to write intermediate results
occasionally to a file, so that if the program fails for some reason partial results
can be obtained. This would also yield more accurate estimates of the variance
(the updating formula used above is not very accurate). That is, revise the
example above as follows:
 ...

DO TRIAL = 1,NTRIAL;
RANDOM(STDEV=2) E;
Y = YHAT+E;
OLSQ(SILENT) Y C X;
WRITE(FILE='monte1.dat') @COEF;

ENDDO;

? The second part of the program (below) could be put in a separate

file if necessary
SMPL 1 NTRIAL;
READ (FILE='monte1.dat') B0 B1;
MSD (COVA) B0 B1 ;
REGOPT; ? reset output suppression.
? Display mean and variance of estimated coefficients
TSTATS(NAMES=(C,X)) @MEAN @COVA;

 15. Panel Data 217

15. PANEL DATA

The term "panel data" usually refers to data where the unit of observation
varies in two or more dimensions. For example, you might have a sample of
the same individuals observed at several points in time, or a set of time series,
each for a different firm or country. The analysis of panel data in economics
has become increasingly important in recent years as the number of such
datasets has grown along with econometric techniques to analyze them. These
data can be handled rather easily in TSP, although the inherent complexity of
the data structure requires you to think a little harder about how to set things
up.

This chapter provides some guidance on how to analyze panel data in TSP..
We begin with a few basic rules for setting up your data input, depending on
the nature of the problem you are analyzing. Then we discuss the PANEL
command, which produces total (pooled), between, within (fixed effects or
conditional), and variance components (random effects) estimates for panel
data. This is followed by a discussion of how to use panel data in nonlinear
models such as Probit. Finally we discuss how to estimate more complicated
models in short panels using the minimum distance estimator in LSQ or
GMM. This is a powerful methodology that can be used to estimate linear,
nonlinear, and dynamic factor models with panel data, using the method of
moments estimator to obtain asymptotically efficient estimates.

In the first part of this chapter we use the example of data on the patenting and
R&D spending of a large number of firms, for three years each (see Hall,
Griliches, and Hausman 1986; we use three years of data for simplicity, more
would be needed to obtain real answers). Although the underlying patent data
are application counts, we confine the analysis here to large firms so we can
treat the patents as a continuous rather than discrete variable.

In the example, we are interested in the relationship between R&D spending
(possibly lagged) and the resulting patent applications. The specification of the
model that seems to have the most stable properties is to regress the log of
patents on contemporaneous and lagged logs of R&D expenditures. However,
as will become clear in the example, we expect a fixed difference in the
propensity to patent across firms (because of differing technological
characteristics of the industry and other reasons), and we expect that this
propensity may be correlated with the level of R&D expenditure. This leads us
to use many of the panel data techniques described in this chapter.

218 Advanced Methods

15.1 The basics of using panel data

15.1.1 Reading in panel data

The first decision to make when dealing with panel (time series-cross section)
data is how to organize it. Usually, you are willing to assume conditional
independence in one direction, but not in the other. For example, you may be
willing to assume that observations on firms are conditionally, independently,
and identically distributed, but not that there is no serial correlation within a
set of observations on a single firm. If this is the case you should order the data
so that the slowest varying index is the index of the dimension in which the
data are independent. In the example of patents and R&D, where we have data
for N firms for 3 years (1974, 1975, 1976), use the order

FIRM TIME PERIOD VARIABLE

1 74 Patents, R&D for firm 1 in year 74
1 75 Patents, R&D for firm 1 in year 75
1 76 Patents, R&D for firm 1 in year 76
2 74 Patents, R&D for firm 2 in year 74
. . .
N 74 Patents, R&D for firm N in year 74
N 75 Patents, R&D for firm N in year 75
N 76 Patents, R&D for firm N in year 76

This order facilitates the construction of estimators that include serial
correlation. It also allows you to regroup the datafile easily so that there is one
cross section unit per observation with all the variables for all years (by
reading in a different format), for use with the robust short panel methods of
section 3.1. For example,

 FIRM VARIABLES
 1 Patents, R&D for year 74; Patents, R&D for year 75;...
 2 Patents, R&D for year 74; Patents, R&D for year 75;...
 . .
 N Patents, R&D for year 74; Patents, R&D for year 75;...

Here are two READ commands that read the same dataset into TSP in the two
different formats shown above. The first method is the following:

SET NOBS = 3*N ;

 15. Panel Data 219

SMPL 1 NOBS ;
FREQ (PANEL, T=3, ID=@ID) ;
READ (FILE='PATDATA.DAT') @ID PATENTS LRND ;

Compare to the second method, which reads all the data for a firm into a single
observation:

SMPL 1 N ;
READ (FILE='PATDATA.DAT') @ID PAT74 LRND74 @ID PAT75

LRND75 @ID PAT76 LRND76 ;
? note that only the value of @ID for 1976 will be stored.

There are situations where you want the data one observation per firm-year
(the PANEL command, Probit or AR1 with the FE or RE options) and
situations where you want the data one observation per firm (when using
complex lag structures or GMM methods); thus the data should be set up with
this in mind. We refer to the first format as the pooled format and the second
format as the panel format.

Several factors will influence your choice between these two formats:

1. The statistical assumption of conditional independence: in general,
when you assume that observations are independent (conditional on
your model) across both dimensions, you will want the data in pooled
format, and when you assume independence only in one direction
(with the possible exception of simple first order serial correlation),
the panel format.

2. Whether the data are unbalanced (see the next section). If the
unbalancing is severe, the pooled format is far more efficient because
you will not have to create variables for the many time periods that are
missing.

3. Whether the model you have in mind has parameters that are constant
across all the periods. Such models are easily specified using data
stored in the pooled format. When the parameters vary across time
periods, the panel structure may be easier to work with.

15.1.2 Unbalanced panels

An unbalanced panel is one where there are a different number of observations
for each cross section unit (or vice versa). These observations may be
contiguous, or there may be holes in the data. That is, for the example dataset,
we may have four years of data for one firm (1973 to 1976), three years for

220 Advanced Methods

another (1973, 1975, 1976) and two years for a third (1975 and 1976). It is
essential to use the FREQ(PANEL,ID=ID_variable); command with an
unbalanced panel, to identify an ID_variable that indicates when one firm
stops and the next one starts.

Many, but not all, of the estimators described in this chapter can be used with
unbalanced panels. For example, the PANEL procedure, which assumes
independence across time series and cross section units will work just the same
whether the data are balanced or unbalanced. In fact, if your data are
unbalanced, PANEL will tell you so and will display the Ahrens-Pincus
unbalancedness measure (APUI). This measure is a number between zero and
one, with values closer to zero indicating more unbalanced data. APUI=1
means the data is balanced.

All command which use lags and leads recognize the ID variable, so that lags
and leads will refer only within a single individual. One implication of this is
that you can use a command like

SELECT MISS(IDV(-1)); ? where IDV is the ID variable

to choose the first observation for all individuals. The AR1 command also
recognizes the ID variable, so it will apply the special transformation to the
first observation of each individual and avoid using any lags that would refer
from one individual back to the previous individual. When the PLOT
procedure encounters panel data, it will place a break in the line to indicate the
start of data for a new individual.

In the panel format, unbalanced panels can be "balanced" by including missing
data codes for the missing observations. Some of the methods described in
section 15.4.1 may not work very well with unbalanced panels. This is in the
nature of the data and the current state of econometric methodology; it is not
necessarily a limitation of the program.

 15. Panel Data 221

15.2 Random and Fixed Effects models -- the PANEL
procedure

PANEL obtains estimates of linear regression models for panel data (several
observations or time periods for each individual). The data may be unbalanced
(different number of observations per individual). PANEL can also compute
means by group and perform F tests between groups. To define the models
estimated, assume we have observations on i=1,...,N individuals for each of
t=1,...,T years. The dependent variable is denoted by yit and the independent
variables by Xit. The basic pooled or TOTAL regression model is

 0β α= + +
it it it

y X u

where α0 is the overall intercept and uit assumed to be i.i.d. This model
assumes a single set of slope coefficients for all the observations.

The fixed effect or WITHIN model assumes that there are common slopes, but
that each cross section unit has its own intercept, which may or may not be
correlated with the Xs:

it it i it

y X uβ α= + +

The BYID model assumes that both the slopes and the intercepts vary across
cross section units:

 β α= + +
it it i i it

y X u

The BETWEEN model specifies the same relationship between the individual
means:

 β α= + +
i i ii i i

y X u

where

1

1

=

= ∑i

iT

i it

ti

y y
T

The random effects or VARCOMP model resembles the WITHIN model, but
it assumes that the intercepts are drawn from a common distribution with mean
α and variance σα

2. Unlike the WITHIN model, the estimates for this model

222 Advanced Methods

will not be consistent if the individual intercepts are correlated with the
independent variables. Because of this, it is important to test for correlation.
PANEL reports the Hausman test statistic for the difference between the fixed
effects and random effects estimates, along with its p-value.

The VARCOMP estimator is computed by estimating the relative importance
of between and within variation of the disturbance αi + uit and using this
estimated ratio to combine the within and between estimators optimally. Under
the null of uncorrelated intercepts, the VARCOMP estimator is asymptotically
efficient, since it is a generalized least squares estimator. There are additional
options for VARCOMP to control the actual variance components. Small or
large sample formulas may be used, or you can supply the values directly. If
negative variances are computed using the small sample formula, the program
switches over to the large sample formulas, which always result in positive
values.

All or some of these models can be estimated by a single PANEL statement.
The basic PANEL statement is like the OLSQ statement: first list the
dependent variable and then the independent variables. C is optional; an
intercept term is essential for these models and will be added if not present.
Here is an example for the sample dataset:

PANEL LPAT C LRND ;

This command will produce estimates of the TOTAL, WITHIN, BETWEEN,
and VARCOMP models, together with the value of an F-statistic for the
hypothesis that all the intercepts are equal. The observations over which the
models are computed are determined by the current sample. Lags and leads are
not allowed to extend from one individual’s data to another’s data.

Your data must be set up with all the time periods for each individual together
(in pooled format). You must also specify when the data ends for one
individual, and begins for the next. The best method is to provide an ID

variable series in the FREQ(PANEL) command that takes on different values
for each individual, as we did in the sample dataset. If your data are balanced
(the same number of time periods for every individual), the T= option can be
used. Other options are also available (see the Reference Manual or Online

Help System). If the data are not in this order, the SORT command can reorder
them (you can also use SORT to reorder the data so that you can do variance
components in the other (time) dimension). See Section 6.4 for an example.

 15. Panel Data 223

Frequently you will also wish to include a set of dummies for the time periods
in your estimation, especially when your panel is short (so that there is very
little sacrifice in terms of degrees of freedom). To generate a set of time
dummies for the sample dataset, use the TREND and DUMMY commands:

? Make a series = 74,75,76,74,75,76,... (for balanced data)
TREND (PER=3,START=74) YEAR ;
LIST YRDUM YEAR74-YEAR76 ;
DUMMY YEAR YRDUM ;

This creates three variables YEAR74, YEAR75, and YEAR76 with the
following values:

 OBS YEAR74 YEAR75 YEAR76
 1,1 1 0 0
 1,2 0 1 0
 1,3 0 0 1
 2,1 1 0 0
 2,2 0 1 0
…..and so forth

If you had loaded a variable YEAR (which would have been essential if your
data had been unbalanced), you could have just used the DUMMY command
directly, without using TREND.

The next example estimates all models including the individual firm
regressions, and prints individual means:

PANEL(MEAN,BYID) LPAT C LRND YEAR75 YEAR76 ;

The output for this command will include F-statistics for the hypothesis that
the slope coefficients are equal and for the joint hypothesis that both the slopes
and intercepts are equal.

The following command estimates VARCOMP only, using large sample
formulas (note the use of year dummies with the intercept):

PANEL(NOTOT,NOBET,NOWITH,NOVSMALL) LPAT LRND C YEAR75
YEAR76;

The TSP International website contains an example that shows all the linear

224 Advanced Methods

model Panel estimators available, estimated using Grunfeld’s investment data
and compared to the published results of Baltagi (1995) and Nerlove (2000).

15.3 Robust estimation with panel data

This section discusses how to obtain asymptotically efficient estimates of panel
data models without imposing conditional homoskedasticity or independence
over time on the disturbances of the model. The first two methods we describe
(Chamberlain’s PI matrix method and the estimation of a dynamic factor
model using variance components) are based on the idea that the second and
fourth moments of the data are sufficient statistics for estimation of a linear
model with heteroskedastic disturbances. The final estimator we discuss is the
well-known GMM method for panel data originally proposed by Hansen and
Singleton (1982) and made popular for panel data by Arellano and Bond
(1991).

The estimators described here are minimum distance estimators that use an
asymptotically optimal weighting matrix. In particular, they use the sample
covariance of the distance measures (for example, the orthogonality conditions
in GMM) as the weighting matrix. The key to understanding the computation
of the first two estimators described here is to recognize that the SUR
procedure (which computes multivariate regressions without imposing a
diagonal covariance structure) can also compute a set of estimates of second
moments or functions of second moments, along with a robust estimate of

their variance-covariance matrix. This estimate is heteroskedastic-consistent
and does not impose independence across the disturbances in each equation,
where equation here refers to the moment equation.

This enables you to construct the optimal weighting matrix for many of these
estimators easily, without special programming. Using this matrix, which we
call OMEGA, we can construct a minimum distance estimator for the second
moments as functions of the parameters of interest using the SUR procedure
again, but this time with only one observation (since the second moments and
the estimated OMEGA are sufficient statistics for the problem).

This methodology is applied below to two different panel data estimation
problems: the problem of describing the relationship between a set of
endogenous variables (Y) and a set of exogenous variables (X), where the
reduced form Π matrix is a sufficient statistic for the problem (Chamberlain's
problem), and the problem of describing the relationship between a set of
endogenous variables (Y) and a set of unobservable variables ("factors"),
where the second moments of Y are a sufficient statistic. Obviously, the two

 15. Panel Data 225

types of models could be combined, but the presentation is simpler if they are
treated separately.

Section 15.3.4 then describes how to use the GMM procedure in TSP to
estimate linear and nonlinear panel data models that allow for both
heteroskedasticity and autocorrelation of the disturbances.

15.3.1 Obtaining panel-robust standard errors

Because estimates based on linear models and some nonlinear models (notably
those estimated by ML using a likelihood function of the exponential form) are
often consistent even in the presence of heteroskedasticity or a more complex
variance structure, sometimes you will simply wish to compute robust standard
errors for conventional estimates rather than using one of the estimators below.

TSP provides several such options. You can use the ROBUST option in the
linear estimation commands or HCOV=W in the nonlinear estimation
commands to obtain heteroskedastic-consistent standard errors. In this case, if
FREQ(PANEL) has been specified, OLSQ, PANEL, and 2SLS will compute
standard errors that are robust to both heteroskedasticity and autocorrelation
within panel unit. You can override the autocorrelation computation by using
the combination of options ROBUST, HCOMEGA=DIAGONAL.

In PROBIT (REI or FEI) the same option is implemented using HCOV=P
(block diagonal variance-covariance matrix robust to autocorrelation but not
heteroskedasticity) and HCOV=Q (robust to both autocorrelation and
heteroskedasticity). Future versions of TSP will implement these options in
other nonlinear estimation procedures.

15.3.2 The PI matrix method

Chamberlain (1982) showed that one way to estimate a whole range of panel
data models was to summarize the data by regressing all the endogenous
variables on all of the exogenous variables, obtaining an estimate of the
reduced form matrix Π; and then to test various restrictions on this matrix
implied by the models of interest (actually Chamberlain focused on the
conditional expectation interpretation of regression so that the estimator in
question was for the expectation of the Ys conditional on the Xs). Let π =

vecΠ. Then, if you use the minimum distance estimator

1arg min (()) (())f f
δ

π δ π δ−− Ω −

together with an appropriate estimate of Ω to estimate the restricted parameter

226 Advanced Methods

set δ, then the resulting estimates of δ are asymptotically efficient. The optimal
estimate of Ω in this case is given by the sample covariance of wi, where

1()
i i i x i

w y x S x
−= − Π ⊗

and Sx is the sample variance of the Xs. Note that this formula does not imply
independence within each observational unit, nor does it impose
homoskedasticity.

Using SUR, it is easy to estimate Π and its associated covariance Ω in TSP.
For the sample dataset:

DOT 74-76 ;
FRML PIEQ. LPAT. = PI.74*LRND74 + PI.75*LRND75 +

PI.76*LRND76 ;
PARAM PI.74-PI.76 ;
MSD (NOPRINT) LPAT. LRND. ; ? Removing all the year means.
UNMAKE @MEAN PMEAN RMEAN ;
LPAT. = LPAT.-PMEAN ; LRND. = LRND.-RMEAN ;
ENDDOT ;
SUR (HCOV=R) PIEQS ; ? Note the robust option.
COPY @COEF PI ; ? Save the computed PI matrix
COPY @VCOV OMEGA ; ? and its covariance estimate.

Removing the means of the data before forming the estimated Π simplifies
things, because it implies that you do not have to carry around the X variable
corresponding to the intercept. This two part strategy for estimation does not
affect the asymptotics (Macurdy 1982).

Now suppose the class of restricted models of interest have the following form:

yit = β1xit + β2xi,t-1 + ... + γtαi + uit

where αi is the firm effect, which may be correlated with the x's:

αi = λ1xi1 + ... + λTxiT

For the sample data, with three y’s and three x’s, the Π matrix has the
following form:

+++

++

+

=Π

767617576274763

76757575174752

7674757474741

λγβλγβλγβ

λγλγβλγβ

λγλγλγβ

 15. Panel Data 227

There are nine elements in Π and nine coefficients to be estimated, but there is
one normalization restriction (γ74=1), so there is one over-identifying
restriction. If there are no correlated effects, the γs and λs will be zero and
there will be six over-identifying restrictions.

With the estimated Π and Ω matrices obtained above, you can test for the two
levels of restrictions implied by this model:

1) a stable lag structure and correlated firm effect.
2) a stable lag structure and uncorrelated firm effects.

Here is how to do it using the minimum distance procedure (LSQ or SUR):

? Define the lists of PI coefficients and equations.
?
LIST PILIST PI7474-PI7476 PI7574-PI7576 PI7674-PI7676 ;
LIST PIEQLIST PIEQ7474-PIEQ7476 PIEQ7574-PIEQ7576

PIEQ7674-PIEQ7676 ;
LENGTH PILIST NPI ; ? Find out how many elements in PI matrix.
? Unmake the est. PI matrix into its individual elements.
UNMAKE PI PILIST ;
? Treat the estimated PI coefficients as data in the program below
CONST PILIST ;
? Suppress some output for Minimum Distance estimation:
SUPRES COVU W COVT REGOUT;
? Define the equations that express PI as a function of the

underlying delta parameters ? (beta, lambda, and gamma)
that are to be estimated.

?
FRML PIEQ7474 PI7474 = BETA1 + LAM74*GAM74 ;
FRML PIEQ7574 PI7574 = BETA2 + LAM74*GAM75 ;
FRML PIEQ7674 PI7674 = BETA3 + LAM74*GAM76 ;
FRML PIEQ7475 PI7475 = LAM75*GAM74 ;
FRML PIEQ7575 PI7575 = BETA1 + LAM75*GAM75 ;
FRML PIEQ7675 PI7675 = BETA2 + LAM75*GAM76 ;
FRML PIEQ7476 PI7476 = LAM76*GAM74 ;
FRML PIEQ7576 PI7576 = LAM76*GAM75 ;
FRML PIEQ7676 PI7676 = BETA1 + LAM76*GAM76 ;

? Starting values for model with

228 Advanced Methods

? uncorrelated Xs (only betas to be estimated).
CONST LAM74-LAM76 GAM74-GAM76 ;
PARAM BETA1 1 BETA2 0 BETA3 0 ;
CONST LAM74 1 ; ? this is a free normalization

? In effect we now have one observation on each element of PI.
SMPL 1,1 ;
SUR(WNAME=OMEGA) PIEQLIST ;
LENGTH @RNMS NOPAR ;
SET DF = NPI-NOPAR ; ? Degrees of freedom for constrained model
CDF(CHISQ,DF=DF) @TR ; ? Test constraints.

? Starting values for model with correlated Xs.
PARAM LAM74-LAM76 GAM75 GAM76 ;
 SUR(WNAME=OMEGA) PIEQLIST ;
LENGTH @RNMS NOPAR ;
SET DF = NPI-NOPAR ;
CDF(CHISQ,DF=DF) @TR ; ? Test the single constraint remaining.

The "TRACE OF MATRIX" criterion printed out by SUR after convergence is
precisely the Chi-squared statistic for the over-identifying constraints (with
degrees of freedom equal to the number of elements of Π less the number of
parameters being estimated). Note that changing the sample size to one is
essential if you want standard error estimates to have the correct size
(assuming OMEGA has been computed as shown).

With a larger number of Ys, Xs, or observations in the time dimension, the
number of models that might be nested in this way becomes very large and the
TSP program correspondingly larger. Using DOT loops and other shortcuts
can make programming easier and streamline your program so that it is easier
to read and debug. See the examples earlier in this chapter for ideas.

15.3.3 Dynamic factor models with panel data

An example of how to estimate a fairly complex dynamic factor model using
SUR is available in the examples on the TSP web site. The example is drawn
from Hall and Hayashi (1989).

 15. Panel Data 229

15.3.4 GMM Estimation of panel data models.

A series of recent papers (Arellano and Bond 1991, Keane and Runkle 1992,
Ahn and Schmidt 1992) have advocated the use of the GMM methodology for
the estimation of dynamic panel models or panel data models with
predetermined rather than exogenous right-hand side variables. These
estimators are straightforward to implement in TSP using the GMM estimation
command. In order to use this estimator on panel data, your data should be in
panel format, and you should write a different equation for each year of data
(this is easily done with DOT loops).

There are two ways to specify different instruments for each equation (year):

1. directly in the command using a special form of the INST statement
where the instruments for to be used in each equation are separated by
the “or” sign |.

2. using the MASK option to choose the instruments you wish to use for
each equation.

As an example, consider the one-variable model of Y on X, with 3 years of data
for each y, but 6 years, including 3 lags for each X. With this much data, it is
possible to test not only for strong exogeneity of the X's, but also for weak
exogeneity of lag order 0, 1, or 2, either unconditionally or conditional on the
presence of individual effects. That is, you can test for whether there is zero
correlation between the first-differenced disturbances and future X's and also
for whether there is zero correlation between the first-differenced disturbances
and current X's, or X's lagged once. As the number of lags of X variables that
are not assumed to be exogenous increases, the number of moment restrictions
imposed decreases. A simple TSP run that performs these tests conditional on
individual effects is shown below:

? Equations of the model.
FRML UEQ86 Y86 - BETA1*X86-BETA2*X85-BETA3*X84 ;
FRML UEQ87 Y87 - BETA1*X87-BETA2*X86-BETA3*X85 ;
FRML UEQ88 Y88 - BETA1*X88-BETA2*X87-BETA3*X86 ;

? First-differenced versions.
FRML DUEQ87 UEQ87-UEQ86 ;
FRML DUEQ88 UEQ88-UEQ87 ;
DOT 87 88 ;

EQSUB DUEQ. UEQ86-UEQ88 ;
ENDDOT ;

230 Advanced Methods

LIST XLIST X83-X88 ; ? List of all instruments

? Lag 1+ instruments in levels
GMM (INST=(X83 X84 X85 | X83 X84 X85 X86))
 DUEQ87 DUEQ88 ;
? Save chi-squared statistic for estimated model.
COPY @GMMOVID TRACE1 ;
? Save actual number of moment restrictions imposed.
COPY @NOVID DF1 ;

? Weak exogeneity – lag 0 instruments
GMM (INST=(X83 X84 X85 X86 | X83 X84 X85 X86 X87))
 DUEQ87 DUEQ88 ;
COPY @GMMOVID TRACE0 ;
COPY @NOVID DF0 ;

 15. Panel Data 231

? Strong exogeneity – all instruments for all equations
GMM (HETERO,INST=XLIST) DUEQ87 DUEQ88 ;
COPY @GMMOVID TRACES ;
COPY @NOVID DFS;

? Compute Test Statistics.
SET TEST0 = TRACE0-TRACE1 ; SET DFR = DF0-DF1 ;
? Test lag 0 instruments, maintaining lag 1.
CDF(DF=DFR,CHISQ) TEST0 ;
SET TESTS = TRACES-TRACE0 ; SET DFR = DFS-DF0 ;
? Test strong exogeneity, maintaining weak.
CDF(DF=DFR,CHISQ) TESTS ;

Note that the first model estimated in this example is the least constrained
model; all the others will be tested relative to this one.

15.3.5 Using the MASK= option

Instead of supplying separate instruments for each equation, you may prefer to
use the MASK option to specify which instruments apply to which equation.
For example, the first estimation above can also be done with these commands:

READ (NROW=6,NCOL=2) M1 ;
? Mask for lag 1 and greater instruments.
1 1
1 1
1 1
0 1
0 0
0 0
;
GMM (HETERO,INST=XLIST,MASK=M1) DUEQ87 DUEQ88 ;

Modifying this example to perform the tests without allowing for individual
effects is straightforward: simply use the level equations UEQ86-UEQ8 and
modify the M1 and M0 matrices accordingly. For example, if the order of the
equations is UEQ86 UEQ87 UEQ88, the mask M1 should be the following
matrix:

232 Advanced Methods

1 1 1
1 1 1
1 1 1
0 1 1
0 0 1
0 0 0

The examples section of the TSP web site http://www.tspintl.com contains
more examples of estimating a panel data model using both the GMM and PI
matrix techniques. There are also examples of performing LM tests for serial
correlation as in Arellano and Bond (1991), and computing the one-step
covariance matrix estimate recommended by Blundell and Bond (1995).

15.4 Panel data and nonlinear models

The implications of nonlinearity for panel data models depend on the way in
which the individual effect enters the model. Two situations can be
distinguished, one where the effect enters linearily and one that is intrinsically
nonlinear:

[| ,] (,)

[| ,] (, ,)

it it i it i

it it i it i

E y X f X

E y X g X

α β α

α α β

= +

=

The first case is easily handled by GMM via differencing to remove the effect
and then instrumenting with lagged values of the independent (and possibly
the dependent) variable, as described in the previous section. We discuss some
alternatives for dealing with the second case (which includes count data and
qualitiative depdendent variable models such as Probit) in the next two
sections.

15.4.1 Multiplicative individual effects

A special case of the second model is the case where the effect is
multiplicative:

 [| ,] (,)
it it i i it

E y X f Xα α β=

For example, this is the model usually implied by Poisson or negative binomial
models for panel count data (see Blundell, Griffith, and Windmeijer 2002;
Montalvo 1997). These authors show that models of this type imply the
following orthogonality condition:

 15. Panel Data 233

 , 1 , 1 , 1(,){ / (,)} | 0
it it i t i t i t

E y f X y f X Xβ β− − − − =

Because GMM handles nonlinear equations for the residual u in the same way
as linear equations, it is straightforward to implemented such a model in TSP
using GMM and the methods described in the previous section. Here we
provide a simple example based on the data with 6 years for X and 3 years for
Y that we used in that section.

? Equations of the model f(X,B).
FRML FXB86 BETA1*X86+BETA2*X85 ;
FRML FXB87 BETA1*X87+BETA2*X86 ;
FRML FXB88 BETA1*X88+BETA2*X87 ;

? First-differenced versions for multiplicative effects.
FRML DUEQ87 Y87-Y86*(FXB87/FXB86) ;
FRML DUEQ88 Y88-Y87*(FXB88/FXB87) ;
DOT 87 88 ;

EQSUB DUEQ. FXB86-FXB88 ;
ENDDOT ;

? Estimate using instruments in levels corresponding to weak
? exogeneity (note that we drop one to reduce bias).
GMM (INST=(X83 X84 X85 X86 | X84 X85 X86 X87))
 DUEQ87 DUEQ88 ;

? Estimate using Lag 1+ instruments in levels
GMM (INST=(X83 X84 X85 | X84 X85 X86))
 DUEQ87 DUEQ88 ;

15.4.2 Qualitative dependent variable models (Probit
and logit)

The basic Probit model for panel data takes the following form:

*

i it

*

*

+ +

1 0

0 0

it it

it

it

it

Y X

if Y
Y

if Y

β α ε=

 >
=

≤

234 Advanced Methods

As in the case of the linear panel data model, the choice of estimator for this
model depends crucially on whether or not you assume that the effects αi are
uncorrelated with the X’s. When the effects are not correlated, the model
becomes a variance components version of Probit. In this case you have two
choices: 1) estimate using the usual Probit estimator, which is consistent, and
obtain grouped standard errors that are consistent in the presence of the
implied variance-covariance structure of the disturbances; or 2) use PROBIT
with the REI option to obtain maximum likelihood estimates under the
assumption that the disturbance has the variance components structure implied
by the model above.

Assuming that you have specified the sample via FREQ (PANEL) so TSP
knows what the panel structure of your data is, the first approach is automatic
when you estimate a Probit model using panel data. In this case, the option
HCOMEGA=BLOCK is turned on by default, and grouped standard errors
will automatically be computed.

To implement the “random effects” maximum likelihood estimation, include
the REI option in your PROBIT command. The Probit random effects model
estimated is the following:

2 2

2 2

2

2 2

(0)

(0,) and (0,)

1

∼ ∼

it it i it

i it

y X

N Nα

α

α

β α ε

α σ ε σ

σ σ

σ
ρ

σ σ

= Ι + + >

+ =

=
+

The normalization above means that the coefficients are normalized the same

way as the results from the usual PROBIT command. The parameter ρ (RHO)
is estimated and corresponds to the share of the variance that is within
individual. The likelihood function involves computing a multivariate integral
and this is done with Hermite quadrature, using a default 20 points; when
RHO (the within variance share) is high, it may be necessary to increase this
using the NHERMITE option.

 16. Storing Data on External Files 235

Fixed effect Probit models are more problematic, since the usual dummy
variable is inconsistent (suffers from finite T bias). For a full discussion of this
issue, see Chamberlain (1982, 1984) or Wooldridge (pp. 482-492).
Nevertheless, such models can be useful if T is even moderately large, since
the bias is typically of order 1/T. For this reason, TSP does provide a fixed
effects Probit estimator via the FEI option. To use this option, FREQ
(PANEL) must be in effect. A very efficient algorithm is used, so large
unbalanced panels can easily be handled.

If desired, you can use the FEPRINT option to print a table of the effects, their
standard errors, and t-statistics. Individuals that have dependent variable values
that are all zero or all one are allowed, although their data are not informative
for the slopes. The fixed effects for such individuals will be either a very large
negative number (in the case of a zero dependent variable) or a very large
positive number (in the case of one). These values yield the correct probability
for these observations (zero or one).

As Chamberlain (1984) pointed out, and as is discussed in Wooldridge, the
fixed effects logit model does have an estimator that is consistent for the slope
parameters. This estimator can be obtained using the conditional density
approach that was used in Hausman, Hall, and Griliches (1984) to obtain a
consistent estimator for the Poisson model with individual correlated effects.
Using the earlier notation but allowing εit to have a Type I extreme value
distribution rather than a normal distribution, the likelihood for this model
conditional on the sequence of 0-1 binary variables actually observed for
individual i is similar to but not the same as the usual conditional logit
likelihood:

1 1

1

1 1

log log exp

with (,...,) such that 0 or 1 and

t i

T T

i it it t it

t d B t

T T

i T t t it

t t

L y X d X

B d d d d y

β β
= ∈ =

= =

= −

= = =

∑ ∑ ∑

∑ ∑

That is, each observation is conditioned on all the sequences of 0-1 binary
variables that sum to the observed sum for the individual. Individuals whose
observations are all 0 or all 1 do not contribute to this likelihood, since they
convey no information about the relationship between X and the outcomes

236 Advanced Methods

Here is a simple example for the case when T=3. In this case the possible
sequences of the dependent variable are (0,0,0), (0,0,1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0), and (1,1,1). Any observations with the first or last
sequence are dropped, leaving 6 sequences possible, 3 whose sum is 1 and 3
whose sum is 2. Assuming that the model contains only a single X and that all
the data for an individual is in a single observation (panel format), the
following statements set up the likelihood function for estimation:

sumd = d1+d2+d3 ; ? Create the sum of the 3 dep vars
? Dummies corresponding to the four possible sequence sums
dummy sumd a0 a1 a2 a3 ;
? Choose the cases where sumd is 1 or 2 for estimation.
select a1|a2 ;

dot 1-3 ;
 frml xb. x.*beta ;
enddot ;

? Note the use of a1 and a2 to select the appropriate denominator
? for the likelihood.
frml logit d1*xb1 + d2*xb2 + d3*xb3
 - a1*log(denom1) - a2*log(denom2) ;
frml denom1 exp(xb3) + exp(xb2) + exp(xb1) ;
frml denom2 exp(xb2+xb3) + exp(xb1+xb3) + exp(xb1+xb2) ;

dot 1 2 ;
 eqsub denom. xb1-xb3 ;
enddot ;
eqsub logit denom1 denom2 xb1-xb3 ;

param beta 3 ;
ml (hiter=n,hcov=nbw) logit ;

 16. Storing Data on External Files 237

16. STORING DATA ON EXTERNAL FILES

The free-format data loading described in Chapter 3 is easy and convenient to
use, but it may not be suitable for large amounts of data: the data may not be in
a form that can be read this way; it is somewhat inefficient to use free format;
or you may have a large number of series in your data set, only a few of which
you wish to use at one time. TSP provides several alternative formats for the
storage and use of data in external files.

These alternate file formats are generally used in different situations and for
different data problems. In this chapter, we try to give some guidelines for their
use. Here are some possible situations:

 1. You have a moderate number of not very long series (approximately 50
observations or fewer). You could type the data into a free format file, or a

spreadsheet file (.wks, .xls, etc., but not spreadsheet notebooks).

 2. Your project involves a large amount of data: either panel data with several
hundred observations on a few time periods for each variable, or a large cross
section (more than one thousand observations). Cost considerations dictate that
data storage and input/output be as efficient as possible. In this case, the most
efficient technique is to store the data in a TSP databank, after reading it into

your TSP program. Another efficient alternative is to store the dataset in stata

(.dta) format. You can do this either with stata™ or by using stat/transfer to
convert from another format to stata format.26

 3. You are building a large model section by section: the total number of
series involved is quite large, but they may have different starting dates and
frequencies. This kind of project is also well suited to a databank. You can
easily store the documentation for each series along with the data values.

The next few sections discuss data storage alternatives in more detail and give
a few examples of using them.

26

 See http://www.stata.com and http://www.stattransfer.com for information about these

programs and how to obtain them. Note that variable documentation in stata format files will be
saved as documentation when they are read into TSP, and will therefore be stored in any TLB
files that you create.

238 Advanced Methods

16.1 Using external sequential files: READ, WRITE

A sequential file is just what its name implies: one record follows the next, in
sequence. The file is always written and read in a fixed order. In TSP, the
reading and writing of data to an external sequential file are done with the
READ and WRITE commands, using the FORMAT= and FILE= options. The
FORMAT= option tells TSP whether the data on the external file is free
format, formatted (characters), binary, or a special format such as spreadsheet.

In a formatted data file (sometimes called an ASCII file after the character
code used or a text (.txt) file), each number occupies a prespecified number of
spaces, and is represented by a series of characters in a particular machine code
representation. The advantage of formatted data is that it can be printed easily
and is readable on different kinds of computers.

Binary or unformatted data, on the other hand, is not readable on a different
kind of computer than the one on which it was written, nor can it be printed
directly. It is the most efficient and the least flexible form of storage The
format of this data is the same as the machine representation of the numbers;
so no recoding is done as it is read or written and maximum efficiency is
achieved.

For further information on the use of formatted and unformatted data see
FORMAT in the Reference Manual.

The FILE= option is used to specify the external file from which the data will
be read or to which the data will be written.

READ(FILE='FOO.DAT') X Y Z;

specifies that TSP is to read the series X, Y, and Z in free format from the file
FOO.DAT.

16.1.1 Data organization on external files

You can organize data on an external file by series or by observation. Data
organized by series typically has one or more records per series, with all the
observations, and starts a new record for each series. Data organized by
observation is more typical of cross-section research: each record contains all
the variables for a single observation and each observation starts with a new
record. TSP can read/write data stored in either way. For example, to load data
stored by series:

 16. Storing Data on External Files 239

FREQ A ; SMPL 48 79 ;
READ(FILE='macro.dat',BYVAR) GNP IMPT RELP ;

The external file macro.dat has 32 numbers for GNP (possibly on more than
one line), then 32 numbers for IMPT, and 32 numbers for RELP.

The next example shows how to read data stored by observation: each pair of
records on the input file consists of data on the 11 variables being read; there
are 385 pairs of records corresponding to the SMPL of 385 observations:

FREQ N ; SMPL 1 385 ;
READ(FILE='PATENTS.DAT',FORMAT='(7F10.5/10X,4F10.5)') ID

PATENTS LRNDL5 LRNDL4 LRNDL3 LRNDL2 LRNDL1 LRNDL0
TIME BOOK71 SCISECT ;

Suppose that you now wish to reformat the data in the second example as a
TSP databank file for efficiency in storage and reading. You can use OUT and
KEEP statements to do this:

OUT PATDATA;
KEEP ID PATENTS LRNDL0 LRNDL1 LRNDL2 LRNDL3 LRNDL4

LRNDL5 TIME BOOK71 SCISECT PFIT U ;

In this example we assume that you also wished to add two computed variables
(PFIT and U) to the databank PATDATA. On most computers, the new file
has approximately 20,000 bytes, whereas the old formatted file had about
54,000 bytes, even though it had fewer variables. An easier way to save all
original and transformed variables is to put the OUT command before the
READ command; then the KEEP command is not needed.

In dealing with large cross-section data files organized by observation, you
often do not know the exact number of observations in the file before you
make the first run. The READ command has a convenient option to solve this
problem, called SETSMPL. SETSMPL does exactly what its name implies: it
sets the SMPL after the data is read and the number of observations is known.
This option is the default if the SMPL has not yet been defined. For example if
PATENTS.DAT was actually a free format file:

READ(FILE='PATENTS.DAT') ID PATENTS LRNDL0 LRNDL1 LRNDL2
LRNDL3 LRNDL4 LRNDL5 TIME BOOK71 SCISECT ;

240 Advanced Methods

After these commands have been executed the SMPL will be 1 385.

In cases where you wish to use a frequency other than N, provide a FREQ
statement and a SMPL with the correct starting date of your file, and then use
the SETSMPL option explicitly in the READ statement to update the ending
date of the SMPL from the data you input.

16.1.2 Closing external files: CLOSE

Files are opened when they are first referenced in a READ or WRITE
statement and are not closed until the end of the program, unless one of the
following two things happen:

1. The same filename (or unit) is used in both READ and WRITE statements.
2. Many different files (usually more than 12) are used in a single program.

In these situations, the CLOSE command is available to give the user explicit
control over the closing of files. CLOSE uses the option FILE=, just like
READ and WRITE. Most users will never have to use the CLOSE command,
since the default methods are adequate for most file operations.

16.2 Spreadsheet files

TSP can read series and matrices directly to or from spreadsheet files. The
following table lists the file types supported by TSP:

Spreadsheet Version Filename

extensions

TSP support

Lotus 123,
Symphony

1,2 .wks .wk1 .wrk
.wr1

Read, Write

Lotus 123 3 .wk3 Read
Lotus 123/J
 (Japanese)

1,2 .wj1 .wj2 .wk2
.wt2

Read, Write

Microsoft Excel 2 .xls Read, Write
Microsoft Excel 3,4 .xls Read
Microsoft Excel 5,97,2000,

2002
.xls Read/Write

Quattro Pro .wq1 Read (PC only)

TSP generally writes the oldest file formats, which are always readable by
more recent spreadsheet releases. The exception is Excel where TSP usually

 16. Storing Data on External Files 241

writes in the format of version 4.0.

Spreadsheet files should take the format of the following example, which
consists of quarterly data from 48:1 to 49:1:

 A B C

1 Date CJMTL PMTL

2 Mar-48 183.4 #N/A

3 Jun-48 185.2 .436

4 Sep-48 192.1 .562

5 Dec-48 193.3 .507

6 Mar-49 206.9 .603

Series are read from individual columns in the file. Series names are optionally
supplied in the first row of the file above the data columns. Dates may be
given in the first column. Many different file configurations are possible, and it
is possible to read in some series while ignoring others. Following are some
simple guidelines for creating a spreadsheet file for TSP:

1. Put the column names in the first row. They should be valid series names in
TSP (lowercase is fine, but imbedded blanks and special characters are not
allowed).27 If the file has no names, you can supply them when you read the
file into TSP, but this can be inconvenient. If the file contains invalid names,
the data can be read by TSP as a matrix, ignoring the current names, and you
can supply your own names inside of TSP. TSP will not recognize names in
lower rows or in sheets after the first. TSP treats these names as missing values
and numbers below them will be read as data for the original column names.

2. The second row must contain data.

27

 Unlike UNIX, TSP makes no distinction between lower and upper case when reading

commands and variables, but all variable and file names are stored in upper case, which means
that on UNIX and in unix-style programs like stata you will need to be aware that the names are
uppercase.

242 Advanced Methods

3. If you are reading time series, the first column should contain dates. This
will ensure the series are read with the proper frequency and starting date,
regardless of the current FREQ and SMPL in TSP. Dates can be strings such
as 48:1 or numbers formatted as dates (Mar-48, 3/31/48, etc.). You only have
to supply enough dates so that TSP can detect the frequency (5 is enough to
distinguish between quarterly and monthly). TSP ignores any dates after these,
assuming that the data is contiguous (no missing periods/years, or SMPL gaps
in TSP terminology). If you have missing periods/years for all series, leave the
corresponding rows blank. Below is a table of examples showing
recommended ways of defining the starting date and frequency with a dates
column. If you have dates in other columns, they will be read as numbers. If
you are reading a matrix, the date column will be ignored (i.e. it will not be
read into the matrix).

First
date

Second
date

Resulting frequency

string dates – first character is ‘ ^ or “

1 2 A if current freq is A, otherwise N

48: Any A

48:5 Any M

48:4 49:1 Q

1948:1 1948:2 M or Q depending on subsequent
dates

48:1 49:1 A

A2:3 Any Invalid

48:2 48:1 Invalid

numeric dates

12/31/48 12/31/49 A (any dates 365-366 days apart)

12/31/48 1/31/49 M (any dates 28-31 days apart)

12/31/48 3/31/49 Q (any dates 90-92 days apart)

12/31/48 1. 1.49 N (any other date range)

4. Missing values can be represented by blank cells or by formulas which
evaluate to missing.

To read in a spreadsheet file, use the FILE='filename' option.
FORMAT=LOTUS or EXCEL is optional. If the filename contains one of the
extensions listed earlier (.WKS, .WK3, .XLS, etc.), TSP checks the first few
bytes of the file to confirm that it is one of the spreadsheet versions listed

 16. Storing Data on External Files 243

above. Conversely, if FORMAT=LOTUS or EXCEL is specified, but the
filename does not contain a extension , then .WKS or .XLS is appended to the
filename. To read a matrix (bypassing column names and dates), use the
TYPE=GEN option. TYPE=CONSTANT is not supported for Lotus files;
series will be defined instead. The NCOL=, NROW=, IFULL, UNIT=, etc.
options are ignored, but SETSMPL is supported.

If no series names are supplied on the READ command, TSP looks for column
names in the file and creates series with those names. If you supply series
names, TSP attempts to match them to column names in the file. If the file
does not have column names, you must supply a READ argument for each
data column. If you are unsure of the file's contents, check it with your
spreadsheet editor or read it as a matrix. If you think the file has column
names, but you don't know what they are, try supplying a dummy name that
won't be matched and TSP will print an error message listing the column
names in the file. If you are reading a matrix (using TYPE=GEN as mentioned
above), TSP will create a matrix named @LOTMAT unless you supply an
argument (the name of a matrix) to READ.

If for some reason your series are in rows instead of columns, you can read the
file as a matrix, transpose it, and UNMAKE the matrix into series.
Alternatively you could transpose the file in your spreadsheet editor: most have
a special paste option for performing this operation (e.g., Excel).

TSP checks the first row in the file for string names (Lotus cells beginning
with the characters ' ^ or "). The names are truncated to 8 characters (if
necessary), and are translated to uppercase. They must be aligned above their
corresponding data columns. If you have dates in the first column, no name is
required for the date column. Any names with imbedded blanks will be
ignored.

READ examples for spreadsheet files

1. We will use the SML.WKS file shown below in the following examples:

 ^CJMTL ^PMTL

'48:1 183.4 NA

'48:2 185.2 .436

'48:3 192.1 .562

244 Advanced Methods

'48:4 193.3 .507

'49:1 206.9 .603

READ(FILE='SML.WKS');
? the series CJMTL and PMTL are defined. FREQ Q and
? SMPL 48:1, 49:1 are set if there is no current FREQ or SMPL.

READ(FILE='SML.WKS',TYPE=GEN);
? creates the 5x2 matrix @LOTMAT, with the values
? of CJMTL and PMTL in its columns.

READ(FILE='SML.WKS') PMTL; ? only reads in PMTL

2. Here is the nm3.wk1 file (as shown in Lotus, using numeric dates) for the
following examples:

04/30/57 23.2 34.5 10.9

05/31/57 23.6 35.1 11.0

06/31/57 23.9 35.8 11.2

07/31/57 24.0 11.5

READ(FILE='NM3.WK1') SF LA SD;

defines the monthly series SF, LA, and SD from 57:4 to 57:7. If there is no
current SMPL, this is the new SMPL with FREQ M. The series LA will be
given a missing value in its last observation.

READ(FILE='NM3.WK1') SF;

causes an error message to be printed because three series names are required
unless the option TYPE=GEN is supplied (to indicate that the data should be
read as a matrix).

16.2.1 Writing spreadsheet files

The WRITE command will write either a single matrix or several series to a
spreadsheet file. If the file specified already exists, it is overwritten by the new
file. If you write a matrix, the file will consist only of numbers. If you write

 16. Storing Data on External Files 245

series, their names will be put in the first row. The first column will contain
dates (or observation numbers), and each series will be put in a column below
its name. Series are written under the control of the current sample. If there are
gaps in the sample, observation numbers will be used instead of dates in the
first column. Dates are written as the last day of each period, and formatted as
Mon-Yr.

WRITE examples for spreadsheet files

? This creates a file equivalent to the READ examples, except that
? dates are formatted numerically instead of as strings.
FREQ Q;
SMPL 48:1,49:1;
READ CJMTL; 183.4 185.2 192.1 193.3 206.9;
READ PMTL; . .436 .562 .507 .603;
WRITE(FILE='SML.WKS') CJMTL,PMTL;

? This creates a file with the same data columns, but no dates or
? series names (since a matrix is used).
FREQ Q;
SMPL 48:1,49:1;
LOAD CJMTL; 183.4 185.2 192.1 193.3 206.9;
LOAD PMTL; . .436 .562 .507 .603;
MMAKE M CJMTL,PMTL;
WRITE(FILE='SMM.WKS') M;

Here is the resulting SMM.WKS file:

 A B

1 183.4 NA

2 185.2 .436

3 192.1 .562

4 193.3 .507

5 206.9 .603

246 Advanced Methods

16.3 TSP Databanks

TSP databanks provide a convenient means of automatically storing and
retrieving your variables from disk.

The method for storing and retrieving variables from databanks is implicit.
Instead of listing variables in a READ statement, the names of databanks are
listed in an IN statement. Any variables in the databanks are then available,
and are read in automatically if referenced. The corresponding statement for
storing variables is OUT; which marks all variables created or modified after it
for output to files listed on the statement. For example,

FREQ A; SMPL 48,87;
IN USNIPA; OUT USNIPA;
OLSQ GNP C,CONS; ? old series read from USNIPA databank
LGNP = LOG(GNP); LCONS = LOG(CONS);
? new series saved in USNIPA

reads in GNP and CONS from databank USNIPA, runs a regression using
them, takes their logs, and add the new logged variables to the same databank.

16.3.1 Storing variables in a databank: OUT

Variables created or modified during a TSP run will be stored as members of a
databank at the conclusion of the run if you include a statement of the
following form in your TSP run:

OUT FILENAME ;

After an OUT statement, all TSP variables that were created or modified are
written to the file associated with that filename. The variables stored can
include series, constants, matrices, or equations, provided they have been
created or changed after the appearance of the OUT statement. The example
above would create a file called FILENAME.TLB.

A new OUT statement later in the run will cause all items created after its
appearance to be put on the file(s) named on it, but will leave the items stored
previously on the first file(s) unchanged. The statement

OUT ;

causes TSP to cease storing anything on the output files. Here is an example:

 16. Storing Data on External Files 247

OUT DB1 ;
PRINT W1 LNX1 ; GENR GNP=G/P ;
OUT DB2 ;
GENR W1ACT=W1 ; GENR W1=A1+B11*LNX1 ;
OUT;
GENR W2=A2+B22*LNX2 ;
END ;

After this run is completed, the series GNP will be stored in DB1.TLB,
W1ACT and W1 will be stored in DB2.TLB, and W2 will be stored on neither
file.

Occasionally it is convenient to store variables during a TSP run without
having to create or modify them. To do this, use a KEEP statement:

KEEP VARNAME1,VARNAME2,.....;

This puts the variables named VARNAME1, VARNAME2, etc. in the file
referenced by the current OUT statement. This is the only way (other than
WRITE(FORMAT=DATABANK,...)...;) to store equations and @ variables in
a databank. Standard OUT commands ignore these variables. Only LISTs and
PROCs cannot be stored in databanks at all. The KEEP command below stores
the equation EQ1 and the variance-covariance matrix @VCOV in the databank
FILE1.TLB in addition to the series X and Y and the estimated parameters A
and B (which are automatically stored).

FREQ A ; SMPL 66 75 ;
OUT FILE1 ;
LOAD X ; 11 9 14 30 18 12 29 35 31 25 ;
LOAD Y ; 1 2 3 4 5 6 7 8 9 10 ;
FRML E1 Y=A+B*X ;
PARAM A B ;
LSQ E1 ;
KEEP E1 @VCOV ;
END ;

If you want to save all the series and variables in your TSP program, use the
command KEEP ALL.

248 Advanced Methods

16.3.2 Documenting variables on a databank: DOC

Since TSP databanks are permanent storage for your data, and may be kept for
several years and updated, it is useful to store documentation about your data
with the actual series. Otherwise, it is easy to forget exactly what they are if
you leave a project for a few months and then return to it. TSP provides the
DOC command to let you store information about variables in your databanks.
For example, to store descriptions for the preceding example, include these
statements somewhere after the OUT FILE; statement:

DOC X 'The exogenous variable from the DBRUN example' ;
DOC Y 'The endogenous variable from the DBRUN example' ;
DOC E1 'The equation from the DBRUN example' ;

There is no restriction on the length of the documentation that you can store.
Also, any variable documentation in stata files that you input to TSP will
automatically be stored.

16.3.3 Retrieving variables from a databank: IN

When a TSP databank has been created, it can be accessed by including a
statement of the form

IN FILE1,FILE2,...;

If there is more than one filename in an IN statement, each file will be
searched until the relevant variable is found. Up to 8 filenames may appear on
one IN statement. When another IN statement is encountered with new
filename(s), TSP will stop searching the first group of files and search the new
group for any new items encountered after the second IN statement. The
statement

IN ;

will cause the program to cease searching any files until a new IN statement is
encountered.

The following simple job shows the minimum requirements for accessing the
databank created by TSP in the last example in the previous section:

NAME DBRUN 'IN DATABANK STATEMENT' ;
IN FILE1 ;

 16. Storing Data on External Files 249

PRINT X Y ;

Note that it is not necessary to set the FREQ and SMPL before the first
reference to the databank; normally TSP will obtain these from the first series
in the databank if they are not already specified. Since each series is stored
with its own frequency and starting date, series of different frequencies may be
mixed in a databank, but this is not recommended.

16.3.4 Databank utilities

If you forget what a databank contains, you can use TSP commands to show a
databank's contents, copy a databank, and delete variables from it.

DBLIST prints the variables in a databank, with their associated lengths. The
information is printed in the SHOW command format, which lists
starting/ending dates for series, matrix dimensions, and values for scalars.

DBPRINT prints the values for all of the series in a databank, using the current
SMPL and FREQ. If you are not sure which SMPL and FREQ to use, check
the databank first with the DBLIST command. Of course, standard IN and
PRINT commands can be used to list selected variables from a databank.

DBCOPY creates a TSP program file from a databank. This file contains all
the commands and data necessary to create the databank on another computer.
This can be used to move databanks between different types of computers
(such as from PC to mainframe), or as an alternative to DBPRINT for listing
the values of non-series variables.

TSP also provides the command DBDEL which can delete one or more
variables from a TSP databank. DBDEL can erase variables which were put in
the databank by mistake, or which are no longer needed. It can also be used to
rename variables in a databank, by first copying the variables to new names
and then deleting them using the old names.

250 Advanced Methods

16.3.5 Using older databanks in TSP 5.0

Since version 4.2, TSP has contained the capability to store documentation
with variables, and store scalars in double precision. This means that
databanks older than 4.2 must be converted in order to be used. The
conversion is automatic; the old databank will be renamed from BANK.x to
BANK.T41 (or BANK.T35 if it was from TSP Version 3.5), and the new
databank will be called BANK.TLB. If you are converting Version 3.5
databanks, you have to specify the appropriate FREQ and SMPL before
conversion.

16.3.6 Using Eviews/micro-TSP databanks in TSP

Eviews
TM (formerly micro-TSP) is the econometrics package written and

sold by Quantitative Micro Software; it is similar to, but not the same as TSP.

Eviews/micro-TSP databanks have a different format from TSP databanks,
but TSP can read them.

Eviews stores only one series in each of its databanks, using the series name
with the extension .DB. The databank files are not written in binary, and are
not very efficient, but they can be edited easily with a text editor and can
include comments. TSP has FETCH and STORE commands to access this
type of databank (the standard TSP IN and OUT commands will not work with
these databanks). These commands should be useful if data is already available
in this format, or if this format is preferred over the more efficient standard
TSP databank.

For example, to read two series from Eviews databank files X.DB and Y.DB
and run a regression:

FETCH X,Y; OLSQ Y C,X;

The equivalent operation, using a standard TSP databank file US.TLB is:

IN US; OLSQ Y C,X;

16.4 Saving a work session in a file: SAVE, RESTORE

When using TSP interactively (see Chapters 4 and 17), it is often useful to
save all current variables in a file, exit from TSP, and then resume the session
later. To do this use the SAVE and RESTORE commands. SAVE creates the
binary file TSPSAV.SAV, which contains values for all the current variables
(series, matrices, scalars, FRMLs, etc.). RESTORE reads this file and

 16. Storing Data on External Files 251

essentially re-creates the session as it was when the user exited from TSP. (The
command stream, including PROCs, could also be restored by using INPUT
with a renamed BKUP.TSP file).28

An name other than TSPSAV can be specified as an argument to SAVE or
RESTORE, but the resulting file will always have the .SAV extension. SAVE
and RESTORE are not intended for permanent storage of data. Databanks are
preferred, since they are more flexible. Databanks allow access to individual
variables without having to bring all the variables into memory, and can be
incrementally updated.

28

 Note that there is no compatibility between TSP and Eviews/micro-TSP SAVE and

RESTORE files.

 17. Advanced Interactive Use 253

17. TIME SAVERS IN INTERACTIVE TSP

This chapter outlines interactive TSP features that save you time and make the
program more convenient to use. Some of these, such as re-executing modified
commands, you may use every interactive session; others, like automatic
backup and recovery, are "there when you need it". See the Reference Manual
for further information on all the commands described in this chapter.

Below the interactive and editing commands available are described in some
detail. However, you should be aware that there are two main ways to edit and
re-execute commands in the interactive version of TSP: one, which is used in
PC and Macintosh versions, uses the familiar cursor keys (arrows, backspace,
delete, page up, page down, home, and end) to find and edit commands. The
second, which is used in mainframe and unix versions, relies on the older and
more awkward line-oriented methods. We describe both below, but most users
will find the cursor key methods easier to use when they are available (which
is most of the time). In the next sections, we refer to these as the “PC method.”

17.1 Revision and re-execution of commands

Interacting with a program implies that your input commands may depend on
the results previously output. Often this only involves modifying your previous
command. You might want to fix a typo, change a list of options, add a term to
an equation, etc.... In any case, you are spared retyping the whole command.
Interactive TSP offers several ways to do this. Note that the following sections
apply to commands only; data should be modified with UPDATE.

17.1.1 Re-execution

There will be occasions when you want to execute a command or group of
commands entered previously without performing a modification. There are
two ways to do this. One (the PC method) is to simply hit the “page up” key
until you see the command you want to re-execute and then type return.

The second, available on mainframes and workstations running unix uses the
EXEC command. For example, typing

EXEC 10

causes the re-execution of line 10 in your program. If two line number
arguments are given, the range of lines between them (including them) will be

254 Advanced Methods

executed.

Some examples of when EXEC might be used:

1. Execution was initially suppressed with an EXIT command in
while in collect mode or in an input file.

2. Errors were discovered in the data and results need to be
regenerated after an UPDATE has been performed.

3. Commands you use more than once and don't want to retype (for
example, a SMPL with lots of gaps).

4. A modification to the original command was performed separately
using EDIT (see below).

The use of EXEC in collect mode is slightly different, and is discussed in the
Reference Manual.

17.1.2 Modifying commands and fixing typos

In Chapter 4, we introduced the easiest way to revise commands and re-
execute them when you are interacting with TSP: editing using the cursor keys
(the PC method). However, there are times when you would like to simply add
or delete a variable name, or re-execute a whole set of commands as a group.
For these purposes, you may find the interactive commands EDIT, RETRY,
ADD, and DROP useful. In this section, we describe EDIT and RETRY. In
the next section, we describe ADD and DROP, which are special cases of
RETRY.

Use EDIT and RETRY when you want to change the arguments in a
command. EDIT makes the changes without executing them. RETRY
combines EDIT, which makes changes, and EXEC, which executes them.
Syntax, "arguments" and editing rules are explained in the Reference Manual,
and are identical for both EDIT and RETRY. Here are some examples of using
EDIT:

EDIT 10

would request modification of line 10; the line will be displayed, and the edit
prompt issued:

10. CONS C GNP
>>

 17. Advanced Interactive Use 255

If no line is requested, the previous line is assumed. Only one line may be
edited at a time (i.e. only one line number argument will be accepted). The
basic editing functions are insert, delete, and replace.

Possible uses for EDIT are:

1. Modifying a statement that is a definition rather than executable
(for example, an equation definition using FRML).

2. Modifying a range of lines before re-executing them as a group, or
modifying a line within a range that will then be executed as a
group.

3. Correcting mistakes made while entering commands in collect
mode.

RETRY is appropriate when:

1. Correcting typos in interactive mode.
2. Re-executing a command with a modified list of options or

variables.

The following example illustrates the relationship between EDIT and RETRY,
as well as basic use of the editor:

10? INT DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME

<error message because procedure INST is misspelled>

11? EDIT 10
>> REPLACE INT INST 1
>> EXIT

10. INST DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME ;

12? EXEC 10
10. INST DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME ;

<output from the INST command>

This same change can be performed more easily with the RETRY command
(note that we have used all possible abbreviations and omissions to save
typing).

256 Advanced Methods

11? RET
>> R INT INST
>>
10. INST DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME ;

<output from the INST command>

17.1.3 Adding and dropping variables

ADD and DROP are used to add or drop variables from the previous command
and automatically re-execute it. They simplify the task of re-executing the
previous estimation command with a modified list of series, but are not limited
to that particular use.

ADD and DROP both make permanent modifications to the “previous”
command. The “previous” command, is defined as the last TSP command that
is not itself ADD or DROP.

ADD var1 var2

is identical to

RETRY
>> INSERT var1
>> INSERT var2
>> EXIT

Both insert var1 and var2 at the end of the previous command (presuming
there was not a sequence of ADDs and DROPs) and execute it. Similarly,

DROP var1 var2

is identical to

RETRY
>> DELETE var1
>> DELETE var2
>> EXIT

Both delete the first occurrences of var1 and var2 in the previous command
(same assumptions) and execute it.

 17. Advanced Interactive Use 257

It is not possible to combine ADD and DROP into one step to perform a
REPLACE function, or to make compound modifications. In these
circumstances, the RETRY procedure or up-arrow editing must be used.

17.2 Reading commands from disk

An intermediate approach to running TSP programs which combines features
of batch and interactive execution is provided by the INPUT command. This
procedure reads a TSP command file from disk and executes it in TSP;
following its execution you are left in interactive mode with all the data and
results available for use.

The command

INPUT filename

will read filename.tsp in the current directory and execute it. All commands
read are added to the session log, and may subsequently be REVIEWed,
EDITed, etc....

You will also be given a choice as to whether you want the output directed to
the terminal or to an output file. Creating an output file this way differs from
the OUTPUT command in two ways: 1) if the output file already exists, a new
version will be created (possibly overwriting the old), and 2) the file will
automatically be closed at the end of execution of the input file (you may still
append to it with the OUTPUT command).

An input file may be an entire TSP program prepared for batch execution or
groups of TSP commands frequently executed as a unit. Advanced users might
find it convenient to keep a library (i.e., directory) of TSP PROCs for use as
input files. Since a PROC is not executed until it is "called", these files would
produce no output when read -- adding a "SHOW procname" command at the
end of each would provide quick information on the PROC just defined. Input
files may be nested up to a depth of 5.

Reading an input file is exactly the same as using collect mode -- the
difference is the source of the command stream. All commands will be read
until execution is "requested"; for an input file this means encountering an
END statement, or end-of-file. Just as in collect mode, execution may be
suppressed by replacing the END statement with EXIT; you may then
REVIEW what was read, and EXEC just the sections you need.

258 Advanced Methods

17.2.1 Your TSP login file

Every time you begin an interactive (or batch) session, TSP looks for a file
called LOGIN.TSP before prompting you to begin entering commands. This
file is a special case of an input file. The only difference is that execution is
automatic at startup, and you will not be given the option of directing any
resulting output to a disk file. If LOGIN.TSP does not exist in the current
directory, your home or root directory will be searched as well.

If much of your work with TSP uses the same data, you may want to use
LOGIN.TSP to set the SMPL and FREQ, load data, or open databanks. It is
also convenient to place the OPTIONS command here.

17.3 Talking to the operating system (DOS or unix)

When you are using the interactive version of TSP you may wish to interact
with the operating system. On multitasking windowing systems like Windows
and Mac OS, this is done in the usual way. For DOS or unix users, TSP offers
the SYSTEM command, which allows you to suspend your session
temporarily, take care of other business on the system, and pick up later right
where you left off. SYSTEM takes no arguments, and simply produces the
message

Enter commands. Type CONTINUE to resume TSP session.
$

you may now create or modify files, or enter other commands. You may enter
commands as long as you like;

$ CONTINUE

will resume your interactive session with no loss of continuity. There are many
uses for this feature, one of the most useful is the ability to fix data files or
examine output files created during your session without halting the program.
Please note that in order to use it in this way, the files in question must be
closed first with the CLOSE, TERM, or OUTPUT command.

17.4 Automatic backup and recovery

Interactive TSP saves a copy of the input of your session when you exit the
program, and if your session is terminated abnormally this copy provides the
ability to recover the session.

 17. Advanced Interactive Use 259

During an interactive session, TSP automatically saves the command stream in
a file named INDX.TMP. INDX.TMP is used by commands like EDIT which
modify the command stream. INDX.TMP is written in a special format for this
purpose. Upon normal exit from TSP, INDX.TMP is used to create the
standard sequential file, BKUP.TSP, found in your directory and INDX.TMP
is deleted.

BKUP.TSP is useful for reconstructing a session and can be run by TSP in
batch mode, since interactive commands have been stripped from it. Note,
however, that data entered with the ENTER and UPDATE is not saved in
BKUP.TSP -- data should be saved in a databank or a SAVE file (see Chapter
13).

If you accidentally (or purposely) type CTRL-C, TSP will terminate
abnormally. The same is true if the program encounters a fatal Fortran error or
system failure. In these cases BKUP.TSP will not be created. However, if you
reenter the program, TSP will be able to recover your session from the file
INDX.TMP which still remains on disk. Only commands will be recovered --
you must EXEC portions whose results you want reinstated.

If TSP finds a file INDX.TMP on disk when you start the program, you will
get the message:

WARNING> Your previous TSP session was terminated abnormally.
Do you wish to recover it (y/n)? [y]

If you have changed directories or accounts since termination, or renamed
INDX.TMP, TSP will not know you need to recover the session. You must
then request recovery with the RECOVER command. Rules for specifying a
filename are the same as those for the INPUT and OUTPUT commands.

Important note: Do not try to use INDX.TMP as an INPUT file, or edit it
(you will destroy the special format). Conversely, do not try to RECOVER any
files that were not originally an INDX.TMP file created by TSP, because other
files will not have the correct format for recovery.

 A. Basic Rules 261

A. BASIC RULES OF TSP

This appendix summarizes the basic rules of the TSP language. A table at the
end lists the complete TSP character set and each character's interpretation or
legal use.

A.1 Rules for composing TSP names:

Every name must begin with a letter, _ # % or @ (exceptions: 2SLS and 3SLS
commands).

Subsequent characters in a name may be letters, _ # % @, or digits.

or % may not be used in names that appear in MATRIX commands.

The maximum number of characters permitted in a name is 64 (in versions
prior to TSP 4.4 it was 8).

A.2 Rules for composing text strings:

A text string must be enclosed by matching pair of quotes (" or ').

Quotes are allowed in a string when they are of a different type from the
enclosing quotes, i.e. "Can't" or '"sometimes"' (interpreted as Can’t and
“sometimes”).

A.3 Rules for composing numbers:

Every number must begin with a ., +, -, or a digit.

No spaces may appear within a number.

One decimal point may appear.

One E or D may appear followed immediately by a one or two digit number
with or without a sign. This is interpreted as a power of 10 to multiply the first
number.

Example:

1E2 = 100

262 Appendices

With free-format LOAD or READ commands, a . is interpreted as a missing
value, and a repeat count with a * may be specified.

Examples:

3*0 is treated as 0 0 0
53 . 100 is treated as 53, missing, 100

The largest value of a series (in absolute value) that may be stored in TSP is
1.E-37, unless OPTIONS DOUBLE ; is used. Values larger than this are set to
missing. Scalars and matrices are always stored in double precision.

A.4 Rules for composing algebraic formulas:

In general, TSP rules for formulas are similar to Fortran or other scientific
programming languages.

A lag is indicated by putting an integer or a name in parentheses after a series
name. The integer is negative for lags and positive for leads. A + sign is not
necessary for leads. If the lag or lead is a name, it must have no more than four
characters.

A series may have a single numeric or variable subscript (or lag/lead). A
matrix may have a single or double subscript (numeric or variable). See the
SET command for detailed rules and examples.

Arithmetic operators are

+ add

- subtract

* multiply

/ divide

** raise to the power

 A. Basic Rules 263

Functions are the following:29

LOG() Natural logarithm

EXP() Exponential function

ABS() Absolute value

LOG10() Log base 10

SQRT() Square root

SIN() Sine (argument in radians)

COS() Cosine (argument in radians)

TAN() Tangent (argument in radians)

ATAN() Arctangent (answer in radians)

NORM() Standard normal density

CNORM() Standard normal cumulative distribution function

CNORMI() Inverse of the standard normal cumulative distribution
function

LNORM() Log of normal density

LCNORM() Log of cumulative normal

DLCNORM() Derivative of LCNORM = inverse Mills ratio

GAMFN() Gamma function (not Gamma density)

LGAMFN () Log of Gamma function

DLGAMFN() Derivative of LGAMFN = DIGAMMA()

TRIGAMMA() Derivative of DIGAMMA() [non-differentiable]

FACT() Factorial: FACT(X) = X! = GAMFN(X+1)

LFACT() Log of factorial

SIGN() Sign: -1 for X<0, 0 for X=0, 1 for X>0 [deriv=0]

POS()

Positive: POS(X) = max(0,X). Note:
"MIN(A,B)" = B - POS(B-A)
"MAX(A,B)" = A + POS(B-A)

MISS() Missing: 1 for X missing, 0 otherwise
[non-differentiable]

INT() Truncate to an integer (round towards 0)
[non-differentiable]

CEIL() Ceiling (round away from 0) [non-differentiable]

ROUND() Round to nearest integer (.5 rounds to 1)
[non-differentiable]

29

For matrix functions see the MATRIX command.

264 Appendices

Relational and logical operators are the following

Operator .OP. Description

= .EQ. gives the value 1 when the variables on the
left and on the right are equal; otherwise it is
zero.

^= or ~= .NE. gives the value 1 when the variables on the
left and on the right are not equal; otherwise it
is zero.

< .LT. gives the value 1 when the variable on the left
is less than the variable on the right;
otherwise it is zero.

> .GT. gives the value 1 when the variable on the left
is greater than the variable on the right;
otherwise it is zero.

<= .LE. gives the value 1 when the variable on the left
is less than or equal to the variable on the
right; otherwise it is zero.

>= .GE. gives the value 1 when the variable on the left
is greater than or equal to the variable on the
right; otherwise it is zero.

& .AND. gives the value 1 when both the variable on
the left and on the right are positive.

| .OR. gives the value 1 when either the variable on
the left or the variable on the right is positive.

^ or ~ .NOT. gives the value 1 when the variable on the
right is negative or zero

Note that the .OP. form of the relational and logical operators is the alternative
to the symbolic notation (but it cannot be used in nested DOT loops).

As many parentheses as necessary may be used to indicate the order of
evaluation of a formula. Parentheses [] and {} are treated as (). In the absence
of parentheses, evaluation proceeds from left to right in the following order:

1 Functions

2 Exponentiation (**)

3 Multiplication and division

4 Addition, subtraction, and negation (unary -)

5 Relational operators

6 .NOT. (^)

7 .AND. (&) and .OR. (|)

 A. Basic Rules 265

A.5 Rules for composing TSP statements:

Every statement begins with a command name. Exceptions:

X=Y; ? implicit GENR
X(I)=Y(I); ? implicit SET
100 <statement>; ? statement label for GOTO

The command name may be abbreviated, as long as it is uniquely identified.

Many statements can have options specified in parentheses after the command
name. Option names may be abbreviated, like command names. There are
three kinds of options:

Boolean options, either on or off. On is specified by the name of the option, as
in PRINT, and off is specified by the option name with NO in front of it, as in
NOPRINT.

Options of the form option name = option value. The value may be the name
of a variable, a numerical value, or just a keyword, depending on the context.

Options which give lists of variables, and are of the form option name = (list of
variables). Note that the parentheses are required, unless the list contains only
one name, or the list is a listname.

A few commands can be followed by an algebraic formula: GENR, SET,
SMPLIF, SELECT, FRML, IDENT, IF, GOTO.

Most commands are followed by one or more series names, separated by
commas or spaces. These series names may include lags. An implicit list (such
as X1-X5) can be used directly in a statement without making an intermediate
listname. See the LIST command for a complete description of implicit list
syntax.

The end of a statement is marked by a semicolon (;) or dollar sign ($).

266 Appendices

A.6 Character Set for TSP

Character Symbol Use

letter A to
Z,_#%
@

Parts of names. Lowercase letters are allowed on most
computers; they are treated like uppercase letters. # %
cannot be used for matrix names.

digit 0 to 9 Parts of numbers or names.

decimal point . Marks the decimal point in numbers; sets off logical
operators; specifies string substitution in the DOT
procedure.

comma , Separates the words in a list; spaces may be used, but
commas are often preferred for clarity.

colon : Part of date.

semicolon ; Marks the end of a statement.

dollar sign $ Equivalent to ; . Semicolon is preferred.

quotation
mark

" Marks the beginning and end of a text string (title or
filename); specifies matrix inversion.

apostrophe ’ Marks a text string; specifies matrix transposition.

parentheses () [] {} Encloses a list of options or expressions/lags in
algebraic formulas.

question mark ? Delimits the beginning of comments. (Comments are
terminated by the end of the input line or logical
record.)

plus sign + Specifies addition.

minus sign - Specifies subtraction, a lag, or a list.

star * Specifies multiplication or is part of power (**).

slash / Specifies division.

pound sign # Matrix Kronecker product (⊗).

percent % Matrix Hadamard product (element by element).

equal sign = Specifies equality or definition of data; relational
operator (.EQ., .NE., .LE.,.GE.).

ampersand & Logical operator (.AND.).

vertical bar | Logical operator (.OR.).

caret or hat ^ Logical operator (.NOT., .NE.) or power (**),
depending on context.

tilde ~ Logical operator (.NOT., .NE.).

less than < Relational operator (.LT., .LE.).

greater than > Relational operator (.GT., .GE.).

continuation \ Continuation of a line (interactive).

miscellaneous !` Reserved for future use.

 B. Differences in 5.0 267

B. DIFFERENCES BETWEEN TSP 5.0 AND
EARLIER VERSIONS

This appendix lists the features added to TSP since the release of 4.5 in June
1999. Some of them are already available in more recent versions of TSP 4.5.
These features include changes that apply to the entire program, new
commands, and enhancements to specific commands. The last section lists the
incompatibilities with earlier versions.

B.1 Syntax and general enhancements:

� dashed lists
� long names
� faster SORT

B.2 Printing and graphics enhancements:

� better formatted PRINT output; use of high-res graphics for regression
plots

� new graphics options for density curves on histograms
� better treatment of missing and panel data in PLOT and GRAPH
� 3-dimensional graphing in GRAPH

B.3 New or substantially improved procedures

� many new panel data features (random and fixed effects estimation for
PROBIT and AR1, fixed effects estimation for linear LSQ, 3SLS,
GMM, FIML, one and two-way ML random effects for PANEL)

� block diagonal HS and autocorrelation consistent standard errors for
panel data

� Interval regression procedure
� Kernel density or regression estimation
� Censored quantile regression estimation with bootstrap standard errors
� ANALYZ for series, to compute s.e.s on quantities that vary across

observations
� new nonlinear second derivative approximations (numeric second

derivatives, based on numeric or analytic first derivatives), new tuning
parameters

� Common factor test in AR1; root moduli and extended sample ACF
for Box-Jenkins routines

268 Appendices

� Different instruments for different equations in GMM (easier
specification)

� Finite sample standard errors for LIML; more diagnostic testing

B.4 Changes to other procedures

Too numerous to list. See the online document New and Improved Features in

TSP 5.0 and the TSP 5.0 Reference Manual.

B.5 Upward Incompatibilities

None noted as yet.

 C. TSP on a PC 269

C. USING TSP ON A WINDOWS PERSONAL
COMPUTER

Installation of TSP on your personal computer is described in a memo
accompanying the CD ROM or diskettes. This appendix assumes TSP is
successfully installed on your hard disk.

C.1 Windows Products Available

The products listed below are included on the installation CD ROM. TSP and

TLG (Through the Looking Glass) are included in the basic price. The

TSP/GiveWin option is available at an additional cost, and requires a special
license code for installation for that reason. However, if you already have
GiveWin, this version of TSP will work with it and there is no need to
purchase a second GiveWin license (in this case, you may need to contact us
for a license number in order to use TSP with Givewin).

TSP/GiveWin (tspgw2.exe and tsprun.dll)

Windows 32-bit native program, running simultaneously with GiveWin 2.X as
the server. Runs on Windows 95/98/NT/2000/XP. Graphics in separate
window(s), printable with any installed printer. Interactive and batch text
output in a scrollable window. No memory limitations. Large arrays.

Win32 TSP (tsp.exe)

Windows 32-bit native program (runs on Windows 95/98/NT/2000/XP). No
graphics at present. No memory limitations; included mostly for this reason. It
also has larger arrays than DOS/Win TSP, so it can hold 20,000 variables and
30,000 arguments in a command or combined in equations.

DOS/Win TSP (tspdw.exe)

Extended DOS (DPMI) program (runs on DOS, Windows 3.x/95/98/NT,
OS/2, but not on Windows 2000/XP). Graphics: DOS full screen; printable on
HP Laserjet and PostScript printers. Memory is limited to 64MB VM on
Windows 95/98. Limited to 16MB RAM on Windows NT, but the
swap/paging file on NT can be set to 4-5 times RAM. One user has reported
allocating 1600MB on Windows NT 4.0 on a PC with 256MB RAM and an
enlarged swap file

270 Appendices

C.1.1 Auxiliary Programs

The following two products are available at no cost on the TSP installation
CD-ROM.

TSP Through the Looking Glass (TLG, tlg.exe)

Windows 32-bit native program. Interfaces to the DOS/Win and Win32
versions of TSP for Windows. Provides side-by-side text edit windows for
TSP batch input and output files, and some editing commands customized for
TSP. Click on the "TSP" button to refresh the output window after changing
the input commands.

TSP Help File (tsp.chm)

Windows type help file, with full (indexed) contents of the TSP Reference
Manual. This file is accessible through TSP/GiveWin or directly from
Windows.

C.2 Using TSP/GiveWin

GiveWin is a special shell or "server" program which runs simultaneously
with one or more "client" (or "module") programs like TSP (actually tspgw.exe
and tsprun.dll). It provides a great array of Windows interface features, while
using the full command language of TSP.

C.2.1 Batch mode

The easiest way to run batch programs in Givewin is the following:

� Double-click on a .tsp file to start GiveWin and open the file.

or

� Double-click on GiveWin to start it (if it is not already active)

� Click on the Open toolbar button (icon: opening folder)

 C. TSP on a PC 271

� Use the dialog box to select an input file (the last one you used is
remembered). Also, the File menu keeps a list of the last 8 files that
have been opened, so it is a useful way of opening a recently used file.
GiveWin sets your working directory to match the input file, so data
or input files in the same directory can be read without requiring full

pathnames. Use the .tsp extension for all TSP source/batch files.

Then

� The file is opened in a window, where you can make changes if
necessary, save it, etc. Press F1 when the cursor is on a word for
context-sensitive help.

� Click on the Run toolbar button (icon: running stick figure)
� This puts the output into a scrolling text window which is updated in

real time. It is great for estimating large or nonlinear models, since
you can monitor their progress, or scroll up to look at previous results
while waiting for them to finish.

� Click on the [x] button on the output window to (optionally) save and
close the output file.

� Click back to the input window, modify some commands, and click on
the Run button to repeat the process.

During the install process, the file type .tsp is associated with GiveWin. When
you are viewing a list of filenames in a folder (when starting from "My
Computer" or Explorer), you will see TSP icons for these files, and you can
right-click on the filename, and choose to Run it or Open it with GiveWin.

Note that GiveWin can only run one TSP batch file at a time, although you can
have several open for editing at the same time. If you need to run two or more
programs simultaneously, or in a fixed sequence, use DOS/Win TSP or Win32
TSP (see section D.2).

C.2.2 Interactive mode

Interactive use of TSP is easily done from GiveWin:

1. Double-click on GiveWin to start it (if it is not already active)

2. From the GiveWin menu, choose Modules/Start TSP
3. If necessary, choose a Working folder for the interactive session (it

remembers the previous one)

4. Click on Start TSP Session (or press Enter)
5. Type your commands at the prompt, as usual. Press F1 when the cursor is

272 Appendices

on a word for context-sensitive help. Use the arrow keys to
recall/edit/rerun previous commands. Output is to the same scrolling text
window, so you can scroll back to review or copy/paste previous results.

C.2.3 Filenames

All Windows filenames are supported directly in TSP/Givewin - short, long,
containing blanks, etc.

C.2.4 Graphics

The PLOT and GRAPH commands automatically produce high resolution
graphics in separate windows (the PREVIEW option is always on by default,
in interactive and batch modes). The graphs can be enlarged, resized, printed,
saved, or closed using the usual window controls. They can also be edited:
change the line type, add plotting symbols, add text, etc. Just double-click in
the TSP Graphics window, to bring up the Graphics Properties dialog box. See
the chapter in the GiveWin manual for more information on editing graphs.
The easiest way to print is to use the Print toolbar button.

Several graph windows can be created at the same time, although it may be
tedious to cycle between them. In interactive mode, each graph goes to a
window labelled with the command name (replacing any previous graph
generated by that command). In batch mode, successive graphing commands
create separate windows labelled with the type of graph and a sequence
number, so the graphs can be viewed in any order or placed side by side. For
example, each PLOT command creastes separate windows entitled “Plot 1,
Plot 2, etc.). The WINDOW="name" option on the PLOT or GRAPH
command can be used to name the graphics windows differently, or to
overwrite older graphs with newer ones. If you are having trouble managing a
lot of graphics windows, use the Window menu in GiveWin to tile or cascade
the windows, or to select them by name.

If you have many graphics windows and want to exit GiveWin, just close
GiveWin and all the graphics windows will be closed. If you want to save any
of the graphics, use the Givewin Save file command (from the File menu) with
the relevant graphics window on top. Graphics may be saved as postscript
filew, enhanced metafiles (useful for inserting into documents), or in
Givewin’s graphics format.

C.2.5 Other special features

GiveWin databases: Use the File/Open menu in GiveWin to open many

 C. TSP on a PC 273

types of database files (spreadsheets, .in7 (GiveWin) files, etc. -- essentially
any file which contains the variable names with the data). Data can be viewed,
graphed, edited, etc. -- see the GiveWin manual. If you have GiveWin
databases open and you start an interactive TSP session, you will be asked if
you want to read each database into TSP. This is convenient for loading data
you are already working with in GiveWin, and it also provides a way of

accessing variables in native GiveWin (.in7) files which TSP does not read
directly. You can also open databases from GiveWin while an interactive TSP
session is active. Use the RELOAD; command (special to TSP/GiveWin only)
to read them into your TSP session. GiveWin databases cannot be read directly

by name (or in batch mode) into TSP, unless they are file types like .WKS or
Excel. For files that you need to access in batch mode or repeatedly in
interactive mode, it may be useful to open them in GiveWin, and then save

them in a format like .wks that TSP supports directly.

CD command: the CD command can be used to show or change the current
directory. It is useful in locating input or data files not in the current working
folder. Usually it is best to locate all such files in the same folder for a given
project, and then use the opening dialog box (see D.4.2) to select that as your
current folder. CD with no arguments shows your current directory. CD with
an argument changes your current directory. The argument does not have to be
in quotes; they are added automatically if necessary; for example,

cd ..

works fine.

Known Quirks (Bugs?) - For unknown reasons, the DIR and SYSTEM
commands do not send any output to the output window under Windows NT.
They produce normal output under Windows 95 and 98.

C.3 Using DOS/Win TSP or Win 32 TSP

These two programs can be run in exactly the same way – either from TLG or
from the "Command Prompt", see sections D.2.1 and D.2.2 below.

Win 32 TSP can handle long filenames and filenames with imbedded blanks.
It also contains an internal CD command, which can be used to view or change
your current directory, if you are in interactive mode and need to access several
input or data files in a different directory. (In batch mode, we recommend
using a full quoted pathname for the filename that includes all the relevant

274 Appendices

directory names). In this version of TSP, the arrow keys have no effect in

interactive mode, and there are no graphics available (see TSP/Givewin for
graphics in 32-bit Windows mode).

C.3.1 Batch mode

Batch mode involves typing your TSP commands into a file, and then running
them with TSP to create an output file. It is the best way to do production work
with TSP, because the commands can be read and changed easily, and they can
be rerun at any time to reproduce or update results. Most experienced users
will eventually migrate to this method, although interactive mode (see below)
is valuable for learning or developing programs.

The easiest way to use TSP in batch mode is with Givewin (see section D.3

below) or with the TLG program (see D.1.4 above). In TLG, type your
commands into the left hand window, and then click on the "TSP" button to
see output in the right hand window. Press F1 when the cursor is on a word for
context-sensitive help.

If you already have a favorite text editing program, you can use it instead of
TLG. Type or modify your input file (containing TSP commands), and make
sure it is saved as a "plain text" file. Suppose that your program is called

prog1.tsp. Use the "Command Prompt" Windows program (sometimes called
MS-DOS prompt) to issue the command

tsp prog1

Output from this TSP program will be in the file prog1.out, which you can
then examine with your text editor. Arrow keys can be used to cycle between
editing the input file, running TSP, and viewing the output file. To print some
or all of the output file, use a fixed width font, such as Courier or Lineprinter.
Built-in Windows programs such as WordPad can do this. Using the
"Command Prompt" requires some knowledge of the DOS CD and PATH
commands, so that you can run programs in a directory separate from the
directory where TSP is installed. If you need to run several batch programs in

sequence, you can put a series of TSP commands into a batch file (.bat file),
and run it at the Command Prompt by typing the batch file name. For example,

to run the file run5.bat, just type

run5

 C. TSP on a PC 275

C.3.2 Interactive mode

Sometimes you don't know what commands to use ahead of time, because you
need to look at the data or their internal documentation first. Or you may want
to estimate a model or two before undertaking larger models. In these cases, it
may be helpful to run TSP in interactive mode. Since the commands you type

will be saved in a file called BKUP.TSP, you can also make a transition to
batch mode later.

The easiest way to run TSP in interactive mode is with Givewin, but you can

also do this with DOS/Win and Win32 TSP. Double-click on the TSP icon
in TLG. Type your commands at the “?” prompt. Use the arrow keys to
recall/edit/rerun previous commands. Output is "paged" so that it does not go
off the screen too quickly.

If you need control of your current directory (to find data or input files), it is
best to use the "Command Prompt" (MS-DOS Prompt). After you have used
CD to set the desired directory, give the TSP command (click on TSP).

C.3.3 Filenames in Windows (DOS/Win TSP only)

DOS/Win TSP only understands original "DOS" filenames -- those with 8
characters or less in the directory and filename. If you have created some long
directory names or filenames, or names with imbedded spaces, you will need
to use the DOS "DIR" command to see what the corresponding "DOS"

filenames are. For example, if you have a file called c:\Program

Files\myfile.tsp, its "DOS" equivalent name will be something like

c:\progra~1\myfile.tsp.

C.3.4 Graphics (DOS/Win TSP only)

The PLOT and GRAPH commands use the PREVIEW option to create
full-screen graphics, so make sure the Properties/Screen/Usage of TSP.EXE is
set to Full-screen (not Window). To check or set the Properties, start at the My
Computer icon, and double-click down through C: , Program Files , and TSP
4.5 . Right-click on TSP.EXE and choose Properties and then Screen (this is
the menu name on Windows NT; it may be slightly different on Windows
95/98). Only one graph can be on screen at a time; you need to press a key to
restore the usual text output screen. Even though TSP takes over the full
screen, you can still "switch tasks" to run other Windows programs -- use
Ctrl-Esc to do this.

If you get a blank screen when you expect a graph, try the TSP command

276 Appendices

OPTIONS DISPLAY=VGA;

to set your monitor type conservatively. If this works, you should insert this
command into your LOGIN.TSP file. To print a graph, use the DEV= option;
only a few printers such as HP LaserJet 3 (DEV=LJ3) and PostScript
(DEV=PS) are supported, although DEV=LJ3 will produce correct output on
most LaserJet printers.

Inserting graphics files into documents

DOS/Win TSP graphics can be placed in word processing files. Start by using
the options

DEV=LJ3,FILE='name.HPG',PREVIEW

in your GRAPH or PLOT command. This will store the graph in the file
name.HPG.

To place the graph in a MS Word document, open the Word file and choose
Insert/Picture. In the dialog box, specify name.HPG and choose the filter "HP
Graphics Language". (If the filter is not there, you will need to install it from
your Word installation disks). Click OK and the graph will appear. You can
then resize or edit it as you wish.

To place the graph in a WordPerfect document, you must first edit it as a plain
DOS or ASCII file. On the first line, remove the first 3 or 4 characters so that it
reads INSP1PA. Delete the last line, which will contain control characters such
as ^[L, ^[E, etc. Save the file, and then open your document using
WordPerfect. Choose Graphics/Figure from the menu. A file choice dialog box
will appear, where you can specify name.HPG. Click on OK and the graph will
appear; you can edit or resize it. Note: if you are using WordPerfect 5.1 or
earlier, you will need to use the WordPerfect GRAPHCNV program to convert
the HPG file to a WPG file before importing it into WordPerfect. You can also
import PostScript (.PS) files into WordPerfect, but you cannot resize them.

C.4 Using TSP Through the Looking Glass (TLG)

TLG has already been described briefly above in sections D.2.1 and D.4.1. It
also has its own Help file that describes its menus and its special editing
features, which include:

 C. TSP on a PC 277

1. autoformat input file (color comments green, etc.)
2. block indent or unindent
3. block comment or uncomment
4. search for "*** ERROR" in the output window

C.5 Using the Online Help System

The help system was described briefly in section D.1.5. To launch it from
TSP/GiveWin, choose Modules/Start TSP Help. When typing or editing
commands in GiveWin or TLG, press F1 when the cursor is on a word for

context-sensitive help (this accesses tsp.chm). To launch it directly from

Windows, double-click on tsp.chm.

C.6 Common problems

Lists of common installation and runtime problems can be found on our web
page http://www.tspintl.com, under Support/FAQ.

By far the most common problem noted by users is opening data files -- "TSP
says File Not Found, but I know it's there!!" Getting the computer to
understand where you have put your data and how to read it appropriately can
often be the most timeconsuming and frustrating part of a project. In TSP, you
normally use the READ command to input your data, and you will probably
need to specify a full pathname for the file on this command (although it is not
case sensitive on the PC). A "full pathname" usually includes the full set of
directory names, and the disk drive letter (especially if it is not C:).

In Windows, people often save data in spreadsheet files from their spreadsheet
program, without knowing what the full set of directory names is, so this can
occasionally be difficult to ascertain. One easy way to reveal the full pathname
is to click on the Start button, and then Find/Files or Folders. Type in the
filename under Named: (if you don't remember it, reopen your spreadsheet
program), and click on Find Now (or press Enter). The search may take a 3-20
seconds, and should present you with a list of one or more locations for the
file. The location is shown in "In Folder". If the directory name ends with ... ,
it is long, and you need to click and hold the vertical line between "In Folder"
and "Size" (it becomes a "+" double arrow) -- drag it to the right, until there is
enough room to show the full directory name. Use this name (with the
filename) in quotes in your READ command. If you are using DOS/Win TSP
and there are any long directory names, see section D.2.3 regarding the "DOS"
version of the filename.

278 Appendices

Some users save their files to a floppy disk (A:filename), to avoid these
problems of deciphering the directory name. Another solution is to use your
spreadsheet program to save the file in the same folder as your TSP programs,
or move or copy it to that folder.

A related problem is that Windows often hides the "file types" (formerly
known as "filename extensions" in DOS). These are a part of the full filename,
and needed in TSP. Because Windows tends to hide them, a user who does not
see the extension may type it in by hand when saving the file, and then the file
will actually have the extension in twice. For example, if FOO is saved by
Excel, the filename FOO.XLS is saved. If the user types FOO.XLS when
saving in Excel, the filename FOO.XLS.XLS is sometimes created (depending
on the version of Excel). So if Find/Files or Folders fails to locate FOO.XLS,
try searching for FOO.XLS.XLS or *.XLS ! If FOO.XLS.XLS is found, it
would be best to rename it, by going back into Excel and using Save As.

 D. TSP on a MAC 279

D. USING TSP ON THE APPLE MACINTOSH

Installation of TSP on your Mac is described in a memo accompanying the
program diskettes. This appendix assumes that TSP has been successfully
installed on your hard disk. As a reminder, note that the following equipment
is required in order to run TSP:

- System 6-9 or X
- 2.5MB RAM (or more)
- hard disk (with at least 1.2Mb free)
- CD-ROM or 1.44M floppy disk drive (to install the program)
- PowerPC CPU

With the following exceptions, this is the same program as the TSP that runs
on DOS/Win, VAX/VMS, unix, etc.. The Mac-specific features are:

- default memory sizing via the Get Info resource
- initial dialog box/file list to choose batch input file or interactive mode
- adjustable-sized output and Plot/Graph windows
- dialog boxes when printing graphics, to choose Portrait/Landscape

mode interactively
- double-clicking on output file to invoke your editor (the same text

editor that created the input file).

D.1 Running TSP in Interactive mode

Move into the TSP folder by double-clicking on it, and double click on the
TSP icon to start TSP.

First, the screen clears and TSP 5.0 appears in the title bar of a scrollable
output window. Second, a short copyright message for the Fortran compiler
will appear, and a prompt will be given below:

Select batch input file [or hit Cancel for interactive]:

followed by a list of text files in your folder which can be selected for batch
operation. Click on the Cancel box to run TSP interactively (or see below for
batch operation). Finally, the TSP version and address will be displayed, and
you will be prompted for TSP commands:

280 Appendices

1 ?

The text is in 9 point Monaco (a non-proportional font). There is a blinking
cursor bar indicating where your commands are typed. An I-beam (text) cursor
is also initially displayed. You can type commands at this time, and output will
appear in the same window. Press RETURN to end a command (the ; is not
required), or use \ and RETURN to continue a command onto further lines.
Some simple commands to try out are HELP and SHOW, if you are running
TSP for the first time. The END or QUIT command terminates TSP. Your
commands during the interactive session are saved in a BKUP.TSP file, unless
you exit with the QUIT command. This file can be renamed, edited and used
to run TSP in batch mode.

You can select text in the output window and print it or paste it into files. You
can also scroll the output window up and down to look at previous results from
different commands. If you move the cursor around to do these things, you can
hold down the Option (alt) key and press RETURN to return the cursor to the
insertion point for typing more commands. Otherwise you will just get beeps
when you try to type. You can also move the cursor there manually with the
mouse - the insertion point is one space right of the lowest question mark.

D.2 Running TSP in Batch Mode

Follow the steps above, but select a text file containing TSP commands from
the list of files (instead of clicking on Cancel). The convention is to name these
files with an extension .TSP, such as KLEINLSQ.TSP. TSP output (regression
results, etc.) is stored in a text file with the same name but with the extension
.OUT, such as KLEINLSQ.OUT. TSP puts a message on the screen regarding
the input file name. It also mentions that Command-. (Apple key plus period
key) can be used to halt the program.

When TSP is finished, open the output file from your text editor to examine
the results; you will probably want to use a non-proportional font such as
Monaco so that the text is aligned properly for printing/viewing. The output
file has the same creator as the input file, so you can just double-click on it to
invoke your editor. You will probably prefer to task-switch to examine the
output file and revise the input file; then you can rerun TSP on the same file
without having to reload it into memory.

D.3 File formats and Names

Program and data files are normally plain text files with at most 80 characters

 D. TSP on a MAC 281

per line. You can read free format data files of any width (i.e. much larger than
80). TSP will tolerate line feed and tab characters in files (they get translated
into spaces), but you can remove them from ported DOS files by selecting the
Text format in the MS-DOS-to-Mac menu of the Apple File Exchange.

For filenames, the same rules apply as on the PC; the maximum length is 128
characters. Any valid pathname is acceptable; the Macintosh uses : (colon) to
separate devices and folders in a pathname (for example, HD:TSP:FOO.DAT
is a valid pathname). Therefore, you may easily keep your input, output and
data files in separate folders if you wish.

All files require a name (no names are automatically generated, except those
displayed in square brackets in prompts). This means that the UNIT= option
on READ, WRITE, or LOAD must not be used without the FILE= option
unless the unit has previously been opened with a specific name attached. As
always, if FILE= is used alone, TSP will generate a unit number for you.

D.4 Graphics in Mac TSP: PLOT, GRAPH

On the Mac, all printers are supported. The plot remains on the screen until
you press a key or the mouse. You can press p, P or %P at this point to make a
hard copy before the plot window is closed. Unless dash is being used, the
WIDTH option is set by default when printing distinguish multiple lines on the
hardcopy from color systems. The PLOT window size is determined from the
TSP output window size, so if you click on its maximize button, you will get a
larger graphics window. The hardcopy size is determined from the printer page
dimensions (you can select portrait or landscape in the dialog box).

For general information on graphics in TSP, see GRAPH and PLOT in
Chapter 6 and the TSP Reference Manual.

 E. TSP on unix 283

E. USING TSP ON A UNIX COMPUTER

There are 3 standard ways to run TSP from the unix command line:

1. tsp to run interactively
2. tsp foo to run in batch mode, input from foo.tsp , output to foo.out
3. tsp FOO to run in batch mode, input from FOO.TSP,

output to FOO.OUT

In the above, foo is just an example; other filenames and full pathnames will
also work fine. The output file created above could be printed with page breaks
by the unix command:

lpr foo.out

Of course, much time and paper can be saved by checking for errors in the
output file first with a text editor or a unix command such as

fgrep "*** ERROR" foo.out

One aspect of TSP that may seem confusing under unix is that any unquoted

filenames in commands are translated to uppercase. For example, out bar;
creates the databank BAR.TLB. However, this is only confusing if one expects
to find bar.tlb with the ls command. The in bar; command will still find
BAR.TLB and read it with no problems. The READ command will look for
files in both uppercase and lowercase.30

For information on reading and writing Excel and Lotus files see section 16.2.

The READ and WRITE commands support the ~username syntax in
filenames, so that a filename can be specified relative to some user's HOME
directory, like in the C-shell (csh). For example:

read(file='~joe/data/j5.dat') x y;

looks for the file j5.dat in the user joe's subdirectory named data.

30

 An implication of this is that because TSP, unlike UNIX, makes no distinction between

upper and lower case names, you cannot store files named foo.tsp and FOO.TSP in the same
directory and expect TSP to distinguish them.

284 Appendices

read(file='~/world/finn.dat') y1-y4;

would look for the file finn.dat in your own subdirectory named world. Of
course, it is not necessary to specify full pathnames like this if your data files
are in your current directory.

 F. References 285

F. REFERENCES
The list below is comprehensive: we have included all the references that
appear either in this User’s Guide or in the Reference Manual/Online Help

System. We would appreciate it if you would bring any missing or incorrect
references to our attention by emailing info@tspintl.com.

Abramovitz, Milton and Irene A. Stegun. Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, John Wiley & Sons, New York, 1972.

ACM, Collected Algorithms, New York, 1980.

Ahn, S.C., and P. Schmidt, “Efficient Estimation of Panel Data Models with
Exogenous and Lagged Dependent Regressors,” Journal of Econometrics 68 (1995)
5-27.

Ahrens, H., and R. Pincus, “On two measures of unbalancedness in a one-way model
and their relation to efficiency,” Biometric Journal 23 (1981), pp. 227-235.

Albert, A., and J.A. Anderson, “On the Existence of Maximum Likelihood Estimates
in Logistic Regression Models,” Biometrika 71 (1984).

Almon, Clopper, Matrix Methods in Econometrics, Addison-Wesley Publishing
Company, Reading, Mass., 1967, pp. 115-120.

Almon, Shirley, “The Distributed Lag Between Capital Appropriations and
Expenditures,” Econometrica 33(1965), pp. 178-196.

Amemiya, Takeshi, Advanced Econometrics, Harvard University Press, Cambridge,
Mass., 1985.

Amemiya, Takeshi, “Qualitative Response Models: A Survey,” Journal of Economic

Literature 19 (1981), pp. 1483-1536.

Amemiya, Takeshi, “Tobit Models: A Survey,” Journal of Econometrics 24 (1981),
pp. 3-61.

Amemiya, Takeshi, “The Maximum Likelihood and the Nonlinear Three-Stage Least
Squares Estimator in the General Nonlinear Simultaneous Equation Model,”
Econometrica 45 (1977), pp. 955-975.

Amemiya, Takeshi, “The Nonlinear Two-Stage Least-Squares Estimator,” Journal of

Econometrics 2 (1974), pp. 105-110.

Anderson, T. W., N. Kunitomo, and K. Morimune, “Comparing Single Equation
Estimators in a Simultaneous Equation System,” Technical Report No. 1, Econometric
Workshop, Stanford University, January 1985.

Andrews, Donald W. K., “Heteroskedasticity and Autocorrelation Consistent
Covariance Matrix Estimation,” Econometrica 59 (3), 1991, pp. 817-858.

286 Appendices

Arellano, Manuel, and Stephen R. Bond, “Some Tests of Specification for Panel Data:
Monte Carlo Evidence and an Application to Employment Equations,” Review of

Economic Studies 58 (1991): 277-297.

Baltagi, Badi, Econometric Analysis of Panel Data, Wiley & Sons, New York, 1995
(first edition).

Baltagi, B. H. and Q. Li, "A Transformation That Will Circumvent the Problem of
Autocorrelation in an Error-Component Model," Journal of Econometrics 48 (1991),
pp. 385-393.

Bartlett, M.S., “The Statistical Significance of Canonical Correlations”, Biometrika,
January 1941, pp. 29-37.

Barrodale, I., and F. D. K. Roberts, Algorithm #478, Collected Algorithms from ACM
Volume II, Association for Computing Machinery, New York, 1980.

Beach, Charles M., and James G. MacKinnon, “A Maximum Likelihood Procedure
for Regression with Autocorrelated Errors,” Econometrica 46(1978), pp. 51-58.

Bekker, P. A., “Alternative Approximations to the Distributions of Instrumental
Variable Estimators,” Econometrica 63 (1994), pp. 657-681.

Belsley, David A., Kuh, Edwin, and Welsch, Roy E., Regression Diagnostics:

Identifying Influential Data and Sources of Collinearity, John Wiley & Sons, New
York, 1980, pp. 11-18.

Berndt, E. R., B. H. Hall, R. E. Hall, and J. A. Hausman, “Estimation and Inference in
Nonlinear Structural Models,” Annals of Economic and Social Measurement 3(1974),
pp. 653-665.

Berndt, E. R., and N.E. Savin, “Conflict Among Criteria for Testing Hypothesis in the
Multivariate Linear Regression Model,” Econometrica 45(1977), pp. 1263-1278.

Bhargava, A., L. Franzini, and W. Narendanantham, “Serial Correlation and the Fixed
Effects Model,” Review of Economic Studies XLIX (1982): 533-549.

Bilias, Y., S. Chen, and Z. Ying, “Simple Resampling Methods for Censored
Regression Quantiles,” Journal of Econometrics 99 (2000), pp. 373-386.

Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis:

Theory and Practice, MIT Press, Cambridge, MA, 1975, pp. 486-502.

Bloom, David E., and Killingsworth, Mark R., “Correcting for Selection Bias Caused
by a Latent Truncation Variable,” Journal of Econometrics 27(1985), pp. 131-135.

Blundell, Richard, and Stephen R. Bond, “Initial Conditions and Moment Restrictions
in Dynamic Panel Data Models,” Journal of Econometrics. 87 (1998), pp. 115-143.

 F. References 287

Blundell, Richard, and Richard J. Smith, “Initial Conditions and Efficient Estimation
in Panel Data Models,” University College London Discussion Paper in Economics
No. 91-04, 1991. Published in French as “Conditions initiales et estimation efficace
dans les modeles dynamiques sur donnees de panel: une application au comportement
d'investissement des entreprises,” Annales d'Economie et de Statistique, No. 20/21
(1991), pp. 109-123.

Blundell, Richard, Rachel Griffith, and Frank Windmiejer, “Individual Effects and
Dynamics in Count Data Models,” Journal of Econometrics 108 (2002), pp. 113-131.

Bollerslev, Tim, “Generalized Autoregressive Conditional Heteroskedasticity,”
Journal of Econometrics 31(1986), pp. 307-327.

Box, George P., and G.M. Jenkins, Time Series Analysis: Forecasting and Control,
Holden-Day, New York, 1976.

Brown, Barry W., DCDFLIB. http://odin.mdacc.tmc.edu (downloaded v1.1, 4/1998).

Brown, R. L., J. Durbin, and J. M. Evans, “Techniques for Testing the Constancy of
Regression Relationships over Time”, Journal of the Royal Statistical Society - B,
1975.

Buse, A., “Efficient Estimation of a Structural Equation with First-Order
Autocorrelation,” Journal of Quantitative Economics 5(1989), pp. 59-72.

Calzolari, Giorgio, and Gabriele Fiorentini, “Alternative Covariance Estimators of the
Standard Tobit Model,” Paper presented at the World Congress of the Econometric
Society, Barcelona, August 1990.

Calzolari, Giorgio, and Lorenzo Panattoni, “Alternate Estimators of FIML Covariance
Matrix: A Monte Carlo Study,” Econometrica 56 (1988), pp. 701-714.

Cameron, A. Colin, and Pravin K. Trivedi, “Count Models for Financial Data,”
Maddala and Rao (eds.), Handbook of Statistics, Volume 14: Statistical Methods in

Finance, Elsevier/North-Holland, 1995.

Cameron, A. Colin, and Pravin K. Trivedi, The Analysis of Count Data, University of
California at Davis and Indiana University, draft manuscript, 1996.

Cameron, A. C., and F. A. G. Windmeijer, “R-Squared Measures for Count Data
Regression Models with Applications to Health Care Utilization,” Journal of Business

and Economic Statistics 14 (1996): 209-220.

Cameron, A. C., and F. A. G. Windmeijer, “An R-Squared Measure of Goodness of
Fit for Some Common Nonlinear Regression Models,” Journal of Econometrics 77
(1997): 329-342.

Campbell, John Y., and Pierre Perron, “Pitfalls and Opportunities: What
Macroeconomists Should Know about Unit Roots”, in Olivier Jean Blanchard and
Stanley Fischer (eds.), NBER Macroeconomics Annual, MIT Press, Cambridge,
Mass., 1991.

288 Appendices

Census Bureau, Seasonal Analysis of Economic Time Series, proceedings of the
Conference on the Seasonal Analysis of Economic Time Series, September 1976.

Chamberlain, Gary, “Multivariate Regression Models for Panel Data,” Journal of

Econometrics 18 (1982), pp. 5-46.

Chamberlain, Gary, “Panel Data,” in Griliches and Intriligator (eds.), The Handbook

of Econometrics, Volume II, North Holland Publishing Co., Amsterdam, 1985.

Cheung, Yin-Wong, and Lai, Kon S., “Lag Order and Critical Values of the
Augmented Dickey-Fuller Test,” Journal of Business & Economic Statistics 13 (July
1995): 277-280.

Cochrane, D., and G. H. Orcutt, “Application of Least Squares Regression to
Relationships Containing Autocorrelated Error Terms,” JASA 44(1949), pp. 32-61.

Cooley, T. F., and Edward Prescott, “Varying Parameter Regression: A Theory and
Some Applications,” Annals of Economic and Social Measurement 2(1973), pp.
463-474.

Cooper, J. Phillip, “Asymptotic Covariance Matrix of Procedures for Linear
Regression in the Presence of First-Order Autoregressive Disturbances,”
Econometrica 40(1972), pp. 305-310.

Cooper, J. Phillip, “Time-Varying Regression Coefficients: A Mixed Estimation
Approach and Operational Limitation of the General Markov Structure,” Annals of

Economic and Social Measurement 2(1973), pp. 525-530.

Cooper, J. Phillip, “Two Approaches to Polynomial Distributed Lag Estimation: An
Expository Note and Comment,” The American Statistician, June 1972, pp. 32-35.

Cragg, J. G., and S. G. Donald, "Testing Identifiability and Specification in
Instrumental Variable Models," Econometric Theory 9 (1993), pp. 222-240.

Cummins, Clint, and Bronwyn H. Hall, Time Series Processor Version 4.0/4.1

Programmer's Manual, TSP International, Stanford, California, 1986.

Cushman, David O., Sang Sub Lee, and Thorsteinn Thorgeirsson, “Maximum
Likelihood Estimation of Cointegration in Exchange Rate Models for Seven
Inflationary OECD Countries,” Journal of International Money and Finance, June
1996.

Davidson, Russell, and James G. MacKinnon, Estimation and Inference in

Econometrics, Oxford University Press, 1993.

Davis, Peter, “Estimating Multi-Way Error Components Models with Unbalanced
Data Structures,” Journal of Econometrics 106 (July 2002), pp. 67-95.

Dickey, D.A., and W.A. Fuller, “Distribution of the Estimators for Autoregressive
Time Series with a Unit Root,” Journal of the American Statistical Association 74
(1979): 427-431.

 F. References 289

DiDinato, A.R. and Morris, Alfred H. Jr., “Computation of the Incomplete Gamma
Function Ratios and Their Inverse,” ACM Transactions on Mathematical Software 12,
1986, pp. 377-393.

DiDinato, A.R. and Morris, Alfred H. Jr., “Algorithm 708: Significant Digit
Computation of the Incomplete Beta Function Ratios,” ACM Transactions on

Mathematical Software 18, 1993, pp. 360-373.

Diewert, Erwin, “Exact and Superlative Index Numbers,” Journal of Econometrics
4(1976), pp. 115-146.

Divisia, F., Economique rationnelle, Gaston Doin, Paris, 1928.

Divisia, F., “L'indice monetaire et la theorie de la monnaie,” Revue d'Economie

Politique 39(1925), pp. 842-861, 980-1008, 1121-1151.

Dufour, J-M, Gaudry, M. J. I., and Liem, T. C., “The Cochrane-Orcutt Procedure:
Numerical Examples of Multiple Admissible Minima,” Economics Letters 6 (1980),
pp. 43-48.

Durbin, J., “Boundary-crossing probabilities for the Brownian motion and Poisson
processes and techniques for computing the power of the Kolmogorov-Smirnov test,”
Journal of Applied Probability 8 (1971), pp. 431-453.

Durbin, J., “Testing for Serial Correlation in Least Squares Regression When Some of
the Regressors are Lagged Dependent Variables,” Econometrica 38 (1970), pp. 410-
421.

Durbin, J., “Tests for Serial Correlation in Regression Analysis Based on the
Periodogram of Least Squares Residuals,” Biometrika, 1969.

Durbin, J., and G.S. Watson, “Testing for Serial Correlation in Least Squares
Regression,” Biometrika 38 (1951), pp. 159-177.

Edgerton, David and Curt Wells, “On the Use of the CUSUMSQ Statistic in Medium
Sized Samples”, Oxford Bulletin of Economics and Statistics, 1994.

Efron, Bradley, “Bootstrap Methods: Another Look at the Jackknife,” Annals of

Statistics 7 (1979), pp. 1-26.

Efron, Bradley, The Bootstrap, the Jackknife and Other Resampling Plans,
Philadelphia: SIAM, 1982.

Efron, Bradley, and G. Gong, “A Leisurely Look at the Bootstrap, Jackknife, and
Cross-validation,” American Statistician, February 1983, 37(1), pp. 36-48.

Engle, Robert F., “Autoregressive Conditional Heteroskedasticity with Estimates of
the Variance of U. K. Inflation,” Econometrica 50(1982), pp. 987-1008.

Engle, Robert F., “A General Approach to Lagrange Multiplier Model Diagnostics,”
Journal of Econometrics 20(1982), pp. 83-104.

290 Appendices

Engle, Robert F., “Wald, Likelihood Ratio and Lagrange Multiplier Tests in
Econometrics,” in Griliches and Intriligator (eds.), The Handbook of Econometrics,
North Holland Publishing Co., Amsterdam, 1985, pp. 776-826.

Engle, Robert F., and Clive Granger, “Cointegration and Error Correction:
Representation, Estimation, and Testing,” Econometrica 55(1987), pp. 251-276.

Engle, Robert F., David M. Lilien, and Russell P. Robins, “Estimating Time Varying
Risk Premia in the Term Structure: The ARCH-M Model,” Econometrica 55(1987),
pp. 391-407.

Estrella, Arturo, “A New Measure of Fit for Equations with Dichotomous Dependent
Variables,” Journal of Business and Economic Statistics, April 1998, pp. 198-205.

Faddeev, V. N., Computational Methods of Linear Algebra, (trans. C. Benster),
Dover, New York, 1959.

Fair, Ray C., “The Estimation of Simultaneous Equation Models with Lagged
Endogenous Variables and First-Order Serially Correlated Errors,” Econometrica
38(1970), pp. 507-516.

Fair, Ray C., Specification, Estimation and Analysis of Macroeconomic Models,
Harvard University Press, Cambridge, MA, 1984.

Farebrother, R. W., “Algorithm AS 256”, Applied Statistics 39, 1990. Pascal code
posted on StatLib. http://lib.stat.cmu.edu/apstat/

Fiorentini, Gabriele, Calzolari, Giorgio, and Panattoni, Lorenzo, “Analytic
Derivatives and the Computation of GARCH Estimates,” Journal of Applied

Econometrics 11 (1996), pp.399-417.

Fishman, George S., and Louis R. Moore, “A Statistical Evaluation of Multiplicative
Congruential Random Number Generators with Modulus 231-1,” JASA 77 (1982), pp.
129-136.

Fitzenberger, Bernd, “A Guide to Censored Quantile Regressions,” in G. S. Maddala
and C. R. Rao (eds.), Handbook of Statistics, Volume 15: Robust Inference, 1997, pp.
405-437.Fletcher, R., and M. J. D. Powell, “A Rapidly Converging Descent Method
for Minimization,” Comput. J, Vol. 6, pp. 163-168.

Fuller, Wayne A., “Some Properties of a Modification of the Limited Information
Estimator,” Econometrica 45: 939-953.

Gallant, A. Ronald, Nonlinear Statistical Models, Wiley, New York, 1987.

Gallant, A. Ronald, and Dale Jorgenson, “Statistical Inference for a System of
Simultaneous, Non-linear, Implicit Equations in the Context of Instrumental Variable
Estimation”, Journal of Econometrics 11 (1979), pp. 275-302.

Gallant, A. Ronald, and Alberto Holly, “Statistical Inference in an Implicit, Nonlinear,
Simultaneous Equation Model in the Context of Maximum Likelihood Estimation”,
Econometrica 48 (1980), pp. 697-720.

 F. References 291

Geweke, John F., and Richard Meese, “Estimating Regression Models of Finite but
Unknown Order,” International Economic Review 22 (1981), pp. 55-70.

Gill, Philip E., Walter Murray, and Margaret H. Wright, Practical Optimization,
Academic Press, New York, 1981.

Gilli, Manfred, “Causal Ordering and Beyond,” International Economic Review,
November 1992, pp. 957-971.

Gilli, Manfred, “Graph-theory based tools in the practice of macroeconometric
modeling,” in S. K. Kuipers, L. Schoonbeek, and E. Sterken (eds), Methods and

Applications of Economic Dynamics, North Holland, Amsterdam.

Godfrey, L. G., Misspecification Tests in Econometrics, Econometric Society
Monograph, Cambridge University Press, Cambridge, England, 1988, pp. 143-145.

Goldfeld. S. M. and R. E. Quandt, Nonlinear Methods in Econometrics, North-
Holland, Amsterdam, 1972.

Gourieroux, Christian, Alain Montfort, and Alain Trognon, “Pseudo Maximum
Likelihood Methods: Theory,” Econometrica 52(1984), pp. 681-700.

Gourieroux, Christian, Alain Montfort, and Alain Trognon. “Pseudo Maximum
Likelihood Methods: Applications to Poisson Models,” Econometrica 52 (1984): 701-
720.

Greene, William H., “On the Asymptotic Bias of the Ordinary Least Squares
Estimator of the Tobit Model,” Econometrica 49 (1981), pp. 505-513.

Gregory, Allan W., “Testing for Cointegration in Linear Quadratic Models,” Journal

of Business and Economic Statistics, July 1994, pp. 347-360.

Griffiths, W. E., R. C. Hill, and P. J. Pope, “Small Sample Properties of Probit Model
Estimators,” JASA 82(1987), pp. 929-937.

Griliches, Zvi, and J.A. Hausman, “Errors in Variables in Panel Data,” Journal of

Econometrics 31(1986), pp. 93-118.

Griliches, Zvi, J. A. Hausman, and Bronwyn H. Hall, “Missing Data and Self
Selection in Large Panels,” Annals de l'INSEE 30-31(1978), pp. 137-176.

Griliches, Zvi, and Michael D. Intriligator, Handbook of Econometrics Volumes I, II,

III, North Holland, 1984, 1985, 1986.

Haerdle, W., Applied Nonparametric Regression, Cambridge University Press,
Cambridge, 1990.

Hall, Bronwyn H., “The Effect of Takeover Activity on Corporate Research and
Development,” in Auerbach, Alan (ed.), Corporate Takeovers: Causes and

Consequences, 1988, pp. 69-96.

Hall, Bronwyn H., “The Relationship between Firm Size and Firm Growth in the U.S.
Manufacturing Sector,” Journal of Industrial Economics 36(1987), pp. 583-606.

292 Appendices

Hall, Bronwyn H., Zvi Griliches, and Jerry A. Hausman, “Patents and R&D: Is There
a Lag?”, International Economic Review 27(1986), pp.265-283.

Hall, Bronwyn H., and Clint Cummins, TSP Version 5.0 Reference Manual, TSP
International, Stanford, California, 2004.

Hall, Bronwyn H., “Estimation of the Probability of Acquisition in an Equilibrium
Setting,” University of California at Berkeley IBER Working Paper No. 8887, 1987.

Hall, Robert E., “Polynomial Distributed Lags,” Econometrics Working paper No. 7,
Department of Economics, MIT, July 1967.

Hall, Robert E., “Stochastic Implications of the Life-Cycle Permanent Income
Hypothesis: Theory and Evidence,” Journal of Political Economy 86(1978), pp.
971-987.

Hanoch, Giora, “A Multivariate Model of Labor Supply: Methodology for
Estimation,” in J. P. Smith (ed.), Female Labor Supply: Theory and Estimation,
Princeton University Press, Princeton, 1980.

Hansen, C., J. A. Hausman, and W. Newey, “Weak Instruments, Many Instruments,
and Microeconometric Practice,” MIT, Cambridge, Mass: working paper, 2004.

Hansen, Lars Peter, “Large Sample Properties of Generalized Method of Moments
Estimators,” Econometrica 50(1982), pp. 1029-1054.

Hansen, Lars Peter, and Kenneth J. Singleton, “Generalized Instrumental Variables
Estimation of Nonlinear Rational Expectations Models,” Econometrica 50(1982), pp.
1269-1286.

Harman, Harry H., Modern Factor Analysis, University of Chicago Press, First
Edition (1960), Sec. 9.3 or Third Edition (1976), Sec. 8.3.

Harvey, Andrew C., The Econometric Analysis of Time Series, Cambridge: The MIT
Press, third printing, 1993.

Harvey, Andrew C., Forecasting, Structural Time Series Models, and the Kalman

Filter, Cambridge, Cambridge University Press, fifth printing, 1994.

Harvey, Andrew C., Time Series Models, 1981, Philip Allen, London.

Hausman, Jerry A., “Specification Tests in Econometrics,” Econometrica 46 (1978),
pp. 1251-1272.

Hausman, Jerry A., Bronwyn H. Hall, and Zvi Griliches, “Econometric Models for
Count Data with an Application to the Patents-R&D Relationship,” Econometrica
52(1984), pp. 909-938.

Hausman, Jerry A., and Daniel McFadden, “Specification Tests for the Multinomial
Logit Model,” Econometrica 52 (1984): 1219-1240.

Heckman, James J., “Sample Selection Bias as a Specification Error,” Econometrica
47(1974), pp. 153-162.

 F. References 293

Hildreth, C., and J. Y. Lu, “Demand Relations with Autocorrelated Disturbances,”
Research Bulletin 276, Michigan State University Agricultural Experiment Station,
1960.

Hsiao, Cheng, Analysis of Panel Data, Cambridge University Press, Cambridge,
England, 1986.

Imhoff, P.J., “Computing the Distribution of Quadratic Forms in Normal Variables,”
Biometrika 48 (1961), pp. 419-426.

IMSL Library Reference Manual, IMSL, Inc., Houston, Texas, 1982.

Jarque, Carlos M., and Anil K. Bera, “A Test for Normality of Observations and
Regression Residuals,” International Statistical Review 55 (1987): 163-172.

Jayatissa, W. A., “Tests of Equality Between Sets of Coefficients in Linear
Regressions when Disturbance Variances are Unequal,” Econometrica 45 (1977), pp.
1291-1292.

Johansen, Søren, and Katarina Juselius, “Maximum Likelihood Estimation and
Inference on Cointegration -- with Applications to the Demand for Money”, Oxford

Bulletin of Economics and Statistics, 1990, p.169-210.

Jorgenson, Dale W., and Jean-Jacques Laffont, “Efficient Estimation of Nonlinear
Simultaneous Equations with Additive Disturbances,” Annals of Economic and Social

Measurement 4(1974), pp. 615-640.

Jorgenson, Dale, and Zvi Griliches, “Divisia Index Numbers and Productivity
Measurement,” Review of Income and Wealth, Vol. 17(2), June 1971, pp. 227-229.

Judge, George, R. Carter Hill, William E. Griffiths, Helmut Lutkepohl, and Tsoung-
Chao Lee. Introduction to the Theory and Practice of Econometrics, John Wiley &
Sons, New York, 1988 (second edition).

Judge, George, et al, The Theory and Practice of Econometrics, John Wiley & Sons,
New York, 1981, pp. 531-533.

Kalman, R. E., “A New Approach to Linear Filtering and Prediction Problems,”
Journal of Basic Engineering, Transactions ASME, Series D 82 (1960): 35-45.

Keane, Michael P., and David E. Runkle, “On the Estimation of Panel-Data Models
with Serial Correlation When Instruments are not strictly Exogenous,” Journal of

Business and Economic Statistics 10(1992), pp. 1-29.

Klein, L. R., “Estimation of Interdependent Systems in Macro-Economics,”
Econometrica 37 (1969): 171-192.

Knuth, Donald E., The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Addison-Wesley, Reading, Mass., 1969.

Koenker, R. W., and G. W. Bassett, “Regression Quantiles,” Econometrica 46 (1978),
pp. 33-50.

294 Appendices

Krasker, William S., Kuh, Edwin, and Welsch, Roy E., “Estimation for Dirty Data and
Flawed Models,” Griliches and Intrilligator (eds.), Handbook of Econometrics,
Volume I, North-Holland Publishing Co., New York, 1983, pp. 660-664.

Lancaster, Tony, The Economic Analysis of Transition Data, Cambridge: Cambridge
University Press, 1990.

Leamer, Edward E., Specification Searches: Ad Hoc Inference with Nonexperimental

Data, Wiley, New York, 1978, p. 114.

L'Ecuyer, Pierre, “Good Parameter Sets for Combined Multiple Recursive Random
Number Generators,” Operations Research 47, 1999. Available at
http://www.iro.umontreal.ca/~lecuyer/papers.html

L'Ecuyer, Pierre, “Random Numbers for Simulation,” Communications of the ACM,
October 1990, pp. 85-97.

Ljung, G. M., and G. P. Box, “On a Measure of Lack of Fit in Time Series Models,”
Biometrika 66(1978), pp. 297-303.

Longley, James W., “An Appraisal of Least Squares Programs for the Electronic
Computer from the Point of View of the User,” JASA 62(1967), pp. 818-841.

Machado, J. A. F., and J. M. C. Santos-Silva, “Glejser's Test Revisited,” Journal of

Econometrics 97 (2000): 189-202.

MacKinnon, J. G., “Approximate Asymptotic Distribution Functions for Unit-Root
and Cointegration Tests,” Journal of Business and Economic Statistics (April 1994):
167-176.

MacKinnon, J.G., “Critical Values for Cointegration Tests,” in Long-Run Economic

Relationships: Readings in Cointegration, eds. R.F. Engle and C.W.J. Granger, New
York: Oxford University Press, (1991): 266-276.

MacKinnon, James G., and Halbert White, “Some Heteroskedasticity Consistent
Covariance Matrix Estimators With Improved Finite Sample Properties,” Journal of

Econometrics 29, pp.305-325.

Macurdy, Thomas E., “Asymptotic Properties of Quasi-Maximum Likelihood
Estimators and Test Statistics,” NBER Technical Working Paper No. 14, 1981.

Macurdy, Thomas E., “An Empirical Model of Labor Supply in a Life Cycle Setting,”
Journal of Political Economy 89(1981), pp. 1059-1085.

Macurdy, Thomas E., “A Guide to Applying Time Series Models to Panel Data,”
Manuscript, Stanford University, 1985.

Macurdy, Thomas E., “The Use of Time Series Processes to Model the Error
Structure of Earnings in a Longitudinal Data Analysis,” Journal of Econometrics
18(1981), pp. 83-114.

Maddala, G. S., Introduction to Econometrics, Macmillan, New York, 1988.

 F. References 295

Maddala, G. S., Limited-dependent and Qualitative Dependent Variables in

Econometrics, Cambridge University Press, New York, 1983.

Maddala, G. S., Econometrics, McGraw Hill Book Company, New York, 1977.

Maddala, G. S., “The Use of Variance Component Models in Pooling Cross Section
and Time Series Data,” Econometrica 39(1971), pp. 341-58.

Manski, Charles, and Daniel McFadden, Structural Analysis of Discrete Data with
Econometric Applications, MIT Press, Cambridge, Mass., 1983.

McCurdy, Thomas H., and Ieuan G. Morgan, “Testing the Martingale Hypothesis in
Deutsche Mark Futures with Models Specifying the Form of Heteroskedasticity,”
Journal of Applied Econometrics 3(1988), pp. 187-202.

McFadden, Daniel, “Conditional Logit Analysis of Qualitative Choice Behavior,” in
P. Zarembka (ed.), Frontiers in Econometrics, Academic Press, New York, 1973.

McFadden, Daniel, “Qualitative Response Models,” in Z. Griliches and M. D.
Intriligator (eds.), Handbook of Econometrics, North Holland, Amsterdam, 1985.

McFadden, Daniel, “Quantal Choice Analysis: A Survey,” Annals of Economic and

Social Measurement 5 (1975), pp. 363-390, 1976.

McFadden, Daniel, “Regression-Based Specification Tests for the Multinomial Logit
Model,” Journal of Econometrics 34 (1987): 63-82.

Mélard, G., “Algorithm AS 197: A Fast Algorithm for the Exact Likelihood of
Autoregressive-moving Average Models,” Applied Statistics, 1984, p.104-109. Code
available on Statlib: http://lib.stat.cmu.edu/apstat/

Montalvo, Jose Garcia, “GMM estimation of count-panel-data models with Fixed
Effects and Predetermined Instruments,” Journal of Business and Economic Statistics
15 (1997), pp. 82–89.

Mundlak, Yair, “On the Concept of Non-Significant Functions and Its Implications for
Regression Analysis,” Journal of Econometrics 16(1981), pp. 139-149.

Nawata, Kazumitsu, “Estimation of Sample Selection Models by the Maximum
Likelihood Method,” Mathematics and Computers in Simulation 39 (1995), pp. 299-
303.

Nawata, Kazumitsu, “Estimation of Sample Selection Bias Models by the Maximum
Likelihood Estimator and Heckman's two-step Estimator,” Economics Letters 45
(1994), pp. 33-40.

Nawata, Kazumitsu, and Nobuko Nagase, “Estimation of Sample Selection Bias
Models,” Econometric Reviews 15 (1996), pp. 387-400.

Nelson, Charles, Applied Time Series Analysis for Managerial Forecasting,
Holden-Day, New York, 1973.

296 Appendices

Nelson, C. R., and R. Startz, "Some Further Results on the Exact Small Sample
Properties of the Instrumental Variables Estimator," Econometrica 58 (1990), pp.
967-976.

Nerlove, Marc, Likelihood Inference in Econometrics, Academic Press, 2000.

Nerlove, Marc. “Further Evidence on the Estimation of Dynamic Economic Relations
from a Time Series of Cross Sections,” Econometrica 39 (1971): 359-382.

Nerlove, Marc and S. James Press, “Univariate and Multivariate Loglinear and
Logistic Models,” Rand Report No. R-1306-EDA/NIH, 1973.

Newey, Whitney K., and Kenneth D. West, “A Simple, Positive Semi-definite,
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econometrica
55(1987), pp. 703-706.

Olsen, R. J., “Distributional Tests for Selectivity Bias and a More Robust Likelihood
Estimator,” International Economic Review 23 (1982), pp. 223-240.

Ortega, J.M., and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press, New York, 1970, Chapter 7.

Osterwald-Lenum, Michael, “Practitioners' Corner: A Note with Quantiles for the
Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test
Statistic”, Oxford Bulletin of Economics and Statistics, 1992, p.461-471.

Pan, Jie-Jian, “Distribution of Noncircular Correlation Coefficients,” Selected

Transactions in Mathematical Statistics and Probability, 1968, pp. 281-291.

Pantula, Sastry G., Graciela Gonzalez-Farias, and Wayne A. Fuller, “A Comparison of
Unit-Root Test Criteria,” Journal of Business and Economic Statistics (October
1994): 449-459.

Perron, Pierre, “The Great Crash, The Oil Price Shock, and the Unit Root
Hypothesis,” Econometrica, November 1989, pp.1361-1401.

Phillips, P. C. B., “Time Series Regression with a Unit Root,” Econometrica 55
(1987), pp. 277-301.

Phillips, P. C. B., and Pierre Perron, “Testing for a Unit Root in Time Series
Regression,” Biometrika (1988): 335-346.

Pindyck, Robert S., and Daniel L. Rubinfeld, Econometric Models and Economic

Forecasts, McGraw-Hill Book Company, New York, 1966.

Prais, S. J. and Winsten, C. B., “Trend Estimators and Serial Correlation,” Cowles
Commission Discussion Paper No. 373, Chicago, 1954.

Quandt, Richard E., “Computational Problems and Methods,” in Griliches and
Intriligator (eds.), Handbook of Econometrics, Volume I, North-Holland Publishing
Company, Amsterdam, 1983.

 F. References 297

Rao, C. Radhakrishna, Linear Statistical Inference and its Applications, John Wiley
and Sons, New York, 1965.

Rao, P., and Zvi Griliches, “Small Sample Properties of Several Two-Stage
Regression Methods in the Context of Auto-Correlated Errors,” JASA 64(1969), pp.
253-272.

Rothenberg, T. J., "Approximating the Distributions of Econometric Estimators and
Test Statistics," Ch. 15 in Z. Griliches and M. Intriligator (eds.), Handbook of

Econometrics, Vol. II, Amsterdam: North Holland, pp. 881-935.

Rousseeuw, P. J., “Least Median of Squares Regression,” JASA 79 (1984), pp. 871-
880.

Rousseeuw, P. J., “Progress,” http://win-www.uia.ac.be/u/statis/

Rousseeuw, P. J., and Leroy, A. M., Robust Regression and Outlier Detection, Wiley,
1987.

Rousseeuw, P. J., and Wagner, J., “Robust Regression with a distributed intercept
using Least Median of Squares,” Computational Statistics and Data Analysis 17
(1994), pp. 66-68.

Royal Statistical Society, “Inverse Normal Computation,” Algorithm AS 241, Applied

Statistics 37 (1988).

Royston, Patrick, “Algorithm AS R94,” Applied Statistics 44 (1995).

Saaty, T. L., and J. Bram, Nonlinear Mathematics, McGraw-Hill Book Co., New
York, 1964.

Savin, N.E., and Kenneth J. White, “Testing for Autocorrelation with Missing
Observations.” Econometrica 46 (1978): 59-67.

Schaffer, Henry E., Algorithm #369, Collected Algorithms from ACM, Volume II,
ACM, New York, 1980.

Schmidt, P., S.C. Ahn and D. Wyhowski, “Comment” on “On the Estimation of Panel-
Data Models” by Keane, M.P., and D.E. Runkle, Journal of Business and Economic

Statistics 10 (1992): 10-14.

Sclove, S.L., “Least Squares Problems with Random Regression Coefficients,”
Technical Report No. 87, IMSSS, Stanford University, 1973.

“Seasonal Analysis of Economic Time Series,” proceedings of the Conference on the
Seasonal Analysis of Economic Time Series, September 1976.

Shapiro, S. S., and M. B. Wilk, “An Analysis of Variance Test for Normality
(Complete Samples),” Biometrika 52 (1965): 591-611.

Shapiro, S. S., M. B. Wilk, and H. J. Chen, “A Comparative Study of Various Tests of
Normality,” Journal of the American Statistical Association 63 (1968): 1343-1372.

298 Appendices

Shiller, Robert, “A Distributed Lag Estimator Derived from Smoothness Priors,”
Econometrica 41(1973), pp. 775-787.

Silverman B. W., Density Estimation for Statistics and Data Analysis, Chapman and
Hall, London, 1986.

Sims, Christopher A., “Macroeconomics and Reality,” Econometrica 48(1980), pp.
1-48.

Staiger, D., and J. H. Stock, "Instrumental Variables Regression with Weak
Instruments," Econometrica 65 (1997), pp. 557-586.

Startz, Richard, “Computation of Linear Hypothesis Tests for Two-Stage Least
Squares,” Economics Letters 11, 1983, pp. 129-131.

Statlib, http://lib.stat.cmu.edu/apstat/

Steward, D.V., “On an Approach to Techniques for the Analysis of the Structure of
Large Systems of Equations,” SIAM REVIEW, Volume 4, pp. 321- 342.

Stewart, G. E., Algorithm #384, Collected Algorithms from ACM Volume II, ACM,
New York, 1980.

Stock, J. H., and M. Yogo, "Testing for Weak Instruments in Linear IV Regression,"
NBER Technical Working Paper No. 284, October 2002.

Theil, Henri, Applied Economic Forecasting, North Holland Publishing Company,
1966.

Theil, Henri, Economic Forecasts and Policy, North Holland Publishing Company,
1961.

Theil, Henri, Principles of Econometrics, John Wiley & Sons, Inc., New York, 1971.

Thursby, Jerry, Journal of Econometrics, 1992.

Tobin, James, “Estimation of Relationships for Limited Dependent Variables,”
Econometrica 31(1958), pp. 24-36.

Train, Kenneth, Qualitative Choice Analysis, The MIT Press, Cambridge, Mass.,
1986.

Tsay and Tiao, JASA, March 1984, pp. 84-96.

TSP International website: http://www.tspintl.com

Van Daele, Walter, Applied Time Series and Box-Jenkins Models, Academic Press,
New York, 1983.

Verbeek, Marno, A Guide to Modern Econometrics, John Wiley & Sons, Inc., New
York, 2000, pp. 189-193.

Wampler, Roy H., “Test Procedures and Test Problems for Least Squares
Algorithms,” Journal of Econometrics 12, pp 3-21.

 F. References 299

White, Halbert, “A Heteroskedasticity-Consistent Covariance Matrix and a Direct
Test for Heteroskedasticity”, Econometrica 48(1980), pp. 721-746.

White, Halbert, “Instrumental Variables Regression with Independent Observations,”
Econometrica 50(1982), pp. 483-500.

White, Halbert, “Maximum Likelihood Estimation of Misspecified Models,”
Econometrica 50(1982), pp. 1-25.

White, Halbert, “Using Least Squares to Approximate Unknown Regression
Functions,” International Economic Review 21(1980).

Wooldridge, J. M., Econometric Analysis of Cross Section and Panel Data,
Cambridge, MA: MIT Press, 2002.

Zellner, Arnold, “An Efficient Method of Estimating Seemingly Unrelated
Regressions and Tests of Aggregation Bias,” JASA 57(1962), pp. 348-368.

Zellner, Arnold, “Estimators for Seemingly Unrelated Regression Equations: Some
Exact Finite Sample Result,” JASA 58(1963), pp. 977-992.

Zellner, Arnold, and Henri Theil, “Three-Stage Least Squares: Simultaneous
Estimation of Simultaneous Equations,” Econometrica 30(1962), pp. 54-78.

Index

300

INDEX

Autoregression
first order (AR1)ii, 16, 21, 29, 43, 47,

50, 56, 57, 58, 75, 87, 92, 101,
111, 142, 147, 178, 195, 196, 219,
220, 267

vectoriii, 4, 47, 48, 147, 159, 160,
161, 165, 180, 193

Autoregressive conditional
heteroskedasticity.... 16, 52, 155, 156,
157, 212, 290

Binary probit estimation ...iii, 47, 50, 58,
111, 119, 120, 122, 123, 124, 126,
129, 133, 138, 140, 144, 145, 180,
196, 225, 234, 267

Box-Jenkins
estimation (BJEST)..iii, 36, 111, 150,

153
forecasting (BJFRCST)......iii, vii, 36,

150, 153, 154, 155
identification (BJIDENT) ..iii, vii, 36,

150, 151, 152, 153, 193
Capital stocks

constructing (CAPITL) ..ii, 20, 80, 81
Cointegration (COINT) iv, 147, 162,

163, 164, 165, 166
Correlation (CORR) ... i, 47, 48, 66, 138,

180
Covariance (COVA) 47, 48, 170, 171,

180, 215
Databanks

copying (DBCOPY)..................... 249
deleting variables (DBDEL) 249
documenting (DOC) v, 248
listing (DBLIST).......................... 249
printing (DBPRINT).................... 249
reading (IN) v, 38, 124, 149, 206,

208, 246, 248, 249, 250, 253
saving variables (OUT)..... v, 40, 239,

246, 247, 248, 250, 280, 283
storing variables (KEEP) 239, 247

Deleting variables (DELETE)........... 256
Differentiation, analytic (DIFFER).... 71,

88
Displaying variables ii, vii, 7, 17, 24, 28,

29, 30, 39, 47, 72, 73, 84, 87, 139,
142, 159, 168, 173, 174, 175, 192,
196, 203, 206, 207, 211, 247, 249,

265, 267
Distribution functions (CDF).....29, 106,

108, 109, 110, 111, 112, 113, 115,
116, 136, 162, 163, 164, 165, 190,
212, 213, 228, 231

Divisia indices (DIVIND).........ii, 81, 83
Do loops (DO) ..iv, 20, 22, 35, 116, 141,

142, 167, 168, 170, 172, 174, 215
Dot loops (DOT).iv, 135, 139, 167, 168,

169, 170, 207, 226, 228, 229, 233,
264, 266

Dummy variables (DUMMY)..ii, 18, 79,
84, 223

End
Do loop (ENDDO)......142, 167, 168,

172, 174, 215
Dot loop (ENDDOT) ..135, 139, 168,

169, 170, 207, 226, 229, 233
Procedure (ENDPROC)133, 170, 172
program (END)13, 22, 24, 31, 32, 35,

81, 247, 257, 280
program (EXIT)34, 35, 254, 255,

256, 257
program (QUIT).....................36, 280
program (STOP).......................34, 35

Equations
creating (FORM).... iv, 28, 30, 57, 58,

66, 71, 88, 101, 137, 194, 195,
196, 200

defining (FRML)ii, iv, 26, 28, 29, 30,
31, 70, 87, 88, 89, 90, 91, 92, 99,
101, 106, 107, 114, 120, 130, 131,
132, 133, 134, 135, 136, 137, 138,
139, 142, 143, 161, 194, 195, 196,
205, 206, 226, 227, 229, 233, 247,
255, 265

defining identities (IDENT)30, 70,
90, 177, 187, 192, 200, 204, 205,
265

substituting (EQSUB) ..iii, 71, 88, 89,
100, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 143, 229, 233

Files
closing (CLOSE)..............v, 240, 258
directory (DIR)...............37, 273, 275
reading data.....i, iv, v, 12, 13, 14, 22,

24, 38, 69, 70, 79, 177, 178, 203,

 Index 301

215, 218, 219, 231, 238, 239, 240,
243, 244, 245, 246, 262, 277, 281,
283

writing data (WRITE) ii, v, 16, 72,
215, 238, 240, 244, 245, 247, 281,
283

Fit
evaluating (ACTFIT) . iv, 21, 31, 170,

171, 211
Forecasting (FORCST)... iv, 29, 36, 190,

195, 196, 197, 211
Frequencyi, 8, 11, 13, 19, 24, 28, 37, 41,

69, 79, 84, 147, 148, 149, 150, 196,
203, 219, 220, 222, 225, 234, 235,
239, 240, 242, 244, 245, 246, 247,
249, 250, 258

Full information maximum likelihood
(FIML)..ii, vii, 11, 21, 27, 30, 47, 71,
75, 87, 88, 89, 90, 92, 95, 100, 101,
102, 103, 111, 134, 140, 144, 145,
178, 179, 180, 197, 198, 202, 267,
287

Generalized method of moments (GMM)
...... v, 2, 3, 47, 66, 67, 87, 89, 96, 99,
100, 163, 179, 180, 217, 219, 224,
225, 229, 230, 231, 232, 233, 267,
268, 295

Givewin ... 3, 5, 6, 7, 33, 34, 35, 74, 269,
270, 272, 274, 275

Go to statement (GOTO) iv, 173, 174,
265

Graphics
GRAPH..ii, vi, vii, 17, 45, 73, 75, 76,

213, 267, 272, 275, 276, 281
HISTii, vii, 17, 48, 73, 76, 77, 138
plotting time series...ii, vi, vii, 17, 29,

31, 45, 73, 74, 75, 191, 211, 220,
267, 272, 275, 276, 281

Graphs ii, vi, vii, 17, 45, 73, 75, 76, 213,
267, 272, 275, 276, 281

Help ... i, 37, 280
Histogramsii, vii, 17, 48, 73, 76, 77, 138
Hypothesis testing

nonlinear (ANALYZ) ..iii, 26, 27, 28,
31, 52, 88, 89, 105, 106, 107, 108,
113, 114, 136, 143, 144, 161, 267

If-then-else statements .. iv, 19, 138, 167,
168, 173, 174, 265

Instrumental variables (INST) .ii, 16, 26,
27, 29, 30, 53, 55, 58, 65, 67, 95, 96,

99, 100, 112, 113, 114, 200, 229,
230, 231, 233, 255, 256

Interactive use
adding variables (ADD)254, 256, 257
clearing memory (CLEAR)34, 35
dropping variables (DROP) ..57, 254,

256, 257
editing (EDIT).......5, 35, 36, 37, 254,

255, 259
entering data (ENTER)37, 38, 259
entering data (UPDATE)38, 253,

254, 259
executing statements (EXEC) .35, 37,

39, 253, 254, 255, 257, 259
finding commands (FIND).............37
loops (COLLECT)34, 35, 167
outputi, 34, 38, 39, 257, 258, 259
retrying a command (RETRY)254,

255, 256, 257
reviewing a session (REVIEW)36,

37, 41, 257, 298
Kalman filteriii, 133, 157, 158, 159
Kernel density estimation (KERNEL)76,

100
Least absolute deviations (LAD) ...ii, vii,

47, 67, 68, 76, 195, 196
Least squares

nonlinear (LSQ) ii, vii, 21, 26, 27, 30,
47, 57, 58, 66, 71, 75, 87, 88, 89,
90, 91, 92, 93, 94, 95, 99, 101,
111, 112, 113, 114, 132, 140, 142,
144, 145, 178, 179, 180, 194, 199,
217, 227, 247, 267

ordinary (OLSQ)....i, 7, 8, 15, 16, 19,
21, 22, 25, 27, 28, 29, 30, 36, 39,
42, 43, 47, 48, 49, 50, 52, 53, 55,
56, 58, 59, 60, 63, 65, 66, 67, 71,
75, 87, 91, 106, 107, 108, 109,
111, 115, 116, 121, 122, 124, 133,
135, 137, 159, 160, 162, 164, 168,
169, 171, 175, 178, 182, 183, 190,
192, 195, 196, 215, 222, 225, 246,
250

Limited information maximum
likelihood (LIML).....ii, vii, 2, 21, 26,
29, 47, 50, 55, 56, 58, 75, 87, 95,
101, 102, 178, 195, 196, 268

Linear estimation
least squares (OLSQ) ...i, 7, 8, 15, 16,

19, 21, 22, 25, 27, 28, 29, 30, 36,

Index

302

39, 42, 43, 47, 48, 49, 50, 52, 53,
55, 56, 58, 59, 60, 63, 65, 66, 67,
71, 75, 87, 91, 106, 107, 108, 109,
111, 115, 116, 121, 122, 124, 133,
135, 137, 159, 160, 162, 164, 168,
169, 171, 175, 178, 182, 183, 190,
192, 195, 196, 215, 222, 225, 246,
250

panel data (PANEL)....... iv, 117, 217,
219, 220, 221, 222, 223, 225, 234,
235, 267

Listing TSP variables i, 37, 39, 197, 249,
257, 280

Lists
defining (LIST) 26, 29, 70, 72, 99,

116, 137, 148, 161, 169, 172, 200,
206, 223, 227, 230, 265

length 171, 227, 228
Logit estimation....iii, 47, 111, 119, 120,

125, 126, 127, 140
Loops

Do iv, 20, 22, 35, 116, 141, 142, 167,
168, 170, 172, 174, 215

Dot . iv, 135, 139, 167, 168, 169, 170,
207, 226, 228, 229, 233, 264, 266

Matrices
computing (MATRIX)....... iv, vii, 69,

175, 185, 228, 261, 263
creating (MFORM).. iv, 70, 176, 177,

181, 182, 183, 215
creating from series (MMAKE)iv, 70,

175, 180, 181, 182, 191, 192, 245
LDL decomposition (YLDFAC).... iv,

188
making into series (UNMAKE)iv, 30,

69, 71, 90, 116, 135, 137, 138,
180, 181, 182, 183, 187, 226, 227,
243

orthonormalizing............. iv, 188, 189
Maximum likelihood

full information (FIML) ii, vii, 11, 21,
27, 30, 47, 71, 75, 87, 88, 89, 90,
92, 95, 100, 101, 102, 103, 111,
134, 140, 144, 145, 178, 179, 180,
197, 198, 202, 267, 287

general (ML)..iii, 47, 57, 87, 88, 111,
119, 120, 127, 130, 131, 132, 133,
134, 135, 136, 137, 138, 139, 140,
144, 145, 156, 180, 225, 267

limited information (LIML) ..ii, vii, 2,

21, 26, 29, 47, 50, 55, 56, 58, 75,
87, 95, 101, 102, 178, 195, 196,
268

Means
variable (MSD)i, 8, 16, 17, 47, 48,

66, 72, 138, 170, 180, 215, 226
microTSP databanks

FETCH...................................38, 250
STORE...250

Models
defining (MODEL) ..iv, vii, 130, 193,

198, 199, 200, 201, 203, 204, 205,
206, 208, 209, 210

solving (SIML)14, 243, 244, 245
solving (SOLVE) iv, 89, 194, 198,

199, 201, 202, 203, 206, 207, 209,
211

Moment matrix creation (MOMENT)47,
48

Multinomial logit estimation.iii, 47, 111,
119, 120, 125, 126, 127, 140

Negative binomial estimation
(NEGBIN)...............iii, 120, 129, 130

Normalizing variables (NORMAL) ii, 83
Optionsiii, 8, 12, 21, 22, 28, 29, 140,

258, 262, 276
regression output (REGOPT)...iv, 21,

41, 47, 51, 52, 109, 115, 159, 167,
174, 179, 215

Ordered data
INTERVAL.............................iii, 128
ORDPROBiii, 119, 120, 128, 129

Ordinary least squares (OLSQ).....i, 7, 8,
15, 16, 19, 21, 22, 25, 27, 28, 29, 30,
36, 39, 42, 43, 47, 48, 49, 50, 52, 53,
55, 56, 58, 59, 60, 63, 65, 66, 67, 71,
75, 87, 91, 106, 107, 108, 109, 111,
115, 116, 121, 122, 124, 133, 135,
137, 159, 160, 162, 164, 168, 169,
171, 175, 178, 182, 183, 190, 192,
195, 196, 215, 222, 225, 246, 250

Orthonomalizing (ORTHON) iv, 188,
189

Panel data.... iv, 117, 217, 219, 220, 221,
222, 223, 225, 234, 235, 267

Plotting
time series (PLOT).. ii, vi, vii, 17, 29,

31, 45, 73, 74, 75, 191, 211, 220,
267, 272, 275, 276, 281

turning on (PLOTS) ii, 21, 22, 28, 31,

 Index 303

49, 58, 74, 211
Poisson estimationiii, 120, 129, 130
Principal components (PRIN)..ii, vii, 84,

85
Procedures

defining (PROC).......iii, iv, 120, 132,
133, 170, 171, 172, 257

ending (ENDPROC) 133, 170, 172
local variables 172

Qualitative data
Binary Probit (PROBIT)....iii, 47, 50,

58, 111, 119, 120, 122, 123, 124,
126, 129, 133, 138, 140, 144, 145,
180, 196, 225, 234, 267

INTERVALiii, 128
LOGITiii, 47, 111, 119, 120, 125,

126, 127, 140
Ordered Probit (ORDPROB).iii, 119,

120, 128, 129
sample selection modeliii, 47, 111,

116, 119, 120, 123, 124, 125, 140
Tobit estimation .iii, 47, 58, 111, 119,

120, 121, 122, 140, 196
Random number generation iv, 212, 214,

215
Reading data .. i, iv, v, 12, 13, 14, 22, 24,

38, 69, 70, 79, 177, 178, 203, 215,
218, 219, 231, 238, 239, 240, 243,
244, 245, 246, 262, 277, 281, 283

Recovering a TSP session........... 34, 259
Restoring a TSP session v, 31, 38, 74,

207, 250, 251
Sample selection model iii, 47, 111, 116,

119, 120, 123, 124, 125, 140
Saving a TSP session (SAVE)v, 34, 250,

251, 259
Scalars

defining (CONST) 26, 29, 69, 90,
136, 141, 227, 228

defining parameters (PARAM).ii, 29,
30, 69, 87, 88, 90, 92, 99, 101,
114, 131, 132, 133, 134, 136, 137,
138, 141, 142, 144, 182, 194, 205,
206, 226, 228, 247

transforming (SET)29, 52, 69, 70, 71,
83, 90, 106, 108, 109, 110, 112,
113, 115, 116, 133, 135, 136, 137,
138, 139, 168, 172, 194, 204, 213,
214, 218, 228, 231, 262, 265

Seasonal adjustment (SAMA)...ii, 83, 84

Seemingly unrelated regression (SUR)
...87, 92, 93, 180, 224, 226, 227, 228

Selecting observations (SELECT) ..i, 12,
14, 15, 16, 18, 19, 47, 136, 174, 220,
265

Selecting observations (SMPL) ..i, 8, 11,
12, 13, 14, 15, 19, 20, 21, 24, 25, 28,
29, 31, 37, 38, 41, 43, 47, 51, 57, 69,
79, 80, 81, 84, 108, 109, 110, 138,
148, 149, 150, 162, 163, 164, 165,
172, 177, 180, 181, 184, 187, 190,
195, 196, 203, 206, 212, 214, 215,
219, 228, 239, 240, 242, 244, 245,
246, 247, 249, 250, 254, 258

Selecting observations (SMPLIF)...i, 12,
14, 15, 47, 116, 124, 138, 265

Serial correlation
AR1.ii, 16, 21, 29, 43, 47, 50, 56, 57,

58, 75, 87, 92, 101, 111, 142, 147,
178, 195, 196, 219, 220, 267

Simulation models
creating (MODEL)...iv, vii, 130, 193,

198, 199, 200, 201, 203, 204, 205,
206, 208, 209, 210

solving (SIML) iv, 27, 31, 89, 90,
194, 197, 198, 199, 200, 202, 206,
207, 211

solving (SOLVE) iv, 89, 194, 198,
199, 201, 202, 203, 206, 207, 209,
211

SMPL
suppressing (SUPRES)227

Sorting variablesii, 77, 78, 213, 222,
267

Test
distribution functions29, 106, 108,

109, 110, 111, 112, 113, 115, 116,
136, 162, 163, 164, 165, 190, 212,
213, 228, 231

unit roots iii, 147, 160, 161, 162, 243,
281

Wald.....iii, 26, 27, 28, 31, 52, 88, 89,
105, 106, 107, 108, 113, 114, 136,
143, 144, 161, 267

Through the Looking Glass vi, 3, 5, 269,
270, 273, 274, 275, 276, 277

Time series
changing frequency (CONVERT)..iii,

69, 148, 149
cointegration ..iv, 147, 162, 163, 164,

Index

304

165, 166
creating trend ii, 24, 28, 29, 30, 79,

80, 88, 90, 213, 223
frequency (FREQ) i, 8, 11, 13, 19, 24,

28, 37, 41, 69, 79, 84, 147, 148,
149, 150, 196, 203, 219, 220, 222,
225, 234, 235, 239, 240, 242, 244,
245, 246, 247, 249, 250, 258

unit roots iii, 147, 160, 161, 162, 243,
281

VAR.......iii, 4, 47, 48, 147, 159, 160,
161, 165, 180, 193

Time series-cross section data (PANEL)
iv, 117, 217, 219, 220, 221, 222, 223,
225, 234, 235, 267

Titling output
PAGE................... 28, 29, 30, 31, 207
TITLE ... 22, 28, 29, 30, 76, 136, 207,

213
Tobit estimation......iii, 47, 58, 111, 119,

120, 121, 122, 140, 196

Trend variables ii, 24, 28, 29, 30, 79, 80,
88, 90, 213, 223

TSP optionsiii, 8, 12, 21, 22, 28, 29,
140, 258, 262, 276

TSP programs
inputting (INPUT)...6, 34, 35, 36, 37,

38, 251, 257, 259
T-statistics...........................39, 107, 215
Variables

copying (COPY)ii, iv, 71, 72, 112,
136, 175, 178, 183, 192, 226, 230,
231

deleting (DELETE)......................256
transforming (GENR)i, iv, 15, 16, 17,

18, 19, 20, 22, 24, 27, 29, 69, 70,
71, 79, 81, 83, 87, 89, 108, 110,
168, 170, 171, 174, 184, 194, 195,
201, 212, 247, 265

Vector auto regressions.......iii, 4, 47, 48,
147, 159, 160, 161, 165, 180, 193

