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2 Inverse Hyperbolic Sine

1 Introduction

The inverse hyperbolic sine (IHS) function is widely used in empirical research to trans-
form the dependent variable. The motivation to use this transformation is that it allows
for non-positive values and can reduce the influence of outliers in a right-skewed dis-
tribution. The natural logarithm transformation is often used for skewed distributions,
but ln(y) is not defined when y is zero or negative. Linear regression can be used for de-
pendent variables that span the entire real line, but the results can be greatly influenced
by outliers if the distribution of y is skewed. The IHS transformation is one alternative
to untransformed linear regression that can potentially solve both problems.

However, the IHS transformation creates additional challenges. First, in a linear re-
gression with an IHS-transformed dependent variable, the estimated coefficients have no
intrinsic meaning. It is necessary to retransform the predicted values back to the original
scale to calculate quantities of interest, typically marginal effects. The retransformation
back to the original scale of the outcome variable is not trivial (Manning, 1998). This
paper shows how to estimate marginal effects on the original scale in Stata after retrans-
forming results from a linear regression with an IHS-transformed dependent variable. I
apply Duan’s nonparametric smearing estimate (1983) to the IHS retransformation to
get both marginal effects and predicted values on the original scale.

The second challenge is that the IHS is not invariant to scaling (Aihounton and
Henningsen (2021)). In contrast, linear regression with an untransformed dependent
variable is invariant to scaling, meaning that changing the units of the dependent
variable between, say, dollars, pennies, euros, pounds, and yuans will not change the
final interpretation. The regression coefficients adjust in predictable ways. Unlike linear
regression with an untransformed dependent variable, an IHS-transformed dependent
variable is sensitive to scaling. The marginal effects on the original scale will change if
that dependent variable is rescaled (e.g., dollars to pennies). The two scaling extremes
— dividing or multiplying the dependent variable by a large number before applying
the IHS transformation — will reproduce marginal effects on the original scale that
are either equal to marginal effects from a linear regression with an untransformed
dependent variable or are equal to marginal effects from a log-transformed model.

I show how to estimate marginal effects on the original scale of the outcome variable
for the inverse hyperbolic sine model over a wide range of scaling factors in Stata
and compare the results. Although the IHS transformation can also be used for an
explanatory variable, such transformations are beyond the scope of this study (see
Bellemare, Barrett, and Just (2013) for one example).

2 Inverse hyperbolic sine

The inverse hyperbolic sine function, also known as the area hyperbolic sine function
(denoted arsinh), is the natural logarithm of y plus an additional term equal to the
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square root of y-squared plus one. The inverse hyperbolic sine function is

sinh−1(y) = ln
(
y +

√
y2 + 1

)
. (1)

The IHS function has several nice properties. It passes through the origin because
when y = 0 then ln(1) = 0. The IHS function is symmetric around 0, meaning that
sinh−1(y) = − sinh−1(−y). For large values of y, sinh−1(y) is approximately equal to
ln(y) plus a constant (ln(2) ≈ .693).

For y � 0 : sinh−1(y) ≈ ln(2y) = ln(y) + ln(2) (2)

The derivative of the IHS function shows where that function is similar in slope to
the identity and log transform functions. The derivative of sinh−1(y) with respect to y

is the inverse of
√
y2 + 1.

d

dy

(
ln
(
y +

√
y2 + 1

))
=

1√
y2 + 1

(3)

The graph of sinh−1(y) against y has three distinct regions, as shown in Figure 1.
As y gets large, the derivative of sinh−1(y) approaches 1/y, which is the derivative of
ln(y). As y approaches 0, the derivative of sinh−1(y) approaches 1, which is the slope
of the untransformed line. When y is negative, sinh−1(y) is equal in magnitude and
opposite in sign to sinh−1(|y|). Therefore, when y is large, the marginal effects for the
IHS and log transformations will be nearly the same, and when y is small the marginal
effects for the IHS and identity transformations will be nearly the same (Aihounton and
Henningsen (2021)).

Suppose that you have a continuous outcome that has both positive and negative
values and has a right-skewed distribution. Perhaps it is a financial variable like net
income or wealth. One could estimate a linear regression with an IHS-transformed
dependent variable. Let y be a continuous outcome determined by a vector of covariates
x with a corresponding vector β of unknown parameters to be estimated. Let i denote
individual observations and the error term be ε.

sinh−1(yi) = x′iβ + εi (4)

If the goal is to estimate marginal effects on the original scale, then how should one
proceed? One alternative is to compute elasticities. Bellemare and Wichman (2020)
derive the elasticities for cases where either the dependent variable y, independent
variables x, or both, are transformed by the inverse hyperbolic sine function.

Another alternative is to estimate the model using generalized method of moments
(GMM). The advantage of GMM is that it avoids retransformation. Mullahy (2021) shows
how to estimate a GMM model with an IHS-transformed dependent variable. Unfortu-
nately, Stata has trouble estimating IHS models with GMM when y is large, above say,
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Figure 1: Three transformations of y (identity, IHS, and natural log) and the domain of
y over which the slopes of the transformations are nearly identical.

50. For typical financial data, estimating a GMM model in Stata requires rescaling by
dividing by a large number. But this returns results that are essentially the same as
the untransformed model.

If the dependent variable has only positive values, then the IHS transformation is not
necessary. There are well-established methods that use either the log-transformation or
generalized linear models (GLM) with one of several possible transformations, including
the log (Manning, 1998; Manning and Mullahy 2001; Deb, Norton, Manning, 2017).

Given that most applied econometricians are interested in estimating conditional
marginal effects, that is what I show how to do next for an IHS-transformed dependent
variable.

3 Duan’s smearing estimate for IHS

After estimating a linear regression with an IHS-transformed dependent variable, how
should one interpret the results? In particular, how can one calculate marginal effects
of covariates? The coefficients are not directly interpretable as marginal effects, as they
are for an untransformed linear regression. Nor are the coefficients semi-elasticities, as
they are for a log-tranform regression. I will show how to retransform the results using
the hyperbolic sine function and applying Duan’s smearing estimate (1983).

The hyperbolic sine function — the inverse of the inverse hyperbolic sine function
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— is half the difference of two exponential terms.

sinh(x) =
ex − e−x

2
(5)

Substitute x′β + ε for x in equation 5 and take expectations to derive the following
expression for the expected value of y on the original scale, given x.

E[y|x] = E [sinh(x′β + ε)|x] (6)

Duan (1983) showed how to calculate a consistent estimate of the expected value
of the outcome on the original scale after estimating a linear regression model with a
transformed dependent variable. His method has been widely applied to the natural
logarithm transformation (Manning, 1998; Manning and Mullahy, 2001). Duan’s proof
applies not only to log transformations but to any smooth distribution. Specifically, the
key assumption for the consistency of Duan’s smearing estimate is that the retransfor-
mation function is continuously differentiable, which sinh(·) is.

Following Duan (1983), instead of integrating over the unknown distribution of the
error term, use the empirical cumulative distribution function (CDF) by averaging equa-
tion 6 over the estimated residuals and substitute the least squares estimates of the
parameters β̂. Let the sample size be N .

Ê[y|x] = 1

N

N∑
i=1

sinh(x′β̂ + ε̂)

=
1

2N

N∑
i=1

(
ex

′β̂eε̂i − e−x′β̂e−ε̂i
) (7)

In practice this is done in two steps. First, let D = E [eε]. Although D is unknown
because ε has an unknown distribution, the population mean of D can be estimated by
the sample mean.

D̂ =
1

N

N∑
i=1

eε̂i (8)

Second, substitute D̂ into equation 6 and rearrange terms to get Duan’s smearing
estimate for the retransformation of the IHS-transformed linear regression.

Ê[y|x] = 1

2

(
ex

′β̂D̂ − e−x′β̂D̂−1
)

(9)

The marginal effect of a change in a continuous variable x1 with a corresponding
coefficient β1 is the derivative of equation 9 and is always positive (notice that the two
terms are now added, not subtracted).

dÊ[y|x]
dx1

=
1

2

(
β̂1e

x′β̂D̂ + β̂−1
1 e−x′β̂D̂−1

)
(10)
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One advantage to Duan’s approach is that it is easy to estimate in Stata, as shown
in the next section. A limitation is that it assumes that the variance is homoskedas-
tic. Manning (1998) discusses how to adjust Duan’s smearing estimate when there is
heteroskedasticity by group.

4 Stata code for marginal effects

This section shows example Stata code to estimate marginal effects on the original scale
after estimating a linear regression with an IHS-transformed dependent variable, using
Duan’s smearing estimate (1983). Stata refers to the inverse hyperbolic sine function
as asinh(). The example code assumes that the dependent variable is y and that there
are three covariates (x1, x2, and x3); those would be changed by the user. In addition
to marginal effects, the code also calculates predicted values of y by generating a new
variable yhat ihs that is also based on retransformed results with Duan’s smearing
estimate.

* Example code to estimate IHS model and retransformed marginal effects
generate y_ihs = asinh(y) // replace y with outcome
regress y_ihs x1 x2 x3, vce(robust) // replace x1-x3 with covariates

predict xbhat_ihs, xb
predict double ehat, residual
egen duan = mean( exp(ehat) )

margins, dydx(*) expression( .5*(exp(xb())*duan - (1/(exp(xb())*duan))) )
generate yhat_ihs = .5*(exp(xbhat_ihs)*duan - (1/(exp(xbhat_ihs)*duan)))

5 Stata code for multiple scaling factors

Next I show how to incorporate scaling into the marginal effects calculations. It is
well known that IHS is sensitive to scaling because the IHS transformation is not scale
invariant (Aihounton and Henningsen, 2021). It is best to think of the scale factor as
one additional parameter to the model. Aihounton and Henningsen (2021) discuss ways
to choose the optimal scaling parameter.

The example Stata code below is similar to the example code for the basic IHS

retransformation, but also allows for a scaling factor.

* Example code to estimate scaled IHS model and retransformed marginal effects
scalar scale = .001 // replace scaling factor
generate y_ihs_scale = asinh(scale*y)
[Stata code omitted ]
margins, dydx(*) expression( .5*(exp(xb())*duan - (1/(exp(xb())*duan)))/scale )
generate yhat_ihs = .5*(exp(xbhat_ihs)*duan - (1/(exp(xbhat_ihs)*duan)))/scale

One way to compare results across different scaling factors is to estimate several
models and then compare the marginal effects and their standard errors using estimates
table. The following program allows for such comparisons.
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* Example program to estimate IHS models with several scale
* factors and to compare the marginal effects
* Must have declared �y and �xvars as global variables
capture program drop ihs
program define ihs

args scale name
tempvar ihs_y ehat duan

generate `ihs_y´ = asinh(`scale´*�y)
regress `ihs_y´ �xvars, vce(robust)
predict `ehat´, residual
egen `duan´ = mean( exp(`ehat´) )
margins , dydx(*) expression( .5*(exp(xb())*`duan´ ///

- (1/(exp(xb())*`duan´)))/`scale´ ) post
estimates store `name´

end

After defining the program ihs, one can use it to compare models with different
scaling factors by specifying both the scaling factor and a name for stored results, as
shown below in example Stata code.

* Example use of ihs, arguments are scale and name
ihs .000001 mil_th
ihs .001 thou_th
ihs 1 one
ihs 100 hundred
estimates table mil_th thou_th one hundred, b(%7.2f) se(%7.2f)

The example Stata code in this section, slightly modified, was used for the empirical
example using MEPS in the next section.

6 Example using MEPS data

This empirical example predicts family income for a sample of 115, 009 persons in the
2008−2014 Medical Expenditure Panel Survey (MEPS), a national survey on the financ-
ing and use of medical care in the United States. Family income ranges from −182, 078
to 556, 128, has a median value of $47, 439, and is right skewed (see Figure 2). Therefore,
it is reasonable to consider transforming family income by the IHS function.

The sample includes persons aged 25 − 65. For illustrative purposes, the simple
model specification is a function of just age, gender, and the highest level of education
achieved (four categorical values). The mean age is 44, more than half are women,
a quarter did not complete high school, and half have a high-school diploma as their
highest level of education.

. * Summary statistics

. summarize $y ihs_y ln_y age female i.education

Variable Obs Mean Std. dev. Min Max

faminc 115,009 62304.58 55366.43 -182078 556128
ihs_y 115,009 11.10619 2.027033 -12.80534 13.9219
ln_y 112,236 10.6924 .9615114 1.098612 13.22875
age 115,009 44.08338 11.48955 25 65
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Min = −$182,078

56 obs. < 0

2,717 obs. = 0

Median = $47,439

Max = $556,128

0
20

00
40

00
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00

−200000 0 200000 400000 600000
Family Income ($)

Histogram of Family Income, MEPS data (2008−2014)

Figure 2: The histogram of family income shows a skewed distribution of positive values,
with many values of zero and some negative values.

female 115,009 .5392274 .498461 0 1

education
No HS deg 115,009 .2642315 .4409251 0 1
HS degree 115,009 .5012303 .5000007 0 1

College deg 115,009 .1567269 .3635446 0 1
Grad. deg 115,009 .0778113 .2678756 0 1

The results compare the estimated marginal effects on the original scale for linear
regressions with either an IHS-transformed dependent variable (me ihs) or an untrans-
formed dependent variable (me y). The estimated coefficients of the IHS model are in
the first column for completeness. The marginal effects of the IHS model are roughly
half again to double the size, in absolute value, compared to those for the untransformed
OLS model. The marginal effects should be similar only if the dependent variable had
been rescaled by multiplying by a tiny number, which it had not.

. * Results comparing IHS betas and marginal effects to untransformed OLS

. estimates table beta_ihs me_ihs me_y, b(%10.3f) se(%10.3f)

Variable beta_ihs me_ihs me_y

age 0.009 615.570 450.733
0.001 35.395 12.872

female
Female=1 -0.232 -15797.450 -6239.074

0.012 795.524 301.452

education
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HS degree 0.437 20005.268 11635.094
0.016 680.604 311.280

College deg 1.133 76784.804 45697.617
0.017 1327.375 528.542

Grad. deg 1.436 116905.241 71019.401
0.019 2072.207 839.017

_cons 10.322
0.027

Legend: b/se

Next are comparisons for five different rescaled IHS models along with both an un-
transformed model and a log transform model. Because ln(y) is not defined for non-
positive values of y, I dropped the 2, 773 observations with non-positive values of family
income. (This is only done to allow for direct comparisons across the different models
including ln(y); one of the motivations for IHS is the ability to include zero and nega-
tive values of y.) The new sample has 112, 236 observations. Other than dropping the
left-tail of the family income distribution, the other summary statistics did not change
appreciably. However, dropping the two and a half percent of observations with the
lowest values of the dependent variable does change the average marginal effects. The
marginal effects from the two different samples cannot be compared.

The five scaling factors are 0.000000001 (“trillionth”), 0.000001 (“millionth”), 0.001
(“thousandth”), 0.1 (“tenth”), and 10 (“ten”). For this data set and model specification,
these five scaling factors give marginal effects that span from untransformed y to ln(y).
The results show that scaling by one trillionth yields marginal effects and standard
errors that are identical (to a few digits) to those of the untransformed model (see left
two columns of the results table). Moving to the right side of the table, scaling by
multiplying by 10 yields marginal effects and standard errors that are identical to those
of the ln(y) model.

. * Compare marginal effects across models

. estimates table me_y tril_th mil_th thou_th tenth ten me_lny, b(%7.1f) se(%7.1f)

Variable me_y tril_th mil_th thou_th tenth ten me_lny

age 452.2 452.2 450.2 450.0 448.5 448.4 448.4
13.0 13.0 12.9 15.3 15.8 15.8 15.8

female
Female=1 -5978.9 -5978.9 -5964.8 -8866.0 -8972.8 -8975.8 -8975.8

304.1 304.1 301.7 342.2 350.9 351.2 351.2

education
HS degree 11222.0 11222.0 11209.9 13478.2 13461.1 13458.9 13458.9

315.7 315.7 313.7 314.9 322.3 322.5 322.5
College deg 44788.2 44788.2 44634.1 53359.8 53445.9 53443.5 53443.5

530.7 530.7 526.5 627.9 647.0 647.7 647.7
Grad. deg 69924.0 69924.0 69595.4 82569.2 82848.8 82852.6 82852.6

839.5 839.5 831.4 1039.9 1065.1 1065.8 1065.8

Legend: b/se
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The marginal effects for age do not change appreciably with changes in scaling,
however, the other marginal effects change considerably with different scaling. For a
real research paper, instead of for this illustration, it would be important to compare the
fit of the various models as a function of the scaling parameter and make an informed
choice about which model specification is best (Aihounton and Henningsen (2021)). Any
comparison, however, of log-likelihoods of models with different dependent variables
would need to add the Jacobian term relevant for the transformation to its respective
log-likelihood (Bellemare and Wichman (2020)).

The Stata code and data are available from the author upon request.

7 Conclusions

The inverse hyperbolic sine transformation is gaining popularity because it is easy to
estimate with linear regression and allows for a skewed dependent variable that takes
on zero and negative values.

In practice, it can be hard to estimate the marginal effects on the original scale. The
estimated coefficients are not marginal effects, nor are they semi-elasticities like ln(y).
As has been known for years, if your dependent variable has been transformed but you
want to interpret on the original scale, then you must retransform the results using
Duan’s smearing estimate. It is also important to understand that the IHS function is
not scale invariant. Scaling from low values (multiply by tiny positive number) to high
values (multiply by large number) changes the marginal effects at the extremes from
OLS to ln(y).

This paper shows how to retransform the IHS model results and calculate marginal
effects and their confidence intervals on the original scale, in Stata. I also show how to
compare results across multiple scaling factors.
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