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Preface 

 
The User’s Guide for TSP had its origins in the User’s Guide to Version 3.5, 
co-authored by Bronwyn Hall and Robert Hall in 1980. Over the years, it has 
been completely revised as the TSP program has been enhanced and expanded, 
and the current edition represents a major revision. Contributions to earlier 
versions of the manual were also made by Rebecca Schnake and editorial 
contributions by Chris Hall, Lila Havens, Araya Niemloy, Margaret Reeves, 
and Rossannah Reeves. We are very grateful to all these people for their 
efforts.  
 
This version is the first to be printed a new, more compact and convenient 
format, and we hope you will find it useful. We have tried wherever we can to 
document the sources of our procedures and algorithms in the scientific 
literature, and you will find a comprehensive set of references to this literature 
at the end of the volume.  
 
Bronwyn H. Hall 
Clint Cummins 
February 2005 
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1. INTRODUCTION 
  
TSP is a general-purpose computer language for econometric and statistical 
data processing and estimation. The program can be used for any of the 
following tasks:  
 
     Applied econometrics, including teaching 
     Macroeconomic research and forecasting 
     Sales forecasting 
     Financial analysis 
     Cost analysis and forecasting 
     Monte Carlo simulation 
     Estimation and simulation of economic models 
 
Currently, TSP is installed on thousands of computers worldwide -- from small 
stand-alone personal computers to large mainframes and shared systems. 
Although TSP was originally and continues to be developed primarily by 
economists, there is nothing in its design limiting it to economic time series. 
Any data consisting of repeated observations of the same variable for different 
units may be analyzed with TSP. 
 
The basic data object within TSP is the series. Each series has a name, and you 
can request operations on all the observations just by mentioning the name of 
the series. TSP provides convenient ways to enter series, to create new series 
from existing ones, to display and print series, and to carry out statistical 
analysis of the relations among series. 
 
Some of the most important TSP features are: 
 

• Both data and commands are entered in free format. 
 

• Data can be transformed by convenient algebraic statements. 
 

• Leads and lags are specified in a natural way. 
 

• There are few restrictions on the order of the operations in a run. 
 

• The output from one statistical procedure can easily be used as the 
input to another. 
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All standard econometric techniques are available in an accurate and efficient 
form:  ordinary least squares, two-stage least squares (instrumental variables), 
limited information maximum likelihood (LIML), polynomial and Shiller 
distributed lags, autoregressive correction, and weighted least squares. 
 
Advanced techniques are available, including nonlinear least squares, 
estimation of GARCH models, Box-Jenkins estimation, multivariate 
regression, three stage least squares, GMM, full information maximum 
likelihood, estimation with qualitative dependent variables, Kalman filter 
estimation, programmable maximum likelihood, and solution of linear and 
nonlinear models. 
 
A full set of matrix operations and the analytic differentiation procedures 
makes it possible for you to program your own estimators easily. 
 
Panel and cross-section data sets can be handled by TSP as easily as time 
series. (Some users have gone as far as 1 million observations or more.) 
 
TSP is a large software system and econometric language with many features, 
and it is not possible or desirable to learn them all at once. This manual is 
intended to provide an introduction to TSP and its most commonly used 
features. It does not describe all of the procedures, nor indicate the full power 
of the program as a language. For detailed information on each TSP command 
and complete references to the econometric and statistical literature, consult 
the TSP Reference Manual, available where you obtained this manual or from 
the address at the front of this manual. For more complex examples and 
solutions for special problems, see the TSP examples page on the TSP 
International web site (http://www.tspintl.com). This web site also documents 
the very latest features of the programs, as well as any known bugs and work 
arounds. 
 
You may find it helpful to know a little about how this guide is organized. The 
guide is divided into 4 major sections plus appendices: 
 

Section I: Chapters 1 - 4  

 
Section I covers the basics of TSP. Chapter 2 proceeds on the assumption that 
you are a complete TSP novice. We introduce some of the most basic ideas of 
TSP and show you the input and the output for a simple but complete TSP job. 
Chapter 3 covers the fundamental concepts of TSP in a more thorough way 
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and concludes with a more elaborate example. This example is also included 

on the installation CD, under the name illus.tsp. 
 
If you are using this program on a personal computer, there are two different 
ways to work: with a batch input file that you edit before running the program, 
or in an interactive mode. Chapter 4 introduces the basics of working in 
interactive mode.  
 
Beginning with TSP Version 4.5, it is also possible to use TSP within 
Givewin, a Windows-interface utility that provides full graphics support for 
TSP (including editing and printing) as well as a data and program editing 
facility.1 Givewin allows both interactive and batch use of TSP. You can read 
about using Givewin with TSP in Appendix C.2 
 

Section II: Chapters 5 - 6 

 
Section II, entitled Linear Estimation, describes the most commonly used 
features of the program, such as linear regression models, and printing and 
plotting the data. Methods discussed include ordinary least squares, two stage 
least squares (instrumental variables), and obtaining simple statistics on your 
variables. 
 

Section III: Chapters 7 – 10 

 
In Section III, we present the powerful and extensive range of tools in TSP for 
nonlinear estimation. Methods covered include nonlinear single and multi-
equation least squares, general maximum likelihood, GMM, and qualitative 
dependent variable models (Probit, Multinomial Logit, Tobit, and sample 
selection). TSP’s nonlinear estimation methods are generally iterative and 
make use of program-generated analytic gradients of the objective function, 
which are more accurate and faster than numeric gradients. Section III also 
discusses hypothesis testing and TSP’s flexible equation manipulation system. 
 

                                                      
1 Givewin is authored by Jurgen Doornik and David Hendry and distributed by Timberlake 

Consulting (http://www.timberlake.co.uk). It is distributed with TSP at an additional charge. 
Other econometrics programs than can be used within the Givewin environment include 
PCGive, PCFIML, STAMP, and the Ox language. See the Givewin website at 
http://www.nuff.ox.ac.uk/Users/Doornik/ for further information on these packages. 
2
 Prior to TSP version 4.5, TSP through the Looking Glass (TLG), provided an interface 

similar to the Givewin interface with all the standard Windows file handling and editing 
features. Although this interface is still available, Givewin is preferred because of its better 
graphics support. 
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Section IV: Chapters 11 – 16 

 
Section IV discusses a series of more specialized and advanced procedures. 
These include Box-Jenkins (ARIMA) procedures, GARCH estimation, the 
Kalman filter, VAR estimation, cointegration testing, forecasting and model 
simulation, matrix computations and controlling the order of execution of your 
program. This section also treats the storage, reading, and writing of large 
amounts of data.  
 

Section V: Appendices 

 
The first few appendices give the basic syntax rules of TSP, and a list of new 
features in Version 5.0. These are followed by specific instructions for using 
TSP on various platforms, such as DOS/Window PCs, Apple Macintosh, and 
unix. 
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2. GETTING STARTED 

2.1 Tools you will need to use TSP 

The hardware you will need to use TSP depends on whether you want to work 
on your own personal computer or on a shared larger computer. One advantage 
of TSP is that since essentially the same program runs on both types of 
computers, you can develop your program on a smaller, cheaper personal 
computer, and then move to a larger computer to take advantage of its greater 

speed and data storage. TSP input files (.tsp files) are text files that are easily 
uploaded (transferred to another computer) over a network connection.3   
 
In addition to TSP, you will need one other piece of software to work 
efficiently with the program: a text editor for preparing input and reading 
output. If you run TSP under Windows, you can use Givewin to edit and run 
your batch files, and examine the results.4 Contact your TSP supplier or TSP 
International if you wish to order this program and failed to do so in your 
original TSP order.  
 
In this chapter, we assume that you know which computer you want to use and 
have chosen the appropriate version of TSP for that computer. First we discuss 
how to use the program on personal and networked computers. Then we give a 
simple introductory example of a TSP program to help you get started.  

2.1.1 On a personal computer  

TSP runs on most personal computers that run Windows, DOS, Linux or Mac 
OS. It also runs on some other unix systems.  
 
You will probably find it convenient at first to work in interactive mode, as 
described in Chapter 4. Interactive mode is good for trying things out, and for 
quick one-time computations. Later, if you find yourself repeatedly typing the 
same commands, you can use a separate text editor (such as Givewin, the DOS 
EDIT command, Wordpad, or a word processing program) to edit your 
commands and save them in a text file. If you use a word-processor to prepare 

                                                      
3
 Consult your local system consultant for information on how to upload if you are unfamiliar 

with how to do it. Usually ftp is the method to use. 
4
 Versions of TSP prior to Version 5.0 offered another Windows interface as well, TSP through 

the Looking Glass (TLG). The Givewin interface is preferred due to its greater support for 
graphics. 
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TSP programs, be sure to save the file as a DOS text or ASCII file. You can 
submit your commands (program) to TSP as an INPUT file to be executed. In 
Givewin, this is done simply by clicking on the “run” icon.5 Setting up a 
session with an INPUT file and then using interactive mode to try new ideas is 
often the most efficient way to work. 

2.1.2 On a shared or network computer  

We assume that you or someone else has successfully installed TSP. Separate 
documents available from TSP International provide instructions for 
installation. The usual shared or networked installation is either a unix system 
(see Appendix E), or a networked Windows installation (see Appendix C). 

2.2 A little vocabulary 

Very little knowledge of computers is required to use TSP, but you will need 
to know the following computer terms to understand this manual: 
 

Memory. A computer has millions of characters of high-speed memory. As 
your TSP job runs, all your data are in your computer's memory so that they 
can be reached quickly. At the conclusion of the run, the computer forgets 
everything in memory. 
 

Disk. To save information between runs, the computer has space to store 
millions of characters on magnetic disks. The time required to find something 
on disk is several orders of magnitude longer than the time for memory, so 
anything that will be used intensively is moved from disk to memory at the 
beginning of a run. 
 

File. Information on disk is stored in "files". TSP uses input files containing 

commands and data (.tsp) , plain data files for use by different input files 

(usually .txt, .dat or .raw), and output files containing your results (.out). As 

indicated, normally TSP input files have the extension tsp and TSP output files 

have the extension out. Data files may have any extension. TSP databanks 

have the extension .tlb. Spreadsheet data files use .xls and .wks (and some 
variations of those extensions). 
 
Some basic TSP concepts that you will need to know are: 
 

Series. A series is a set of observations on a variable, usually evenly spaced 

                                                      
5
 This icon is a tiny running man, shown on the main Givewin toolbar. 
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over time. Annual observations on GNP are an example we will use 
frequently. Monthly sales of a firm are another example. Cross-sectional, 
survey, and panel data are also referred to as series. 
 

Command (or Statement). To communicate your wishes to TSP, you use 
commands. A command has a short, easy to remember name such as PRINT or 
OLSQ, followed in most cases by a list of series.  
 

Program. You assemble a group of commands into a program, and then ask 
TSP to execute the program all at once. A program can consist of just a few 
commands, each to be executed once, or a large number of commands and a 
sophisticated structure for repeating some of them. 
 

Input file. The input file contains your TSP program and the data required to 
run it, or instructions as to where to find the data.  
 

Output file. TSP creates an output file as it executes your program. The file 
contains messages describing what TSP thinks are errors in your program or 
data, memos to you about what TSP has done in the course of executing your 
program, and your regression and other substantive results. When your 
computer has finished the TSP run, you should examine the output file with 
your text editor. If you are using Givewin, this is easily done because the 
output window appears on the screen as the program runs. 

2.3 A simple regression example 

In the rest of this chapter, we present a simple example of running a regression 
in TSP. The function of the commands are described briefly to give you a feel 
for using TSP. Using this very simple TSP program as an example, you should 
be able to set up a regression run of your own. The output for the program is 

shown in Example 2.1. To learn more about the basics of TSP, continue on to 
Chapter 3.  
 
In the example run, we read two series of annual time series data (a sales 
variable and Gross National Product (GNP) for 1976 to 1985), take their 
natural logarithms, compute their means and standard deviations, and run a 
simple linear regression of the log of sales on the log of GNP. Here is the 
example: 
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OPTIONS CRT;   ? simple example 
FREQ A;  SMPL 76,85; 
LOAD SALES,GNP; 
11.7 1706 
13.7 1901 
11.4 2151 
12.3 2391 
19.4 2608 
20.4 2956 
18.2 3051 
25.3 3261 
24.3 3639 
28.3 3843 
LSALES = LOG(SALES);  LGNP = LOG(GNP); 
MSD LSALES,LGNP;   OLSQ LSALES C,LGNP; 
 
Note that commands finish with a semicolon (;), which allows there to be more 
than one command per line or continuation of a command across several lines. 
If you are using TSP interactively, the semicolon at the end of each command 
is not required, and the \ key is used to continue a long command to the next 
line: 
 

LOAD  LABOR LABOR2 CAPITAL CAPITAL2 MATERIAL \ 
MATER2    
 
If you are using TSP in batch mode, the semicolon at the end of each 

command is required, and the \ key cannot be used: 
 

LOAD  LABOR LABOR2 CAPITAL CAPITAL2 MATERIAL 
MATER2 ;   
 
The function of each command in the simple TSP program above is as follows: 
 

OPTIONS CRT;     Keeps the output file width< 80 columns 

? simple example        A comment that is ignored by TSP 

FREQ A; Specifies annual frequency for the data 

SMPL 76,85;               Sets the range of data - from 1976 to 1985  

LOAD SALES,GNP; Reads two series using the nos. that follow 

LSALES = LOG(SALES); Creates a new variable = log SALES 

MSD LSALES,LGNP;    Computes means & other statistics 

OLSQ LSALES C,LGNP;  Regresses LSALES on LGNP and a constant  



 2. Getting Started 9 

 

 

                                 TSP Version 5.0

                          ( 1/17/05) TSP/GiveWin  4MB

                     Copyright (C) 2005 TSP International

                              ALL RIGHTS RESERVED

                               02/12/05 11:55AM

               In case of questions or problems, see your local TSP 

               consultant or send a description of the problem and the 

               associated TSP output to:

                               TSP International

                                P.O. Box 61015

                              Palo Alto, CA 94306

                                      USA

         PROGRAM

COMMAND  ***************************************************************

1  OPTIONS CRT;  ? simple example

2  FREQ A; SMPL 76,85;

4  LOAD SALES,GNP;

4  11.7 1706

4  13.7 1901

4  11.4 2151

4  12.3 2391

4  19.4 2608

4  20.4 2956

4  18.2 3051

4  25.3 3261

4  24.3 3639

4  28.3 3843

4  LSALES = LOG(SALES); LGNP = LOG(GNP);

7  MSD LSALES,LGNP;

8  OLSQ LSALES C,LGNP;

         EXECUTION

*******************************************************************************

Current sample:  1976 to 1985

                             Univariate statistics

                             =====================

Number of Observations: 10

                  Mean       Std Dev       Minimum       Maximum 

LSALES         2.86666       0.33996       2.43361       3.34286 

LGNP           7.88696       0.27326       7.44191       8.25401 

                   Sum      Variance      Skewness      Kurtosis 

LSALES        28.66657       0.11558     -0.053501      -1.67063 

LGNP          78.86961      0.074670      -0.30857      -1.04519 

                                     Equation   1

                                     ============

                      Method of estimation = Ordinary Least Squares

Dependent variable: LSALES

Current sample:  1976 to 1985

Number of observations:  10

       Mean of dep. var. = 2.86666      LM het. test = 1.86919 [.172]

  Std. dev. of dep. var. = .339965     Durbin-Watson = 2.13492 [.424,.744]

Sum of squared residuals = .171653  Jarque-Bera test = 1.15536 [.561]

   Variance of residuals = .021457   Ramsey's RESET2 = 1.38103 [.278]

Std. error of regression = .146481   F (zero slopes) = 40.4785 [.000]

               R-squared = .834978    Schwarz B.I.C. = -3.83236

      Adjusted R-squared = .814351    Log likelihood = 6.13495

           Estimated    Standard

Variable  Coefficient     Error       t-statistic   P-value

C         -6.09956      1.41004       -4.32581      [.003]

LGNP      1.13684       .178685       6.36227       [.000]

*******************************************************************************

END OF OUTPUT.

 
 

Figure 2.1 Simple TSP Run 
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3. TSP FUNDAMENTALS 
 
This chapter introduces some basic TSP concepts and describes commands for 
setting up the sample of observations, reading data, making transformations, 
and setting options. It concludes with a fairly large example illustrating these 
concepts and some estimation methods, ranging from OLS to FIML. 

3.1 Describing the sample of observations: FREQ, SMPL 

Before beginning a TSP program, you need to specify the frequency of your 
data and the number of observations with the FREQ and SMPL commands. 
The FREQ command tells TSP how often a year each series is observed. For 
example, 
  

FREQ A ; 
  
specifies annual data, observed once a year. Other frequencies TSP 
understands are 
  

Q Quarterly (four times per year) 

M Monthly (12 times per year) 

W Weekly (52 times per year) 

num Any number less than 32,768 (example: 26 times per year) 

N Undated (usually cross-sectional or survey data) 
  

If no frequency is specified, TSP assumes the frequency N (none).  
 
A special FREQ statement is available for panel data (time series-cross section 
data). For details, see Chapter 15, on using panel data in TSP. 
 

The SMPL command defines the set of observations to be used. For example, 
in the simple run in the last chapter, 
 

SMPL 76,85; 
 
informed TSP that observations dated from 1976 through 1985 were to be 
used. You only need to use a SMPL command when you want to change the 
observations you are using. There must be a sample in effect before the first 
operation on a series, but if you read data from a file without specifying a 
SMPL, the sample is defined for you, based on the contents of the file. 
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Formats for dates (the SMPL endpoints) are: 
  

Annual: the full year or the last digits of the year (for the twentieth and 
twenty-first centuries). Examples: 2005, 1981, 1895, 82 (1982), 101 (2001). 
200 would normally denote the year 2100 (using the default OPTIONS 
BASEYEAR=1900), while 201 would be just the year 201.6 Negative years 
are valid; they are "B.C.". 

 

Quarterly, Monthly, Weekly, and numeric: the full year or the last two 
digits of the year, colon, and the quarter, month, week, or period number. 
Examples: 1972:1, 65:4, 80:11. Obviously, quarters beyond 4 and months 
beyond 12 are invalid, as are negative or absent values. 
  

No Frequency: use the observation numbers. Examples: 1, 2000.  
 
More than one pair of dates may appear in a SMPL command. For example,  
 

SMPL 59,70 72,83; 
 
omits the year 1971. To omit several scattered observations, use SELECT or 
SMPLIF (see Section 3.3). 
 
The dates in a SMPL statement must be in ascending order -- SMPL 70,59; 
would be invalid. 

3.2 Reading data into TSP: READ 

There are several ways to input your data into TSP. You can include it with the 
program or put it in a separate file. The separate file can be in a variety of 
formats, including spreadsheet and MicroTSP, Eviews, or stata. This chapter 
describes the simplest and easiest methods, reading data within the TSP 
program and reading data from an external file. See Chapter 16 for more 
complex examples. 

3.2.1 Reading data in free format within the 
program 

If you have only a few short series, you will probably find it convenient to read 
the data in free format within the program. To read data in free format, use the 

                                                      
6 Therefore, TSP is year-2000 compliant, and can handle dates either before or after 2000.  
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READ command followed by the names of one or more series (names can be 
up to 64 characters long). The data follows immediately in free format, 
observation by observation, with one column per series. The numbers are 
separated from each other by blanks or commas. Here is the example from 
Chapter 2: 
 

FREQ A; SMPL 76,85; 
READ SALES,GNP; 
11.7 1706 
13.7 1901 
11.4 2151 
12.3 2391 
19.4 2608 
20.4 2956 
18.2 3051 
25.3 3261 
24.3 3639 
28.3 3843 
 
The data for SALES and GNP could also be read separately (by rows) if it was 
more convenient. Semicolons after the data are optional: 
 

FREQ A; SMPL 76,85; 
LOAD SALES; 
11.7 13.7 11.4 12.3 19.4 20.4 18.2 25.3 24.3 28.3 ; 
LOAD GNP; 
1706 1901 2151 2391 2608 2956 3051 3261 3639 3843 ; 
 
If the number of data points does not correspond to the current sample, an 
error message will note the discrepancy. Missing values can be entered as a 
period (.), or the SMPL can be set to read in only those observations that are 
available. For example, if you had data on imports (IMPT) only for 1977 and 
later in the above example, use 
 

SMPL 77,85; 
LOAD IMPT; 
35 42 67 85 90 92 97 120 126 ; 
 
If you have a large volume of data, the commands and data can be moved to 
the bottom of the program, after an END; statement which terminates the data 
analysis. A NOPRINT; command after the END; statement will suppress 
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printing of the commands and data in the output file. This is recommended 
after an initial run has checked for any error messages in loading the data. See 
Section 3.6 for more details. 
 
Matrices may also be loaded -- see READ in the Reference Manual or Section 
12.2.1 in this manual for more information on loading and using matrices. The 
matrix type and dimensions are required. 

3.2.2 Reading data from an external file 

For large datasets, you will probably read the data from a separate file created 
with a text editor, written by another program, or copied from disk or the web. 
To input the file, use the READ command with the FILE='filename' option. 
(Note: TSP Options are always enclosed in parentheses following the 
command name.) The following example would read a file containing just the 
data from the example in Chapter 2: 
 

READ(FILE='SALESGNP.DAT') SALES,GNP; 
 
The file SALESGNP.DAT could look like the following (free format allows 
more than one observation per line, or one observation split across more than 
one line): 
 

11.7 1706 
13.7 1901 
11.4 
2151 
12.3 2391 19.4 2608 20.4 2956 
18.2 3051 25.3 3261 24.3 3639 28.3 3843 
 
The next example would read the Excel file, SML.XLS. For information on 
reading spreadsheet files, see Chapter 16. 
 

READ(FILE='SML.XLS') ;  

3.3 Selection of observation subsets: SELECT, SMPLIF 

In addition to the SMPL command, the sample can also be selected by rules 
based on the values of series using SELECT and SMPLIF commands. The 
difference between SELECT and SMPLIF is that successive SMPLIFs nest 
(define smaller and smaller subsets of observations) while successive SELECT 
statements do not. For example, suppose you want to run a regression on only 
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the positive values of the variable X, but these values are scattered throughout 
a dataset with 200 observations. It would be tedious to specify all the gaps for 
omitted observations in a SMPL statement. Instead, use SELECT: 
 

SMPL 1,200; 
SELECT X>0; 
OLSQ Y C,X; 
 
SELECT always refers to the most recent SMPL statement to define the 
overall sample of observations -- any intervening SELECT or SMPLIF 
statements are ignored. As a result, successive SELECT statements do not 
"nest" within each other. Nesting is provided with the SMPLIF command, 
which includes only those observations from the current sample which make 
the selection criteria true. For example, 
 

SMPL 1 200 ; 
SMPLIF X>0 ; 
OLSQ Y C X ; 
SMPLIF X<=10 ; 
OLSQ Y C X ; 
 
is equivalent to 
 

SMPL 1 200 ; 
SELECT X>0 ; 
OLSQ Y C X ; 
SELECT X>0 & X<=10 ; 
OLSQ Y C X ; 
 
Note that the samples defined by SELECT and SMPLIF remain in effect until 
the next SMPL, SELECT, or SMPLIF statement. The "full sample" in these 
examples could be restored in one of two ways:  
 

SMPL 1,200;   or   SELECT 1;   
 
(because the value 1 makes the selection criterion true for all observations in 
the previous SMPL statement).  
 
In either a SMPLIF or a SELECT statement, the selection criterion can be any 
expression like those used in GENR (see Section 3.5). When the expression is 
evaluated for each observation, values that are positive will be treated as true 
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and values that are zero or negative as false.  

3.4 Missing Values 

TSP supports missing values in data series. In free format input files you 
should indicate missing data by a period (.); in fixed format files you will have 
to use another value and then recode that value to the missing value code (see 
Section 3.5.1 for an example). TSP names the missing value code @MISS so 
that you can refer to it in your program. 
 
The WRITE statement also uses a period (.) to indicate missing values when 
printing or writing output files. Procedures that transform data such as GENR 
automatically propagate missing values for most operation when they are 
present (missing values are also generated if there are arithmetic errors in the 
transformations).  
 
Many statistical procedures (MSD, OLSQ, INST, AR1) automatically delete 
observations with missing values before executing. Others (the time series 
procedures such as ARCH) print an error message if you attempt estimation 
with missing data. A complete list of the procedures that cannot estimate gaps 
in the data is given in the Reference Manual. You can use SELECT with the 
MISS() function to skip missing observations: 
 

SELECT .NOT. MISS(SALES) .AND. .NOT. MISS(GNP) ; 
 
will choose only observations for which SALES and GNP are not missing for 
the estimation procedure.  

3.5 Creating new series with transformations: GENR 

The GENR command creates a new series based on a formula you supply. For 
example, 
  

GENR Z=LOG(REV); 
  
forms a new series called Z, the natural logarithm of REV. Series Z is defined 
only for those observations in the current sample; any other observations of Z 
that are used later will have a missing value code as their value. A missing 
value code is also given to any observation that has an arithmetic error when 
computed. For example, if one of the observations of REV were zero, Z would 
be missing for that observation since the log of zero is undefined. If Z is used 
later in another GENR, the missing value will propagate, that is, the new series 
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will also have a missing value for that observation. 
  
You can use parentheses without limit to indicate the order in which the 
elements of the formula should be evaluated. The word GENR is not required; 
you can omit it and just give the equation you want computed: 
 

Z=LOG(REV) ; 
 
A complete set of rules and functions (like CNORM(), GAMMA(), etc.) for 
composing GENR formulas appears in Appendix A. Some common operations 
are: 
 

+ addition & and 

- subtraction | or 

* multiplication ~ not 

/ division LOG( ) natural log 

** exponentiation EXP( ) e to the power 

= equal SQRT( ) square root 

~= not equal LOG10( ) base 10 logarithm 

> greater than ABS( ) absolute value 

< less than MISS( ) missing value 

>= greater than or equal <= less than or equal 

 
Typical examples: 
 

SUM = A+B; 
AVEQ = Q1*ALPHA + Q2*(1-ALPHA); 
 
If you are unsure about the effect of a GENR command and you don't 
understand the precedence rules in Appendix A, use the PRINT, PLOT, 
GRAPH, HIST, or MSD commands to check your transformations after 
performing them. 

3.5.1 Dummy variables and recoding 

The logical operators such as = ^= > < >= <= & | ^ yield true/false (one/zero) 
values. This is useful for creating dummy variables and recoding categorical 
variables. The following example creates a dummy variable that is 1 when X is 
positive, and zero otherwise:  
 

XPOS = X>0; 



18 Basics  

 

 

 
This is much faster than the alternative with SELECT: 
 

XPOS = 0; SELECT X>0; XPOS = 1; SELECT 1; 
 
See also the DUMMY command (Section 5.6), which is useful for creating 
large sets of dummy variables and seasonal dummies. 
 
To recode a variable, include logical expressions (0/1) that are multiplied by 
the value for each case. If the 0/1 expressions are mutually exclusive, only one 
value will be selected (for the case that is true). For example, say EDUC has 3 
categories, and we want to assign them the values 9, 12 and 16 respectively: 
 

SCHOOL = (EDUC=1)*9 + (EDUC=2)*12 + (EDUC=3)*16; 
 
To recode all negative values to zero, but leave positive values unchanged: 
 

X = (X<0)*0 + (X>=0)*X;   
or   

X = (X>0)*X;  or  X = POS(X) ; 
 
Operations with missing values are a little trickier, because most operations on 
missing values yield a missing value. For example, to recode missing to -99: 
 

SELECT MISS(X); X=-99; SELECT 1; 
 
To recode missing values to zero, GENR can be used directly because 0*X is 
zero, even when X is missing: 
 

X = MISS(X)*0 + (.NOT.MISS(X))*X;   
or   

X = (.NOT.MISS(X))*X; 
 
The operations that can handle missing values without generating a missing 
answer are the following: 
 

Expression Evaluates to 

MISS(@MISS) True 

0*@MISS 0 

true .OR. @MISS True 

false .AND. @MISS False 
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To recode zeros to missing: 
 

SELECT X=0; X=@MISS; SELECT 1; 
 
In some computer packages, IF/THEN/ELSE statements are used for these 
types of transformations, but TSP uses IF/THEN/ELSE for program control. 
Be careful not to use IF/THEN/ELSE for recoding, since they operate on 
scalars and not on series.  

3.5.2 Lags and leads 

A lagged series is indicated by putting the lag in parentheses with a minus 
sign. For example, 
  

FREQ M; 
SMPL 72:1,85:12; 
DA = AUTOS - AUTOS(-12) ; 
  
computes the 12-month change in the monthly series AUTOS. Note that 
AUTOS must be defined from 1971 through 1985 -- otherwise missing values 
will be stored in DA. Leads (future values) are defined similarly to lags (past 
values), except the number in parentheses is positive, e.g. AUTOS(24) is a 
two-year lead. Lags and leads with series can be used in any command where a 
plain series may appear. For example, 
 

OLSQ Y C,Y(-1);            ? regression of Y on Y lagged once 
 
When there is a SMPL gap, lagged values of series still contain the true lagged 
observations. For example, 
 

SMPL 59,70 72,83; 
Y=X(-1) ; 
  
puts the value of X for the 1971 observation (not the 1970 observation) into 
the observation of Y for 1972.  
 
Here are some more GENR examples with lags and leads: 
 

DP = LOG(P/P(-1)) ; 
  
computes the rate of change of P in logs. 
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MOVA = (X(-2) + 2*X(-1) + 3*X + 2*X(1) + X(2))/9 ; 
 
computes a moving average of the series X with variable weights, using both 
lags and leads.  
 

Note for Power Users: Entire equations can also be lagged. See Chapter 9 for 
information. 

3.5.3 Dynamic GENR 

If the right-hand side of the GENR equation contains explicit lags (or leads) of 
the left-hand side series, the series will be updated dynamically. Note that the 
series must already be defined in the observation(s) preceding the current 
sample (or following the current sample, in the case of leads). For example, 
 

SMPL 1,10; SUM = X; SMPL 2,10; SUM = SUM(-1) + X; 
 
creates SUM as the accumulated sum of variable X. This feature can also be 
used to create autoregressive disturbance terms, dynamic simulations, capital 
stocks (see also the CAPITL command), and net present values. The dynamic 
GENR is much faster than using a DO loop to create sums. TSP always prints 
a note if a dynamic GENR is computed. However, care should be taken to 
avoid an unintentional dynamic GENR when redefining a series.  
 
For example, the correct commands 
 

SMPL 70,85;  
MNEW = M(-1); M = MNEW;   
or   
GENR(STATIC) M = M(-1); 
 

replace M with its lag, while the innocent-looking commands 
 

SMPL 70,85; M = M(-1); 
 
put the 1969 value of M into all observations 1970 through 1985 (probably not 
what the user intended). 
 
Dynamic GENRs can be computed backwards as well as forwards. For 
example, a net present value can be computed by using a lead on the right 
hand side: 
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SMPL 95,2020; NPV = 0; 
SMPL 95,2019; NPV = {NPV(+1) + CASH(+1)}/[1+R(+1)];  
 
Note that the + sign is not required for leads. 
 
When NPV is computed, a message warns that the dynamic recursion was 
done in reverse (starting in the year 2019). 

3.6 Useful statements at the beginning of a TSP job 

The OPTIONS command is handy for customizing various TSP options. 
Options that you use in most of your programs can be put in a LOGIN.TSP file 
so they will load automatically (see Chapter 17). For example, if you have a 
large dataset or model that requires more than the default 4MB of memory, use 
a command such as:  
 

OPTIONS MEMORY=12; 
 
at the top of every run. 
 
Plots of actual and fitted values and residuals are available for many statistical 
procedures in TSP (ACTFIT, OLSQ, 2SLS, LIML, AR1, LSQ, and FIML). 
Normally they are not printed. The PLOTS option tells TSP to produce plots 
for subsequent procedures, while NOPLOT stops the plots. Example: 
 

OPTIONS PLOTS; 
? this is a common customization for regression output  
REGOPT(PVPRINT,STARS) T;  
OLSQ Y,C,X; 
OPTIONS NOPLOT; 
 
The HARDCOPY option specifies whether a header is to be printed at the top 
of each page in the output file. The header contains space for a user name and 
a 60-character title, which may be varied throughout the run. The default is not 
to print a header or to page, since it is assumed that these will be added by the 
program you use to print or display the output, if necessary. Example: 
 

OPTIONS HARDCOPY ; 
NAME KMARX 'FINAL RESULTS FOR DAS KAPITAL' ; 
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The title can be changed during the job by the TITLE command containing the 
new title. Example: 
  

TITLE 'Results for Transformations' ; 
 
TITLE works even without the HARDCOPY option -- the title is just printed 
directly to the output file, centered and doubly underlined.  
 
More than one option may be specified on an OPTIONS statement. For 
example:  
 

OPTIONS MEMORY=40, PLOTS; 
   
The ? character begins a comment -- TSP will ignore everything that follows it 
until the end of the line. This is useful for reminding yourself what the 
program is doing at the top and at any critical sections. For example: 
 

OPTIONS PLOTS; ? This program tests models with dataset 4. 

3.7 The order of statements in a TSP job 

Although the ordering of a TSP program is very flexible, statements in a job 
are generally executed in the order in which they appear. Thus, information 
about inputs must be provided before they can be used. For example, GENR 
statements for the variables in a particular regression must appear before the 
OLSQ for that regression. Most users tend to group GENR statements in a job 
together, but this is not required. A TSP job often has two main parts: a (data 
analysis) program and a data loading section, separated by an END; statement. 
In processing the job, TSP starts by reading the program and checking some 
aspects of it, such as unbalanced parentheses in equations or unterminated DO 
loops. When it reaches an END; statement it stops reading and begins 
execution. At this point it has not yet read the data section. When it executes a 
LOAD; statement in the program, it reads and checks the data until it finds 
another END; statement or an end of file that marks the end of the data. Then 
it continues executing the program. 
  
Placing the data in a separate load section is not required. Data can be included 
with a READ statement anywhere in the program. However, using a data 
section can be more efficient in terms of memory usage. It is also very useful 
for suppressing the automatic listing of the data and commands in the output 
file (with the NOPRINT; command).  
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3.8 The next step 

How you proceed from this point (if you made it this far) depends on your 
background. If this is your first statistical package, you should read the rest of 
Chapter 3 and Chapter 4 carefully and then start on your own projects. If you 
are familiar with statistical packages, you will probably plunge into running 
TSP without much study, and consult the manual whenever you reach a dead 
end. The Reference Manual is designed to make it easy to look up a command 
and find out about its options, features, method used and some references for 
further reading. We recommend that you browse through the manual 
occasionally; you may be unaware of some of the things TSP can do. 

3.9 An extended example 

The example introduced here and used throughout the manual is built around a 
simple illustrative macro model of the U.S. economy. The illustrative model 
contains equations for five endogenous variables: 
 
  CONS: Consumption in real terms 
  I:   Investment in real terms 
  GNP:  Real GNP 
  R:  Interest rate 
  P:   Price level--implicit GNP deflator 
  
There are four behavioral equations and one identity: 
  

1. A consumption function where consumption depends only on GNP. 
2. An investment function where investment depends on its own lagged 

value, GNP, and the interest rate. 
3. A money demand function relating the interest rate to the velocity of 

money. 
4. A Phillips curve making the price level rate of change depend on its 

own lagged value, GNP, and a time trend. 
5. The GNP identity, stating that GNP equals the sum of consumption, 

investment, and an exogenous variable called G that measures 
government expenditures and net exports.  

 
The other exogenous variables of the model are the money supply M, and the 
time trend TIME. 
  
The first step in the development of the model is to assemble the data. The data 
section for the illustrative model is typical: 
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FREQ A; SMPL 1946,1975; 
READ GNP CONS I ; 
475.7 301.4 71 
... etc. ... 
1186.4 766.6 138.9; 
READ EXPORTS ; 
11.6 16.6 8.5 8.8 4.0 7.4 4.9 2 4.5 4.7 7.3 8.9 3.5 .9 
... etc. ... 
END ; 
  
Now for some preliminary transformations of the data: first we want to create a 
trend variable that is one in the first year and increments by one in each 
succeeding year.  
  

TREND TIME ; 
  
creates a series called TIME. Next we perform some GENRs: 
  

 P = P/100 ; LP = LOG(P) ; 
  
The price index with 1972 = 100 is converted to one with 1972 = 1.0 by 
dividing by 100. The second GENR statement creates a series LP as the natural 
log of the price level. 
  

G = GOVEXP+EXPORTS ; 
  
This creates the variable G out of the standard variables GOVEXP and 
EXPORTS from the National Income Accounts. 
  

 R = RS ; 
  
At the time the TSP input file was prepared, it was not clear whether a 
short-term or a long-term interest rate was appropriate. Both were included in 
the data (RS and RL). In later commands, R is used to stand for the interest 
rate, whether short-term or long-term. This statement sets R equal to RS. A 
complete set of results with R equal to RL could be obtained just by changing 
this statement to GENR R = RL ; 

  
PRINT GNP,CONS,I,RS,RL,P ; 
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This statement simply prints these series in a table. It is a good idea to check 
the transformed data to see that the manipulations were correctly specified. 
  

SMPL 1948,1975; 
MNEW = (M+M(-1))/2 ; M = MNEW; 
  
Now we change the sample to begin in 1948 rather than 1946 because we are 
going to use some lagged data in the computations. When we define the lagged 
price change (DP1) below, we will need observations lagged twice, so we start 
in 1948 rather than 1947. In the published data, M is the money stock at the 
end of the year. Money in this model is the average during the year. This is 
approximated by averaging the year-end value and the value at the end of the 
previous year. 
  

DP = LOG(P/P(-1)) ; 
DP1 = DP(-1) ; 
  
DP1 is the lagged rate of inflation. 
  

SMPL 1949,1975 ; DM = LOG(M/M(-1)) ; 
  
DM is the rate of change of the money stock. Multiplying DM by 100 would 
give the percent rate of change. Because the first observation of the money 
stock was zero, we need to start in 1949 to obtain good values of DM -- 
remember that M was redefined as a two year moving average earlier. 
  

LGNPCUR = LOG(GNP*P) ; 
  
LGNPCUR is the log of GNP in current prices. 
 
With the data prepared, we can begin estimation of the equations of the 
illustrative model by ordinary least squares and two-stage least squares. For the 
consumption equation, the TSP command for regression is the following: 
 

OLSQ CONS C,GNP ; 
 
OLSQ computes the simple regression of CONS on GNP with an intercept. 
Note how the intercept is specified: C is a built-in series in TSP consisting 
entirely of 1's. C is used mainly to specify a constant or intercept in 
regressions, but may be used anywhere that a series is valid in any TSP 
statement. If C does not appear in the list of variables for a regression, the 
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regression will be estimated without an intercept; that is, the regression line 
will be forced through the origin. In this respect, TSP is different from some 
other regression programs.  
 
The commands 
 

FRML MPC GNP -1; 
ANALYZ MPC; 
 
define a hypothesis to be tested (that the coefficient of GNP is equal to one) 
and then test it with a t-test performed by ANALYZ 
 
To compute two-stage least squares estimates for the simple consumption 
function, use: 
 

LIST IVS C,G,LM,TIME; 
2SLS(INST=IVS) CONS C,GNP; 
 
The LIST command defines a TSP variable list (in this case the list of 
instruments for the model, which will be used repeatedly in 2SLS and LSQ). 
The INST= option in 2SLS specifies the list of instrumental variables for this 
equation -- note that the constant, C, must be specified as an instrument 
explicitly. Any exogenous variable that appears in the equation must also be in 
the list of instruments; in this case, C is the only such exogenous variable. 
 
We also estimate this equation with LIML (Limited Information Maximum 
Likelihood), which is specified in the same way as 2SLS: 
 

LIML(INST=IVS) CONS C,GNP; 
 
Estimation of the investment equation is next. We hypothesize that investment 
depends on the demand for capital services, which is the ratio of real GNP to 
the rental price of capital. The rental price of capital, in turn, is the sum of the 
rate of depreciation and the interest rate. The following statements form the 
appropriate variables and carry out the estimation. 
  

CONST DELTA 15 ; 
  
defines a constant, DELTA, interpreted as the rate of depreciation and 
assigned the value 15 (% per year). 
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GENR GNPN = GNP/(DELTA+R) ; 
  
creates the capital demand variable, GNPN. Note that constants may appear in 
GENR statements (see also Section 6.1). 
  

OLSQ I I(-1),GNPN ; 
  
estimates the investment equation. It is followed by a nonlinear least squares 
estimation of the same equation as an illustrative example. However, since the 
equation in this version is really linear, there will be no difference in the 
estimates. If DELTA has been specified as a parameter rather than a constant, 
the estimation would be truly nonlinear. 
 
The next OLSQ and 2SLS commands estimate a constrained version of the 
interest-rate equation where the coefficients of LGNPCUR and LM are 
required to be the same in magnitude but opposite in sign. The constraint is 
imposed by combining them in LVELOC, the log of monetary velocity. 
  

LVELOC = LGNPCUR-LM ; 
OLSQ R C,LVELOC ;  
2SLS(INST=IVS) R C,LVELOC ; 
  
The final OLSQ and 2SLS commands estimate the inflation equation. 
 

OLSQ DP DP1,LGNP,TIME,C ; 
2SLS(INST=IVS) DP DP1,LGNP,TIME,C ; 
 
OLSQ and 2SLS statements can appear in any order, not just in pairs as in this 
example. It is usually more convenient to group the estimation statements for a 
particular equation so that the output from the estimations appears adjacently. 
 
Here is the TSP job for the illustrative model, which includes several 
commands like LSQ, FIML, ANALYZ, and SIML that will be introduced in 
later chapters. We have not included the full data set, but you can find the 
complete program and data on the web site. 
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OPTIONS CRT; 
NAME ILLUS50  
'Sample Run for TSP 5.0: Illustrative Model from Manual' ; 
? 
FREQ A;      ? Annual frequency. 
SMPL 46 75 ;  ? Sample is 1946 to 1975. 
LOAD ;      ? Read in data. 
TREND TIME ; 
? 
?  Data Transformations. 
? 
P = P/100 ; LP = LOG(P) ; 
G = GOVEXP+EXPORTS ; 
R = RS ; 
PRINT GNP CONS I RS RL P ; 
SMPL 48,75 ; 
MNEW = (M+M(-1))/2 ; M = MNEW; 
DP = LOG(P/P(-1)) ; DP1 = DP(-1) ; 
SMPL 49,75 ; DM = LOG(M/M(-1)) ; 
PRINT G M DM TIME DP ; 
LGNPCUR = LOG(GNP*P) ; LM = LOG(M) ; 
LVELOC = LGNPCUR-LM ; LGNP = LOG(GNP) ; 
? 
? Data is now generated; Try estimation on single equations. 
? 
SMPL 49,75 ; 
OPTIONS PLOTS ; 
TITLE 'OLSQ - Ordinary Least Squares' ; PAGE ; 
OLSQ CONS C,GNP ; 
?  
? Test the hypothesis that the marginal propensity to consume  
? is one. 
FRML MPC GNP-1 ; 
ANALYZ MPC ; 
? 
? Form a consumption equation for model estimation later. 
FORM(COEFPREF=B) CONSEQ; 
TITLE 'PRINT Example from Users Guide' ; PAGE ; 
PRINT B1 CONSEQ @VCOV @RES; 
? 
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TITLE 'Engle-Granger Test for Cointegration' ; PAGE ; 
SMPL 50,75 ;  
DU = @RES-@RES(-1) ; 
? Regress diff. residuals on trend and lag residual. 
OLSQ(SILENT) DU C TIME @RES(-1) ; SET TSTAT = @T(3); 
? Test with Dickey-Fuller distribution 
CDF(DICKEYF,TREND,DF=@NOB,PRINT) TSTAT ;  ? 
?  Plot the residuals from the consumption equation. 
? 
SMPL 49,75 ; 
GENR CONSEQ CONSFIT ; RES = CONS-CONSFIT ; 
PLOT (MIN=-25,MAX=25,VALUES,HEADER,BAND=STANDARD, 
          INTEGER,BMEAN)RES * ; 
? 
?  Estimation with correction for first order serial correlation. 
? 
AR1 CONS C,GNP ; 
FORCST(PRINT) CONSP ; 
OPTIONS NOPLOT ; 
? 
?  Two stage least squares. 
? 
LIST IVS C G LM TIME ;      ? Define a list of instrumental variables 
? 
TITLE 'INST - Instrumental Variable Estimation' ; PAGE ; 
2SLS(INST=IVS) CONS C,GNP; 
? 
TITLE 'LIML - Limited Information Maximum Likelihood Estimation'  
PAGE ; 
LIML(INST=IVS) CONS C,GNP; 
PAGE; 
? 
?  Linear Estimation of Investment Equation. 
CONST DELTA 15 ; GNPN = GNP/(DELTA+R) ; 
OLSQ I I(-1),GNPN ; 
FORCST(PRINT,DYNAM,DEPVAR = I) IFIT ; 
? 
?  'Nonlinear' Estimation of the same equation by OLS and 2SLS. 
FRML INVEQ I = LAMBDA*I(-1) + ALPHA*GNP/(DELTA+R) ; 
PARAM LAMBDA .05 ALPHA .2 ; 
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LSQ(PRINT) INVEQ ; 
LSQ(INST=IVS) INVEQ ; 
? 
?  Linear Estimation of Interest Rate Equation. 
OLSQ R C,LVELOC ; 
2SLS(INST=IVS) R C,LVELOC ; 
PARAM D F; 
UNMAKE @COEF D F;      ? Starting values for INTRSTEQ below. 
? 
?  Linear Estimation of Price Change Equation. 
OLSQ DP DP1 LGNP TIME C ; 
2SLS(INST=IVS) DP DP1,LGNP,TIME,C ; 
PARAM PSI PHI TREND P0 ;   ? Parameters of price change eqn. 
? Set starting values for PRICEQ below. 
UNMAKE @COEF PSI PHI TREND P0 ;   
? 
?  These are the equations of the simultaneous equations model. 
? 
IDENT GNPID GNP-CONS-I-G ; 
?  The next equation was made by FORM earlier in the run. 
? FRML CONSEQ CONS = B0 + B1*GNP ; 
FRML INTRSTEQ R = D + F*(LOG(GNP)+LP-LM) ; 
FRML PRICEQ LP = LP(-1) + PSI*(LP(-1)-LP(-2)) + PHI*LOG(GNP) 

+ TREND*TIME +P0 ; 
? 
? Estimate by multivariate regression, assuming contemporaneous 
? correlation of the residuals. 
? 
LSQ(STEP = CEAB) CONSEQ INVEQ INTRSTEQ PRICEQ ; 
PRINT @FIT ; 
? 
?  Estimate by nonlinear three stage least squares. 
? 
TITLE '3SLS - Three Stage Least Squares' ; PAGE ; 
3SLS(PRINT,INST=IVS) CONSEQ INVEQ INTRSTEQ PRICEQ ; 
? 
?  Estimate by Full Information Maximum Likelihood. 
? 
FIML(ENDOG=(GNP,CONS,I,R,LP)) GNPID CONSEQ INVEQ 

INTRSTEQ PRICEQ ; 
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? 
?  Test some nonlinear hypotheses about Long run coefficients. 
? 
FRML LR1 ALPHALR = ALPHA/(1.-LAMBDA) ; 
FRML LR2 PHILR = PHI/(1.-PSI) ; 
PAGE; 
ANALYZ LR1 LR2 ; 
PAGE; 
? 
? Simulate the model over the second half of the sample  
? and plot the results. 
? 
SMPL 66 75 ; 
SIML (PRNSIM,PRNDAT,TAG = S,ENDOG = (GNP,CONS,I,R,LP)) 
   CONSEQ INVEQ INTRSTEQ GNPID PRICEQ ; 
PLOT (RESTORE, MAX=1500, MIN=500, LINES=(1000)) GNP G 

GNPS H CONS C CONSS D ; 
PLOTS ; 
ACTFIT R RS ; 
END ; 
? 
? START OF THE DATA SECTION 
? 
NOPRINT;  
SMPL 46 75 ; 
LOAD GNP CONS I ;     ? GNP, CONSUMPTION, 

INVESTMENT 
475.7 301.4 71 
468.3 306.2 70.1 
487.7 312.8 82.3 
... data continues... 
1186.4 766.6 138.9 
; 
LOAD EXPORTS ;        ? EXPORTS 
11.6 16.6 8.5 8.8 4.0 7.4 4.9 2 4.5 4.7 7.3 8.9 3.5 .9 
5.5 6.7 5.8 7.3 10.9 8.2 4.3 3.5 -.4 -1.3 1.4 -.6 -3.3 
7.2 16.6 23.5 ; 
 
LOAD GOVEXP ;       ? GOVERNMENT 

EXPENDITURES 
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91.8 75.4 84.1 96.2 97.7 132.7 159.5 170.0 154.9 150.9 
152.4 160.1 169.3 170.7 172.9 182.8 193.1 197.6 202.7 209.6 
229.3 248.3 259.2 256.7 250.2 249.4 253.1 252.5 254.3 257.4 
 ; 
 
...reads in M, P, RS -- full data set available on the web site... 
 
LOAD RL ;        ? LONG TERM INTEREST RATE. 
2.53 2.61 2.82 2.66 2.62 2.86 2.96 3.2 2.9 
3.06 3.36 3.89 3.79 4.38 4.41 4.35 4.33 4.26 4.4 
4.49 5.13 5.51 6.18 7.03 8.04 7.39 7.21 7.44 8.57 8.83 
 ; 
END ;
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4. INTERACTING WITH TSP 
 
This chapter provides a general overview of TSP's interactive mode. It is a 
sufficient introduction for new users anxious to dive into their first session. 
You will find additional convenience features discussed in Chapter 17, and 
further information about the commands in the Reference Manual. A short 
sample session has been included at the end of the chapter for added clarity 

(Figure 4.1). If you use Windows, you may want to try the visual user 
interface utility Givewin,™ which allows both batch and interactive modes of 
running TSP. 

4.1 Basic operation 

You don’t really need to know much before jumping into your first interactive 
session, but it's useful to have an idea of how to start, stop, and enter 
commands. Also, having an understanding of the operating modes of the 
program may affect how you approach it and will enable you to get the most 
out of it. 

4.1.1 Beginning and ending a session 

The command you use to start running interactive TSP depends on how the 
program was installed on your system; it will probably be "TSP" (on some 
systems, you double-click on a TSP icon). If this doesn't work you will have to 
consult your system manager. Once you have given the command (or double-
click), the following will appear: 
 

Enter batch filename [or press Enter for interactive]: 
 
Two responses are possible: 
 

If you supply a filename here (such as prog2a), TSP will run in batch mode (in 

this case, reading commands from prog2a.tsp and putting output in the file 

prog2a.out). When TSP finishes, it will prompt for a new batch filename (or to 
rerun the same batch file). If you are using a multitasking operating system 
(such as unix, OS/2, Windows, or Mac), you can use a task switch key at this 
point to view the output file and edit the input file, and then rerun TSP a 
second time if necessary. Otherwise, you'll have to exit from TSP, give 
commands to do these operations, and then restart TSP. (In this case, you 
would be better off using the command tsp prog2a which will run TSP in 
batch mode automatically and skip the prompt). Batch mode is recommended 
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if a long sequence of TSP commands is needed to estimate your model; it is 
easier to revise and reproduce results this way. 
 
If you press Enter (or Return on some keyboards) to the initial prompt, the 
following will appear: 
 

Enter TSP statements: 
1? 
 
You are now in the interactive mode of the program, and each command that 
you enter will be executed immediately, and results will be displayed on the 
screen. 
 
It is possible to suppress execution of commands selectively; see the next 
section and COLLECT in the Reference Manual. It is also possible to redirect 
output; see Section 4.4 or the OUTPUT command in the Reference Manual. 
 
If your last session ended abnormally, the following message should appear 
before the first line number prompt.7  
 

WARNING> Your previous TSP session was terminated abnormally. 
Do you wish to recover it (y/n)? [y] 
 
To end an interactive TSP session use either the EXIT or STOP command. But 
first be sure to save any output you want. SAVE (see Section 4.3) saves all the 
current TSP variables (but not the commands) so they can be restored later. 
The batch-compatible commands that you entered will be saved in the file 

BKUP.tsp. This file may be useful for starting your next session (with INPUT 

or login.tsp). You can restart an interactive session (i.e. start over at line 1), by 
using the CLEAR command. You can also use the SYSTEM command to 
temporarily suspend your session to take care of other business on the 
computer. See Chapter 17 for more information. 

4.2 Modes of operation 

TSP operates in several modes, all of which can be accessed by the Givewin 
shell (see below in this section): 
 

Interactive: One line at a time is executed, right after the command is entered. 

                                                      
7
 Chapter 17 discusses the automatic recovery system. See also the RECOVER section in the 

Reference Manual. 
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Control may be transferred between interactive and collect modes as often as 
you like. In general, blocks of statements that are executed as a unit (PROCs, 
DO loops, etc...) must be entered in collect mode. EXIT or STOP returns you 
to the operating system, terminating TSP. CLEAR restarts an interactive 
session (without saving anything). It is also possible to pass control 
temporarily to the operating system without interrupting the interactive session 
(SYSTEM command.)  
 

Collect: Collect mode is entered from interactive mode by the COLLECT 
command. Execution is suppressed until a group of commands has been 
entered, and execution is requested (EXEC). The commands are then 
processed and you are returned to interactive mode. EXIT returns you to 
interactive mode without executing the collected lines. Reading a stream of 
commands from an external file (with INPUT) is functionally the same as 
COLLECT. With INPUT, execution is automatic when END or end-of-file is 
reached. In either case, the commands read are incorporated into the interactive 
session, and may be REVIEWed, EDITed, etc... later in the session. 

 

Batch: In batch mode TSP reads and executes a previously prepared, complete 
TSP input file. You create this input plain text (ASCII) file with a separate text 
editor (such as the EDIT command in DOS, or a word processing program like 
Microsoft Word, saving as a text only file). You can run your file via a batch 
queue (multi-user systems), or while waiting at your PC/terminal. In either 
case, TSP usually terminates when execution of the file is completed.  
 
You may want to execute a short TSP program you have prepared, displaying 
the output on the monitor. In this case, you could open TSP interactively, and 
then immediately INPUT a previously prepared batch file.  

 

Givewin (for Windows only): This visual interface shell works just like any 
other Windows program. It allows you to edit multiple TSP input files using 
standard Windows editing conventions (such as cut and paste). You can run 
the files in batch mode by clicking a run button, and browse and print the 
output. You can also use TSP interactively within Givewin; either way, 
operation in Givewin means that you have access to its graphics capabilities 
for plotting from within TSP. 

4.2.1 Entering commands in Interactive Mode 

There is not much difference between entering TSP commands in a file for 
batch execution, and entering them in interactive mode -- just follow the usual 
syntax. The main difference is that semicolons at the end of a line are not 
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necessary -- a carriage return defines the end of the command. You may 
indicate that a statement takes more than one line by typing a backslash (\) at 
the end of the line(s) that are to be continued. 
 
However, statement-ending semicolons are still required in batch or INPUT 
files that you use in the interactive session. Also, if you REVIEW any portion 
of an interactive session, you will notice that they have been added for you. Of 
course, you may enter more than one command per line in interactive mode if 
you separate them with semicolons.  
 
There are some features of TSP that may be especially useful when working 
interactively. The first is that you can abbreviate TSP commands (and options). 
The abbreviation must be unambiguous, and must not skip characters; it may 
be any length (including 1). For example: 
 

OLS valid abbreviation for OLSQ 
BJ  ambiguous -- could be BJEST, BJIDENT, BJFRCST 
BJF  valid for BJFRCST 
Q  valid for QUIT (no other "Q" commands) 
FCST  invalid for FORCST (skips characters) 
 
You can use cursor keys to recall and edit lines that you've previously typed. 
This is useful for correcting typographical errors, adding/dropping variables, or 
repeatedly executing commands. The cursor keys work just like they do in 
DOS EDIT, Notepad, or Wordpad: 
 

Key Action 

↑ recall previous line(s) 
↓ recall later line(s) 
→ move (cursor) right in current line 
← move (cursor) left in current line 
Home move (cursor) to start of line 
End move (cursor) to end of line 
Ins toggle typeover/insert mode (default: typeover) 
Del delete character at cursor 
Esc clear current line 
Backspace delete character to left of cursor 

 
For other methods of editing commands in interactive mode, please see 
Chapter 17. 
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4.2.2 Requesting information: HELP, SHOW, etc. 

Several commands will give information on the current status of your session 
or remind you of command syntax. 
 

HELP TSP command  
 
displays information about the syntax and function of a particular TSP 
command. HELP by itself gives a list of TSP commands. If you are using a 
Windows version of TSP, you can also obtain help via the TSP Help System 
that is shipped with the program. 
 

REVIEW first line, last line  
 

redisplays a range of lines from your session. 
 

FIND TSP command   
 
displays all the lines in your session that begin with the specified TSP 
command. This is useful when you want to EDIT or EXEC a command, but 
you don't know its line number. 
 

SHOW list of names and/or keywords 
 
provides information about how TSP has stored specific items, or groups of 
items in the symbol table. You can SHOW SERIES to find out which time 
series you have stored, along with their frequencies, starting and ending dates, 
and number of observations. You can also SHOW SMPL or FREQ to find out 
the current settings of each. 
 

DIR * 
 
displays all the files in your current directory with the extension TSP; this can 
be useful in conjunction with the INPUT command. DIR "alone" prompts for a 
directory specification; you can display information about any file, from any 
directory (as well as request information regarding size, date, etc.). 

4.2.3 Methods of entering or reading data 

The interactive mode of TSP offers a number of approaches to loading data. If 
the data you need is not on disk in some usable form, the easiest method of 
data entry is the ENTER command. 
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ENTER seriesname 
 
prompts you to enter data based on the current sample and frequency. Any 
number of data points may be entered per line. If a non-numeric item is 
encountered (your fingers slip on the keyboard) it is ignored (along with any 
numbers that follow it on the line). Numeric corrections to the values of a 
series may be made with the UPDATE command. ENTER prompts for data 
until enough numbers have been supplied to fill the current SMPL.  
 

READ seriesname 
 
also allows you to enter data from the keyboard, though no prompting will 
occur (other than the current line number prompt), and nothing is stored until a 
semicolon is entered; this is one of the few instances in which a semicolon is 
required in interactive mode. Numeric errors not corrected immediately can 
also be UPDATEd. 
 
If the data you need is already stored on disk, you can use any of the following 
methods to read it: 
 

READ with the options FILE= and/or FORMAT=  
INPUT the name of a file that contains a data section 
IN databank 
FETCH micro-TSP (or EViews) databank 
RESTORE a SAVEd session 

4.2.4 Saving selected output: OUTPUT, TERM, 
PrtSc 

As you use TSP interactively, you will often produce output on the screen that 
you want to save for later examination or printing. You can save screen output 
easily with the OUTPUT command. 
 

OUTPUT filename 
 
sends all output to the file "filename.out" until the TERMINAL command, or 
another OUTPUT command is encountered. You can create as many output 
files as you like during a session; each OUTPUT statement opens a new output 
file and closes the previous one (if there was one). If the output filename 
already exists (whether it was created earlier in the session or not), output will 
be appended to the old file rather than creating a new file. For rules on 
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specifying filenames, see OUTPUT in the command reference section. 
 
It is not possible to send output to the terminal and an output file 
simultaneously, but error and warning messages are displayed in both places so 
you will know if something is seriously wrong. There are several solutions to 
the "seeing your output and saving it, too" dilemma. Which is best depends on 
how much of the output you want to see, and how much you are paying for 
computer resources. For simplicity, the following examples save output from 
one procedure only; all may be extended to handle any volume of output. 
 
To print just the output on the screen, you can use the shift-printscreen keys in 
either DOS or in a DOS window running TSP. You can also mark the screen 
output in a DOS window and save it in Clipboard for later use. 
 
If you are not certain that you want to save the results, you can execute the 
procedure(s) first, and then repeat the command after issuing an OUTPUT 
command if it looks good: 
 

10?  OLSQ CONS C GNP 
 (regression output) 
11?  OUTPUT REGRESS  (changes output to a file names REGRESS) 
12?  EXEC 10                     (re-executes line 10, the OLSQ) 
13?  TERM                         (switches back to terminal output) 
 
3. If you only need to see selected results from what you save, the following 
method is faster. All output is sent to the file until TERM, and any other 
variables created during execution may be examined with PRINT or SHOW.  
 

10?  OUTPUT REGRESS 
11?  OLSQ CONS C GNP 
12?  TERM 
13?  TSTATS(NAMES=@RNMS) @COEF @VCOV  (Prints t-statistics) 
 
4. This method takes the most steps, but avoids a wait during re-execution. The 
system prompt character is shown as $. This may be different, for example, on 
a PC the prompt is the disk drive letter (usually C> or D>):  
 

 10?  OUTPUT REGRESS 
 11?  OLSQ CONS C GNP 
 12?  TERM 
 13?  SYSTEM 
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 $ TYPE REGRESS.OUT 
 (contents of regress.out) 
 $ CONTINUE 
 14? 
 

You can look at the file with your editor instead of the TYPE command. You 
can also print, delete, rename, or copy the file before continuing the use of 
TSP. The TERM command is essential because it closes the file; if the file is 
not closed when you try to look at it, it will either appear empty or be missing 
the output you added since the last time it was closed. 

4.2.5 Sample session in interactive mode 

The following pages give a simple example of running TSP in interactive 
mode. For information on advanced techniques in interactive mode, please see 
Chapter 17. 
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Enter TSP statements: 
 
  1 ? input illusdat 
 
Do you want the output displayed at the terminal (y/n)? 
[y]  
 
Current sample:  1961 to 1975 
  6 ? review 
 
       1. ? input 'illusdat'; 
       1. FREQ A; 
       2. SMPL 61 75 ; 
       3. LOAD GNP CONS I ; 
       4. ? GNP, CONSUMPTION, INVESTMENT 
       4. REGOPT(LMLAGS=2) LMAR ; 
       5. ? TURN ON LMAR DIAGNOSTIC 
       6. REVIEW; 
 
  7 ? olsq cons c gnp 
 
                    Equation   1 
                    ============ 
 
      Method of estimation = Ordinary Least Squares 
 
 
Dependent variable: CONS 
Current sample:  1961 to 1975 
Number of observations:  15 
 
         Mean of dep. var. = 626.527 
    Std. dev. of dep. var. = 105.195 
  Sum of squared residuals = 1911.53 
     Variance of residuals = 147.040 
  Std. error of regression = 12.1260 
                 R-squared = .987662 
        Adjusted R-squared = .986712 
              LM het. test = .513322 [.474] 
             Durbin-Watson = .616923 [.000,.002] 
Breusch/Godfrey LM: AR/MA1 = 9.22897 [.002] 
Breusch/Godfrey LM: AR/MA2 = 8.69666 [.013] 
          Jarque-Bera test = .659462 [.719] 
           Ramsey's RESET2 = 6.96993 [.022] 
           F (zero slopes) = 1040.62 [.000] 
            Schwarz B.I.C. = 60.3492 
            Log likelihood = -57.6411 
 
           Estimated    Standard 
Variable  Coefficient     Error       t-statistic   P-
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value 
C         -63.3408      21.6135       -2.93061      
[.012] 
GNP       .676823       .020981       32.2586       
[.000] 
  8 ? plot @res 

 
This plot is produced in a separate window and is shown at the end of this run.  
 
  9 ? normal gnp 72 2608.5 
 
 10 ? normal cons 72 1621.9 
 
 11 ? update gnp 
 
Which observations do you wish to update? 74 85 
 
Enter data for GNP      
      1974? 2729.3 2695.0 2826.7 
 
      1977? 2958.6 3115.2 3192.4 
 
      1980? 3187.1 3248.8 3166 3277.7 3492 3573.5 
 
 12 observations of GNP      have been updated. 
 
 12 ? update cons 
 
Which observations do you wish to update? 74 85 
 
Enter data for CONS     
      1974? 1674 1711.9 1803.9 
 
      1977? 1883.3 1961 2004.4 2000.4 
 
      1981? 2024.2 2050.7 2145.9 2239.9 2312.6 
 
 12 observations of CONS     have been updated. 
 
 13 ? save 
 
 14 ? graph gnp cons    ? Plot Consumption vs. GNP 
 

This graph is produced in a separate window and is shown at the end of this 
run.  
  
 15 ? find olsq   ? Look for all OLSQ commands thus far 
       6. OLSQ CONS C GNP; 
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 16 ? exec 6      ? Repeat the OLSQ under the new SMPL 
       6. OLSQ CONS C GNP; 
  
 Equation   2 
 ============ 
      Method of estimation = Ordinary Least Squares 
 Dependent variable: CONS 
 Current sample:  1961 to 1985 
 Number of observations:  25 
 
          Mean of dep. var. = 1649.17 
     Std. dev. of dep. var. = 385.115 
   Sum of squared residuals = 19485.3 
      Variance of residuals = 847.185 
   Std. error of regression = 29.1064 
                  R squared = .994526 
         Adjusted R squared = .994288 
               LM het. test = .634874 [.426] 
              Durbin Watson = .993869 [.001,.006] 
 Breusch/Godfrey LM: AR/MA1 = 5.96885 [.015] 
 Breusch/Godfrey LM: AR/MA2 = 6.52117 [.038] 
           Jarque Bera test = 1.24251 [.537] 
            Ramsey's RESET2 = 3.64755 [.069] 
            F (zero slopes) = 4178.60 [.000] 
             Schwarz B.I.C. = 6.91605 
             Log likelihood =  118.705 
 
            Estimated    Standard 
 Variable  Coefficient     Error       t statistic   P 
value 
 C          190.235      29.0447        6.54975      
[.000] 
 GNP       .694874       .010750       64.6421       
[.000] 
 
17 ? retry 6         ? Change from OLSQ to AR1 
       6. OLSQ CONS C GNP; 
      >> r olsq ar1 
       6. AR1 CONS C GNP; 
 
                   Equation   3 
                   ============ 
      FIRST ORDER SERIAL CORRELATION OF THE ERROR 
         MAXIMUM LIKELIHOOD ITERATIVE TECHNIQUE 
 
     CONVERGENCE ACHIEVED AFTER   11 ITERATIONS 
 Dependent variable: CONS 
 Current sample:  1961 to 1985 
 Number of observations:  25 
 

(Statistics based on transformed data) (Statistics based on original 
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data) 

       Mean of dep. var. = 807.195        Mean of dep. var. = 1649.17 

  Std. dev. of dep. var. = 171.116   Std. dev. of dep. var. = 385.115 

Sum of squared residuals = 14785.7 Sum of squared residuals = 15034.9 

   Variance of residuals = 642.855    Variance of residuals = 653.692 

Std. error of regression = 25.3546 Std. error of regression = 25.5674 

               R squared = .979573                R squared = .995846 

      Adjusted R squared = .978685       Adjusted R squared = .995666 

           Durbin Watson = 1.67542            Durbin Watson = 1.66861 

Rho (autocorrelation coef.) = .536778 

      Standard error of rho = .176223 

        t statistic for rho = 3.04601 

             Log likelihood =  115.425 

 

            Estimated    Standard 

 Variable  Coefficient     Error       t statistic   P value 

 C          155.104      46.8728        3.30903      [.001] 

 GNP       .682614       .017270       39.5257       [.000] 

 
 18 ? exit     ? Terminate the session 
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Figure 4.1 Sample interactive session PLOT output 

 

Figure 4.2 Sample interactive session GRAPH output 
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5. ESTIMATION OF LINEAR EQUATIONS 
 
This chapter discusses several simple statistical models that involve linear 
structural equations. The models include: descriptive univariate and bivariate 
statistics (MSD), ordinary least squares (OLSQ), two-stage least squares 
(2SLS), limited information maximum likelihood (LIML), least squares with 
correction for serial correlation (AR1), and quantile estimation (LAD).  
 
In these procedures the equation is defined implicitly by listing its variables. 
The observations used for estimation are defined by the current sample (the 
most recent SMPL, SELECT, or SMPLIF). Any observations containing 
missing values are temporarily dropped from the sample for all procedures 
except AR1 with the ML option. Most of the models allow the WEIGHT 
option for general least squares estimates, and the ROBUST option for 
standard error computations robust to heteroskedasticity. They also allow 
distributed lag variables (polynomial, Shiller, or unconstrained). You can use 
REGOPT (described fully in the Reference Manual) to control the calculation 
and printing of numerous diagnostic statistics. 
 
Chapter 9 discusses estimation with qualitative dependent variables (PROBIT, 
TOBIT, LOGIT, SAMPSEL). Estimation methods for nonlinear and 
simultaneous equation (linear and nonlinear) models are covered in Chapter 7 
(LSQ, FIML, and GMM) and in Chapter 9 (ML). Chapter 8 describes 
constructing hypotheses tests for linear and nonlinear models. Chapter 11 
discusses estimation of time series models (ARIMA models, VAR and 
GARCH-M estimation).  

5.1 Descriptive Statistics: MSD, CORR 

Before doing any regressions or using the more expensive (in terms of 
computer time) estimation procedures, check your input and transformed data: 
you can look for bad observations or outliers introduced by data entry error and 
check that the data transformations did what you expected. If you don't have 
much data, you can check it by using the PRINT command, but this method 
may be overwhelming if you have several hundred observations. 
 
TSP has several descriptive statistics procedures that conveniently summarize 
large amounts of data for you. MSD prints a table of univariate statistics. MSD 
(CORR) computes and prints a correlation matrix. MSD(COVA) produces a 
covariance matrix. MOMENT computes an uncentered sum of squares and 
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cross products matrix. See Chapter 6 for a description of the graphics 
procedures, including HIST, which prints and plots frequency bar charts. 
  
MSD followed by a list of series will produce a table of means, standard 
deviations, sums, variances, skewness, kurtosis, and maximum and minimum 
values for all the series. Example: 
 

MSD LSALES,LGNP; 
 
The CORR, COVA, and MOMENT options work the same way, except that 
they produce a matrix for the list of series provided. The moment of two 
variables is their uncentered covariance -- the sum of cross products divided by 
the number of observations. 
 

MSD(CORR) LSALES,LGNP ; 
 
would store the 2x1 vectors @MEAN, @STDDEV, @MIN, @MAX, @SUM, 
@VAR, and the 2x2 matrix @CORR. (See section 6.1 for more information 
about using @ variables.) The results computed by these commands are stored 
for use in further analysis. 
 
You can use the WEIGHT= option in MSD to provide a weighting variable for 
the computations. (See Section 5.8.) 
 
To obtain the median and interquartile range of the series use the ALL option 
of the MSD command: 
 

MSD (ALL) LSALES LGNP ; 

5.2 Ordinary least squares: OLSQ 

The first variable specified in the OLSQ command is the dependent variable 
and the rest are the independent variables. Recall, for example, the 
consumption function in the illustrative model: 

CONS=a+b*GNP 

a is a parameter that multiplies an implied variable, the constant, which always 
has the value 1. In TSP, the constant has the special name, C (or 
CONSTANT). It may be used in OLSQ or elsewhere without loading it as 
data. The OLSQ statement for our consumption function is 
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OLSQ CONS C,GNP ; 
  
OLSQ computes the least squares regression coefficients and a variety of 
associated statistics. These statistics include the standard error of the residuals 
from the regression, the Durbin-Watson statistic, and the mean and standard 
deviation of the dependent variable. The R-squared, R-squared adjusted for 
degrees of freedom, and F-statistic for the hypothesis that all the coefficients 
except the constant are zero are also printed. 
  
You can plot the actual and fitted values of the dependent variable by 
including PLOTS earlier in the program. 

5.3 Regression output 

All regression procedures in TSP produce output in the same format. We 

describe the output here using the OLSQ command as an example (Figure 

5.1). In later sections of the manual we will point out any differences you may 
expect when using other estimation methods. 
 
Using the standard textbook notation where yt is the dependent variable and Xt 
is the vector of independent variables, et (the residual) is defined as 

ˆ ˆ          where = − =
t t t t t

e y y y X b  

and where b denotes the estimated regression coefficients. To give the exact 
formulas for the regression statistics in the TSP output, we define the sum of 

squared residuals SSR and the total sum of squares SST: 

2 2

1 1

2

1

ˆ( )
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= =

=
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The standard error of the regression is then given by 
 

  /( )= −s SSR T K  

 
where T is the number of observations in the current sample and K is the 
number of independent variables. 
  

The R-squared is defined as the squared correlation coefficient between y and 
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yhat: 

2
2 ˆ[cov( , )]

ˆvar( ) var( )
=

⋅

y y
R

y y
 

R-squared is defined the same way for the 2SLS, AR1, LIML and PROBIT 
commands; only the formulas for yhat and b are different. For an OLSQ 
regression with a constant term, this squared correlation is equal to 

1-SSR/SST. If yhat is constant, the R-squared will be zero. On the other hand, 
if the regression yields a perfect fit of the dependent variable, the correlation 
and the R-squared will be one; thus you can interpret the R-squared as the 
fraction of total variance that is "explained" by the variables in your regression 
other than the constant. It is also the squared cosine of the angle between the 
actual and predicted y and yhat, once the means of y and X have been 
removed. 
 

The adjusted R-squared is the quantity called R-bar-squared in some texts. 
The formula for it is given by: 

2
2 ( 1) 1− + −

=
−

T R K
R

T K
   

For a regression with a constant term this can also be written as 

2 /( )
1

/( 1)

−
= −

−

SSR T K
R

SST T
 

The adjusted R-squared has the advantage that it does not automatically 
increase as variables are added to the regression since the numerator includes 
an adjustment for the number of estimated coefficients (K). As more variables 
are added to the regression with little or no additional explanatory power, it is 
possible for this quantity to become negative. 
 
The next few statistics in the output report the results of tests for the validity of 
several assumptions of the linear regression model: homoskedasticity, lack of 
serial correlation, correct functional form, and normality. 
 

The LM heteroskedasticity test is a test for homoskedasticity of the residual 
variances. It is computed by regressing the squared residuals on the squared 
fitted values of the regression. The resulting TR

2 has a chi-squared distribution 
with one degree of freedom. 
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The Durbin-Watson statistic is described in Durbin and Watson (1951). A 
useful discussion of its properties and how to interpret it is in Pindyck and 
Rubinfeld (1991). The formula used by TSP to compute this statistic is 

2

1

2

( )−
=

−

=
∑

T

t t

t

e e

DW
SSR

 

This statistic is valid even if there are gaps in the SMPL (missing 
observations), although in that case, it will be somewhat conservative. The p-
values printed next to the Durbin-Watson statistic are exact finite sample 
values when the data are time series, and are an asymptotic approximation 
when the data have frequency N. See REGOPT in the Reference Manual for 
details. 
 
If a lagged dependent variable is included in the right-hand-side variables, the 
Durbin-Watson statistic is biased, so TSP prints two alternate statistics 
described in Durbin (1970). These two statistics are labeled "Durbin's h" and 
"Durbin's h (alt.)" respectively and they are asymptotically equivalent. 

Sometimes h cannot be computed due to a negative square root. On the other 

hand, the h alternative may have little power in small samples.  
 

Ramsey’s RESET test is a Lagrange multiplier test of functional form, 
computed by regressing the residuals on the independent variables and the 
square of the fitted dependent variable. This version of the test has a chi-
squared distribution with one degree of freedom. The RESET test can also be 
significant if there is a single outlier that is fit well by a quadratic function of 
the right hand side variables X.  
 

The Jarque-Bera test is a joint test for skewness and kurtosis of the 
disturbances, asymptotically distributed as chi-squared random variable with 
two degrees of freedom under the null of normality. 
 
The individual t-statistics produced by TSP correspond to variable by variable 
tests of exclusion restrictions: they are computed as the value of the coefficient 
divided by its estimated standard error. This quantity is distributed as a 
student’s t variable with (T-K) degrees of freedom. The t-statistic produced by 
TSP represents a test of only one of many possible hypotheses about the 
coefficient estimate: that it is zero. You may wish to test a different hypothesis, 
i.e., that the coefficient is equal to a0. To construct the t-statistic for this test, 
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you can compute the following, either by hand or using SET or ANALYZ:8 

0=t  (coef - a )/(std. err.)  

If the HI option is used with OLSQ, the series hi = diag(X(X'X)
-1

X') is stored 
under the name @HI. This series is useful for detecting "influential 
observations" (data errors, outliers, etc.). See the Reference Manual for details. 
 
In the regression output, p-values are shown next to all test statistics produced. 
These p-values are the probability of seeing a test statistic at least this large 
when the null hypothesis is true. That is, small p-values imply rejection of the 
null hypothesis. With the REGOPT procedure, you can obtain additional 
regression diagnostics, such as: Breusch-Godfrey LM test for autocorrelation, 
Ljung-Box Q-statistics, ARCH(1) test, recursive residuals, Chow test for 
parameter stability, White or Breusch-Pagan heteroskedasticity tests, Shapiro-
Wilk normality test, and Akaike and Schwarz Information Criteria (used for 
selecting lag length or sets of regressors). Try issuing a REGOPT (PVPRINT, 
STARS, LMLAGS=2, QLAGS=2, BPLIST=C) ALL; command before using 
OLSQ to see the range of available diagnostics. See the Reference Manual for 
further details.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Ordinary Least Squares Output 

                                                      
8
 See Chapter 8 on hypothesis testing for more detail. 

                                 Equation   1 

                                 ============ 

 

                 Method of estimation = Ordinary Least Squares 

 

 

Dependent variable: CONS 

Current sample:  1949 to 1975 

Number of observations:  27 

 

       Mean of dep. var. = 519.033     LM het. test = .783303 [.376] 

  Std. dev. of dep. var. = 147.459    Durbin-Watson = .461739 [.000,.000] 

Sum of squared residuals = 3958.17 Jarque-Bera test = 3.29859 [.192] 

   Variance of residuals = 158.327  Ramsey's RESET2 = 16.7953 [.000] 

Std. error of regression = 12.5828  F (zero slopes) = 3545.79 [.000] 

               R-squared = .992999   Schwarz B.I.C. = 108.941 

      Adjusted R-squared = .992719   Log likelihood = -105.645 

 

           Estimated    Standard 

Variable  Coefficient     Error       t-statistic   P-value 

C         -17.8024      9.33496       -1.90707      [.068] 

GNP       .633919       .010646       59.5465       [.000] 
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5.4 Two-stage least squares: 2SLS, INST 

In the 2SLS statement, the dependent variable and independent variables are 
listed exactly as for OLSQ. However, they are preceded by the 2SLS options, 
which include the required list of instrumental variables. For example, in the 
illustrative model, government expenditures, G, the logs of the money supply, 
LM, and the trend variable, TIME, are considered as exogenous and may serve 
as instruments. The appropriate statement is 
 

2SLS(INST=(C,G,TIME,LM)) CONS C,GNP; 
 
Note that INST is an alias of 2SLS, so that the following command is identical 
to the previous:  
 

INST(INST=(C,G,TIME,LM)) CONS C,GNP; 
  
The constant C should always be used as an instrument. Two-stage least 
squares is 2SLS with all of the exogenous variables in the complete model 
(and no other variables) listed as instruments. Valid estimation can be based on 
a smaller number of instruments when the complete model involves many 
exogenous variables. Valid estimation can also be performed even when the 
rest of a simultaneous model is not fully specified. In these cases, the estimator 
is usually termed instrumental variables, rather than two-stage least squares.  
Of course, there must be at least as many instruments as the number of 
right-hand side variables. 
 
The output of 2SLS for the consumption function in the illustrative model is 

shown in Figure 5.2. All statistics relating to residuals are calculated from the 
same formulas as OLSQ. The residuals are the "structural residuals",  

 
not the "second-stage residuals", which would be obtained by doing two-stage 
least squares literally in two stages (this would involve replacing some 
column(s) of X with predicted values from a first stage). 
  
Here are the equations used by 2SLS to compute the estimated coefficients and 

their standard errors. Let Z be the matrix of values of the instruments, and y 

and X be the dependent and independent variables. The coefficient estimates 
are 

 b = [X'Z(Z'Z)
-1

Z'X]
-1

X'Z(Z'Z)
-1

Z'y 

ˆ= −e y Xb
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The variance-covariance matrix of these coefficient estimates is given by 

V(b) = s
2
[X'Z(Z'Z)

-1
Z'X]

-1
 

If the number of instruments Z is equal to the number of right-hand-side 

variables X, the classical instrumental variable estimator results: 

b = [Z'X]
-1

Z'y 

This follows easily from the previous formula for b, since for this case 

[X'Z(Z'Z)
-1

Z'X]
-1

 = (Z'X)
-1

(Z'Z)(X'Z)
-1

 

and four of the matrices cancel. 
 
The objective function for 2SLS is not the ordinary sum of squared residuals, 
but rather the sum of squared residuals after projection onto the instruments 
(labeled E'PZ*E in the output): 

e'PZe = e'Z(Z'Z)
-1

Z'e  

When the number of instruments (columns in Z) is equal to the number of Xs 

(coefficients to be estimated), the model is exactly identified and Z’e will be 
zero. When the number of instruments is greater than the number of 
coefficients, a test for overidentification is available, defined as 
 

 
2

'

ˆ( )σ
=

−
Z

overident

e P e
F

m k
 

 
where m is the number of instruments and k the number of coefficients. This 
test is approximately distributed as F(m-k, N-k). 
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Figure 5.2 Two Stage Least Squares Output 

 

5.5 Limited information maximum likelihood: LIML 

The LIML command computes maximum likelihood estimates for a linear 
model with endogenous variables on the right-hand side (and normally 
distributed disturbances). It is specified like the 2SLS command with 
instruments given in the options list. The advantages of LIML over 2SLS are 
asymptotic efficiency and a small sample distribution with less bias. The 
FULLER option allows for additional small-sample corrections (see the 
Reference Manual or Online Help System for details). The disadvantage of 
LIML is that the estimates are more sensitive to specification error in the lists 
of included and excluded variables. (See Section 7.3 for estimation of 
nonlinear LIML models.) For the illustrative model, we have: 
 

LIML(INST=(C,G,TIME,LM)) CONS C,GNP; 
 

The output from this command is shown in Figure 5.3. The differences from 
the output for OLSQ and INST are the estimate of λ (the LIML eigenvalue), 
weak IV diagnostics (the estimated concentration parameter and the Cragg-
Donald statistic), and the finite sample standard errors due to Bekker (1994). 

                                     Equation   4 

                                     ============ 

 

                      Method of estimation = Instrumental Variable 

 

Dependent variable: CONS 

Endogenous variables: GNP 

Included exogenous variables: C 

Excluded exogenous variables: G LM TIME 

Current sample:  1949 to 1975 

Number of observations:  27 

 

       Mean of dep. var. = 519.033  Adjusted R-squared = .992719 

  Std. dev. of dep. var. = 147.459       Durbin-Watson = .464998 [.000,.000] 

Sum of squared residuals = 3965.29     F (zero slopes) = 3514.83 [.000] 

   Variance of residuals = 158.612  F (over-id. rest.) = 9.17008 [.001] 

Std. error of regression = 12.5941              E'PZ*E = 2908.96 

               R-squared = .992999 

 
           Estimated    Standard 

Variable  Coefficient     Error       t-statistic   P-value 

C         -19.7149      9.40495       -2.09622      [.036] 

GNP       .636178       .010731       59.2860       [.000] 
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In this example, both weak instrument tests are large and indicate that weak 
instruments are not likely to be a problem for this estimation. However the F-
statistic for the overidentifying restrictions also suggest that the instruments are 
invalid. For more information on these statistics see the TSP Reference Manual 
and Hansen, Hausman, and Newey (2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 LIML Output 

5.6 First-order serial correlation: AR1 

When the disturbances of a linear regression model are autocorrelated, the 
coefficient estimates of ordinary least squares are inefficient, and the standard 
error estimates are biased. The AR1 procedure provides several methods to 
obtain efficient estimates of an equation whose disturbances are autocorrelated 
of order one, that is, the observed disturbance is 
 

 
where et is homoskedastic and not serially correlated. For a discussion of the 
efficiency gains from the serial correlation correction and some Monte-Carlo 
evidence, see Rao and Griliches (1969). To estimate the consumption function 
in the illustrative model with a correction for serial correlation, replace OLSQ 
with AR1: 
 

                      Method of estimation = LIML 

 

Dependent variable: CONS 

Endogenous variables: GNP 

Included exogenous variables: C 

Excluded exogenous variables: G LM TIME 

Current sample:  1949 to 1975 

Number of observations:  27 

 

       Mean of dep. var. = 519.033           R-squared = .992999 

  Std. dev. of dep. var. = 147.459  Adjusted R-squared = .992719 

Sum of squared residuals = 4063.75       Durbin-Watson = .465556 [.000,.000] 

   Variance of residuals = 162.550  F (over-id. rest.) = 31.0720 [.000] 

Std. error of regression = 12.7495  Lambda (eigenval.) = 3.70192 

                   Concentration parameter =     1621.59     

Cragg-Donald F-stat for Z2 in Reduced Form =     540.529     

 

           Estimated    Standard 

Variable  Coefficient     Error       t-statistic   P-value 

C         -25.1644      10.0244       -2.51031      [.012] 

GNP       .642613       .011477       55.9903       [.000] 

Standard Errors computed from finite sample correction (Bekker) 

1ρ −= +
t t t

u u e
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AR1 CONS C, GNP; 
 
The default method of estimation is exact maximum likelihood. This method 
includes the first observation with a special weight, rather than simply 
dropping it, and imposes the stationarity requirement on the estimate of the 
serial correlation parameter by requiring the estimated ρ to be between -1 and 
1. The small sample properties of this estimator, particularly its RMSE, are 
preferable to those of the conventional GLS procedures, unless there is a 
lagged dependent variable on the RHS.  
 
When there is a lagged dependent variable, the “GLS" objective function is the 
default, because exact ML estimates will have a small sample bias. GLS drops 
the first observation, and is the same as nonlinear least squares on a rho-
differenced equation. This method also can be requested for any model using 
the OBJFN option: 
 

AR1 (OBJFN=GLS) CONS C GNP; 
 
The GLS objective function is known to have multiple local optima in many 
cases, especially when there is a lagged dependent variable on the RHS, so a 
grid search is used by default to locate starting values, and then iterations are 
used to find the accurate global optimum. 
 
A similar technique can be used to estimate higher order AR(p) (p>1) 
processes. The FORM(NAR=p) and LSQ commands make this easy (see 
Section 7.2.1 for more details on LSQ and the Reference Manual for details on 
FORM). Here is an example of AR(2) estimation (without a grid search to 
check for multiple local optima): 
 

FORM (NAR=2) CAR2 CONS C GNP; 
SMPL 51,75;     ? DROP FIRST 2 OBSERVATIONS 
LSQ CAR2; 
 
All these methods produce the usual regression output; the summary statistics 
are based on the ρ-transformed variables, while the plot displays the actual 
dependent variable (untransformed) and the corresponding fitted value, i.e. 

1 1 1 1
ˆ ˆˆ ( ) ( | , , , , )

t t t t t t t t
y X b y X b E y X y X bρ ρ− − − −= + − =  

Note that this is the same equation used to do a static forecast of the AR1 
model (see Chapter 14). If the model is true, the residuals, yt-yhatt, will be 
uncorrelated. These actual and fitted values may be displayed in a plot with the 
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PLOTS option. 

5.6.1 Instrumental variable estimation in AR1 

Two-stage least squares and instrumental variable estimation with a serial 
correlation correction may be obtained using AR1 with the INST option, 
although only the GLS objective function is available. Several considerations 
in obtaining consistent estimates in this case are discussed by Fair (1970). To 
estimate the consumption function in our model by nonlinear two-stage least 
squares, we use 
 

AR1(INST=(C,G,LM,TIME)) CONS C,GNP; 
 
AR1 automatically adds lagged variables (in this example, CONS(-1) and 
GNP(-1)) to the list before estimating in order to ensure consistent estimation. 
To override this option and specify a complete list of instruments yourself, use 
the NOFAIR option:9 
 

AR1(NOFAIR,INST=(C,G,LM,TIME,GNP(-1),CONS(-1))) CONS 
C,GNP; 

 
Note that exactly the same model can be estimated by the LSQ command with 
instruments on a rho-differenced equation, like the example above with 
FORM. 

5.7 Distributed lags 

A distributed lag refers to the inclusion of more than one lag of a regressor (X 
variable) in a regression function. Many lags of a single variable may be easily 
included in the linear estimation procedures (OLSQ, 2SLS, LIML, AR1, 
PROBIT, TOBIT) of TSP. For example,  
 

OLSQ CONS C GNP GNP(-1)-GNP(-15) ; 

                                                      
9 This option is named after Ray Fair, who pointed out that the lagged dependent and 

independent variables should be in the instrument list to obtain consistent estimates. 
Fair retracted this claim in 1984 and it has since been disproved by Buse (1989). 
However, the alternate instruments required for consistency would involve 
pseudo-differencing with the estimated ρ, which is tedious to do by hand. Buse also 
showed that the most efficient estimator asymptotically in this case also includes the 
lagged excluded exogenous variables, but he cautions that in small samples this may 
quickly exhaust the degrees of freedom.  
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specifies a regression of consumption on GNP and 15 quarters of GNP lagged 
for the illustrative model. Note that OLSQ prints the Schwarz Bayesian 
Information Criterion and/or the Akaike Information Criterion, which may be 
used to select the length of an unconstrained distributed lag. A regression like 
this (with many unconstrained lags) frequently produces coefficient estimates 
that are highly imprecise and jump around from period to period. This has led 
econometricians to invent ways of smoothing the coefficient estimates. TSP 
supports two of these techniques: polynomial distributed lags, invented by 
Almon (1965) and Shiller lags, due to Shiller (1973). 

5.7.1 Polynomial distributed lags 

You can include PDL variables in any linear equation in TSP by including a 
variable or variables with a lag specification in parentheses in the list of 
independent variables. This lag specification has the form (n,p,constraint), 
where 
 

n Number of terms in the polynomial (degree plus one) 

p Number of lags in the lag distribution 

constraint Endpoint constraints: BOTH (2 constraints) 
                               FAR (1 constraint) 
                               NEAR (1 constraint)  
                               NONE (no constraints) 

 
The number of parameters associated with the distributed lag is n less the 
number of constraints; this must be positive and less than or equal to p. Note 
that the number of lags includes the current observation, i.e., the lagged 
variables are (t,t-1,t-2,..., t-p+1). 
  
Examples: 
  

OLSQ CONS C,GNP(4,16,FAR) ; 
  
specifies a regression of CONS on a distributed lag of GNP covering 16 
quarters, having terms up to the third power, and obeying the far endpoint 

constraint. The output is shown in Figure 5.4. 
 

OLSQ CONS C,GNP(4,16,FAR),R(4,24,NEAR) ; 
 
specifies an additional distributed lag on R covering 24 quarters and a near 
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endpoint constraint. 
 

OLSQ CONS C,GNP(-1)(4,16,NONE); 
 
forms a PDL of GNP that starts with the first lagged observation instead of the 
current observation. 
 
When you use PDL variables in an instrument list, the choice of instruments 
depends on whether the variable is treated as exogenous or endogenous. If it is 
treated as exogenous, you want the scrambled variables described in the next 
section as instrumental variables. These could be specified by listing the names 
of the variables created by the "scrambling" process, i.e., in the above 
example, @PDL1, @PDL2, @PDL3. If PDL were treated as endogenous, it 
would suffice to ensure that there were enough instrumental variables in the 
list to meet the rank condition for identification -- at least as many as the 
number of variables in the regression after scrambling. 

5.7.2 What PDL does 

Each PDL term stands for a distributed lag of the form 

0 1 1 1 1...
t t p t p

b x b x b x− − − ++ + +  

The polynomial specification requires that bi lie on a polynomial in i:  

( 1)

1 2

( 1) ( 1)
...

( 1) ( 1)

n

i n

i i
b a a a

p p

−
 + +

= + + +  + + 
 

This implies constraints on the coefficients of x and its lags imposed by 
defining a new set of n variables zt that are linear functions of the x variables. 
The actual functions differ slightly from what is implied by the above 
equations; see the Cooper (1972) article for details (Lagrangian interpolation 
polynomials are used). The variables z1t,...,znt enter the regression as ordinary 
independent variables (labeled @PDL1, @PDL2, and so forth in the 
regression results). Their coefficients are estimates of the parameters a1,...,an. 
After running this regression, TSP computes the corresponding estimates of 
the lag distribution coefficients b0, b1,...,bp-1 from the polynomial. The standard 
errors of the bi are computed from the covariance matrix of the ai using the 
delta method. In addition, the mean lag and the sum of the lags are presented 
along with their standard errors. The expressions defining them are 
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If the lag coefficients change sign, the mean lag computed by this formula has 
little meaning. 
 
If endpoint constraints are imposed, the procedure is modified slightly. The 
near constraint sets a hypothetical b-1 to zero. TSP imposes this by dropping 
the first variable from the regression. The far constraint sets a hypothetical bp 
to zero. TSP imposes this by subtracting the last variable from each of the 
others and dropping the last variable from the regression. 
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Figure 5.4 Sample PDL Output 

5.7.3 Shiller lags 

Constraining lag coefficients to lie exactly on a low-order polynomial often 
seems quite arbitrary, since there is no a priori reason for the functional form. 
The Shiller lag technique is a method for imposing smoothness on the lag 

                      Method of estimation = Ordinary Least Squares 

 

Dependent variable: CONS 

Current sample:  1956:1 to 1982:1 

Number of observations:  105 

 

       Mean of dep. var. = 125.845      LM het. test = 16.7143 [.000] 

  Std. dev. of dep. var. = 33.9618     Durbin-Watson = .150856 [.000,.000] 

Sum of squared residuals = 3536.33  Jarque-Bera test = .981780 [.612] 

   Variance of residuals = 35.0132   Ramsey's RESET2 = .032653 [.857] 

Std. error of regression = 5.91719   F (zero slopes) = 1108.32 [.000] 

               R-squared = .970519    Schwarz B.I.C. = 342.933 

      Adjusted R-squared = .969644    Log likelihood = -333.625 

 

           Estimated    Standard 

Variable  Coefficient     Error       t-statistic   P-value 

C         -8.09229      2.44011       -3.31636      [.001] 

GNP       .141122       .010558       13.3664       [.000] 

GNP(-1)   .091974       .578013E-02   15.9121       [.000] 

GNP(-2)   .052734       .340423E-02   15.4908       [.000] 

GNP(-3)   .022431       .364670E-02   6.15115       [.000] 

GNP(-4)   .946214E-04   .447778E-02   .021131       [.983] 

GNP(-5)   -.015247      .483957E-02   -3.15047      [.002] 

GNP(-6)   -.024564      .463867E-02   -5.29553      [.000] 

GNP(-7)   -.028828      .400767E-02   -7.19324      [.000] 

GNP(-8)   -.029010      .317856E-02   -9.12661      [.000] 

GNP(-9)   -.026079      .251967E-02   -10.3503      [.000] 

GNP(-10)  -.021009      .247233E-02   -8.49747      [.000] 

GNP(-11)  -.014768      .298179E-02   -4.95270      [.000] 

GNP(-12)  -.832846E-02  .354392E-02   -2.35007      [.021] 

GNP(-13)  -.266103E-02  .376653E-02   -.706494      [.482] 

GNP(-14)  .126346E-02   .338759E-02   .372967       [.710] 

GNP(-15)  .247410E-02   .219610E-02   1.12659       [.263] 

*** NOTE:  Some of the coefficients above were estimated with a PDL 

 

Distributed Lag Statistics for: GNP 

 

Almon lag 

Degree of polynomial:  3 

Number of terms:  4 

Endpoint constraints:  FAR  

  
…………Graph of estimated PDL Coefficients……….. 

 

     --------------------------------------------------------------------- 

      0.1416     0.2618E-02  54.09     Sum of lag coefficients 

      -7.623      1.732     -4.401     Mean lag (in periods) 
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coefficients without using an exact polynomial. The idea of the method is to 
impose a "smoothness" prior on the coefficients and estimate using Bayesian 
techniques. For a full discussion of the method, see Shiller (1973).  
 
To use the Shiller lag procedure, you must specify a degree of differencing 
(this is similar to the polynomial degree specified in PDL), the number of lags 
of the X variable to include in the regression, the endpoint restrictions, and the 
value of the smoothness prior that you wish to use. For example, the command 
 

OLSQ CONS C,GNP(3,16,NONE,.0025) 
 
specifies a 2nd degree Shiller lag for GNP with no endpoint restrictions and a 
prior variance on the differenced coefficients equal to .0025. The output from 

this command is shown in Figure 5.5.  
 
The prior variance on the differenced lag coefficients is what controls the 
smoothness of the distribution; a prior variance equal to zero yields PDL 
estimates, while a very large prior variance will give unconstrained lag 
coefficients. Other values yield answers between the smoothness of a 
polynomial and the jagged nature of unconstrained lags. One possibility is to 
use the sample variance of the unconstrained lag coefficients as a prior; this 
option is provided if you use a -1 as the prior variance.  
 
One way to interpret Shiller lags is as a generalization of the PDL method. For 
example, the command  
 

OLSQ CONS C,GNP(4,16,FAR,0) 
 
estimates the same regression as the first example in section 4.7.1, since it 
specifies that the fourth degree differences of the coefficients should be 
precisely zero (with no error). This guarantees that all the coefficients will lie 
on a third degree polynomial, as for a PDL.  
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Figure 5.5 Shiller Lag Output 

5.8 Weighted regression: the WEIGHT option 

The weighted least squares estimator is useful when the variance of the 
disturbances in a regression differs across observations. It is most frequently 
used in cross-section regressions where the units of observation differ in scale 

                      Method of estimation = Ordinary Least Squares 

 

 

Dependent variable: CONS 

Current sample:  1956:1 to 1982:1 

Number of observations:  105 

 

       Mean of dep. var. = 125.845      LM het. test = 15.7116 [.000] 

  Std. dev. of dep. var. = 33.9618     Durbin-Watson = .153127 [.000,.000] 

Sum of squared residuals = 3513.56  Jarque-Bera test = .873858 [.646] 

   Variance of residuals = 39.9268   Ramsey's RESET2 = .080606 [.777] 

Std. error of regression = 6.31877   F (zero slopes) = 182.272 [.000] 

               R-squared = .970709    Schwarz B.I.C. = 372.845 

      Adjusted R-squared = .965384    Log likelihood = -333.286 

 

           Estimated    Standard 

Variable  Coefficient     Error       t-statistic   P-value 

C         -7.95317      2.62399       -3.03094      [.003] 

GNP       .136131       .015219       8.94457       [.000] 

GNP(-1)   .090098       .696157E-02   12.9421       [.000] 

GNP(-2)   .052529       .527835E-02   9.95187       [.000] 

GNP(-3)   .023264       .652659E-02   3.56451       [.001] 

GNP(-4)   .179217E-02   .694711E-02   .257974       [.797] 

GNP(-5)   -.012814      .647880E-02   -1.97786      [.051] 

GNP(-6)   -.021813      .574975E-02   -3.79365      [.000] 

GNP(-7)   -.026561      .538716E-02   -4.93038      [.000] 

GNP(-8)   -.028239      .571193E-02   -4.94390      [.000] 

GNP(-9)   -.027649      .653755E-02   -4.22921      [.000] 

GNP(-10)  -.025167      .736512E-02   -3.41712      [.001] 

GNP(-11)  -.020847      .761135E-02   -2.73889      [.007] 

GNP(-12)  -.014557      .677608E-02   -2.14831      [.034] 

GNP(-13)  -.612761E-02  .539660E-02   -1.13546      [.259] 

GNP(-14)  .456186E-02   .832647E-02   .547874       [.585] 

GNP(-15)  .017554       .017924       .979364       [.330] 

*** NOTE:  Some of the coefficients above were estimated with a Shiller lag 

 

Distributed Lag Statistics for: GNP 

Shiller lag 

Degree of polynomial:  2 

Degree of differencing:  3 

Prior smoothness std.dev. (xi):   0.25000E-02 

Current smoothness std.dev.   :   0.65262E-03 

Residual std.dev. used (sigma):    6.0999     

 

----- Graph of estimated lag coefficients ----------- 

     --------------------------------------------------------------------- 

      0.1422     0.2932E-02  48.48     Sum of lag coefficients 

      -6.976      2.250     -3.101     Mean lag (in periods) 
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or size -- for example, a cross section of states in the United States. 
  
You can obtain weighted least squares in TSP by using the WEIGHT option in 
the linear regression procedures (OLSQ and INST). WEIGHT= should appear 
as an option in parentheses between the command name and the name of the 
dependent variable. After the = sign, put the name of a series whose values are 
proportional to the inverses of the variances of the disturbances in the 
regression. In cross section across political units, the weight variable should be 
the reciprocals of populations if the variables are sums or aggregates, and 
should equal population if the variables are measured per capita. For example, 
if YOUNG is the fraction of young adults living by themselves (a per capita 
variable) and POP is population, the following command estimates a 
regression using population values for the variables: 
 

OLSQ (WEIGHT=POP) YOUNG,C,URBAN,      
CATHOLIC,ABORTION,SERVEMP,SOUTH ; 

 
Two sets of summary statistics are reported, one based on weighted residuals 
computed by applying weighted least squares estimates to the weighted data, 
and and one based on unweighted residuals, computed by applying the 
weighted least squares estimates to the original data. 
  
Note that both sets are based on the weighted least squares coefficients, which 
are minimum variance among all linear unbiased estimators if the weights are 
correct. The weighted residuals satisfy the usual properties of residuals and are 
the proper basis for statistical testing. The unweighted residuals describe the 
departure of the actual data from the regression function in their original units. 
TSP computes all the standard regression statistics for the weighted residuals 
and a subset of them for the unweighted residuals. 
 

5.8.1 Normalization of weights 

TSP divides the weights provided by the user by a constant so that the sum of 
the weights equals the number of observations. Observations given weight zero 
are not counted. This normalization does not affect the regression coefficients 
or most of the statistics. It leaves the magnitudes of the weighted data and 
weighted residuals the same, on average, as the unweighted data and residuals. 
Normalization may be suppressed with the UNNORM option. With 
UNNORM, if the weights are all large, the residuals, sum of squared residuals, 
residual variance, standard error, and implied number of observations will all 
be correspondingly large. 
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5.8.2 Weighted descriptive statistics 

The WEIGHT= option may be used with any MSD statement to obtain 
weighted means, standard deviations, covariances, correlations, and moments. 
The data are multiplied by the square roots of the weight variable before the 
statistics are computed. The weights are normalized so that they sum to the 
number of observations; the UNNORM option is not available. Here is an 
example of using the WEIGHT= option: 
  

MSD (WEIGHT=POP,CORR) YOUNG,C,URBAN,      
CATHOLIC,ABORTION,SERVEMP,SOUTH ; 

5.9 Robust standard errors in the regression procedures 

When you know the form and size of the heteroskedasticity in your data, you 
can use WEIGHT to obtain consistent estimates of the standard errors of your 
model. However, this is often not the case. The ROBUST option causes TSP 
to compute standard errors that are consistent even in the presence of unknown 
heteroskedasticity, by using the data to estimate its magnitude. Econometric 
references for this technique are White (1980a), White (1982), and 
Chamberlain (1984). Note that in general, White gives two terms in his 
formulae, the second of which vanishes if the model is correctly specified up to 
an additive error. TSP computes only the first term. 
  
To obtain these heteroskedastic-consistent estimates of the standard errors of 
your model, include the option ROBUST on an OLSQ, 2SLS, or LSQ 
statement (see Chapter 7). For example, 
 

OLSQ(ROBUST) CONS C GNP ; 
  
computes the standard errors and variance estimate shown below for our 

illustrative example (compare to the conventional estimates in Figure 5.1). 
 

 
 
 
 

 
For standard errors that are robust to simple autocorrelation, use the 
GMM(NMA=n) command. For example: 
 

FORM HAC CONS C GNP; 

           Estimated    Standard 

Variable  Coefficient     Error       t-statistic   P-value 

C         -17.8024      11.3535       -1.56800      [.129] 

GNP       .633919       .013560       46.7507       [.000] 

Standard Errors are heteroskedastic-consistent (HCTYPE=2). 
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GMM(HET,NMA=2,INST=(C,GNP)) HAC; 

5.10 Quantile regressions: LAD 

The ordinary least squares estimator is optimal when the disturbance in the 
equation is normally distributed. But when the disturbance is not normally 
distributed, other estimators are better. If the distribution is known, the 
efficient estimator is maximum likelihood with the correct distribution 
function. However, in many cases, you may suspect that your data distribution 
is "fat-tailed" or contains outliers, without knowing exactly its form. In this 
setting, the LAD estimator, which minimizes the sum of absolute deviations of 
the residuals, may be more efficient. The LAD estimator is also known as the 
L1 regression, least absolute residual (LAR), least absolute error (LAE), and 
minimum absolute deviation (MAD). See Chapter 22 of Judge et al (1988) for 
a discussion of its properties.  
 
To estimate by least absolute deviations in TSP, use the LAD command like 
the OLSQ command. For example, 
 

LAD CONS,C,GNP ; 
 
Sample output from the LAD command is shown in Figure 5.6 below. Note 
that standard errors are computed using bootstrap replications; the default 
number may be changed via the NBOOT option. See the Reference Manual for 
details on this and on the use of LAD for quantile regression and regression 
with a censored or truncated dependent variable.  



68 Linear Estimation 

  

 

 

 
 

Figure 5.6 Sample LAD Output 

                      Method of estimation = Least Absolute Deviations 

 

Dependent variable: CONS 

Current sample:  1949 to 1975 

Number of observations:  27 

 

       Mean of dep. var. = 519.033           R-squared = .992999 

  Std. dev. of dep. var. = 147.459  Adjusted R-squared = .992719 

Sum of squared residuals = 3992.70       Durbin-Watson = .465237 

   Variance of residuals = 159.708      Schwarz B.I.C. = 108.643 

Std. error of regression = 12.6376      Log likelihood = -105.347 

  Sum of absolute residuals =   245.776     

 Mean of absolute residuals =   9.10282     

MSS / mod. Glejser het test =  0.336190     [.562] 

 

                         Standard 

Parameter  Estimate        Error       t-statistic   P-value 

C          -20.6717      17.5460       -1.17814      [.250] 

GNP        .638051       .023937       26.6559       [.000] 

 

Standard Errors computed from  200 bootstrap replications 
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6. MANIPULATION AND DISPLAY OF TSP 
VARIABLES 

 
 
In the first few chapters of this manual, you learned how to read data into TSP, 
transform the data, and run simple linear regressions. Because TSP is a 
programming language tailored to the needs of econometricians, it can do 
much more than this. This chapter introduces some convenient features of the 
program for printing, plotting, sorting, and manipulating the data and 
regression results. It also describes a few procedures that perform certain 
specialized computations automatically, such as accumulating a capital stock 
from an investment series, Divisia indices, and seasonal adjustment.  
  
To describe the full power of some of these procedures, we need to introduce 
the concept of a TSP variable type. You have already encountered the basic 
TSP type: 
 

Series -- Time-series, cross-sectional or panel data. This variable is stored with 
both a frequency and starting date (or starting observation number, in the case 
of undated series). Observations outside the SMPL are treated as missing for 
the procedure being executed, even if they exist in data storage. Exceptions to 
this rule are lags and leads, which are obtained from outside the current SMPL. 
If you try to use a series whose frequency differs from the frequency specified 
by the current FREQ statement, TSP will give you an error message (unless 
you use CONVERT). Series are usually created with the READ, GENR and 
UNMAKE commands. 
  
Besides the basic series variables, TSP allows the following kinds of variables: 
 

Scalars -- These are variables that take on a single value. TSP distinguishes 

between two types of scalars: Consts and Params. Consts are ordinary scalars 
that are considered fixed or constant. They can be created by SET, CONST, 
UNMAKE, or even MATRIX statements, or as results from an estimation 

procedure. Params are a special type of scalar that are considered to be 
estimable coefficients in a TSP equation. They are declared (and optionally 

given starting values) in PARAM statements. Any Param can be made a 

Const (that is, can be held fixed for estimation) simply by changing its type 
with a CONST statement.  
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Just as GENR is used to do computations on time series, SET may be used to 
do computations on scalar variables and scalar elements of matrices and series. 
The rules for composing SET statements are the same as those for composing 
GENRs, except that the right-hand side must be a scalar-valued expression. 
Numbers or variable names in parentheses are used as subscripts in SET, while 
they would be interpreted as lags or leads in GENR. Such names are at most 4 
characters for a single subscript, or 2 characters each for a double subscript 
(see Appendix A).10 Some examples: 
 

SET XMEAN = @MEAN(1) ; 
SET XMAT(2,3) = 1.0 ; 
SET XMAT(I,JJ) = Z(I)*W(JJ) ; 
SET I1 = I-1; 
SET XSIM(I) = XSIM(I1)*EXP(1.0+DELTA) ; 
 

Matrices -- These include vectors as a special case and are described in more 
detail in Chapter 13. There are four kinds of matrices: general, symmetric, 
upper triangular, and diagonal. Matrices are created with the MMAKE, 
MFORM, READ, and MAT commands, and by many estimation procedures. 
  

Lists -- Lists of TSP variable names. They are stored as the output of some 
procedures and may be created by using the LIST command. The name of a 
list can be used anywhere in TSP that a list of variable names can be used. 
Lists can be manipulated, changed, and even lagged. See the Reference 

Manual for details. 

                                                      
10

 Subscript expressions like XSIM(I-1) are not allowed. (See the description of SET in the 

Reference Manual.) Two-dimensional matrices can have a single or double subscript (if it's a 
single subscript, the matrix is treated as a stacked series of columns). Scalars and subscripted 
vectors and matrices may be included in GENR statements also; they will be treated as though 
they have the same value for all observations, rather than being subject to the control of the 
current sample. Scalars and subscripted variables are legal syntax for command options and 
arguments that require a single value. 

 

Equations -- Explicit (and often nonlinear) formulas for model estimation and 
simulation, usually created with FRML or IDENT statements (see Chapter 7). 
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Equations are similar to GENR statements, except that they are not computed 
immediately when encountered; they are used only after the model is specified 
and the estimation or simulation command is invoked using their names as 
arguments. Equations may be printed, used for estimation and simulation, and 
computed by GENR or SET. Equations are also created from estimated linear 
models (FORM), and from operations on other equations (EQSUB and 
DIFFER). 

6.1 Using the results of one procedure in another: COPY 

Often, the computations you want to do depend on the results of a previous 
procedure. It can be tedious and time-consuming to run the first computations 
in one program and then enter those results by hand into a second program 
before proceeding. TSP provides a solution to this problem by automatically 
storing many of its most important results in data storage for use in later 
computations. They are given key names that always begin with the character 
@ so they will not be confused with the names of variables in your program. 
 
For example, after every regression, two series are available in data storage: 
one called @FIT, the fitted values of the dependent variable, and one called 
@RES, the residuals (actual minus fitted values).11 These series remain in data 
storage until they are replaced by another regression procedure. They can be 
used just like any other series before they are replaced. If you wish to save 
them, include a GENR or COPY statement after your regression: 
 

OLSQ CONS C GNP ; 
GENR CONSFIT = @FIT ; or COPY @FIT CONSFIT; 
 
Other results you might want from a regression are: the estimated coefficients, 
stored as a vector called @COEF; the sum of squared residuals, stored as a 
scalar called @SSR; the standard error of the residuals, stored as a scalar 
called @S; and the variance covariance of the estimates, stored as a symmetric 
matrix called @VCOV. Almost all regression results are available in this form. 
See the Reference Manual for lists of the results available under each 
procedure.  
  
Procedures other than the estimation procedures also store some of their results 

                                                      
11

In multi-equation estimation with LSQ and FIML, @RES is stored as a matrix, but 

the column for a particular equation can be accessed easily with the UNMAKE 
command (see Chapter 13). 
 



72 Linear Estimation 

  

 

in data storage. For example, the MSD procedure stores the variable means, 
standard deviations, etc., in vectors named @MEAN, @STDDEV, etc. 
 
COPY works with all TSP variable types except lists; use the LIST command 
to copy a list. For example: 
 

LIST NEWLIST OLDLIST; 
 
places the list defined by OLDLIST in storage under the name NEWLIST. 

6.2 Printing series and other variables: PRINT, WRITE 

WRITE and PRINT are synonyms. They are used to write or display any type 
of TSP variable; you can include different variable types in the same WRITE 
statement and each will be written using an appropriate format. The number of 
variables in one WRITE statement is limited only by the amount of working 
space and space available for the command line. 
 
Here is an example showing the output format for the main TSP variable types. 
We print the items B1 (a scalar), CONSEQ (an equation), @VCOV (a 
symmetric matrix), and @RES (a series): 
 

PRINT B1 CONSEQ @VCOV @RES;  
 

Output from this example is shown in Figure 6.1.  
 
When planning the format of your output, an important consideration is 
readability. Accordingly, when all the items are series, they are produced in 
table format with as many series per line as will conveniently fit on the page 
width specified for the current job. The first column of each table will contain 
the date or observation ID to label the observations. For items that are not 
series, each will be shown in a separate table. This gives you flexibility in 
arranging the tables in your output. 
  
If any of the series or other variables have missing values, the number(s) in 
question will show a period (.) instead of a value. 
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Figure 6.1 Example of PRINT Output 

6.3 Graphic displays of data 

Frequently the best way to begin the analysis of a new set of data is by 
graphing it, either series by series or in more complex ways. TSP provides 
several routines for the graphical analysis of data: PLOT for one or more time 
series (assuming that the X axis is time), GRAPH for two variable plots (Y vs. 
X), and HIST for frequency distributions. 
 
In most personal computer and unix versions of TSP, the plots produced by 
GRAPH and PLOT are displayed on the screen using high resolution graphics, 
and can be printed with software supplied with the program.   

B1 =    0.63392 

 

EQUATION: CONSEQ 

 

     FRML CONSEQ CONS = B0 + B1*GNP 

                                     @VCOV 

 

                     1             2  

       1     307.86159                

       2      -0.41535    0.00057296  

 

                  @RES  

1949          27.58024  

1950          18.37168  

1951          -4.86451  

1952         -10.30162  

1953         -11.86818  

1954           0.00000  

1955          -2.02385  

1956           0.24342  

1957           0.92301  

1958           6.11628  

1959           2.51999  

1960           3.55599  

1961           0.95206  

1962          -6.29457  

1963          -7.95699  

1964          -8.53979  

1965         -11.99944  

1966         -19.15601  

1967         -19.09194  

1968         -17.02998  

1969         -12.25735  

1970           3.47583  

1971           5.93063  

1972           6.45060  

1973           0.00000  

1974           7.98380  

1975          30.28837 
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6.3.1 Plotting time series: PLOT, PLOTS, NOPLOT 

PLOT produces a plot of one or more time series against time or against the 
observation number if the series is undated. For graphics plots, just specify the 
list of series you wish plotted (the formatting can be changed using Givewin’s 
graphics editing features or options on the PLOT command). For character 
(paper) plots, the user specifies the series to plot and the character to use for 
each series in the plot. PLOT is followed by a series name, the character to use 
in plotting the series, possibly a second series name and a second character, 
and so on. Up to nine series may be plotted. The characters may be anything 
but $ . ; ' " , . For example: 
  

PLOT GNP CONS ;  ? graphics plot 
PLOT GNP,*,CONS,X ;  ? character-based plot 
  
Various parameters that control the appearance of the plot may be specified in 
an options list in parentheses following the word PLOT. These options are 
shown in the Reference Manual, although you may not need them if you like 
the appearance of the plot with the default settings. The default has a box 
around it but no vertical lines within the box, the maximum and minimum 
value are labeled, and the observations ID and series value are printed down 
the right and left side respectively. 
  
For convenience, the PLOT options that you specify are retained in the next 
PLOT(s) until overridden either explicitly or by including the option 
RESTORE in the list. RESTORE resets the options at their default values. 
 
Here are some additional examples of the PLOT command. 
 

PLOT GNP GNPS CONS CONSS ;  ? Graphics versions 
PLOT RESID ; 
 
or 
 

?  Character-based versions 
PLOT(MIN=500,MAX=1500,LINES=(1000)) GNP G GNPS H CONS C 

CONSS D ; 
PLOT(MIN=-25.,MAX=25.,BMEAN,HEADER,VALUES,BAND=STANDA

RD,INTEGER) RESID * ; 
 
There is also a command called PLOTS which "turns on" plots of residuals for 
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all further estimation commands such as OLSQ, 2SLS, LIML, AR1, LSQ, 
FIML. The NOPLOT command "turns off" the residual plots. These automatic 
plots are useful for checking the fit of the model. 

 

Figure 6.2 shows a plot produced by the Givewin version of TSP (using the 
Almon (1965) data on expenditures and appropriations). 
 

Figure 6.2 Sample Plot of Almon Data 

6.3.2 Graphs or scatter plots: GRAPH 

GRAPH produces a scatter plot of one series against another. As in the case of 
PLOT, GRAPH produces either high-resolution graphics (in most PC and unix 
versions) or printer character plots. List the x-axis series is first, and then as 
many y-axis series as you wish to include. For example, to obtain plots of 
actual and fitted values from a regression, use 
 

OLSQ CONS C YD ; 
GRAPH YD CONS @FIT ; 
 
The above example produces a conventional graph of the actual and fitted 
values of CONS against the right-hand-side variable YD. The example below, 

from the illustrative model, generated the plot in Figure 6.3: 
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GRAPH (title="Compare Consumption Function Estimates") 
       GNP CONS OLS LAD KERNEL ;   
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CONS × GNP 
LAD × GNP 

OLS × GNP 
KERNEL × GNP 

 

Figure 6.3 Graph of Consumption Function Estimates 

 

6.3.3 Plotting histograms: HIST 

HIST produces histograms (bar charts or frequency distributions) of series. It is 
convenient for obtaining a rough picture of the univariate distribution of your 
data. For example, from the illustrative model, 
 

HIST (TITLE=”Distribution of short term interest rates’) RS;      ?  
 
produces a bar chart with ten bars, indicating the number of observations 
distributed in sections along the range of the series RS. Figure 6.4 shows the 
resulting histogram: 
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Figure 6.4 Sample HIST Output 

 
Several options are available to control the number of bars, the range of the 
series, and the labeling and placement of the bars. These options described in 
the Reference Manual. For example, 
 

HIST(DISCRETE) MERGYR; 
 
produces a histogram of the variable MERGYR. Because the option 
DISCRETE was set, TSP creates a different bar for each unique value of 
MERGYR, on the assumption that it takes on only a small number of discrete 
values.  

6.4 Sorting data: SORT 

You can sort any individual series in ascending or descending order with the 
SORT command: 
 

SORT X ; or SORT(REVERSE) X ; 
 
You can also sort some or all of your series using a single series to determine 
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the sort order followed by the list of the series to be sorted. For example, a set 
of panel data for ten countries, in which each country has three years of data 
(year 1 for all the countries, followed by year 2 for all the countries, etc.), 
could be reordered so that all the years for each country are adjacent: 
 

KEY = COUNTRY*10+YEAR ; 
SORT (ALL) KEY ; 
 
The original order of the data was 
 

 COUNTRY YEAR KEY 
  1  1 11 
  2  1 21 
  .  . . 
  10  1 101 
  1  2 12 
  2  2 22 
  .  . . 
  10  2 102 
  1  3 13 
  2  3 23 
  .  . . 
  10  3 103 
 
and the new order will be  
 

  1  1 11 
  1  2 12 
  1  3 13 
  2  1 21 
  2  2 22 
  2  3 23 
  .  . . 
  10  1 101 
  10  2 102 
  10  3 103 
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6.5 Dummy and trend variables: DUMMY, TREND 

Dummy variables are series that are either zero or one in a given observation. 
They are typically used to measure things that are on or off (true or false). For 
example, the dependent variable of a Probit model is a dummy variable (see 
Section 9.2), and the constant term C in a regression is a dummy variable that 
is always "on". Dummy variables can be created in several ways. They can be 
LOADed directly, in which case a special convention for inputting repeated 
values (*) may be useful: 
 

SMPL 1,20; READ D10; 10*1 10*0; 
 
They can also be created in pieces under different SMPL statements. For 
example (also see TREND below): 
 

SMPL 1,10; D10=1;  
SMPL 11,20; D10=0; 
 
Dummy variables can also be based on the values of other series. We have 
already seen examples of this in Section 3.5.1, where logical (true/false) 
expressions are used in a GENR command: 
 

XPOS = X > 0 ;  
or  

GENR X1 = (X = 1); 
 
Often the series in question takes on several distinct values or categories, and 
we would like to create a set of dummy variables (one for each category in the 
original series). This is easily done with the DUMMY command. For example, 
if the series EDUC takes the values 1, 2, and 3, 
 

DUMMY EDUC; 
 
would create the dummy variables EDUC1, EDUC2, and EDUC3. This would 
be equivalent to the commands: 
 

EDUC1 = (EDUC=1); EDUC2 = (EDUC=2); EDUC3 = (EDUC=3); 
 
DUMMY can easily create seasonal dummy variables. In fact, this is the 
default if the DUMMY; command is given (with no argument), and FREQ Q 
or M is in effect. The series Q1-Q4 or M1-M12 are created. Other DUMMY 
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options are available to exclude the last dummy variable, and to save the 
names of the new variables in a TSP list. See the Reference Manual for details. 
 
Another standard variable is the time trend, which typically equals 1, 2, 3, etc. 
This is created with TREND: 
 

TREND T; 
 
A trend variable is useful for estimating a deterministic trend component in a 
regression. It can also be useful for creating time-dependent dummy variables. 
The first dummy variable example above could have been created with: 
 

SMPL 1,20; TREND T; D10 = (T <= 10); 
 
The PERIOD= option in TREND allows the series to repeat with the specified 
periodicity. This is useful with balanced time-series/cross-section data, to make 
the trend start over at 1 for each individual. See the Reference Manual for 
details. 

6.6 Computation of Capital Stock: CAPITL 

In working with economic time series data, we are frequently given a gross 
investment series from which we wish to calculate the corresponding capital 
stock series based on an assumption about depreciation rates. The CAPITL 
command enables you to perform this computation easily in TSP. For example, 
if you have an annual investment series, I, and a depreciation rate of 10 percent 
per annum, you can compute a series of beginning-of-period capital stock, K, 
with the following command: 
  

CAPITL I .10 K ; 
  
The above CAPITL statement assumes that the value of the capital stock at the 
beginning of the SMPL was zero and that you wished to build it up from that 
point. Options are available to alter those assumptions. For example, 
  

SMPL 58:1 83:2 ; 
CAPITL (BENCHVAL=145.4,BENCHOBS=70:1) QINV .025 K ; 
  
uses quarterly investment figures to compute capital stock, assuming that the 
first quarter of 1970 has a beginning period value of 145.4. Note that since this 
was quarterly data we used a depreciation rate of 0.025 to correspond to ten 
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per cent per annum. 
  
CAPITL calculates a capital stock series from a gross investment series, using 
a perpetual inventory and a constant rate of depreciation. Let I be gross 
investment, K be the capital stock, and δ be the rate of depreciation. Then 
CAPITL computes 

1 1(1 )
t t t

K K Iδ − −= − +  

or  

1(1 )
t t t

K K Iδ −= − +        (if the END option is used). 

  
TSP starts from a capital stock benchmark at a specified observation. If the 
benchmark is in the middle of the sample as in our second example above, 
CAPITL also applies the reverse version of the formula, 

1( ) /(1 )
t t t

K K I δ+= − −  

or  

1 1( ) /(1 )
t t t

K K I δ+ += − −    (if the END option is used). 

to compute values of the capital stock in periods before the benchmark. 
 
A dynamic GENR statement is useful for simple explicit capital stock 
calculations. The first CAPITL example could be performed with the 
following statements: 
 

SMPL 46,87; K=0;         ? initialize capital stock to zero 
SMPL 47,87; K = .9*K(-1)+I(-1); ? compute capital stock recursively 

6.7 Divisia Indices: DIVIND 

Another commonly needed manipulation of economic time series data is the 
computation of aggregate price indices from several underlying series. In TSP, 
you can use DIVIND to compute Divisia Indices, which have several desirable 
properties as index numbers: 
 

1. They are chain-linked Laspeyres Indices, that is, for each year the 
current prices are used as a base in estimating the rate of growth to 
the following year. 

2. They are also chained Paasche and Fisher Indices. 
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3. They are symmetric in prices and quantities. 
4. If you reverse time and compute the indices backwards, you obtain 

the same result. 
5. If you form indices of subgroups of the prices and quantities and 

then combine them using the Divisia method, the resulting index is 
the same as aggregating in one step from the original series. 

  
These properties are contained in an unpublished note by W. M. Gorman 
(1970). For a more accessible discussion of their properties and a list of 
references, see Jorgenson and Griliches (1971) or Diewert (1976). 
 
A Divisia index of prices is obtained by cumulating (over time) a weighted 
sum of the rates of change of the component prices. The weights are the 
current shares of the component goods in the total current expenditure on all 
the goods in the index. If we have N goods at time t with prices p1t,...,pNt and 
quantities q1t,...,qNt, the rate of change of the logarithm of the Divisia price 
index pt is given by 

1 , 1

1

log log ( log log )
N

t t it it i t

i

p p w p p− −
=

− = −∑

The Divisia index of quantity can be obtained by applying the same strategy to 
quantities in place of prices, or, alternatively, by dividing total expenditure by 
the price index. However, the two quantity indices will not be exactly the 
same. If a quantity is zero or missing, that good is temporarily dropped from 
the index. 
 
In TSP, the weights wit used for calculating the index may be computed in 
three ways: 
 

1. Arithmetic weights (ARITH option) are the arithmetic average of the 
expenditure shares (pitqit/Σpjtqjt) in each of the two periods for which 
we are computing a rate of change. 

2. Geometric weights (GEOM option) are the geometric average of the 
expenditure shares. 

3. Combined weights (COMB option) combines the two weight 
computations given above, that is, they are a geometric average of the 
arithmetic weight, the share this period, and the share last period. 

  
Here is an example of a Divisia command: 
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DIVIND (WEIGHT=ARITH,TYPE=P,PNORM=67) PIND, QIND, PS, 
QS, PND, QND, PD, QD ; 

 
This command computes the indices PIND and QIND from the three pairs of 
inputs S, ND, and D. Price indices are computed and the quantity indices 
derived (TYPE=P). The index is normalized to one in 1967. 
  
The default values of the DIVIND options are the following: 
  

TYPE=Q, WEIGHT=COMB, QNORM=1, PNORM=1, NOPRINT, 
QVAL=1, PVAL=1 

  
This means that quantity indices are to be computed using combined share 
weights, the first observation is to be normalized to have a quantity index of 
one, and the results are not to be printed. The computed indices will be stored 
in data storage under the names you gave the first two arguments. For further 
details on the options, see the Reference Manual. 

6.8 Normalization of Series: NORMAL 

NORMAL normalizes a series so that a chosen observation has an assigned 
value. It accomplishes this by dividing all observations of the series by the 
same number. After the word NORMAL, list the name of the series, the 
observation identifier of the base observation, and the value to be assigned. 
The normalized series will replace the original series. For example: 
  

NORMAL CPI,75,100 ; 
 
This is equivalent to the following statements: 
 

SET CPI75 = CPI(75); GENR CPI = 100*CPI/CPI75; 

6.9 Seasonal Adjustment: SAMA 

TSP provides a simple moving average method for performing the seasonal 
adjustment of series. If seasonally adjusted data is very important in your work, 
you may wish to survey the literature in this area and make use of a more 
sophisticated or extensive program such as X-11 from the Census Bureau. A 
good place to start might be with Census Bureau (1976), in the references. 
 
There are several seasonal adjustment methods other than the "ratio to a 
moving average". The proper method depends on the theoretical data 
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generation process. Alternate methods include linear or log regression on 
seasonal dummies and inclusion of seasonal variables in the structural model. 
Seasonal dummy variables can be created easily with the DUMMY command. 
TSP provides the SAMA command because it would be difficult to compute 
with simple regressions; the other methods may be just as valid and they 
require little programming effort. 
 
SAMA performs seasonal adjustment on quarterly or monthly time series. For 
example, suppose you have quarterly data on GNP from 1948 through 1982. 
You could seasonally adjust this series, store and print it with the following 
command: 
  

FREQ Q ; SMPL 48:1 82:4 ; 
SAMA(PRINT) GNPQ GNPQA ; 
  
For details on the computations, see the TSP Reference Manual. 

6.10 Principal Components: PRIN 

Economic time series, particularly those for aggregate data, are frequently 
highly collinear; there is often very little information in a fourth or fifth series 
after you know the first three. Factor analysis with principal components can 
be a useful way of examining the similarities of data series. Principal 
components are a set of series constructed to explain as much variance of the 
original series as possible. Users of this procedure should be familiar with the 
method and uses of principal components, described in standard texts such as 
Harman (1976) and Theil (1971). 
 
Here is an example of a PRIN command in TSP: 
  

PRIN (NAME=PC,NCOM=3,FRAC=.95) I TIME CONS GOVEXP 
EXPORTS; 

  
It specifies that three principal components are to be found of the five variables 
I, TIME, CONS, GOVEXP, and EXPORTS. If 95% of the variance of the five 
variables can be explained by fewer than three components, the program will 
stop there. The number of principal components actually constructed in any 
given procedure is the minimum of the number requested, the number needed 
to explain FRAC of the variance, and the number of series. 
  
In the example given, only two principal components were actually 
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constructed: the first was highly correlated with the level variables I, CONS, 
and GOVEXP, which in turn were highly correlated (over 95 per cent) with 
TIME. The second had negligible correlation with these variables and was 
almost entirely related to EXPORTS. Note that this example is illustrative only 
– this is probably not an appropriate way to analyze these data. The behavior 
of the first component suggests that is might be appropriate to check for unit 
roots and cointegration of the series.  
  
In this example the principal components found will be stored under the names 
PC1, PC2, PC3, etc., for further use in the program. You may use any legal 
TSP name as the name for the principal components, but the names generated 
by adding the numbers must also be legal TSP names (that is, of length of less 
than 64 characters). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Sample PRIN Output 

 

                                                                PRINCIPAL COMPONENTS 
                             ==================== 

 

VARIABLES: I TIME CONS GOVEXP EXPORTS 

 

Number of Observations: 27 

                              Correlation Matrix 

 

            I        TIME       CONS     GOVEXP    EXPORTS  

I         1.00000    

TIME      0.91598    1.0000         

CONS0     0.93814    0.98651   1.0000           

GOVEXP    0.89665    0.95941   0.94290   1.00000 

EXPORTS  -0.078275   0.11609   0.11246  -0.030001  1.00000  

 

Component  Name       Eigenvalue     Cumulative R-Squared 

 

    1      PC1         3.8217914           0.76435829     

    2      PC2         1.0291798           0.97019425     

                                 

             Factor Loadings 

 

                   PC1           PC2  

I              0.95777       0.12713  

TIME           0.98915     -0.077151  

CONS           0.99047     -0.071962  

GOVEXP         0.97116      0.071084  

EXPORTS       0.043276      -0.99842 
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7. ESTIMATION OF NONLINEAR SYSTEMS 
OF EQUATIONS 

 
In Chapter 5, you learned how to estimate various types of linear single 
equation models in TSP. These models were specified implicitly by listing the 
dependent variable and independent variables after the name of the estimation 
method (OLSQ, 2SLS, LIML, or AR1). Although this shorthand method of 
specifying a model is convenient, in order to estimate nonlinear models, you 
have to be more specific about the form of your equation(s). 
 
Two procedures in TSP estimate general nonlinear models with additive 
disturbances: LSQ and FIML. LSQ is a minimum distance estimator that can 
be used to compute nonlinear single equation least squares, nonlinear 
two-stage least squares, nonlinear multivariate regression, SUR (seemingly 
unrelated regressions), nonlinear three-stage least squares, and some 
Generalized Method of Moments (GMM) estimators.  
 
FIML obtains full information maximum likelihood estimates for a nonlinear 
simultaneous equation model whose disturbances are jointly normally 
distributed. For maximum likelihood on models with other distributions, use 
the general maximum likelihood (ML) procedure discussed in Chapter 9. Both 
LSQ and FIML can be used on linear as well as nonlinear models.  
  
In this chapter we describe how to specify the equations of a model to be 
estimated and then discuss estimation with LSQ and FIML. In Chapter 8 we 
discuss hypothesis testing with applications for LSQ and FIML, and in Chapter 
10 we describe the minimization techniques and convergence options used in 
all the nonlinear procedures. 

7.1 Specifying the model: FRML, PARAM, etc 

The first step in estimating a nonlinear model is to define the equations. The 
FRML statement is used to define TSP equations for estimation or other 
computations. To use FRML, you supply an equation in algebraic form (as in 
GENR) except that it is preceded by a name given to the equation when it is 
stored. Equations are referred to by their names when estimated and can be 
printed with the PRINT command. 
 
For example, the FRMLs from the complete illustrative model at the end of 
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Chapter 3 are 
  

FRML CONSEQ, CONS=A + B*GNP ; 
FRML INVEQ, I=LAMBDA*I(-1) + ALPHA*GNP/(DELTA+R) ; 
FRML INTRSTEQ, R=D + F*(LOG(GNP)+LP-LM) ; 
FRML PRICEQ, LP = P(-1) + PSI*(LP(-1)-(LP(-2)) + PHI*LGNP + 

TREND*TIME + P0 ; 
 
The rules for composing FRMLs are the same as for GENRs (see Chapter 3). 
The first FRML, CONSEQ, could be used to estimate a simple linear 
regression of CONS on GNP and a constant term by specifying two additional 
statements: 
 

PARAM A,B; LSQ CONSEQ;  
 
There is an implied additive disturbance term during estimation with LSQ or 
FIML. For example, the model estimated by the previous command is the 
following:  

CONSt = α + βGNPt + εt 

If you are using simple linear equations, the FORM command can be used to 
choose parameter names automatically. For example, the command 
 

FORM CONSEQ CONS C GNP; 
 
would form the consumption equation and declare its parameters; it is 
equivalent to the two following statements: 
 

FRML CONSEQ CONS = CONSEQ0 + CONSEQ1*GNP; 
PARAM CONSEQ0 CONSEQ1; 
 
FRMLs can also be used to specify functions of estimated parameters for 
testing (ANALYZ, Section 8.7), to specify formulas for equation substitution 
(EQSUB, Section 9.6) or differentiation (DIFFER, in the Reference Manual), 
and to specify log-likelihood equations (ML, Section 9.6). When used in this 
way, the equations do not have an implied additive disturbance. 
 
Logical expressions may be included in FRMLs, but be aware that this will 
generally introduce a finite number of points at which your equation will not 
be differentiable. You can estimate or simulate with such an equation, but 
gradient methods may have difficulty converging if you happen to land on or 
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near one of those points. The usual proofs of consistency, efficiency, and 
asymptotic normality will not go through in this case. However, such equations 
can be convenient when performing model simulations, and you may find them 
useful on occasion.  
 
There are two ways to define a TSP equation: with the dependent variable on 
the left-hand side as in a GENR (a normalized equation), or as an 
unnormalized expression with no equal sign and no left-hand variable. An 
example of the latter would be 
 

FRML CONSEQ2, CONS-A-B*GNP ; 
  
This equation specifies the same model as the first version of CONSEQ, but as 
though it were written  

εt = CONSt - α - βGNPt  

Unnormalized FRMLs are used by FIML, LSQ, GMM, and SIML to handle 
models that are nonlinear in the endogenous variables, for example, to specify 
an orthogonality condition for GMM estimation (see section 7.2.5). Here is an 
example of this kind of equation, where the dependent variable is a general 
expression:  

yt/qt = α + εt 

The equation above should be defined as: 
 

FRML EQR, Y/Q - A;12 

 
The primary difference between using normalized and unnormalized equations 
in LSQ or FIML is that unnormalized equations do not have a well-defined 
left-hand side variable associated with them, so certain goodness-of-fit 
statistics such as R2 cannot be computed.  
 
ANALYZ and EQSUB also accept unnormalized equations. SOLVE will not 
accept unnormalized equations and returns an error message if it encounters 

                                                      
12 If it were written as FRML EQR Y/Q = A; , the = sign would be interpreted as a 

logical operator:  
 

FRML EQR, Y/Q .EQ. A ;  
 
which means something entirely different from what was intended 



90 Nonlinear Estimation  
  

 

one.  
 
A special form of FRML, called IDENT, is available to specify identities in a 
FIML model. These identities do not contain parameters to be estimated, nor 
do they have disturbances, but they are necessary to complete the model, that 
is, to insure that the model has a square Jacobian matrix (as many equations as 
there are endogenous variables). This condition is necessary for both FIML 
and SIML. (SIML actually treats FRMLs and IDENTs identically, but it may 
be useful to use IDENT statements instead of FRMLs for documentation 
purposes.) IDENT statements are given exactly like FRML statements except 
that they begin with the word IDENT instead of FRML. For example, the 
illustrative model is completed by a single identity relating GNP and 
consumption: 
 

IDENT GNPID GNP=CONS+I+G ; 
  
Information about the symbols in a FRML is provided in separate PARAM 
and CONST statements, for parameters to be estimated and constants, 
respectively. It is usually desirable to provide plausible numerical values for 
the parameters as starting points for estimations. Constants must be assigned 
values before estimation. For example, in the illustrative model (see Chapter 
3), 
  

PARAM A –18 B .62 LAMBDA .6 ALPHA 1 D –20 F 8 PSI .3 PHI .1 
TREND -.002 P0 -.6 ; 

CONST DELTA 15 ;  
 
The parameters need not be in order and may be defined in several PARAM 
and CONST statements. The only difference between a PARAM and a 
CONST is that PARAMs are estimated and CONSTs are not. Once parameters 
have been declared in a PARAM statement, they retain their estimability even 
if they are given new values by SET or UNMAKE commands. Parameters also 
retain their values from the most recent estimation. Parameters can be fixed at 
their current values by declaring them in a CONST statement. This will cause 
them to be treated as fixed until they are specified on a new PARAM 
statement. 

7.2 Nonlinear least squares: LSQ 

LSQ estimates single and multiple equation linear and nonlinear regression 
models. Depending on the number of equations and the specification of 



 7. Nonlinear estimation 91  
  

 

instrumental variables, several different econometric estimators are available 
with the LSQ command: nonlinear least squares, seemingly unrelated 
regression, nonlinear two stage least squares, three stage least squares, and 
generalized method of moments. Each estimator has a slightly different 
objective function which is minimized by means of iterative methods for 
nonlinear models. Details on the iterative techniques are in Chapter 10. 

7.2.1 Single equation least squares 

If LSQ is supplied with the name of just one FRML, and no instruments are 
specified, single equation least squares is the resulting estimator. For example, 
 

LSQ CONSEQ;  
 
estimates the consumption equation described earlier, assuming that A and B 
have been declared as PARAMs, and the series CONS and GNP have been 
properly defined over the current sample. In this example, the model is linear, 
so LSQ does not iterate, and the results are exactly the same as the command 
  

OLSQ CONS C GNP;  
 
OLSQ is easier to use for this model if you only want single equation 
estimation, but using LSQ automatically sets up starting values for a 
subsequent multiple equation estimation (which requires specifying the 
FRMLs). 
 
For nonlinear least squares, the objective function is the sum of squared 
residuals (SSR). Minimizing SSR is equivalent to maximizing the likelihood 
function if the error in the equation is additive and normally distributed. The 
iteration technique is Gauss's method: derivatives of the equation residual with 
respect to each parameter are formed analytically. The current residual is 
regressed on the derivatives, and the resulting regression coefficients are the 
proposed changes in the parameters. It is possible to show that these 
coefficients will be zero if and only if the current parameters are at a local 
minimum of SSR. If the model was linear and the parameters had zero starting 
values, the first iteration would involve regressing the dependent variable 
(which equals the current residual) on the independent variables (which equal 
the derivatives of the residual with respect to the parameters, with a change of 
sign). For general nonlinear models, both the current residual and the 
derivatives will be functions of the current parameter values, but the procedure 
works the same, iterating until the derivatives are orthogonal to the residuals 
and the SSR is minimized. 
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A simple example of a nonlinear equation is the direct estimation of an AR1 
model: 
 

FRML CONSAR1 CONS = A + B*GNP + RHO*(CONS(-1) - (A + 
B*GNP(-1))); 

PARAM A,B,RHO; 
LSQ CONSAR1; 
 
Note that this method of estimating an AR(1) model drops the first 
observation, like the AR1 procedure with the OBJFN=GLS option. Also see 
Section 5.6 for a more general and easier way to generate FRMLs for AR(p) 
estimation. 

7.2.2 Multivariate regression and Seemingly 
Unrelated Regressions 

If a model has two or more regression equations, it is likely that the 
disturbances from the two are correlated. If so, the technique of multivariate 
regression generally gives more efficient estimates than regression applied 
separately to each equation. Further, if two or more equations share the same 
parameter(s), they must be estimated jointly to impose these cross-equation 
constraints. This feature is particularly useful in estimating systems of demand 
equations derived from a utility function or a production function. 
 
Multivariate regression is the simplest multiple equation estimator. It assumes 
there are no simultaneity problems with endogenous variables on the right-
hand side of the equations. 3SLS and FIML are appropriate for joint estimation 
of equations with (or without) simultaneity; FIML will also estimate SUR 
models, often using less computer memory than LSQ. 
 
An example of LSQ from the illustrative model (see Chapter 3) is 
 

LSQ CONSEQ,INVEQ,INTRSTEQ,PRICEQ ; 
 
This command specifies joint estimation of all four behavioral equations of the 

model. The output from this command is shown in Figure 7.1. 
  
The multivariate least squares method is a generalized least squares method: 
the disturbances of the model are assumed to be independent across 
observations, but to have free covariance across equations. A consistent 
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estimate of this covariance matrix is formed in some way or supplied to the 
procedure, and this estimate is used to weight the observations when the 
equations are re-estimated. The objective function can be written as 

1( ) ( ) '( ) ( )
T

Q b e b S I e b
−= ⊗  

where e(b) is the vector of stacked residuals (a function of the parameters b), S 
is an estimated covariance matrix of the disturbances and IT is the identity 
matrix of order of the number of observations. If S is recomputed from b(i) at 
each iteration, this estimator is the same as the maximum likelihood estimator 
when the disturbances are multivariate normal. 
 
Although any consistent estimator of S gives consistent parameter estimates for  
multivariate regression, the default method recomputes S from the estimated 
residuals at each iteration. This method has some desirable properties: in the 
case of consumer or factor demand systems, for example, this method yields 
estimates that are invariant with respect to which share equation is dropped.  
 
If you want conventional Seemingly Unrelated Regressions estimates (two-
step, rather than maximum likelihood), you can use SUR, which is an alias for 
LSQ with certain options preset. SUR obtains a consistent estimate of S, and 
then iterates only on b until convergence is obtained. More precise control over 
the initial estimate of S and over iteration on S is possible with the WNAME= 
and MAXITW= options (explained in detail in the Reference Manual). 
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Figure 7.1 Sample LSQ (multivariate regression) Output 

EQUATIONS: CONSEQ INVEQ INTRSTEQ PRICEQ 

MAXIMUM NUMBER OF ITERATIONS ON V-COV MATRIX OF RESIDUALS = 20 

NOTE => The model is linear in the parameters. 

Working space used: 3923 

                                STARTING VALUES 

 

        B0            B1        LAMBDA      ALPHA             D  

VALUE   -17.80237   0.63392     0.69519    0.93262      -6.49935  

       F           PSI           PHI        TREND            P0  

VALUE  8.28104     0.96267    -0.036751  0.0020400       0.21353  

 

F= 7.7250657561 FNEW= 7.5365117353 ISQZ= 1 STEP= 1. CRIT= 6.8450 

------ iteration output ------- 

F= 7.2004917984 FNEW= 7.2004909522 ISQZ= 1 STEP= 1. CRIT= .25361E-04 

 

CONVERGENCE ACHIEVED AFTER  17 ITERATIONS 

   83 FUNCTION EVALUATIONS. 

                          Residual Covariance Matrix 

                CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ       148.65135                                            

INVEQ        -69.32294     183.88108                              

INTRSTEQ       1.28343       0.93891       1.12461                

PRICEQ         0.31574      -0.29112     0.0084148    0.00099038  

 

                               Weighting Matrix 

                CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ        0.082019      0.037881     -0.012755      -0.13640  

INVEQ                       0.081230    -0.0096816      0.086872  

INTRSTEQ                                   0.95436      -0.55702  

PRICEQ                                                  85.55566  

 

                  Covariance Matrix of Transformed Residual         

       CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ        27.00000                                            

INVEQ      3.86193D-15      27.00000                              

INTRSTEQ  -1.60733D-15  -3.71773D-16      27.00000                

PRICEQ    -1.23344D-14  -1.17009D-14  -9.12410D-16      27.00000  

 

Number of observations = 27       Log likelihood = -169.683 

        Schwarz B.I.C. = 193.094 

 

                         Standard 

Parameter  Estimate        Error       t-statistic   P-value 

B0         -23.3072      8.36041       -2.78780      [.005] 

B1         .640115       .955276E-02   67.0084       [.000] 

LAMBDA     .620197       .094824       6.54053       [.000] 

ALPHA      1.15557       .281119       4.11060       [.000] 

D          -6.37858      1.17706       -5.41906      [.000] 

F          8.19093       .890868       9.19433       [.000] 

PSI        -.456334      .128849       -3.54162      [.000] 

PHI        .647412       .075012       8.63074       [.000] 

TREND      -.019354      .259267E-02   -7.46476      [.000] 

P0         -3.96640      .461670       -8.59142      [.000] 

 

Standard Errors computed from quadratic form of analytic first 

derivatives (Gauss) 

----followed by equation by equation output 
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7.2.3 Nonlinear two-stage least squares: INST= 

A nonlinear equation from a simultaneous model can be estimated by LSQ 
using a method developed by Amemiya (1974). The objective function for 
estimation is the sum of squared fitted residuals, where the fitted residuals are 
the fitted values from a regression of the true residuals on the instrumental 
variables. If the equation is linear in its parameters, this amounts to standard 
two-stage least squares, and LSQ will not iterate. If it is nonlinear, the 
estimates are consistent but not generally asymptotically efficient (relative to 
nonlinear three-stage least squares or FIML). 
 
Nonlinear two-stage least squares in TSP is invoked by the INST= option. 
INST is followed by a list of instrumental variables in parentheses. For 
example, to estimate the investment function in the illustrative model of 
Chapter 3, 
  

LSQ(INST=(C,G,LM,TIME)) INVEQ ; 

7.2.4 Linear or nonlinear three-stage least 
squares: 3SLS 

Three-stage least squares is an instrumental variable method for estimating a 
system of simultaneous equations where there may be endogenous variables on 
the right-hand side as well as contemporaneous correlation of the disturbances. 
The advantage of 3SLS over FIML is that the model does not have to be 
completely specified; the estimates for the equations and parameters can be 
consistent even if the exact form of the rest of the model is unknown. For 
example, you may have a set of equations describing the quantities demanded 
of certain goods as a function of the prices of goods. Prices may be determined 
as part of a larger economy that you do not wish to model explicitly. With the 
choice of suitable instruments, you could estimate the demand equations 
consistently without specifying the complete model. FIML would require 
specification of the price equations, although of course you could always do 
LIML using FIML by specifying a price equation that is a linear function of all 
the instruments.  
 
To specify three-stage estimation use the INST= option and a list of equation 
names with 3SLS (or LSQ). For example, to estimate part of the illustrative 
model by three-stage least squares, 
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3SLS(INST=(C,G,LM,TIME)) CONSEQ,INTRSTEQ,PRICEQ; 
 

The output from this example is shown on the following pages. (Figure 7.2) 
 
The options for three-stage least squares are the same as those for univariate 
and multivariate regression. To request iteration over the covariance matrix of 
the residuals, use the MAXITW= option.13 MAXITW=0 is the default. 
  
3SLS estimates a set of equations by the same technique described for 
nonlinear two stage least squares, but considers the covariances across 
equations as well. The criterion for estimation is the sum of squared 
transformed fitted residuals. For each observation, fitted residuals are formed 
as the fitted values from regressions on instrumental variables. These are 
transformed by multiplying by the square root of the covariance matrix of the 
residuals. The contribution of the observation to the criterion is then the sum of 
squared values of these transformed fitted residuals.  
 
For further details on the properties of this estimator, see Jorgenson and 
Laffont (1974) and Amemiya (1977). The NL3SLS estimator discussed by 
Amemiya is slightly more general in its choice of instruments than 
Jorgenson-Laffont; TSP uses the form specified by the latter where the same 
set of instruments is used for all equations. See GMM in the Reference Manual 
for two methods of specifying different instruments for each equation. The 
method of estimation is described in Berndt, Hall, Hall, and Hausman (1975). 
If the model is linear in its parameters and variables, three-stage least squares 
estimates are asymptotically efficient. 
  
The three-stage estimation criterion requires an estimate of the residual 
covariance matrix. TSP obtains this by carrying out an initial estimation with 
the covariance matrix set equal to an identity matrix. If there are no parameters 
in common among the equations, these initial estimates are just the two-stage 
estimates. Then the covariance matrix is estimated from the true (not fitted) 
residuals from the initial estimates. Unless the user specifies otherwise, this 
estimate of the covariance matrix will be held fixed while the parameters are 
re-estimated to obtain three-stage least squares estimates. 

                                                      
13

Note that iteration with MAXITW>0 may require a large number of iterations to converge. It 

is normally helpful only in demand systems to obtain estimates invariant to which share 
equation is dropped. 



 7. Nonlinear estimation 97  
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                           THREE STAGE LEAST SQUARES 

                           ========================= 

 

EQUATIONS: CONSEQ INVEQ INTRSTEQ PRICEQ 

 

INSTRUMENTS: C G LM TIME 

MAXIMUM NUMBER OF ITERATIONS ON V-COV MATRIX OF RESIDUALS = 0 

 

NOTE => The model is linear in the parameters. 

 

Working space used: 4441 

 

F= 3626.2758582  FNEW= 3561.9232085  ISQZ=  0 STEP= 1.    CRIT= 64.353 

CONVERGENCE ACHIEVED AFTER   1 ITERATIONS 

    2 FUNCTION EVALUATIONS. 

 

END OF TWO STAGE LEAST SQUARES ITERATIONS (SIGMA=IDENTITY). THREE STAGE 

LEAST SQUARES ESTIMATES WILL BE OBTAINED USING THIS ESTIMATE OF SIGMA: 

                          RESIDUAL COVARIANCE MATRIX 

 

                CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ       146.86262                                            

INVEQ        -66.47420     185.26175                              

INTRSTEQ       1.42782      -0.25296       1.12389                

PRICEQ       -0.077880       0.13425     0.0040156    0.00050308  

 

F= 33.574061600  FNEW= 33.029434947  ISQZ=  0 STEP= 1.    CRIT= .54463 

CONVERGENCE ACHIEVED AFTER   1 ITERATIONS 

    4 FUNCTION EVALUATIONS. 

 

--------continued on next page ----- 
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Figure 7.2 Sample Three Stage Least Squares Output 

                           THREE STAGE LEAST SQUARES 

                           ========================= 

 

                          Residual Covariance Matrix 

                CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ       147.57391                                            

INVEQ        -67.94115     186.02693                              

INTRSTEQ       1.40383      -0.47859       1.12388                

PRICEQ        -0.11551       0.17869     0.0033926    0.00064413  

 

                              Weighting Matrix 

                CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ        0.082517      0.036336     -0.010321      0.014659  

INVEQ                       0.080277    -0.0024068     -0.032191  

INTRSTEQ                                   0.94958      -0.20911  

PRICEQ                                                  51.28644  

 

                  Covariance Matrix of Transformed Residuals 

                CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ        27.13077                                            

INVEQ         -0.20479      26.92743                              

INTRSTEQ     -0.059263      -0.46166      27.04051                

PRICEQ        -4.15961       3.11028      -0.26982      31.87350  

 

Number of observations = 27  E'PZ*E = 33.0294 

 

                         Standard 

Parameter  Estimate        Error       t-statistic   P-value 

B0         -21.5643      8.92636       -2.41580      [.016] 

B1         .638235       .010190       62.6309       [.000] 

LAMBDA     .708188       .157971       4.48301       [.000] 

ALPHA      .893806       .466509       1.91595       [.055] 

D          -6.57444      1.18326       -5.55619      [.000] 

F          8.33843       .895622       9.31021       [.000] 

PSI        1.12213       .319314       3.51421       [.000] 

PHI        -.090421      .194599       -.464651      [.642] 

TREND      .351033E-02   .673604E-02   .521127       [.602] 

P0         .543581       1.18972       .456899       [.648] 

 

Standard Errors computed from quadratic form of analytic first 

derivatives (Gauss) 

 

Equation: CONSEQ 

Dependent variable: CONS 

 

       Mean of dep. var. = 519.033 

  Std. dev. of dep. var. = 147.459 

Sum of squared residuals = 3984.50 

   Variance of residuals = 147.574 

Std. error of regression = 12.1480 

               R-squared = .992999 

           Durbin-Watson = .466537 [.000,.000] 

 

------ followed by more equation by equation output ------ 
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7.2.5 Generalized Method of Moments 

3SLS coincides with the GMM estimator of Hansen (1982) when the errors are 
serially independent and the same instruments are used for each equation. In 
Hansen's notation, the GMM estimator sets the orthogonality conditions 

ut(b,y,X) ⊗  zt as close to zero as possible using the estimated variance of this 
vector as the metric. To perform this type of estimation in LSQ, define each 
element of the vector u as a normalized or unnormalized equation using 
FRML. The vector of z's are specified as instruments in the INST list. The 
nonlinear three stage least squares estimates obtained are consistent and 
asymptotically efficient, and are also numerically identical to those obtained by 
the corresponding GMM estimator (for the default NOHET and NMA=0 
options). 
 
As an example, consider the simplest version of the Hansen-Singleton model 
[Hansen and Singleton (1982); for a simple presentation of the Euler equation 
for this type of model, see Hall (1978)]: a consumption-based asset pricing 
model where investors have a utility function of the constant relative risk 
aversion form. Denote consumption in period t as Ct and the one period return 
on asset j as xjt. Then the representative agent model of intertemporal utility 
maximization implies the following population Euler equations in equilibrium: 

{ }1[ ( / ) 1] 0
t t t jt mt

E C C x zαβ − − =  

where β is the discount rate and the zmt, m=1,...,M are in the agent's 
information set at time t (they may include such things as lagged asset prices 
and consumption). In Hansen's notation ut is the expression in the square 
brackets and the z's are the instruments.  
 
This version of the Hansen-Singleton model can be easily estimated in the 
3SLS procedure of TSP; the estimates coincide with GMM estimates, provided 
there is no serial correlation in the u's (which will be true if the assets in u are 
stocks or other one period assets). Here is how to set up the problem when 
there are two assets and you wish to use four lags as instruments: 
 

LIST LAGXS C X1(-1)-X1(-4) X2(-1)-X2(-4) ; 
LIST UEQS U1EQ U2EQ ; 
FRML U1EQ BETA*(CONS/CONS(-1))**ALPHA * X1(-1) - 1 ; 
FRML U2EQ BETA*(CONS/CONS(-1))**ALPHA * X2(-1) - 1 ; 
PARAM BETA 1 ALPHA -1 ; 
GMM(HET,INST=LAGXS) UEQS ; 
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The preceding GMM example allows for conditional heteroskedasticity of the 
disturbances (the option HET, which is the default), but not for serial 
correlation. If the asset returns in the previous example were based on 
multi-period rather than one-period returns, there is no reason to expect that 
the covariance of the marginal utility of consumption with these returns will 
not be correlated across the periods comprising the multi-period returns (see 
Hansen and Singleton, section 2 for a further discussion of this point). In this 
case the estimates obtained by GMM will be consistent but not asymptotically 
efficient, since they use the "wrong" covariance matrix of the orthogonality 
conditions as a weighting matrix. For this case, the NMA option of the GMM 
command allows you to compute the correct weighting matrix automatically.  
 
Suppose that in the previous problem you wanted to use a covariance estimate 
that incorporates moving average disturbances of second order. You would use 
the NMA option to specify this: 
 

GMM(HET,NMA=2,INST=LAGXS) UEQS ; 
 
Among others, Newey and West (1987) pointed out that the original estimate 
proposed by Hansen and Singleton in this case is frequently not positive 
definite in finite samples and proposed the use of declining weights to 
guarantee positive semi-definiteness. TSP offers two choices of spectral 
density kernels (KERNEL=BARTLETT or PARZEN) to compute these 
weights; the default choice is BARTLETT. 

7.3 Full information maximum likelihood: FIML 

FIML is the asymptotically efficient estimator for linear and nonlinear 
simultaneous models, under the assumption that the disturbances are 
multivariate normal. When this assumption fails, FIML may still be 
asymptotically efficient; see White (1982) or Gourieroux, Montfort, and 
Trognon (1984) for a discussion of when this will be true.  
  
Because FIML operates on the model as a whole, the model must be complete 
-- it must have as many equations as endogenous variables. Thus in addition to 
the behavioral equations containing unknown parameters, FIML must be 
supplied with any identities that involve the endogenous variables. Identities 
provide a convenient way of entering repeated functions of endogenous 
variables into several equations; another way is the EQSUB command. 
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In FIML, the endogenous variables are listed in parentheses after the 
ENDOG= keyword. The corresponding instruments are then defined 
implicitly. For example, the illustrative model is estimated by FIML: 
 

FIML(ENDOG=(CONS,I,R,LP,GNP)) 
CONSEQ,INVEQ,INTRSTEQ,PRICEQ,GNPID; 

 

The results of executing this FIML command are shown in Figure 7.3 on the 
following pages. 
 
The objective function for FIML is the log likelihood, which involves the log 
of the determinant of the residual covariance matrix, and the log of the 
determinant of the Jacobian (the derivatives of the residuals with respect to the 
endogenous variables).14 If there no simultaneity and no nonlinear functions of 
the endogenous variables appear in the equations, the Jacobian term drops out, 
and the model is equivalent to multivariate regression.  
 
FIML can be used to estimate nonlinear LIML models (see Section 5.5 for 
linear LIML models). In addition to the FRML for the equation of interest, 
FRMLs must be specified for each of the remaining endogenous variables. To 
make this a LIML model, these FRMLs should be linear in the instruments and 
there should be no constraints among their parameters. For example, to 
estimate the nonlinear AR1 equation of Section 7.2.1 with LIML:  
 

FRML CONSAR1 CONS = A + B*GNP + RHO*(CONS(-1) - 
(A+B*GNP(-1)); 

PARAM A,B,RHO; 
? Eq for GNP as function of the instruments: 
FORM GNPEQ GNP C G LM TIME CONS(-1) GNP(-1);  
LSQ(SILENT) CONSAR1 ;           ? Obtain starting values 
LSQ(SILENT) GNPEQ ;               ? for parameters using LSQ 
? Then estimate LIML model using FIML 
FIML(ENDOG=(CONS,GNP)) CONSAR1,GNPEQ; 
 
By default, the standard errors for the FIML structural parameters are 
computed from the matrix of sums of squares of the outer products of the 
gradient of the likelihood function with respect to both the structural 

                                                      
14

Note that because all of TSP’s nonlinear routines use minimization algorithms, the actual 

objective function used is the negative of the log likelihood. Final output for FIML and other 
procedures displays the correct value, however.  
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parameters and the unique elements of the inverse residual covariance matrix 
(the BHHH matrix). These standard errors are consistent and generally larger 
than those calculated in versions of TSP prior to 4.1, which were computed 
from the submatrix for the structural parameters only. For instance, the LIML 
example above has nine structural parameters and three covariance parameters 
(NEQ*(NEQ+1)/2).  
 

Technical note: Calzolari and Panattoni (1988) studied eight alternate FIML 
standard error formulas and demonstrated the consistency and good 
small-sample performance of the FIML standard errors computed in TSP 4.1 
and later versions.15 They also showed that the R ("Gauss") matrix provided an 
inconsistent estimate of the standard errors when the model was nonlinear.16 
The R matrix is still used for iterations (HITER=G), but is not available for 
standard errors because of this inconsistency. Although HITER=C provides 
quadratic convergence close to the optimum and can be dramatically better 
than HITER=G, FIML uses HITER=G as the default, because Calzolari and 
Panattoni found it tends to perform better when the starting values are far from 
the optimum. HCOV=C (Hessian based on numerical second derivatives from 
analytic first derivatives) provides generally smaller standard errors than the 
default HCOV=B. Calzolari and Panattoni found that HCOV=B is usually 
closer to the true finite sample distribution of the parameters. 
 

                                                      
15 The standard errors computed in TSP versions prior to 4.1 were not technically consistent, 

but have been shown to have reasonably good small-sample properties. TSP Version 4.1 was 
released in 1986, so it is unlikely you are using any version released prior to that date. 
16

 This matrix was used by TSP 4.0 when the number of parameters was larger than the number 

of observations (in which case the BHHH matrix will be singular, since its rank will be less 
than its order). 
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Figure 7.3 Sample Output from FIML 

 

                      Full Information Maximum Likelihood 

                      =================================== 

 

Equations: CONSEQ INVEQ INTRSTEQ PRICEQ 

Identities: GNPID 

Endogenous variables: GNP CONS I R LP 

 

NOTE => The model is linear in the parameters. 

Working space used: 3195 

 

F= 215.27935000 FNEW= 209.93076621 ISQZ= 2 STEP= 2.  CRIT= 6.4751 

------ iteration output -------- 

F= 197.96652132 FNEW= 197.96647921 ISQZ= 1 STEP= 1.  CRIT= .44381E-04 

 

CONVERGENCE ACHIEVED AFTER  20 ITERATIONS 

   96 FUNCTION EVALUATIONS. 

 

                          Residual Covariance Matrix 

 

                CONSEQ         INVEQ      INTRSTEQ        PRICEQ  

CONSEQ       147.01288                                            

INVEQ        -64.17971     187.49251                              

INTRSTEQ       1.56699      -0.85116       1.12552                

PRICEQ         0.31721      -0.30545     0.0090306     0.0010215  

 

Number of observations = 27       Log likelihood = -197.966 

        Schwarz B.I.C. = 221.377 

 

                         Standard 

Parameter  Estimate        Error       t-statistic   P-value 

B0         -15.5706      34.5910       -.450133      [.653] 

B1         .631141       .041342       15.2664       [.000] 

LAMBDA     .728881       .418846       1.74021       [.082] 

ALPHA      .835629       1.27397       .655926       [.512] 

D          -6.77371      5.58569       -1.21269      [.225] 

F          8.49063       4.04847       2.09724       [.036] 

PSI        -.501316      1.07288       -.467260      [.640] 

PHI        .658728       .553451       1.19022       [.234] 

TREND      -.020250      .016572       -1.22195      [.222] 

P0         -4.02511      3.41453       -1.17882      [.238] 

 

Standard Errors computed from covariance of analytic first derivatives 

(BHHH) 

-------- equation by equation output ------- 
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8. TESTING HYPOTHESES 
 
After you have estimated a model using one of the methods described in earlier 
chapters, you may want to test some hypotheses about the estimated 
parameters of the model. For example, you may want to test whether one or 
more variables belong in an equation, or whether the parameters satisfy some 
linear or nonlinear constraint. TSP has many methods for performing such 
tests, and in this chapter, we outline some of them; your ingenuity may find 
others. 
 
Hypothesis testing of linear or nonlinear constraints on the parameters of 
econometric models can generally be performed using one of three methods. 
These methods are: the likelihood ratio (which compares constrained and 
unconstrained estimates), the Wald test (based on the unconstrained estimates), 
and the Lagrange multiplier, or LM, test (based on the constrained estimates).17 
In different situations, you may find one or the other of these tests easier to 
compute. Although all are asymptotically equivalent, in finite samples the 
results will differ (except in very specific simple cases). For example, in the 
case of linear constraints in a generalized least squares model, the three 
statistics obey the following inequality: 

Wald ≥ LR ≥ LM 

In this chapter we outline the tests that can be used with the linear estimation 
methods: the t-test, F-test, and a special version of the F-test called the Chow 
test. Then we discuss the tests available for testing nonlinear hypotheses, and 
linear or nonlinear hypotheses about nonlinear models. These fall into two 
basic classes, depending on the form of the hypothesis: the likelihood ratio and 
quasi-likelihood ratio test, and the Wald test. The t-test and F-test for linear 
models, and the Wald test for nonlinear models can all be done with the 
ANALYZ command. Finally we briefly discuss the Lagrange multiplier 
(score) test.  
 
The LM test is an example of a type of test called a "specification test", for 
which a specific alternate hypothesis is often not available. Another large class 
of specification tests may be generated by a principle enunciated by Hausman 
(1977). The Hausman test is discussed in section 8.9 and an example is given 
in Section 13.4.1. 

                                                      
17

See the excellent article by Engle (1985) for further information and references. 
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Classical hypothesis testing involves accepting or rejecting decisions based on 
tabulated significance levels for the theoretical distribution of the test statistic. 
TSP provides these tables in the form of a procedure (CDF) so that you can 
easily find the p-level for any test statistic you calculate. The Student's t, F, 
chi-squared, normal, and bivariate normal distributions are available. CDF also 
contains distributions for the Dickey-Fuller tests for unit roots and the 
Engle-Granger cointegration tests, which are discussed in Chapter 11.  

8.1 t-tests 

The simplest hypothesis test is the t-test, usually a test for equality of a single 
coefficient in your model with some prespecified value, the most common 
being  zero. TSP always prints out the value of the statistic for the t-test of zero 
in the table of regression results. 
 
In general, t-tests on single coefficients are of the form  

(estimated coeff - hypothesized value)/(estimated std error)  

For the standard case of testing against zero, this simplifies to the ratio of the 
estimated coefficient to its standard error. For example, if you want to test the 
hypothesis that the coefficient on X1 is one: 
 

OLSQ Y C X1 X2 X3; 
? T-test done manually: 
SET TTEST = (@COEF(2)-1)/@SES(2); 
? X1 is the second variable in @COEF and @SES 
SET DFT = @NOB - @NCID;       
? degrees of freedom - to compute the P-value 
CDF(T,DF=DFT) TTEST;   ? print TTEST and its P-value  
 
You can do the same thing more easily using the ANALYZ procedure 
(described below): 
 

FRML TEST1 X1-1;  ? Hypothesize that X1=1 
ANALYZ TEST1;  ? Compute F-test (1, .) 
 
For this example, an even easier way to compute the test is to rewrite the 
model so that the hypothesis of interest is a t-test for a zero coefficient: 
 

YX = Y-X1 ;      ? Impose the constraint that the coeff of X1 is 1 
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OLSQ YX C X1 X2 X3 ; 
 
For this OLS estimation, the t-test for X1=0 is now a test that the coefficient in 
the original model was 1, and can be read off the regression output.  
 
T-tests of the above kind, both simple and complex, may be performed on the 
results of any TSP linear or nonlinear estimation procedure. For some 
estimation methods, mostly nonlinear models, the resulting statistic will not be 
a t-statistic, but an asymptotically normal variable. The distribution of that 
statistic is almost the same as a two-tailed t-statistic based on more than 50 
observations and provides a less conservative test in small samples. For certain 
time series regressions (those using integrated variables), tests like the above 
result in a Dickey-Fuller test, rather than a t-test.(See Section 11.6.) 
 
T-tests can also be computed and displayed for estimators you have 
programmed with matrix procedures. Just supply the TSTATS command with 
the names of the coefficient vector and the variance-covariance matrix, and 
TSTATS will print a standard regression output table. For example:  
 

TSTATS (NAMES=(BETA1-BETA7)) BETA VARB; 
 
prints a table of the seven BETA coefficients, together with their standard 
errors (the square roots of the diagonal elements of VARB) and t-statistics for 
the hypothesis that each of them is zero.  

8.2 F-tests 

F-tests are commonly used to test linear hypotheses which involve more than 
one coefficient. The simplest way to compute F-tests is to use the ANALYZ 
command, where you write one FRML for each restriction. ANALYZ will 
compute the value of each restriction, the F-statistic for all the restrictions as a 
joint test, and the implied constrained values of the original coefficients.18 For 
example, to test that the sum of the coefficients on X1 and X2 equals one, use 
the following commands: 
 

OLSQ Y C X1 X2 X3; 
? write the restriction so that the value would be zero 
? if the restriction is true: 
FRML SUM1 X1+X2 - 1; 

                                                      
18

 When used after a command other than OLSQ,  ANALYZ computes an asymptotic chi-

squared test. 
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ANALYZ SUM1; 
 
Another way to test linear hypotheses is to estimate the unconstrained model, 
then impose the null hypothesis and estimate a constrained version of the 
model. In this case an F-statistic (with numerator degrees of freedom equal to 
the number of constraints and denominator degrees of freedom equal to the 
degrees of freedom in the unconstrained model) can be computed from the 
sum of squared residuals of the two models. Our example above had one 
constraint, that the sum of b1 and b2 was unity (where b1 and b2 are the 
coefficients of X1 and X2, respectively). We can write this constraint as b1=(1-
b2), so we can impose this by regressing (Y-X1) on C, (X2-X1), and X3. The 
commands for this test are: 
 

OLSQ Y C X1 X2 X3 ;  ? Unrestricted Model 
SET SSRU = @SSR ;  
SET DFU = @NOB-@NCID ; ? Sum of squares and deg. of freedom 
GENR YX1 = Y-X1 ;       ? create variables 
GENR DX = X2-X1 ;   ? for restricted model. 
OLSQ YX1 C DX X3 ;   ? run restricted model. 
SET FSTAT = ((@SSR-SSRU)/1)/(SSRU/DFU) ; 
CDF(F,DF1=1,DF2=DFU) FSTAT ;? Print out p-value for F-statistic. 
 
TSP's internal variable @NOB contains the number of observations in the 
current SMPL and is always available for use in computations. @NCID is the 
number of estimated coefficients. Note the use of CDF to print out the 
significance level associated with this F-statistic. 
 
One advantage of this last technique is that it easily encompasses situations 
where there may be many constraints, particularly situations consisting of 
several zero restrictions on variables. It is a variation on the quasi-likelihood 
ratio techniques discussed in the section on nonlinear two- and three-stage 
least squares. 

8.3 Chow tests 

Chow tests are a special form of F-test that check the stability of regression 
coefficients over two or more subsamples of the data. This is normally done by 
running a regression for the whole sample, then running the same regression 
for subsamples, and comparing the sums of squared residuals (SSRs). An 
F-test for the constraint that the two sets of coefficients are equal can be 
computed from the SSRs. However, TSP automates this particular form of the 
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F-test, using the options CHOW and CHOWDATE in the REGOPT 
procedure. Here is a simple example of a Chow test, both automated and 
manual: 
 

SMPL 47:1 80:1; 
REGOPT(CHOWDATE=60:2) CHOW;  
? The two periods are 47:1-60:1; 60:2-80:1 
OLSQ Y C X;  ? The Chow test is computed automatically. 
 
To compute this F-statistic “by hand”, run the unconstrained and constrained 
regressions, and then form the F ratio: 
 

? estimate for the whole sample. 
SMPL 47:1 80:1 ; 
SET DF = @NOB-4 ;  
OLSQ Y C X ; 
SET SSR0 = @SSR ; 
 
? estimate for subperiod 1. 
SMPL 47:1 60:1 ; 
OLSQ Y C X ; 
SET SSR1 = @SSR ; 
 
? estimate for subperiod 2. 
SMPL 60:2 80:1 ; 
OLSQ Y C X ; 
SET SSR2 = @SSR ; 
 
? compute and print the Chow test. 
SET CHOW = (SSR0-SSR1-SSR2)*DF/(2*(SSR1+SSR2)) ; 
CDF (F,DF1=2,DF2=DF) CHOW ; 
 

8.4 Pseudo-F tests for 2SLS 

The 2SLS residuals are asymptotically normal, and can be used to form a 
pseudo-F test that has an approximate F distribution, following Startz (1983). 
The main difference is that the 2SLS objective function @PHI (e'PZe) is used 
in the numerator instead of @SSR. The previous F test example can be used to 
illustrate the pseudo-F test: 
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2SLS Y C X1 X2 X3 | C Z1-Z3 ;  ? Unrestricted model 
SET PHIU = @PHI ; SET S2U = @S2 ;  
SET DFU = @NOB-@NCID ; 
GENR YX1 = Y-X1 ; GENR DX = X2-X1 ; 
2SLS YX1 C DX X3 | C Z1-Z3 ;  ? Restricted model 
SET PSEUDOF = ((@PHI-PHIU)/1)/S2U ; 
CDF(F,DF1=1,DF2=DFU) PSEUDOF ; 
 
Chow tests can also be performed with this methodology, but be careful to 
expand the instrument list for the restricted model (the one estimated on the 
whole period) by multiplying it by subsample dummies. This makes the 
instruments the same for all models being compared: 
 

? set up the subsample dummies. 
SMPL 47:1 80:1 ; LOW = 0 ; HIGH = 0 ; 
 
? estimate for subperiod 1. 
SMPL 47:1 60:1 ; LOW = 1 ; 
2SLS Y C X | C Z ; 
SET PHI1 = @PHI ; SET SSR1 = @SSR ; 
 
? estimate for subperiod 2. 
SMPL 60:2 80:1 ; HIGH = 1 ; 
2SLS Y C X | C Z ; 
SET PHI2 = @PHI ; SET SSR2 = @SSR ; 
 
? estimate over the whole sample (restricted model) 
SMPL 47:1 80:1 ; 
ZLOW = Z*LOW ; ZHIGH = Z*HIGH ;  
2SLS Y C X | LOW HIGH ZLOW ZHIGH ; 
SET PHI0 = @PHI ; 
 
? compute and print the pseudo-F version of the Chow test. 
SET DF = @NOB-4 ; 
SET PFCHOW = ((PHI0-PHI1-PHI2)/2) / ((SSR1+SSR2) / DF) ; 
CDF (F,DF1=2,DF2=DF) PFCHOW ; 
 

8.5 Likelihood ratio tests 

In many ways, the likelihood ratio test is conceptually the easiest of the tests 
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we consider in this chapter. It can be used for any model that is estimated by 
maximum likelihood. In TSP, this includes OLSQ, AR1, BJEST, LSQ without 
instrumental variables (nonlinear least squares or multivariate regression), 
FIML, PROBIT, TOBIT, SAMPSEL, LOGIT, and ML. For these methods, 
TSP prints out a value of the logarithm of the likelihood evaluated at the 
estimated parameters and stores it under the name @LOGL. 
 
If L1 is the value of the likelihood function for the maximum of the 
unconstrained model and L 0 is the value when the constraints are imposed, 
then the likelihood ratio test is computed as 

LR = 2(L1-L0) 

This test is always positive (or zero) since the likelihood of the unconstrained 
model is at least as high as that of the constrained model. The LR statistic is 
distributed asymptotically as a chi-squared variable with degrees of freedom 
equal to the number of constraints. For further information on the asymptotic 
properties of this statistic in nonlinear models estimated by maximum 
likelihood, see Gallant and Holly (1980).  
 
To compute this test in TSP, save the two values of @LOGL for the 
unconstrained and constrained estimates, difference them, and multiply by 2. 
You can use CDF with the chi-squared distribution to obtain the associated p-
value. 

8.6 Nonlinear two- and three-stage least squares -- QLR  

A quasi-likelihood ratio test can be used for hypothesis testing in a nonlinear 
model estimated by two- or three-stage least squares. This type of test is 
discussed in Gallant and Jorgenson (1979). The tests are based on the principle 
that if an estimated function of the data is asymptotically normally distributed 
with a variance-covariance matrix that can be consistently estimated, it is 
possible to construct a variable that is chi-squared distributed from this 
function of the data. In the cases discussed here, the function in question is the 
vector of differences between the residuals under the null and the residuals 
under the alternative, which has expectation zero under the null. The 
appropriate covariance matrix estimate is the minimum distance weighting 
matrix under the most unrestricted model.  
 
The QLR test which Gallant and Jorgenson propose for three-stage least 
squares is the following: 

T = n (Q0 - Q1) 



112 Nonlinear Estimation  
  

 

where Q0 is the value of the minimum distance criterion for the null 
hypothesis, Q1 its value for the maintained hypothesis, and n the number of 
observations. The formula for the minimum distance function Q(b), b a vector 
of parameters, is 

1( ) '( ) ( )
Z

Q e b S P e b
−= ⊗  

where e(b) is the stacked vector of residuals from the model, S a consistent 
estimate of the covariance of the disturbances, and PZ the projection matrix of 
the instruments, Z(Z'Z)

-1
Z'. LSQ minimizes nQ(b) when it is doing three-stage 

least squares and prints it as F =, FNEW =, and E'HH'E. It may be retrieved 
under the name @PHI after convergence. 
 
A cautionary note on testing with a minimum distance criterion: the statistic 
can be ill-behaved (have the wrong sign) if the estimate of S is not held 
constant across the null and maintained hypotheses. To do so, obtain a 
consistent estimate of S using nonlinear two-stage least squares and then 
maintain that estimate as a constant weighting matrix while doing three-stage 
least squares on the two models. For example: 
 

3SLS(INST=(Z1,Z2,...),MAXITW=0) MEQ1 MEQ2 ... ; 
COPY @COVU S ; 
3SLS(INST=(Z1,Z2,...),MAXITW=0,WNAME=S) EQ1 EQ2 ... ; 
SET Q0 = @PHI ; 
3SLS(INST=(Z1,Z2,...),MAXITW=0,WNAME=S) MEQ1 MEQ2 ... ; 
SET Q1 = @PHI ; 
 
SET TEST = Q0-Q1 ;  
CDF (CHISQ,DF=# constraints) TEST ; 
 
Q0 is the objective function for the null hypothesis and Q1 is the maintained 
hypothesis. The first estimator is nested within the second, hence Q0 ≥ Q1, 
and the test is necessarily positive. This test is asymptotically chi-squared with 
degrees of freedom equal to the number of restrictions imposed, that is, the 
number of parameters in the second model minus the number in the first. 
 
For two-stage least squares the objective function used by TSP is  

( ) (1/ ) ( ) ' ( )
Z

Q b n e b P e b=  

In this case, the same kind of test can be computed as  

T = n (Q0 - Q1)/s
2
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where s
2 is a consistent estimate of the variance of the disturbance (in 

particular, one may use the standard error squared of the two stage estimate of 
the maintained hypothesis). In TSP, nQ(b) is stored as @PHI when two stage 
least squares estimates are obtained with LSQ, so that a QLR test for two-stage 
least squares can be done in the following way: 
 

LSQ(INST=(Z1,Z2, ...)) MEQ1 ; 
SET S2 = @S*@S ; SET Q1 = @PHI ; 
LSQ(INST=(Z1,Z2, ...)) EQ1 ; 
SET Q0 = @PHI ; 
SET TEST = (Q0-Q1)/S2 ;  
CDF (CHISQ,DF=# constraints) TEST ; 

8.7 Wald tests for linear/nonlinear restrictions: ANALYZ 

The likelihood ratio and quasi-likelihood ratio tests, which compare the 
estimates of a constrained and unconstrained version of the model, are best 
suited to testing hypotheses of the form 

b = f(g) 

that is, some larger set of parameters b is expressed as a set of nonlinear 
functions of a smaller set g. When the constraint is expressed this way, it is 
usually easy to write the equations for both the unconstrained and constrained 
models. However, likelihood ratio tests have the disadvantage of requiring the 
estimation of both forms of the model, which can become expensive (in terms 
of CPU time) for large nonlinear models. 
 
The Wald test provides an alternate method for performing the same test. 
Asymptotically it is the same as the likelihood ratio test if the null hypothesis is 
true, although it may differ quite a bit in practice. Choosing among these tests 
is not straightforward. See Gallant and Holly (1980) and Berndt and Savin 
(1977) for further discussion. 
 
In TSP, the Wald test can be done with ANALYZ; it is a generalization of the 
t- and F-tests described above. This test is also known as the delta method in 
nonlinear contexts. Suppose the hypothesis to be tested can be written as 

h(b) = 0 

where b is the vector of parameters of the unconstrained model and h(b) is a 
set of m nonlinear constraints on those parameters. Given a set of estimates b 

and the associated covariance estimate V(b), ANALYZ computes the 
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constraints h(b) (a row vector) and their covariance matrix: 

[ ( )] ' ( )
h h

V h b V b
b b

∂ ∂   
=    

∂ ∂   
 

all evaluated at the estimated b vector. From h(b) and its variance we form a 
test statistic 

1( ) [ ( )] ( ) 'T h b V h b h b−=  

This test statistic is distributed asymptotically as a chi-squared variable with 
degrees of freedom equal to m under the null hypothesis (when the constraints 
hold). The p-value of χ2

(m) is printed; if you are testing at the .05 significance 
level, and the p-value is less than .05, the null hypothesis is rejected. 
 
ANALYZ computes this test if you specify the constraints h(b) as FRMLs in 
unnormalized form (no left-hand side variable or equal sign), estimate the 
unconstrained model, and then issue an ANALYZ command with the names of 
FRMLs as arguments.  
 
Gallant and Jorgenson give an example of testing for symmetry in a translog 
consumer demand system with three goods (two equations to be estimated). 
The TSP commands to compute this example are: 
 

FRML EQ1 Y1 = (A1 + B11*LNP1 + B12* LNP2 + B13*LNP3 + 
B1T*TIME)/ 

     ( -1 + (B11+B21+B31)* LNP1 + (B21+B22+B23)*LNP2 
         + (B31+B32+B33)* LNP3 + (B1T+B2T+B3T)*TIME) ; 
FRML EQ2 Y2 = (A2 + B21*LNP1 + B22* LNP2 + B23*LNP3 + 

B2T*TIME)/ 
   ( -1 + (B11+B21+B31)* LNP1 + (B21+B22+B23)*LNP2 
         + (B31+B32+B33)* LNP3 + (B1T+B2T+B3T)*TIME) ; 
PARAM A1 A2 B11-B13 B21-B23 B31-B33 B1T B2T B3T ; 
LSQ (INST=(...list of instrumental variables...)) EQ1 EQ2 ; 
FRML SYM1 B12-B21 ; 
FRML SYM2 B13-B31 ; 
FRML SYM3 B23-B32 ; 
ANALYZ SYM1 SYM2 SYM3 ; 
 
ANALYZ results consist of a table with the computed differences of the 
symmetry parameters and their implied standard errors. The value of the Wald 
test, degrees of freedom, and p-value follow.  
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8.8 Lagrange Multiplier Tests (Score Tests) 

The Lagrange Multiplier test is generally based on the magnitude of the 
derivatives of the likelihood function with respect to the constraints evaluated 
at the constrained estimates. Sometimes you may find this test easier to 
compute, particularly when the alternate hypothesis is not well specified. 
 
As Breusch and Pagan (1979) among others have shown, many LM tests can 
be computed as the number of observations times the R2 from a particular 
regression depending on the hypothesis to be tested. For example, suppose you 
have estimated an equation (linear or nonlinear) under the assumption that the 
disturbances are homoskedastic and wish to test for heteroskedasticity as an 
unknown function of the exogenous variables. This unknown 
heteroskedasticity can be modeled as a polynomial function of the Xs: 

2 2 2

0 1 1 2 2 12 1 2 11 1 22 2 ..
t t t t t t

a a X a X a X X a X a Xσ = + + + + + +  

A test for heteroskedasticity of σ2 is a test that a1=a2=a12=...=0 in this 
equation. The test is performed by regressing a consistent estimate of σ2 on the 
exogenous variables of the model and their powers, and computing the TR2 of 
the regression, where T is the sample size: 
 

OLSQ Y C X1 X2 ; 
USQ = @RES*@RES ; 
X1X2 = X1*X2 ; X1SQ = X1*X1 ; X2SQ = X2*X2 ; 
OLSQ(SILENT) USQ C X1 X2 X1X2 X1SQ X2SQ ; 
SET TRSQ = @NOB*@RSQ ; 
CDF (CHISQ,DF=5) TRSQ ; 
 
This particular LM test has been automated and is more easily computed using 
the WHITEHT option on REGOPT: 
 

REGOPT(PVPRINT) WHITEHT; 
OLSQ Y C X1 X2; 
 
In the case of qualitative dependent variable models, the same method can be 
used, but with the derivative of the model with respect to σ2 substituted for the 
dependent variable USQ. Here is a more complex example based on the 
sample selection model described in Section 9.3 of this manual:  
 
Suppose that you wish to test for heteroskedasticity of the disturbance e2 in the 
sample selection model, using the form  
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σ
2
 = G(α + Xtγ) 

where G is an arbitrary monotonic transformation. Then (see Lee and Maddala 
1985, Poirier and Ruud 1983) a simple LM test can be obtained by regressing 
the partial of the likelihood function with respect to σ2 (evaluated at the 
maximum likelihood estimates obtained under homoskedasticity) on the Xt's 
and their powers and examining the TR2 from that regression. In this case, the 
partial of the log likelihood function for a single observation with respect to σ2 
can be shown to be proportional to: 

ω = (e2t/σ)
2
 - 1 - ρ(e2t/σ)λt 

where λt is the inverse Mills ratio for the observation, stored by the SAMPSEL 
procedure as a series. The LM test for γ = 0 is a test for: 

2

log
'( ) 0

t

L
G a X

σ

∂
=

∂
 

where the degrees of freedom for the test are the number of regressors in Xt 
and all quantities are evaluated at the maximum likelihood estimates obtained 
under the null hypothesis. Note that since G'(α) does not vary across 
observations, it drops out of the R2 in the test, so that the exact monotonic 
transformation does not matter. The test is obtained by regressing ω on Xt and 
Xt

2 and examining the TR
2 from that regression. Here is an example of how to 

code this test in TSP:  
 

SAMPSEL IN79 C LOGE76 | DLE7679 C LOGE76 ; 
? List of names of sample selection coefficients: 
LIST SSCOEF DO D1 BO B1 SIGHAT RHOHAT ; 
 

UNMAKE @COEF SSCOEF ; 
SMPLIF IN79 ;    ? Choose observed data. 
UHAT = @RES/SIGHAT ;  ? Standardized residuals. 
DLOGL = UHAT*UHAT - 1 - RHOHAT*UHAT*@MILLS ; 
LOGESQ = LOGE76*LOGE76 ; 
OLSQ DLOGL C LOGE76 LOGESQ ; ? Compute LM test. 
SET TRSQ = @NOB*@RSQ ; 
CDF (CHISQ,DF=2) TRSQ ; 
 

8.9 Hausman Specification Tests 

The Hausman specification test is based on the comparison of an estimator 
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which is efficient (or more efficient) under the null hypothesis but inconsistent 
under the alternative with an estimator which is consistent (and less efficient) 
under both hypotheses. This principle may be applied in many settings; useful 
applications are testing for the exogeneity of instruments or testing for random 
versus fixed effects in panel data. When applied to the simultaneous equations 
setting to test for exogeneity, it is often called a Hausman-Wu test.  
 
A general example of a Hausman test in TSP is given in Section 13.4.1, after 
we have presented matrix operations and matrices. Some classic applications 
of the Hausman test are tests for random versus fixed effects in panel data 
(now computed  automatically in the PANEL procedure) and tests for the 
independence of irrelevant alternatives in the Logit model (Hausman-
McFadden 1984), for which an example is given at the end of Chapter 9.  
 





 9. Qualitative dependent variable models 119 

 

 

9. ESTIMATION OF QUALITATIVE 
DEPENDENT VARIABLE MODELS AND 

GENERAL ML ESTIMATION 
          
   
Economists frequently encounter a research problem where the dependent 
variable of the structural model is not directly observed. For example, the 
actual value of the variable may be observed only part of the time and whether 
or not it is observed may depend on its value or on the values of other 
variables. Alternatively, you may observe a variable that takes on several 
discrete values related to an underlying unobserved dependent variable. This is 
the case, for example, when modeling the choice among alternatives such as 
different types of products or different modes of transportation. For these 
models, ordinary least squares or other standard econometric estimators are not 
appropriate, because of the limited or qualitative nature of the observed 
dependent variable.  
 
The estimators described in this chapter are the following: 
 

TOBIT -- The dependent variable is observed only when it lies above (or 
below) some threshold value. 
 

PROBIT -- Only the sign (+/- or 1/0) of the dependent variable is observed, or 
the dependent variable only takes on two values (binary probit). 
 

SAMPSEL -- The dependent variable is not observed when another 
unobserved variable in the model lies below a threshold value (this is a 
generalization of Tobit, where one equation is a Tobit equation and the other is 
a Probit). 
 

LOGIT -- The dependent variable is the index of a choice among several 
discrete alternatives (e.g., 1, 2, or 3). There is a "value equation" for each 
alternative, and the one chosen has the highest value, although actual values 
are not observed. TSP will estimate models involving characteristics of the 
choice (conditional logit), the chooser (multinomial logit) or both (mixed 
logit). 
 

ORDPROB -- The dependent variable is a choice among ordered discrete 
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alternatives (usually 0,1,2,…). A set of ordered threshold values determine 
which category is chosen. This includes binary Probit as a special case. 
 

POISSON -- The dependent variable is an integer count (0 or positive). The 
mean is an exponential function of the explanatory variables, and the variance 
equals the mean. 
 

NEGBIN -- Same as Poisson, except the variance is proportional to the mean 
(NegBin 1), or a quadratic function of the mean (NegBin 2). 
 

ML -- ML performs maximum likelihood estimation of any model for which 
the likelihood function can be written in a FRML, or evaluated in a PROC. It 
includes all of the above estimators as special cases. 
 
The first seven procedures are designed for structural equations where the 
underlying dependent variable is linear in the parameters. Nonlinear structural 
equations can be specified for the models estimated by these procedures by 
writing the likelihood explicitly and using ML. All of the models are estimated 
by maximum likelihood, using common nonlinear maximization algorithms 
(see Chapter 10 for a discussion of nonlinear methods). 
 
TOBIT, PROBIT, SAMPSEL, and ORDPROB models have normally 
distributed structural disturbances. The disturbances in the LOGIT model have 
the Generalized Extreme Value distribution (see Manski and McFadden 
(1981), Maddala (1983), or Train (1986) for further information about this 
distribution). Estimates obtained from the binary logit model are extremely 
close to those obtained by probit, up to the implied standard deviation of the 
disturbances (approximately 1.6 versus 1.0).  
 
Standard errors robust to misspecification of the error term may be obtained 
for all models by including the HCOV=W or HCOV=NBW option. They are 
computed using the first and second derivatives of the likelihood function. 
However, be aware that recent Monte-Carlo work [Calzolari and Fiorentini 
(1990); Griffiths, Hill, and Pope (1987); Calzolari and Panattoni (1988)] has 
shown that neither the outer product (HCOV=B) nor the robust estimate 
(HCOV=W) are as accurate as the matrix of second derivatives (HCOV=N) in 
finite samples (approximately 100 observations) when the disturbances are 
truly normal. The outer product of the analytic gradients tends to overestimate 
the variance, and the robust estimate to underestimate it. For details, consult 
the articles cited.  
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9.1  TOBIT 

The Tobit estimator was proposed by James Tobin (1958) when he was 
analyzing household expenditure on automobiles. The observed expenditure 
for many households was zero, implying that the desired quantity of 
automobile services was below the minimum price of a car. In this situation, 
estimation of a an expenditure model using ordinary least squares will result in 
coefficients biased toward zero. An alternative is the Tobit model, specified in 
the following way: 

Y*  = Xb + ε   defines a latent variable Y*  

Y = Y*                 if Y* > 0      

Y not observed   if Y* ≤ 0  

For example, Y* might be desired automobile expenditure and Y the actual 
expenditure observed. 
 
TOBIT is specified like OLSQ, with the dependent variable and a list of 
independent variables. For example, 
 

TOBIT CAREXP C,INCOME,MARSTAT; 
 
In addition to the coefficient estimates, the output will include an estimate of 
SIGMA, the standard deviation of the disturbances ε. SIGMA is estimated 
jointly with the regression coefficients, implying that the standard error 
estimates for the coefficients and SIGMA are consistent estimates. 
 
TOBIT assumes that any observations for which the dependent variable takes 
on a zero or negative value are observations not observed. You can easily 
estimate a model where the cutoff value is different from zero, or where 
observations with large values are those not observed, by using options. For 
example, if your dependent variable is Y, to use a cutoff value of THRESH 
other than zero, use 
 

TOBIT (LOWER=THRESH) Y C X ; 
 
If you want a ceiling for Y rather than a floor, then use  
 

TOBIT (UPPER=THRESH) Y C X ; 
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TOBIT produces and stores the same output as OLSQ, except for some of the 
summary statistics (R-squared, Durbin-Watson, and F-statistic). The residuals 
for the nonmissing dependent variable observations are stored in @RES and 
may be printed or plotted. Values of @RES for the missing observations will 
be stored as missing.  
 
See Maddala (1983), Chapter 6, and Amemiya (1986), Chapter 10, for further 
information on the Tobit model. The model estimated by the TOBIT procedure 
is Amemiya's Type I Tobit. Also see the Reference Manual for information on 
doing Tobit estimation with grouped data using the WEIGHT option.  

9.2 PROBIT 

Probit is used for analyzing the determinants of a choice between two discrete 
alternatives, such as working/not working. Since the dependent variable is not 
continuous, ordinary least squares is not appropriate. Instead, the dependent 
variable may be treated as an indicator of the sign of a latent continuous 
dependent variable. That is, the latent variable Y* is given by the following 
regression equation, but only Y (=0 or 1) is observed: 

Y
* 
= Xβ + ε 

Y = 1 if Y
*
 > 0 

Y = 0 if Y
*
 ≤ 0  

Often this latent variable has a meaningful interpretation, such as the net value 
of choice one (e.g., employment) versus choice zero (e.g., unemployment). 
Since the numerical scale of the latent variable is unobservable, the model is 
identified by normalizing the standard deviation (SIGMA) of the disturbance 
(ε) to one. The estimated coefficients in a Probit regression are not as easy to 
interpret has those for a linear or Tobit regression. For this reason, PROBIT 
also prints and stores a matrix, @DPDX, that contains the sample mean of the 
derivative of the probabilities Y=0 and Y=1 with respect to each independent 
variable.  
 
Here is an example of a PROBIT command: 
 

PROBIT WORKING C SCHOOL EXPER RURAL IND; 
 
Output from PROBIT is similar to that for most of the regression procedures 
except that a quantity called “scaled R-squared” is also printed. This measure, 
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due to Estrella (1996), is a generalized goodness of fit measure for a wide class 
of nonlinear models. It is computed by the following formula: 
 

 
(2 / ) log1 (log / log ) cN L

u c
L L

−−  

 
where logLu is the likelihood of the estimated model and logLc is the likelihood 
for a model with intercept only. This statistic has the familiar properties of an 
R-squared statistic: 1) it takes values on the unit interval with zero 
corresponding to no explanatory power and one to perfect explanatory power; 
2) It is is based on the likelihood ratio statistic for the hypothesis that the 
coefficients of all the explanatory variables except the constant are zero; 3) Its 
derivative with respect to the test statistic is similar to that for the 
corresponding linear case; see Estrella (1996) for the details. 
 
PROBIT can also estimate the selectivity bias in any kind of selection model, 
so that a correction can be computed for a two-stage estimator of such a model; 
in fact, PROBIT automatically stores a vector of estimated “Mills’ ratios” in 
@RMILLS. See the example in the SAMPSEL section below. 

9.3 Sample Selection: SAMPSEL 

The sample selection model is a generalization of the Tobit model when 
observability of the dependent variable (and possibly the independent 
variables) in the regression equation is affected by factors other than the value 
of the dependent variable. In the typology of Amemiya, this is a Type 2 Tobit 
model. In the original examples developed by Heckman (1974), Griliches, 
Hall, and Hausman (1978), Hanoch (1980), and others, the regression equation 
is the log of wages on schooling and experience. Obviously wages are only 
observed for people in the labor force, and labor force participation is 
governed by a separate probit equation describing the reservation wage. This 
equation is also called the selection equation; when its dependent variable is 
equal to one, the dependent variable in the regression equation is observed.  
 
The sample selection model connects the two equations by estimating a 
correlation ρ between their disturbances. This correlation is implied, for 
example, when an unobserved characteristic of the individual enters both the 
wage and selection equations. When ρ is nonzero, estimation of the regression 
equation in the selected sample where it is observed would result in biased 
coefficients. To be precise, the model estimated by SAMPSEL is the 
following: 
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y1 = X1 b1 + e1       (y1 not observed) 

d1 = 1  if y1>0 

    = 0  if y1≤0 

y2 = X2 b2 + e2  if d1=1 

    not observed  if d1=0 

Var (e1) = 1 Var (e2) = σ
2
        Corr(e1,e2) = ρ 

The selection (probit) equation and the regression equation are both specified 
on the SAMPSEL command, separated by a vertical bar (|), with the variables 
from the probit equation first. The wage and labor force participation example 
mentioned above would be specified as: 
 

SAMPSEL INLABF C SCHOOL EXP MARST | LWAGE C SCHOOL EXP ; 
 
where INLABF is a zero/one variable (d1) and LWAGE is the logarithm of the 
wage (y2). 
 
The σ (SIGMA) and ρ (RHO) parameters are estimated jointly with the 
coefficients of both equations. SAMPSEL stores the fitted probabilities and 
implied inverse Mills ratio for the probit equation, as well as the residuals for 
the observed subset of observations. See the Reference Manual for further 
information about SAMPSEL's output. 
 
Consistent estimates of the sample selection model can also be obtained with 
Heckman's two-stage method. This method involves estimating the selection 
equation with PROBIT, and using the inverse Mills ratio function of the probit 
residuals (stored by PROBIT in @MILLS) as an extra variable in a regression 
over the selected sample. For example, the example model described above 
could be estimated by the following commands: 
 

PROBIT INLABF C SCHOOL EXP MARSTAT; 
SMPLIF INLABF; 
OLSQ(ROBUST) LWAGE C SCHOOL EXP @MILLS; 
 
Unfortunately, the conventionally estimated standard errors for the coefficients 
obtained by OLSQ in this case are not consistent estimates. Better estimates 
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can be obtained, however, by using the ROBUST option in OLSQ to compute 
heteroskedastic-consistent standard errors, although even these estimates do 
not correct for the fact that the inverse Mills’ ratio contains estimated 
parameters. A second consideration is that the Heckman procedure is not fully 
efficient, because it is a two-step procedure with a non-diagonal information 
matrix. Therefore, the maximum likelihood procedure SAMPSEL will produce 
more efficient estimates (under the assumption of normal disturbances). See 
Section 8.8 for an example of testing for heteroskedasticity with SAMPSEL. 
 
In practice, extra identifying variables in the selection equation are useful. 
Without them, the @MILLS term in the regression equation can be a proxy for 
left-out nonlinear functions of the right-hand-side variables. Accordingly, a 
correct functional form specification of the regression equation is quite 
important, as is the validity of the normality assumption. For information on 
estimating this model semi-parametrically, see the article by Powell in Volume 
IV of the Handbook of Econometrics.  
 
It is also possible to use SAMPSEL to estimate models where only the selected 
sample is observed (the dependent variable in the selection model is always 
one for the observed data). See Bloom and Killingsworth (1985). However, 
identification of the parameters of the selection equation comes entirely from 
the implied weighting of the observed data by the normal cumulative 
distribution function, because there is no longer a separate probit equation in 
the likelihood function. In practice, this makes it difficult to obtain 
convergence. 

9.4 Multinomial and conditional logit: LOGIT 

When the dependent variable involves two or more discrete choices, the logit 
model can be a good way of examining the determinants of these choices. In 
the case of only two choices, it provides an alternative to the probit model; 
estimates from the two models will be very similar (see below). Logit models 
have different names and slightly different specifications, depending on 
whether the data or coefficients are choice-specific or chooser-specific. 
Multinomial logit has chooser-specific regressor variables and their 
coefficients vary over the choices. Conditional logit has choice-specific 
regressor variables and their coefficients are equal over all choices. Mixed 
logit involves both types of data and coefficients. 
 
McFadden (1973, 1976, 1985) pioneered the use of the logit model in 
econometrics. The underlying model for most econometric applications 
involves latent value (utility) equations for each choice. For example, the 
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following latent value equations apply to a model with three choices, with 
multinomial variable X that has coefficients (β1,β2,β3) and conditional variables 
(Z1,Z2,Z3) that have coefficients γ: 

V1 = a1 + Xβ1 + Z1γ + e1 

V2 = a2 + Xβ2 + Z2γ + e2 

V3 = a3 + Xβ3 + Z3γ + e3 

The latent values V1,V2,V3 are not observed, but the chosen alternative is the 
one with the highest value. If alternative 2 is chosen, for example, we know 
that V2 > V1 and V2 > V3. If the disturbances e1,e2,e3 have the Generalized 
Extreme Value distribution, the observed choice probabilities have the form  

1

exp( )
Pr(  |   )

exp( )

i i i

J

j j j

j

a X Z
i chosen choice set J

a X Z

β γ

β γ
=

+ +
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In this case, the likelihood function is computationally simple, and the 
estimation method converges rapidly. 
 
The LOGIT command resembles a regression command with the dependent 
variable followed by a list of the choice-specific (conditional) variables, and 
then a list of chooser-specific (multinomial) variables. The two lists are 
separated by a |. For example, the model outlined above is estimated with the 
command: 
 

LOGIT(NCHOICE=3,COND) Y Z | C X ; 
 
When multinomial variables are used, the model is identified by normalizing 
the multinomial coefficients of the first choice to zero. In the case of two 
alternatives, this provides compatibility with the PROBIT command, which 
effectively uses the same normalization; although the coefficients are larger in 
LOGIT by a factor of approximately 1.6, due to the larger standard deviation 
of the GEV disturbances. 
 
Conditional logit models may have a variable number of choices per chooser, 
because it is the regressor variables that vary for each choice, while the 
coefficients are fixed across choices. When setting up data for this model, use 
one observation for each choice, instead of one observation per chooser. An 
additional variable, either case number, or number of choices, is used to keep 
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the observations for each chooser together. See the Reference Manual for 
details. Remember that the constant C is not a legal conditional variable since 
it does not vary across choices. Choice-specific intercepts may be obtained by 
specifying C as a multinomial variable (after the |).  
 
The basic logit model has a well-known shortcoming, the "Independence of 
Irrelevant Alternatives" property, sometimes called the "Blue Bus/Red Bus" 
problem. That is, in this model the ratio of probabilities between any two 
choices is unaffected by the availability of a third choice. This property derives 
from the independence assumption on the ei that is necessary to generate the 
logit probabilities. Hausman and McFadden (1984) offer a specification test 
for the consistency of logit estimates with the IIA property. If this test rejects, 
there are two possible solutions to this problem within the logit framework; the 
alternative is to use a more flexible joint distribution for the eis that allows 
correlation among them such as the multivariate normal distribution, although 
this is more difficult to implement.19 
 
The nested logit model is another way to structure the alternatives so that some 
are "closer" to each other than others. Although this model is not currently 
implemented in TSP, it can be consistently estimated by using the 
conventional LOGIT procedure in stages. The first stage would estimate the 
bottom branch of a set of choices, and the succeeding stages would include a 
predicted "inclusive value" based on the estimates of lower stages in the set of 
independent variables. See Train (1986) or Manski and McFadden (1982) for 
details. Also see Section 9.6.10 for an example of how to estimate the nested 
logit model directly using the ML procedure and the TSP examples on the web 
site for a more complex nested logit example. 
 
Another method to avoid the IIA problem within the logit framework uses the 
fact that logit models can be used to describe any set of choice probabilities, 
not just those implied by the utility model and the GEV distribution 
(McFadden 1975). In particular, to allow correlation among choices, include 
variables describing other alternatives in the latent value function for one 
alternative. The defect of this approach is that it does not specify how many or 
which variables should be added, and therefore may require estimation of a 
large number of parameters. Having a model of the possible relationships 
among choices will help here.  

                                                      
19

 See the advanced examples on the TSP website for multivariate probit estimation, and 

example 9.7.6 in this chapter for bivariate probit.  
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9.5 Estimation with an Ordered Dependent Variable 

In some models, the available outcomes have a natural ordering, such as when 
a person has a low (coded as 0), moderate (1) or high (2) income. If the 
boundaries between these categories are known, or the categories have a 
natural scale, it could be estimated with a series of one or two-limit Tobit 
expressions. If the outcomes have natural units, such as the number of doctor 
visits, or the number of patents, then count data models are appropriate (see 
the next section). The common feature of the models in this section is that 
there is a single latent variable and hence only one disturbance, although there 
are multiple possible outcomes. This is in contrast to the multivariate or 
multinomial logit considered earlier and arises from the fact that the data have 
a natural ordering. 

9.5.1 Ordered Probit: ORDPROB, INTERVAL 

Ordered Probit handles the case where the (ordered) boundary values are 
unknown, and must be estimated. INTERVAL is just like Ordered Probit, but 
where the boundary values are known. In this case they must be supplied to the 
procedure using the LOWER and UPPER options; see the Reference Manual 
for details on using INTERVAL. 
 
In the model estimated by the ORDPROB procedure, there is a single latent 
variable (Y*) that is not observed and which has a conditional normal 
distribution: 

Y
*
 = Xβ + ε ε ~ Normal (0,1)

20
 

The observed data is assumed to be generated from Y* in the following way: 

Y = 0 if µ0 ≤ Xβ + ε < µ1 

Y = 1 if µ1 ≤ Xβ + ε < µ2 

Y = 2 if µ2 ≤ Xβ + ε < µ3 

and so forth (Y is allowed to take on an arbitrary but finite number of values). 
The smallest µ is assumed to be negative infinity and the largest µ is assumed 
to be positive infinity, while the remainder are parameters to be estimated. 
However, without loss of generality we can set µ1 equal to zero, so the model is 

                                                      
20

The variance is normalized to one because the scale of the underlying dependent 

variable is not observed, just as in the binary Probit model. 



 9. Qualitative dependent variable models 129 

 

 

normalized in the same way as the binary Probit model when Y takes on only 
two values.21 Therefore the total number of µs to be estimated is the number of 
values which Y takes on less 2. The estimated µs (called MU) will be shown in 
the table of coefficient estimates in the output. 
 
Among other uses, Ordered Probit models are useful for estimating the 
determinants of response to questions posed with a Likert scale. For example, 
suppose the responses to a survey question about the success of a joint venture 
are coded 1 through 5 with 1=very successful, 2=moderately successful, and so 
forth. Then we could define the variable ANSWER with values equal to 0 
through 4 (1 through 5 would also work fine) and estimate the relationship 
between success and its determinants using an ORDPROB statement of the 
following kind: 
 

ORDPROB ANSWER C X1 X2 ; 
 
Interpretation of the estimated coefficients of an ordered probit model can be 
slightly tricky, since the effect of increasing the value of a regressor on the 
probability of Y taking on a particular value is that variable’s coefficient 
multiplied by the difference in the densities at the two end points of the cell: 

1

Pr( )
[ ( ) ( )]

j j

d Y j
X X

dx
φ µ β φ µ β β

+

=
= − − −  

where φ denotes the normal distribution function. Obviously the sign of this 
derivative can be different from the sign of β in some cases. For further details, 
see Maddala (1983) or Greene (3rd edition, Chapter 19). 

9.5.2 Count Data Estimation: POISSON, NEGBIN 

Some dependent variables are integer counts, such as the number of patents or 
number of accidents. Besides being integers, they are never negative (although 
they may often be zero), and their variance often increases with their mean. 
The Poisson and Negative Binomial use an exponential mean function exp(Xβ) 
to guarantee that the mean cannot be negative. The Poisson model assumes the 
variance equals the mean (“equidispersion”). The Negative Binomial model 

                                                      
21

This normalization implies that in general, you will wish to include an intercept (C) 

in your list of independent variables, just as you would for PROBIT.  
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assumes the variance is larger than the mean (“overdispersion”). In negative 
binomial model 1, the variance is proportional to the mean, while in negative 
binomial 2, the variance is a quadratic function of the mean.  
 
Both of these models are similar to weighted nonlinear regressions, where the 
weights are functions of exp(Xβ). This suggests that plain nonlinear regression 
could be used if the variance is independent of the mean (a form of 
“underdispersion”). Poisson and negative binomial estimation have the 
advantage over unweighted nonlinear regression in that they will fit the lower 
counts more tightly, at the expense of a worse fit for the higher counts. Of 
course, they have the additional advantage of being the most efficient estimator 
when the true distribution of the data is Poisson or negative binomial. 
 
The POISSON and NEGBIN commands are invoked just like ordinary least 
squares, with the dependent variable followed by the list of regressors or 
independent variables. For example, to estimate a model where the number of 
patents applied for is a function of R&D spending, firm size, and the industry, 
use the following commands: 
 

POISSON PATENTS LOGR LOGE SCISECT ; 
NEGBIN (MODEL=1) PATENTS LOGR LOGE SCISECT ; 
NEGBIN (MODEL=2) PATENTS LOGR LOGE SCISECT ; 
 
All the usual nonlinear options may be included in these commands. The 
POISSON procedure produces a test for the hypothesis that the conditional 
mean of the data equals the conditional variance (which is an implication of 
the Poisson specification). If this test rejects, the coefficient estimates may still 
be consistent, but HCOV=N type standard errors would be quite 
underestimated (for this reason, POISSON uses the consistent HCOV=W by 
default). In this case, you may wish to consider using a negative binomial 
specification. 

9.6 General Maximum Likelihood Estimation: ML, EQSUB 

The ML procedure provides a very general estimation method. You write the 
likelihood function for an observation in a FRML statement, and TSP 
maximizes it with respect to the parameters it contains, using the data in the 
current sample. ML is quite powerful. It can compute analytic first and second 
derivatives for use in iteration and in computing standard error estimates. For 
example, the following commands will estimate a binary probit model (an 
improved version of this example is discussed later in this section): 
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FRML EQL LOGL = LOG( (1-WORK)*CNORM(-A-B*X) + 
WORK*(1-CNORM(-A-B*X)) ); 

PARAM A,B; 
ML EQL;  
 
The automatic differentiation in ML is a great advantage over coding the 
derivatives by hand in Fortran, Gauss, or Matlab (and especially in debugging 
them). The disadvantage is that execution time is slower and numerical error 
handling more difficult, so take care when writing the likelihood function to 
minimize these problems. 
 
Execution time can be reduced by simplifying the FRML as much as possible, 
and eliminating repeated terms. Repeated terms are best handled with the 
EQSUB (equation substitution) command, which guarantees that the repeated 
term will be evaluated only once. EQSUB is also useful for changing the list of 
explanatory variables in different parts of the likelihood function, so that it is 
not necessary to rewrite the general equation. See the Reference Manual for a 
fuller discussion of the power of EQSUB. Numerical errors are often reduced 
by simplifying the function, but be careful to avoid operations like taking the 
log of zero. 
 
For example, the above probit could be rewritten in two ways. The first 
involves minimum execution time, but may fail because of an attempt to take 
the log of zero. It is the model above, with the CNORM(-A-B*X) term defined 
in another equation, and its coefficient (called WORKYN) evaluated outside 
the FRML since it depends only on the data and not on the parameters. The 
EQSUB command is not strictly necessary here, but it is useful for changing 
the variables in the model and avoiding repeated evaluation. 
 

WORKYN = (1-WORKING) - WORKING ;       ? recode (0,1) -> (1,-1) 
FRML CNXB CNORM(-A-B*X); 
FRML EQL LOGL = LOG( WORKING + CNXB*WORKYN ); 
EQSUB EQL CNXB;   
? Substitute the expression for CNXB into the model. 
PARAM A,B; 
ML(HCOV=N) EQL; 
 
The second way of writing the LOGL equation avoids the log of zero, but may 
take slightly more execution time. Generally, this approach is preferred for 
larger models where extreme values can result in negative arguments to the 
LOG function. In this example, the function LCNORM(u) = 
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LOG(CNORM(u)) and the relationship CNORM(u) = 1-CNORM(-u) are used. 
  

NOWORK = WORKING = 0; ? (0,1) -> (1,0) 
FRML XB A+B*X; 
FRML EQL LOGL = NOWORK*LCNORM(-XB) + 

WORKING*LCNORM(XB); 
EQSUB EQL XB; 
PARAM A,B; 
ML(HCOV=N) EQL; 
 
See the table below for comparative timings using these two methods. Several 
other considerations for writing LOGL equations for ML are discussed in the 
Reference Manual. 
 

Figure 9.1 Comparative Timings in Seconds 

Method Iterations 386 
16Mhz 

Pentium 
266 Mhz 

Pentium 
526 Mhz 

Observations  385 10,000 10,000 

Canned Probit 10 5.9 2.3 0.5 

ML example 1 11 98.1 9.0 3.4 

ML example 2 11  10.0 4.3 
 
As in LSQ, the likelihood function equation for the ML procedure may contain 
logical expressions (such as WAGE>0 or GAMMA*(1-BETA)<=0). However, 
be aware that if these logical expressions contain parameters to be estimated, 
the likelihood function will not be differentiable over the whole parameter 
space, and will not satisfy the usual regularity conditions that guarantee the 
consistency and asymptotic normality of maximum likelihood estimates. 
Therefore, take extra care in computing estimates with this type of likelihood 
function (try several sets of starting values, etc.).  

9.6.1 ML PROC 

Some likelihood functions are difficult to write in terms of a single FRML, 
especially time series models with recursive state variables, like GARCH and 
models with MA(q) residuals. Other models in this class are the Kalman Filter 
with hyperparameter estimation, simulation estimators like Multivariate Probit, 
and models with concentrated likelihood functions (although these can often 
be done in unconcentrated form). For these models, you write a PROC which 
evaluates the log likelihood, taking as many commands as are necessary, and 
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store the value of the likelihood in the scalar @LOGL. You then tell ML the 
name of the PROC and give it a list of the parameters to be estimated. It uses 
numeric derivatives, so it will not be as fast as the FRML method above, but at 
least it is feasible. For example, the PROBIT model above can be estimated 
(rather slowly) with: 
 

PARAM A,B; 
ML MYPROB A,B; 
PROC MYPROB; 

LOGL = LOG( WORKING + CNORM(-A-B*X))*WORKYN ); 
MAT @LOGL = SUM(LOGL); 

ENDPROC; 
 
Please see the TSP web page for more advanced examples of ML PROC. 
There is also a simple ML PROC example in the TSP Reference Manual under 
KALMAN, which shows one way to impose inequality constraints in the 
Kalman Filter model. 

9.7 ML examples 

This section presents some examples of using ML. Some of these examples are 
already built into TSP, like OLSQ, so normally you will not need to use them. 
However, they can be convenient if you wish to modify the basic linear index 
function in some way, or estimate a model that has common parameters in the 
variance and the regression function. These examples are intended to give an 
idea of the power of ML, and to provide hints about how to write the 
likelihood function. See the previous section for an extensive Probit example 
and the TSP website for many more examples of how to use the ML 
procedure. 

9.7.1 OLS 

Here is ordinary least squares done with ML. This is not a recommended way 
to do OLSQ! 

 
FRML EQ1 LOGL = LOG(SIGI) + LNORM((Y-XB)*SIGI); 
FRML EQXB1 XB = B0 + B1*X; 
EQSUB(NAME=OLS) EQ1 EQXB1; 
PARAM B0 B1 SIGI; SET SIGI = 1; 
ML(HITER=N,HCOV=NBW) OLS; 
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9.7.2 Box-Cox Transformation 

Nonlinear regression is inappropriate for this model because the dependent 
variable is not a linear function of the disturbance. To use the ML command 
instead, you need to write the log likelihood, including the Jacobian. 
 

LY = LOG(Y); 
FRML EQB LOGL  
        = LOG(SIGI) + LNORM(RESID*SIGI) + (LAM-1)*LY; 
EQSUB EQB RESID; 
PARAM A,1 B,1 LAM,.5 SIGI,1; 
ML(HITER=N,HCOV=NBW) EQB; 
 
Note that it is easier to do Box-Cox via FIML, since it will automatically 
include the same Jacobian term as above. The unnormalized equation for Box-
Cox is the following: 
 

FRML RESID (Y**LAM - 1)/LAM - (A + B*X);   
FIML(ENDOG=Y) RESID; 

9.7.3 Frontier production function model 

The model is the following: 

y = f(x,b) + e 

e = -u + v  

v ~ N(0,σ
2
);        u>=0 

For a frontier cost model use e = u + v. See Maddala (1983) pp. 194-196. Note 
that the regularity conditions for asymptotic normality are not satisfied by this 
model. 

 
FRML RESID E = Y - A - B*X; 
PARAM A,B; 
FRML FRONTP LOGL = LOG(2) + LOG(SIGI) + LNORM(E*SIGI) + 

LCNORM(-E*LAMBDA*SIGI);  
 
? for a cost model, there would be no minus sign here. 
PARAM LAMBDA,SIGI; 
EQSUB FRONTP RESID; 
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? crude starting values from OLS -- there are better ones available 
OLSQ(SILENT) Y C X; UNMAKE @COEF A,B; 
SET SIGI = 1/@S; SET LAMBDA = .1; 
 
ML FRONTP; 

9.7.4 Nested Logit  

This example does nested Logit using ML, and includes an example of testing 
for IIA. See the web site http://www.tspintl.com for a more complex and 
general example. 
 
The example below is for the simplest nested logit model, where the top 
branch is a choice between alternative 1 (with characteristics X1) and the 
lower branch. The lower branch is a choice between alternative 2 (with char. 
X2) and alternative 3 (with char. X3). Alternatives 2 and 3 are correlated; the 
inclusive value parameter is denoted lambda. Note that the coefficients of the 
lower branch must be multiplied by lambda to obtain estimates that can be 
compared to ordinary MN logit. 

 
The likelihood for an individual observation is  
 
LOGL = D(1 chosen)L(1|X) + D(2 chosen)L(2|X)  
            + D(3 chosen)L(3|X) 
 
where D(.) is a zero-one variable denoting which choice was made, and L(i|X) 
is the likelihood of that choice conditional on the Xs. 
 
Useful references are Maddala (1983), p. 71 (with lambda=1-sigma) and         
McFadden (1987), pp. 63-82. 

 
? Define Nested Logit Model. 
DOT 1-3 ; 

FRML XB.N (BETA.2+BETA1*X.1+BETA2*X.2)/LAMBDA ; 
ENDDOT ; 
FRML SUM23 EXP(XB2N) + EXP(XB3N) ; 
FRML DENOM EXP(XB1N) + SUM23**LAMBDA ; 
FRML NLOGIT -LOG(DENOM) + Y_1*XB1N 
               + Y_2*((LAMBDA-1)*LOG(SUM23)+XB2N) 
               + Y_3*((LAMBDA-1)*LOG(SUM23)+XB3N) ; 
EQSUB NLOGIT DENOM SUM23 XB1N-XB3N ; 
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TITLE "Multinomial Logit using Nested Logit Likelihood' ; 
PARAM BETA02 -1 BETA03 -1 BETA1 1 BETA2 1 ; 
CONST BETA01 0 ;  ? One of the intercepts must be set to zero. 
CONST LAMBDA 1 ; ? Collapses to MN Logit model when lambda=1. 
? These estimates are for the null hypothesis. 
? They are efficient if IIA holds (lambda=1). 
ML NLOGIT ;    
? Save results for the Hausman-McFadden test below. 
COPY @LOGL LOGL0 ;      
COPY @COEF BETAE ;  
COPY @VCOV VCOVE ;  
 
TITLE 'Nested Logit Model with upper branch 1, (2,3)' ; 
PARAM LAMBDA ; 
ML NLOGIT ; 
COPY @LOGL LOGL1 ; 
 
TITLE 'Wald-type test for IIA' ; 
FRML WALD4IIA 1-LAMBDA ; 
ANALYZ WALD4IIA ; 
 
TITLE 'Likelihood ratio test for IIA' ; 
SET LR4IIA = -2*(LOGL0-LOGL1) ; 
CDF (CHISQ,DF=1) LR4IIA ; 
 
? Hausman-McFadden Test for IIA (dropping first alternative). 
? Note that proc haustest adjusts for coefficients that are not  
? identified in the reduced (consistent) model. (beta02) 
? First we estimate the lower branch of the model; estimates are  
? consistent even if IIA property does not hold. 
FRML NLOGIT2 -LOG(SUM23) + Y_2*XB2N + Y_3*XB3N ; 
EQSUB NLOGIT2 SUM23 XB2N XB3N ; 
CONST LAMBDA 1 ; 
SELECT Y>1 ;    ? Sample: subset that chooses 2 or 3. 
ML (SILENT) NLOGIT2 ; 
 
TITLE 'Hausman-McFadden Test for IIA' ; 
COPY @COEF BETAC ; COPY @VCOV VCOVC ; 
? See section 13.4.1 for this procedure. 
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HAUSTEST BETAE VCOVE BETAC VCOVC ;   

9.7.5 Switching regression  

A disequilibrium model can be estimated using switching regression. The 
observed quantity, Y, is the minimum of the quantity supplied (equation 1) and 
the quantity demanded (equation 2). The sample selection is unknown, i. e., for 
any given observation on price and quantity, it is not known whether it is 
supply or demand constrained. Reference: Maddala (1983), p.298 (10.21). 
 

FRML U1EQ U1 = (Y-(B01-B11*P-B21*X1)) ; 
FRML U2EQ U2 = (Y-(B02-B21*P-B22*X2)) ; 
FRML LOGLEQ LOGL = LOG((NORM(U2/SIG2)/SIG2) * 

(1-CNORM(U1/SIG1))  
                             + (NORM(U1/SIG1)/SIG1) * 

(1-CNORM(U2/SIG2))) ; 
EQSUB LOGLEQ U1EQ U2EQ ; 
 
? Use OLS to obtain starting values for ML estimation. 
OLSQ Y C P X1 ; 
UNMAKE @COEF B01 B11 B12 ; 
SET SIG1 = @S ; 
OLSQ Y C P X2 ; 
UNMAKE @COEF B02 B21 B22 ; 
SET SIG2 = @S ; 
 
? Now do MLE on switching regression model.  
PARAM SIG1 SIG2 B01 B02 B11 B12 B21 B22 ; 
ML LOGLEQ ; 

9.7.6 Bivariate probit model 

? Uses the CNORM2(z1,z2,rho) function. 
? Make the X*B1 and X*B2 equations, in the form 
? FRML EQ1 XB1 = B1_0 + B1_X1*X1 + B1_X2*X2 + ... 
 
FORM(VARPREF=B1_,PARAM) EQ1 XB1 XS; 
LIST B1S @RNMSF;  
? PARAM names from FORM are stored in @RNMSF 
FORM(VARPREF=B2_,PARAM) EQ2 XB2 XS; 
LIST B2S @RNMSF; 
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? Log likelihood, which uses CNORM2(). 
? Notation follows Greene's "Econometric Analysis", 2nd ed., p.661. 
FRML BIVPROB LOGL = LOG( CNORM2(Q1*XB1, Q2*XB2, 

Q12*RHO) ); 
EQSUB BIVPROB EQ2 EQ1; 
 
? The Q1 and Q2 variables exploit the symmetry of the bivariate 
? normal density. They allow the probability to be evaluated by 
? CNORM2, which integrates the lower left quadrant. The probability 
? of all but Y1=0 & Y2=0 are other quadrants, but they can be 
? translated to the lower left quadrant by using Q1 and Q2. 
Q1 = 2*Y1 - 1; ? Q1=1 IF Y1=1; Q1=-1 IF Y1=0; 
Q2 = 2*Y2 - 1; 
Q12 = Q1*Q2; 
PARAM RHO; 
 
? Starting values via individual probits 
PROBIT(SILENT,MILLS=MILLS1) Y1 XS; UNMAKE @COEF B1S; 
PROBIT(SILENT,MILLS=MILLS2) Y2 XS; UNMAKE @COEF B2S; 
CORR(SILENT) MILLS1 MILLS2; SET RHO = @CORR(2,1); 
ML(HITER=N,HCOV=WN) BIVPROB; 

9.7.7 Hazard function 

This log-linear hazard rate example is a variation of the Weibull model. See 
Lancaster’s book (1997) for further information. 
 
P(X,t) is the conditional probability that an individual who is employed at time 
t is still employed at time t+1 (employment hazard rate). 

 P(X,t) = 1/[1+exp(Xb + a*t)] 

For a person who become unemployed at time T, the likelihood function is 

P(X,1)*P(X,2)*...*P(X,T-1)*[1-P(X,T)] 

SMPL 1 NOBS ; 
T = INT(EXP(LOGT)+.999) ; 
MSD T LOGT X ; 
HIST (DISCRETE,NBINS=100,WIDTH=1) T ;  
SMPLIF T>=0 & T<21 ; 
 
? The program below shows how to automate the likelihood function  
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? construction if you know the maximum number of periods of  
? observation.  
? FRML HAZARD LOGL = TERMS +(XB + A*T) - LOG[1+EXP(XB + 

A*T)];  
? TERMS + LOG[1-P(X,T)]   
 
FRML TRICK MORE = TERMS; 
SET TI = 0; 
DOT 1-20;    ? E.g., the maximum for T is 20 
SET TI = TI+1; 
SET T. = TI;    ? T1=1, T2=2, etc. 
FRML TERMS -(T>T.)*LOG(1+EXP(XB + A*T.)) + MORE; 
? this term is non-zero if t > t. 
EQSUB HAZARD TERMS TRICK;     
? the trick turns more back into terms 
ENDDOT; 
PRINT HAZARD ; 
FRML XB B0 + B1*X ;   ? Xb formula -- user-defined 
      ? t is the "dependent variable" 
FRML LAST TERMS = 0; 
EQSUB HAZARD LAST XB; 
 
? Maximum likelihood estimation.  
ML (MAXIT=50) HAZARD; 
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10. NONLINEAR METHODS AND OPTIONS 
 
The estimation procedures described in the previous chapters -- LSQ, FIML, 
PROBIT, TOBIT, SAMPSEL, LOGIT, and ML, involve iterative methods. In 
this chapter, we describe the methods used to converge to a solution. Many 
options are available in the event that convergence is difficult to obtain, while 
other options allow the calculation of alternate standard errors for the estimated 
parameters. 

10.1 Nonlinear methods for estimation 

All of TSP's nonlinear statistical techniques involve the minimization of a 
criterion function, Q, over the parameters. For single equation least squares the 
criterion is the sum of squared residuals, while other estimators use more 
complicated criteria such as (minus) the log of the likelihood function. The 
minimization strategy is always the same and we give a brief summary of it 
here. In general, the methods used are gradient methods and make use of 
analytic derivatives of the model obtained internally by TSP. The user may 
request numeric derivatives with the GRAD= option (see the Reference 

Manual for details). 
 
Consider the objective function Q as a function of the parameter vector b: 

Q(b). Let d be a vector of the same dimension as b with the property that Q 
decreases in the direction defined by d. By a Taylor series expansion, d will be 
approximately equal to H-1

g, where g is the gradient of the function Q with 
respect to b and H an approximation to the Hessian matrix (the second 
derivatives of Q with respect to b). Q(b+εd) will be a decreasing function of 
the scalar ε, at least for very small values of ε, since g is a gradient and H is 
positive definite.  
 
TSP proceeds iteratively in the following way: at the beginning of iteration i, 
parameter values bi-1 are available. TSP computes the change vector d from 
g(b) and H(b). Next it checks for convergence, defined as sufficiently small 
elements of d. For each parameter (indexed by j), |dj| must be less than a 
prescribed tolerance, TOL, or |dj/bj

i-1
| must be less than the same tolerance. 

The exact formula used is  

1| | | | *10)−≤ +i

j jd TOL b TOL  

If convergence has not been achieved, TSP goes on to find a better set of 
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parameters, bi. It first tries  

b
i
 = b

i-1
 + d  

If bi is better, i.e., if 

Q(b
i
) < Q(b

i-1
), 

the iteration is complete and the next one begins with the parameter b
i. 

Otherwise, TSP begins to try parameter vectors of the form 

 b
i
 = b

i-1
 +ε d  

first for the stepsize ε = 1/2, then ε = 1/4, and so on. This process is called 
"squeezing" and continues until a better b

i is found or a squeeze limit is 
exceeded. If squeezing is successful, TSP goes on to a new iteration. If it fails, 
iteration stops and a message is printed. The whole iteration process continues 
until convergence, or until the iteration limit, MAXIT, is reached. Results are 
printed whether or not convergence has been achieved, since the process is 
often close to convergence (how close can be seen by examination of the last 
value of CRIT=, which is approximately equal to the average error in the 
parameters squared). These results need to be interpreted with care, and are 
statistically meaningless if the process is far from convergence. 

10.2 General convergence hints 

Several options control this iteration process, and may be useful for reaching 
convergence in highly nonlinear or barely identified models. In general, 
starting values are most critical for success with difficult problems, but 
iteration methods may help somewhat. Starting values obtained from alternate 
consistent estimators, such as those based on smaller incomplete models are 
usually useful. An example would be to use single equation estimates before 
estimating all the equations jointly. Problem parameters are identified by 
checking the CHANGES (d) row in the output for especially large values. 
These parameters can be held fixed by use of the CONST statement, reducing 
the dimension of the parameter vector until the remaining parameters have 
converged. Then the problem parameters can be re-entered with a PARAM 
statement, possibly with additional experimentation in their starting values. 
Large CHANGES values can also indicate lack of identification in the current 
data set, even if the model is theoretically identified.  
 
Grid searches can be performed to obtain starting values for critical 
parameters. DO loops are ideal for this purpose, since the index and step 
variables need not be integers (see Section 12.1 for more information on DO). 
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For example, AR1(METHOD=HILU) Y C X; could be done with: 
 

FRML EQA Y = A + B*X + RHO*(Y(-1)-A-B*X(-1)); 
PARAM A,B; 
DO RHO = -.95 TO .95 BY .1; 
   LSQ EQA; 
ENDDO; 
 
Iteration options can also help obtain convergence for some models. These 
options are explained in detail below; they are also discussed in the 
NONLINEAR section of the Reference Manual. 

10.3 Diagnostic printing: the print options 

The first step in tackling a difficult convergence problem is to insure you are 
getting enough diagnostic output. 
 
The SILENT option suppresses all iteration output, except a possible 
non-convergence message with full display of function values and changes in 
the last iteration. It is useful only when convergence is certain. A more useful 
option for general use may be the TERSE option, which reduces the printout to 
only the value of the criterion function at convergence and the usual table of 
estimated coefficients and their standard errors. This option is convenient 
when you are performing a series of estimations and already know that the 
model is well-behaved. 
 
Slightly more output is provided by the default NOPRINT option, which 
displays the starting values. For each iteration, it prints the function values F = 

Q(b
i-1

) and FNEW = Q(b
i
), squeeze level (ISQZ, STEP or STEPSIZE = ε), and 

gradient norm (CRIT or CRITERION = g'H
-1

g or d'Hd). The gradient norm is 
the length of the gradient in the metric of the Hessian approximation. This 
should always decrease; otherwise, convergence will be difficult to obtain. At 
convergence, the number of iterations and function evaluations (the value of Q 
corresponding to different values of b) is displayed. 
 
The PRINT option includes all the above output, along with current parameter 
values and their changes (the d vector) at each iteration. The complete list of 
iteration options is also displayed at the start. 
 
The VERBOSE option displays g, H, and H-1 at each iteration and is useful 
mainly for debugging especially difficult problems. 
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10.4 Numerical error handling 

Some nonlinear equations involve functions sensitive to bad or unrestricted 
parameter values. For example, SQRT is defined only for non-negative values, 
LOG is defined only for positive values, and EXP typically causes problems 
for arguments larger than about 88 (on most computers). Again, starting values 
are important, but some diagnostic output is provided to help solve the 
problem. When numeric errors are encountered, the offending observation 
number and argument value are printed for the first 10 occurrences. If this 
occurs during a derivative evaluation, the number(s) of the parameter(s) 
involved are printed. 
 
TSP requires that the starting values be good enough so that no numeric errors 
are encountered in the initial function and derivative evaluation, although it 
allows them during the stepsize search. A valid Q value is required for testing 
iterative improvement, while a valid d (i.e., g and H) is required for calculating 

b
i. Otherwise it is not possible to do any iterations. If there are outliers in the 

dataset, it may be useful to drop them from the sample (at least until better 
starting values are found).  
 
During iterations, numeric errors in evaluating Q are not a problem, since ε is 
squeezed repeatedly until the numeric errors stop. Eventually bi will be close  
to the valid bi-1 if squeezed far enough. Numeric errors in derivatives are still a 
potential problem, but are less likely to occur since the derivatives are only 
evaluated when a valid and improved Q has been found. 
 
If a problem requires restricting a parameter to a certain range, often the best 
solution is to enter the parameter in a functional form, making this restriction 
explicit. For example, if a parameter is restricted to be non-negative, it can be 
entered into the equation(s) as its square (for example, B*B instead of just B). 
To restrict a parameter B to the range [a,b], use the function 
a+(b-a)*CNORM(B). ANALYZ can be used after estimation to obtain a 
standard error for the parameter of interest using the delta method.  
 
You may find writing this parameter using EQSUB useful in this case. For 
example, suppose you want to estimate a regression model where the 
parameter B lies between zero and one. Use the following commands: 
 
FRML B CNORM(D) ;       ?Constrains B; D can take on any value. 
FRML EQ Y = A + B*X ;   ? Model and substitution for B. 
EQSUB EQ B ; 
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PARAM A D ;             ? A and D are parameters of model. 
LSQ EQ ;                     ? Estimate 
ANALYZ B ;               ? Derive estimate of B and its standard error. 

10.5 Hessian and gradient methods: HITER, HCOV 

Iteration algorithm options give variations in computing H and g, the 
components of d. (For more information on the numerical analysis of the 
problem see Gill, Murray, and Wright 1981.) The HITER=B or N or G or D 
option specifies the method of approximating H during the iterations. This 
may be different from HCOV=, which specifies the method of approximating 
H when computing the covariance matrix (and thus standard errors) for the 
parameters at convergence. The HCOV= option allows for printing more than 
one set of standard errors (and asymptotic t-statistics) for a given set of 
estimated coefficients, by specifying an option like HCOV=NBW instead of 
just HCOV=N. Depending on the estimation command (LSQ, FIML, 
PROBIT, ML, etc.), the available options for HITER= and HCOV= vary. 
Check the Reference Manual for further details. 
 
HITER=B ("BHHH") specifies use of the Berndt-Hall-Hall-Hausman method. 
It uses the covariance of the analytic gradients for each observation to form H. 
It has the advantage of being easy to compute and is guaranteed non-negative 
definite as long as the number of observations is greater than the total number 
of parameters. 
 
HITER=N ("Newton") uses analytic second derivatives to form H. This may 
be time-consuming to compute for nonlinear models, but provides faster 
convergence near the solution. 
 
HITER=G ("Gauss") is standard for LSQ and FIML, and involves a quadratic 
form in the derivatives of the residuals with respect to the parameters, around 
the estimated residual covariance matrix. 
 
HITER=D ("DFP") uses the Davidon-Fletcher-Powell method to update H at 
each iteration based on the gradient and parameter changes (the initial H is an 
identity matrix). It also implies the use of numeric derivatives to compute g. 
Analytic derivatives are the default method for computing g. HITER=D is only 
useful in the most extreme cases, for bad starting values, because it is very 
slow. The SYMMETRI option specifies use of the most accurate (and 
time-consuming) numeric derivatives.  
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HITER=F (“BFGS”) uses the Broyden-Fletcher-Goldfarb-Shanno algorithm 
with analytic first derivatives and a rank one update approximation to the 
Hessian (like DFP, but somewhat improved). 
 
There are two HCOV= options that are not used for HITER= : 
 
HCOV=W ("Eicker-White") computes standard errors based on a combination 
of the BHHH and Newton matrices. Useful for some forms of misspecification 
in maximum likelihood estimation and for heteroskedastic errors in all 
estimation procedures. 
 
HCOV=R ("Robust") computes standard errors robust to heteroskedasticity. 
Used in LSQ only, this is equivalent to the old ROBUST option, and is a 
synonym for the W option. 

10.6 Squeezing: STEP, MAXSQZ 

The algorithm that generates successive values of the stepsize is chosen by the 
STEP option. The default STEP method depends on the HITER option and on 
the estimation procedure. The available methods are CEA, BARD, CEAB, 
BARDB, and GOLDEN. 
  
STEP=CEA is the simplest method. ε = 1, .5, .25, ..., 2**(-ISQZ). This is the 
default for HITER=N and HITER=B (procedures like PROBIT and ML). 
 
STEP=BARD uses a local quadratic approximation to the function value based 
on the previous value of ë. It is also bounded in the interval [.75ε,.25ε]. A 
typical sequence could be ε = 1, .25, .0625, .... This is the default for LSQ with 
HITER=G. 
 
STEP=CEAB is the same as CEA, but if ε = 1 improves the objective function, 
ε = 2, 4, ... etc. are used to see if they result in further improvement. This 
method may be useful if ε = 1 is always improving the function, but only 
slowly, and the elements of d always have the same sign. This is FIML's 
default with HITER=G. 
 
STEP=BARDB is the analogous extension to ε > 1 for BARD. 
 
STEP=GOLDEN is a bracketing method that tries smaller and larger ε values 
even after a ε has been found which improves the objective function. The 
bracketing stops with the current best value of ε when MAXSQZ is reached or 
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when ε has been determined up to the tolerance specified in the SQZTOL 
option. The default value of SQZTOL is 0.1. GOLDEN is the default for 
HITER=D. 
 
The MAXSQZ option limits the total number of ε values attempted in a given 
iteration. The default value of MAXSQZ is 10 for all STEP options except 
GOLDEN, where the default value is 20. If ISQZ > MAXSQZ, the message 
"FAILURE TO IMPROVE OBJECTIVE FUNCTION (MAXSQZ)" will 
appear. Increasing MAXSQZ will not automatically eliminate this problem; 
first check the CHANGES row to see which parameters are causing the 
trouble. Better starting values for those parameters may help. 

10.7 Iteration options: MAXIT, TOL 

The MAXIT option specifies the maximum number of iterations. The default 
is 20 for all procedures. If MAXIT is exceeded, the message 
"CONVERGENCE NOT ACHIEVED AFTER n ITERATIONS" will appear. 
It may be useful to increase MAXIT if you have many parameters. However, if 
the CRIT value (section 10.3) is not decreasing smoothly, the objective 
function may be very non-quadratic near the current parameter values, so 
changing MAXIT may not help (again, better starting values may help). 
 
The TOL option checks for convergence at the start of each iteration (section 
10.1). The default value is 0.001 for all procedures. Usually there is little 
reason to increase TOL, except possibly to reduce the number of iterations in 
preliminary runs. TOL can be decreased if extremely accurate parameter 
values are desired. 
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11. ESTIMATION USING TIME SERIES DATA 
 
The analysis of discrete time series data is central to econometrics, particularly 

macroeconometrics. The original name of TSP itself (Time Series Processor) 
recognizes this fact. All procedures in TSP are designed to operate on time 
series as well as on other kinds of data. This chapter describes the procedures 
in TSP specific to time series data, and gives some hints on working with such 
data.  
 
You have already encountered the simplest of such procedures in AR1: the 
Almon and Shiller distributed lag variables, and the Durbin-Watson and 
Durbin (1970) test procedures for autocorrelation of the disturbances of a 
regression model. This chapter describes many more: identification, 
estimation, and simulation of a simple time series process using Box-Jenkins 
techniques, estimation of a vector (the VAR procedure), estimation of 
GARCH-M (Generalized Auto-Regressive Conditional Heteroskedasticity with 
a conditional Mean term) models, estimation with a Kalman Filter, and testing 
for unit roots and cointegration (COINT/UNIT). 
 
We first review the basics of time series in TSP (such as operations on lags and 
leads), and then discuss methods for estimating a single time series process 
using the Box-Jenkins (ARIMA) methodology. This is followed by 
descriptions of two other models that are widely used in the estimation of time 
series models: the GARCH-M model, which allows for conditional 
heteroskedasticity of the disturbances, and the Kalman Filter model, which is a 
form of time-varying parameter model. We then discuss the use of vector 
autoregressions (VARs) to estimate dynamic linear relationships among 
several time series variables. The last subject is unit root and cointegration 
testing. 

11.1  Techniques for time series data  

Chapter 3 introduced the basic features that make time series data easy to 
handle in TSP: the FREQ command and lagged variables. This section reviews 
these concepts and gives a bit more information on using time series in TSP. 
 
FREQ is used to specify the frequency of time series data; having done that 
enables you to specify observations using a convenient date format such as 
75:4 for the 4th quarter of 1975 (rather than having to use the sequence 
number of the observation). Currently, TSP allows the use of annual, quarterly, 
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monthly, weekly or undated data, as well as a special frequency structure 
called panel for time series-cross section data (see Chapter 15 for more 
information on this). A frequency is a characteristic permanently attached to 
each time series (and stored with the series in any databank), so that TSP can 
always check that you are using series that conform (are of the same 
frequency) to the current working FREQ and SMPL you have specified. You 
can convert series from one frequency to another with the CONVERT 
command (see Section 11.1.1). 
 
It is easy to lead or lag a variable in TSP. The notation X(-1), X(-2), etc. means 
the observation on X is one, two, or more periods prior to the current one. In 
computing this, the current SMPL is ignored. That is, if the SMPL is 1960 to 
1972, 1976 to 1990, the value of X(-1) in 1976 is that for 1975, not that for 
1976. In this case, if you specify X(-1) and the observation for 1975 is missing, 
you will receive a warning for some procedures and an error for others.  
 
The notation X(+1) or X(1) denotes the observation on X one period after the 
current one. Missing values for leads are handled in the same way as for lags. 
One feature of TSP you may find useful if you want to include many lags in a 
regression or other procedure is the ability to specify a variable list with lags. 
For example, the expression X(-1)-X(-16) means all the variables X(-1) X(-2) 
X(-3) ...X(-15) X(-16). See LIST in the Online Help System or Reference 

Manual for more on specifying variable lists.  

11.1.1 Changing the frequency of a series: 
CONVERT 

Sometimes data is organized as monthly observations but you wish to use 
quarterly data for analysis. Or perhaps some of your series are quarterly but 
one series is available only annually. The CONVERT procedure can change a 
series frequency to a new frequency. It uses one of several methods: averaging 
the data (the default); choosing the first, last, or middle observations; or 
summing the data. Each method is appropriate for different kinds of data. A 
flow variable such as investment would be summed to obtain the total 
investment in the new longer period, but a stock variable might be averaged or 
the first or last observation chosen depending on the importance of timing in 
your use of the variable. 
 
To convert a sales series from monthly to quarterly, use the following sequence 
of commands: 
  

FREQ Q ; SMPL 75:1 82:4 ; 
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CONVERT (SUM) SALES ; 
  
SALES was a monthly series running from 75:1 to 82:12 ; We specified the 
sample as quarterly and gave the new range in terms of quarters so the 
CONVERT procedure would know that we wanted to convert from monthly 
(the frequency of SALES) to quarterly (the current frequency). Because it 
would be confusing (and risky) to mix frequencies in a series, CONVERT 
ignores the current sample range and converts the whole series no matter what 
you have specified as the SMPL. 
  
If you want to preserve the old version of the series and save the new one, use 
this form of CONVERT: 
  

CONVERT(SUM) SALESQ = SALES ; 
 
Be aware, however, that you will not be able to use the old series SALES in 
other procedures after the new frequency has been specified. Series with 
different frequencies cannot be mixed in the same procedure (with the 
exception of CONVERT, of course). 
 
When converting from a lower frequency, straight line interpolation can be 
used to compute the intervening points. Use the INTERPOL option to do this. 
The other convert options (SUM, etc.) can also be used. 
 

FREQ M ; SMPL 75:1 82:12 ; 
CONVERT(INTERPOL) SALESM = SALES ; 
 
FREQ W (weekly) can be converted to quarterly, but not to monthly. 

11.2 Box-Jenkins (ARIMA) models 

One disadvantage of using structural econometric models for forecasting is that 
you need to know a great deal about the variables being modeled. In particular, 
to obtain a simulation over several periods in the future, you need to know the 
values for all the exogenous variables in the model over the forecast period. 
For this and other reasons, some forecasters use the ARIMA (AutoRegressive 
Integrated Moving Average) or Box-Jenkins forecasting method. This method 
only uses a series' own lagged values to forecast its future values. If the series 
follows a stationary stochastic process without too much drift or noise, this 
method can work well, at least over the short term. (See Section 11.6 for 
discussion of testing for unit roots in the process.) ARIMA models can be 
thought of as a sophisticated extrapolation method. 
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In this section, we discuss how TSP obtains univariate ARIMA forecasts. We 
strongly recommend that users who are interested in this technique refer to one 
of the standard references for further details. The basic reference on the subject 
is Box and Jenkins (1976). Two other elementary books that focus on this 
method are Nelson (1973) and Van Daele (1983). The Pindyck and Rubinfeld 
text is also recommended; Section 3 of this bood is entirely devoted to time 
series models. 
 
Box-Jenkins forecasting is traditionally divided into three parts: identification 
(determining the form of the time series process the variable follows), 
estimation (estimating the parameters of the process), and forecasting 
(extrapolating the process beyond the estimation period using the estimated 
parameters). In TSP these three steps correspond to the procedures BJIDENT, 
BJEST, and BJFRCST. Because these procedures have most of the same 
options, and share their values, once you have specified a set of options for 
BJIDENT, they are automatically assumed for any subsequent Box-Jenkins 
procedure, unless explicitly changed. 

11.2.1 Identification: BJIDENT 

Suppose you have a product’s monthly sales data from 1978 through the 
middle of 1987, and you assume that whatever time series process generated 
the data is stationary (at least after differencing). Such a series is shown in 

Figure 11.1. To look at some characteristics of this process, you can use a 
BJIDENT command to display the autocorrelations and partial autocorrelations 
of the series: 
 

BJIDENT (NDIFF=1,NSDIFF=1,NLAG=12,NLAGP=12) MSALES ; 
 
Since you suspect that the original series may not be stationary, the NDIFF 
option specifies that the correlations be computed for the first differenced 
series, as well as for the original series. Similarly, the NSDIFF option specifies 
that seasonal differencing is to be performed. BJIDENT determines the 
periodicity of the seasonal factor from the frequency of your current sample; in 
this case the FREQ is monthly, and observations 12 periods apart would be 
differenced. If you have not specified a FREQ as part of your SMPL, you will 
have to supply the seasonal span as the NSPAN option on the BJIDENT 
command. 
 
NLAG and NLAGP options specify the number of autocorrelations and partial 
autocorrelations to be computed, that is, the length of the lag over which they 
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are to be computed. The default value is 20.  
 
BJIDENT's output consists of plots of the series, both differenced and 
undifferenced, followed by a printout of autocorrelations and partial 
autocorrelations, their standard errors, and Q-statistics (Ljung-Box statistics, 
see Harvey (1993), p. 212) for the hypothesis that all autocorrelations of higher 
order are zero. Correlations are also plotted in what is called a correlogram and 
a partial correlogram. These can be quite useful in trying to determine the form 
of the process. Consult Box and Jenkins or Nelson for examples of the 
correlograms associated with various time series processes. The 
autocorrelations, partial autocorrelations, and inverse autocorrelations are also 
stored under the names @AC, @PAC, and @IAC. 
 

Some of the output of BJIDENT is given in Figure 11.2, which shows the 
autocorrelations and partial autocorrelations for the series after it has been first 
differenced and seasonally differenced at lag 12. In our example, the series 
appears to be nonstationary in levels but stationary in first differences. There  
appears to be a seasonal effect at 12 month intervals. The correlogram for the 
first differenced series suggested that the data be fit by a first order moving 
average error process, since there were no significant autocorrelations after the 
first.  

Figure 11.1  Series to be analyzed by Box-Jenkins 
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Figure 11.2  Sample output from BJIDENT 

                  12 

Series:  (1-B)(1-B  ) MSALES 

         Mean = -0.21863640E-02 

   Std. Error =  0.13924593     

 

                   Lags 

Autocorrelations         -0.989E-01-0.218     0.739E-01-0.433E-01 

Standard Errors    1- 4   0.774E-01 0.781E-01 0.817E-01 0.821E-01 

Q-statistics               1.66      9.79      10.7      11.1     

......... 

Autocorrelations          0.461E-01-0.740E-01-0.405E-01-0.319     

Standard Errors    9-12   0.845E-01 0.846E-01 0.850E-01 0.851E-01 

Q-statistics               16.9      17.9      18.2      36.7        

                                   12 

Autocorrelation Function of:  (1-B)(1-B  ) MSALES 

 

             -1.00     -0.33     0.33      1.00 

             |-+---------+----0----+---------+-| 

     1       |              +R| +              | -0.098943 

     2       |             R+ | +              | -0.21792 

     3       |              + |R+              | 0.073865 

     4       |              +R| +              | -0.043341 

     5       |              R | +              | -0.14271 

     6       |              + |R+              | 0.061075 

     7       |              + |R+              | 0.064999 

     8       |              + |R+              | 0.055744 

     9       |              + |R+              | 0.046130 

     10      |              +R| +              | -0.074030 

     11      |              +R| +              | -0.040502 

     12      |           R +  |  +             | -0.31860 

             |-+---------+----0----+---------+-| 

             -1.00     -0.33     0.33      1.00 

 

                                               12 

Partial Autocorrelation Function of:  (1-B)(1-B  ) MSALES 

 

             -1.00     -0.33     0.33      1.00 

             |-+---------+----0----+---------+-| 

     1       |              +R| +              | -0.098997 

     2       |             R+ | +              | -0.23109 

     3       |              + R +              | 0.026145 

     4       |              +R| +              | -0.086823 

     5       |              R | +              | -0.14541 

     6       |              + R +              | -0.0033774 

     7       |              + R +              | 0.012400 

     8       |              + | R              | 0.10190 

     9       |              + |R+              | 0.068641 

     10      |              +R| +              | -0.056928 

     11      |              + R +              | -0.021635 

     12      |          R   + | +              | -0.42469 

             |-+---------+----0----+---------+-| 

             -1.00     -0.33     0.33      1.00 
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11.2.2 Estimation: BJEST 

Using the results of BJIDENT as a guide to the specification of the model, you 
can then estimate the parameters of this model with BJEST. For our example, 
the appropriate command might be 
 

BJEST (CUMPLOT,NBACK=5,NMA=1,NSDIFF=1,NDIFF=1) MSALES ; 
 
This specifies a first-order moving average model on first differenced data, 
with no seasonal components. Note that you do not need to specify any options 
that remain the same from a previous BJ command; in this case we did not 
need to set NDIFF or NSDIFF to 1 if this command had followed the 
BJIDENT command given above.  
 
The NBACK option specifies the number of backforecasted residuals that 
should be used to start the process and generate the initial conditions; since we 
are using a moving average process of order one here, only the first will be 
nonzero, so NBACK can be set to a small number. In the case of 
autoregressive or mixed processes, you should use a much larger value. Other 
options control the behavior of the iteration process and the appearance of the 
output; consult the Reference Manual to learn more about them. 
 
In BJEST's output, the usual TSP estimation results are shown for the residuals 
from the fitted model, along with a table of parameter estimates (only two in 
this case, the moving average parameter θ and the seasonal moving average 
parameter δ), followed by some statistics concerning the variable in question). 
In the example, the model that fit the data was the following: 

 
where ε is a white noise process and L is the lag operator (Lyt = yt-1).

22 This is 
followed by a plot of the cumulated periodogram of the residuals so you can 
see how well the white noise assumption of the model is satisfied. In our 
example, both the periodogram and the Q-statistics for serial correlation 
suggest that the residuals are not quite white noise, although they are close.  

11.2.3 Forecasting: BJFRCST 

Immediately following a Box-Jenkins estimation, you can perform a forecast 
based on the estimated time series model using the BJFRCST command. This 

                                                      
22

 Box and Jenkins use the notation B for the backward lag operator and we follow them in the 

TSP output. This manual uses lag notation that is more familiar to economists, L. 

12 12

(.072) (.055)
(1 )(1 ) (1 .365 )(1 .625 )ε− − = − −

t t
L L S L L
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forecast will be computed starting in any time period or range of time periods 
you specify; it will go forward for the number of periods given by the 
NHORIZ option. Confidence bounds will also be computed for the forecast. 
An example for the series we modeled above is: 
 

BJFRCST (NHORIZ=10,ORGBEG=87:6,ORGEND=87:7) MSALES ; 
 
This computes two 10-month forecasts, starting in June and July of l987. 
Unless requested not to, BJFRCST will also plot the forecasts and their 
standard error bounds. 
 
The plot of output from this BJFRCST is shown on the following pages in 

Figure 11.3. The model chosen for the variable MSALES was the one 
estimated in the previous section. This model is used to generate the forecasts, 
using the actual value in June l987 as an initial condition for MSALES(-1). 
Note the 95% confidence bounds that are also plotted. As may be expected, the 
information contributed by this model, roughly a random walk with a large 
measurement error, is very small, and the standard errors are correspondingly 
large. 
 
If you do a forecast based on some previously estimated time series process, 
you can also supply the parameters of the model directly to BJFRCST. Consult 
the Reference Manual or online Help System for further details on the notation 
(which is that of Box and Jenkins). An example for a simple moving average 
process is: 
 

BJFRCST (NMA=1, NSDIFF=0, NDIFF=1, NHORIZ=12, ORGBEG = 
84:1, ORGEND = 84:3) SALES  S 4.021  THETA(1) -0.78 ; 

 
In this command, the first difference of SALES will be forecasted for the 
period January 1984 to March 1984 using an MA(1) model with a coefficient 
of -0.78 and a disturbance whose standard error is 4.021: 
 

 

2

1 10.78        ~ (0,4.021 )− −= + − Ν
t t t t t

Y Y e e e
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Figure 11.3 Sample Output from BJFRCST 

11.3 Auto-Regressive Conditional Heteroskedasticity 

The ARCH model originated by Engle, and its many elaborations, are widely 
used in econometrics to estimate models of time series processes where the 
variance of the disturbance is dependent in a simple way on the behavior of the 
preceding observations, but the conditional mean of the disturbance is still 
equal to zero. ARCH processes appear to describe many observed 
macroeconomic data series, such as exchange rates and stock market returns, 
quite well.  
 
ARCH will estimate not only the basic ARCH model, but also more 
complicated models which allow the variance of the disturbance to follow both 
an autoregressive and a moving average process and to be conditional on other 
series. This latter feature makes ARCH suitable for heteroskedastic data of any 
kind, not just time series. In addition, the conditional mean of the dependent 
variable can depend on the standard deviation of the variance of the 
disturbance (the full GARCH-M model). These models are more fully 
discussed in Engle (1982, for ARCH), Bollerslev (1986, for GARCH and its 
identification), and McCurdy and Morgan (1988, for GARCH-M). A fuller 
discussion of models TSP can estimate is given in the Reference Manual 
(under the ARCH command).  
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Here is an example of simple ARCH model estimation of an index of stock 
prices, where there are no independent variables, and the variance of the 
disturbance is assumed to follow an autoregressive process of order 3: 
 

ARCH(NAR=3) RM C ; 
 
This command estimates the following model by maximum likelihood 
(denoting the stock price series RM by yt): 

t 0 t

t t

2 2 2

t 0 1 1 2 2 3 3

y     

 ~ N(0,h ) 

 h   a   a    a   a  

η ε

ε

ε ε ε− − −

= +

= + + +t t

 

The coefficients estimated by this command are η0, the average stock return, 
and α0, α1, α2, α3, the parameters of the ARCH process. These coefficients are 
labeled ALPHA0, ALPHA1, etc. in the output. Because the estimation of 
ARCH models can be prone to numerical problems arising when estimated 
variances are negative, zero, or very large, the ARCH procedure constrains 
ALPHA0 to be nonnegative, and the other ALPHAs to be bounded between 
zero and one. See the Reference Manual for details on the methods used to 
impose these constraints.  
 
ARCH models can also have regressors; that is, the conditional mean of the 
dependent variable can be a function of other variables, just as in ordinary 
linear regression. For example, consider a market beta model where the return 
on a stock (R) is a function of the return on the market (RM), and the variance 
of its return follows an ARCH process: 
 

ARCH(NAR=3) R C RM ; 
 
Because of ARCH's ability to estimate a model where the variance of the 
disturbance depends on a set of regressor variables, ARCH can also be used to 
estimate an ordinary weighted least squares model by ML, even when there is 
no dependence across the observations. For example, here is a model with 
size-related heteroskedasticity: 
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where gt is the size of the tth observation.  
 
ARCH can estimate this model (called OLS-W by TSP) with the command 
 

ARCH (GT=G) Y C X1 X2 ;  
 
G denotes the series that contains the size variable. The GT option is used to 
specify a list of series that will enter into the regression function for the 
variance ht. Note that the constant (C) is automatically included in this list of 
series via the a0 parameter, so you should not include it.  

11.4 The Kalman Filter (KALMAN) 

Strictly speaking, the term Kalman Filter refers to an estimation method 
commonly used to estimate "state-space" models, rather than the model itself. 
This class of models consists of two parts: the transition equation, which 
describes the evolution of a set of state variables, and the measurement 
equation, which describes how the data actually observed is generated from the 
state variables. Its importance in economics is partly due to its ability to model 
time-varying parameters in an intuitively appealing way.  
 
In addition, the Kalman Filter estimation method is an updating method that 
bases the regression estimates for each time period on last period's estimates 
plus the data for the current time period; that is, it bases estimates only on data 
up to and including the current period. This makes it useful for investigating 
structural change in parameters or constructing forecasts based only on 
historical data.  
 
As with many time series methods economists use (such as ARIMA models), 
State Space Models originated in the engineering literature (Kalman 1960) and 
were imported into economics by Rosenberg (1968) among others. A good 
reference is Harvey (1981); there is also a special issue of the Annals of 

Economic and Social Measurement (October 1973) on time-varying 
parameters. A more elementary reference is Maddala (1977), Chapter 17. 
 
Using the notation in Harvey (1981), the model KALMAN estimates can be 
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written in the following way (assuming a single dependent variable for 
simplicity): 

1
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yt is the dependent variable and there are m independent variables Zt. The first 
equation is an ordinary regression equation with time-varying parameters. The 
second equation defines the evolution of these parameters. Note that matrices 
St and Rt in Harvey's notation have been set to identity matrices and matrix Tt 
to a constant matrix in this use of the Kalman Filter.  
 
When estimating this model in TSP, you can optionally supply the matrices T 
(the transition matrix BTRANS), Qt (the variance of the transition equation 
VTRANS), P0 (the variance of the prior distribution on the parameter vector 
VBPRIOR), and the vector α0 (the mean of the prior on the coefficients 
BPRIOR). If you fail to supply any of them, reasonable defaults will be used.  
 
For example, the simplest KALMAN command looks like this: 
 

KALMAN CONS C GNP ; 
 
The above command estimates the regression of consumption on GNP in a 
recursive manner, allowing the coefficient of GNP and the constant to evolve 
as random walks (with a signal-to-noise ratio of 1). These coefficients are the 
model's "state" variables, and consumption is the measured variable. The 
intercept and GNP series are treated as known fixed constants. In Harvey's 
notation, the model is 
 

1

2(0, )
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α0 will be estimated from the first m data observations, where m is the number 
of coefficients in αt. 
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A slight generalization of this random walk parameter model is the 
Cooley-Prescott (1973) adaptive regression model, which has had some 
success in forecasting. You can estimate this model with the command 
 

KALMAN(VTRANS=SIGMAV) CONS C GNP ; 
 
SIGMAV corresponds to Cooley and Prescott's Σv, the variance of the errors in 
the transition equation. In the absence of specific prior information on the form 
of this matrix, they suggest using a diagonal matrix whose elements represent 
the relative variability of the regression's different coefficients. This idea could 
also be used to mix time-varying parameters with constant parameters (by 
setting their variances to zero) in the same regression.  
 
KALMAN always calculates recursive residuals; these residuals can also be 
obtained with OLSQ when the REGOPT(CALC) RECRES; command is in 
effect. However, KALMAN can also print the evolving coefficients of the 
recursive model: 
 

KALMAN(NOETRANS,PRINT) CONS C GNP ; 
 
The Reference Manual discusses the KALMAN procedure further; useful 
features of the KALMAN command not discussed here but described in that 
manual include the stochastically convergent parameter model, the use of 
priors in estimating Kalman Filters, and the ability to estimate several 
measurement equations simultaneously.  

11.5 Vector Autoregressions (VAR) 

A vector autoregression model is the unconstrained reduced form of a dynamic 
simultaneous equations model; that is, it expresses a vector of endogenous 
variables as linear functions of their own and each other's lagged values. 
Contemporaneous and lagged exogenous variables may also be included in the 
system. This style of simultaneous equation modeling was introduced into 
econometrics by Sims (1980) and is now widely used for small to 
medium-sized macroeconometric models, particularly for forecasting.  
 
Estimation of an unconstrained vector autoregression is quite straightforward, 
even in the presence of contemporaneous correlation of the disturbances. 
Consider the following VAR: 

Yt = B1 Yt-1 + B2 Yt-2 + .... + GXt + Et 
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where Yt is an n by 1 vector of endogenous variables, the B's are n by n 
matrices of coefficients, G is an n by m matrix of coefficients, Xt is an m by 1 
vector of exogenous variables, and Et is an n by 1 vector of disturbances. 
Because the same list of right-hand side variables (all the lags of the Yt) appear 
in the n equations, this set of equations can be estimated consistently and 
efficiently by ordinary least squares; there is no need for joint estimation. 
 
Although you could use OLSQ to estimate a VAR model one equation at a 
time (listing all the relevant lagged variables for each estimation), TSP  
provides the VAR command to make this process easier. VAR also provides 
some regression output specific to the VAR methodology, such as impulse 
response functions and forecast error variance decompositions. For example, 
suppose you wish to estimate the vector autoregression for the six variables 
money, real GNP, unemployment, wages, price level, and import prices 
described in the Sims paper. You would use: 
 

VAR(NLAGS=4) M,RGNP,U,W,P,PM ; 
 
The above command produces as output the regression coefficients for the six 
ordinary least squares regressions of each dependent variable on four lags each 
of M, RGNP, U, W, P, and PM (24 coefficients for each equation), along with 
the log of the likelihood function under the multivariate normal assumption on 
the disturbances. In addition, the program will display (and store under the 
name @IMPRES) the response of each endogenous variable to 
Choleski-factored shocks in the given order over ten periods (the impulse 
response function).  
 
Exogenous variables may be included in the vector autoregression, and 
calculation of the impulse response function can be modified with options. For 
example, the command 
 

VAR(NLAGS=2,NHORIZ=5,SHOCK=UNIT) M GNP | C CONS P ; 
 
specifies that M and GNP are regressed on the lagged variables M(-1), M(-2), 
GNP(-1), GNP(-2), the constant, CONS, and P. The impulse response function 
will be calculated for only five time periods and a unit shock to the 
endogenous variables will be used. Except for computation of the impulse 
response, the VAR command above is equivalent to: 
 

OLSQ M M(-1) M(-2) GNP(-1) GNP(-2) C CONS P ; 
OLSQ GNP M(-1) M(-2) GNP(-1) GNP(-2) C CONS P ; 
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VAR automatically computes block exogeneity tests to see if lags of the other 
endogenous variables enter a given equation significantly. In the bivariate 
example above, these are Granger causality tests (F tests) for GNP(-1) and 
GNP(-2) in the M equation, and for M(-1) and M(-2) in the GNP equation. 
 
A common use of VARs is as a base case for more restricted structural models 
of lag relationships of a set of endogenous variables. With TSP's ANALYZ 
procedure it is possible to calculate an asymptotic test statistic for a joint 
hypothesis on the reduced form VAR coefficients. This hypothesis can be 
linear or nonlinear. For example, suppose you wish to test that the coefficients 
on the lagged Ms and GNPs are proportional in the two VAR equations given 
above. You could use the following set of commands to perform the task: 
 

VAR(NLAGS=2) M GNP | C CONS P ; 
? Give the estimated coefficients names in a list. 
LIST CNAMES B11-B14 G11-G13 B21-B24 G21-G23 ;   
FRML PREQ1 B11/B21 - B12/B22 ; ? Proportionality constraints 
FRML PREQ2 B12/B22 - B13/B23 ; 
FRML PREQ3 B13/B23 - B14/B24 ; 
? Compute a joint hypothesis test with 3 degrees of freedom: 
ANALYZ (NAMES=CNAMES,COEF=@COEF) PREQ1-PREQ3 ; 

11.6  Testing for Unit Roots and Cointegration 

11.6.1 Unit roots: UNIT 

Simply stated, the test for a unit root in a time series yt is the test that a 
regression of yt on yt-1 yields a coefficient of one. This test is complicated by 
several features arising from the nonstationarity of yt under the null hypothesis:  
 

1) The ordinary t-statistic does not have the usual distribution, so you 
cannot use tables of t-statistics to find its p-value.  

2) The correct distribution depends on nuisance parameters in the 
regression, in particular, whether the constant or the time trend is 
included.  

 
In a well-known paper, Dickey and Fuller (1979) suggest a method for 
computing a test for a unit root in a time series, and present critical values for 
their proposed tests with and without a trend variable included. The method 
consists of running the stationary regression yt-yt-1 on yt-1 either with or without 
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a constant and time trend and testing whether the coefficient of yt-1 is zero. 
They provide the appropriate critical values for such a test in a table. Since the 
distribution of the resulting t-statistic generally depends on the value of the 
intercept in the model unless a time trend is included, most researchers choose 
to include both a constant and a time trend and then use the tables appropriate 
for that case. 
 
Since then, a large literature on unit root tests has appeared, describing many 
alternative tests (some of which are variations of the above). The COINT 
command in TSP can compute 3 different types of unit root tests: the Dickey-
Fuller (tau), Phillips-Perron (Z, "nonparametric"), and Weighted Symmetric. 
Each allows for various exogenous variables like time trends and seasonal 
dummies/trends, and each allows for a series of "augmenting" lags to control 
for additional serial correlation. See the references and the Reference Manual 
under COINT for further information. 
 
For example, suppose you want to test whether consumption in Chapter 3's 
Illustrative Model has a unit root (is integrated of order 1). The following set 
of statements will perform the (augmented) Weighted Symmetric and Dickey-
Fuller tests and print their approximate (asymptotic) P-values: 
 

SMPL 49 75 ; 
UNIT CONS; 
 
In this example, UNIT chooses 2 augmenting lags for the WS test and 10 lags 
for the DF; the P-values are 0.89 and 0.73 respectively, so the null hypothesis 
of a unit root would not be rejected at the 0.05 level. The output of the UNIT 

tests for both CONS and for GNP are shown in Figure 11.4. 
 
Alternately, the Dickey-Fuller test could be computed "by hand"! 
 

SMPL 50 75 ; 
DCONS = CONS-CONS(-1) ; 
OLSQ DCONS CONS(-1) C TIME; 
CDF(DICKEYF) @T(1) ; 
  
The above example assumes that there is no further serial correlation since it 
does not add lagged y differences to the model. The resulting statistic was 
-1.36 with a corresponding asymptotic P-value of 0.84, so the null of a unit 
root is accepted at the 5 per cent level. Options for CDF allow you to compute 
the P-values without assuming the presence of a trend or constant. See the 



 11. Estimation Using Time Series Data 163 

 

 

references and the Reference Manual for further details. Also be aware that the 
residuals from the Dickey-Fuller regression should be serially uncorrelated for 
the test to be valid, although they do not generally need to be homoskedastic 
(Phillips 1987).  
 
The Weighted Symmetric test is recommended over the Dickey-Fuller test, 
because it has (sometimes only slightly) higher power (see Pantula, Gonzalez-
Farias, and Fuller 1994). That is, the WS test is more likely to reject the unit 
root (null hypothesis) when it is in fact false. The Phillips-Perron test is a 
variant of the Dickey-Fuller which tackles the problem of additional serial 
correlation in the residuals by using a GMM-type method to compute a 
residual variance that is "robust" to autocorrelation. The default is to compute 
the Weighted-Symmetric and Dickey-Fuller tests only. 

11.6.2 Cointegration: COINT 

Cointegration modeling of time series is a methodology pioneered by Engle 
and Granger (1987). Two or more time series are said to be cointegrated if a 
linear combination of them is I(0) (is stationary, or has all roots outside the unit 
circle) even though individually they are each I(1). Thus the hypothesis of 
cointegration consists of two parts: tests for I(1) of the individual series and 
I(0) of a linear combination. Usually the term cointegration testing refers only 
to the second part of the hypothesis; the test is performed conditional on the 
fact that each component series is I(1). Although this hypothesis sounds 
different from the hypothesis of a unit root, the practice of testing for 
cointegration is quite similar. TSP gives the P-values for the Engle-Granger 
versions of these tests in the CDF procedure under the DICKEYF option. 
 
As an example, consider testing that real consumption and real GNP from the 
Illustrative Model are cointegrated. It is easy to establish that each is I(1) 
separately (with asymptotic P-values of .89 and .99). The TSP commands to 
evaluate the second part of the hypothesis are the following: 
 

SMPL 49 75 ; 
COINT(TERSE,ALLORD) CONS GNP;  
? Note that this command performs all the individual unit root tests 

before testing for cointegration. 
 

The output from this command is shown in Figure 11.4. When CONS is the 
dependent variable of the cointegrating regression, COINT chooses 9 
augmenting lags, and obtains a test statistic of -2.07, which has a P-value of 
0.74. When GNP is the dependent variable, 10 augmenting lags are chosen, 
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and the test statistic and P-value are -1.17 and 0.97 respectively. So the null 
hypothesis of a unit root in the cointegrating regression cannot be rejected at 
the .05 level in either test. We can conclude that the linear combination of 
CONS and GNP is not I(0), so they are not cointegrated (at this significance 
level). 
 

Figure 11.4  Output for unit root and cointegration tests 

 
If the COINT test of CONS on GNP were done manually, without the search 
for augmenting lags, it would look like this: 
 

SMPL 49 75 ; 
OLSQ CONS GNP C TIME ;  ? the cointegrating regression 
SMPL 50 75 ; 
DRES = @RES-@RES(-1) ; 
OLSQ DRES @RES(-1) ;  ? Engle-Granger test is a  
? Dickey-Fuller test on residuals from the cointegrating regression. 
CDF(DICKEYF,NVAR=2) @T ; 
 
In the above example, consumption is regressed on a constant, time, and GNP 
to obtain the cointegrating vector, residuals are constructed, and then the 

                           Summary of Unit root tests 

                                Test Statistics 

 

                   GNP          CONS  

Wtd.Sym.      -1.50690      -0.52491  

Dickey-F      -1.75488       0.35523  

 

                                   P-values 

 

                   GNP          CONS  

Wtd.Sym.       0.88954       0.99345  

Dickey-F       0.72610       0.99648  

 

                                Number of lags 

 

                   GNP          CONS  

Wtd.Sym.       2.00000       2.00000  

Dickey-F      10.00000      10.00000  

 

 

        Summary of Engle-Granger (tau) cointegration tests 

 

Dep.Var.      TestStat       P-value      Num.lags  

GNP           -2.07152       0.74083       9.00000  

CONS          -1.17088       0.96513      10.00000 
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first-differenced residuals are regressed on the lagged residual. Under the 
hypothesis of stationarity, the coefficient on this variable should not be zero; 
the t-statistic for this hypothesis is the Engle-Granger statistic. One 
complication is that the actual value of the Engle-Granger statistic (although 
not its distribution) will be affected by the choice of left-hand variable in the 
first regression (consumption or GNP); COINT with the ALLORD option 
computes both tests. 
 
To compute the asymptotic P-value manually for the Engle-Granger statistic, 
use the DICKEYF option of the CDF procedure with the NVAR option to 
specify the number of cointegrating variables used in computing the test 
statistic. TSP provides P-values for cointegrating regressions with up to 6 
variables, using the response surface estimates given by MacKinnon (1990, 
1994). For this example, the value of the statistic with no augmenting lags was 
-1.364, with a P-value equal to 0.839. If we had put GNP on the left-hand side 
of the original regression, the corresponding value of the statistic would have 
been -1.366, with a P-value of 0.838, so in this case, the choice of left hand 
variable did not matter. The null hypothesis of a unit root in the cointegrating 
regression would not be rejected at the 5 per cent level, so we could not 
conclude that these variables are cointegrated. Note that the test can be 
sensitive to the estimation sample. If a period of 1950-1975 is used for the 
cointegrating regression rather than 1949-1975, the unaugmented P-values are 
.00097 and .029, which would lead to the conclusion that cointegration does 
exist. 
 
COINT computes the Engle-Granger test by default. A second type of 
cointegration test that can be performed by the COINT command is the 
Johansen-Juselius (maximum likelihood) test. This involves testing for a 
particular restriction on the coefficient matrix of lagged dependent variables in 
a VAR. It is actually estimated by running two VARs and obtaining the 
eigenvalues for a function of their joint residual covariance matrix. Then 
likelihood ratio tests (with finite sample corrections) are made to check for the 
number of cointegrating vectors of the original system. The Johansen-Juselius 
test is often "oversized" (i.e. a P-value of .01 may be printed when the true 
rejection frequency would be about 0.10), implying that "too much" 
cointegration (or too many cointegrating vectors) tend to be found. For 
example: 
 

SMPL 58:2 84:3; 
COINT(JOH,SEAS,NOTREND,NOEG,NOUNIT,MAXLAG=1,MINLAG=1) 

Y1-Y4; 
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This command computes the trace tests for the Finnish data from the Johansen-
Juselius(1990) paper. Note that COINT computes the tests with the finite 
sample adjustment, but this doesn't affect the results much (at least in this case 
of autoregressive order 2). In this case, we would conclude at the 5 per cent 
level that there are 2 cointegrating vectors (because the first 2 nulls are rejected 
and the third is accepted). The P-values are interpolated from Osterwald-
Lenum (1992) Table 1.1* (because a constant term is included, and Table 1.1* 
is more conservative that Table 1). The table is shown below. 
 
  

Figure 11.5 Trace Tests for Finnish Data  

 

Eigenvalue 

 

Null 

hypothesis 

Trace test 

without 

adjustment 

Trace test 

with 

adjustment 

 

P-value 

.31 r=0 76.13 70.28 .0003 

.23 r<=1 37.65 34.75 .023 

.073 r<=2 11.00 10.16 .43 

.029 r<=3 3.11 2.87 .44 
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12. CONTROLLING THE EXECUTION OF A 
TSP PROGRAM 

 
This chapter describes TSP statements that control the program's order of 
execution. They help advanced users who use TSP as a programming language 
for solving complex and nonstandard problems. Be aware that although many 
of the statements resemble Fortran or other high-level language statements, 
they will not execute as quickly as the corresponding Fortran statements would 
after being compiled. The advantage of programming within TSP is 
convenience, but this convenience comes at some cost in execution time. 
 
The statements covered in this chapter allow you to control the amount of 
printed regression output (REGOPT), or the order of execution of the program 
(GO TO, IF, THEN, ELSE). We describe two kinds of loops: ordinary DO 
loops and the more flexible DOT loops. Finally, we discuss how you can write 
a TSP procedure that can be used in multiple TSP programs to perform a task 
that you do often.23 

12.1 Loops: DO 

The DO statement offers a convenient method to execute a group of TSP 
statements several times, using a variety of parameter values or making some 
other change each time. All the statements between DO and ENDDO are 
executed repeatedly according to information provided in the DO statement. In 
its fullest form, DO uses a counter variable set equal to a lower limit, 
increments by a fixed amount each time through the loop and stops when an 
upper limit is reached. The statement has the form DO followed by the name 
of the counter variable, an = sign, the lower limit, TO, the upper limit, BY, the 
increment. For example, 
  

DO I=1 TO 7 BY 1;  
 
specifies that I is the counter, it starts at one and goes through 7 in steps of 
one. Shorter forms of the DO statement are available; if BY is omitted, the 
increment is taken to be one; for example,  

                                                      
23 

If you are using TSP interactively, the commands described in this chapter (except 

REGOPT) must be entered in COLLECT mode, so they can be executed together. See 
Chapter 17 for more information on interactive use.  
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DO I=1 TO 7;  
or 

 
DO I=1,7; 
 
have the same effect as the previous example. If everything except DO is 
omitted, the loop is executed just once. This last type of DO loop provides a 
useful extension of the IF statement (see section 12.5). For example,  
 

OLSQ Y C,X; 
IF @DW <= 1.5; THEN; DO; 

SET RHO = 1.0-@DW/2 ; 
GENR YT = Y - RHO*Y(-1); 
GENR XT = X - RHO*X(-1); 
GENR CT = 1-RHO; 
OLSQ YT CT,XT; 

ENDDO;  
 
In this example, the Durbin-Watson statistic is examined and an autoregressive 
transformation of the data is carried out if there are signs of positive 
autocorrelation of the residuals.  

12.2 Loops over Names: DOT 

The DOT statement is like a DO statement, except the index has a set of 
character values (names or numbers) which can be substituted into names 
where a dot (.) appears. For example, 
 

DOT A B C ;    is equivalent to:  PRINT PA;  
PRINT P. ;     PRINT PB;  

ENDDOT ;     PRINT PC; 
 
This makes it possible to repeat one or more statements for each of the sectors 
in a multisectoral body of data. To do this, the names of the series must all 
have the form of a generic part, common for that series across all the sectors, 
and a sector part, common across all the series for that sector. This is a 
conventional way to identify multisectoral data. For example, the generic 
names might be DW, (rate of change of wages), U (unemployment), and DP 
(rate of change of prices). The sector names might be US (United States), UK 
(Britain), SE (Sweden), and DE (Germany). USE would denote unemployment 



 12. Controlling execution 169 

 

 

in Sweden, and DPDE would be the rate of change of prices in Germany.  
 
If data are set up in this way, TSP statements may be written with just the 
generic parts of the names, followed by a dot (.). TSP substitutes the various 
sector names for the dot and executes the statements repeatedly for all sectors. 
 
The DOT statement indicates the beginning of a set of statements to be 
executed repeatedly in this fashion. DOT is followed by a list of the sector 
names. Examples:  
 

DOT US UK SE DE ; 
 
DOT 1 2 3 4;  
 
DOT 1-4;  
 
LIST SUBS 1-4; DOT SUBS; 
 
LIST(FIRST=1,LAST=4) SUBS; DOT SUBS; 
 
The end of the set of statements is marked with an ENDDOT; . To specify a 
regression of DW on U and DP for each of the four countries in the above 
example, use  
 

DOT US UK SE DE ; 
OLSQ DW. C,U.,DP.; 

ENDDOT;  
 
Any number of statements may appear between DOT and ENDDOT. TSP 
cycles through them as many times as there are sectors in the DOT statement. 
Any TSP statement may contain dotted series names. Series names without 
dots (for example C in the OLSQ statement) are used directly and are not 
concatenated with the sector name. 
 
Dots may appear any place within a variable name, including the first 
character, although names that contain only numbers and a dot (.) should not 
be used since they will be confused with real numbers. For example, .2 is 
illegal. A name that consists of only a dot (.) is allowed, however. Here is an 
example where the mean is removed from each of several variables: 
 

DOT S E K ; 
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MSD (NOPRINT) . ; ? Note the use of a “.” all by itself 
. = . - @MEAN ; 

ENDDOT ; 
? The variables S, E, and K are now centered around zero  
? (each of them has had its mean subtracted). 
 
Double dots (two DOT loops that are nested) are also possible and can be a 
powerful technique. The next example evaluates a set of equations for the 
variables R1-R4, S1-S4 and Q1-Q4. It stores the results in variables with the 
tag FIT: 
 

DOT (CHAR=%) S R Q ; 
DOT 1 2 3 4 ; 

GENR EQ.. .FIT. ; 
ALT.. = B.% * .FIT. ; 

ENDDOT ; 
ENDDOT ; 
 
The new variables are SFIT1-SFIT4, RFIT1-RFIT4, and QFIT1-QFIT4; note 
that the dots are evaluated in order within a name. Note also the use of the 
CHAR option to specify which dot is meant when there are two levels of dots. 
In this case B.% denotes BS, BR, and BQ as the outer loop index changes.  
 
The DOT command has several options which allow the best features of DO 
and DOT loops to be combined, and give more control over single-dotted 
names in nested DOT loops; examples are given in the Reference Manual. 

12.3 User Procedures: PROC 

Another useful way to group TSP statements together for repetitive use is the 
user procedure. The group is given a name, then the name can be used 
anywhere in the TSP program to stand for the whole group of statements.  
 
The beginning of a procedure is marked by PROC followed by the name of the 
procedure. All the statements following PROC are incorporated in the 
procedure, up to ENDPROC (or ENDP), which marks the end. Example:  
 

PROC REGAFT; 
ACTFIT @LHV,@FIT; 
COVA @LHV,@FIT; 

ENDP; 



 12. Controlling execution 171 

 

 

  
REGAFT; could be invoked after a regression to carry out the ACTFIT 
comparison and print the COVA results. For example,  
 

OLSQ CONS,C,GNP; 
REGAFT;  
 
executes the REGAFT procedure for this regression. The effect is as if the two 
statements in the body of REGAFT had been placed after OLSQ instead.  
 
User procedures may have arguments. These are variable names defined in the 
PROC statement which stand for the actual names used when the procedure is 
invoked. Any number of arguments may be listed after the name of the 
procedure in the PROC statement. When the procedure is invoked elsewhere 
in the TSP program, the same number of actual variables must be listed after 
the procedure name. A TSP list variable may be a procedure argument. This 
provides a way to pass a variable number of series to a procedure for 
processing. The LENGTH command may be used inside the procedure to 
count the number of items in the list. 
 
Each time the procedure is invoked, TSP sets up a correspondence between the 
argument names used in the procedure definition and the variable names 
specified in the invocation.  
 

PROC PCNTCH X,Y; 
GENR Y=100*(X-X(-1))/X(-1); 

ENDP ;  
 
PROC PCNTCH computes Y as the percent rate of change of X. For example, 
to compute the percent change of GNP and call it GNPPCH, specify:  
 

PCNTCH GNP,GNPPCH;  
 
The next example is an alternative to the first example (REGAFT), and shows 
the use of a list as an argument: 
 

PROC REGF VARS; 
OLSQ VARS; 
ACTFIT @LHV,@FIT; 
COVA @LHV,@FIT; 

ENDP REGF; 
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LIST V1 CONS C GNP;  ? using PROC REGF 
REGF V1; 
 
The next procedure computes a moving average of X length LEN over the 
current SMPL and returns them in XMA: 
 

PROC MA X,LEN,XMA ; 
LOCAL LAST LAG ; 
XMA=X ; 
SET LAST=1-LEN ; 
DO LAG=LAST TO -1 ; 
XMA = XMA+X(LAG) ; 
ENDDO ; 
XMA=XMA/LEN ; 

ENDPROC ; 
 
Using this procedure, the command  
 

MA R,2,RMA;  
 
is equivalent to  
 

RMA = (R+R(-1))/2;  
 
Note the use of the LOCAL statement to name some variables that are only 
allocated temporary storage during the execution of procedure MA. This can 
be convenient if variables named LAST or LAG are in your main TSP 
program. The LOCAL option should be used if you wish to build a library of 
procedures and don't want conflicts among the variable names they use and 
those in the programs that might use the procedures.  
 
One TSP procedure may invoke another and this may proceed to any depth. 
All TSP procedures are defined at the time that the program is read and 
printed, and before it is executed. Therefore, the definition of a procedure may 
appear in a program later than the first place that it is invoked. If errors occur 
during the execution of a PROC, the line number where each nested PROC 
was called is printed to aid in diagnosing the problem. 
 

Note: See the TSP examples on the TSP web site www.tspintl.com for many 
more complex PROC examples. 
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12.4 Statement Label and Go To Statement: GOTO 

Any statement in TSP may be given a label, which is just a number placed 
before the command name. The normal order of execution of statements can be 
modified with a GOTO (or GO TO) statement. GOTO is followed by a 
statement label (number) and causes that statement to be executed next. 
Execution then proceeds in normal order from that statement. GOTO 
statements are most useful in conjunction with the IF statement. Together, they 
can control the execution of a program using the results of computations in the 
program.  
 

Note: Be careful using GOTO statements to transfer to an earlier part of the 
program. They can cause infinite loops. 

12.5 Conditional Statements: IF, THEN, ELSE 

The conditional statements IF, THEN, and ELSE can be used to specify that 
some statements in your program are to be skipped or executed only in some 
situations. IF evaluates a scalar expression. Usually the next statement is 
THEN; followed by a statement to be executed if the scalar expression is 
"true" (greater than 0). The statement after that may be ELSE; followed by a 
statement to be executed if the expression is "false" (less than or equal to 0). In 
other words, the scalar expression defines a logical condition; one statement is 
executed if the condition is "yes" and another if it is "no". Recall that TSP has 
relational and logical operators that create and manipulate zero-one variables, 
which can be used in an IF statement.  
 
Examples:  
 

IF .NOT. @IFCONV; THEN; GOTO 100;  
 
Control is transferred to statement 100 if the previous estimation procedure did 
not converge; otherwise GOTO 100 is skipped and the next statement after it is 
executed. 
 

IF LAMBDA>16; THEN;  
PRINT ALPHA,BETA;  

ELSE;   
PRINT LAMBDA;  

 
The expression LAMBDA>16 has the value 1.0 (TRUE or “yes”) if 
LAMBDA exceeds 16, in which case ALPHA and BETA will be printed; 
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otherwise LAMBDA itself will be printed. LAMBDA must be a scalar, not a 
series (unless the sample has been set so that only one observation is included). 
Use the SELECT or GENR statements with logical expressions to perform 
conditional transformation on series (see Chapter 3).  
 
Avoid using IF to define loops -- the DO statement (Section 12.1) is a better 
way to accomplish the same thing. If a collection of several statements is to be 
executed conditionally, the statements may be enclosed by DO and ENDDO 
statements (again, see Section 12.1). This avoids GOTO statements, which 
usually make a program difficult to read and are unnecessary in a well-written 
program.  

12.6 Controlling Printed Output: REGOPT 

TSP allows users to specify which results are to be printed in many procedures 
(mainly the estimation procedures). A complete table of results available from 
each procedure appears in the Reference Manual. Note that results can be 
stored without being printed under names beginning with @, like @RES, 
@FIT, @COEF, @SSR, etc.  
 
REGOPT enables you to change the standard selection of results to be 
calculated and printed. REGOPT(NOPRINT) followed by a list of code names 
tells TSP to print everything but the results specified by the code names. The 
suppression of the results takes effect when the REGOPT(NOPRINT) 
statement appears, and may be turned off at any point by a REGOPT(PRINT) 
statement. REGOPT; by itself restores the default selection. The complete list 
of code names available is given in the Reference Manual, and a partial list is 
given in Section 13.2.2 of this manual. Here is an example: 
 

REGOPT(NOPRINT) @YMEAN,@SDEV,@ARSQ,@FST;  
 
causes the dependent variable mean and standard deviation, adjusted 
R-squared, and F-statistic to be omitted from the output in all subsequent 
estimation procedures. 
 
Many estimation procedures support the TERSE option, which suppresses all 
the printout except for the log likelihood value, the coefficient estimates, and 
their standard errors. To suppress all print output, use the SILENT option 
(results will just be stored under their internal names). This option is especially 
useful when doing many repeated estimations in a Monte-Carlo simulation 
experiment. 
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13. MATRIX COMPUTATIONS 
 
Earlier in this manual we mentioned that one of the several TSP variable types 
available is the matrix. This chapter shows how to create matrices, combine 
them with other data in your TSP program, and perform computations on 
them. The advantage of working with matrices in TSP is that it facilitates 
computation of estimators not provided as "canned" procedures within TSP. 
We give some examples of these estimators later in this chapter. 
 
Here is a simple application involving matrices that illustrates how they can be 
used to compute a residual covariance matrix: 
 

OLSQ INV1 C F1 K1 ; 
COPY @RES E1 ;       ? Save residuals from equation (1). 
OLSQ INV2 C F2 K2 ; 
COPY @RES E2 ;   ? Save residuals from equation (2). 
MMAKE E E1 E2 ;      ? Make a T by 2 matrix of residuals. 
?     Form the 2 by 2 covariance matrix of these residuals: 
MAT RESCOV = (E'E)/@NOB ;  
PRINT RESCOV ;            ? Print the matrix. 
 
In the above example, we form an estimate of a asymptotic residual covariance 
matrix for a two-equation model estimated by ordinary least squares. E1 and 
E2 contain the residual series for each equation; each can be thought of as a T 
(where T is the number of observations) by 1 vector. MMAKE combines the 
two series to make a T by 2 matrix: 
 

E = [ E1 E2 ] 
 
The next command, MAT, is a matrix computation command. It calculates the 
2 by 2 matrix RESCOV as the cross-product matrix of the residual matrix E 
divided by the number of observations in the regressions. This matrix is an 
estimate of  the covariance of the disturbances in the two equations. The result 
is displayed by PRINT. PRINT can be used for matrices as well as for 
variables of any other type in TSP. 
 
This simple example introduces combining matrix operations with other 
information in your TSP program. Before giving any more examples, we give 
an overview of the matrix facilities available in TSP: the types of matrices 
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available, how to create or input matrices, and how to compute using matrices . 

13.1 Matrix formats 

To economize on matrix storage and computation, TSP stores matrices of 
several different types in different ways, and uses only the unique and 
non-zero elements of a matrix to save on computations. For the most part, you 
need not be aware of this; the program takes care of it for you. When you load 
matrices, however, it is sometimes helpful to label the matrix type to save data 
entry. You will also notice that the format of the printed output of matrices will 
vary by matrix type. The matrix types recognized by TSP are the following: 
 

GENERAL -- A general matrix may have any rectangular form (any number 
of rows and columns). Any matrix can be loaded or used as a general matrix, 
even one that has a special form. A vector has only one row or only one 
column. Some matrix operations allow series to be used as vectors (provided 
that the number of observations in the current sample conforms to the other 
matrices in the procedure). When they are used in matrix procedures, scalars 
are treated as special cases of general matrices with number of rows and 
columns equal to one. 
 

TRIANG -- A triangular matrix contains meaningful elements on and above 
the diagonal and zeroes below the diagonal. TSP stores only the diagonal and 
above diagonal elements. This corresponds to an upper triangular matrix; if 
you wish a lower triangular matrix, use the transpose of this matrix in all your 
operations. When a triangular matrix is printed out, elements below the 
diagonal are blank. 
 

SYM -- A symmetric matrix has the same elements above the diagonal as 
below the diagonal. TSP stores only the elements below the diagonal and 
expands the matrix before it is used. When the matrix is printed out, the 
elements above the diagonal are blank. 
 

DIAG -- A diagonal matrix is any square matrix with nonzero or zero elements 
on the diagonal and zero elements everywhere off the diagonal. Diagonal 
matrices are obviously also triangular and symmetric. TSP stores only the 
diagonal of this type of matrix, and expands the matrix before it is used. It can 
be created or reformed from a vector (the diag operation from matrix algebra) 
using the procedure MFORM or the matrix function DIAG( ). If GAMMA is a 
vector of length 5, examples showing how to form the matrix diag(GAMMA) 
are the following: 
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MFORM(NROW=5,TYPE=DIAG) DG=GAMMA ; 
 
or 

 
MAT DG = DIAG(GAMMA) ; 
  
The resulting 5 by 5 diagonal matrix DG has zeros everywhere except along 
the main diagonal, where DG(1,1) = GAMMA(1), DG(2,2) = GAMMA(2), 
and so forth.  
 
An identity matrix may also be formed in this way, but it is more easily formed 
with the IDENT() function: 
 

MAT ID = IDENT(5) ; 

13.2 Creating a matrix 

There are three ways to create a matrix in a TSP program: read it in with your 
input data, obtain it as the result of a TSP procedure, or form it from a group of 
time series or other data. The next three sections describe each of these 
methods. 

13.2.1 Reading matrices: READ 

Matrices can be read just like series with two important differences: the current 
SMPL does not apply to them and options on the READ command tell the 
program the matrix's format. These options are the matrix type 
(TYPE=GENERAL, SYMMETRI, TRIANG, or DIAG), number of rows 
(NROWS= ), number of columns (NCOL=), and whether the full matrix or 
just the significant elements are being loaded (FULL/NOFULL). 
 
Here is an example of reading a general matrix: 
 

READ (NROW=4,NCOL=3) COEFMAT ; 
.32 0.5 1.3 
.30 0.4 1.35 
.25 0.61 1.1 
.28 .55 1.23 
; 
 
The data should consist of all the elements of the first row followed by all the 
elements of the second row, and so on, with a ";" at the end of the last column. 
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In this example, we entered each row of the matrix on a separate line to make 
it easy to read and to check, but this is not required. 
 
The next two examples of reading a symmetric matrix produce the same result; 
they demonstrate the FULL option. 
 

READ (NROW=3,TYPE=SYM) COVAR ; 
4.6  
2.3 5.1  
0.9 2.1 3.9 ; 
 
READ (NROW=3,TYPE=SYM,FULL) COVAR ; 
4.6 2.3 0.9 
2.3 5.1 2.1 
0.9 2.1 3.9; 
 
The FULL option is used mainly when the matrix is already in this format 
because it was obtained from a source other than TSP, and you do not want to 
remove the redundant elements. 
 
Matrices do not have to be read in free format, as they were in these examples; 
you can use any of the formats described for the READ command in the 
Reference Manual or in Chapters 3 and 16 of this manual. 

13.2.2 Matrix results from TSP procedures: COPY 

The second way to create a matrix is to obtain it from the results of a matrix 
procedure or a statistical procedure. For example, to use the estimated 
covariance matrix from an estimation procedure later in your TSP program, the 
command 
 

COPY @VCOV Q; 
 
will save the matrix for later use under the name Q. 
 
All results which can be obtained in this way are listed in the Reference 

Manual or online Help System under the Output Section for each procedure. 
The exact dimensions and type of matrices concerned are also given. Most of 
the results available are printed by the estimation procedures (OLSQ, 2SLS, 
LIML, AR1, LSQ, FIML, etc.) and are only available for use until the next 
estimation procedure, since the same temporary names (beginning with @) are 
reused for all procedures. 
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Some of the standard matrix results stored after estimation procedures are: 
 

@COEF the vector of coefficient estimates 
@SES   the vector of standard errors of the coefficients 
@VCOV  the estimated variance-covariance matrix 
@VCOR  the correlation matrix corresponding to @VCOV24 

@LAGF  the vector of estimated lag coefficients (if a PDL 
variable was used) 

 
All the results below are stored as vectors rather than scalars if a 
multi-equation model was estimated, so they may be manipulated as matrices: 
 

@SSR   the sum of squared residuals  
@S2   the estimated variance of the residuals 
@S   the standard error of the residuals 
@RSQ   the R-squared 
@DW   the Durbin-Watson statistic 
@YMEAN  the mean of the dependent variable 
@SDEV  the standard deviation of the dependent variable 
 
These additional results are stored as scalars for the single equation models 
only:25 
 

@FST   the F-statistic 
@ARSQ  the adjusted R-squared or R-bar-squared 
@DH   Durbin's h statistic (for a lagged dependent variable)  
@DHALT Durbin's alternate statistic (for lagged dep. variables) 
@LOGL  Log of likelihood function 
@AIC   Akaike Information Criterion 
@SBIC  Schwarz Bayesian Information Criterion 
@LMHET Lagrange multiplier test for heteroskedasticity 
@RESET2 Ramsey’s RESET test of functional form 
@JB  Jarque-Bera statistic 
 
Residuals @RES and fitted values @FIT are stored as matrices (rather than 

                                                      
24 REGOPT(CALC) VCOR; must be in effect for this to be retrievable. 
25 LSQ, GMM, and FIML do not store @YMEAN, @SDEV, @FIT, @RSQ, etc. for 

unnormalized equations (those without explicit dependent variables). 
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series) if a multi-equation model is being estimated. The number of rows in 
these matrices is equal to the number of observations and the number of 
columns is equal to the number of equations.  
 
The multi-equation estimation procedures (VAR, LSQ, SUR, GMM, 3SLS, 
FIML) also store: 
 

@COVU  the covariance matrix of the residuals. 
 
Most nonlinear procedures (LSQ, FIML, PROBIT, ML, etc.) store: 
 

@IFCONV  convergence flag (1=converged, 0=not converged) 
@GRAD  gradient vector w.r.t. the parameters at convergence 
 
The procedures for simple statistics, MSD, CORR, COVA, and MOM, also 
store their results as matrices. Here is a partial list of useful results: 
 

@MEAN Vector of series means 
@STDDEV  Vector of series standard deviations 
@MIN  Vector of series minimums 
@MAX  Vector of series maximums 
@SUM  Vector of series sums 
@VAR  Vector of series variances 
@COVA Covariance matrix 
 
See the Reference Manual or online Help System for a complete list of results 
available in each procedure. 
 

13.2.3 Creating a matrix: MMAKE, UNMAKE 

The third way to create a matrix is to assemble one from a set of time series or 
scalars. MMAKE makes each series into a column of a matrix. To use this 
command follow the name of the matrix  by the names of the series that will go 
into the matrix. The current SMPL controls the selection of observations from 
the series. For example, if the following series had been loaded, 
 

SMPL 1,3; 
LOAD X; 1,2,3; 
LOAD Y; 4,5,6; 
LOAD Z; 7,8,9; 
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then the program could have 
 

MMAKE M X,Y,Z; 
 
which would create the matrix M shown below: 
 
       1    4    7 

 M =   2    5    8  

   3    6    9 

 
To stack the three series into a 9x1 vector, you could use MFORM to reshape 
M: 
 

MFORM(NROW=9,NCOL=1) S=M ; 
 
Alternatively, you could use the VERT option on MMAKE: 
 

MMAKE(VERT) S X,Y,Z ; 
 
Either way, the matrix S = [1 2 3 4 5 6 7 8 9]’ would be created. 
 
The inverse of MMAKE is UNMAKE. To store the columns of a matrix as 
individual series, use UNMAKE followed by the name of a matrix and then 
the names for the new series. The operation must be conformable; that is, the 
number of rows in the matrix must be equal to the number of observations in 
the current SMPL and the number of columns must be equal to the number of 
series names given. 
 
Below is an example that undoes the first MMAKE X,Y,Z: 
 

UNMAKE M,A,B,Q; 
 
After execution, A,B, and Q are time series that are identical to the original X, 
Y and Z. 
 
To turn a matrix back into a series, use UNMAKE with a single series name. 
For example, to create a stacked series T after stacking using MMAKE 
(VERT), 
 

SMPL 1, 9 ; 
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UNMAKE S T ; 
 
MMAKE and UNMAKE also operate on scalar variables; in this case the first 
argument is a vector. This is useful for operations on starting values or 
parameter estimates. For example, 
 

OLSQ Y C X1-X10; 
PARAM B0-B10; 
UNMAKE @COEF B0-B10; 
 
places the OLS estimates of the coefficients into the scalars B0, B1, B2, ... for 
further use. 
 
MMAKE can also be used to concatenate matrices. For example, suppose that 
you have matrices Z1 (3 by 2), ZIT (2 by 3), and Z2 (3 by 3). The command 
 

MMAKE NEWZ Z1 Z2 ; 
 
makes the 3 by 5 matrix  
 

NEWZ = [Z1 Z2] 
 
The command 
 

MMAKE(VERT) NEWZT ZIT Z2 ; 
 
makes the 5 by 3 matrix 

1

2

 
=  
 

Z T
NEWZT

Z
 

13.2.4 Making a matrix from other matrices: 
MFORM 

We have already given a few examples of the use of MFORM to copy or 
reformat matrices. It can also be used to change the type of matrix (from 
symmetric to general, for example): 
 

MFORM(TYPE=GEN) YMAT ; 
 
The above example takes YMAT, a symmetric matrix stored as a lower 
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triangle, and fills out the elements above the diagonal in the appropriate way, 
storing the matrix under the same name. To change its name to GMAT at the 
same time, use 
 

MFORM(TYPE=GEN) GMAT = YMAT ; 
 
MFORM can also be used to create block diagonal matrices from other 
matrices; for example, the command 
 

MFORM(BLOCK) NEWMAT = OLDMAT1 OLDMAT2 OLDMAT3 ; 
 
forms the matrix NEWMAT from three matrices (all of which are normally 
square matrices, but need not be) using the block diagonal format. If 
OLDMAT1 is 2 by 2, OLDMAT2 is 3 by 3, and OLDMAT3 is 4 by 4, the 
new matrix NEWMAT will be a 9 by 9 general matrix, with zeroes in the 
appropriate locations.  

13.3 Matrix algebra: MAT 

In TSP you can perform algebraic operations with matrices just the way you 
can with series, using the same kind of easily specified formulas or equations. 
For example, the command  
 

MAT B = (X'X)"X'Y ; 
 
computes a vector of regression coefficients and stores them in B, given a 
matrix of data for the regressands in X and a vector of data for the regressor in 
Y. Note the use of the operator ' (apostrophe) to specify the transpose of X, and 
the operator " (quotation mark) to specify the operation of matrix inversion. Of 
course, you are unlikely to use this particular matrix equation, since TSP 
performs this operation automatically when you specify an OLSQ command, 
which uses a more accurate algorithm. To use OLSQ to compute this 
expression without creating print output, use the following: 
 

UNMAKE X X1 … XK ; 
OLSQ (SILENT) Y X1 …. XK C ;        ? X1, etc are columns of X 
COPY @COEF B ; 
 
In the next few sections, we describe in more detail how to perform 
calculations using matrices. Matrix operations basically fall into three classes: 
ordinary operators (multiplication, addition, etc.), functions of matrices that 



184 Advanced Methods 

 

 

yield scalars or matrices as output, and matrix procedures which have two or 
more arguments. Only the latter cannot be included in matrix equations 
specified in the MAT command and must be specified using separate 
commands. We begin with the operations and functions that can be used with a 
MAT statement, and then describe the stand-alone procedures. 

13.3.1 MAT command and matrix operations 

TSP provides a variety of operations on matrices, including multiplication, 
inversion, factorization, calculation of eigenvectors, and eigenvalues, and so 
forth. All these operations may be specified in matrix equations preceded by 
the word MAT; these equations are just like the variable transformations 
performed by GENR, except for two things: they do not operate under control 
of the current SMPL and the result from MAT equations is stored as a matrix. 
The MAT procedure checks the matrices for conformability of the operations 
and gives an error message if the operation specified is not possible. Often 
printing the matrices in question will reveal why the operation cannot be 
performed. 
 
Appendix A gives a complete list of TSP operators and what they mean. In this 
section we list these operators and how they are interpreted in the MAT 
command. All the ordinary operators and functions used in TSP equations can 
also be used in the MAT command. They operate on an element-by-element 
basis (and hence require conforming matrices if they are binary operators). 
There is one important exception to this, the multiply operator * . For 
simplicity, this operator denotes the usual matrix multiplication, and 
element-by-element multiplication (the Hadamard product) is denoted by the 
operator % .  
 
In the descriptions of the matrix operators that follow, we use the following 
symbols to denote the inputs and outputs of operations: 
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Figure 13.1 Argument types for MATRIX 

Symbol Description of variable 

s Scalar or subscript variable 
i Integer scalar 
m Any matrix (if scalar, treated as 1 by 1 matrix) 
qm Square matrix, N by N 
sm Symmetric matrix, assumed positive semi-definite 
dm Diagonal matrix, assumed positive semi-definite 
tm Upper-triangular matrix, assumed positive semi-

definite 
v Column vector, N by 1 

 
The additional symbolic operators understood by the MAT are shown below. 
Remember that the operands must be conformable for the operations that you 
request; TSP will check the dimensions for you and refuse to perform the 
computation if this condition is violated. 

Figure 13.2 Matrix operators 

Operation Description 

m*m Matrix product 
m*s or s*m Scalar multiplication 
m’ Matrix transpose 
m’m Matrix transpose with implied matrix product 
qm” Matrix inverse (also causes @DET, the determinant of qm, 

to be stored) 
qm”m Matrix inverse with implied matrix product 
m#m Kronecker product  
m%m Hadamard product (element by element multiplication) 

 
When TSP processes a MAT command, it recognizes several operations where 
great savings of computation time can be made by eliminating duplicate 
calculations. These situations include, but are not limited to, the cross-product 
operation (which generates a symmetric matrix) and the calculation of a 
quadratic form (the expression A*B*A'). This occurs even when the arguments 
to these expressions are complicated expressions themselves. Thus, you should 
be careful to express any such complex arguments in the same way whenever 
they appear in the matrix expression. For example, the following matrix 
equation computes the well-known test for a set of linear restrictions on 
estimated regression coefficients (H0: Rb = b0): 



186 Advanced Methods 

 

 

 

MAT CHI = (R*B-B0)'(sigsq*(R*(X'X)"R'))"(R*B-B0) ; 
 
Both quadratic forms in this expression will be recognized and computed as 
such, and the expression R*B-B0 will be computed only once.  

13.3.2 Matrix functions with scalar output 

The following functions take matrices as their input and produce scalars as 
output: 
 

Figure 13.3 Matrix functions – scalar output 

Function Output 

type 

Description 

DET(qm) s Determinant (truncated to zero when <1.E-37) 
LOGDET(qm) s Log of (positive) determinant, no truncation 
TR(qm) s Trace (sum of diagonal elements) 
MIN(m) s Element with minimum value 
MAX(m) s Element with maximum value 
SUM(m) s Sum of elements 
NROW(m) i Number of rows 
NCOL(m) i Number of columns 
RANK(m) i Rank (number of linearly independent columns or 

rows) 

 
These functions may be used anywhere in a MAT statement where scalars are 
allowed, keeping in mind that a scalar is also a 1 by 1 matrix. 

13.3.3 Matrix functions with matrix output 

The following functions are matrix-to-matrix; that is, they take a matrix, 
perform some computation on it, and produce another matrix as output: 
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Figure 13.4 Matrix functions – matrix output 

Function Output 

type 

Description 

CHOL(sm) tm Choleski factorization (matrix square root) 
YINV(sm) sm Positive semi-definite inverse using CHOL() 
IDENT(i) dm Creates an identity matrix of order i 
EIGVAL(qm) v Computes the vector of eigenvalues of qm. If qm 

is not symmetric positive semi-definite, the 
imaginary parts of the eigenvalues are stored as 
@EIGVALI. 

EIGVEC(qm) qm Computes the matrix of eigenvectors (columns). 
If qm is not symmetric positive semi-definite, the 
imaginary parts of the eigenvalues are stored as 
@EIGVECI. @EIGVAL and @EIGVALI will 
also be stored automatically. EIGVAL and the 
corresponding EIGVEC are sorted high to low 

VEC(m) v Creates a vector of all the elements of m, column 
by column. 

VECH(m) v Creates a vector of all the unique elements of m, 
column by column: 
qm      N*N elements 
sm,tm  N*(N+1)/2 elements 
dm      N elements 

DIAG(m) dm Creates a diagonal matrix from a matrix: 
qm, sm, tm  take the diagonal from input matrix 
v          convert the vector to a diagonal matrix 
s        illegal; use s*IDENT(i) to create a diagonal 
matrix 

SYM(qm) sm Creates a symmetric matrix from a square matrix 
(the upper triangular elements are ignored). 

GEN(qm) m Creates a general matrix from a symmetric or 
diagonal matrix. 

SER(m) series Creates a series from a vector (same as 
UNMAKE v series ;). If used this function must 
be the outermost (last) function, and the length of 
v must match the number of observations in the 
current SMPL. 
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13.3.4 Matrix procedures: ORTHON, YLDFAC 

Several matrix procedures have more than one output and therefore cannot be 
used in MAT. These procedures are YLDFAC for performing an LDL 
decomposition (factorization of a semi-definite matrix), and ORTHON for 
matrix orthonormalization. You can use them like an ordinary TSP command 
with arguments; the input arguments are the names of matrices and the output 
arguments will be stored as matrices.  
 
There are two procedures available for factorization (generalized square root) 
of symmetric matrices: the CHOL function performs a Choleski 
decomposition, and YLDFAC performs an LDL decomposition. 
 

MAT S = CHOL(A) ; 
 
finds an upper triangular matrix S such that A = S'S. If A is a symmetric 
positive semi-definite matrix, there must exist such an S. The number of 
nonzero elements on the diagonals of S will be equal to the rank of A. Note 
also that A-1 = S-1(S')-1. 
 

YLDFAC A D U ; 
 
finds a diagonal matrix D and an upper triangular matrix U such that A = 
U'DU. This decomposition always exists if A is symmetric; the diagonal 
elements of D are functions of the eigenvalues (characteristic roots) of A. The 
number of nonzero diagonals of D is the rank of A, and the sign of the 
diagonals indicate whether the matrix A is positive definite (all positive), 
negative definite, or indefinite. 
 
If DHALF is a diagonal matrix of whose elements are the square roots of the 
corresponding elements of D, then the relationship between S and U is S = 
DHALF*U. This makes it obvious that S is only defined when the elements of 
D are non-negative. 
 
Orthonormalization is a transformation of a data matrix so that its columns are 
orthogonal and have a unit norm. This transformation is used by TSP's 
regression calculation to improve the accuracy of the results. The appropriate 
transformation is obtained by forming the cross product of the data matrix, 
X'X, factoring it to obtain the triangular matrix S, inverting S and using it to 
transform the original data: 
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Z = X S
-1

 

Since X'X = S'S, the resulting matrix Z will have the property 

Z'Z = S
-1

' X'X S
-1

 = I, 

that is, the columns of Z will be orthonormal. The form of the command is 
 

ORTHON X SINV Z ; 
 
where X is the input matrix, SINV is the name to give its inverse square root, 
and Z is the name to give the orthonormalized X.  

13.4 Examples using matrix operations 

The best way to learn how to use TSP matrix operations is to look at examples, 
as it is not always obvious how to do what you want. This section presents 
some solutions to common computation problems not yet implemented in TSP 
procedures. They include performing a Hausman specification test, computing 
the prediction error for a simple linear model, and computation of a ridge 
estimator for the linear regression model. 

13.4.1 A Hausman specification test 

A Hausman test compares two sets of estimates of the same parameters using 
the same data: one obtained using an efficient estimation technique assuming 
the specification is correct, and another obtained by an estimation method that 
is consistent even under a set of alternate hypotheses about the specification. 
The test is computed by differencing the two sets of parameter estimates and 
standardizing the vector of differences by the difference in the covariance 
matrices of the two sets of estimates. The quadratic form computed this way is 
asymptotically chi-squared with degrees of freedom equal to the number of 
parameters being tested (with certain caveats that we will mention later). 
 
To compute this test in TSP, we assume that somewhere you have obtained 
efficient estimates of the parameters, BEFF, and their variance, VEFF. Least 
squares or some other regression procedure is used to obtain consistent 
estimates of the parameters under a wide variety of misspecifications of the 
error term; these estimates are obtained immediately before you perform the 
test so they will be named @COEF and @VCOV. The Hausman test is 
computed by the following matrix operations: 
 

MAT DVAR = @VCOV-VEFF ;  
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MAT K = RANK(DVAR) ; 
MAT HTEST = (@COEF-BEFF)'YINV(DVAR)*(@COEF-BEFF) ; 
CDF(CHISQ,DF=K) HTEST ; 
 
The order of subtraction is important for the variance estimates, since the 
asymptotic variance of the efficient estimate must be less than or equal to that 
of the consistent estimate (in the matrix sense). However, frequently in 
practice, some elements of DVAR are negative on the diagonal. If this is the 
case, the test should be computed only for those parameters corresponding to 
positive diagonal elements, with a corresponding correction to the degrees of 
freedom. The program shown above does this automatically, since it sets the 
degrees of freedom equal to the rank of DVAR. The matrix inversion function 
YINV() will automatically perform a generalized inverse that sets the linearly 
dependent rows and columns of the inverse to zero.  

13.4.2 Prediction error for the linear regression 
model 

When regressors in the classical linear regression model are fixed constants 
and the disturbances outside the sample are assumed to be drawn from the 
same distribution as those within, the variance of the predictor from this model 
has two pieces. The first is due to the variance of the disturbance and the 
second to the variance of the estimate of the coefficients. If X is the matrix of 
in-sample regressors, X0 is the data for the prediction sample, and s2 is the 
variance of the disturbances, the equation for the prediction error variance is 

2 1

0 0( ' ) '− = + V s I X X X X  

You can use this formula to compute standard error bounds for a forecast of a 
linear regression model in TSP using matrix operations. Suppose that you have 
run an OLSQ for the historical period 1958 to 1982 and now wish to forecast 
through to 1990 using values of the exogenous variables previously projected. 
The forecast itself can be computed (without printing in this case) immediately 
following the regression: 
 

SMPL 58,82; 
OLSQ Y C X1 X2; 
SMPL 83 90 ; 
FORCST YPRED ; 
 
Now use the following matrix commands to construct an estimate of the 
prediction error: 
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? Make a matrix of the data for the forecast time period: 
MMAKE X @RNMS ;   
? Compute the prediction error. 
MAT PREDERR = SER(SQRT(@S2+VECH(DIAG(X*@VCOV*X')))) ; 
? Plot the forecast with standard error bands for the prediction error: 
PLOT(BAND=PREDERR) YPRED ;   
 
Note the use of the SER function to convert the output of the computation into 
a series, and the VECH and DIAG functions to extract the diagonal elements 
of X*@VCOV*X'. 

13.4.3 Ridge regression 

Ridge regression is a Bayesian estimator of a linear regression model, with a 
prior of zero on all coefficients. Ridge estimators have also been viewed by 
some observers as a way of overcoming multicollinearity in the independent 
variables. For a discussion of these estimators, see Judge et al.(1980), pp. 
452-501. A ridge estimator of the coefficients β from a linear regression model  

y = Xβ + ε  

has the form 

b = (X'X + γI)
-1

 X'y 

where γ is a positive scalar (which can be computed in a number of ways) and 
I the identity matrix of order of the number of independent regressors. It can be 
seen easily that the effect of adding a positive constant to all the diagonal 
elements of X'X will be to reduce the tendency for X'X to be singular or nearly 
singular.  
 
The example we give of computing a ridge estimator in TSP uses a formula for 
the scalar γ suggested by Sclove (1973) and described in Amemiya (1985). It is 
an empirical Bayesian estimator. The prior is that the coefficients are zero with 
a variance estimated from the data as the sums of squared of the fitted values 
of y divided by the trace of the X'X matrix. The γ coefficient in this case is a 
consistent estimate of the residual variance divided by the variance of the 
coefficient prior. The example below forms an estimate of γ by performing a 
conventional OLS regression, computing estimates of the variances, and using 
the matrix algebra routines to run the ridge regression.  
 

? Ordinary least squares on original data. 
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OLSQ Y C X2 X3 X4 X5 ; 
COPY @COEF ALPHA ; 
 
? Compute the Sclove coefficient gamma. 
MMAKE X @RNMS ;  
MAT GAMMA = (@SSR/@NOB)/((Y'Y-@SSR)/TR(X'X)) ; 
 
? Now form the estimator 
MAT AHATSTAR = (X'X+GAMMA*IDENT(@NCOEF))" X'Y ; 
PRINT GAMMA ALPHA AHATSTAR ; 
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14. FORECASTING AND MODEL 
SIMULATION 

 
Often the primary goal of an econometric study is to produce a model for 
forecasting an economy's future behavior, a sector in an economy, or even the 
behavior of an individual firm. Two common approaches to this problem are 
the structural model method and the time series (ARIMA or VAR) methods. 
Both methods can be used in TSP. A discussion of the pros and cons of these 
two methods is beyond the scope of this manual; an excellent reference that 
describes both methods, emphasizing their forecasting aspects is the Pindyck 
and Rubinfeld text. 
 
Chapter 11 introduced the time series methods of forecasting variables using 
ARIMA or VAR models. In this chapter, we discuss how to use the structural 
model forecasting methods in TSP. First we give an overview of the steps in 
constructing a forecasting model of any type, then we describe methods for 
forecasting a single variable, and finally we describe the model solution 
procedures used for multi-equation models. 
 
There are usually three major steps in producing a forecast: 
 
1. Define a model with one or more equations giving a reasonably good 
description of the variables of interest over a recent time period. The model 
can come from any source, although multi-equation models must be 
expressible in TSP equations (FRMLs). In particular, the model may arise 
from a series of estimations within TSP, both nonlinear and linear. The 
dimensions and quality of the model are your choice. If you want to use 
ARIMA models, use BJIDENT to help you choose the model. 
 
2.  Choose a forecast period and make some assumptions about the behavior of 
the exogenous variables in the model over this period. In an ARIMA forecast, 
there are no exogenous variables in the model, so you can skip this step. 
 
3. Using projected values of the exogenous variables and the model you have 
chosen, choose one of TSP's forecasting or simulation procedures to compute 
the endogenous variables of the model one period at a time. Lagged 
endogenous variables may be determined from either the previous forecasts 
(dynamic simulation -- this method will always be used for ARIMA or VAR 
forecasts), or may be actual realizations of the variable (static or historical 
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simulation). 
 
TSP provides several procedures and techniques to compute the forecast and 
display the results. These techniques can be divided into two major groups, 
single equation (single variable) forecasts, and the solution of simultaneous 
equations models. We describe the former first, and then describe the model 
solution procedures, SIML and SOLVE. 

14.1 Creating equations: FRML, FORM 

Chapter 7 described how FRML can be used to make TSP equations. Any 
equation thus created can be used in forecasting with the proviso that equations 
for SOLVE must be normalized (have a left-hand side variable). Note that 

logical expressions like Y>0 may also be included in the equations of a 
simulation model. 
 
It is also important to remember that equations used in simulation must have 
unknown parameter values defined in some way beforehand. This can be done 
by using a SET or PARAM statement to supply a value, for example, 
 

FRML GNPGROW GNP = (1+ALPHA)*GNP(-1) ; 
SET ALPHA = .15 ; 
 
You can also estimate the equation earlier in your TSP program; in this case, 
the parameter will retain its estimated value when the simulation is performed. 
For example, using the same equation for GNP growth as above, 
 

PARAM ALPHA ; 
LSQ GNPGROW ;   ? at the conclusion of the estimation, ALPHA 
                            ? will contain its estimated value.  
 
Databanks are also useful for saving parameter values after an estimation. If 
the estimated value of ALPHA were 0.123, the equation GNPGROW would 
now be interpreted by GENR, SIML, or SOLVE as 
 

FRML GNP = 1.123*GNP(-1) ; 
 
FRML works well when estimating nonlinear models, but many equations will 
be estimated by linear methods, so it may be convenient to construct linear 
equations automatically. FORM does this easily: 
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OLSQ CX C W P P(-1) ; 
FORM CONS ; 
 
This example estimates a consumption equation by ordinary least squares and 
forms an equation named CONS as though you had entered the following 
FRML statement: 
 

FRML CONS CX=16.6+.81*W+.017*P+.216*P(-1); 
 
[assuming that the coefficient vector estimated in the OLSQ procedure was 
(16.6, .81, .017, .216)]. 
 
FORM may be used after any linear estimation procedure: OLSQ, 2SLS, 
LIML, LAD, or AR1. If it is used following an AR1 estimation, the term 
involving the estimated ρ times the lagged residual is automatically added (see 
Section 14.3). FORM can also be used to create unnormalized equations and to 
create equations with parameter names rather than values. See the Reference 

Manual for details.  

14.2 Forecasting with an explicit equation: GENR 

The simplest way to forecast a single variable is with GENR, if an explicit 
equation has already been defined. For example, the following two sets of 
statements are equivalent in their result: 
 

SMPL 83 90 ; 
GENR GNPFIT = A0 + A1*POP + A2*IMPT ; 
 
SMPL 83 90 ; 
FRML GNPEQ GNP = A0 + A1*POP + A2*IMPT ; 
GENR GNPEQ GNPFIT; 
 
This method even works when the variable to be forecast depends on its own 
lagged values (which is described below), because GENR will operate 
dynamically. The alternate method for computing single equation forecasts, 
FORCST, can be used for either static or dynamic simulation. In addition, 
FORCST does not require that you specify the equation beforehand; it can be 
computed directly from a previous linear estimation. 
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14.3 Forecasting linear models: FORCST 

FORCST will do a forecast immediately following any single equation linear 
estimation command in TSP (OLSQ, 2SLS, LIML, LAD, or AR1) without 
requiring FORM or a FRML. This also works on PROBIT and TOBIT models, 
although you may wish to transform the predicted latent variable.  
 
Here are some examples: 
 

FREQ A ; SMPL 48 56 ; 
OLSQ IMPT C GNP RELP ; 
FORCST(PRINT) IMPFIT ; 
 
In this example, the forecast is computed over the estimation sample and 
therefore IMPFIT is simply the fitted values of IMPT (equal to the 
automatically stored @FIT series). It is generally true that if you compute a 
static forecast over the same sample as the regression, the output of FORCST 
will be the fitted values from the regression. 
  

FREQ A ; SMPL 48 82 ; 
AR1 (METHOD=CORC,PRINT) IMPT C GNP RELP ; 
SMPL 83 90 ; 
FORCST(PRINT) IMPFOR ; 
 
This example illustrates the computation of a dynamic forecast when the errors 
are serially correlated. Projected values of GNP and RELP must exist for the 
period 1983 to 1990; the simulation uses the last historical period (1982) to 
calculate a presample residual. For this kind of model, the forecasting equation 
is 

1 1 2
ˆ ˆ     where     ρ ρ− − −= + =

t t t t t
y X b e e e  

The initial condition for e is the presample residual.  
 

FREQ A ; SMPL 48 82 ; 
OLSQ IMPT C IMPT(-1) GNP ; 
SMPL 83 90 ; 
FORCST IMPDYN ; 
 
This example shows forecasting when there is a lagged dependent variable in 
the model. Since IMPT has been referred to explicitly with a lag on the 
right-hand side of the original equation, the dynamic forecast will 
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automatically use the predicted values of IMPT in the next period's forecast. 
To use this feature, you must refer to the lagged endogenous variables as 
IMPT(-1); use of a computed variable, such as IMPTL1 = IMPT(-1), will not 
have the same effect. 
 
It is also possible to use FORCST independently of any estimation command; 
in this case you must explicitly supply the procedure with all the information it 
needs to compute the forecast: 
 

FORCST(DYNAM,COEF=BETA,RHO=R,DEPVAR=IMPT) IMPFIT C 
GNP RELP ; 

 
In this example, BETA is the vector of estimated coefficients of the 
independent variables, R the estimated value of the serial correlation 
coefficient, IMPT the name of the original dependent variable (needed for 
dynamic forecasts), IMPFIT the name to be given to the forecasted variable, 
and C, GNP, and RELP are the independent variables in the forecasting 
equation. The coefficients BETA must be supplied in the same order as the list 
of independent variables. 

14.4 Solving simultaneous equation models 

TSP provides two quite different procedures for the solution of simultaneous 
equation models. The methods differ in their speed of convergence, use of 
computer storage and time, and ability to handle highly nonlinear or very 
simultaneous models. 
 
The most general and powerful procedure is SIML, which uses Newton's 
method applied to nonlinear equation solution. The model is specified just like 
FIML. SIML does not require normalized equations nor that the model be 
ordered in a particular way, and uses analytic derivatives of the model in the 
solution process. For linear models, SIML converges in one iteration, and is 
very fast for multiperiod models. For highly nonlinear models, Newton's 
method (Gauss-Newton) may be the only method in TSP that can provide a 
solution. The cost of this power is considerable use of computer storage 
compared with other model solution techniques. Consequently, SIML may not 
be the method of choice for more than 50 equations. TSP does not explicitly 
limit the number of equations, but you may not have enough memory 
available. You may also be limited by TSP’s (relatively large) limits on the 
number of unique variable names/arguments in the collected model and on the 
number of variables in a TSP session. Use the SHOW command to see what 
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these limits are in your version of TSP. 
 
For large economic models, particularly sparse models with some sort of block 
structure, SOLVE will be more suitable. To use this procedure, first collect the 
equations of the model using MODEL to determine the best order for solution. 
The equations must be "normalized", i.e., each endogenous variable must 
appear once and only once on the left-hand side of an equation. MODEL 
determines how the equations are to be arranged into recursive and 
simultaneous blocks for solution. SOLVE will evaluate the recursive blocks 
(blocks in which every equation uses only previously computed endogenous 
variables as input) and will solve the simultaneous blocks either by the 
Gauss-Seidel method or by the more powerful Fletcher-Powell method. This 
method of model solution is suitable for most large economic models, which 
tend to be sparse, fairly linear, and separable into blocks. (It has been used on 
models with more than 400 equations.) However, convergence of the 
simultaneous blocks is not guaranteed, since it does not compute any analytic 
derivatives. 
 
Details on using these two procedures are given below. 

14.4.1 Small nonlinear models: SIML 

SIML invokes Newton's method; it has the same form as FIML described in 
Chapter 7: SIML, followed by options including ENDOG=(list of endogenous 
variables), followed by a list of equations, including identities. Unlike FIML, 
SIML treats IDENTs the same as FRMLs (see Section 7.1). For example, the 
solution of the illustrative model is specified by 
 

SIML(ENDOG=(GNP,CONS,I,R,LP)) 
CONSEQ,INVEQ,INTRSTEQ,GNPID,PRICEQ; 

 
The default values of the options are Newton's method, no storage of the 
results, and a dynamic simulation. A static simulation is often used when 
simulating over a historical period: it uses actual realized values of the lagged 
endogenous variables rather than obtaining them from the simulation of the 
previous period. The default for printing is to print a one line summary of each 
iteration and a table of the solved variables at the end. 
 
An example of SIML that stores the results and prints the input data is 
 

SIML(PRNDAT,TAG=S,ENDOG=(GNP,CONS,I,R,LP)) 
CONSEQ,INVEQ,INTRSTEQ,GNPID,PRICEQ; 
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After this model has been solved, the solved series are stored under the names 
GNPS, CONSS, IS, etc. Further details on the options available with SIML are 
given in the Reference Manual. 
 
Newton's Method 

The method used by SIML for solution of nonlinear simultaneous equation 
models is a variant of Newton's method. Obviously, if a simultaneous model is 
linear, it can be solved directly by matrix inversion. That is, the solution to the 
matrix equation 

A x = b  

is  

x = A
-1

b. 

Newton's method applies this idea to the iterative solution of nonlinear models. 
At each iteration, the model is linearized in its variables around the values 
from the previous iteration. The linearized model is solved by matrix 
inversion. In terms of the equation above, A is the Jacobian of the model with 
respect to the variables, b the vector of model values at the previous iteration 
and x the direction vector of changes in the variables to be computed.  
 
The resulting vector of changes is used as a direction vector in a linear search 
for better values of the variables, as in the other iterative procedures such as 
LSQ. A deviation is computed for each equation by substituting the current 
values of the variables; at the solution, all the deviations will be zero. The 
criterion for the search is the sum of squared deviations of the equations; it is 
printed as F = (the initial value) and FNEW = (the value after the iteration) in 
SIML's output. Unless a solution has been achieved, there will be a better set 
of values somewhere along the direction vector. The actual choice of the new 
set of variable values is made by the same methods used in nonlinear 
estimation and is described in Chapter 10. For a further description of 
Newton's method, see Saaty and Bram (1964) or Ortega and Rheinboldt 
(1970). 
 
The POS function can be used to constrain the solved values to be 
non-negative. 

14.4.2 Large models – MODEL and SOLVE 

Large models require two steps (procedures) for solution -- MODEL and 
SOLVE. MODEL is used to group the equations into smaller blocks, and 
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SOLVE seeks the solution using this structural information. Several SOLVE 
commands can use the same MODEL (using different scenarios of exogenous 
variables or parameter values, for example). SOLVE uses the same iteration 
and TAG options as SIML. 
 
Ordering equations: MODEL 

MODEL groups the equations of a model into blocks and saves this structure 
under a model name. We use the basic Klein Model I as a simple example. 
This model consists of three behavioral equations and four identities. There are 
seven endogenous variables (CX, I, W1, P, K, W and E), three lagged 
endogenous variables (P(-1), K(-1), and E(-1)), and four exogenous variables 
(G, TIME, TX, and W2). The equations may be estimated by a single equation 
method, using FORM to construct a TSP equation, or they may be specified 
with FRMLs and estimated with multi-equation methods. We assume that we 
will use two-stage least squares, and specify the model as follows: 
 

LIST IVK C P(-1) E(-1) K(-1) G TIME TX W2; 
2SLS(INST=IVK) CX C,W,P,P(-1); 
FORM CONS ; 
2SLS(INST=IVK) I C,P,P(-1),K(-1); 
FORM INV ; 
2SLS(INST=IVK) W1 C,E,E(-1),TIME; 
FORM WAGES ; 
IDENT WAGE W=W1+W2; 
IDENT BALANCE P = CX+I+G - (TX+W) ; 
IDENT PROFIT E = P+TX+W1 ; 
IDENT CAPSTCK K=K(-1)+I ; 
 
LIST KLEIN CONS INV WAGES WAGE BALANCE PROFIT CAPSTCK ; 
LIST KENDOG CX I W1 W E P K ; 
MODEL KLEIN,KENDOG,KLEINC ; 
 
MODEL takes the model specified in the list of equations KLEIN and the list 
of endogenous variables KENDOG, and orders the equations into a recursive 
block structure. An ordering of this kind provides increased understanding of 
the model structure and provides efficient solution. The recursive block 
ordering for the system is formed by operations on the "adjacency" matrix of 
the system, a matrix of ones and zeroes relating the dependent variables in the 
system to the equations in which they appear. 
 
See Steward (1962) for further explanation of this procedure and for details of 
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the specific algorithm employed in obtaining the ordering. The method 
involves viewing the adjacency matrix as a network and systematically seeking 
closed loops that define systems of simultaneous equations. 
 

The output for the MODEL example is shown in Figure 14.1. The column 
labeled Blk shows the number of each block of equations and the type (S for 
simultaneous and R for recursive). The X's mark the equations in which each 
dependent variable appears. 
 
Because this model is completely simultaneous except for the capital stock 
equation, there is one block with six equations, followed by the equation that 
determines the new level of capital stock from investment. This last equation 
could be left out of the model without affecting the results in any way, since 
the level of the capital stock has no impact on output in this version of the 
model. 
 
Having ordered this model, the procedure then stores the ordered list of 
equations and variables under the name KLEINC. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.1  Sample MODEL Output for Klein Model I 

 
Solution: SOLVE 

SOLVE causes the model saved by a MODEL statement to be solved. The 
only required argument is the name of the ordered model. For each time period 
in the sample, each block is solved separately in the order determined by 
MODEL. The recursive blocks are always solved in one iteration via the 
equivalent of GENR. Three methods are provided for solving the simultaneous 
blocks: the Gauss-Seidel, Jacobi, and Fletcher-Powell algorithms. 

Block structure of KLEINC   

 

Block    # Recursive    # Simultaneous 

  #       equations        equations 

  1                             6 

  2            1 

 

Blck Eq# Equation Dep.Var. 1234567 

 1S    1 INV      I        X  X 

 1S    2 WAGE     W         X   X 

 1S    3 PROFIT   E          XX X 

 1S    4 BALANCE  P        XX XX 

 1S    5 CONS     CX        X XX 

 1S    6 WAGES    W1         X  X 

 2R    7 CAPSTCK  K        X     X 
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Gauss-Seidel and Jacobi methods 

Solution by the Gauss-Seidel method is the default, and it could be invoked for 
the Klein model in the following way (TAG is optional): 
 

SOLVE(TAG=S) KLEINC; 
 
The option METHOD=JACOBI specifies that a variant of the Gauss-Seidel 
method called the Jacobi method (see pp. 217-220 of Ortega and Rheinboldt) 
is to be used. This method does not update the endogenous variables 
immediately while the simultaneous block is being computed, but waits until 
the beginning of the next iteration and updates them all at once.  
 
Fletcher-Powell method 

To use the Fletcher-Powell method to solve the simultaneous blocks of a 
model, include the METHOD=FLPOW option in SOLVE: 
 

SOLVE(METHOD=FLPOW) KLEINC ; 
 
The Fletcher-Powell method is described in Fletcher and Powell (1963); it is 
useful when the Gauss-Seidel method does not converge. It uses numeric 
derivatives with respect to the endogenous variables (as opposed to SIML, 
which uses analytic derivatives). 
 
Example: a 33-equation model 

 

Figure 14.2 shows a sample TSP job for the solution of a rather complex 33-
equation model with 6 structural equations and 27 identities. The first three 
pages show the TSP input for the model: 
 
The data (10 observations in the example) are read from an external file, 6 
variables per record, 14 records per observation. Some normalizing constants 
are defined. 
 
The identities are specified; note that the equations are normalized, i.e., there is 
only one endogenous variable on the left-hand side of each equation, and each 
endogenous variable appears only once on the left-hand side. The six 
behavioral equations are defined, together with parameter values previously 
estimated by FIML over the whole sample. The endogenous variables and 
equation names are put into LISTs. 
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MODEL is executed to produce a collected model, TRADEC, to be input to 
SOLVE. We show the output of MODEL on the following page. This output 
shows the best order of solution of the model: the procedure has determined 
that the first 9 equations are recursive, the next 15 are a simultaneous block, 
and the last 9 are recursive once the previous 24 have been solved. 
 
An inspection of the model confirms this: the first 7 equations involve only 
exogenous and lagged endogenous variables, equation IDFIO involves V and 
N, already determined by IDV and IDF9, equation IDRK involves RP, already 
determined by IDRP. Then we start the simultaneous block. Following this 
block is a series of equations that are essentially superfluous to the model: the 
whole thing could be solved without the last recursive section and then these 
equations could be computed using simple GENRs (in the order listed). 
 
The following page shows the start of the solution procedure. Recursive blocks 
always take only one iteration, so no message is printed; the convergence 
messages shown correspond to the simultaneous blocks for the two periods. If 
we had used the PRINT option, there would also be a printout of SSR (sum of 
squared residuals) showing the golden section stepsize search method 
searching for the optional stepsize for each Fletcher-Powell iteration on the 
simultaneous block. Unlike the quasi-Newton minimization methods used 
elsewhere in TSP, the Fletcher-Powell algorithm does not have a natural 
stepsize of approximately unity. 
 

Figure 14.2  Sample 33 equation trade model 

NAME TRADESOL '33 EQUATION TRADE MODEL' ; 
FREQ A ; SMPL 64 73 ; 
READ (FILE='TRADESOL.DAT',FORMAT='(6G12.5)') 
        ACDP AK AKD AKL CC CE 
        CG DG DLDT DP DR E 
        EI EJ EL ER ET EX 
        G HLT HR I IG IM 
        K KD L LD LE LG 
        LH LJ LR LU M N 
        NRE NW P PC PCE PCG 
        PDP PEX PF PG PI PIG 
        PIM PKD PL PLD PLE PLG 
        PLR PR R RDP RE RIM RK 
        RL RP RT RV RW SHRC 
        SHRDP SHREX SHRFC SHRIM SHRKD T 
        TDP TIM TK TL TP TV 
        TW V VCR VIR W ; 
? 
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?    SET THE CONSTANTS AND PARAMETERS FOR THE RUN. 
? 
SET NKD=166.92656 ; 
SET NLD=252.81388 ; 
SET NIM= 20.331 ; 
SET NDP=419.56444 ; 
SET NEX= 20.507 ; 
SET  NT=  0.0 ; 
SET  NL=  0.8464  ; 
? 
?    EQUATIONS OF THE 33 EQUATION MODEL. 
? 
IDENT IDSDP  DP=SHRDP*PLD*LD/PDP ; 
? PROPER NORMALIZATION (BUT DOES NOT CONVERGE AS WELL): 
?IDENT IDSIM PLD=-(PIM*IM)/(LD*SHRIM) ; 
IDENT IDSIM  PL=PL+SHRIM+PIM*IM/(PLD*LD) ; 
? PROPER NORMALIZATION: 
?IDENT IDSKD  LD=-(PKD*KD)/(PLD*SHRKD) ; 
IDENT IDSKD   L=L+SHRKD+PKD*KD/(PLD*LD) ; 
IDENT IDSC   PC=(PL*LJ*SHRC)/(CC*(1-SHRC)) ; 
IDENT IDSFC  CC=(SHRFC*(1+NW)*W(-1)-PL*LJ)/PC ; 
IDENT IDF7  PDP=PC/ACDP ; 
IDENT IDF8   LJ=LH-L ; 
IDENT IDF9    N=(M*PI*AKL+PI(-1)*AK(-1)-PI*AKL 
                -((1-TK)*((PKD*AKD)-TP*PI(-1) 
            *AK(-1))))/(-PI(-1)*AK(-1)) ; 
IDENT IDF10  NW=(-V-N*PI(-1)*AK(-1)*K(-1)  
              + (PI*AKL-PI(-1)*AK(-1))*K(-1) 
              -(1-TV)*(EI+VCR+VIR+NRE) 
              -EJ+RV+TW*W(-1))/(-W(-1)) ; 
IDENT IDF11 PEX=-(PDP*DP-PLD*LD-PKD*KD-PIM*IM)/EX ; 
IDENT IDF12 IM = ((1+TDP)*PDP*DP-PC*CC+PCE*CE-PCG*CG 
                    -PIG*IG-PI*I)/(-TIM*PIM)  ; 
? DEPENDENT ON PROPER NORMALIZATION ABOVE: 
?IDENT IDF13  PL=(PLD*LD+PLE*LE+PLG*LG+PLR*LR)*(1-TL)/L 
; 
IDENT IDF13 PLD=(PL*L/(1-TL)-PLE*LE-PLG*LG-PLR*LR)/LD ; 
? DEPENDENT ON PROPER NORMALIZATION ABOVE: 
?IDENT IDF14   L=LD+LE+LG+LR+LU ; 
IDENT IDF14  LD=L-(LE+LG+LR+LU) ; 
IDENT IDF16   R=(PEX*EX-PIM*IM+VCR+VIR+PLR*LR-ER-
HR+NRE-ET)/PR+R(-1) ; 
IDENT IDDG DG=E+EL+ER+EI+EJ-
(RDP+RIM+RP+RK+RL+RW+RT+RE+RV); 
IDENT IDDR DR=PEX*EX-PIM*IM+VCR+VIR-ER-HR+PLR*LR+NRE ; 
IDENT IDE E=PCG*CG+PIG*IG+PLG*LG ; 
IDENT IDG G=(DG+ET)/PG+G(-1) ; 
IDENT IDKD KD=AKD*K(-1); 
IDENT IDPF PF=PF(-1)*EXP(0.5*( 
    ((PC*CC)/(PC*CC+PL*LJ)+(PC(-1)*CC(-1))/ 
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    (PC(-1)*CC(-1)+PL(-1)*LJ(-1))) 
   *LOG(PC/PC(-1)) 
   +((PL*LJ)/(PC*CC+PL*LJ)+(PL(-1)*LJ(-1))/ 
   (PC(-1)*CC(-1)+PL(-1)*LJ(-1))) 
   *LOG(PL/PL(-1)))) ; 
IDENT IDRDP RDP=TDP*PDP*DP ; 
IDENT IDRE RE=PCE*CE-PLE*LE ; 
IDENT IDRIM RIM=TIM*PIM*IM ; 
IDENT IDRK RK=TK*(PKD*KD-RP)+TV*(EI+VCR+VIR+NRE); 
IDENT IDRL RL=TL*(PLD*LD+PLE*LE+PLG*LG+PLR*LR); 
IDENT IDRP RP=TP*PI(-1)*AK(-1)*K(-1); 
IDENT IDRW RW=TW*W(-1); 
IDENT IDV V=(PI*AKL-PI(-1)*AK(-1))*K(-1) 
           +(PG-PG(-1))*G(-1)+(PR-PR(-1))*R(-1); 
? 
?     BEHAVIORAL EQUATIONS FOR THE CONSUMPTION SIDE OF 
?  THE MODEL AND THEIR PARAMETER ESTIMATES. 
?     SPECIFICATION: SYMMETRIC, CONVEXITY IMPOSED 
? 
FRML INTER1   SHRFC 
     =((AX0+BON*LOG((PF*P)/ 
           ((1+NW)*W(-1)+LDA*(EL-HR-RT)+DEL*PL*LH)) 
           +BOT*(T-NT))/ 
     (-1+BNN*LOG((PF*P)/ 
           ((1+NW)*W(-1)+LDA*(EL-HR-RT)+DEL*PL*LH)) 
           +BNT*(T-NT)))* 
     (1+(LDA*(EL-HR-RT)+DEL*PL*LH)/((1+NW)*W(-1)))$ 
FRML INTRA1 SHRC=AC+BCC*LOG(PC/(PL/NL)) ; 
PARAM AX0 -.122007 BON -.0242706 LDA 7.85130  
      DEL 7.85130  BNN -.197991 BNT .00143592  
      BOT .000149361 ; 
PARAM AC .148803 BCC .0155448 ; 
? 
?     BEHAVIORAL EQUATIONS FOR THE PRODUCTION SIDE OF  
?   THE MODEL AND THEIR PARAMETERS. 
? 
FRML CODP SHRDP=ADP+(LDPKD*DKD 
           -AKS*ADP)*LOG((KD*NEX)/(NKD*EX)) 
          +(LDPKD*LDPKD*DKD+LDPIM*LDPIM*DIM+DDP 
          -ADP*(ADP-1))*LOG((DP*NEX)/(NDP*EX)) 
          +BDPT*(T-NT); 
FRML COKD SHRKD=AKS 
          +(DKD-AKS*(AKS-1))*LOG((KD*NEX)/(NKD*EX)) 
          +(LIMKD*DKD-AKS*AIM)*LOG((IM*NEX)/(NIM*EX)) 
          +(LDPKD*DKD-AKS*ADP)*LOG((DP*NEX) /(NDP*EX)) 
          +BKDT*(T-NT); 
FRML COIM SHRIM=AIM+(LIMKD*DKD 
          -AKS*AIM)*LOG((KD*NEX)/(NKD*EX)) 
          +(LIMKD*LIMKD*DKD+DIM 
          -AIM*(AIM-1))*LOG((IM*NEX)/(NIM*EX)) 



206 Advanced Methods  
  

 

          +(LDPKD*LIMKD*DKD 
          +LDPIM*DIM-AIM*ADP)*LOG((DP*NEX)/ 
          (NDP*EX))+BIMT*(T-NT) ; 
FRML COT DLDT=AT+BKDT*LOG((KD*NEX)/(NKD*EX))+ 
          BIMT*LOG((IM*NEX)/(NIM*EX)) 
          +BDPT*LOG((DP*NEX)/(NDP*EX))+BTT*(T-NT); 
PARAM AT -.02217 BTT .0001963 ; 
PARAM AKS -.6373 DKD 1.260 LIMKD .0881 AIM -.0794 
      LDPKD -1.020 ADP 1.638 ; 
PARAM BKDT -.0046 DIM -.0262 LDPIM -.4053 BIMT .0006 
      DDP .0320 BDPT .0048 ; 
? 
?     THIS IS THE LIST OF ENDOGENOUS VARIABLES  
?  IN THE MODEL. 
? 
LIST ENDOGL  E KD RE RP RW V N NW RK 
             LJ LD PDP SHRC CC PF PLD     
             SHRDP SHRKD SHRIM 
             L PL DP SHRFC PC 
             PEX R DLDT DR RDP RIM RL DG G ; 
? 
?      THIS IS THE LIST OF EQUATIONS IN THE MODEL;  
?   THE ORDER CORRESPONDS 
?   TO THE ORDER OF SOLUTION DESIRED. 
? 
LIST TRADEM IDE IDKD IDRE IDRP IDRW IDV IDF9 IDF10 IDRK 
             IDF8 IDF14 IDF7 INTRA1 IDSFC IDPF IDF13 
              
             CODP COKD COIM 
             IDSKD IDSIM IDSDP INTER1 IDSC 
             IDF11 IDF16 COT IDDR IDRDP  
             IDRIM IDRL IDDG IDG ; 
? 
?      THIS COLLECTION OF THE MODEL IS SUPERFLUOUS  
?  SINCE WE HAVE ALREADY ACHIEVED THE DESIRED ORDERING. 
? 
COLECT TRADEM ENDOGL TRADEC ; 
SMPL 65 66 ; 
SOLVE(STATIC,TAG=S,MAXIT=80) TRADEC ;  PRINT @IFCONV; 
SOLVE(STATIC,METHOD=FLPOW,TAG=F,MAXIT=50,SQZTOL=.001) 
TRADEC ;  PRINT @IFCONV; 
? 
?      SOLVE THE FIRST 2 BLOCKS (24 EQUATIONS) BY  
? NEWTON'S METHOD.(WITH DEFAULT STARTING VALUES). 
? 
SIML (STATIC,ENDOG=(E KD RE RP RW V N NW RK 
      LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM  
      L PL DP SHRFC PC)) 
      IDE IDKD IDRE IDRP IDRW IDV IDF9 IDF10 IDRK 
      IDF8 IDF14 IDF7 INTRA1 IDSFC IDPF IDF13  
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      CODP COKD COIM 
      IDSKD IDSIM IDSDP INTER1 IDSC ; 
PRINT @IFCONV; 
? 
?      SOLVE THE FIRST 2 BLOCKS (24 EQUATIONS) BY  
? NEWTON'S METHOD. (WITH STARTING VALUES FROM  
?GAUSS-SEIDEL). 
? 
DOT E KD RE RP RW V N NW RK 
    LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM  
    L PL DP SHRFC PC; 
  .SAV = .; 
  . = .S;   ? USE SOLVED VALUES AS STARTING VALUES 
ENDDOT; 
SIML (STATIC,TAG=N,ENDOG=(E KD RE RP RW V N NW RK 
      LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM  
      L PL DP SHRFC PC)) 
     IDE IDKD IDRE IDRP IDRW IDV IDF9 IDF10 IDRK 
     IDF8 IDF14 IDF7 INTRA1 IDSFC IDPF IDF13  
     CODP COKD COIM 
     IDSKD IDSIM IDSDP INTER1 IDSC ;   
PRINT @IFCONV; 
? 
?     PRINT THE RESULTS FROM ALL THREE METHODS. 
? 
TITLE 'COMPARE RESULTS FROM GAUSS, FLPOW, AND NEWTONS 
METHOD' ; 
PAGE ; 
DOT E KD RE RP RW V N NW RK 
    LJ LD PDP SHRC CC PF PLD SHRDP SHRKD SHRIM  
    L PL DP SHRFC PC; 
  . = .SAV;   ? RESTORE ORIGINAL VARIABLES 
  PRINT .N .S .F . ; 
ENDDOT; 
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Block structure of TRADEC   

 

Block    # Recursive    # Simultaneous 

  #       equations        equations 

  1            9 

  2                            15 

  3            9 

 

                                    111111111122222222223333 

Blck Eq# Equation Dep.Var. 123456789012345678901234567890123 

 1R    1 IDE      E        X 

 1R    2 IDKD     KD        X 

 1R    3 IDRE     RE         X 

 1R    4 IDRP     RP          X 

 1R    5 IDRW     RW           X 

 1R    6 IDV      V             X 

 1R    7 IDF9     N              X 

 1R    8 IDF10    NW            XXX 

 1R    9 IDRK     RK        X X    X 

 2S   10 IDF8     LJ                X         X 

 2S   11 IDF14    LD                 X        X 

 2S   12 IDF7     PDP                 X           X 

 2S   13 INTRA1   SHRC                 X       X  X 

 2S   14 IDSFC    CC              X X   X      X XX 

 2S   15 IDPF     PF                X   XX     X  X 

 2S   16 IDF13    PLD                X    X   XX 

 2S   17 CODP     SHRDP     X              X    X 

 2S   18 COKD     SHRKD     X               X   X 

 2S   19 COIM     SHRIM     X                X  X 

 2S   20 IDSKD    L         X        X    X X X 

 2S   21 IDSIM    PL                 X    X  X X 

 2S   22 IDSDP    DP                 XX   XX    X 

 2S   23 INTER1   SHRFC           X      X     X X 

 2S   24 IDSC     PC                X  XX      X  X 

 3R   25 IDF11    PEX       X        XX   X     X  X 

 3R   26 IDF16    R                                XX 

 3R   27 COT      DLDT      X                   X    X 

 3R   28 IDDR     DR                               X  X 

 3R   29 IDRDP    RDP                 X         X      X 

 3R   30 IDRIM    RIM                                   X 

 3R   31 IDRL     RL                 X    X              X 

 3R   32 IDDG     DG       X XXX   X                   XXXX 

 3R   33 IDG      G                                       XX 

 

Current sample:  1965 to 1966 

 

                        SIMULATION OF THE MODEL TRADEC 

                        ============================== 

 

       METHOD = Gauss-Seidel 

 

Number of Equations in the model =  33 

Number of Blocks in the model = 3 

 

         Block #   Number of Equations 

               1          9 

               2         15 

               3          9 

ITERATION LIMIT IN BLOCK      2 

LAST SUM OF SQUARED RESIDUALS =  0.10432128     

PROGRAM CONTINUING USING LAST VALUES COMPUTED. 

ITERATION LIMIT IN BLOCK      2 
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LAST SUM OF SQUARED RESIDUALS =  0.24700841E-01 

PROGRAM CONTINUING USING LAST VALUES COMPUTED. 

 

  320 FUNCTION EVALUATIONS. 

 

THE SOLVED VARIABLES  ARE STORED WITH A TAG:    S 

                              SIMULATION RESULTS 

....printout of results 

 

               @IFCONV  

1965           1.00000  

1966           1.00000  

 

                        SIMULATION OF THE MODEL TRADEC 

                        ============================== 

 

       METHOD = Fletcher-Powell  

 

Number of Equations in the model =  33 

Number of Blocks in the model = 3 

 

         Block #   Number of Equations 

               1          9 

               2         15 

               3          9 

 

Working space used: 4129 

                                STARTING VALUES 

...... 

F= .4655745E-03  FNEW= .4628242E-03  ISQZ=  1 STEP= 1.       CRIT= 

.29951E-05 

 

CONVERGENCE ACHIEVED AFTER  13 ITERATIONS 

 1020 FUNCTION EVALUATIONS. 

 

F= .8875898E-03  FNEW= .8853670E-03  ISQZ=  1 STEP= 1.       CRIT= 

.22314E-05 

 

CONVERGENCE ACHIEVED AFTER  38 ITERATIONS 

 4138 FUNCTION EVALUATIONS. 

 

THE SOLVED VARIABLES  ARE STORED WITH A TAG:    F 

                              SIMULATION RESULTS 

.....printout results 

 

               @IFCONV  

1965           1.00000  

1966           1.00000  

 

         SOLVE THE MODEL BY NEWTONS METHOD USING DEFAULT STARTING VAL 

         ============================================================ 

 

....... 1965 did not converge...... 

CONVERGENCE NOT ACHIEVED AFTER  20 ITERATIONS 

 

                                 PERIOD: 1965 

               @IFCONV  

1965           0.00000  

1966           1.00000  

 

         SOLVE WITH NEWTONS METHOD USING GAUSS-SEIDEL STARTING VALUES 

         ============================================================ 
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                               MODEL SIMULATION 

                               ================ 

 

                 STATIC SIMULATION 

 

Working space used: 9487 

                                STARTING VALUES 

..... 

F= .6452811E-12  FNEW= .1875796E-24  ISQZ=  0 STEP= 1.       CRIT= 

.64528E-12 

 

CONVERGENCE ACHIEVED AFTER   3 ITERATIONS 

    6 FUNCTION EVALUATIONS. 

 

F= .5294763E-14  FNEW= .3275911E-25  ISQZ=  0 STEP= 1.       CRIT= 

.52948E-14 

 

CONVERGENCE ACHIEVED AFTER   3 ITERATIONS 

   12 FUNCTION EVALUATIONS. 

 

THE SOLVED VARIABLES  ARE STORED WITH A TAG:    N 

                              SIMULATION RESULTS 

......output omitted 

 

               @IFCONV  

1965           1.00000  

1966           1.00000  

 

             COMPARE RESULTS FROM GAUSS, FLPOW, AND NEWTONS METHOD 

             ===================================================== 

 

                    EN            ES            EF             E  

1965         137.00119     137.00119     137.00119     137.00999  

1966         156.81017     156.81017     156.81017     156.81000  

 

......output omitted 

 

                    GN            GS            GF             G  

1965         316.92780     317.54471     317.71494     317.38000  

1966         327.72321     327.86340     323.81900     327.85001  

 

            Compute correlation across solutions with actual values 

            ======================================================= 

 

Current sample:  1965 to 1965 

Current sample:  1965 to 1965 

Current sample:  1 to 33 

 

                        Results of Covariance procedure 

                        =============================== 

Number of Observations: 33 

                              Correlation Matrix 

 

                  SOLN          SOLS          SOLF        ACTUAL  

SOLN           1.00000                                            

SOLS           0.99998       1.00000                              

SOLF           0.99946       0.99964       1.00000                

ACTUAL         0.99949       0.99966       0.99999        1.0000 

Figure 14.3  33 Equation Trade Model Output 
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Displaying and evaluating a forecast: ACTFIT 

The first step in evaluating a forecast is probably to print or plot it. If you are 
using the single equation FORCST, this is easily accomplished by including 
the PRINT option on the statement: 
 

FORCST(PRINT) SALESF ; 
 
This option prints information about the equation it is using for the forecast 
and a time series plot of the forecasted variable over the time period in 
question. The plot also shows the values of the variable on the right-hand side. 
On a PC, to see a high-resolution graphics plot use the command : 
 

PLOT SALES SALESF ;  
 
If you use SOLVE or SIML to obtain the forecast, plotting will not be 
automatically available, although you can obtain a table of the solved values by 
use of the PRNSIM option. To get plots, save the simulated values with a 
TAG= option (for example, CXS, IS, etc.) and use the PLOT procedure 
described in Chapter 6: 
 

PLOT CX A CXS S ; ? printer format 
PLOT CX CXS ;  ? high-resolution graphics 
 
This example assumes that the simulation has been done over a historical 
period, so that both actual (CX) and solved (CXS) values of consumption are 
available and may be plotted on the same scale for comparison. Of course, if 
you did not know CX for the forecasting period, you could simply plot CXS. 
 
Standard references for the evaluation of forecasts are: Theil (1961 and 1966) 
and Pindyck and Rubinfeld (1976). Some of the measures discussed by Theil 
in Chapter 2 of his 1966 book have been incorporated into TSP in the ACTFIT 
procedure. You can use this procedure to compute a set of statistics such as the 
root mean square error, the inequality coefficient (U), and a decomposition of 
the sources of forecast error. The command is 
 

ACTFIT CX CXS ; 
 
Once again, the historical values of the variable are required to make this 
comparison. If the option PLOTS has been turned on, ACTFIT also plots the 
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two variables and their difference.  
 
Note: Theil’s 1961 and 1966 definitions of U differ; Pindyck and Rubinfeld 
use the 1961 definition. TSP prints both versions of U. 

14.5 Monte Carlo Simulation: RANDOM 

Random variables are useful in a variety of situations, from checking the 
statistical properties of an econometric or simulation model to computing 
bootstrap standard errors when analytic formulas are not available. This type of 
procedure is often referred to as Monte Carlo analysis, and is easily 
programmed in TSP. For example, to draw a series E of independent standard 
normal variates, use the following command:  
 

RANDOM E ; 
 
To draw 3 series X1, X2, X3 that have a multivariate normal distribution with 
mean XMEAN (a length 3 vector) and variance matrix XVAR (a symmetric 
matrix of order 3), use this command: 
 

RANDOM (VMEAN=XMEAN,VCOV=XVAR) X1-X3 ; 
 
Random can also be used to generate series from uniform, Poisson, Cauchy, 
exponential, Laplace, student's t, gamma, negative binomial, and arbitrary 
empirical distributions. See the Reference Manual for details on the options 
necessary.  
 
Two useful examples appear in Chapter 9: in section 9.6.3, we simulate an 
ARCH model using the standard normal distribution and a dynamic GENR. In 
section 9.6.7, we show how to use uniform random variables and the inverse 
distribution function to generate random variates from an arbitrary distribution 
function, in this case, the Type I Extreme Value Distribution [exp(-exp(-u))].  
 
The example below uses the random number generator to make a chi-
squared(3) random variable and then plots the "empirical" distribution of this 
random variable on the same scale as the theoretical distribution (computed by 

CDF). The plot is shown in Figure 14.4. 
 

SMPL 1 100 ; 
RANDOM E1-E3 ;  ? Make 3 indep. normal RVs. 
 



 
 14. Forecasting and Simulation 213 

  

 

?    Chi-squared variable=sum of squares of normal RVs. 
CHI3 = E1*E1+E2*E2+E3*E3 ;  
 
? These statements make the empirical distribution function of chi3 
SORT CHI3 ;   
TREND T ;  
P = T/@NOB ;  ? p = 1/n,2/n,etc. is the height at the 

corresponding value chi3. 
SET MAXC = 1+INT(1.1*CHI3(@NOB)); ? maxc is the upper 

limit of the graph. 
 
? Make the theoretical chi-squared(3) distribution function using CDF 
CHIVAL = MAXC*(T-1)/(@NOB-1) ;  
CDF(CHISQ,DF=3,LOWTAIL) CHIVAL CHIDF3 ; 
 
GRAPH(PAIR,LINE,TITLE="Reference vs Actual Distribution") 

CHIVAL,CHIDF3 CHI3,P ;  
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Figure 14.4  Simulating the chi-squared distribution  

 
Most Monte Carlo analysis involves making a large loop and accumulating 
statistics on functions of random variables. As an illustration of how to do this 
in TSP, the distribution of the OLS regression coefficients can be checked 
under the standard assumptions of fixed Xs and normal residuals. 
 

SET NTRIAL=100; SET NOB=50; SET NX=2; 
SMPL 1,NOB;  
 
? generate X series; use SEEDIN to make results reproducible. 
RANDOM(MEAN=5,SEEDIN=49824) X;  
YHAT = 3 + 4*X;   ? generate true values of Y series 
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MFORM(NROW=NX,NCOL=1) BMEAN=0; 
MFORM(NROW=NX,TYPE=SYM) BPROD=0; 
 
? suppress all OLS output. 
REGOPT(NOPRINT) @LOGL,@COEF,@SES;   
DO TRIAL = 1,NTRIAL; 

RANDOM(STDEV=2) E;  ? generate disturbances E 
Y = YHAT+E;  
OLSQ(SILENT) Y C X; 
MAT BMEAN = @COEF+BMEAN ; ? sum coeff. estimates
MAT BPROD = BPROD+@COEF*@COEF' ; ? cross products 

ENDDO; 
MAT BMEAN = BMEAN/NTRIAL ;  
MAT BVAR = BPROD/NTRIAL - BMEAN*BMEAN' ; 
REGOPT;     ? reset output suppression. 
TSTATS(NAMES=@RNMS) BMEAN BVAR; 
 
For lengthy Monte Carlo studies, it may be useful to write intermediate results 
occasionally to a file, so that if the program fails for some reason partial results 
can be obtained. This would also yield more accurate estimates of the variance 
(the updating formula used above is not very accurate). That is, revise the 
example above as follows: 
 ... 

DO TRIAL = 1,NTRIAL; 
RANDOM(STDEV=2) E; 
Y = YHAT+E;  
OLSQ(SILENT) Y C X;  
WRITE(FILE='monte1.dat') @COEF; 

ENDDO; 
 
? The second part of the program (below) could be put in a separate 

file if necessary 
SMPL 1 NTRIAL; 
READ (FILE='monte1.dat') B0 B1;  
MSD (COVA) B0 B1 ; 
REGOPT;    ? reset output suppression. 
? Display mean and variance of estimated coefficients 
TSTATS(NAMES=(C,X)) @MEAN @COVA; 
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15. PANEL DATA 
  
The term "panel data" usually refers to data where the unit of observation 
varies in two or more dimensions. For example, you might have a sample of 
the same individuals observed at several points in time, or a set of time series, 
each for a different firm or country. The analysis of panel data in economics 
has become increasingly important in recent years as the number of such 
datasets has grown along with econometric techniques to analyze them. These 
data can be handled rather easily in TSP, although the inherent complexity of 
the data structure requires you to think a little harder about how to set things 
up.  
 
This chapter provides some guidance on how to analyze panel data in TSP.. 
We begin with a few basic rules for setting up your data input, depending on 
the nature of the problem you are analyzing. Then we discuss the PANEL 
command, which produces total (pooled), between, within (fixed effects or 
conditional), and variance components (random effects) estimates for panel 
data. This is followed by a discussion of how to use panel data in nonlinear 
models such as Probit. Finally we discuss how to estimate more complicated 
models in short panels using the minimum distance estimator in LSQ or 
GMM. This is a powerful methodology that can be used to estimate linear, 
nonlinear, and dynamic factor models with panel data, using the method of 
moments estimator to obtain asymptotically efficient estimates.  
 
In the first part of this chapter we use the example of data on the patenting and 
R&D spending of a large number of firms, for three years each (see Hall, 
Griliches, and Hausman 1986; we use three years of data for simplicity, more 
would be needed to obtain real answers). Although the underlying patent data 
are application counts, we confine the analysis here to large firms so we can 
treat the patents as a continuous rather than discrete variable.  
 
In the example, we are interested in the relationship between R&D spending 
(possibly lagged) and the resulting patent applications. The specification of the 
model that seems to have the most stable properties is to regress the log of 
patents on contemporaneous and lagged logs of R&D expenditures. However, 
as will become clear in the example, we expect a fixed difference in the 
propensity to patent across firms (because of differing technological 
characteristics of the industry and other reasons), and we expect that this 
propensity may be correlated with the level of R&D expenditure. This leads us 
to use many of the panel data techniques described in this chapter.  
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15.1 The basics of using panel data 

15.1.1 Reading in panel data  

The first decision to make when dealing with panel (time series-cross section) 
data is how to organize it. Usually, you are willing to assume conditional 
independence in one direction, but not in the other. For example, you may be 
willing to assume that observations on firms are conditionally, independently, 
and identically distributed, but not that there is no serial correlation within a 
set of observations on a single firm. If this is the case you should order the data 
so that the slowest varying index is the index of the dimension in which the 
data are independent. In the example of patents and R&D, where we have data 
for N firms for 3 years (1974, 1975, 1976), use the order 
 

FIRM  TIME PERIOD VARIABLE 
 
1  74   Patents, R&D for firm 1 in year 74 
1  75   Patents, R&D for firm 1 in year 75 
1  76   Patents, R&D for firm 1 in year 76 
2  74   Patents, R&D for firm 2 in year 74 
.  .   . 
N  74   Patents, R&D for firm N in year 74 
N  75   Patents, R&D for firm N in year 75 
N  76   Patents, R&D for firm N in year 76 
 
This order facilitates the construction of estimators that include serial 
correlation. It also allows you to regroup the datafile easily so that there is one 
cross section unit per observation with all the variables for all years (by 
reading in a different format), for use with the robust short panel methods of 
section 3.1. For example, 
 

 FIRM  VARIABLES 
 1  Patents, R&D for year 74; Patents, R&D for year 75;... 
 2  Patents, R&D for year 74; Patents, R&D for year 75;... 
 .  . 
 N  Patents, R&D for year 74; Patents, R&D for year 75;... 
 
Here are two READ commands that read the same dataset into TSP in the two 
different formats shown above. The first method is the following: 
 

SET NOBS = 3*N ; 
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SMPL 1 NOBS ; 
FREQ (PANEL, T=3, ID=@ID) ; 
READ (FILE='PATDATA.DAT') @ID PATENTS LRND ; 
 
Compare to the second method, which reads all the data for a firm into a single 
observation: 
 

SMPL 1 N ; 
READ (FILE='PATDATA.DAT') @ID PAT74 LRND74 @ID PAT75 

LRND75 @ID PAT76 LRND76 ;   
? note that only the value of @ID for 1976 will be stored.  
 
There are situations where you want the data one observation per firm-year 
(the PANEL command, Probit or AR1 with the FE or RE options) and 
situations where you want the data one observation per firm (when using 
complex lag structures or GMM methods); thus the data should be set up with 
this in mind. We refer to the first format as the pooled format and the second 
format as the panel format. 
 
Several factors will influence your choice between these two formats: 
 

1. The statistical assumption of conditional independence: in general, 
when you assume that observations are independent (conditional on 
your model) across both dimensions, you will want the data in pooled 
format, and when you assume independence only in one direction 
(with the possible exception of simple first order serial correlation), 
the panel format.  

2. Whether the data are unbalanced (see the next section). If the 
unbalancing is severe, the pooled format is far more efficient because 
you will not have to create variables for the many time periods that are 
missing. 

3. Whether the model you have in mind has parameters that are constant 
across all the periods. Such models are easily specified using data 
stored in the pooled format. When the parameters vary across time 
periods, the panel structure may be easier to work with.  

15.1.2 Unbalanced panels  

An unbalanced panel is one where there are a different number of observations 
for each cross section unit (or vice versa). These observations may be 
contiguous, or there may be holes in the data. That is, for the example dataset, 
we may have four years of data for one firm (1973 to 1976), three years for 
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another (1973, 1975, 1976) and two years for a third (1975 and 1976). It is 
essential to use the FREQ(PANEL,ID=ID_variable); command with an 
unbalanced panel, to identify an ID_variable that indicates when one firm 
stops and the next one starts.  
 
Many, but not all, of the estimators described in this chapter can be used with 
unbalanced panels. For example, the PANEL procedure, which assumes 
independence across time series and cross section units will work just the same 
whether the data are balanced or unbalanced. In fact, if your data are 
unbalanced, PANEL will tell you so and will display the Ahrens-Pincus 
unbalancedness measure (APUI). This measure is a number between zero and 
one, with values closer to zero indicating more unbalanced data. APUI=1 
means the data is balanced. 
 
All command which use lags and leads recognize the ID variable, so that lags 
and leads will refer only within a single individual. One implication of this is 
that you can use a command like 
 

SELECT MISS(IDV(-1));  ? where IDV is the ID variable 
 
to choose the first observation for all individuals. The AR1 command also 
recognizes the ID variable, so it will apply the special transformation to the 
first observation of each individual and avoid using any lags that would refer 
from one individual back to the previous individual. When the PLOT 
procedure encounters panel data, it will place a break in the line to indicate the 
start of data for a new individual.  
 
In the panel format, unbalanced panels can be "balanced" by including missing 
data codes for the missing observations. Some of the methods described in 
section 15.4.1 may not work very well with unbalanced panels. This is in the 
nature of the data and the current state of econometric methodology; it is not 
necessarily a limitation of the program.  
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15.2 Random and Fixed Effects models -- the PANEL 
procedure 

PANEL obtains estimates of linear regression models for panel data (several 
observations or time periods for each individual). The data may be unbalanced 
(different number of observations per individual). PANEL can also compute 
means by group and perform F tests between groups. To define the models 
estimated, assume we have observations on i=1,...,N individuals for each of 
t=1,...,T years. The dependent variable is denoted by yit and the independent 
variables by Xit. The basic pooled or TOTAL regression model is  
 

 0β α= + +
it it it

y X u  

 
where α0 is the overall intercept and uit assumed to be i.i.d. This model 
assumes a single set of slope coefficients for all the observations.  
 
The fixed effect or WITHIN model assumes that there are common slopes, but 
that each cross section unit has its own intercept, which may or may not be 
correlated with the Xs: 
 

 
it it i it

y X uβ α= + +  

 
The BYID model assumes that both the slopes and the intercepts vary across 
cross section units: 
 

 β α= + +
it it i i it

y X u  

 

The BETWEEN model specifies the same relationship between the individual 
means: 

 

 β α= + +
i i ii i i

y X u  

 
where 

1
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The random effects or VARCOMP model resembles the WITHIN model, but 
it assumes that the intercepts are drawn from a common distribution with mean 
α and variance σα

2. Unlike the WITHIN model, the estimates for this model 
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will not be consistent if the individual intercepts are correlated with the 
independent variables. Because of this, it is important to test for correlation. 
PANEL reports the Hausman test statistic for the difference between the fixed 
effects and random effects estimates, along with its p-value. 
 
The VARCOMP estimator is computed by estimating the relative importance 
of between and within variation of the disturbance αi + uit and using this 
estimated ratio to combine the within and between estimators optimally. Under 
the null of uncorrelated intercepts, the VARCOMP estimator is asymptotically 
efficient, since it is a generalized least squares estimator. There are additional 
options for VARCOMP to control the actual variance components. Small or 
large sample formulas may be used, or you can supply the values directly. If 
negative variances are computed using the small sample formula, the program 
switches over to the large sample formulas, which always result in positive 
values.  
 
All or some of these models can be estimated by a single PANEL statement. 
The basic PANEL statement is like the OLSQ statement: first list the 
dependent variable and then the independent variables. C is optional; an 
intercept term is essential for these models and will be added if not present. 
Here is an example for the sample dataset: 
 

PANEL LPAT C LRND ; 
 
This command will produce estimates of the TOTAL, WITHIN, BETWEEN, 
and VARCOMP models, together with the value of an F-statistic for the 
hypothesis that all the intercepts are equal. The observations over which the 
models are computed are determined by the current sample. Lags and leads are 
not allowed to extend from one individual’s data to another’s data. 
 
Your data must be set up with all the time periods for each individual together 
(in pooled format). You must also specify when the data ends for one 
individual, and begins for the next. The best method is to provide an ID 

variable series in the FREQ(PANEL) command that takes on different values 
for each individual, as we did in the sample dataset. If your data are balanced 
(the same number of time periods for every individual), the T= option can be 
used. Other options are also available (see the Reference Manual or Online 

Help System). If the data are not in this order, the SORT command can reorder 
them (you can also use SORT to reorder the data so that you can do variance 
components in the other (time) dimension). See Section 6.4 for an example. 
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Frequently you will also wish to include a set of dummies for the time periods 
in your estimation, especially when your panel is short (so that there is very 
little sacrifice in terms of degrees of freedom). To generate a set of time 
dummies for the sample dataset, use the TREND and DUMMY commands: 
 

?   Make a series = 74,75,76,74,75,76,... (for balanced data) 
TREND (PER=3,START=74) YEAR ;   
LIST YRDUM YEAR74-YEAR76 ; 
DUMMY YEAR YRDUM ; 
 
This creates three variables YEAR74, YEAR75, and YEAR76 with the 
following values: 
 

 OBS  YEAR74  YEAR75  YEAR76 
 1,1  1   0   0 
 1,2  0   1   0 
 1,3  0   0   1 
 2,1  1   0   0 
 2,2  0   1   0 
…..and so forth 
  
If you had loaded a variable YEAR (which would have been essential if your 
data had been unbalanced), you could have just used the DUMMY command 
directly, without using TREND. 
 
The next example estimates all models including the individual firm 
regressions, and prints individual means: 
 

PANEL(MEAN,BYID) LPAT C LRND YEAR75 YEAR76 ; 
 
The output for this command will include F-statistics for the hypothesis that 
the slope coefficients are equal and for the joint hypothesis that both the slopes 
and intercepts are equal.  
 
The following command estimates VARCOMP only, using large sample 
formulas (note the use of year dummies with the intercept): 
 

PANEL(NOTOT,NOBET,NOWITH,NOVSMALL) LPAT LRND C YEAR75 
YEAR76; 

 
The TSP International website contains an example that shows all the linear 
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model Panel estimators available, estimated using Grunfeld’s investment data 
and compared to the published results of Baltagi (1995) and Nerlove (2000). 

15.3 Robust estimation with panel data 

This section discusses how to obtain asymptotically efficient estimates of panel 
data models without imposing conditional homoskedasticity or independence 
over time on the disturbances of the model. The first two methods we describe 
(Chamberlain’s PI matrix method and the estimation of a dynamic factor 
model using variance components) are based on the idea that the second and 
fourth moments of the data are sufficient statistics for estimation of a linear 
model with heteroskedastic disturbances. The final estimator we discuss is the 
well-known GMM method for panel data originally proposed by Hansen and 
Singleton (1982) and made popular for panel data by Arellano and Bond 
(1991).  
 
The estimators described here are minimum distance estimators that use an 
asymptotically optimal weighting matrix. In particular, they use the sample 
covariance of the distance measures (for example, the orthogonality conditions 
in GMM) as the weighting matrix. The key to understanding the computation 
of the first two estimators described here is to recognize that the SUR 
procedure (which computes multivariate regressions without imposing a 
diagonal covariance structure) can also compute a set of estimates of second 
moments or functions of second moments, along with a robust estimate of 

their variance-covariance matrix. This estimate is heteroskedastic-consistent 
and does not impose independence across the disturbances in each equation, 
where equation here refers to the moment equation.  
 
This enables you to construct the optimal weighting matrix for many of these 
estimators easily, without special programming. Using this matrix, which we 
call OMEGA, we can construct a minimum distance estimator for the second 
moments as functions of the parameters of interest using the SUR procedure 
again, but this time with only one observation (since the second moments and 
the estimated OMEGA are sufficient statistics for the problem). 
 
This methodology is applied below to two different panel data estimation 
problems: the problem of describing the relationship between a set of 
endogenous variables (Y) and a set of exogenous variables (X), where the 
reduced form Π matrix is a sufficient statistic for the problem (Chamberlain's 
problem), and the problem of describing the relationship between a set of 
endogenous variables (Y) and a set of unobservable variables ("factors"), 
where the second moments of Y are a sufficient statistic. Obviously, the two 
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types of models could be combined, but the presentation is simpler if they are 
treated separately.  
 
Section 15.3.4 then describes how to use the GMM procedure in TSP to 
estimate linear and nonlinear panel data models that allow for both 
heteroskedasticity and autocorrelation of the disturbances.  

15.3.1 Obtaining panel-robust standard errors 

Because estimates based on linear models and some nonlinear models (notably 
those estimated by ML using a likelihood function of the exponential form) are 
often consistent even in the presence of heteroskedasticity or a more complex 
variance structure, sometimes you will simply wish to compute robust standard 
errors for conventional estimates rather than using one of the estimators below.  
 
TSP provides several such options. You can use the ROBUST option in the 
linear estimation commands or HCOV=W in the nonlinear estimation 
commands to obtain heteroskedastic-consistent standard errors. In this case, if 
FREQ(PANEL) has been specified, OLSQ, PANEL, and 2SLS will compute 
standard errors that are robust to both heteroskedasticity and autocorrelation 
within panel unit. You can override the autocorrelation computation by using 
the combination of options ROBUST, HCOMEGA=DIAGONAL.  
 
In PROBIT (REI or FEI) the same option is implemented using HCOV=P 
(block diagonal variance-covariance matrix robust to autocorrelation but not 
heteroskedasticity) and HCOV=Q (robust to both autocorrelation and 
heteroskedasticity). Future versions of TSP will implement these options in 
other nonlinear estimation procedures.  

15.3.2 The PI matrix method 

Chamberlain (1982) showed that one way to estimate a whole range of panel 
data models was to summarize the data by regressing all the endogenous 
variables on all of the exogenous variables, obtaining an estimate of the 
reduced form matrix Π; and then to test various restrictions on this matrix 
implied by the models of interest (actually Chamberlain focused on the 
conditional expectation interpretation of regression so that the estimator in 
question was for the expectation of the Ys conditional on the Xs). Let π = 

vecΠ. Then, if you use the minimum distance estimator 

1arg min  ( ( )) ( ( ))f f
δ

π δ π δ−− Ω −  

together with an appropriate estimate of Ω to estimate the restricted parameter 
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set δ, then the resulting estimates of δ are asymptotically efficient. The optimal 
estimate of Ω in this case is given by the sample covariance of wi, where 

1( )
i i i x i

w y x S x
−= − Π ⊗  

and Sx is the sample variance of the Xs. Note that this formula does not imply 
independence within each observational unit, nor does it impose 
homoskedasticity.  
 
Using SUR, it is easy to estimate Π and its associated covariance Ω in TSP. 
For the sample dataset: 
 

DOT 74-76 ; 
FRML PIEQ. LPAT. = PI.74*LRND74 + PI.75*LRND75 + 

PI.76*LRND76 ; 
PARAM PI.74-PI.76 ; 
MSD (NOPRINT) LPAT. LRND. ; ? Removing all the year means. 
UNMAKE @MEAN PMEAN RMEAN ; 
LPAT. = LPAT.-PMEAN ; LRND. = LRND.-RMEAN ; 
ENDDOT ; 
SUR (HCOV=R) PIEQS ;  ? Note the robust option.  
COPY @COEF PI ;   ? Save the computed PI matrix  
COPY @VCOV OMEGA ; ? and its covariance estimate.  
 
Removing the means of the data before forming the estimated Π simplifies 
things, because it implies that you do not have to carry around the X variable 
corresponding to the intercept. This two part strategy for estimation does not 
affect the asymptotics (Macurdy 1982).  
 
Now suppose the class of restricted models of interest have the following form: 

yit = β1xit + β2xi,t-1 + ... + γtαi + uit 

where αi is the firm effect, which may be correlated with the x's: 

αi = λ1xi1 + ... + λTxiT 

For the sample data, with three y’s and three x’s, the Π matrix has the 
following form: 














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There are nine elements in Π and nine coefficients to be estimated, but there is 
one normalization restriction (γ74=1), so there is one over-identifying 
restriction. If there are no correlated effects, the γs and λs will be zero and 
there will be six over-identifying restrictions.  
 
With the estimated Π and Ω matrices obtained above, you can test for the two 
levels of restrictions implied by this model:  
 
1) a stable lag structure and correlated firm effect.  
2) a stable lag structure and uncorrelated firm effects.  
 
Here is how to do it using the minimum distance procedure (LSQ or SUR): 
 

? Define the lists of PI coefficients and equations. 
? 
LIST PILIST PI7474-PI7476 PI7574-PI7576 PI7674-PI7676 ; 
LIST PIEQLIST PIEQ7474-PIEQ7476 PIEQ7574-PIEQ7576 

PIEQ7674-PIEQ7676 ; 
LENGTH PILIST NPI ;  ? Find out how many elements in PI matrix. 
? Unmake the est. PI matrix into its individual elements. 
UNMAKE PI PILIST ; 
? Treat the estimated PI coefficients as data in the program below 
CONST PILIST ; 
? Suppress some output for Minimum Distance estimation: 
SUPRES COVU W COVT REGOUT;   
? Define the equations that express PI as a function of the 

underlying delta parameters ? (beta, lambda, and gamma) 
that are to be estimated. 

? 
FRML PIEQ7474 PI7474 = BETA1 + LAM74*GAM74 ; 
FRML PIEQ7574 PI7574 = BETA2 + LAM74*GAM75 ; 
FRML PIEQ7674 PI7674 = BETA3 + LAM74*GAM76 ; 
FRML PIEQ7475 PI7475 = LAM75*GAM74 ; 
FRML PIEQ7575 PI7575 = BETA1 + LAM75*GAM75 ; 
FRML PIEQ7675 PI7675 = BETA2 + LAM75*GAM76 ; 
FRML PIEQ7476 PI7476 = LAM76*GAM74 ; 
FRML PIEQ7576 PI7576 = LAM76*GAM75 ; 
FRML PIEQ7676 PI7676 = BETA1 + LAM76*GAM76 ; 
 
? Starting values for model with 
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? uncorrelated Xs (only betas to be estimated). 
CONST LAM74-LAM76 GAM74-GAM76 ;  
PARAM BETA1 1 BETA2 0 BETA3 0 ;       
CONST LAM74 1 ;    ? this is a free normalization 
 
? In effect we now have one observation on each element of PI. 
SMPL 1,1 ;     
SUR(WNAME=OMEGA) PIEQLIST ; 
LENGTH @RNMS NOPAR ;  
SET DF = NPI-NOPAR ;  ? Degrees of freedom for constrained model 
CDF(CHISQ,DF=DF) @TR ;   ? Test constraints. 
 
? Starting values for model with correlated Xs. 
PARAM LAM74-LAM76 GAM75 GAM76 ;  
 SUR(WNAME=OMEGA) PIEQLIST ;       
LENGTH @RNMS NOPAR ;  
SET DF = NPI-NOPAR ; 
CDF(CHISQ,DF=DF) @TR ; ? Test the single constraint remaining.  
 
The "TRACE OF MATRIX" criterion printed out by SUR after convergence is 
precisely the Chi-squared statistic for the over-identifying constraints (with 
degrees of freedom equal to the number of elements of Π less the number of 
parameters being estimated). Note that changing the sample size to one is 
essential if you want standard error estimates to have the correct size 
(assuming OMEGA has been computed as shown). 
 
With a larger number of Ys, Xs, or observations in the time dimension, the 
number of models that might be nested in this way becomes very large and the 
TSP program correspondingly larger. Using DOT loops and other shortcuts 
can make programming easier and streamline your program so that it is easier 
to read and debug. See the examples earlier in this chapter for ideas.  

15.3.3 Dynamic factor models with panel data 

An example of how to estimate a fairly complex dynamic factor model using 
SUR is available in the examples on the TSP web site. The example is drawn 
from Hall and Hayashi (1989).  
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15.3.4 GMM Estimation of panel data models. 

A series of recent papers (Arellano and Bond 1991, Keane and Runkle 1992, 
Ahn and Schmidt 1992) have advocated the use of the GMM methodology for 
the estimation of dynamic panel models or panel data models with 
predetermined rather than exogenous right-hand side variables. These 
estimators are straightforward to implement in TSP using the GMM estimation 
command. In order to use this estimator on panel data, your data should be in 
panel format, and you should write a different equation for each year of data 
(this is easily done with DOT loops).  
 
There are two ways to specify different instruments for each equation (year):   

1. directly in the command using a special form of the INST statement 
where the instruments for to be used in each equation are separated by 
the “or” sign |. 

2. using the MASK option to choose the instruments you wish to use for 
each equation.  

 
As an example, consider the one-variable model of Y on X, with 3 years of data 
for each y, but 6 years, including 3 lags for each X. With this much data, it is 
possible to test not only for strong exogeneity of the X's, but also for weak 
exogeneity of lag order 0, 1, or 2, either unconditionally or conditional on the 
presence of individual effects. That is, you can test for whether there is zero 
correlation between the first-differenced disturbances and future X's and also 
for whether there is zero correlation between the first-differenced disturbances 
and current X's, or X's lagged once. As the number of lags of X variables that 
are not assumed to be exogenous increases, the number of moment restrictions 
imposed decreases. A simple TSP run that performs these tests conditional on 
individual effects is shown below: 
 

? Equations of the model. 
FRML UEQ86 Y86 - BETA1*X86-BETA2*X85-BETA3*X84 ; 
FRML UEQ87 Y87 - BETA1*X87-BETA2*X86-BETA3*X85 ; 
FRML UEQ88 Y88 - BETA1*X88-BETA2*X87-BETA3*X86 ; 
 
? First-differenced versions. 
FRML DUEQ87 UEQ87-UEQ86 ; 
FRML DUEQ88 UEQ88-UEQ87 ; 
DOT 87 88 ; 

EQSUB DUEQ. UEQ86-UEQ88 ; 
ENDDOT ; 
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LIST XLIST X83-X88 ; ?  List of all instruments 
 
?  Lag 1+ instruments in levels 
GMM (INST=(X83 X84 X85 | X83 X84 X85 X86))  
          DUEQ87 DUEQ88 ; 
? Save chi-squared statistic for estimated model.  
COPY @GMMOVID TRACE1 ;   
? Save actual number of moment restrictions imposed.  
COPY @NOVID DF1 ;     
 
? Weak exogeneity – lag 0 instruments 
GMM (INST=(X83 X84 X85 X86 | X83 X84 X85 X86 X87))  
          DUEQ87 DUEQ88 ; 
COPY @GMMOVID TRACE0 ;  
COPY @NOVID DF0 ;  
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? Strong exogeneity – all instruments for all equations 
GMM (HETERO,INST=XLIST) DUEQ87 DUEQ88 ; 
COPY @GMMOVID TRACES ;  
COPY @NOVID DFS;  
 
? Compute Test Statistics. 
SET TEST0 = TRACE0-TRACE1 ; SET DFR = DF0-DF1 ; 
? Test lag 0 instruments, maintaining lag 1. 
CDF(DF=DFR,CHISQ) TEST0 ;    
SET TESTS = TRACES-TRACE0 ; SET DFR = DFS-DF0 ; 
? Test strong exogeneity, maintaining weak. 
CDF(DF=DFR,CHISQ) TESTS ;    
 
Note that the first model estimated in this example is the least constrained 
model; all the others will be tested relative to this one. 
 

15.3.5 Using the MASK= option  

Instead of supplying separate instruments for each equation, you may prefer to 
use the MASK option to specify which instruments apply to which equation. 
For example, the first estimation above can also be done with these commands: 
 

READ (NROW=6,NCOL=2) M1 ;    
? Mask for lag 1 and greater instruments.  
1 1  
1 1  
1 1  
0 1  
0 0  
0 0  
; 
GMM (HETERO,INST=XLIST,MASK=M1) DUEQ87 DUEQ88 ; 
 
Modifying this example to perform the tests without allowing for individual 
effects is straightforward: simply use the level equations UEQ86-UEQ8 and 
modify the M1 and M0 matrices accordingly. For example, if the order of the 
equations is UEQ86 UEQ87 UEQ88, the mask M1 should be the following 
matrix: 
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1  1  1 
1  1  1  
1  1  1 
0  1  1  
0  0  1 
0  0  0  
 
The examples section of the TSP web site http://www.tspintl.com contains 
more examples of estimating a panel data model using both the GMM and PI 
matrix techniques. There are also examples of performing LM tests for serial 
correlation as in Arellano and Bond (1991), and computing the one-step 
covariance matrix estimate recommended by Blundell and Bond (1995). 

15.4 Panel data and nonlinear models 

The implications of nonlinearity for panel data models depend on the way in 
which the individual effect enters the model. Two situations can be 
distinguished, one where the effect enters linearily and one that is intrinsically 
nonlinear:  
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The first case is easily handled by GMM via differencing to remove the effect 
and then instrumenting with lagged values of the independent (and possibly 
the dependent) variable, as described in the previous section. We discuss some 
alternatives for dealing with the second case (which includes count data and 
qualitiative depdendent variable models such as Probit) in the next two 
sections.  

15.4.1 Multiplicative individual effects 

A special case of the second model is the case where the effect is 
multiplicative:  

 [ | , ] ( , )
it it i i it

E y X f Xα α β=  

 
For example, this is the model usually implied by Poisson or negative binomial 
models for panel count data (see Blundell, Griffith, and Windmeijer 2002; 
Montalvo 1997). These authors show that models of this type imply the 
following orthogonality condition: 
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Because GMM handles nonlinear equations for the residual u in the same way 
as linear equations, it is straightforward to implemented such a model in TSP 
using GMM and the methods described in the previous section. Here we 
provide a simple example based on the data with 6 years for X and 3 years for 
Y that we used in that section.  
 
 

? Equations of the model f(X,B). 
FRML FXB86 BETA1*X86+BETA2*X85 ; 
FRML FXB87 BETA1*X87+BETA2*X86 ; 
FRML FXB88 BETA1*X88+BETA2*X87 ; 
 
? First-differenced versions for multiplicative effects. 
FRML DUEQ87 Y87-Y86*(FXB87/FXB86) ; 
FRML DUEQ88 Y88-Y87*(FXB88/FXB87) ; 
DOT 87 88 ; 

EQSUB DUEQ. FXB86-FXB88 ; 
ENDDOT ; 
 
? Estimate using instruments in levels corresponding to weak 
? exogeneity (note that we drop one to reduce bias). 
GMM (INST=(X83 X84 X85 X86 | X84 X85 X86 X87))  
          DUEQ87 DUEQ88 ; 
 
? Estimate using  Lag 1+ instruments in levels 
GMM (INST=(X83 X84 X85 | X84 X85 X86))  
          DUEQ87 DUEQ88 ; 

15.4.2 Qualitative dependent variable models (Probit 
and logit) 

The basic Probit model for panel data takes the following form: 
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As in the case of the linear panel data model, the choice of estimator for this 
model depends crucially on whether or not you assume that the effects αi are 
uncorrelated with the X’s. When the effects are not correlated, the model 
becomes a variance components version of Probit. In this case you have two 
choices: 1) estimate using the usual Probit estimator, which is consistent, and 
obtain grouped standard errors that are consistent in the presence of the 
implied variance-covariance structure of the disturbances; or 2) use PROBIT 
with the REI option to obtain maximum likelihood estimates under the 
assumption that the disturbance has the variance components structure implied 
by the model above.  
 
Assuming that you have specified the sample via FREQ (PANEL) so TSP 
knows what the panel structure of your data is, the first approach is automatic 
when you estimate a Probit model using panel data. In this case, the option 
HCOMEGA=BLOCK is turned on by default, and grouped standard errors 
will automatically be computed.  
 
To implement the “random effects” maximum likelihood estimation, include 
the REI option in your PROBIT command. The Probit random effects model 
estimated is the following: 
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The normalization above means that the coefficients are normalized the same 

way as the results from the usual PROBIT command. The parameter ρ (RHO) 
is estimated and corresponds to the share of the variance that is within 
individual. The likelihood function involves computing a multivariate integral 
and this is done with Hermite quadrature, using a default 20 points; when 
RHO (the within variance share) is high, it may be necessary to increase this 
using the NHERMITE option. 
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Fixed effect Probit models are more problematic, since the usual dummy 
variable is inconsistent (suffers from finite T bias). For a full discussion of this 
issue, see Chamberlain (1982, 1984) or Wooldridge (pp. 482-492). 
Nevertheless, such models can be useful if T is even moderately large, since 
the bias is typically of order 1/T. For this reason, TSP does provide a fixed 
effects Probit estimator via the FEI option. To use this option, FREQ 
(PANEL) must be in effect. A very efficient algorithm is used, so large 
unbalanced panels can easily be handled.  
 
If desired, you can use the FEPRINT option to print a table of the effects, their 
standard errors, and t-statistics. Individuals that have dependent variable values 
that are all zero or all one are allowed, although their data are not informative 
for the slopes. The fixed effects for such individuals will be either a very large 
negative number (in the case of a zero dependent variable) or a very large 
positive number (in the case of one). These values yield the correct probability 
for these observations (zero or one).  
 
As Chamberlain (1984) pointed out, and as is discussed in Wooldridge, the 
fixed effects logit model does have an estimator that is consistent for the slope 
parameters. This estimator can be obtained using the conditional density 
approach that was used in Hausman, Hall, and Griliches (1984) to obtain a 
consistent estimator for the Poisson model with individual correlated effects. 
Using the earlier notation but allowing εit to have a Type I extreme value 
distribution rather than a normal distribution, the likelihood for this model 
conditional on the sequence of 0-1 binary variables actually observed for 
individual i is similar to but not the same as the usual conditional logit 
likelihood:  
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That is, each observation is conditioned on all the sequences of 0-1 binary 
variables that sum to the observed sum for the individual. Individuals whose 
observations are all 0 or all 1 do not contribute to this likelihood, since they 
convey no information about the relationship between X and the outcomes 
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Here is a simple example for the case when T=3. In this case the possible 
sequences of the dependent variable are (0,0,0), (0,0,1), (0,1,0), (0,1,1), 
(1,0,0), (1,0,1), (1,1,0), and (1,1,1). Any observations with the first or last 
sequence are dropped, leaving 6 sequences possible, 3 whose sum is 1 and 3 
whose sum is 2. Assuming that the model contains only a single X and that all 
the data for an individual is in a single observation (panel format), the 
following statements set up the likelihood function for estimation: 
 

sumd = d1+d2+d3 ;   ? Create the sum of the 3 dep vars 
?    Dummies corresponding to the four possible sequence sums 
dummy sumd a0 a1 a2 a3 ;  
?   Choose the cases where sumd is 1 or 2 for estimation. 
select a1|a2 ;  
 
dot 1-3 ; 
  frml xb. x.*beta ; 
enddot ;   
 
?   Note the use of a1 and a2 to select the appropriate denominator 
?   for the likelihood. 
frml logit d1*xb1 + d2*xb2 + d3*xb3 
     - a1*log(denom1) - a2*log(denom2) ; 
frml denom1 exp(xb3) + exp(xb2) + exp(xb1) ; 
frml denom2 exp(xb2+xb3) + exp(xb1+xb3) + exp(xb1+xb2) ; 
 
dot 1 2 ; 
  eqsub denom. xb1-xb3 ; 
enddot ;   
eqsub logit denom1 denom2 xb1-xb3 ; 
 
param beta 3 ; 
ml (hiter=n,hcov=nbw) logit ; 



 16. Storing Data on External Files 237  
  

  

16.  STORING DATA ON EXTERNAL FILES 
 
The free-format data loading described in Chapter 3 is easy and convenient to 
use, but it may not be suitable for large amounts of data: the data may not be in 
a form that can be read this way; it is somewhat inefficient to use free format; 
or you may have a large number of series in your data set, only a few of which 
you wish to use at one time. TSP provides several alternative formats for the 
storage and use of data in external files. 
 
These alternate file formats are generally used in different situations and for 
different data problems. In this chapter, we try to give some guidelines for their 
use. Here are some possible situations: 
 
 1. You have a moderate number of not very long series (approximately 50 
observations or fewer). You could type the data into a free format file, or a 

spreadsheet file (.wks, .xls, etc., but not spreadsheet notebooks). 
 
 2. Your project involves a large amount of data: either panel data with several 
hundred observations on a few time periods for each variable, or a large cross 
section (more than one thousand observations). Cost considerations dictate that 
data storage and input/output be as efficient as possible. In this case, the most 
efficient technique is to store the data in a TSP databank, after reading it into 

your TSP program. Another efficient alternative is to store the dataset in stata 

(.dta) format. You can do this either with stata™ or by using stat/transfer to 
convert from another format to stata format.26 
 
 3. You are building a large model section by section: the total number of 
series involved is quite large, but they may have different starting dates and 
frequencies. This kind of project is also well suited to a databank. You can 
easily store the documentation for each series along with the data values. 
 
The next few sections discuss data storage alternatives in more detail and give 
a few examples of using them. 

                                                      
26

 See http://www.stata.com and http://www.stattransfer.com for information about these 

programs and how to obtain them. Note that variable documentation in stata format files will be 
saved as documentation when they are read into TSP, and will therefore be stored in any TLB 
files that you create. 
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16.1 Using external sequential files: READ, WRITE 

A sequential file is just what its name implies: one record follows the next, in 
sequence. The file is always written and read in a fixed order. In TSP, the 
reading and writing of data to an external sequential file are done with the 
READ and WRITE commands, using the FORMAT= and FILE= options. The 
FORMAT= option tells TSP whether the data on the external file is free 
format, formatted (characters), binary, or a special format such as spreadsheet.  
 
In a formatted data file (sometimes called an ASCII file after the character 
code used or a text (.txt) file), each number occupies a prespecified number of 
spaces, and is represented by a series of characters in a particular machine code 
representation. The advantage of formatted data is that it can be printed easily 
and is readable on different kinds of computers.  
 
Binary or unformatted data, on the other hand, is not readable on a different 
kind of computer than the one on which it was written, nor can it be printed 
directly. It is the most efficient and the least flexible form of storage The 
format of this data is the same as the machine representation of the numbers; 
so no recoding is done as it is read or written and maximum efficiency is 
achieved.  
 
For further information on the use of formatted and unformatted data see 
FORMAT in the Reference Manual. 
 
The FILE= option is used to specify the external file from which the data will 
be read or to which the data will be written.  
 

READ(FILE='FOO.DAT') X Y Z; 
 
specifies that TSP is to read the series X, Y, and Z in free format from the file 
FOO.DAT. 

16.1.1 Data organization on external files 

You can organize data on an external file by series or by observation. Data 
organized by series typically has one or more records per series, with all the 
observations, and starts a new record for each series. Data organized by 
observation is more typical of cross-section research: each record contains all 
the variables for a single observation and each observation starts with a new 
record. TSP can read/write data stored in either way. For example, to load data 
stored by series: 
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FREQ A ; SMPL 48 79 ; 
READ(FILE='macro.dat',BYVAR) GNP IMPT RELP ; 
 
The external file macro.dat has 32 numbers for GNP (possibly on more than 
one line), then 32 numbers for IMPT, and 32 numbers for RELP. 
 
The next example shows how to read data stored by observation: each pair of 
records on the input file consists of data on the 11 variables being read; there 
are 385 pairs of records corresponding to the SMPL of 385 observations: 
 

FREQ N ; SMPL 1 385 ; 
READ(FILE='PATENTS.DAT',FORMAT='(7F10.5/10X,4F10.5)') ID 

PATENTS LRNDL5 LRNDL4 LRNDL3 LRNDL2 LRNDL1 LRNDL0 
TIME BOOK71 SCISECT ; 

 
Suppose that you now wish to reformat the data in the second example as a 
TSP databank file for efficiency in storage and reading. You can use OUT and 
KEEP statements to do this: 
 

OUT PATDATA; 
KEEP ID PATENTS LRNDL0 LRNDL1 LRNDL2 LRNDL3 LRNDL4 

LRNDL5 TIME BOOK71 SCISECT PFIT U ; 
 
In this example we assume that you also wished to add two computed variables 
(PFIT and U) to the databank PATDATA. On most computers, the new file 
has approximately 20,000 bytes, whereas the old formatted file had about 
54,000 bytes, even though it had fewer variables. An easier way to save all 
original and transformed variables is to put the OUT command before the 
READ command; then the KEEP command is not needed. 
 
In dealing with large cross-section data files organized by observation, you 
often do not know the exact number of observations in the file before you 
make the first run. The READ command has a convenient option to solve this 
problem, called SETSMPL. SETSMPL does exactly what its name implies: it 
sets the SMPL after the data is read and the number of observations is known. 
This option is the default if the SMPL has not yet been defined. For example if 
PATENTS.DAT was actually a free format file: 
 

READ(FILE='PATENTS.DAT') ID PATENTS LRNDL0 LRNDL1 LRNDL2 
LRNDL3 LRNDL4 LRNDL5 TIME BOOK71 SCISECT ; 
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After these commands have been executed the SMPL will be 1 385.  
 
In cases where you wish to use a frequency other than N, provide a FREQ 
statement and a SMPL with the correct starting date of your file, and then use 
the SETSMPL option explicitly in the READ statement to update the ending 
date of the SMPL from the data you input. 

16.1.2 Closing external files: CLOSE 

Files are opened when they are first referenced in a READ or WRITE 
statement and are not closed until the end of the program, unless one of the 
following two things happen: 
 
1. The same filename (or unit) is used in both READ and WRITE statements. 
2. Many different files (usually more than 12) are used in a single program. 
 
In these situations, the CLOSE command is available to give the user explicit 
control over the closing of files. CLOSE uses the option FILE=, just like 
READ and WRITE. Most users will never have to use the CLOSE command, 
since the default methods are adequate for most file operations. 

16.2 Spreadsheet files 

TSP can read series and matrices directly to or from spreadsheet files. The 
following table lists the file types supported by TSP: 
 

Spreadsheet Version Filename 

extensions 

TSP support 

Lotus 123, 
Symphony 

1,2 .wks .wk1 .wrk 
.wr1 

Read, Write 

Lotus 123 3 .wk3 Read 
Lotus 123/J 
 (Japanese) 

1,2 .wj1 .wj2 .wk2 
.wt2 

Read, Write 

Microsoft Excel 2 .xls Read, Write 
Microsoft Excel 3,4 .xls Read 
Microsoft Excel 5,97,2000, 

2002 
.xls Read/Write 

Quattro Pro  .wq1 Read (PC only) 

 
TSP generally writes the oldest file formats, which are always readable by 
more recent spreadsheet releases. The exception is Excel where TSP usually 



 16. Storing Data on External Files 241  
  

  

writes in the format of version 4.0. 
 
Spreadsheet files should take the format of the following example, which 
consists of quarterly data from 48:1 to 49:1: 
 

 A B C 

1 Date CJMTL PMTL 

2 Mar-48 183.4 #N/A 

3 Jun-48 185.2 .436 

4 Sep-48 192.1 .562 

5 Dec-48 193.3 .507 

6 Mar-49 206.9 .603 

 
Series are read from individual columns in the file. Series names are optionally 
supplied in the first row of the file above the data columns. Dates may be 
given in the first column. Many different file configurations are possible, and it 
is possible to read in some series while ignoring others. Following are some 
simple guidelines for creating a spreadsheet file for TSP:  
 
1. Put the column names in the first row. They should be valid series names in 
TSP (lowercase is fine, but imbedded blanks and special characters are not 
allowed).27 If the file has no names, you can supply them when you read the 
file into TSP, but this can be inconvenient. If the file contains invalid names, 
the data can be read by TSP as a matrix, ignoring the current names, and you 
can supply your own names inside of TSP. TSP will not recognize names in 
lower rows or in sheets after the first. TSP treats these names as missing values 
and numbers below them will be read as data for the original column names. 
 
2. The second row must contain data. 

                                                      
27

 Unlike UNIX, TSP makes no distinction between lower and upper case when reading 

commands and variables, but all variable and file names are stored in upper case, which means 
that on UNIX and in unix-style programs like stata you will need to be aware that the names are 
uppercase. 
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3. If you are reading time series, the first column should contain dates. This 
will ensure the series are read with the proper frequency and starting date, 
regardless of the current FREQ and SMPL in TSP. Dates can be strings such 
as 48:1 or numbers formatted as dates (Mar-48, 3/31/48, etc.). You only have 
to supply enough dates so that TSP can detect the frequency (5 is enough to 
distinguish between quarterly and monthly). TSP ignores any dates after these, 
assuming that the data is contiguous (no missing periods/years, or SMPL gaps 
in TSP terminology). If you have missing periods/years for all series, leave the 
corresponding rows blank. Below is a table of examples showing 
recommended ways of defining the starting date and frequency with a dates 
column. If you have dates in other columns, they will be read as numbers. If 
you are reading a matrix, the date column will be ignored (i.e. it will not be 
read into the matrix). 
 

First 
date 

Second 
date 

Resulting frequency 

string dates – first character is ‘ ^ or “ 

1 2 A if current freq is A, otherwise N 

48: Any A 

48:5 Any M 

48:4 49:1 Q 

1948:1 1948:2 M or Q depending on subsequent 
dates 

48:1 49:1 A 

A2:3 Any Invalid 

48:2 48:1 Invalid 

numeric dates 

12/31/48 12/31/49 A (any dates 365-366 days apart) 

12/31/48 1/31/49 M (any dates 28-31 days apart) 

12/31/48 3/31/49 Q (any dates 90-92 days apart) 

12/31/48 1. 1.49 N (any other date range) 
 
4. Missing values can be represented by blank cells or by formulas which 
evaluate to missing. 
 
To read in a spreadsheet file, use the FILE='filename' option. 
FORMAT=LOTUS or EXCEL is optional. If the filename contains one of the 
extensions listed earlier (.WKS, .WK3, .XLS, etc.), TSP checks the first few 
bytes of the file to confirm that it is one of the spreadsheet versions listed 
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above. Conversely, if FORMAT=LOTUS or EXCEL is specified, but the 
filename does not contain a extension , then .WKS or .XLS is appended to the 
filename. To read a matrix (bypassing column names and dates), use the 
TYPE=GEN option. TYPE=CONSTANT is not supported for Lotus files; 
series will be defined instead. The NCOL=, NROW=, IFULL, UNIT=, etc. 
options are ignored, but SETSMPL is supported. 
 
If no series names are supplied on the READ command, TSP looks for column 
names in the file and creates series with those names. If you supply series 
names, TSP attempts to match them to column names in the file. If the file 
does not have column names, you must supply a READ argument for each 
data column. If you are unsure of the file's contents, check it with your 
spreadsheet editor or read it as a matrix. If you think the file has column 
names, but you don't know what they are, try supplying a dummy name that 
won't be matched and TSP will print an error message listing the column 
names in the file. If you are reading a matrix (using TYPE=GEN as mentioned 
above), TSP will create a matrix named @LOTMAT unless you supply an 
argument (the name of a matrix) to READ. 
 
If for some reason your series are in rows instead of columns, you can read the 
file as a matrix, transpose it, and UNMAKE the matrix into series. 
Alternatively you could transpose the file in your spreadsheet editor: most have 
a special paste option for performing this operation (e.g., Excel).  
 
TSP checks the first row in the file for string names (Lotus cells beginning 
with the characters ' ^ or "). The names are truncated to 8 characters (if 
necessary), and are translated to uppercase. They must be aligned above their 
corresponding data columns. If you have dates in the first column, no name is 
required for the date column. Any names with imbedded blanks will be 
ignored. 
 
READ examples for spreadsheet files 

 
1. We will use the SML.WKS file shown below in the following examples: 
 

 ^CJMTL ^PMTL 

'48:1 183.4 NA 

'48:2 185.2 .436 

'48:3 192.1 .562 



244 Advanced Methods 

 

 

'48:4 193.3 .507 

'49:1 206.9 .603 

 

READ(FILE='SML.WKS');  
? the series CJMTL and PMTL are defined. FREQ Q and  
? SMPL 48:1, 49:1 are set if there is no current FREQ or SMPL. 
 
READ(FILE='SML.WKS',TYPE=GEN);  
? creates the 5x2 matrix @LOTMAT, with the values  
? of CJMTL and PMTL in its columns. 
 
READ(FILE='SML.WKS') PMTL; ? only reads in PMTL 
 
2. Here is the nm3.wk1 file (as shown in Lotus, using numeric dates) for the 
following examples: 
 

04/30/57 23.2 34.5 10.9 

05/31/57 23.6 35.1 11.0 

06/31/57 23.9 35.8 11.2 

07/31/57 24.0  11.5 

 

READ(FILE='NM3.WK1') SF LA SD;  
 
defines the monthly series SF, LA, and SD from 57:4 to 57:7. If there is no 
current SMPL, this is the new SMPL with FREQ M. The series LA will be 
given a missing value in its last observation. 

 
READ(FILE='NM3.WK1') SF;  
 
causes an error message to be printed because three series names are required 
unless the option TYPE=GEN is supplied (to indicate that the data should be 
read as a matrix). 

16.2.1 Writing spreadsheet files 

The WRITE command will write either a single matrix or several series to a 
spreadsheet file. If the file specified already exists, it is overwritten by the new 
file. If you write a matrix, the file will consist only of numbers. If you write 



 16. Storing Data on External Files 245  
  

  

series, their names will be put in the first row. The first column will contain 
dates (or observation numbers), and each series will be put in a column below 
its name. Series are written under the control of the current sample. If there are 
gaps in the sample, observation numbers will be used instead of dates in the 
first column. Dates are written as the last day of each period, and formatted as 
Mon-Yr. 
 
WRITE examples for spreadsheet files 

 
? This creates a file equivalent to the READ examples, except that 
? dates are formatted numerically instead of as strings. 
FREQ Q;  
SMPL 48:1,49:1; 
READ CJMTL; 183.4 185.2 192.1 193.3 206.9;  
READ PMTL; . .436 .562 .507 .603;  
WRITE(FILE='SML.WKS') CJMTL,PMTL; 
 
? This creates a file with the same data columns, but no dates or 
?  series names (since a matrix is used). 
FREQ Q;  
SMPL 48:1,49:1;   
LOAD CJMTL; 183.4 185.2 192.1 193.3 206.9; 
LOAD PMTL; . .436 .562 .507 .603; 
MMAKE M CJMTL,PMTL; 
WRITE(FILE='SMM.WKS') M; 
 
Here is the resulting SMM.WKS file: 
 

 A B 

1 183.4 NA 

2 185.2 .436 

3 192.1 .562 

4 193.3 .507 

5 206.9 .603 
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16.3 TSP Databanks 

TSP databanks provide a convenient means of automatically storing and 
retrieving your variables from disk. 
 
The method for storing and retrieving variables from databanks is implicit. 
Instead of listing variables in a READ statement, the names of databanks are 
listed in an IN statement. Any variables in the databanks are then available, 
and are read in automatically if referenced. The corresponding statement for 
storing variables is OUT; which marks all variables created or modified after it 
for output to files listed on the statement. For example, 
 

FREQ A; SMPL 48,87;  
IN USNIPA; OUT USNIPA; 
OLSQ GNP C,CONS;  ? old series read from USNIPA databank 
LGNP = LOG(GNP); LCONS = LOG(CONS);   
? new series saved in USNIPA 
 
reads in GNP and CONS from databank USNIPA, runs a regression using 
them, takes their logs, and add the new logged variables to the same databank. 

16.3.1 Storing variables in a databank: OUT 

Variables created or modified during a TSP run will be stored as members of a 
databank at the conclusion of the run if you include a statement of the 
following form in your TSP run: 
 

OUT FILENAME ; 
 
After an OUT statement, all TSP variables that were created or modified are 
written to the file associated with that filename. The variables stored can 
include series, constants, matrices, or equations, provided they have been 
created or changed after the appearance of the OUT statement. The example 
above would create a file called FILENAME.TLB. 
 
A new OUT statement later in the run will cause all items created after its 
appearance to be put on the file(s) named on it, but will leave the items stored 
previously on the first file(s) unchanged. The statement 
 

OUT ; 
 
causes TSP to cease storing anything on the output files. Here is an example: 
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OUT DB1 ; 
PRINT W1 LNX1 ; GENR GNP=G/P ; 
OUT DB2 ; 
GENR W1ACT=W1 ; GENR W1=A1+B11*LNX1 ; 
OUT; 
GENR W2=A2+B22*LNX2 ; 
END ; 
 
After this run is completed, the series GNP will be stored in DB1.TLB, 
W1ACT and W1 will be stored in DB2.TLB, and W2 will be stored on neither 
file. 
 
Occasionally it is convenient to store variables during a TSP run without 
having to create or modify them. To do this, use a KEEP statement:  
 

KEEP VARNAME1,VARNAME2,.....; 
 
This puts the variables named VARNAME1, VARNAME2, etc. in the file 
referenced by the current OUT statement. This is the only way (other than 
WRITE(FORMAT=DATABANK,...)...;) to store equations and @ variables in 
a databank. Standard OUT commands ignore these variables. Only LISTs and 
PROCs cannot be stored in databanks at all. The KEEP command below stores 
the equation EQ1 and the variance-covariance matrix @VCOV in the databank 
FILE1.TLB in addition to the series X and Y and the estimated parameters A 
and B (which are automatically stored). 
 

FREQ A ; SMPL 66 75 ; 
OUT FILE1 ; 
LOAD X ; 11 9 14 30 18 12 29 35 31 25 ; 
LOAD Y ; 1 2 3 4 5 6 7 8 9 10 ; 
FRML E1 Y=A+B*X ; 
PARAM A B ; 
LSQ E1 ; 
KEEP E1 @VCOV ; 
END ; 
 
If you want to save all the series and variables in your TSP program, use the 
command KEEP ALL. 
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16.3.2 Documenting variables on a databank: DOC 

Since TSP databanks are permanent storage for your data, and may be kept for 
several years and updated, it is useful to store documentation about your data 
with the actual series. Otherwise, it is easy to forget exactly what they are if 
you leave a project for a few months and then return to it. TSP provides the 
DOC command to let you store information about variables in your databanks. 
For example, to store descriptions for the preceding example, include these 
statements somewhere after the OUT FILE; statement: 
 

DOC X 'The exogenous variable from the DBRUN example' ; 
DOC Y 'The endogenous variable from the DBRUN example' ; 
DOC E1 'The equation from the DBRUN example' ; 
 
There is no restriction on the length of the documentation that you can store. 
Also, any variable documentation in stata files that you input to TSP will 
automatically be stored. 

16.3.3 Retrieving variables from a databank: IN 

When a TSP databank has been created, it can be accessed by including a 
statement of the form 
 

IN FILE1,FILE2,...; 
 
If there is more than one filename in an IN statement, each file will be 
searched until the relevant variable is found. Up to 8 filenames may appear on 
one IN statement. When another IN statement is encountered with new 
filename(s), TSP will stop searching the first group of files and search the new 
group for any new items encountered after the second IN statement. The 
statement 
 

IN ; 
 
will cause the program to cease searching any files until a new IN statement is 
encountered. 
 
The following simple job shows the minimum requirements for accessing the 
databank created by TSP in the last example in the previous section: 
 

NAME DBRUN 'IN DATABANK STATEMENT' ; 
IN FILE1 ; 
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PRINT X Y ; 
 
Note that it is not necessary to set the FREQ and SMPL before the first 
reference to the databank; normally TSP will obtain these from the first series 
in the databank if they are not already specified. Since each series is stored 
with its own frequency and starting date, series of different frequencies may be 
mixed in a databank, but this is not recommended. 

16.3.4 Databank utilities 

If you forget what a databank contains, you can use TSP commands to show a 
databank's contents, copy a databank, and delete variables from it. 
 
DBLIST prints the variables in a databank, with their associated lengths. The 
information is printed in the SHOW command format, which lists 
starting/ending dates for series, matrix dimensions, and values for scalars. 
 
DBPRINT prints the values for all of the series in a databank, using the current 
SMPL and FREQ. If you are not sure which SMPL and FREQ to use, check 
the databank first with the DBLIST command. Of course, standard IN and 
PRINT commands can be used to list selected variables from a databank. 
 
DBCOPY creates a TSP program file from a databank. This file contains all 
the commands and data necessary to create the databank on another computer. 
This can be used to move databanks between different types of computers 
(such as from PC to mainframe), or as an alternative to DBPRINT for listing 
the values of non-series variables. 
 
TSP also provides the command DBDEL which can delete one or more 
variables from a TSP databank. DBDEL can erase variables which were put in 
the databank by mistake, or which are no longer needed. It can also be used to 
rename variables in a databank, by first copying the variables to new names 
and then deleting them using the old names. 
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16.3.5 Using older databanks in TSP 5.0 

Since version 4.2, TSP has contained the capability to store documentation 
with variables, and store scalars in double precision. This means that 
databanks older than 4.2 must be converted in order to be used. The 
conversion is automatic; the old databank will be renamed from BANK.x to 
BANK.T41 (or BANK.T35 if it was from TSP Version 3.5), and the new 
databank will be called BANK.TLB. If you are converting Version 3.5 
databanks, you have to specify the appropriate FREQ and SMPL before 
conversion. 

16.3.6 Using Eviews/micro-TSP databanks in TSP 

Eviews
TM  (formerly micro-TSP) is the econometrics package written and 

sold by Quantitative Micro Software; it is similar to, but not the same as TSP. 

Eviews/micro-TSP databanks have a different format from TSP databanks, 
but TSP can read them. 

 

Eviews stores only one series in each of its databanks, using the series name 
with the extension .DB. The databank files are not written in binary, and are 
not very efficient, but they can be edited easily with a text editor and can 
include comments. TSP has FETCH and STORE commands to access this 
type of databank (the standard TSP IN and OUT commands will not work with 
these databanks). These commands should be useful if data is already available 
in this format, or if this format is preferred over the more efficient standard 
TSP databank. 
 

For example, to read two series from Eviews databank files X.DB and Y.DB 
and run a regression: 
 

FETCH X,Y; OLSQ Y C,X; 
 
The equivalent operation, using a standard TSP databank file US.TLB is: 
 

IN US; OLSQ Y C,X; 

16.4 Saving a work session in a file: SAVE, RESTORE 

When using TSP interactively (see Chapters 4 and 17), it is often useful to 
save all current variables in a file, exit from TSP, and then resume the session 
later. To do this use the SAVE and RESTORE commands. SAVE creates the 
binary file TSPSAV.SAV, which contains values for all the current variables 
(series, matrices, scalars, FRMLs, etc.). RESTORE reads this file and 
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essentially re-creates the session as it was when the user exited from TSP. (The 
command stream, including PROCs, could also be restored by using INPUT 
with a renamed BKUP.TSP file).28  
 
An name other than TSPSAV can be specified as an argument to SAVE or 
RESTORE, but the resulting file will always have the .SAV extension. SAVE 
and RESTORE are not intended for permanent storage of data. Databanks are 
preferred, since they are more flexible. Databanks allow access to individual 
variables without having to bring all the variables into memory, and can be 
incrementally updated. 
 

                                                      
28

 Note that there is no compatibility between TSP and Eviews/micro-TSP SAVE and 

RESTORE files. 
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17.  TIME SAVERS IN INTERACTIVE TSP 
 
This chapter outlines interactive TSP features that save you time and make the 
program more convenient to use. Some of these, such as re-executing modified 
commands, you may use every interactive session; others, like automatic 
backup and recovery, are "there when you need it". See the Reference Manual 
for further information on all the commands described in this chapter. 
 
Below the interactive and editing commands available are described in some 
detail. However, you should be aware that there are two main ways to edit and 
re-execute commands in the interactive version of TSP: one, which is used in 
PC and Macintosh versions, uses the familiar cursor keys (arrows, backspace, 
delete, page up, page down, home, and end) to find and edit commands. The 
second, which is used in mainframe and unix versions, relies on the older and 
more awkward line-oriented methods. We describe both below, but most users 
will find the cursor key methods easier to use when they are available (which 
is most of the time). In the next sections, we refer to these as the “PC method.” 

17.1 Revision and re-execution of commands 

Interacting with a program implies that your input commands may depend on 
the results previously output. Often this only involves modifying your previous 
command. You might want to fix a typo, change a list of options, add a term to 
an equation, etc.... In any case, you are spared retyping the whole command. 
Interactive TSP offers several ways to do this. Note that the following sections 
apply to commands only; data should be modified with UPDATE. 

17.1.1 Re-execution 

There will be occasions when you want to execute a command or group of 
commands entered previously without performing a modification. There are 
two ways to do this. One (the PC method) is to simply hit the “page up” key 
until you see the command you want to re-execute and then type return.  
 
The second, available on mainframes and workstations running unix uses the 
EXEC command. For example, typing 
 

EXEC 10 
 
causes the re-execution of line 10 in your program. If two line number 
arguments are given, the range of lines between them (including them) will be 
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executed. 
 
Some examples of when EXEC might be used: 
 

1. Execution was initially suppressed with an EXIT command in 
while in collect mode or in an input file. 

2. Errors were discovered in the data and results need to be 
regenerated after an UPDATE has been performed. 

3. Commands you use more than once and don't want to retype (for 
example, a SMPL with lots of gaps).  

4. A modification to the original command was performed separately 
using EDIT (see below). 

 
The use of EXEC in collect mode is slightly different, and is discussed in the 
Reference Manual. 

17.1.2 Modifying commands and fixing typos 

In Chapter 4, we introduced the easiest way to revise commands and re-
execute them when you are interacting with TSP: editing using the cursor keys 
(the PC method). However, there are times when you would like to simply add 
or delete a variable name, or re-execute a whole set of commands as a group. 
For these purposes, you may find the interactive commands EDIT, RETRY, 
ADD, and DROP useful. In this section, we describe EDIT and RETRY. In 
the next section, we describe ADD and DROP, which are special cases of 
RETRY. 
 
Use EDIT and RETRY when you want to change the arguments in a 
command. EDIT makes the changes without executing them. RETRY 
combines EDIT, which makes changes, and EXEC, which executes them. 
Syntax, "arguments" and editing rules are explained in the Reference Manual, 
and are identical for both EDIT and RETRY. Here are some examples of using 
EDIT: 
 

EDIT 10 
 
would request modification of line 10; the line will be displayed, and the edit 
prompt issued: 
 

10. CONS C GNP 
>> 
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If no line is requested, the previous line is assumed. Only one line may be 
edited at a time (i.e. only one line number argument will be accepted). The 
basic editing functions are insert, delete, and replace. 
 
Possible uses for EDIT are: 
 

1. Modifying a statement that is a definition rather than executable 
(for example, an equation definition using FRML). 

2. Modifying a range of lines before re-executing them as a group, or 
modifying a line within a range that will then be executed as a 
group. 

3. Correcting mistakes made while entering commands in collect 
mode. 

 
RETRY is appropriate when: 
 

1. Correcting typos in interactive mode. 
2. Re-executing a command with a modified list of options or 

variables. 
 
The following example illustrates the relationship between EDIT and RETRY, 
as well as basic use of the editor: 
 

10? INT DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME  
 
<error message because procedure INST is misspelled> 
 
11? EDIT 10 
>> REPLACE INT INST 1 
>> EXIT 
 
10. INST DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME ;  
 
12? EXEC 10 
10. INST DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME ;  
 
<output from the INST command> 
 
This same change can be performed more easily with the RETRY command 
(note that we have used all possible abbreviations and omissions to save 
typing). 
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11? RET 
>> R INT INST 
>> 
10. INST DP,DP1,LGNP,TIME,C INVR C,G,LM,TIME ;  
 
<output from the INST command> 

17.1.3 Adding and dropping variables 

ADD and DROP are used to add or drop variables from the previous command 
and automatically re-execute it. They simplify the task of re-executing the 
previous estimation command with a modified list of series, but are not limited 
to that particular use. 
 
ADD and DROP both make permanent modifications to the “previous” 
command. The “previous” command, is defined as the last TSP command that 
is not itself ADD or DROP. 
 

ADD var1 var2 
 
is identical to 
 

RETRY 
>> INSERT var1 
>> INSERT var2 
>> EXIT 
 
Both insert var1 and var2 at the end of the previous command (presuming 
there was not a sequence of ADDs and DROPs) and execute it. Similarly, 
 

DROP var1 var2 
 
is identical to 
 

RETRY 
>> DELETE var1 
>> DELETE var2 
>> EXIT 
 
Both delete the first occurrences of var1 and var2 in the previous command 
(same assumptions) and execute it. 
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It is not possible to combine ADD and DROP into one step to perform a 
REPLACE function, or to make compound modifications. In these 
circumstances, the RETRY procedure or up-arrow editing must be used. 

17.2 Reading commands from disk 

An intermediate approach to running TSP programs which combines features 
of batch and interactive execution is provided by the INPUT command. This 
procedure reads a TSP command file from disk and executes it in TSP; 
following its execution you are left in interactive mode with all the data and 
results available for use. 
  
The command 
 

INPUT filename 
 
will read filename.tsp in the current directory and execute it. All commands 
read are added to the session log, and may subsequently be REVIEWed, 
EDITed, etc....  
 
You will also be given a choice as to whether you want the output directed to 
the terminal or to an output file. Creating an output file this way differs from 
the OUTPUT command in two ways: 1) if the output file already exists, a new 
version will be created (possibly overwriting the old), and 2) the file will 
automatically be closed at the end of execution of the input file (you may still 
append to it with the OUTPUT command).  
 
An input file may be an entire TSP program prepared for batch execution or 
groups of TSP commands frequently executed as a unit. Advanced users might 
find it convenient to keep a library (i.e., directory) of TSP PROCs for use as 
input files. Since a PROC is not executed until it is "called", these files would 
produce no output when read -- adding a "SHOW procname" command at the 
end of each would provide quick information on the PROC just defined. Input 
files may be nested up to a depth of 5. 
 
Reading an input file is exactly the same as using collect mode -- the 
difference is the source of the command stream. All commands will be read 
until execution is "requested"; for an input file this means encountering an 
END statement, or end-of-file. Just as in collect mode, execution may be 
suppressed by replacing the END statement with EXIT; you may then 
REVIEW what was read, and EXEC just the sections you need. 
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17.2.1 Your TSP login file 

Every time you begin an interactive (or batch) session, TSP looks for a file 
called LOGIN.TSP before prompting you to begin entering commands. This 
file is a special case of an input file. The only difference is that execution is 
automatic at startup, and you will not be given the option of directing any 
resulting output to a disk file. If LOGIN.TSP does not exist in the current 
directory, your home or root directory will be searched as well. 
 
If much of your work with TSP uses the same data, you may want to use 
LOGIN.TSP to set the SMPL and FREQ, load data, or open databanks. It is 
also convenient to place the OPTIONS command here. 

17.3 Talking to the operating system (DOS or unix) 

When you are using the interactive version of TSP you may wish to interact 
with the operating system. On multitasking windowing systems like Windows 
and Mac OS, this is done in the usual way. For DOS or unix users, TSP offers 
the SYSTEM command, which allows you to suspend your session 
temporarily, take care of other business on the system, and pick up later right 
where you left off. SYSTEM takes no arguments, and simply produces the 
message 
 

Enter commands. Type CONTINUE to resume TSP session. 
$ 
 
you may now create or modify files, or enter other commands. You may enter 
commands as long as you like;  
 

$ CONTINUE 
 
will resume your interactive session with no loss of continuity. There are many 
uses for this feature, one of the most useful is the ability to fix data files or 
examine output files created during your session without halting the program. 
Please note that in order to use it in this way, the files in question must be 
closed first with the CLOSE, TERM, or OUTPUT command. 

17.4 Automatic backup and recovery 

Interactive TSP saves a copy of the input of your session when you exit the 
program, and if your session is terminated abnormally this copy provides the 
ability to recover the session. 
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During an interactive session, TSP automatically saves the command stream in 
a file named INDX.TMP. INDX.TMP is used by commands like EDIT which 
modify the command stream. INDX.TMP is written in a special format for this 
purpose. Upon normal exit from TSP, INDX.TMP is used to create the 
standard sequential file, BKUP.TSP, found in your directory and INDX.TMP 
is deleted. 
 
BKUP.TSP is useful for reconstructing a session and can be run by TSP in 
batch mode, since interactive commands have been stripped from it. Note, 
however, that data entered with the ENTER and UPDATE is not saved in 
BKUP.TSP -- data should be saved in a databank or a SAVE file (see Chapter 
13). 
 
If you accidentally (or purposely) type CTRL-C, TSP will terminate 
abnormally. The same is true if the program encounters a fatal Fortran error or 
system failure. In these cases BKUP.TSP will not be created. However, if you 
reenter the program, TSP will be able to recover your session from the file 
INDX.TMP which still remains on disk. Only commands will be recovered -- 
you must EXEC portions whose results you want reinstated. 
 
If TSP finds a file INDX.TMP on disk when you start the program, you will 
get the message: 
 

WARNING> Your previous TSP session was terminated abnormally. 
Do you wish to recover it (y/n)? [y] 
 
If you have changed directories or accounts since termination, or renamed 
INDX.TMP, TSP will not know you need to recover the session. You must 
then request recovery with the RECOVER command. Rules for specifying a 
filename are the same as those for the INPUT and OUTPUT commands. 
 

Important note: Do not try to use INDX.TMP as an INPUT file, or edit it 
(you will destroy the special format). Conversely, do not try to RECOVER any 
files that were not originally an INDX.TMP file created by TSP, because other 
files will not have the correct format for recovery. 
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A.  BASIC RULES OF TSP  
 
This appendix summarizes the basic rules of the TSP language. A table at the 
end lists the complete TSP character set and each character's interpretation or 
legal use. 

A.1 Rules for composing TSP names: 

Every name must begin with a letter, _ # % or @ (exceptions: 2SLS and 3SLS 
commands). 
 
Subsequent characters in a name may be letters, _ # % @, or digits. 
 
# or % may not be used in names that appear in MATRIX commands. 
 
The maximum number of characters permitted in a name is 64 (in versions 
prior to TSP 4.4 it was 8). 

A.2 Rules for composing text strings: 

A text string must be enclosed by matching pair of quotes (" or ').  
 
Quotes are allowed in a string when they are of a different type from the 
enclosing quotes, i.e. "Can't" or '"sometimes"' (interpreted as Can’t and 
“sometimes”).  

A.3 Rules for composing numbers: 

Every number must begin with a ., +, -, or a digit.  
 
No spaces may appear within a number.  
 
One decimal point may appear.  
 
One E or D may appear followed immediately by a one or two digit number 
with or without a sign. This is interpreted as a power of 10 to multiply the first 
number.  
 
Example:  

 
1E2 = 100 



262 Appendices 

 

 

 
With free-format LOAD or READ commands, a . is interpreted as a missing 
value, and a repeat count with a * may be specified.  
 

Examples:  

 

3*0 is treated as 0 0 0  
53 . 100 is treated as 53, missing, 100 
 
The largest value of a series (in absolute value) that may be stored in TSP is 
1.E-37, unless OPTIONS DOUBLE ; is used. Values larger than this are set to 
missing. Scalars and matrices are always stored in double precision.  

A.4 Rules for composing algebraic formulas: 

In general, TSP rules for formulas are similar to Fortran or other scientific 
programming languages. 
 
A lag is indicated by putting an integer or a name in parentheses after a series 
name. The integer is negative for lags and positive for leads. A + sign is not 
necessary for leads. If the lag or lead is a name, it must have no more than four 
characters. 
 
A series may have a single numeric or variable subscript (or lag/lead). A 
matrix may have a single or double subscript (numeric or variable). See the 
SET command for detailed rules and examples. 
 
Arithmetic operators are 
 

+ add   

- subtract    

* multiply 

/ divide 

** raise to the power 
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Functions are the following:29 
 

LOG()  Natural logarithm 

EXP()  Exponential function 

ABS()  Absolute value 

LOG10()  Log base 10 

SQRT()  Square root 

SIN()  Sine (argument in radians) 

COS()  Cosine (argument in radians) 

TAN()  Tangent (argument in radians) 

ATAN()  Arctangent (answer in radians) 

NORM()  Standard normal density 

CNORM() Standard normal cumulative distribution function 

CNORMI() Inverse of the standard normal cumulative distribution 
function 

LNORM()  Log of normal density 

LCNORM() Log of cumulative normal 

DLCNORM() Derivative of LCNORM = inverse Mills ratio 

GAMFN()  Gamma function (not Gamma density) 

LGAMFN () Log of Gamma function 

DLGAMFN() Derivative of LGAMFN = DIGAMMA() 

TRIGAMMA() Derivative of DIGAMMA() [non-differentiable] 

FACT()  Factorial: FACT(X) = X! = GAMFN(X+1)  

LFACT()  Log of factorial 

SIGN()  Sign: -1 for X<0, 0 for X=0, 1 for X>0 [deriv=0] 

POS()  
  

Positive: POS(X) = max(0,X).  Note:  
"MIN(A,B)" = B - POS(B-A) 
"MAX(A,B)" = A + POS(B-A) 

MISS()  Missing: 1 for X missing, 0 otherwise 
[non-differentiable] 

INT()  Truncate to an integer (round towards 0) 
[non-differentiable] 

CEIL()  Ceiling (round away from 0) [non-differentiable] 

ROUND()  Round to nearest integer (.5 rounds to 1) 
[non-differentiable] 

 

                                                      
29

For matrix functions see the MATRIX command. 
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Relational and logical operators are the following 
 

Operator .OP. Description 

= .EQ. gives the value 1 when the variables on the 
left and on the right are equal; otherwise it is 
zero. 

^= or ~= .NE. gives the value 1 when the variables on the 
left and on the right are not equal; otherwise it 
is zero. 

< .LT. gives the value 1 when the variable on the left 
is less than the variable on the right; 
otherwise it is zero.  

> .GT. gives the value 1 when the variable on the left 
is greater than the variable on the right; 
otherwise it is zero. 

<= .LE. gives the value 1 when the variable on the left 
is less than or equal to the variable on the 
right; otherwise it is zero. 

>= .GE. gives the value 1 when the variable on the left 
is greater than or equal to the variable on the 
right; otherwise it is zero. 

& .AND. gives the value 1 when both the variable on 
the left and on the right are positive. 

| .OR. gives the value 1 when either the variable on 
the left or the variable on the right is positive. 

^ or ~ .NOT. gives the value 1 when the variable on the 
right is negative or zero 

Note that the .OP. form of the relational and logical operators is the alternative 
to the symbolic notation (but it cannot be used in nested DOT loops).  
 
As many parentheses as necessary may be used to indicate the order of 
evaluation of a formula. Parentheses [] and {} are treated as (). In the absence 
of parentheses, evaluation proceeds from left to right in the following order: 
  

1 Functions 

2 Exponentiation (**) 

3 Multiplication and division 

4 Addition, subtraction, and negation (unary -) 

5 Relational operators 

6 .NOT. (^) 

7 .AND. (&) and .OR. (|)  
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A.5 Rules for composing TSP statements: 

Every statement begins with a command name. Exceptions:  
 

X=Y;                      ? implicit GENR 
X(I)=Y(I);               ? implicit SET 
100 <statement>;   ? statement label for GOTO 
 
The command name may be abbreviated, as long as it is uniquely identified.  
 
Many statements can have options specified in parentheses after the command 
name. Option names may be abbreviated, like command names. There are 
three kinds of options: 
 
Boolean options, either on or off. On is specified by the name of the option, as 
in PRINT, and off is specified by the option name with NO in front of it, as in 
NOPRINT. 
 
Options of the form option name = option value. The value may be the name 
of a variable, a numerical value, or just a keyword, depending on the context.  
 
Options which give lists of variables, and are of the form option name = (list of 
variables). Note that the parentheses are required, unless the list contains only 
one name, or the list is a listname.  
 
A few commands can be followed by an algebraic formula: GENR, SET, 
SMPLIF, SELECT, FRML, IDENT, IF, GOTO.  
 
Most commands are followed by one or more series names, separated by 
commas or spaces. These series names may include lags. An implicit list (such 
as X1-X5) can be used directly in a statement without making an intermediate 
listname. See the LIST command for a complete description of implicit list 
syntax.  
 
The end of a statement is marked by a semicolon (;) or dollar sign ($).  
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A.6 Character Set for TSP 

 
Character Symbol Use 

letter A to 
Z,_#%
@ 

Parts of names. Lowercase letters are allowed on most 
computers; they are treated like uppercase letters. # % 
cannot be used for matrix names. 

digit 0 to 9 Parts of numbers or names. 

decimal point . Marks the decimal point in numbers; sets off logical 
operators; specifies string substitution in the DOT 
procedure. 

comma , Separates the words in a list; spaces may be used, but 
commas are often preferred for clarity. 

colon : Part of date. 

semicolon ; Marks the end of a statement. 

dollar sign $ Equivalent to ; . Semicolon is preferred. 

quotation 
mark 

" Marks the beginning and end of a text string (title or 
filename); specifies matrix inversion. 

apostrophe ’ Marks a text string; specifies matrix transposition. 

parentheses () [] {} Encloses a list of options or expressions/lags in 
algebraic formulas. 

question mark ? Delimits the beginning of comments. (Comments are 
terminated by the end of the input line or logical 
record.) 

plus sign + Specifies addition. 

minus sign - Specifies subtraction, a lag, or a list. 

star * Specifies multiplication or is part of power (**). 

slash / Specifies division. 

pound sign # Matrix Kronecker product (⊗). 

percent % Matrix Hadamard product (element by element). 

equal sign = Specifies equality or definition of data; relational 
operator (.EQ., .NE., .LE.,.GE.). 

ampersand & Logical operator (.AND.). 

vertical bar | Logical operator (.OR.). 

caret or hat ^ Logical operator (.NOT., .NE.) or power (**), 
depending on context. 

tilde ~ Logical operator (.NOT., .NE.). 

less than < Relational operator (.LT., .LE.). 

greater than > Relational operator (.GT., .GE.). 

continuation \ Continuation of a line (interactive). 

miscellaneous !` Reserved for future use. 
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B. DIFFERENCES BETWEEN TSP 5.0 AND 
EARLIER VERSIONS 

 
This appendix lists the features added to TSP since the release of 4.5 in June 
1999. Some of them are already available in more recent versions of TSP 4.5. 
These features include changes that apply to the entire program, new 
commands, and enhancements to specific commands. The last section lists the 
incompatibilities with earlier versions. 

B.1 Syntax and general enhancements: 

� dashed lists 
� long names 
� faster SORT 

B.2 Printing and graphics enhancements: 

� better formatted PRINT output; use of high-res graphics for regression 
plots 

� new graphics options for density curves on histograms 
� better treatment of missing and panel data in PLOT and GRAPH 
� 3-dimensional graphing in GRAPH 

B.3 New or substantially improved procedures 

� many new panel data features (random and fixed effects estimation for 
PROBIT and AR1, fixed effects estimation for linear LSQ, 3SLS, 
GMM, FIML, one and two-way ML random effects for PANEL) 

� block diagonal HS and autocorrelation consistent standard errors for 
panel data 

� Interval regression procedure 
� Kernel density or regression estimation 
� Censored quantile regression estimation with bootstrap standard errors 
� ANALYZ for series, to compute s.e.s on quantities that vary across 

observations 
� new nonlinear second derivative approximations (numeric second 

derivatives, based on numeric or analytic first derivatives), new tuning 
parameters 

� Common factor test in AR1; root moduli and extended sample ACF 
for Box-Jenkins routines 
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� Different instruments for different equations in GMM (easier 
specification) 

� Finite sample standard errors for LIML; more diagnostic testing 

B.4 Changes to other procedures 

Too numerous to list. See the online document New and Improved Features in 

TSP 5.0 and the TSP 5.0 Reference Manual. 

B.5 Upward Incompatibilities 

None noted as yet. 
 



 C. TSP on a PC 269 

  

  

C. USING TSP ON A WINDOWS PERSONAL 
COMPUTER 

 
Installation of TSP on your personal computer is described in a memo 
accompanying the CD ROM or diskettes. This appendix assumes TSP is 
successfully installed on your hard disk.  

C.1 Windows Products Available 

The products listed below are included on the installation CD ROM. TSP and 

TLG (Through the Looking Glass) are included in the basic price. The 

TSP/GiveWin option is available at an additional cost, and requires a special 
license code for installation for that reason. However, if you already have 
GiveWin, this version of TSP will work with it and there is no need to 
purchase a second GiveWin license (in this case, you may need to contact us 
for a license number in order to use TSP with Givewin). 

TSP/GiveWin (tspgw2.exe and tsprun.dll) 

Windows 32-bit native program, running simultaneously with GiveWin 2.X  as 
the server. Runs on Windows 95/98/NT/2000/XP. Graphics in separate 
window(s), printable with any installed printer. Interactive and batch text 
output in a scrollable window. No memory limitations. Large arrays.  

Win32 TSP (tsp.exe) 

Windows 32-bit native program (runs on Windows 95/98/NT/2000/XP). No 
graphics at present. No memory limitations; included mostly for this reason. It 
also has larger arrays than DOS/Win TSP, so it can hold 20,000 variables and 
30,000 arguments in a command or combined in equations.  

DOS/Win TSP (tspdw.exe) 

Extended DOS (DPMI) program (runs on DOS, Windows 3.x/95/98/NT, 
OS/2, but not on Windows 2000/XP). Graphics: DOS full screen; printable on 
HP Laserjet and PostScript printers. Memory is limited to 64MB VM on 
Windows 95/98. Limited to 16MB RAM on Windows NT, but the 
swap/paging file on NT can be set to 4-5 times RAM. One user has reported 
allocating 1600MB on Windows NT 4.0 on a PC with 256MB RAM and an 
enlarged swap file 
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C.1.1 Auxiliary Programs 

The following two products are available at no cost on the TSP installation 
CD-ROM. 

TSP Through the Looking Glass (TLG, tlg.exe) 

Windows 32-bit native program. Interfaces to the DOS/Win and Win32 
versions of TSP for Windows. Provides side-by-side text edit windows for 
TSP batch input and output files, and some editing commands customized for 
TSP. Click on the "TSP" button to refresh the output window after changing 
the input commands. 

TSP Help File (tsp.chm) 

Windows type help file, with full (indexed) contents of the TSP Reference 
Manual. This file is accessible through TSP/GiveWin or directly from 
Windows.  

C.2 Using TSP/GiveWin 

GiveWin is a special shell or "server" program which runs simultaneously 
with one or more "client" (or "module") programs like TSP (actually tspgw.exe 
and tsprun.dll). It provides a great array of Windows interface features, while 
using the full command language of TSP. 

C.2.1 Batch mode 

The easiest way to run batch programs in Givewin is the following: 
 

� Double-click on a .tsp file to start GiveWin and open the file. 
 
or 
 

� Double-click on GiveWin to start it (if it is not already active) 

� Click on the Open toolbar button (icon: opening folder) 
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� Use the dialog box to select an input file (the last one you used is 
remembered). Also, the File menu keeps a list of the last 8 files that 
have been opened, so it is a useful way of opening a recently used file. 
GiveWin sets your working directory to match the input file, so data 
or input files in the same directory can be read without requiring full 

pathnames. Use the .tsp extension for all TSP source/batch files. 
 
Then 
 

� The file is opened in a window, where you can make changes if 
necessary, save it, etc. Press F1 when the cursor is on a word for 
context-sensitive help. 

� Click on the Run toolbar button (icon: running stick figure) 
� This puts the output into a scrolling text window which is updated in 

real time. It is great for estimating large or nonlinear models, since 
you can monitor their progress, or scroll up to look at previous results 
while waiting for them to finish. 

� Click on the [x] button on the output window to (optionally) save and 
close the output file. 

� Click back to the input window, modify some commands, and click on 
the Run button to repeat the process. 

 

During the install process, the file type .tsp is associated with GiveWin. When 
you are viewing a list of filenames in a folder (when starting from "My 
Computer" or Explorer), you will see TSP icons for these files, and you can 
right-click on the filename, and choose to Run it or Open it with GiveWin. 
 
Note that GiveWin can only run one TSP batch file at a time, although you can 
have several open for editing at the same time. If you need to run two or more 
programs simultaneously, or in a fixed sequence, use DOS/Win TSP or Win32 
TSP (see section D.2). 

C.2.2 Interactive mode 

Interactive use of TSP is easily done from GiveWin: 
 

1. Double-click on GiveWin to start it (if it is not already active) 

2. From the GiveWin menu, choose Modules/Start TSP 
3. If necessary, choose a Working folder for the interactive session (it 

remembers the previous one) 

4. Click on Start TSP Session (or press Enter) 
5. Type your commands at the prompt, as usual. Press F1 when the cursor is 
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on a word for context-sensitive help. Use the arrow keys to 
recall/edit/rerun previous commands. Output is to the same scrolling text 
window, so you can scroll back to review or copy/paste previous results. 

C.2.3 Filenames 

All Windows filenames are supported directly in TSP/Givewin - short, long, 
containing blanks, etc. 

C.2.4 Graphics 

The PLOT and GRAPH commands automatically produce high resolution 
graphics in separate windows (the PREVIEW option is always on by default, 
in interactive and batch modes). The graphs can be enlarged, resized, printed, 
saved, or closed using the usual window controls. They can also be edited: 
change the line type, add plotting symbols, add text, etc. Just double-click in 
the TSP Graphics window, to bring up the Graphics Properties dialog box. See 
the chapter in the GiveWin manual for more information on editing graphs. 
The easiest way to print is to use the Print toolbar button. 
 
Several graph windows can be created at the same time, although it may be 
tedious to cycle between them. In interactive mode, each graph goes to a 
window labelled with the command name (replacing any previous graph 
generated by that command). In batch mode, successive graphing commands 
create separate windows labelled with the type of graph and a sequence 
number, so the graphs can be viewed in any order or placed side by side. For 
example, each PLOT command creastes separate windows entitled “Plot 1, 
Plot 2, etc.). The WINDOW="name" option on the PLOT or GRAPH 
command can be used to name the graphics windows differently, or to 
overwrite older graphs with newer ones. If you are having trouble managing a 
lot of graphics windows, use the Window menu in GiveWin to tile or cascade 
the windows, or to select them by name.  
 
If you have many graphics windows and want to exit GiveWin, just close 
GiveWin and all the graphics windows will be closed. If you want to save any 
of the graphics, use the Givewin Save file command (from the File menu) with 
the relevant graphics window on top. Graphics may be saved as postscript 
filew, enhanced metafiles (useful for inserting into documents), or in 
Givewin’s graphics format.  

C.2.5 Other special features 

GiveWin databases: Use the File/Open menu in GiveWin to open many 



 C. TSP on a PC 273 

  

  

types of database files (spreadsheets, .in7 (GiveWin) files, etc. -- essentially 
any file which contains the variable names with the data). Data can be viewed, 
graphed, edited, etc. -- see the GiveWin manual. If you have GiveWin 
databases open and you start an interactive TSP session, you will be asked if 
you want to read each database into TSP. This is convenient for loading data 
you are already working with in GiveWin, and it also provides a way of 

accessing variables in native GiveWin (.in7) files which TSP does not read 
directly. You can also open databases from GiveWin while an interactive TSP 
session is active. Use the RELOAD; command (special to TSP/GiveWin only) 
to read them into your TSP session. GiveWin databases cannot be read directly 

by name (or in batch mode) into TSP, unless they are file types like .WKS or 
Excel. For files that you need to access in batch mode or repeatedly in 
interactive mode, it may be useful to open them in GiveWin, and then save 

them in a format like .wks that TSP supports directly. 
 

CD command: the CD command can be used to show or change the current 
directory. It is useful in locating input or data files not in the current working 
folder. Usually it is best to locate all such files in the same folder for a given 
project, and then use the opening dialog box (see D.4.2) to select that as your 
current folder. CD with no arguments shows your current directory. CD with 
an argument changes your current directory. The argument does not have to be 
in quotes; they are added automatically if necessary; for example, 
 

cd ..  
 
works fine. 
 
Known Quirks (Bugs?) - For unknown reasons, the DIR and SYSTEM 
commands do not send any output to the output window under Windows NT. 
They produce normal output under Windows 95 and 98. 

C.3 Using DOS/Win TSP or Win 32 TSP 

These two programs can be run in exactly the same way – either from TLG or 
from the "Command Prompt", see sections D.2.1 and D.2.2 below.  
 

Win 32 TSP can handle long filenames and filenames with imbedded blanks. 
It also contains an internal CD command, which can be used to view or change 
your current directory, if you are in interactive mode and need to access several 
input or data files in a different directory. (In batch mode, we recommend 
using a full quoted pathname for the filename that includes all the relevant 
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directory names). In this version of TSP, the arrow keys have no effect in 

interactive mode, and there are no graphics available (see TSP/Givewin for 
graphics in 32-bit Windows mode). 

C.3.1 Batch mode 

Batch mode involves typing your TSP commands into a file, and then running 
them with TSP to create an output file. It is the best way to do production work 
with TSP, because the commands can be read and changed easily, and they can 
be rerun at any time to reproduce or update results. Most experienced users 
will eventually migrate to this method, although interactive mode (see below) 
is valuable for learning or developing programs. 
 
The easiest way to use TSP in batch mode is with Givewin (see section D.3 

below) or with the TLG program (see D.1.4 above). In TLG, type your 
commands into the left hand window, and then click on the "TSP" button to 
see output in the right hand window. Press F1 when the cursor is on a word for 
context-sensitive help. 
 
If you already have a favorite text editing program, you can use it instead of 
TLG. Type or modify your input file (containing TSP commands), and make 
sure it is saved as a "plain text" file. Suppose that your program is called 

prog1.tsp. Use the "Command Prompt" Windows program (sometimes called 
MS-DOS prompt) to issue the command  
 

tsp prog1  
 

Output from this TSP program will be in the file prog1.out, which you can 
then examine with your text editor. Arrow keys can be used to cycle between 
editing the input file, running TSP, and viewing the output file. To print some 
or all of the output file, use a fixed width font, such as Courier or Lineprinter. 
Built-in Windows programs such as WordPad can do this. Using the 
"Command Prompt" requires some knowledge of the DOS CD and PATH 
commands, so that you can run programs in a directory separate from the 
directory where TSP is installed. If you need to run several batch programs in 

sequence, you can put a series of TSP commands into a batch file (.bat file), 
and run it at the Command Prompt by typing the batch file name. For example, 

to run the file run5.bat, just type 
 

run5 
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C.3.2 Interactive mode 

Sometimes you don't know what commands to use ahead of time, because you 
need to look at the data or their internal documentation first. Or you may want 
to estimate a model or two before undertaking larger models. In these cases, it 
may be helpful to run TSP in interactive mode. Since the commands you type 

will be saved in a file called BKUP.TSP, you can also make a transition to 
batch mode later. 
 

The easiest way to run TSP in interactive mode is with Givewin, but you can 

also do this with DOS/Win and Win32 TSP. Double-click on the TSP icon 
in TLG. Type your commands at the “?” prompt. Use the arrow keys to 
recall/edit/rerun previous commands. Output is "paged" so that it does not go 
off the screen too quickly. 
 
If you need control of your current directory (to find data or input files), it is 
best to use the "Command Prompt" (MS-DOS Prompt). After you have used 
CD to set the desired directory, give the TSP command (click on TSP). 

C.3.3 Filenames in Windows (DOS/Win TSP only) 

DOS/Win TSP only understands original "DOS" filenames -- those with 8 
characters or less in the directory and filename. If you have created some long 
directory names or filenames, or names with imbedded spaces, you will need 
to use the DOS "DIR" command to see what the corresponding "DOS" 

filenames are. For example, if you have a file called  c:\Program 

Files\myfile.tsp, its "DOS" equivalent name will be something like 

c:\progra~1\myfile.tsp. 

C.3.4 Graphics (DOS/Win TSP only) 

The PLOT and GRAPH commands use the PREVIEW option to create 
full-screen graphics, so make sure the Properties/Screen/Usage of TSP.EXE is 
set to Full-screen (not Window). To check or set the Properties, start at the My 
Computer icon, and double-click down through C: , Program Files , and TSP 
4.5 . Right-click on TSP.EXE and choose Properties and then Screen (this is 
the menu name on Windows NT; it may be slightly different on Windows 
95/98). Only one graph can be on screen at a time; you need to press a key to 
restore the usual text output screen. Even though TSP takes over the full 
screen, you can still "switch tasks" to run other Windows programs -- use 
Ctrl-Esc to do this. 
 
If you get a blank screen when you expect a graph, try the TSP command  
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OPTIONS DISPLAY=VGA;  
 
to set your monitor type conservatively. If this works, you should insert this 
command into your LOGIN.TSP file. To print a graph, use the DEV= option; 
only a few printers such as HP LaserJet 3 (DEV=LJ3) and PostScript 
(DEV=PS) are supported, although DEV=LJ3 will produce correct output on 
most LaserJet printers. 

Inserting graphics files into documents 

DOS/Win TSP graphics can be placed in word processing files. Start by using 
the options  
 

DEV=LJ3,FILE='name.HPG',PREVIEW  
 
in your GRAPH or PLOT command. This will store the graph in the file 
name.HPG. 
 
To place the graph in a MS Word document, open the Word file and choose 
Insert/Picture. In the dialog box, specify name.HPG and choose the filter "HP 
Graphics Language". (If the filter is not there, you will need to install it from 
your Word installation disks). Click OK and the graph will appear. You can 
then resize or edit it as you wish. 
 
To place the graph in a WordPerfect document, you must first edit it as a plain 
DOS or ASCII file. On the first line, remove the first 3 or 4 characters so that it 
reads INSP1PA. Delete the last line, which will contain control characters such 
as ^[L, ^[E, etc. Save the file, and then open your document using 
WordPerfect. Choose Graphics/Figure from the menu. A file choice dialog box 
will appear, where you can specify name.HPG. Click on OK and the graph will 
appear; you can edit or resize it. Note: if you are using WordPerfect 5.1 or 
earlier, you will need to use the WordPerfect GRAPHCNV program to convert 
the HPG file to a WPG file before importing it into WordPerfect. You can also 
import PostScript (.PS) files into WordPerfect, but you cannot resize them. 

C.4 Using TSP Through the Looking Glass (TLG) 

TLG has already been described briefly above in sections D.2.1 and D.4.1. It 
also has its own Help file that describes its menus and its special editing 
features, which include: 
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1. autoformat input file (color comments green, etc.) 
2. block indent or unindent 
3. block comment or uncomment 
4. search for "*** ERROR" in the output window 

C.5 Using the Online Help System 

The help system was described briefly in section D.1.5. To launch it from 
TSP/GiveWin, choose Modules/Start TSP Help. When typing or editing 
commands in GiveWin or TLG, press F1 when the cursor is on a word for 

context-sensitive help (this accesses tsp.chm). To launch it directly from 

Windows, double-click on tsp.chm. 

C.6 Common problems 

Lists of common installation and runtime problems can be found on our web 
page http://www.tspintl.com, under Support/FAQ. 
 
By far the most common problem noted by users is opening data files -- "TSP 
says File Not Found, but I know it's there!!" Getting the computer to 
understand where you have put your data and how to read it appropriately can 
often be the most timeconsuming and frustrating part of a project. In TSP, you 
normally use the READ command to input your data, and you will probably 
need to specify a full pathname for the file on this command (although it is not 
case sensitive on the PC). A "full pathname" usually includes the full set of 
directory names, and the disk drive letter (especially if it is not C:). 
 
In Windows, people often save data in spreadsheet files from their spreadsheet 
program, without knowing what the full set of directory names is, so this can 
occasionally be difficult to ascertain. One easy way to reveal the full pathname 
is to click on the Start button, and then Find/Files or Folders. Type in the 
filename under Named: (if you don't remember it, reopen your spreadsheet 
program), and click on Find Now (or press Enter). The search may take a 3-20 
seconds, and should present you with a list of one or more locations for the 
file. The location is shown in "In Folder". If the directory name ends with ... , 
it is long, and you need to click and hold the vertical line between "In Folder" 
and "Size" (it becomes a "+" double arrow) -- drag it to the right, until there is 
enough room to show the full directory name. Use this name (with the 
filename) in quotes in your READ command. If you are using DOS/Win TSP 
and there are any long directory names, see section D.2.3 regarding the "DOS" 
version of the filename. 
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Some users save their files to a floppy disk (A:filename), to avoid these 
problems of deciphering the directory name. Another solution is to use your 
spreadsheet program to save the file in the same folder as your TSP programs, 
or move or copy it to that folder. 
 
A related problem is that Windows often hides the "file types" (formerly 
known as "filename extensions" in DOS). These are a part of the full filename, 
and needed in TSP. Because Windows tends to hide them, a user who does not 
see the extension may type it in by hand when saving the file, and then the file 
will actually have the extension in twice. For example, if FOO is saved by 
Excel, the filename FOO.XLS is saved. If the user types FOO.XLS when 
saving in Excel, the filename FOO.XLS.XLS is sometimes created (depending 
on the version of Excel). So if Find/Files or Folders fails to locate FOO.XLS, 
try searching for FOO.XLS.XLS or *.XLS ! If FOO.XLS.XLS is found, it 
would be best to rename it, by going back into Excel and using Save As. 
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D. USING TSP ON THE APPLE MACINTOSH 
 
Installation of TSP on your Mac is described in a memo accompanying the 
program diskettes. This appendix assumes that TSP has been successfully 
installed on your hard disk. As a reminder, note that the following equipment 
is required in order to run TSP: 
 

- System 6-9 or X  
- 2.5MB RAM (or more) 
- hard disk (with at least 1.2Mb free) 
- CD-ROM or 1.44M floppy disk drive (to install the program) 
- PowerPC CPU 

 
With the following exceptions, this is the same program as the TSP that runs 
on DOS/Win, VAX/VMS, unix, etc.. The Mac-specific features are: 
 

- default memory sizing via the Get Info resource 
- initial dialog box/file list to choose batch input file or interactive mode 
- adjustable-sized output and Plot/Graph windows 
- dialog boxes when printing graphics, to choose Portrait/Landscape 

mode interactively 
- double-clicking on output file to invoke your editor (the same text 

editor that created the input file). 

D.1 Running TSP in Interactive mode 

Move into the TSP folder by double-clicking on it, and double click on the 
TSP icon to start TSP. 
 
First, the screen clears and TSP 5.0 appears in the title bar of a scrollable 
output window. Second, a short copyright message for the Fortran compiler 
will appear, and a prompt will be given below: 
 

Select batch input file [or hit Cancel for interactive]: 
 
followed by a list of text files in your folder which can be selected for batch 
operation. Click on the Cancel box to run TSP interactively (or see below for 
batch operation). Finally, the TSP version and address will be displayed, and 
you will be prompted for TSP commands: 
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1 ? 
 
The text is in 9 point Monaco (a non-proportional font). There is a blinking 
cursor bar indicating where your commands are typed. An I-beam (text) cursor 
is also initially displayed. You can type commands at this time, and output will 
appear in the same window. Press RETURN to end a command (the ; is not 
required), or use \ and RETURN to continue a command onto further lines. 
Some simple commands to try out are HELP and SHOW, if you are running 
TSP for the first time. The END or QUIT command terminates TSP. Your 
commands during the interactive session are saved in a BKUP.TSP file, unless 
you exit with the QUIT command. This file can be renamed, edited and used 
to run TSP in batch mode. 
 
You can select text in the output window and print it or paste it into files. You 
can also scroll the output window up and down to look at previous results from 
different commands. If you move the cursor around to do these things, you can 
hold down the Option (alt) key and press RETURN to return the cursor to the 
insertion point for typing more commands. Otherwise you will just get beeps 
when you try to type. You can also move the cursor there manually with the 
mouse - the insertion point is one space right of the lowest question mark. 

D.2 Running TSP in Batch Mode 

Follow the steps above, but select a text file containing TSP commands from 
the list of files (instead of clicking on Cancel). The convention is to name these 
files with an extension .TSP, such as KLEINLSQ.TSP. TSP output (regression 
results, etc.) is stored in a text file with the same name but with the extension 
.OUT, such as KLEINLSQ.OUT. TSP puts a message on the screen regarding 
the input file name. It also mentions that Command-. (Apple key plus period 
key) can be used to halt the program.  
 
When TSP is finished, open the output file from your text editor to examine 
the results; you will probably want to use a non-proportional font such as 
Monaco so that the text is aligned properly for printing/viewing. The output 
file has the same creator as the input file, so you can just double-click on it to 
invoke your editor. You will probably prefer to task-switch to examine the 
output file and revise the input file; then you can rerun TSP on the same file 
without having to reload it into memory. 

D.3 File formats and Names 

Program and data files are normally plain text files with at most 80 characters 
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per line. You can read free format data files of any width (i.e. much larger than 
80). TSP will tolerate line feed and tab characters in files (they get translated 
into spaces), but you can remove them from ported DOS files by selecting the 
Text format in the MS-DOS-to-Mac menu of the Apple File Exchange. 
 
For filenames, the same rules apply as on the PC; the maximum length is 128 
characters. Any valid pathname is acceptable; the Macintosh uses : (colon) to 
separate devices and folders in a pathname (for example, HD:TSP:FOO.DAT 
is a valid pathname). Therefore, you may easily keep your input, output and 
data files in separate folders if you wish. 
 
All files require a name (no names are automatically generated, except those 
displayed in square brackets in prompts). This means that the UNIT= option 
on READ, WRITE, or LOAD must not be used without the FILE= option 
unless the unit has previously been opened with a specific name attached. As 
always, if FILE= is used alone, TSP will generate a unit number for you. 

D.4 Graphics in Mac TSP: PLOT, GRAPH 

On the Mac, all printers are supported. The plot remains on the screen until 
you press a key or the mouse. You can press p, P or %P at this point to make a 
hard copy before the plot window is closed. Unless dash is being used, the 
WIDTH option is set by default when printing distinguish multiple lines on the 
hardcopy from color systems. The PLOT window size is determined from the 
TSP output window size, so if you click on its maximize button, you will get a 
larger graphics window. The hardcopy size is determined from the printer page 
dimensions (you can select portrait or landscape in the dialog box). 
 
For general information on graphics in TSP, see GRAPH and PLOT in 
Chapter 6 and the TSP Reference Manual.  
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E. USING TSP ON A UNIX COMPUTER 
 
There are 3 standard ways to run TSP from the unix command line: 
 
1. tsp        to run interactively 
2. tsp foo     to run in batch mode, input from foo.tsp , output to foo.out 
3. tsp FOO  to run in batch mode, input from FOO.TSP, 

output to FOO.OUT 
 
In the above, foo is just an example; other filenames and full pathnames will 
also work fine. The output file created above could be printed with page breaks 
by the unix command: 
 

lpr foo.out 
 
Of course, much time and paper can be saved by checking for errors in the 
output file first with a text editor or a unix command such as  
 

fgrep "*** ERROR" foo.out 
 
One aspect of TSP that may seem confusing under unix is that any unquoted 

filenames in commands are translated to uppercase. For example,  out bar;  
creates the databank BAR.TLB. However, this is only confusing if one expects 
to find bar.tlb with the ls command. The in bar; command will still find 
BAR.TLB and read it with no problems. The READ command will look for 
files in both uppercase and lowercase.30  
 
For information on reading and writing Excel and Lotus files see section 16.2. 
 
The READ and WRITE commands support the ~username syntax in 
filenames, so that a filename can be specified relative to some user's HOME 
directory, like in the C-shell (csh). For example:  
 

read(file='~joe/data/j5.dat') x y; 
 
looks for the file j5.dat in the user joe's subdirectory named data.   

                                                      
30

 An implication of this is that because TSP, unlike UNIX, makes no distinction between 

upper and lower case names, you cannot store files named foo.tsp and FOO.TSP in the same 
directory and expect TSP to distinguish them.  
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read(file='~/world/finn.dat') y1-y4;  
 
would look for the file finn.dat in your own subdirectory named world. Of 
course, it is not necessary to specify full pathnames like this if your data files 
are in your current directory. 
 



 F. References 285 

  

  

F. REFERENCES 
The list below is comprehensive: we have included all the references that 
appear either in this User’s Guide or in the Reference Manual/Online Help 

System. We would appreciate it if you would bring any missing or incorrect 
references to our attention by emailing info@tspintl.com. 

Abramovitz, Milton and Irene A. Stegun. Handbook of Mathematical Functions with 

Formulas, Graphs, and Mathematical Tables, John Wiley & Sons, New York, 1972. 

ACM, Collected Algorithms, New York, 1980.  

Ahn, S.C., and P. Schmidt, “Efficient Estimation of Panel Data Models with 
Exogenous and Lagged Dependent Regressors,” Journal of Econometrics 68 (1995) 
5-27. 

Ahrens, H., and R. Pincus, “On two measures of unbalancedness in a one-way model 
and their relation to efficiency,” Biometric Journal 23 (1981), pp. 227-235. 

Albert, A., and J.A. Anderson, “On the Existence of Maximum Likelihood Estimates 
in Logistic Regression Models,” Biometrika 71 (1984).  

Almon, Clopper, Matrix Methods in Econometrics, Addison-Wesley Publishing 
Company, Reading, Mass., 1967, pp. 115-120. 

Almon, Shirley, “The Distributed Lag Between Capital Appropriations and 
Expenditures,” Econometrica 33(1965), pp. 178-196. 

Amemiya, Takeshi, Advanced Econometrics, Harvard University Press, Cambridge, 
Mass., 1985. 

Amemiya, Takeshi, “Qualitative Response Models: A Survey,” Journal of Economic 

Literature 19 (1981), pp. 1483-1536. 

Amemiya, Takeshi, “Tobit Models: A Survey,” Journal of Econometrics 24 (1981), 
pp. 3-61.  

Amemiya, Takeshi, “The Maximum Likelihood and the Nonlinear Three-Stage Least 
Squares Estimator in the General Nonlinear Simultaneous Equation Model,” 
Econometrica 45 (1977), pp. 955-975. 

Amemiya, Takeshi, “The Nonlinear Two-Stage Least-Squares Estimator,” Journal of 

Econometrics 2 (1974), pp. 105-110. 

Anderson, T. W., N. Kunitomo, and K. Morimune, “Comparing Single Equation 
Estimators in a Simultaneous Equation System,” Technical Report No. 1, Econometric 
Workshop, Stanford University, January 1985.  

Andrews, Donald W. K., “Heteroskedasticity and Autocorrelation Consistent 
Covariance Matrix Estimation,” Econometrica 59 (3), 1991, pp. 817-858. 



286 Appendices 

   

 

Arellano, Manuel, and Stephen R. Bond, “Some Tests of Specification for Panel Data: 
Monte Carlo Evidence and an Application to Employment Equations,” Review of 

Economic Studies 58 (1991): 277-297.  

Baltagi, Badi, Econometric Analysis of Panel Data, Wiley & Sons, New York, 1995 
(first edition). 

Baltagi, B. H. and Q. Li, "A Transformation That Will Circumvent the Problem of 
Autocorrelation in an Error-Component Model," Journal of Econometrics 48 (1991), 
pp. 385-393. 

Bartlett, M.S., “The Statistical Significance of Canonical Correlations”, Biometrika, 
January 1941, pp. 29-37.  

Barrodale, I., and F. D. K. Roberts, Algorithm #478, Collected Algorithms from ACM 
Volume II, Association for Computing Machinery, New York, 1980.  

Beach, Charles M., and James G. MacKinnon, “A Maximum Likelihood Procedure 
for Regression with Autocorrelated Errors,” Econometrica 46(1978), pp. 51-58. 

Bekker, P. A., “Alternative Approximations to the Distributions of Instrumental 
Variable Estimators,” Econometrica 63 (1994), pp. 657-681.   

Belsley, David A., Kuh, Edwin, and Welsch, Roy E., Regression Diagnostics: 

Identifying Influential Data and Sources of Collinearity, John Wiley & Sons, New 
York, 1980, pp. 11-18.  

Berndt, E. R., B. H. Hall, R. E. Hall, and J. A. Hausman, “Estimation and Inference in 
Nonlinear Structural Models,” Annals of Economic and Social Measurement 3(1974), 
pp. 653-665. 

Berndt, E. R., and N.E. Savin, “Conflict Among Criteria for Testing Hypothesis in the 
Multivariate Linear Regression Model,” Econometrica 45(1977), pp. 1263-1278. 

Bhargava, A., L. Franzini, and W. Narendanantham, “Serial Correlation and the Fixed 
Effects Model,” Review of Economic Studies XLIX (1982): 533-549.  

Bilias, Y., S. Chen, and Z. Ying, “Simple Resampling Methods for Censored 
Regression Quantiles,” Journal of Econometrics 99 (2000), pp. 373-386. 

Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis: 

Theory and Practice, MIT Press, Cambridge, MA, 1975, pp. 486-502. 

Bloom, David E., and Killingsworth, Mark R., “Correcting for Selection Bias Caused 
by a Latent Truncation Variable,” Journal of Econometrics 27(1985), pp. 131-135. 

Blundell, Richard, and Stephen R. Bond, “Initial Conditions and Moment Restrictions 
in Dynamic Panel Data Models,” Journal of Econometrics. 87 (1998), pp. 115-143.  



 F. References 287 

  

  

Blundell, Richard, and Richard J. Smith, “Initial Conditions and Efficient Estimation 
in Panel Data Models,” University College London Discussion Paper in Economics 
No. 91-04, 1991. Published in French as “Conditions initiales et estimation efficace 
dans les modeles dynamiques sur donnees de panel: une application au comportement 
d'investissement des entreprises,” Annales d'Economie et de Statistique, No. 20/21 
(1991), pp. 109-123. 

Blundell, Richard, Rachel Griffith, and Frank Windmiejer, “Individual Effects and 
Dynamics in Count Data Models,” Journal of Econometrics 108 (2002), pp. 113-131. 

Bollerslev, Tim, “Generalized Autoregressive Conditional Heteroskedasticity,” 
Journal of Econometrics 31(1986), pp. 307-327. 

Box, George P., and G.M. Jenkins, Time Series Analysis: Forecasting and Control, 
Holden-Day, New York, 1976. 

Brown, Barry W., DCDFLIB. http://odin.mdacc.tmc.edu (downloaded v1.1, 4/1998). 

Brown, R. L., J. Durbin, and J. M. Evans, “Techniques for Testing the Constancy of 
Regression Relationships over Time”, Journal of the Royal Statistical Society - B, 
1975.  

Buse, A., “Efficient Estimation of a Structural Equation with First-Order 
Autocorrelation,” Journal of Quantitative Economics 5(1989), pp. 59-72. 

Calzolari, Giorgio, and Gabriele Fiorentini, “Alternative Covariance Estimators of the 
Standard Tobit Model,” Paper presented at the World Congress of the Econometric 
Society, Barcelona, August 1990.  

Calzolari, Giorgio, and Lorenzo Panattoni, “Alternate Estimators of FIML Covariance 
Matrix: A Monte Carlo Study,” Econometrica 56 (1988), pp. 701-714. 

Cameron, A. Colin, and Pravin K. Trivedi, “Count Models for Financial Data,” 
Maddala and Rao (eds.), Handbook of Statistics, Volume 14: Statistical Methods in 

Finance, Elsevier/North-Holland, 1995.  

Cameron, A. Colin, and Pravin K. Trivedi, The Analysis of Count Data, University of 
California at Davis and Indiana University, draft manuscript, 1996.  

Cameron, A. C., and F. A. G. Windmeijer, “R-Squared Measures for Count Data 
Regression Models with Applications to Health Care Utilization,” Journal of Business 

and Economic Statistics 14 (1996): 209-220.  

Cameron, A. C., and F. A. G. Windmeijer, “An R-Squared Measure of Goodness of 
Fit for Some Common Nonlinear Regression Models,” Journal of Econometrics 77 
(1997): 329-342.  

Campbell, John Y., and Pierre Perron, “Pitfalls and Opportunities: What 
Macroeconomists Should Know about Unit Roots”, in Olivier Jean Blanchard and 
Stanley Fischer (eds.), NBER Macroeconomics Annual, MIT Press, Cambridge, 
Mass., 1991.  



288 Appendices 

   

 

Census Bureau, Seasonal Analysis of Economic Time Series, proceedings of the 
Conference on the Seasonal Analysis of Economic Time Series, September 1976. 

Chamberlain, Gary, “Multivariate Regression Models for Panel Data,” Journal of 

Econometrics 18 (1982), pp. 5-46. 

Chamberlain, Gary, “Panel Data,” in Griliches and Intriligator (eds.), The Handbook 

of Econometrics, Volume II, North Holland Publishing Co., Amsterdam, 1985. 

Cheung, Yin-Wong, and Lai, Kon S., “Lag Order and Critical Values of the 
Augmented Dickey-Fuller Test,” Journal of Business & Economic Statistics 13 (July 
1995): 277-280. 

Cochrane, D., and G. H. Orcutt, “Application of Least Squares Regression to 
Relationships Containing Autocorrelated Error Terms,” JASA 44(1949), pp. 32-61. 

Cooley, T. F., and Edward Prescott, “Varying Parameter Regression: A Theory and 
Some Applications,” Annals of Economic and Social Measurement 2(1973), pp. 
463-474. 

Cooper, J. Phillip, “Asymptotic Covariance Matrix of Procedures for Linear 
Regression in the Presence of First-Order Autoregressive Disturbances,” 
Econometrica 40(1972), pp. 305-310. 

Cooper, J. Phillip, “Time-Varying Regression Coefficients: A Mixed Estimation 
Approach and Operational Limitation of the General Markov Structure,” Annals of 

Economic and Social Measurement 2(1973), pp. 525-530. 

Cooper, J. Phillip, “Two Approaches to Polynomial Distributed Lag Estimation: An 
Expository Note and Comment,” The American Statistician, June 1972, pp. 32-35. 

Cragg, J. G., and S. G. Donald, "Testing Identifiability and Specification in 
Instrumental Variable Models," Econometric Theory 9 (1993), pp. 222-240. 

Cummins, Clint, and Bronwyn H. Hall, Time Series Processor Version 4.0/4.1 

Programmer's Manual, TSP International, Stanford, California, 1986. 

Cushman, David O., Sang Sub Lee, and Thorsteinn Thorgeirsson, “Maximum 
Likelihood Estimation of Cointegration in Exchange Rate Models for Seven 
Inflationary OECD Countries,” Journal of International Money and Finance, June 
1996.  

Davidson, Russell, and James G. MacKinnon, Estimation and Inference in 

Econometrics, Oxford University Press, 1993. 

Davis, Peter, “Estimating Multi-Way Error Components Models with Unbalanced 
Data Structures,” Journal of Econometrics 106 (July 2002), pp. 67-95. 

Dickey, D.A., and W.A. Fuller, “Distribution of the Estimators for Autoregressive 
Time Series with a Unit Root,” Journal of the American Statistical Association 74 
(1979): 427-431. 



 F. References 289 

  

  

DiDinato, A.R. and Morris, Alfred H. Jr., “Computation of the Incomplete Gamma 
Function Ratios and Their Inverse,” ACM Transactions on Mathematical Software 12, 
1986, pp. 377-393.  

DiDinato, A.R. and Morris, Alfred H. Jr., “Algorithm 708: Significant Digit 
Computation of the Incomplete Beta Function Ratios,” ACM Transactions on 

Mathematical Software 18, 1993, pp. 360-373.  

Diewert, Erwin, “Exact and Superlative Index Numbers,” Journal of Econometrics 
4(1976), pp. 115-146. 

Divisia, F., Economique rationnelle, Gaston Doin, Paris, 1928. 

Divisia, F., “L'indice monetaire et la theorie de la monnaie,” Revue d'Economie 

Politique 39(1925), pp. 842-861, 980-1008, 1121-1151. 

Dufour, J-M, Gaudry, M. J. I., and Liem, T. C., “The Cochrane-Orcutt Procedure: 
Numerical Examples of Multiple Admissible Minima,” Economics Letters 6 (1980), 
pp. 43-48. 

Durbin, J., “Boundary-crossing probabilities for the Brownian motion and Poisson 
processes and techniques for computing the power of the Kolmogorov-Smirnov test,” 
Journal of Applied Probability 8 (1971), pp. 431-453.  

Durbin, J., “Testing for Serial Correlation in Least Squares Regression When Some of 
the Regressors are Lagged Dependent Variables,” Econometrica 38 (1970), pp. 410-
421. 

Durbin, J., “Tests for Serial Correlation in Regression Analysis Based on the 
Periodogram of Least Squares Residuals,” Biometrika, 1969.  

Durbin, J., and G.S. Watson, “Testing for Serial Correlation in Least Squares 
Regression,” Biometrika 38 (1951), pp. 159-177. 

Edgerton, David and Curt Wells, “On the Use of the CUSUMSQ Statistic in Medium 
Sized Samples”, Oxford Bulletin of Economics and Statistics, 1994. 

Efron, Bradley, “Bootstrap Methods: Another Look at the Jackknife,” Annals of 

Statistics 7 (1979), pp. 1-26.  

Efron, Bradley, The Bootstrap, the Jackknife and Other Resampling Plans, 
Philadelphia: SIAM, 1982.  

Efron, Bradley, and G. Gong, “A Leisurely Look at the Bootstrap, Jackknife, and 
Cross-validation,” American Statistician, February 1983, 37(1), pp. 36-48.  

Engle, Robert F., “Autoregressive Conditional Heteroskedasticity with Estimates of 
the Variance of U. K. Inflation,” Econometrica 50(1982), pp. 987-1008. 

Engle, Robert F., “A General Approach to Lagrange Multiplier Model Diagnostics,” 
Journal of Econometrics 20(1982), pp. 83-104. 



290 Appendices 

   

 

Engle, Robert F., “Wald, Likelihood Ratio and Lagrange Multiplier Tests in 
Econometrics,” in Griliches and Intriligator (eds.), The Handbook of Econometrics, 
North Holland Publishing Co., Amsterdam, 1985, pp. 776-826. 

Engle, Robert F., and Clive Granger, “Cointegration and Error Correction: 
Representation, Estimation, and Testing,” Econometrica 55(1987), pp. 251-276. 

Engle, Robert F., David M. Lilien, and Russell P. Robins, “Estimating Time Varying 
Risk Premia in the Term Structure: The ARCH-M Model,” Econometrica 55(1987), 
pp. 391-407. 

Estrella, Arturo, “A New Measure of Fit for Equations with Dichotomous Dependent 
Variables,” Journal of Business and Economic Statistics, April 1998, pp. 198-205. 

Faddeev, V. N., Computational Methods of Linear Algebra, (trans. C. Benster), 
Dover, New York, 1959. 

Fair, Ray C., “The Estimation of Simultaneous Equation Models with Lagged 
Endogenous Variables and First-Order Serially Correlated Errors,” Econometrica 
38(1970), pp. 507-516. 

Fair, Ray C., Specification, Estimation and Analysis of Macroeconomic Models, 
Harvard University Press, Cambridge, MA, 1984. 

Farebrother, R. W., “Algorithm AS 256”, Applied Statistics 39, 1990. Pascal code 
posted on StatLib. http://lib.stat.cmu.edu/apstat/ 

Fiorentini, Gabriele, Calzolari, Giorgio, and Panattoni, Lorenzo, “Analytic 
Derivatives and the Computation of GARCH Estimates,” Journal of Applied 

Econometrics 11 (1996), pp.399-417. 

Fishman, George S., and Louis R. Moore, “A Statistical Evaluation of Multiplicative 
Congruential Random Number Generators with Modulus 231-1,” JASA 77 (1982), pp. 
129-136. 

Fitzenberger, Bernd, “A Guide to Censored Quantile Regressions,” in G. S. Maddala 
and C. R. Rao (eds.), Handbook of Statistics, Volume 15: Robust Inference, 1997, pp. 
405-437.Fletcher, R., and M. J. D. Powell, “A Rapidly Converging Descent Method 
for Minimization,” Comput. J, Vol. 6, pp. 163-168. 

Fuller, Wayne A., “Some Properties of a Modification of the Limited Information 
Estimator,” Econometrica 45: 939-953.  

Gallant, A. Ronald, Nonlinear Statistical Models, Wiley, New York, 1987. 

Gallant, A. Ronald, and Dale Jorgenson, “Statistical Inference for a System of 
Simultaneous, Non-linear, Implicit Equations in the Context of Instrumental Variable 
Estimation”, Journal of Econometrics 11 (1979), pp. 275-302. 

Gallant, A. Ronald, and Alberto Holly, “Statistical Inference in an Implicit, Nonlinear, 
Simultaneous Equation Model in the Context of Maximum Likelihood Estimation”, 
Econometrica 48 (1980), pp. 697-720. 



 F. References 291 

  

  

Geweke, John F., and Richard Meese, “Estimating Regression Models of Finite but 
Unknown Order,” International Economic Review 22 (1981), pp. 55-70.  

Gill, Philip E., Walter Murray, and Margaret H. Wright, Practical Optimization, 
Academic Press, New York, 1981. 

Gilli, Manfred, “Causal Ordering and Beyond,” International Economic Review, 
November 1992, pp. 957-971.  

Gilli, Manfred, “Graph-theory based tools in the practice of macroeconometric 
modeling,” in S. K. Kuipers, L. Schoonbeek, and E. Sterken (eds), Methods and 

Applications of Economic Dynamics, North Holland, Amsterdam. 

Godfrey, L. G., Misspecification Tests in Econometrics, Econometric Society 
Monograph, Cambridge University Press, Cambridge, England, 1988, pp. 143-145. 

Goldfeld. S. M. and R. E. Quandt, Nonlinear Methods in Econometrics, North- 
Holland, Amsterdam, 1972.  

Gourieroux, Christian, Alain Montfort, and Alain Trognon, “Pseudo Maximum 
Likelihood Methods: Theory,” Econometrica 52(1984), pp. 681-700. 

Gourieroux, Christian, Alain Montfort, and Alain Trognon. “Pseudo Maximum 
Likelihood Methods: Applications to Poisson Models,” Econometrica 52 (1984): 701-
720.  

Greene, William H., “On the Asymptotic Bias of the Ordinary Least Squares 
Estimator of the Tobit Model,” Econometrica 49 (1981), pp. 505-513.  

Gregory, Allan W., “Testing for Cointegration in Linear Quadratic Models,” Journal 

of Business and Economic Statistics, July 1994, pp. 347-360. 

Griffiths, W. E., R. C. Hill, and P. J. Pope, “Small Sample Properties of Probit Model 
Estimators,” JASA 82(1987), pp. 929-937. 

Griliches, Zvi, and J.A. Hausman, “Errors in Variables in Panel Data,” Journal of 

Econometrics 31(1986), pp. 93-118. 

Griliches, Zvi, J. A. Hausman, and Bronwyn H. Hall, “Missing Data and Self 
Selection in Large Panels,” Annals de l'INSEE 30-31(1978), pp. 137-176. 

Griliches, Zvi, and Michael D. Intriligator, Handbook of Econometrics Volumes I, II, 

III, North Holland, 1984, 1985, 1986. 

Haerdle, W., Applied Nonparametric Regression, Cambridge University Press, 
Cambridge, 1990. 

Hall, Bronwyn H., “The Effect of Takeover Activity on Corporate Research and 
Development,” in Auerbach, Alan (ed.), Corporate Takeovers: Causes and 

Consequences, 1988, pp. 69-96.  

Hall, Bronwyn H., “The Relationship between Firm Size and Firm Growth in the U.S. 
Manufacturing Sector,” Journal of Industrial Economics 36(1987), pp. 583-606. 



292 Appendices 

   

 

Hall, Bronwyn H., Zvi Griliches, and Jerry A. Hausman, “Patents and R&D: Is There 
a Lag?”, International Economic Review 27(1986), pp.265-283. 

Hall, Bronwyn H., and Clint Cummins, TSP Version 5.0 Reference Manual, TSP 
International, Stanford, California, 2004. 

Hall, Bronwyn H., “Estimation of the Probability of Acquisition in an Equilibrium 
Setting,” University of California at Berkeley IBER Working Paper No. 8887, 1987. 

Hall, Robert E., “Polynomial Distributed Lags,” Econometrics Working paper No. 7, 
Department of Economics, MIT, July 1967. 

Hall, Robert E., “Stochastic Implications of the Life-Cycle Permanent Income 
Hypothesis: Theory and Evidence,” Journal of Political Economy 86(1978), pp. 
971-987. 

Hanoch, Giora, “A Multivariate Model of Labor Supply: Methodology for 
Estimation,” in J. P. Smith (ed.), Female Labor Supply: Theory and Estimation, 
Princeton University Press, Princeton, 1980. 

Hansen, C., J. A. Hausman, and W. Newey, “Weak Instruments, Many Instruments, 
and Microeconometric Practice,” MIT, Cambridge, Mass: working paper, 2004. 

Hansen, Lars Peter, “Large Sample Properties of Generalized Method of Moments 
Estimators,” Econometrica 50(1982), pp. 1029-1054. 

Hansen, Lars Peter, and Kenneth J. Singleton, “Generalized Instrumental Variables 
Estimation of Nonlinear Rational Expectations Models,” Econometrica 50(1982), pp. 
1269-1286.  

Harman, Harry H., Modern Factor Analysis, University of Chicago Press, First 
Edition (1960), Sec. 9.3 or Third Edition (1976), Sec. 8.3.  

Harvey, Andrew C., The Econometric Analysis of Time Series, Cambridge: The MIT 
Press, third printing, 1993.  

Harvey, Andrew C., Forecasting, Structural Time Series Models, and the Kalman 

Filter, Cambridge, Cambridge University Press, fifth printing, 1994. 

Harvey, Andrew C., Time Series Models, 1981, Philip Allen, London. 

Hausman, Jerry A., “Specification Tests in Econometrics,” Econometrica 46 (1978), 
pp. 1251-1272. 

Hausman, Jerry A., Bronwyn H. Hall, and Zvi Griliches, “Econometric Models for 
Count Data with an Application to the Patents-R&D Relationship,” Econometrica 
52(1984), pp. 909-938. 

Hausman, Jerry A., and Daniel McFadden, “Specification Tests for the Multinomial 
Logit Model,” Econometrica 52 (1984): 1219-1240.  

Heckman, James J., “Sample Selection Bias as a Specification Error,” Econometrica 
47(1974), pp. 153-162. 



 F. References 293 

  

  

Hildreth, C., and J. Y. Lu, “Demand Relations with Autocorrelated Disturbances,” 
Research Bulletin 276, Michigan State University Agricultural Experiment Station, 
1960. 

Hsiao, Cheng, Analysis of Panel Data, Cambridge University Press, Cambridge, 
England, 1986.  

Imhoff, P.J., “Computing the Distribution of Quadratic Forms in Normal Variables,” 
Biometrika 48 (1961), pp. 419-426.  

IMSL Library Reference Manual, IMSL, Inc., Houston, Texas, 1982. 

Jarque, Carlos M., and Anil K. Bera, “A Test for Normality of Observations and 
Regression Residuals,” International Statistical Review 55 (1987): 163-172.  

Jayatissa, W. A., “Tests of Equality Between Sets of Coefficients in Linear 
Regressions when Disturbance Variances are Unequal,” Econometrica 45 (1977), pp. 
1291-1292. 

Johansen, Søren, and Katarina Juselius, “Maximum Likelihood Estimation and 
Inference on Cointegration -- with Applications to the Demand for Money”, Oxford 

Bulletin of Economics and Statistics, 1990, p.169-210. 

Jorgenson, Dale W., and Jean-Jacques Laffont, “Efficient Estimation of Nonlinear 
Simultaneous Equations with Additive Disturbances,” Annals of Economic and Social 

Measurement 4(1974), pp. 615-640. 

Jorgenson, Dale, and Zvi Griliches, “Divisia Index Numbers and Productivity 
Measurement,” Review of Income and Wealth, Vol. 17(2), June 1971, pp. 227-229. 

Judge, George, R. Carter Hill, William E. Griffiths, Helmut Lutkepohl, and Tsoung-
Chao Lee. Introduction to the Theory and Practice of Econometrics, John Wiley & 
Sons, New York, 1988 (second edition). 

Judge, George, et al, The Theory and Practice of Econometrics, John Wiley & Sons, 
New York, 1981, pp. 531-533. 

Kalman, R. E., “A New Approach to Linear Filtering and Prediction Problems,” 
Journal of Basic Engineering, Transactions ASME, Series D 82 (1960): 35-45. 

Keane, Michael P., and David E. Runkle, “On the Estimation of Panel-Data Models 
with Serial Correlation When Instruments are not strictly Exogenous,” Journal of 

Business and Economic Statistics 10(1992), pp. 1-29. 

Klein, L. R., “Estimation of Interdependent Systems in Macro-Economics,” 
Econometrica 37 (1969): 171-192. 

Knuth, Donald E., The Art of Computer Programming, Volume 2: Seminumerical 
Algorithms, Addison-Wesley, Reading, Mass., 1969.  

Koenker, R. W., and G. W. Bassett, “Regression Quantiles,” Econometrica 46 (1978), 
pp. 33-50.  



294 Appendices 

   

 

Krasker, William S., Kuh, Edwin, and Welsch, Roy E., “Estimation for Dirty Data and 
Flawed Models,” Griliches and Intrilligator (eds.), Handbook of Econometrics, 
Volume I, North-Holland Publishing Co., New York, 1983, pp. 660-664.  

Lancaster, Tony, The Economic Analysis of Transition Data, Cambridge: Cambridge 
University Press, 1990.  

Leamer, Edward E., Specification Searches: Ad Hoc Inference with Nonexperimental 

Data, Wiley, New York, 1978, p. 114.  

L'Ecuyer, Pierre, “Good Parameter Sets for Combined Multiple Recursive Random 
Number Generators,” Operations Research 47, 1999. Available at 
http://www.iro.umontreal.ca/~lecuyer/papers.html 

L'Ecuyer, Pierre, “Random Numbers for Simulation,” Communications of the ACM, 
October 1990, pp. 85-97.  

Ljung, G. M., and G. P. Box, “On a Measure of Lack of Fit in Time Series Models,” 
Biometrika 66(1978), pp. 297-303. 

Longley, James W., “An Appraisal of Least Squares Programs for the Electronic 
Computer from the Point of View of the User,” JASA 62(1967), pp. 818-841.  

Machado, J. A. F., and J. M. C. Santos-Silva, “Glejser's Test Revisited,” Journal of 

Econometrics 97 (2000): 189-202. 

MacKinnon, J. G., “Approximate Asymptotic Distribution Functions for Unit-Root 
and Cointegration Tests,” Journal of Business and Economic Statistics (April 1994): 
167-176. 

MacKinnon, J.G., “Critical Values for Cointegration Tests,” in Long-Run Economic 

Relationships: Readings in Cointegration, eds. R.F. Engle and C.W.J. Granger, New 
York: Oxford University Press, (1991): 266-276. 

MacKinnon, James G., and Halbert White, “Some Heteroskedasticity Consistent 
Covariance Matrix Estimators With Improved Finite Sample Properties,” Journal of 

Econometrics 29, pp.305-325. 

Macurdy, Thomas E., “Asymptotic Properties of Quasi-Maximum Likelihood 
Estimators and Test Statistics,” NBER Technical Working Paper No. 14, 1981. 

Macurdy, Thomas E., “An Empirical Model of Labor Supply in a Life Cycle Setting,” 
Journal of Political Economy 89(1981), pp. 1059-1085. 

Macurdy, Thomas E., “A Guide to Applying Time Series Models to Panel Data,” 
Manuscript, Stanford University, 1985. 

Macurdy, Thomas E., “The Use of Time Series Processes to Model the Error 
Structure of Earnings in a Longitudinal Data Analysis,” Journal of Econometrics 
18(1981), pp. 83-114.  

Maddala, G. S., Introduction to Econometrics, Macmillan, New York, 1988. 



 F. References 295 

  

  

Maddala, G. S., Limited-dependent and Qualitative Dependent Variables in 

Econometrics, Cambridge University Press, New York, 1983.  

Maddala, G. S., Econometrics, McGraw Hill Book Company, New York, 1977.  

Maddala, G. S.,  “The Use of Variance Component Models in Pooling Cross Section 
and Time Series Data,” Econometrica 39(1971), pp. 341-58. 

Manski, Charles, and Daniel McFadden, Structural Analysis of Discrete Data with 
Econometric Applications, MIT Press, Cambridge, Mass., 1983. 

McCurdy, Thomas H., and Ieuan G. Morgan, “Testing the Martingale Hypothesis in 
Deutsche Mark Futures with Models Specifying the Form of Heteroskedasticity,” 
Journal of Applied Econometrics 3(1988), pp. 187-202.  

McFadden, Daniel, “Conditional Logit Analysis of Qualitative Choice Behavior,” in 
P. Zarembka (ed.), Frontiers in Econometrics, Academic Press, New York, 1973. 

McFadden, Daniel, “Qualitative Response Models,” in Z. Griliches and M. D. 
Intriligator (eds.), Handbook of Econometrics, North Holland, Amsterdam, 1985. 

McFadden, Daniel, “Quantal Choice Analysis: A Survey,” Annals of Economic and 

Social Measurement 5 (1975), pp. 363-390, 1976. 

McFadden, Daniel, “Regression-Based Specification Tests for the Multinomial Logit 
Model,” Journal of Econometrics 34 (1987): 63-82. 

Mélard, G., “Algorithm AS 197: A Fast Algorithm for the Exact Likelihood of 
Autoregressive-moving Average Models,” Applied Statistics, 1984, p.104-109. Code 
available on Statlib: http://lib.stat.cmu.edu/apstat/ 

Montalvo, Jose Garcia, “GMM estimation of count-panel-data models with Fixed 
Effects and Predetermined Instruments,” Journal of Business and Economic Statistics 
15 (1997), pp. 82–89. 

Mundlak, Yair, “On the Concept of Non-Significant Functions and Its Implications for 
Regression Analysis,” Journal of Econometrics 16(1981), pp. 139-149. 

Nawata, Kazumitsu, “Estimation of Sample Selection Models by the Maximum 
Likelihood Method,” Mathematics and Computers in Simulation 39 (1995), pp. 299-
303.  

Nawata, Kazumitsu, “Estimation of Sample Selection Bias Models by the Maximum 
Likelihood Estimator and Heckman's two-step Estimator,” Economics Letters 45 
(1994), pp. 33-40. 

Nawata, Kazumitsu, and Nobuko Nagase, “Estimation of Sample Selection Bias 
Models,” Econometric Reviews 15 (1996), pp. 387-400.  

Nelson, Charles, Applied Time Series Analysis for Managerial Forecasting, 
Holden-Day, New York, 1973. 



296 Appendices 

   

 

Nelson, C. R., and R. Startz, "Some Further Results on the Exact Small Sample 
Properties of the Instrumental Variables Estimator," Econometrica 58 (1990), pp. 
967-976. 

Nerlove, Marc, Likelihood Inference in Econometrics, Academic Press, 2000. 

Nerlove, Marc. “Further Evidence on the Estimation of Dynamic Economic Relations 
from a Time Series of Cross Sections,” Econometrica 39 (1971): 359-382. 

Nerlove, Marc and S. James Press, “Univariate and Multivariate Loglinear and 
Logistic Models,” Rand Report No. R-1306-EDA/NIH, 1973. 

Newey, Whitney K., and Kenneth D. West, “A Simple, Positive Semi-definite, 
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econometrica 
55(1987), pp. 703-706.  

Olsen, R. J., “Distributional Tests for Selectivity Bias and a More Robust Likelihood 
Estimator,” International Economic Review 23 (1982), pp. 223-240. 

Ortega, J.M., and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in 

Several Variables, Academic Press, New York, 1970, Chapter 7.  

Osterwald-Lenum, Michael, “Practitioners' Corner: A Note with Quantiles for the 
Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test 
Statistic”, Oxford Bulletin of Economics and Statistics, 1992, p.461-471. 

Pan, Jie-Jian, “Distribution of Noncircular Correlation Coefficients,” Selected 

Transactions in Mathematical Statistics and Probability, 1968, pp. 281-291. 

Pantula, Sastry G., Graciela Gonzalez-Farias, and Wayne A. Fuller, “A Comparison of 
Unit-Root Test Criteria,” Journal of Business and Economic Statistics (October 
1994): 449-459.  

Perron, Pierre, “The Great Crash, The Oil Price Shock, and the Unit Root 
Hypothesis,” Econometrica, November 1989, pp.1361-1401. 

Phillips, P. C. B., “Time Series Regression with a Unit Root,” Econometrica 55 
(1987), pp. 277-301.  

Phillips, P. C. B., and Pierre Perron, “Testing for a Unit Root in Time Series 
Regression,” Biometrika (1988): 335-346. 

Pindyck, Robert S., and Daniel L. Rubinfeld, Econometric Models and Economic 

Forecasts, McGraw-Hill Book Company, New York, 1966.  

Prais, S. J. and Winsten, C. B., “Trend Estimators and Serial Correlation,” Cowles 
Commission Discussion Paper No. 373, Chicago, 1954. 

Quandt, Richard E., “Computational Problems and Methods,” in Griliches and 
Intriligator (eds.), Handbook of Econometrics, Volume I, North-Holland Publishing 
Company, Amsterdam, 1983. 



 F. References 297 

  

  

Rao, C. Radhakrishna, Linear Statistical Inference and its Applications, John Wiley 
and Sons, New York, 1965. 

Rao, P., and Zvi Griliches, “Small Sample Properties of Several Two-Stage 
Regression Methods in the Context of Auto-Correlated Errors,” JASA 64(1969), pp. 
253-272. 

Rothenberg, T. J., "Approximating the Distributions of Econometric Estimators and 
Test Statistics," Ch. 15 in Z. Griliches and M. Intriligator (eds.), Handbook of 

Econometrics, Vol. II, Amsterdam: North Holland, pp. 881-935. 

Rousseeuw, P. J., “Least Median of Squares Regression,” JASA 79 (1984), pp. 871-
880. 

Rousseeuw, P. J., “Progress,” http://win-www.uia.ac.be/u/statis/  

Rousseeuw, P. J., and Leroy, A. M., Robust Regression and Outlier Detection, Wiley, 
1987. 

Rousseeuw, P. J., and Wagner, J., “Robust Regression with a distributed intercept 
using Least Median of Squares,” Computational Statistics and Data Analysis 17 
(1994), pp. 66-68. 

Royal Statistical Society, “Inverse Normal Computation,” Algorithm AS 241, Applied 

Statistics 37 (1988). 

Royston, Patrick, “Algorithm AS R94,” Applied Statistics 44 (1995).  

Saaty, T. L., and J. Bram, Nonlinear Mathematics, McGraw-Hill Book Co., New 
York, 1964. 

Savin, N.E., and Kenneth J. White, “Testing for Autocorrelation with Missing 
Observations.” Econometrica 46 (1978): 59-67.  

Schaffer, Henry E., Algorithm #369, Collected Algorithms from ACM, Volume II, 
ACM, New York, 1980. 

Schmidt, P., S.C. Ahn and D. Wyhowski, “Comment” on “On the Estimation of Panel-
Data Models” by Keane, M.P., and D.E. Runkle, Journal of Business and Economic 

Statistics 10 (1992): 10-14. 

Sclove, S.L., “Least Squares Problems with Random Regression Coefficients,” 
Technical Report No. 87, IMSSS, Stanford University, 1973. 

“Seasonal Analysis of Economic Time Series,” proceedings of the Conference on the 
Seasonal Analysis of Economic Time Series, September 1976. 

Shapiro, S. S., and M. B. Wilk, “An Analysis of Variance Test for Normality 
(Complete Samples),” Biometrika 52 (1965): 591-611.  

Shapiro, S. S., M. B. Wilk, and H. J. Chen, “A Comparative Study of Various Tests of 
Normality,” Journal of the American Statistical Association 63 (1968): 1343-1372. 



298 Appendices 

   

 

Shiller, Robert, “A Distributed Lag Estimator Derived from Smoothness Priors,” 
Econometrica 41(1973), pp. 775-787. 

Silverman B. W., Density Estimation for Statistics and Data Analysis, Chapman and 
Hall, London, 1986. 

Sims, Christopher A., “Macroeconomics and Reality,” Econometrica 48(1980), pp. 
1-48.  

Staiger, D., and J. H. Stock, "Instrumental Variables Regression with Weak 
Instruments," Econometrica 65 (1997), pp. 557-586. 

Startz, Richard, “Computation of Linear Hypothesis Tests for Two-Stage Least 
Squares,” Economics Letters 11, 1983, pp. 129-131. 

Statlib, http://lib.stat.cmu.edu/apstat/ 

Steward, D.V., “On an Approach to Techniques for the Analysis of the Structure of 
Large Systems of Equations,” SIAM REVIEW, Volume 4, pp. 321- 342.  

Stewart, G. E., Algorithm #384, Collected Algorithms from ACM Volume II, ACM, 
New York, 1980. 

Stock, J. H., and M. Yogo, "Testing for Weak Instruments in Linear IV Regression," 
NBER Technical Working Paper No. 284, October 2002. 

Theil, Henri, Applied Economic Forecasting, North Holland Publishing Company, 
1966.  

Theil, Henri, Economic Forecasts and Policy, North Holland Publishing Company, 
1961. 

Theil, Henri, Principles of Econometrics, John Wiley & Sons, Inc., New York, 1971. 

Thursby, Jerry, Journal of Econometrics, 1992. 

Tobin, James, “Estimation of Relationships for Limited Dependent Variables,” 
Econometrica 31(1958), pp. 24-36. 

Train, Kenneth, Qualitative Choice Analysis, The MIT Press, Cambridge, Mass., 
1986.  

Tsay and Tiao, JASA, March 1984, pp. 84-96. 

TSP International website: http://www.tspintl.com 

Van Daele, Walter, Applied Time Series and Box-Jenkins Models, Academic Press, 
New York, 1983. 

Verbeek, Marno, A Guide to Modern Econometrics, John Wiley & Sons, Inc., New 
York, 2000, pp. 189-193. 

Wampler, Roy H., “Test Procedures and Test Problems for Least Squares 
Algorithms,” Journal of Econometrics 12, pp 3-21. 



 F. References 299 

  

  

White, Halbert, “A Heteroskedasticity-Consistent Covariance Matrix and a Direct 
Test for Heteroskedasticity”, Econometrica 48(1980), pp. 721-746.  

White, Halbert, “Instrumental Variables Regression with Independent Observations,” 
Econometrica 50(1982), pp. 483-500. 

White, Halbert, “Maximum Likelihood Estimation of Misspecified Models,” 
Econometrica 50(1982), pp. 1-25. 

White, Halbert, “Using Least Squares to Approximate Unknown Regression 
Functions,” International Economic Review 21(1980). 

Wooldridge, J. M., Econometric Analysis of Cross Section and Panel Data, 
Cambridge, MA: MIT Press, 2002. 

Zellner, Arnold, “An Efficient Method of Estimating Seemingly Unrelated 
Regressions and Tests of Aggregation Bias,” JASA 57(1962), pp. 348-368.  

Zellner, Arnold, “Estimators for Seemingly Unrelated Regression Equations: Some 
Exact Finite Sample Result,” JASA 58(1963), pp. 977-992.  

Zellner, Arnold, and Henri Theil, “Three-Stage Least Squares: Simultaneous 
Estimation of Simultaneous Equations,” Econometrica 30(1962), pp. 54-78.

 



Index   

 

300 

INDEX 

Autoregression 
first order (AR1)ii, 16, 21, 29, 43, 47, 

50, 56, 57, 58, 75, 87, 92, 101, 
111, 142, 147, 178, 195, 196, 219, 
220, 267 

vector .....iii, 4, 47, 48, 147, 159, 160, 
161, 165, 180, 193 

Autoregressive conditional 
heteroskedasticity.... 16, 52, 155, 156, 
157, 212, 290 

Binary probit estimation ...iii, 47, 50, 58, 
111, 119, 120, 122, 123, 124, 126, 
129, 133, 138, 140, 144, 145, 180, 
196, 225, 234, 267 

Box-Jenkins 
estimation (BJEST)..iii, 36, 111, 150, 

153 
forecasting (BJFRCST)......iii, vii, 36, 

150, 153, 154, 155 
identification (BJIDENT) ..iii, vii, 36, 

150, 151, 152, 153, 193 
Capital stocks 

constructing (CAPITL) ..ii, 20, 80, 81 
Cointegration (COINT) ...... iv, 147, 162, 

163, 164, 165, 166 
Correlation (CORR) ... i, 47, 48, 66, 138, 

180 
Covariance (COVA) .... 47, 48, 170, 171, 

180, 215 
Databanks 

copying (DBCOPY)..................... 249 
deleting variables (DBDEL) ........ 249 
documenting (DOC) ................ v, 248 
listing (DBLIST).......................... 249 
printing (DBPRINT).................... 249 
reading (IN) ...... v, 38, 124, 149, 206, 

208, 246, 248, 249, 250, 253 
saving variables (OUT)..... v, 40, 239, 

246, 247, 248, 250, 280, 283 
storing variables (KEEP) ..... 239, 247 

Deleting variables (DELETE)........... 256 
Differentiation, analytic (DIFFER).... 71, 

88 
Displaying variables ii, vii, 7, 17, 24, 28, 

29, 30, 39, 47, 72, 73, 84, 87, 139, 
142, 159, 168, 173, 174, 175, 192, 
196, 203, 206, 207, 211, 247, 249, 

265, 267 
Distribution functions (CDF).....29, 106, 

108, 109, 110, 111, 112, 113, 115, 
116, 136, 162, 163, 164, 165, 190, 
212, 213, 228, 231 

Divisia indices (DIVIND).........ii, 81, 83 
Do loops (DO) ..iv, 20, 22, 35, 116, 141, 

142, 167, 168, 170, 172, 174, 215 
Dot loops (DOT).iv, 135, 139, 167, 168, 

169, 170, 207, 226, 228, 229, 233, 
264, 266 

Dummy variables (DUMMY)..ii, 18, 79, 
84, 223 

End 
Do loop (ENDDO)......142, 167, 168, 

172, 174, 215 
Dot loop (ENDDOT) ..135, 139, 168, 

169, 170, 207, 226, 229, 233 
Procedure (ENDPROC)133, 170, 172 
program (END)13, 22, 24, 31, 32, 35, 

81, 247, 257, 280 
program (EXIT) ......34, 35, 254, 255, 

256, 257 
program (QUIT).....................36, 280 
program (STOP).......................34, 35 

Equations 
creating (FORM).... iv, 28, 30, 57, 58, 

66, 71, 88, 101, 137, 194, 195, 
196, 200 

defining (FRML)ii, iv, 26, 28, 29, 30, 
31, 70, 87, 88, 89, 90, 91, 92, 99, 
101, 106, 107, 114, 120, 130, 131, 
132, 133, 134, 135, 136, 137, 138, 
139, 142, 143, 161, 194, 195, 196, 
205, 206, 226, 227, 229, 233, 247, 
255, 265 

defining identities (IDENT) ....30, 70, 
90, 177, 187, 192, 200, 204, 205, 
265 

substituting (EQSUB) ..iii, 71, 88, 89, 
100, 130, 131, 132, 133, 134, 135, 
136, 137, 138, 139, 143, 229, 233 

Files 
closing (CLOSE)..............v, 240, 258 
directory (DIR)...............37, 273, 275 
reading data.....i, iv, v, 12, 13, 14, 22, 

24, 38, 69, 70, 79, 177, 178, 203, 



 Index 301 

   

 

215, 218, 219, 231, 238, 239, 240, 
243, 244, 245, 246, 262, 277, 281, 
283 

writing data (WRITE) ..... ii, v, 16, 72, 
215, 238, 240, 244, 245, 247, 281, 
283 

Fit 
evaluating (ACTFIT) . iv, 21, 31, 170, 

171, 211 
Forecasting (FORCST)... iv, 29, 36, 190, 

195, 196, 197, 211 
Frequencyi, 8, 11, 13, 19, 24, 28, 37, 41, 

69, 79, 84, 147, 148, 149, 150, 196, 
203, 219, 220, 222, 225, 234, 235, 
239, 240, 242, 244, 245, 246, 247, 
249, 250, 258 

Full information maximum likelihood 
(FIML)..ii, vii, 11, 21, 27, 30, 47, 71, 
75, 87, 88, 89, 90, 92, 95, 100, 101, 
102, 103, 111, 134, 140, 144, 145, 
178, 179, 180, 197, 198, 202, 267, 
287 

Generalized method of moments (GMM)
...... v, 2, 3, 47, 66, 67, 87, 89, 96, 99, 
100, 163, 179, 180, 217, 219, 224, 
225, 229, 230, 231, 232, 233, 267, 
268, 295 

Givewin ... 3, 5, 6, 7, 33, 34, 35, 74, 269, 
270, 272, 274, 275 

Go to statement (GOTO) .... iv, 173, 174, 
265 

Graphics 
GRAPH..ii, vi, vii, 17, 45, 73, 75, 76, 

213, 267, 272, 275, 276, 281 
HIST ....ii, vii, 17, 48, 73, 76, 77, 138 
plotting time series...ii, vi, vii, 17, 29, 

31, 45, 73, 74, 75, 191, 211, 220, 
267, 272, 275, 276, 281 

Graphs ii, vi, vii, 17, 45, 73, 75, 76, 213, 
267, 272, 275, 276, 281 

Help ......................................... i, 37, 280 
Histogramsii, vii, 17, 48, 73, 76, 77, 138 
Hypothesis testing 

nonlinear (ANALYZ) ..iii, 26, 27, 28, 
31, 52, 88, 89, 105, 106, 107, 108, 
113, 114, 136, 143, 144, 161, 267 

If-then-else statements .. iv, 19, 138, 167, 
168, 173, 174, 265 

Instrumental variables (INST) .ii, 16, 26, 
27, 29, 30, 53, 55, 58, 65, 67, 95, 96, 

99, 100, 112, 113, 114, 200, 229, 
230, 231, 233, 255, 256 

Interactive use 
adding variables (ADD)254, 256, 257 
clearing memory (CLEAR) ......34, 35 
dropping variables (DROP) ..57, 254, 

256, 257 
editing (EDIT).......5, 35, 36, 37, 254, 

255, 259 
entering data (ENTER) ....37, 38, 259 
entering data (UPDATE) ......38, 253, 

254, 259 
executing statements (EXEC) .35, 37, 

39, 253, 254, 255, 257, 259 
finding commands (FIND).............37 
loops (COLLECT) ...........34, 35, 167 
output ......i, 34, 38, 39, 257, 258, 259 
retrying a command (RETRY) ....254, 

255, 256, 257 
reviewing a session (REVIEW) ....36, 

37, 41, 257, 298 
Kalman filter ........iii, 133, 157, 158, 159 
Kernel density estimation (KERNEL)76, 

100 
Least absolute deviations (LAD) ...ii, vii, 

47, 67, 68, 76, 195, 196 
Least squares 

nonlinear (LSQ) ii, vii, 21, 26, 27, 30, 
47, 57, 58, 66, 71, 75, 87, 88, 89, 
90, 91, 92, 93, 94, 95, 99, 101, 
111, 112, 113, 114, 132, 140, 142, 
144, 145, 178, 179, 180, 194, 199, 
217, 227, 247, 267 

ordinary (OLSQ)....i, 7, 8, 15, 16, 19, 
21, 22, 25, 27, 28, 29, 30, 36, 39, 
42, 43, 47, 48, 49, 50, 52, 53, 55, 
56, 58, 59, 60, 63, 65, 66, 67, 71, 
75, 87, 91, 106, 107, 108, 109, 
111, 115, 116, 121, 122, 124, 133, 
135, 137, 159, 160, 162, 164, 168, 
169, 171, 175, 178, 182, 183, 190, 
192, 195, 196, 215, 222, 225, 246, 
250 

Limited information maximum 
likelihood (LIML).....ii, vii, 2, 21, 26, 
29, 47, 50, 55, 56, 58, 75, 87, 95, 
101, 102, 178, 195, 196, 268 

Linear estimation 
least squares (OLSQ) ...i, 7, 8, 15, 16, 

19, 21, 22, 25, 27, 28, 29, 30, 36, 



Index   

 

302 

39, 42, 43, 47, 48, 49, 50, 52, 53, 
55, 56, 58, 59, 60, 63, 65, 66, 67, 
71, 75, 87, 91, 106, 107, 108, 109, 
111, 115, 116, 121, 122, 124, 133, 
135, 137, 159, 160, 162, 164, 168, 
169, 171, 175, 178, 182, 183, 190, 
192, 195, 196, 215, 222, 225, 246, 
250 

panel data (PANEL)....... iv, 117, 217, 
219, 220, 221, 222, 223, 225, 234, 
235, 267 

Listing TSP variables i, 37, 39, 197, 249, 
257, 280 

Lists 
defining (LIST) ..... 26, 29, 70, 72, 99, 

116, 137, 148, 161, 169, 172, 200, 
206, 223, 227, 230, 265 

length ........................... 171, 227, 228 
Logit estimation....iii, 47, 111, 119, 120, 

125, 126, 127, 140 
Loops 

Do iv, 20, 22, 35, 116, 141, 142, 167, 
168, 170, 172, 174, 215 

Dot . iv, 135, 139, 167, 168, 169, 170, 
207, 226, 228, 229, 233, 264, 266 

Matrices 
computing (MATRIX)....... iv, vii, 69, 

175, 185, 228, 261, 263 
creating (MFORM).. iv, 70, 176, 177, 

181, 182, 183, 215 
creating from series (MMAKE)iv, 70, 

175, 180, 181, 182, 191, 192, 245 
LDL decomposition (YLDFAC).... iv, 

188 
making into series (UNMAKE)iv, 30, 

69, 71, 90, 116, 135, 137, 138, 
180, 181, 182, 183, 187, 226, 227, 
243 

orthonormalizing............. iv, 188, 189 
Maximum likelihood 

full information (FIML) ii, vii, 11, 21, 
27, 30, 47, 71, 75, 87, 88, 89, 90, 
92, 95, 100, 101, 102, 103, 111, 
134, 140, 144, 145, 178, 179, 180, 
197, 198, 202, 267, 287 

general (ML)..iii, 47, 57, 87, 88, 111, 
119, 120, 127, 130, 131, 132, 133, 
134, 135, 136, 137, 138, 139, 140, 
144, 145, 156, 180, 225, 267 

limited information (LIML) ..ii, vii, 2, 

21, 26, 29, 47, 50, 55, 56, 58, 75, 
87, 95, 101, 102, 178, 195, 196, 
268 

Means 
variable (MSD) ....i, 8, 16, 17, 47, 48, 

66, 72, 138, 170, 180, 215, 226 
microTSP databanks 

FETCH...................................38, 250 
STORE.........................................250 

Models 
defining (MODEL) ..iv, vii, 130, 193, 

198, 199, 200, 201, 203, 204, 205, 
206, 208, 209, 210 

solving (SIML) ......14, 243, 244, 245 
solving (SOLVE) ..... iv, 89, 194, 198, 

199, 201, 202, 203, 206, 207, 209, 
211 

Moment matrix creation (MOMENT)47, 
48 

Multinomial logit estimation.iii, 47, 111, 
119, 120, 125, 126, 127, 140 

Negative binomial estimation 
(NEGBIN)...............iii, 120, 129, 130 

Normalizing variables (NORMAL) ii, 83 
Options .....iii, 8, 12, 21, 22, 28, 29, 140, 

258, 262, 276 
regression output (REGOPT)...iv, 21, 

41, 47, 51, 52, 109, 115, 159, 167, 
174, 179, 215 

Ordered data 
INTERVAL.............................iii, 128 
ORDPROB .....iii, 119, 120, 128, 129 

Ordinary least squares (OLSQ).....i, 7, 8, 
15, 16, 19, 21, 22, 25, 27, 28, 29, 30, 
36, 39, 42, 43, 47, 48, 49, 50, 52, 53, 
55, 56, 58, 59, 60, 63, 65, 66, 67, 71, 
75, 87, 91, 106, 107, 108, 109, 111, 
115, 116, 121, 122, 124, 133, 135, 
137, 159, 160, 162, 164, 168, 169, 
171, 175, 178, 182, 183, 190, 192, 
195, 196, 215, 222, 225, 246, 250 

Orthonomalizing (ORTHON) ..... iv, 188, 
189 

Panel data.... iv, 117, 217, 219, 220, 221, 
222, 223, 225, 234, 235, 267 

Plotting 
time series (PLOT).. ii, vi, vii, 17, 29, 

31, 45, 73, 74, 75, 191, 211, 220, 
267, 272, 275, 276, 281 

turning on (PLOTS) ii, 21, 22, 28, 31, 



 Index 303 

   

 

49, 58, 74, 211 
Poisson estimation .......iii, 120, 129, 130 
Principal components (PRIN)..ii, vii, 84, 

85 
Procedures 

defining (PROC).......iii, iv, 120, 132, 
133, 170, 171, 172, 257 

ending (ENDPROC) .... 133, 170, 172 
local variables .............................. 172 

Qualitative data 
Binary Probit (PROBIT)....iii, 47, 50, 

58, 111, 119, 120, 122, 123, 124, 
126, 129, 133, 138, 140, 144, 145, 
180, 196, 225, 234, 267 

INTERVAL ............................iii, 128 
LOGIT .....iii, 47, 111, 119, 120, 125, 

126, 127, 140 
Ordered Probit (ORDPROB).iii, 119, 

120, 128, 129 
sample selection model ....iii, 47, 111, 

116, 119, 120, 123, 124, 125, 140 
Tobit estimation .iii, 47, 58, 111, 119, 

120, 121, 122, 140, 196 
Random number generation iv, 212, 214, 

215 
Reading data .. i, iv, v, 12, 13, 14, 22, 24, 

38, 69, 70, 79, 177, 178, 203, 215, 
218, 219, 231, 238, 239, 240, 243, 
244, 245, 246, 262, 277, 281, 283 

Recovering a TSP session........... 34, 259 
Restoring a TSP session .... v, 31, 38, 74, 

207, 250, 251 
Sample selection model iii, 47, 111, 116, 

119, 120, 123, 124, 125, 140 
Saving a TSP session (SAVE)v, 34, 250, 

251, 259 
Scalars 

defining (CONST) ...... 26, 29, 69, 90, 
136, 141, 227, 228 

defining parameters (PARAM).ii, 29, 
30, 69, 87, 88, 90, 92, 99, 101, 
114, 131, 132, 133, 134, 136, 137, 
138, 141, 142, 144, 182, 194, 205, 
206, 226, 228, 247 

transforming (SET)29, 52, 69, 70, 71, 
83, 90, 106, 108, 109, 110, 112, 
113, 115, 116, 133, 135, 136, 137, 
138, 139, 168, 172, 194, 204, 213, 
214, 218, 228, 231, 262, 265 

Seasonal adjustment (SAMA)...ii, 83, 84 

Seemingly unrelated regression (SUR)
...87, 92, 93, 180, 224, 226, 227, 228 

Selecting observations (SELECT) ..i, 12, 
14, 15, 16, 18, 19, 47, 136, 174, 220, 
265 

Selecting observations (SMPL) ..i, 8, 11, 
12, 13, 14, 15, 19, 20, 21, 24, 25, 28, 
29, 31, 37, 38, 41, 43, 47, 51, 57, 69, 
79, 80, 81, 84, 108, 109, 110, 138, 
148, 149, 150, 162, 163, 164, 165, 
172, 177, 180, 181, 184, 187, 190, 
195, 196, 203, 206, 212, 214, 215, 
219, 228, 239, 240, 242, 244, 245, 
246, 247, 249, 250, 254, 258 

Selecting observations (SMPLIF)...i, 12, 
14, 15, 47, 116, 124, 138, 265 

Serial correlation 
AR1.ii, 16, 21, 29, 43, 47, 50, 56, 57, 

58, 75, 87, 92, 101, 111, 142, 147, 
178, 195, 196, 219, 220, 267 

Simulation models 
creating (MODEL)...iv, vii, 130, 193, 

198, 199, 200, 201, 203, 204, 205, 
206, 208, 209, 210 

solving (SIML) ...... iv, 27, 31, 89, 90, 
194, 197, 198, 199, 200, 202, 206, 
207, 211 

solving (SOLVE) ..... iv, 89, 194, 198, 
199, 201, 202, 203, 206, 207, 209, 
211 

SMPL 
suppressing (SUPRES) ................227 

Sorting variables ......ii, 77, 78, 213, 222, 
267 

Test 
distribution functions ....29, 106, 108, 

109, 110, 111, 112, 113, 115, 116, 
136, 162, 163, 164, 165, 190, 212, 
213, 228, 231 

unit roots iii, 147, 160, 161, 162, 243, 
281 

Wald.....iii, 26, 27, 28, 31, 52, 88, 89, 
105, 106, 107, 108, 113, 114, 136, 
143, 144, 161, 267 

Through the Looking Glass vi, 3, 5, 269, 
270, 273, 274, 275, 276, 277 

Time series 
changing frequency (CONVERT)..iii, 

69, 148, 149 
cointegration ..iv, 147, 162, 163, 164, 



Index   

 

304 

165, 166 
creating trend .... ii, 24, 28, 29, 30, 79, 

80, 88, 90, 213, 223 
frequency (FREQ) i, 8, 11, 13, 19, 24, 

28, 37, 41, 69, 79, 84, 147, 148, 
149, 150, 196, 203, 219, 220, 222, 
225, 234, 235, 239, 240, 242, 244, 
245, 246, 247, 249, 250, 258 

unit roots iii, 147, 160, 161, 162, 243, 
281 

VAR.......iii, 4, 47, 48, 147, 159, 160, 
161, 165, 180, 193 

Time series-cross section data (PANEL)
iv, 117, 217, 219, 220, 221, 222, 223, 
225, 234, 235, 267 

Titling output 
PAGE................... 28, 29, 30, 31, 207 
TITLE ... 22, 28, 29, 30, 76, 136, 207, 

213 
Tobit estimation......iii, 47, 58, 111, 119, 

120, 121, 122, 140, 196 

Trend variables ii, 24, 28, 29, 30, 79, 80, 
88, 90, 213, 223 

TSP options ......iii, 8, 12, 21, 22, 28, 29, 
140, 258, 262, 276 

TSP programs 
inputting (INPUT)...6, 34, 35, 36, 37, 

38, 251, 257, 259 
T-statistics...........................39, 107, 215 
Variables 

copying (COPY) ....ii, iv, 71, 72, 112, 
136, 175, 178, 183, 192, 226, 230, 
231 

deleting (DELETE)......................256 
transforming (GENR)i, iv, 15, 16, 17, 

18, 19, 20, 22, 24, 27, 29, 69, 70, 
71, 79, 81, 83, 87, 89, 108, 110, 
168, 170, 171, 174, 184, 194, 195, 
201, 212, 247, 265 

Vector auto regressions.......iii, 4, 47, 48, 
147, 159, 160, 161, 165, 180, 193 

 
 


