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1 Introduction

Coal dominated all other fossil fuels throughout the late 19th and most of the 20th centuries

and powered unprecedented economic transformation in the United States and many other

major economies. The recent arrival of a new technology enabling gas extraction from below

the surface, hydraulic fracturing (“frac(k)ing”), is unearthing ample supplies of low-cost natu-

ral gas that will foreseeably fuel the first half of the 21st century. Fracking received significant

exemptions from the Clean Air Act, the Clean Water Act, and the Safe Drinking Water Act via

the Energy Policy Act of 2005 (Environmental Protection Agency 2013), potentially furthering

the rise of natural gas within energy markets. Natural gas production in the United States has

expanded dramatically, and natural gas prices have fallen considerably, often residing at half

of their pre-2005 levels (Hausman and Kellogg 2015). In 2016, natural gas surpassed coal

as the main source of energy for electricity generation in the United States and half of US

residences used natural gas as their main heating fuel (U.S. Energy Information Administra-

tion 2016b). US residential consumers, depending on the severity of the winter, spend 50-80

billion dollars per year on natural gas (BLS, 2017). The average household spends about as

much money on natural gas as it spends on water (BLS, 2017).

The low price and newly abundant volumes of natural gas, coupled with natural gas’s

status as the cleanest and most efficient fossil fuel (Levine, Carpenter, and Thapa 2014;

National Academy of Sciences 2016), have prompted broad public and policy support for the

use of this fuel both in end uses and in the generation of electricity.1 Such support partially

stems from natural gas’s low carbon content per BTU, leading some to refer to natural gas as

a “bridge fuel,” bridging society toward a future powered by largely carbon-free sources of

renewable energy.

Natural gas is not without critics. The most common criticisms of current natural gas policy

center on environmental degradation, including groundwater contamination, the possible

triggering of small earthquakes, increases in air pollution, and higher incidence of accidents

from the large number of trucks servicing fracking sites (Glanz 2009; Bao and Eaton 2016).

More broadly, researchers have critiqued inefficient and potentially regressive pricing (and

1The fact that an increasingly large share of natural gas is produced in the United States also wins natural gas
considerable political support (Levine, Carpenter, and Thapa 2014).

1



regulatory) regimes used in the consumer-facing side of the industry (Borenstein and Davis

2012; Davis and Muehlegger 2010).

Despite its policy relevance, there is a relative dearth of (well) identified estimates for the

own-price elasticity of the demand for natural gas.2 Specifically, we are unable to find any

published research that pairs consumer-level data with appropriate identification strategies

to causally estimate a price elasticity of demand for natural gas that carries a causal interpre-

tation. Table 1 lists the past studies, the type of data used, and the resulting estimates of the

own-price elasticity of demand. As Table 1 shows, past papers either estimate the elasticity

of demand for residential natural gas using aggregated data (e.g., Hausman and Kellogg;

Davis and Muehlegger) or using micro data with average prices (e.g., Alberini, Gans, and

Velez-Lopez 2011; Meier and Rehdanz 2010).3 The majority of these papers do not attempt

to deal with bias resulting from multiple sources of simultaneity, which we discuss below.

Research on the price elasticity of demand for natural gas faces two major challenges: in-

sufficient data and multiple potential sources of endogeneity. Many of the available datasets

aggregate households’ consumption across both space and time. This aggregation—coupled

with utilities’ multi-tiered volumetric pricing regimes, income-based discounts, and fixed

charges—makes it impossible for researchers to match consumers to the actual prices they

face. Aggregation across customers and seasons also inhibits research into heterogeneity

across consumers. Perhaps most importantly, research on the elasticity of demand for nat-

ural gas must also consider multiple potential sources of endogeneity. The first source of

endogeneity is the classic simultaneity that stems from the fact that quantity and price result

from the equilibrium in a system of equations. Unlike the electricity sector, for natural-gas

customers’ rates change on a monthly basis—updating as a function of gas wholesale prices

paid by the retail utilities. The second source of endogeneity results from the fact that price is

mechanically a function of quantity in a block-rate price regime. As a household’s consump-

2Though several previous papers have offered estimates for the price elasticity of demand for residential natural
gas, the existing natural-gas demand elasticity literature addressing these issues is sparse relative to that of the
electricity literature (Rehdanz 2007). A cursory Google Scholar search returns approximately 148,000 results
related to economics, elasticities, and electricity; equivalent searches for coal and gasoline return approximately
70,000 results each. A similar search for articles related to natural gas finds fewer than 40,000 results. (The
authors performed these searches in January 2017.)

3The exception is Rehdanz, who uses a two-period sample from West Germany, where it appears average price
equalled marginal price. Rehdanz does not, however, address the endogeneity of price.
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tion increases, its marginal price increases in discrete steps; consequently, average price also

increases with consumption. Thus, a simple, unidentified regression of quantity on price will

result in an incorrect—and potentially positive—estimate of the price elasticity of demand.

This paper is the first to address these aggregation and endogeneity issues so as to causally

identify the elasticity of demand for residential natural gas. In order to overcome both the

aggregation problem and the endogeneity issues due to increased block rate pricing, the

paper uses a dataset of approximately 300 million residential natural gas bills in California

and builds on Ito 2014 to exploit a spatial discontinuity based upon the boundary between

the service areas of two large natural gas utilities.

The paper makes four concrete contributions to the literature on estimating price elas-

ticities of demand. First, the natural gas market provides a unique setting with monthly

pass-through of wholesale prices to consumers—a rate characteristic in electricity markets.

To overcome the resulting endogeneity, we combine a spatial discontinuity with a supply-

shifting instrumental variables (IV) approach. We instrument the utilities’ consumer-facing

prices with the weekly average spot price of natural gas at a major natural gas distribution

hub in Louisiana (the Henry Hub). This instrument is valid, as we know the formula of how

utilities pass-through the price (providing a strong first stage), and the price is determined

prior to within-bill consumption (strengthening the exclusion restriction). Jointly, the spatial

discontinuity and spot-price instrument isolate plausibly exogenous variation in residential

natural gas prices between neighboring households due to the two utilities’ differential pass-

through of spot-market prices. In other words, as a result of this two-part empirical strategy,

coupled with the rich set of fixed effects that our dataset allows, the identifying variation in

the residential price of natural gas comes from (1) on which side of a long-established border

between utility-owned natural gas networks the household is located, and (2) the subtly

different pricing rules governing the two rate-of-return-earning utilities as they individually

respond to price variation in the natural gas spot market.

Our second contribution builds upon the fact that we observe whether households are

part of a low-income program that provides subsidized natural gas to households. We use

this knowledge to estimate price elasticities by high- versus low-income households. Third,

we observe billing at a roughly monthly frequency for the households in our sample, allowing
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us to estimate seasonal as well as income-/season-specific price elasticities. Finally, due both

to the temporal resolution of the data and to the fact that we observe households over long

periods of time in the same housing structure, we determine whether households respond to

current or lagged prices. This result bears evidence on the salience of natural gas bills.

We find that on average, the price elasticity of demand for residential natural gas ranges

from −0.23 to −0.17. Importantly, we find evidence of heterogeneity in this elasticity along

the dimensions of season and income. Both lower-income and higher-income households

are essentially inelastic to price in summer months. However, in winter months, lower-

income households are substantially more elastic to price than higher-income households.

We discuss unexplored policies with the potential to increase both efficiency and progressivity

in settings where externalities from natural gas consumption are priced. Finally, we show

evidence that households respond to lagged electricity prices—a result consistent with rational

inattention following from the difficulties households face in finding real-time information

on natural gas consumption and prices. In addition to motivating previously unexplored

policies with the potential to enhance efficiency and reduce the burden on the poor, these

heterogeneity findings also supply insights into other pooled elasticity estimates that do not

consider heterogeneity.

2 Institutional setting

In order to identify a causal estimate of the price elasticity of natural gas demand, we need

to explain the institutional and physical setup of the natural gas industry in the United States.

This market is commonly divided into four segments: (1) production and processing, (2)

transportation, (3) storage, and (4) local distribution companies (LDCs). Figure 1 illustrates

the basic institutional organization of the natural gas industry.4 The four segments we discuss

below roughly follow Figure 1 except that they exclude end users (those users who only

consume natural gas) and the liquid natural gas import/export-based segments of the market.

While this paper focuses on the behavior of residential natural gas consumers, part of our
4We include liquid natural gas (LNG) in the figure for completeness, but liquid natural gas does not play a

large role in the natural gas market in the United States: LNG imports currently account for less than one percent
of natural gas imports and accounted for three percent of imports at their peak in 2007 (Levine, Carpenter, and
Thapa 2014). For this reason, we omit LNG for the rest of this paper.

4



identification strategy relies upon a basic understanding of the wider industry, specifically in

understanding which instruments may shift supply without affecting demand. After discussing

these four segments, we then describe the multi-tier pricing structure employed by the two

Californian natural gas utilities discussed in this paper.

2.1 Market segments

Production and processing Natural gas enters the market at the wellhead where it is

produced and first sold (Brown and Yücel 1993). Some wells produce only natural gas, while

other wells produce natural gas in addition to crude oil (Levine, Carpenter, and Thapa 2014).

The raw product then moves from wellheads to processors. Processors remove impurities and

separate the raw product into multiple commodities (separating “natural gas” from “natural

gas liquids”) (Levine, Carpenter, and Thapa 2014).

Transportation High-pressure pipelines transport processed natural gas from production

and processing areas to both intermediate users (storage facilities, processors, LDCs) and

final users (electricity generators, industrial users, commercial users, and residential users).

Figure 2 maps this pipeline network for the continental United States. Private companies

own and operate segments of the pipeline; these pipeline companies’ rates are regulated

at the state level and the national level (Levine, Carpenter, and Thapa 2014). Extensive

spot markets and futures markets exist for natural gas. Louisiana’s Henry Hub connects to

13 intrastate and interstate pipelines. The Henry Hub is the designated delivery point for

the New York Mercantile Exchange’s natural gas futures contracts and the Henry Hub price

is generally regarded as a nationally relevant price (Levine, Carpenter, and Thapa 2014).

Figure 3 depicts the Henry Hub spot price from 1997 through 2016. Transportation costs

represent a substantial percentage of natural gas prices; according to Levine, Carpenter,

and Thapa, in 2011–2012, 72 percent of consumers’ average heating costs originated in

“transmission and distribution charges”.5 Thus, the natural gas transportation network creates

a nationally integrated market and simultaneously contributes to a sizable portion of the

5Levine, Carpenter, and Thapa also note that in 2007–2008 “transmission and distribution charges” accounted
for 41 percent of consumers’ average heating costs. It is worth keeping in mind that consumers’ average heating
costs fell approximately 20 percent in this period.
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prices paid by natural gas end users.

Storage Storage plays a major role in several parts of the natural gas market, but all parties

store mainly for the same reason: volatility within the market. Due to its major roles in

heating and electricity production, natural gas demand is strongly driven by weather and

can be unpredictable in the short run. To combat price volatility and to be able to meet

peak demand, both local distribution companies and large natural gas consumers store gas

underground (Levine, Carpenter, and Thapa 2014). Producers utilize storage to smooth

production.

Local distribution companies Local distribution companies’ primary function is distribut-

ing natural gas to their contracted end users—industrial, residential, and commercial con-

sumers of natural gas. To accomplish this task, LDCs purchase natural gas through both spot

markets and longer-term contracts. In addition, LDCs own and operate their own pipeline

and storage networks. To cover the fixed costs involved in their pipelines, storage, and ad-

ministration, LDCs often utilize a combination of two-part tariffs and multi-tiered pricing

regimes—though some utilities fold all of their costs into their volumetric pricing. State

utility commissions (e.g., the California Public Utilities Commission) regulate LDCs’ price

regimes, allowing the LDCs to earn a regulated rate of return (Brown and Yücel 1993; Davis

and Muehlegger 2010; Levine, Carpenter, and Thapa 2014).

2.2 Natural gas pricing in California

The California Public Utilities Commission (CPUC) regulates both of the utilities from which

we draw data in this paper: Pacific Gas and Electric Company (PG&E) and Southern California

Gas Company (SoCalGas). Because this paper analyzes residential natural gas consumers’

responses to natural-gas retail prices, the most relevant regulations facing PG&E and SoCalGas

are CPUC’s price and quantity regulations. In addition, the California Energy Commission

(CEC) defines geographic climate zones (see Figure A1), which, in part, determine households’

price schedules (California Energy Commission 2015, 2017).
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For PG&E’s and SoCalGas’s residential consumers, a household’s bill depends upon five

elements:6

1. The two-tiered price schedule set by the utility

2. The total volume of natural gas consumed during the billing period

3. The season (summer or winter) in which the bill occurs

4. The climate zone into which the household’s physical location falls

5. The household’s CARE (California Alternate Rates for Energy) status7

Figure A2 provides an example of a typical residential natural gas bill from PG&E.

Both PG&E and SoCalGas utilize two-tiered pricing regimes. The California Energy Com-

mission divides California into 16 climate zones in which households’ needs for heating

should be relatively homogeneous (California Energy Commission 2015, 2017; Pacific Gas

and Electric Company 2016). The utilities also divide the year into heating (winter) and

non-heating (summer) seasons. Based upon a household’s climate zone (determined by the

household’s location) and the season, the CPUC determines a volume of natural gas that

should be adequate for heating during the course of one day. This volume of natural gas is

called the household’s daily allowance. Multiplying the household’s daily allowance by the

number of days in the billing period gives the household’s total allowance for the bill. For each

unit (therm8) of natural gas up to the bill’s total allowance, the household pays the first tier’s

per-unit price (baseline price). For each unit of gas above the household’s total allowance, the

household pays the second tier’s per-unit price (excess price). Figure 4a illustrates an example

of the two-tier block-pricing regime used by PG&E and SoCalGas. Figure 4b depicts how

residential consumers’ (daily) tier-one allowances vary through time within a given climate

6Consumers’ billing periods do not perfectly align with calendar months. However, PG&E’s and SoCalGas’s
price changes do align with calendar months (during the years that our data cover). The two utilities deal with
this misalignment of billing periods and price regimes slightly differently. PG&E calculates individual bills for
each calendar month under the assumption that consumption is constant throughout the billing period. SoCalGas
calculates a single bill using time-weighted average prices (averaging across the different price regimes). These
methods are equivalent under a single linear price but differ under the actual multi-tiered price regimes. Please
see the Calculating bills section in the appendix for more detail.

7The previously mentioned program that provides subsidized energy rates to low-income households in Cali-
fornia.

8The utilities in this paper work in units of volume called therms. One therm is equal to 100,000 Btu (U.S.
Energy Information Administration 2016c).
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zone (PG&E’s climate zone R and SoCalGas’s climate zone 1). Figure A1 depicts California’s

16 California Energy Commission (CEC) defined climate zones.

Each month, the utilities update their price schedules. The absolute difference between

the first-tier price and the second-tier price also varies but tends to remain constant for several

months.9 These monthly price changes allow the utilities to charge customers at rates that

reflect the prevailing price of natural gas. In fact, the utilities tie their price updates to their

costs—thus linking residential rates to spot market prices.10 If the utilities wish to change

the way in which their prices are tied to market prices and other costs, they must receive

authorization following a review process with CPUC. Figure 6a illustrates these monthly

price-regime changes and the fairly fixed step between the two tiers. Figure 6b depicts

the correlation between the utilities’ baseline (first-tier) prices and the spot market price of

natural gas at the Henry Hub.

A household’s participation in the CARE (California Alternate Rates for Energy) program

also affects the prices that the household faces. Households qualify for CARE by either meeting

low-income qualifications or receiving benefits from one of several state or federal assistance

programs (e.g., Medi-Cal or the National School Lunch Program) (Southern California Gas

Company 2016). CARE prices are 80 percent of standard prices at both tiers. In addition to

giving us the household’s correct pricing regime, we use CARE status to identify low-income

households.

3 Data

3.1 Natural gas billing data

The billing data in this paper come from two major utilities in California: Pacific Gas and

Electric Company (PG&E) and Southern California Gas Company (SoCalGas). The PG&E data

cover residential natural gas bills in PG&E’s territory from January 2003 through December

2014. The SoCalGas data cover residential natural gas bills from May 2010 through September

2015. Thus, the two utilities’ data overlap from May 2010 through December 2014. After

9The utilities differ in the frequencies at which which they change this absolute difference: PG&E adjusts the
distance between the two tiers’ price much more frequently than SoCalGas.

10The utilities report their weighted average costs of gas to the CPUC.
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excluding zip codes with fewer than 50 households, PG&E’s service area covers 597 5-digit

zip codes (680,846 9-digit zip codes) with a total of 5,888,276 households and 180,663,705

bills. After excluding zip codes with fewer than 50 households, SoCalGas’s service area covers

611 5-digit zip codes (610,207 9-digit zip codes) with a total of 2,526,503 households and

95,335,393 bills. The left side of Figure 5 depicts PG&E’s and SoCalGas’s service areas at the

5-digit zip code level. Table 2 provides a brief summary of the billing data with regard to

the numbers of bills, households, zip codes, and monetary values of the bills. Tables 2 and 3

summarize prices, quantities, and other variables of interest—pooling across all observations

and also splitting the data by season or CARE status. Both tables summarize the full dataset—

all zip codes across both utilities–and a subset of the data based upon all 5-digit zip codes

served by both utilities. We describe this subset in detail below in the Empirical strategy

section.

The utilities’ billing data are at the household-bill level: a single row of the dataset repre-

sents a single billing period for a given household. Table A17 describes the variables (columns)

in this dataset. We follow the natural gas utilities’ convention in defining a household (or

customer) as the interaction between a unique utility account and a unique physical location

identifier.

We also utilize historical data on pricing from the two utilities. As described above,

these pricing data include (1) each utility’s monthly two-tier pricing regime and (2) the daily

allowance for each climate zone during each season. After joining these pricing data to the

households’ billing data, we are able to determine both the marginal price and average price

(and average marginal price) for each bill received by each household. We forgo analyses

below the five-digit zip code because (1) many households are missing their full 9-digit zip

codes (the plus-four codes are missing), (2) many of the 9-digit zip codes do not match into

ZIP4 databases, and (3) our identification strategy already utilizes within-zip-code variation

(discussed in detail below).

3.2 Weather data

Data on daily weather observations originate from the PRISM project at Oregon State Univer-
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sity (PRISM Climate Group 2004). We match this local, daily weather data to the household

consumption data at the day by 5-digit-zip-code level. The PRISM dataset contains daily

gridded maximum and minimum temperature for the continental United States at a grid cell

resolution of roughly 2.5 miles (4 km). Figure A3 maps a single day of average temperature

from the PRISM data for the continental United States. We observe these daily data for Cali-

fornia from 1980–2015. In order to match the weather grids to zip codes, we obtained a GIS

layer of zip codes from ESRI (Esri 2017), which is based on US Postal Service delivery routes

for 2013. For small zip codes not identified by the shape file, we purchased the location of

these zip codes from a private vendor11. We matched the PRISM grids to the zip code shapes

and averaged the daily temperature data across multiple grids within each zip code for each

day. For zip codes identified as a point, we use the daily weather observation in the grid

at that point. This exercise results in a complete daily record of minimum and maximum

temperatures—as well as precipitation—at the zip-code level from 1980–2015.

4 Empirical strategy

In this section we describe the empirical strategy that we use to identify the price elasticity of

demand for residential natural gas consumers. First, we present the basic estimating equation

that motivates the paper’s results. Next, we discuss the inherent challenges to identification in

this setting. We then discuss potential solutions to these challenges and detail which of these

solutions are feasible in this paper’s specific setting. Finally, before moving to the results, we

provide evidence for the validity of the instruments.

4.1 Estimating equation

The relationship at the heart of this paper’s elasticity estimates is

log(qi,t) = η log(pi,t) + λi,t + εi,t (1)

11zip-codes.com
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where i and t index household and time; q denotes quantity demanded; and p denotes price.

Rather than choosing a specific type of price, we present results for five variants of price.

These five types of price include the price that classical economic theory deems relevant—the

marginal price—in addition to average price, average marginal price, baseline (first-tier) price,

and simulated marginal price (defined and discussed below).12 In the results section, we also

discuss which lag of price is most salient to consumers (see Figure 7 for an example and a

brief discussion of price lags). The term λi,t represents household fixed effects, time-based

fixed effects, and/or household-by-time fixed effects—depending on the specification. Our

main specification in this paper uses household fixed effects and city by month-of-sample

fixed effects (e.g., Fresno in January 2010; also called city by year by month). A causally

identified estimate of η yields the own-price elasticity of demand.

4.2 Challenges to identification

Two main sources of endogeneity threaten identification in equation 1.

The first challenge in identifying this own-price elasticity of demand is the potential

endogeneity that results from the simultaneous determination of price and quantity that

results from the equilibrium of supply and demand—simultaneity (e.g., Woolridge 2009). In

the presence of simultaneity, standard ordinary least squares (OLS) fails to properly treat the

endogeneity inherent in (1). As discussed above, many papers in the natural gas literature

ignore this potential source of bias while estimating the price elasticity of demand—relying

upon fixed effects, uncorrelated demand and supply shocks, and/or assumptions of exogenous

prices. If simultaneity is indeed present in this setting, then the estimates in these papers will

recover biased estimates for the elasticity of demand for residential natural gas.

A second challenge to identification in this paper results from our paper’s specific context:

the two-tiered price schedule within California’s natural gas market. Put simply, in tiered

pricing regimes, the marginal price is a (weakly increasing, monotonic) function of quantity.

For the same reason, average price is also a function of quantity. Thus, when a household

consumes more, its marginal and average prices mechanically increase. In terms of identifying

12We define average marginal price as the quantity-weighted marginal price paid by a customer during her
billing period. Average marginal price does not include fixed charges, while average price does.
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the price elasticity of demand, this is bad variation: the marginal price that a household faces

is endogenous because the marginal price is correlated with unobserved demand shocks (Ito

2014). This bias is a specific form of simultaneity often called reverse causality.

In practice, one generally cannot sign the bias resulting from the classical simultaneity of

price and quantity without making further assumptions regarding the correlation of supply

and demand shocks. On the other hand, the bias resulting from marginal and average prices

being a function of quantity results in upwardly biased estimates of demand elasticities. In

extreme cases, this latter case of bias can yield estimates that suggest upward-sloping demand

curves.

Table 5 demonstrates the consequences of failing to address these challenges to identifica-

tion by estimating the price elasticity of demand—η in equation 1 via ordinary least squares

(OLS) using marginal price (columns 1–3) and baseline (first-tier) price (columns 4–6). We

also vary the set of controls for each price. For a given price, the leftmost columns apply the

simplest set of controls. The “identification strategy” presented in Table 5 makes no attempt

to correct for the aforementioned potential biases outside of a fairly rich set of fixed effects—

household fixed effects and city by month-of-sample fixed effects. Each regression controls for

within-bill heating degree days (HDDs) during the billing period.13 The leftmost column for

each price uses a five percent sample of all bills from PG&E and SoCalGas (sampled at the five-

digit zip code). The remaining columns (columns 2, 3, 4, and 5) use a border-discontinuity

motivated sample in which we keep all zip codes where the zip code receives natural gas

from both PG&E and SoCalGas (discussed in detail below; also see Figure 5). The leftmost

and center columns for each price control for household fixed effects and month-of-sample

fixed effects. The rightmost columns for each price control for city by month-of-sample fixed

effects (e.g., Fresno in January 2010).

The six regressions in Table 5 employ two different measures of price: (1) the household’s

marginal price during the relevant billing period, and (2) the household’s baseline (first-tier)

price during the relevant billing period. These two—rather related14—measures of price yield

13The number of heating degrees in a day is equal to the difference between the day’s average temperature
and 65. Days with average temperatures above 65◦F receive zero heating degrees. More formally, we calculate
the number of heating degrees for day t with mean temperature T̄t (in ◦F) as HDDt = 1

{
T̄t < 65

}
×

(
65 − T̄t

)
. The

HDDs variable above is thus HDDS =
∑

t HDDt/1000.
14The correlation between marginal price and baseline price is approximately 0.79; see Table A1 for bivariate
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considerably different results, differing both quantitatively and qualitatively. The baseline

price suggests an elasticity between −0.10 to 0.02, while the marginal price indicates a

positive demand elasticity between 0.43 and 0.47. The substantial differences across estimates

in Table 5 suggest at least one of the aforementioned biases are present. Specifically, the

fact that the marginal-price based elasticity estimates are positive (implying upward-sloping

demand curves), while the baseline-price based estimates are negative, suggests that the price-

is-a-function-of-quantity flavor of simultaneity is a first-order problem in this context. This

interpretation follows from the results due to the fact that baseline prices are not a function

of quantity, while marginal prices are a function of quantity.

While the baseline-price based elasticity estimates appear to be reasonable in terms of

magnitude, they are still not identified, as them still may suffer from simultaneity bias. Simply

adding more observations in the flavor of the big data movement does not address this

potential endogeneity: column 4 of Table 5 does not appear any more plausible than columns

5 or 6, despite adding more than 7 million observations—the same can be said for column 1

vs. columns 2 and 3. In addition, the fact that the baseline-price based estimates change sign

and magnitude when we move from the 5% CA sample (column 4) to the border-discontinuity

motivated sample (columns 5 and 6) provides some evidence that classical simultaneity may

be present. In this border-discontinuity motivated sample, within-zip code price variation

comes from utilities’ differentially pricing natural gas over a set of potentially comparable

households. However, whether the change in coefficients is due to removing endogenous

variation or due to changes in the sample, the existence of simultaneity is fundamentally a

statistically untestable issue which stems from the theoretical setup of how market prices

originate. Rather than assuming that the sample and/or fixed effects remedy the problem,

we instead present a multipart empirical strategy to directly resolve the challenge.

Finally, it is worth noting that the baseline-price based elasticity estimates are well within

the range of estimates from the existing literature, as shown in Table 1. This outcome warrants

some concern, as it suggests that some of these estimates may suffer from endogeneity.

correlations of prices measures.
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4.3 Solutions for identification

Having shown that OLS with fixed effects and extensive data does not cleanly identify the

own-price elasticity of demand in this setting, we now discuss several potential routes for

identifying the causal effect of price on quantity in our setting. In the end, we opt for an

identification strategy that interacts a spatial discontinuity with an instrumental variables

approach.

4.3.1 Discontinuities

A common route toward identification in applied microeconomics involves finding relatively

small geographic units that receive different prices within the same time period. The assump-

tion is that observable and unobservable characteristics and, more importantly, households’

price responsiveness do not differ across the border, yet they are exposed to different prices

changes allowing for econometric identification. Arbitrary administrative boundaries that

determine policies’ catchment areas provide a popular tool in this context, e.g., Dell 2010;

Chen et al. 2013; Ito 2014. In our context of natural gas in California, the boundary between

PG&E and SoCalGas offers potentially arbitrary within-city (and within-zip code) variation in

prices during a month. Specifically, the boundary between PG&E’s and SoCalGas’s natural gas

service areas bisects eleven cities—in three clusters—in southern California: Arvin, Bakers-

field, Fellows, Fresno, Del Ray, Fowler, Paso Robles, Selma, Taft, Tehachapi, and Templeton.

The left panel of Figure 5 displays the two utilities’ service areas throughout California (for

zip codes sufficiently covered in the datasets). The right panel of Figure 5 zooms in on the

eleven cities (39 zip codes) that PG&E and SoCalGas both serve. Within these eleven cities,

PG&E serves all 39 zip codes, while SoCalGas serves 18 of the zip codes.

This identification strategy rests upon the assumption that households on one side of

the utilities’ border provide a valid control group for households on the other side of the

border. Because the boundary mainly represents the extent of each utilities’ underground

distribution network and is unlikely to enter into households’ preferences, the exogeneity of

the boundary to household characteristics should be valid (Ito 2014). The main threat to this

identification strategy is that utilities’ networks correlate with geographic or neighborhood
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characteristics over which individuals have preferences. However, we use household fixed

effects, which absorb mean differences across households. Thus, for the border discontinuity

to be invalid, households would have to sort in a way consistent with their elasticities, and

the utilities’ price series would have to differ significantly in their variances. Because the data

contain considerable variation in prices for both utilities and the panel contains approximately

six years of monthly bills, this sort of sorting bias seems unlikely. Figure 6b suggests the

generating distributions for the utilities’ prices are quite similar (the standard deviations of

the price series are 0.0940 and 0.1053 for PG&E and SoCalGas, respectively). In addition,

Table 4 provides some limited evidence15 of balance across the utility border, comparing

PG&E and SoCalGas households within season (summer or winter) and within income group.

Within a season-income group, the utilities’ customers appear to consume similar volumes of

natural gas, receive similar numbers of days per bill, receive similar allowances on the first

tier, and face similar numbers of heating degree days. SoCalGas customers tend to receive

slightly lower bills, but the difference is less than half of one standard deviation of total bill

amount.

Ito 2014 employs a similar strategy within the context of electricity consumption. However,

there is at least one significant difference between the electricity and natural gas contexts

which prevents us from entirely adopting Ito’s identification strategy: discontinuities within

electricity utilities’ seven-tier pricing regime. By law, the electricity utilities in Ito’s study are

not allowed to move the price of the first two tiers—they must recover changes in their costs

by moving tiers three through seven. In addition, electricity utilities in California do not

generally change consumer’s prices each month—and prices do not change across all utilities

at the same time. Thus, marginal prices in Ito’s setting move differently depending upon

a household’s tier and utility. Ito argues that the residual variation—combining the spatial

discontinuity with this pricing discontinuity and spatiotemporal fixed effects—is plausibly

exogenous from demand shocks. Because natural gas (in California) has only two tiers and

because the absolute difference between the two tiers has relatively low variation, we are

unable to take advantage of price-tier based discontinuities. Therefore, in addition to this

utility-border-based discontinuity, we adopt an additional strategy to overcome endogeneity.

15Our data on households is restricted to information from natural gas bills.
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4.3.2 Instrumental variables

The second element in our empirical strategy for identifying the price elasticity of demand for

natural gas involves a traditional solution to simultaneity: supply-shifting instruments. In this

context, the ideal supply-shifting instrument is (1) strongly correlated with the prices that

the natural gas utilities charge their customers (the first stage), and (2) uncorrelated with

residual shocks affecting consumers’ demand (Angrist and Pischke 2009). In this paper, our

instrument is the Henry Hub spot price for natural gas.

Henry Hub spot price Specifically, we instrument the prices that consumers face (e.g.,

marginal price, average price, baseline price) with the average spot price at Louisiana’s Henry

Hub in the week preceding the change in prices. We also interact the Henry Hub spot price

with utility to allow the utilities to differentially pass through price changes. The Henry Hub

spot price represents the nationally prevailing price for short-term natural gas contracts (the

hub sits at the intersection of 13 intrastate and interstate pipelines) (U.S. Energy Information

Administration 2016a). This instrument mechanically satisfies the requirement of having a

strong first stage, as both utilities base their prices, in part, on market prices for natural gas

in the period preceding their rate changes—the utilities buy natural gas on the spot market,

and the California Public Utilities Commission regulates how the utilities fold their costs into

the price regimes that customers face on a monthly basis.

The exclusion restriction for this spot-price based instrument is less obvious, but several

factors suggest the exclusion restriction is plausibly valid. First, California’s entire residential

natural gas demand represents at most three percent of national natural gas consumption—

limiting the individual utilities’ ability to set/influence spot prices and the Henry Hub. Second,

we interact the spot price instrument with utility. This interaction, conditional on city by

month-of-sample fixed effects, implies that the identifying variation in our instruments comes

from the difference in how the two utilities’ incorporate monthly spot-price shocks into their

pricing regimes. Third, because the utilities must obtain approval for price changes before

the new price regime begins, the spot price is temporally disconnected from the billing period.

In other word, the utilities’ costs (and approved prices) are based upon spot prices that
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precede the billing period by several weeks. Thus, shocks that affect the Henry Hub spot

price are distinct in time from shocks that affect natural gas demand—our fixed effects will

absorb any of these shocks, so long as they do not differ across the utilities’ border within

a month. Additionally, we show that the most salient lag of price is likely the second lag of

price, further disconnecting contemporaneous local demand shocks from market-level supply

shocks two months prior. We also control for the number of heating degree days (HDDs) in

the household’s zip code during the households’ billing period. Because residential consumers

primarily use natural gas in heating applications, controlling for HDDs further reduces the

opportunity for local demand shock to affect national prices. Therefore, we argue that the

exclusion restriction is plausibly valid for our spot-price instrument.

Our identification strategy thus interacts the spatial discontinuity between PG&E’s and

SoCalGas’s service areas with the Henry Hub spot price. Specifically, the identifying variation

stems from the two utilities’ divergent pass-through of the spot market price—differentially

projecting variation in the the natural gas spot market across a tenably arbitrary border

between the two utilities.

By employing a two-part identification strategy that interacts a spatial discontinuity with a

price instrument, we avoid weaknesses inherent in either individual identification strategy. For

instance, simply instrumenting residential prices with the spot-market price may not entirely

purge the endogenous, bad variation from residential prices, as variation in the spot market

likely results from both supply and demand shocks. Our identification strategy instead takes

variation from the spot market and projects it across the utilities’ border, treating neighboring

households with prices that differ only due to which utility provides natural gas. Additionally,

our identification strategy also allows repeated “treatments” across the discontinuity, as the

utilities change residential natural gas prices each month. This repetition of treatment both

increases power and diminishes concerns regarding sorting, as both sides of the border will

be “treated” over time. Thus, we contend this two-part identification strategy is well-suited

for the challenges to identification in this setting.
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Spot price IV, first stage Panel A of Table 6 provides the first-stage estimates for the two-

stage least squares (2SLS) equations

log
(
pi,t

)
= π1a pspot

i,t + π1b pspot
i,t × SCGi + π2HDDbill

i,t + HHi + Cityi,t + ui,t (2)

log
(
qi,t

)
= η1

̂log
(
pi,t

)
+ η2HDDbill

i,t + HHi + Cityi,t + vi,t (3)

where HHi is a household fixed effect, Cityi,t is a city by month-of-sample fixed effect, SCGi is

an indicator for whether the household’s retail utility is SoCalGas, and HDDbill
i,t is the number

of heating degree days for household i during its billing period that began in month t.

The spot-price by utility term is not collinear with the city by month-of-sample fixed effects

because households’ bills do not perfectly align with calendar months: consequently, the bills

span multiple price regimes (see Figure 7). In a bill that spans two calendar months, the

household receives a weighted average of the two months’ price regimes. To instrument these

weighted averages of prices, we calculate corresponding weighted averages of the relevant

spot prices by weighting the months’ relevant spot prices by their temporal share of the bill.16

Figure 6b provides visual evidence of the first stage—illustrating (1) the link between the

two utilities’ prices and the Henry Hub spot price and (2) the utilities’ differential responses

to the spot price. Throughout the rest of the paper, we define the Henry Hub spot price as

the average spot price for natural gas at the Henry Hub during the seven days preceding the

utility’s change in pricing.

Panel A of Table 6 displays the first-stage results for equation 2 using five different prices

that may be relevant to households: marginal price, average price, average marginal price,

baseline price, and simulated marginal price17 (using the log of each price). Each price is the

second lag of the contemporaneous price.18 Table 7 and Tables A3–A7 compare consumers’

varying responses to different lags of price.

Both Figure 6b and Panel A of Table 6 demonstrate that the spot-price based instruments

are quite strong: the F statistics testing the joint significance of the instruments range from

16See the appendix section Calculating bills for further discussion of bills spanning multiple months.
17Simulated marginal price refers to a simulated instrument for marginal price. We discuss this measure of price

in the next section.
18The current bill is lag zero, the prior bill contains the first lag of price, and the bill preceding the prior bill

contains the second lag of price.
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369.9 to 1,333.2. This significance is unsurprising, because the utilities purchase gas on the

spot market and incorporate these costs directly into their price regimes. The significance

of the interaction between spot price and utility (SoCalGas) in the second row of Panel A

in Table 6 confirms that the utilities differ appreciably in incorporating spot-market costs

into their pricing regimes: PG&E’s pricing regime appears to be much less responsive to the

contemporaneous spot price than that of SoCalGas.19 Though the city by month-of-sample

fixed effect should control for most local demand shocks, bills do not perfectly match months.

The within-bill HDDs variable HDDbill
i,t in equation 2 controls for any remaining weather-

based demand shocks. The results in Table A10 demonstrate robustness to excluding (odd-

numbered columns) or including (even-numbered columns) within-bill heating degree days,

which suggests that the instrument is exogenous to local weather shocks, one of the key local-

demand drivers in natural gas (Davis and Muehlegger 2010; Levine, Carpenter, and Thapa

2014; Hausman and Kellogg 2015).

While the first stage is quite strong for all specifications, the results in Panel A of Table 6

suggest the instrument is strongest—in terms of first-stage significance—for baseline price,

followed by average marginal price, average price, marginal price, and finally simulated

marginal price. A likely reason for this outcome is that baseline price is the least noisy price:

it is the only price that is not a function of the consumer’s quantity, and it does not include

variation from changes in the size of the step between the two tiers’ prices. By these terms,

(simulated) marginal price is the noisiest, which is consistent with marginal price having the

smallest first-stage F statistic of the five prices.20

4.3.3 Instrumented prices and simulated instruments

In the preceding sections, we discussed how we interact a spot-price-pass-through based in-

strument with a spatial discontinuity in utilities’ service areas to overcome bias stemming from

the classic form of simultaneity—i.e., quantity and price (our dependent and independent

variables) result from a simultaneously determined equilibrium. We now discuss the aspect

19One difference between the utilities’ pricing regimes is that PG&E does not have a fixed charge, while SoCalGas
does. Thus, PG&E recovers both fixed and volumetric costs through volumetric charges to its customers.

20Although the first-stage estimates in Panel A of Table 6 have the flavor of pass-through results, one should
keep in mind that equation 2 specifies a log-linear form (logged price as the response variable), which does
estimate pass-through.
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of our identification strategy that deals with the price-is-a-function-of-quantity endogeneity

present in multi-tiered pricing contexts.21 We present three separate options for breaking this

endogenous link between price and quantity, but, in the end, the options yield very similar

results.

Option 1: Instrumented prices One method for breaking the endogenous link between

a household’s price and its quantity is simply to instrument the household’s price with a

variable that is aggregated at a unit above household. Consider the IV strategy discussed

above: instrumenting a household’s price with the Henry Hub spot price interacted with utility.

Because this instrument only varies at the level of billing-period by utility, when we regress a

household’s endogenous price on this instrument (and our set of fixed effects) in the first stage,

the variation captured by the predicted prices is only the variation that correlates with the spot

price, which is determined weeks, if not months, before the household’s consumption decision.

Thus, if the spot price provides a valid instrument in the classical simultaneity context, it also

provides a valid instrument for the second price-is-a-function-of-quantity endogeneity.

Option 2: Baseline price In a similar manner, the baseline price provides a valid instrument

that breaks the price-is-a-function-of-quantity endogeneity. Because a household’s baseline

price is not a function of its quantity consumed, baseline price does not suffer from the same

endogeneity. Baseline price is also strongly predictive of marginal (or average) price.22 Thus,

in application, one could either replace marginal (or average) price with baseline price or

instrument one of the endogenous prices with baseline price. There is at least one drawback to

this approach: baseline price, by definition, fails to capture the higher price that a household

faces when the household exceeds its total monthly allowance.

Option 3: Simulated instrument Simulated instruments23 provide a third option for break-

ing the price-is-a-function-of-quantity flavor of endogeneity. The simulated-instrument ap-

21This endogeneity is present in marginal price, average price, and average marginal price—all three prices are
functions of the individual household’s quantity consumed.

22The correlation between baseline price and marginal price is approximately 0.79; the correlation between
baseline price and average price is approximately 0.94. See Table A1 for all bivariate correlations between our
five measures of price.

23Also called policy-induced instruments.
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proach follows a methodology suggested in Ito 2014. Specifically, this approach creates an

instrument (or proxy) for marginal (or average) price by plugging a lagged level of consump-

tion into the current price regime, i.e.,

zi,t = pi,t (qt−k) (4)

The main idea for this instrument is using a household’s consumption history to predict

whether a household will face the baseline or excess price in the current period. As with

any instrument, we want to accomplish this prediction in a way that is strongly predictive

of the true outcome (the first stage) and that is uncorrelated with any recent shocks to the

household (the exclusion restriction) (Angrist and Pischke 2009). For these reasons, we

modify equation 4 slightly. First, we use the households’ lagged consumption levels (from

lagged bills 10 through 14 months prior) to calculate the share of lagged periods that exceed

this billing period’s baseline allowance, i.e.,

si,t =
1
5

14∑
k=10

1
{
qi,t−k > Āi,t

}
(5)

where Āi,t is household i’s baseline allowance in time (bill) t. We then calculate the simulated

instrument for marginal price, zi,t, as

zi,t = 1
{
si,t ≤ 0.5

}
× pbase

i,t + 1
{
si,t > 0.5

}
× pexcess

i,t (6)

Summarizing equations 5 and 6: this simulated instrument for marginal price predicts that

a household will exceed its allowance when the majority of the household’s past bills (using

lagged months 10 through 14) exceed the current bill’s allowance.24

Table A2 provides evidence that this simulated-instrument approach significantly predicts

households’ marginal prices. Specifically, Table A2 provides the estimate and standard error

24This simulated instrument is robust to the choice of months 10 through 14. The goal is to keep the instrument
in the same season as the current bill (maintaining a strong first stage), while allowing some temporal distance
between the lags and the current period (the exclusion restriction: preventing short- and medium-run shocks
from affecting both periods).
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for β in the equation

pmrg
i,t = βpsim

i,t + HHi + Cityi,t + wi,t (7)

where pmrg
i,t is household i’s marginal price in time t and psim

i,t is our simulated instrument for

household i’s marginal price in time t
(
i.e., pmrg

i,t

)
. The estimates for β in Table A2 confirm the

strong “first stage” for this simulated instrument. Marginal price and simulated marginal price

are strongly and significantly correlated—both t statistics are approximately 148. The two

columns in Table A2 also provide evidence of the robustness of the simulated instrument to

the choice of lags: the estimates using lags 10–14 or 11–13 are virtually indistinguishable. In

addition, the bottom row of Table A1 demonstrates that this simulated instrument is strongly

correlated with marginal price (r ≈ 0.85) in addition to the other four measures of price.

Column 5 of Table 6 (Panel A) provides the first-stage results consistent with equation 2

but with the simulated instrument of marginal price substituted (proxying) for actual marginal

price (and still instrumenting with spot price interacted with utility across the utilities’ bor-

der).25 The first stage is again quite strong in this specification, and the results are qualitatively

similar to the results in columns 1–4 of Table 6, Panel A. Henceforth we will refer to the

simulated instrument for marginal price as simulated marginal price.

All subsequent results apply our two-part identification strategy which exploits the utilities’

differential pass-through of spot-market prices to obtain exogenous variation in residential

natural gas prices across the border between the two utilities’ service areas. To incorporate

the three competing options discussed immediately above, we provide results consistent each

the strategies: instrumenting with spot price interacted with utility, proxying with baseline

price, and employing simulated marginal price (the simulated instrument/proxy for marginal

price). We now turn to our main results.

5 Results

In this section, we discuss the estimated price elasticities, using the empirical strategies

extensively discussed in the preceding section. After presenting the main results for the
25It is worth noting that, in this paper, any result using the simulated instrument will have fewer observations

than other results, as the simulated instrument is greedier for data—for an observation to remain in the dataset,
its 14th lag must also be in the dataset. Our other price measures are not as greedy.
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pooled elasticity (no heterogeneity), we examine whether households’ price responses (i.e.,

elasticities) vary by season and/or by income.

5.1 Pooled price elasticity of demand for natural gas

Panel B of Table 6 displays the elasticity results from the second-stage regression specified

in equation 3. These results instrument log price with the Henry Hub spot price (interacted

with utility), exploit the spatial discontinuity, and use the log of daily average consumption

(in therms) as the outcome. The five columns each estimate the elasticity using the log of a

different type of price: marginal price, average price, average marginal price, baseline price,

and simulated marginal price. As discussed above, each price is the second lag of price, as

opposed to the contemporaneous price. The estimates for the price elasticity of demand range

from −0.17 (simulated marginal price) to −0.23 (average price).

Panel B of Table 6 indicates that the estimated elasticity is fairly robust to the type of price.

Table A11 demonstrates that the estimated elasticity is also robust to the inclusion/exclusion

of heating degree days and to the levels of fixed effects—ranging from city by month-of-sample

fixed effects to zip-code by week-of-sample fixed effects (while still including household fixed

effects). The robustness to type of price also demonstrates robustness to how we control for

the price-is-a-function-of-quantity endogeneity discussed above. Tables A11–A15 demonstrate

the robustness of the estimated elasticity to excluding within-bill heating degree days and

varying the spatiotemporal fixed effects. Finally, Table A16 contains marginal-price based

elasticity estimates as we incrementally extend the study-area. Beginning with the study area

(Common Zips), we add the zip codes neighboring (bordering) the study area (Neighbors

1); we then add the neighbors of the neighbors (Neighbors 2); last, we add a third band of

neighbors (Neighbors 3). Figure A4 illustrates these groups of neighboring zip codes. The

estimated elasticity from the first group of neighbors (−0.19 (0.05) in column 2 of Table A16)

is quite close to the elasticity previously discussed (−0.21, (0.07) in column 1); the elasticities

that include the second and third peripheral neighbors diminish in magnitude (−0.12 and

−0.09) but still differ significantly from zero.

Compared to their OLS-based counterparts in Table 5, the marginal-price based 2SLS
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estimates for the elasticity of demand now have opposite—and theoretically correct—signs.

The magnitudes of the 2SLS estimates of the elasticity (approximately −0.20) are theoretically

reasonable and within the range of previous findings. Furthermore, these estimates are

plausibly identified and utilize consumers’ actual prices.

As discussed above, the results discussed up to this point—e.g., the results in Table 6—

estimate the price elasticity of demand for residential natural gas using the second lag of

the various prices. In order for a household to know the prices of its contemporaneous bill,

the household would need to closely follow the approved advice letters published online by

the utility or the California Public Utilities Commission. Otherwise, the household will learn

about prices from past bills—hence the use of lagged prices. Because a household will not

receive the bill for the previous billing period for several days into its current billing period—

and because the household may not view the previous bill until it pays the bill (or its credit

card bill, if the household uses automatic bill payment) weeks later—the household may not

know the prices from its immediately previous bill until the current period is nearly over. For

these reasons, it is plausible that the second lag of price is the most salient price to many

households. Figure 7 illustrates an example of the timing for bill delivery, bill payment, and

the relevant lags of prices.

Table 7 replicates the second-stage results for marginal price and average price but varies

the lag/lead of price: beginning with the first lead of price, followed by contemporaneous

price, the first lag of price, and finally the second lag of price. Tables A3–A7 provide further

detail, varying the lead/lag of each of the five prices—ranging from the first lead of price

to the third lag of price. Across the five types of measures of price, none of the first leads

of price, contemporaneous prices, or first lags of price differ significantly from zero. For

each type of price, both the second and third lags of price differ significantly from zero. For

each price, the second-lag based elasticity slightly exceeds the third-lag based elasticity in

magnitude, but the difference does not exceed the standard error. These results are consistent

with households responding to two-to-three lags of price—as opposed to contemporaneous

price—suggesting some degree of inattention by the household to the true price, akin to

previous work on inattention and salience, e.g., Chetty, Looney, and Kroft 2009; Sallee 2013;

Allcott and Taubinsky 2015.

24



5.2 Heterogeneity

We now examine evidence of heterogeneity in the price elasticity of demand for natural gas.

The institutional setting of this paper motivates two relevant dimensions of heterogeneity—

income level and season—as the CPUC and utilities already apply different price regimes to

households depending upon (1) the season of year (summer vs. winter) and (2) the house-

hold’s income level (specifically, CARE status). If heterogeneity exists, then the regressions in

the preceding section pool across the heterogeneous effects. This pooled parameter estimate

may still be relevant for policy applications—particularly for policies that cannot differenti-

ate between seasons and/or income groups. However, because OLS weights heterogeneous

treatment effects by their shares of the residual variation in the variable of interest—which is

itself a function of (1) the numbers of observations in the heterogeneous groups and (2) the

(residual) within-group variance in the variable of interest (Solon, Haider, and Wooldridge

2015)—one might wonder whether the pooled estimator always provides a policy-relevant

estimate. In addition, in the presence of heterogeneous elasticities, policymakers can increase

efficiency by integrating these (known) heterogeneities (Ramsey 1927; Boiteux 1971; Davis

and Muehlegger 2010).

For income-based heterogeneity, we use a household’s CARE status as a proxy for its in-

come level.26 As discussed above, households qualify for CARE by either meeting low-income

qualifications or by receiving benefits from one of several state or federal assistance programs

(e.g., Medi-Cal or the National School Lunch Program) (Southern California Gas Company

2016). For seasonal heterogeneity, we split the calendar into winter months (October through

March) and summer months (April through September).27

26Because we do not have identifying variation in income level (or season), the heterogeneities that we estimate
should be taken as descriptive for the given group, rather than causal effects of income level or season. In
other words, while we estimate heterogeneous elasticities with respect to income level, this heterogeneity may
have nothing to do with income and could instead result from some other (omitted) variable that correlates
with income/CARE status, e.g., the age and size of the physical home. However, identification of the sources of
heterogeneity is not the goal of this paper; we aim to identify the elasticity of demand and demonstrate dimensions
of heterogeneity. We leave it for future papers to identify the sources of these heterogeneities.

27This definition reflects southern California’s two seasons: warm and slightly less warm.
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5.2.1 Income heterogeneity

To examine income-based heterogeneity in the price elasticity of demand for natural gas, we

estimate the two-stage least squares equations 2 and 3 separately for CARE households and

non-CARE households. Columns (3) and (4) of Table 8 supply the second-stage results from

these regressions, providing estimates of the elasticity of demand by income level (CARE

status).

The results in columns (3) and (4) of Table 8 suggest that the elasticity results in the

previous section may in fact pool across heterogenous elasticities; we estimate that the price

elasticity for CARE (lower-income) households is approximately twice that of non-CARE

(higher-income) households. Specifically, using the marginal price, we estimate an elasticity

of approximately −0.24 (0.080) for CARE (lower income) households and −0.14 (0.068) for

non-CARE households. The “pooled” estimate corresponding to these results is −0.21 (0.071)

(column (1) of Panel B in Table 6)—slightly higher than the midpoint between the CARE

estimate and the non-CARE estimate.

5.2.2 Seasonal heterogeneity

To estimate seasonal heterogeneity in the price elasticity of demand for residential natural

gas, we estimate the two-stage least squares equations 2 and 3 separately for winter months

and for summer months. Columns (1) and (2) of Table 8 supply the second-stage results from

these regressions, providing estimates of the elasticity of demand by season.

The results in columns (1) and (2) of Table 8 indicate a stark and significant difference

between price elasticities in summer and winter months. Using marginal price, we estimate

that the price elasticity of demand for natural gas in summer months is approximately 0.052

(0.029), which marginally differs from zero at the 10 percent level. The estimated elasticity

for winter months is approximately −0.38 (0.14) and differs significantly from zero at the

1 percent level. The comparable “pooled” elasticity estimate corresponding to these results is

approximately −0.21 (0.071) (column (1) of Panel B in Table 6). These results provide strong

evidence that households’ consumptive and price-response behaviors vary considerably by
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season—the winter-based elasticity is nearly twice the “pooled” elasticity.2829

5.2.3 Income-by-season heterogeneity

Having shown potential heterogeneity across income groups (CARE status) and season, we

now examine the evidence that income groups’ heterogeneity varies by season by interacting

the two heterogeneity dimensions discussion above (income and season).

To estimate seasonal-by-income heterogeneity in the own-price elasticity of demand for

residential natural gas, we estimate the two-stage least squares equations 2 and 3 separately

for the four potentially heterogeneous subgroups: CARE households in the summer, non-

CARE households in the summer, CARE households in the winter, and non-CARE households

in the winter. Table 9 displays the second-stage results from these regressions, providing

estimates of the elasticity of demand by season and CARE status.

The results in Table 9 are consistent with heterogeneous elasticities that depend upon

the interaction between household income (CARE status) and season. In other words, the

difference between a household’s winter and summer price elasticities varies by the house-

hold’s income level. Specifically, the results in Table 9 indicate that both income groups are

essentially inelastic to prices in summer months; we estimate a “summertime” price elasticity

of 0.046 (0.035) for CARE households and 0.074 (0.032) for non-CARE households. Both

elasticities are positive, but only one is significantly different from zero and small. In win-

ter months, both sets of consumers are significantly and substantially more responsive to

price, but CARE households are particularly price responsive. We estimate the “wintertime”

price elasticity of demand for natural gas is −0.523 (0.142) for CARE households and −0.317

(0.150) for non-CARE households. Again, the pooled elasticity corresponding to these results

is approximately −0.21 (0.071) (column (1) in Table 6), which is a bit lower than the aver-

age of these four elasticities. Overall, Table 9 demonstrates the potential for substantial and

important heterogeneity underlying commonly estimated pooled elasticities.

28Table A8 reproduces these heterogeneity results using average price—rather than marginal price—with very
similar results.

29Because the current/relevant natural gas institutions divide the year into winter and summer—and because
gas is primarily used for heating—we believe this summer/winter split is the most policy-relevant temporal
disaggregation of the price elasticity of residential natural gas. We do not further disaggregate in time.
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6 Conclusion and Discussion

This paper combines millions of household natural gas bills with a multi-part identification

strategy to provide the first micro-data based causal estimates of the own-price elasticity of

demand for residential natural gas. Utilizing cross-border price variation between Califor-

nia’s two largest natural gas utilities— resulting from the utilities differential pass-through

of spot-market price variation—we isolate plausibly exogenous variation in residential nat-

ural gas prices. We estimate an elasticity of −0.21 [−0.35, −0.07]. This estimate is robust

to specification choices that include within-bill weather, several price instruments, and the

definition/type of price. The point estimates for the own-price elasticity range from −0.23 to

−0.17 across five measures of price. Given the robustness of these findings, this paper pro-

vides tight bounds on a policy-relevant parameter key to applications ranging from estimating

the welfare benefits of fracking (Hausman and Kellogg 2015) to analyzing the regressivity

of two-part tariffs (Borenstein and Davis 2012). Because households respond significantly

to price changes two to four months prior to the period of consumption—and following Ito

2014—we interpret these estimated elasticities as fairly medium-run elasticities.30

As a second important finding, we estimate that the own-price elasticity of demand varies

significantly across seasons and customer types. We show that households on a popular

low-income program, which subsidizes households’ natural gas and electricity, appear to be

twice as elastic in their response to price as households who are not part of the program.

We also show that the price elasticity varies greatly across seasons. If we average across

types of households, the summer price elasticity is close to, and only marginally different

from, zero. The winter price elasticity is −0.38. This heterogeneity suggests that households

are much more price sensitive during their high-consumption months—the winter. These

high-consumption winter months also correspond to the time of year in which consumers use

natural gas in its most salient form: heating. When we break down the price elasticity across

users and seasons, we show that subsidized consumers display the largest price sensitivity

during the winter (−0.52). Neither type of customer displays a substantial price response

in the summer. These results suggest that, if suppliers want to pass through costs to (or

30Ito also notes that the medium-run elasticity is often the most policy-relevant elasticity.
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tax) consumers, summertime may be best—both for efficiency and for progressivity. This

point hinges critically on the assumption that external costs from natural gas combustion are

properly priced. For global pollutants, this is the case in California because the natural gas

sector is part of California’s cap and trade system.

Figure 8 illustrates the seasonal heterogeneity point with simple linear demand that is

quite inelastic in the summer and moderately elastic in the winter—consistent with our results.

The top row of Figure 8 demonstrates that, in this scenario, deadweight loss is substantially

larger in the winter than in the summer. The bottom row simply doubles the summer tax and

halves the winter tax, resulting in a minuscule increase in deadweight loss for the summer

and a substantial reduction in deadweight loss in the winter—implying a considerable overall

reduction in deadweight loss.31 Again, it is worth noting that this example also assumes (1)

a first-best world (no unpriced costs to consumption) and (2) the goal of the policymaker

is reducing deadweight loss conditional on some level of tax/cost recovery. If, for instance,

natural-gas consumption includes an unpriced social cost, then increasing summer taxes and

reducing winter taxes could potentially further reduce market efficiency by exacerbating the

unpriced costs. Similarly, if the policymaker wishes to use the tax to reduce consumption,

then our results suggest that imposing a per-unit tax in the winter is much more efficient than

the same tax in the summer.32 However, our season-by-income results imply that the poor

would bear the largest deadweight loss for such a tax.

The discussion above suggests a dimension for tax and cost-recovery efficiency—season

of year—that we have not seen recommended in the literature or applied in practice. This

fairly simple idea raises a wider question for future work: Along which other dimensions

of consumer heterogeneity might we optimize current tax and cost-recovery policies? If

policy is to take seasonal heterogeneity—or any other heterogeneity—into account, future

work should decompose traditionally pooled elasticities and policy responses. Such work will

provide policymakers with important parameters to improve market efficiency and enhance

policy progressivity.

31This toy example is meant to illustrate an idea. The most efficient seasonal tax adjustment—conditional on
a level of tax recovery—would likely not imply exactly doubling taxes in the summer and halving taxes in the
winter.

32In terms of units of abatement per dollar of tax levied.
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7 Figures

Figure 1: U.S. natural gas institutional organization

N. American producers LNG imports/exports

Processors

Storage Pipeline LNG terminals

Local distribution companies (LDCs)

Electricity plants Industrial users

Residential and commercial users

Notes: Overbars represent points of entry into the U.S. natural gas market; underbars represent end
points in the market; all other labels represent intermediaries. Arrow directions correspond to the
direction of the flow of natural gas. The acronym LNG abbreviates liquid natural gas. This figure is
based on Levine, Carpenter, and Thapa with modification following Brown and Yücel.

33



Figure 2: U.S. natural gas pipeline network

Notes: This map depicts the intra- and inter-state natural gas pipeline network for the (continental) United States (in black) overlayed on a map of
the (continental) U.S. (light gray). Source: U.S. Energy Information Administration
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Figure 3: Henry Hub natural gas spot price: Daily, 1997–2016
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Source: U.S. Energy Information Administration
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Figure 4: Households’ allowances and prices

(a) Allowance and marginal vs. average price example: PG&E, January 2009, climate zone R
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(b) Tier-one daily allowances over time: PG&E (zone R) and SoCalGas (zone 1), 2009–2015
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Notes: Households receive daily allowances for baseline (first-tier) consumption as a function of
location and season (e.g., climate zone R, January 2009). The household pays the second-tier price on
all units that exceed its allowance—comparing total consumption (during the billing period) to total
allowance (daily allowance summed across the bills’ days).
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Figure 5: Natural gas service areas and the study-area discontinuity

Utility presence: PG&E SoCalGas PG&E and SoCalGas
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Notes: The left side of the figure displays PG&E’s and SoCalGas’s services areas (by 5-digit zip code). The right side of the figure zooms in on three
clusters of cities that receive service from both utilities. These three clusters of cities encompass 39 zip codes; 18 of these (5-digit) zip codes receive
service from both PG&E and SoCalGas. These 18 zip codes represent the main study area for the paper.
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Figure 6: Prices across utilities, tiers, and in the spot market, 2009–2015

(a) Price regimes over time: PG&E and SoCalGas, 2009–2015
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(b) Correlation across prices Three relevant natural gas price series, 2009–2015
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Notes: Baseline refers to first-tier price, i.e., the price a household pays for its first therm of natural gas. Excess
refers to the second-tier price, i.e., the price a household pays for each therm that exceeds its first-tier allowance
(see Figure 4). The Henry Hub spot price is generally recognized as a national benchmark (U.S. Energy
Information Administration 2016a; Levine, Carpenter, and Thapa 2014).
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Figure 7: Calendar months and billing periods: Four 30-day bills and five months
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Notes: The household receives its bill from the Lag 1 period on the fifth business day of its current
billing period (the 17th). Payment for the Lag 1 bill is due two weeks later (on the 1st). Now consider
the question “Which lag of price is relevant?” Current: For the household to know the price structure
for its current billing period, it must pay attention to the approval status of its utility’s advice-letters
correspondence with the CPUC. Lag 1: Again, unless the household pays attention to the utility’s
CPUC-approved advice letters, it will not know the prices in the Lag 1 billing period until it receives
and opens the bill. The bill arrives several days into the new period, and if the household does not see
the bill until payment, it may not learn about the prices of the Lag 1 bill until the current billing
period is nearly complete. Autopay may extend this moment of salience even further into the future.
Lag 2: Throughout the entirety of the Current billing period, the household will know the prices from
its Lag 2 bill, and for a non-zero amount of time, the Lag 2 bill is likely to be the most recent set of
prices the household knows. Lag 3: Same level of knowledge as Lag 2 but less recent.
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Figure 8: Increasing tax efficiency using seasonal heterogeneity

(a) Current tax: Summer
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Notes: Each figure presents the combination of a tax (current vs. proposed) and a season; the x and y axes are
quantity and price, respectively. The top row illustrates the two seasons under the current tax, where
households pay the same tax per therm in both seasons. The shaded gray area gives the deadweight loss (DWL)
under this tax. Proposed tax: The bottom row doubles the tax in the summer—increasing DWL by the narrow
pink region—and halves the tax in the winter—reducing DWL by the purple region. Overall DWL decreases.
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8 Tables

Table 1: Prior point estimates: The price elasticity of demand for residential natural gas

Paper Data Estimate

Davis and Muehlegger (2010) US state panel −0.278

Maddala et al. (1997) US state panel −0.09 to −0.18

Garcia−Cerrutti (2000) Calif. county panel −0.11

Hausman and Kellogg (2015) US state panel −0.11

Herbert and Kreil (1989) Monthly time series −0.36

Houthakker and Taylor (1970) Time series −0.15

Metcalf and Hassett (1999) RECS HH panel −0.08 to −0.71

Meier and Rehdanz (2010) UK HH panel −0.34 to −0.56

Rehdanz (2007) Germany HH panel −0.44 to −0.63

Sources: Authors and Alberini et al. (2011)

Table 2: Billing data summaries

Full dataset Border-area dataset

PG&E SoCalGas PG&E SoCalGas

N. 5-digit zip codes 597 611 18 18

N. 9-digit zip codes 680,846 610,207 18,047 16,295

N. unique households 5,888,276 2,526,503 152,418 68,407

N. bills 180,663,705 95,335,393 3,401,947 2,352,141

Approx. value (USD) $5.71B $3.28B $120M $70.5M

Notes: Full dataset refers to all of the PG&E and SoCalGas bills in the data. Border-area (discontinuity) dataset
refers to the subset of the full dataset for households located in the 18 5-digit zip codes served by both utilities
during 2010–2014.
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Table 3: Numerical summaries: Prices, quantities, and other variables of interest

5% Sample of California Border-discontinuity sample

Split by utility Split by season Split by CARE

Variable Overall PG&E SoCalGas Overall Winter Summer CARE Non-Care

Baseline price 0.8901 0.9823 0.7432 0.9026 0.8836 0.9204 0.8080 0.9811
[0.1686] [0.1206] [0.1242] [0.1419] [0.1361] [0.1448] [0.0854] [0.1311]

Average price 1.0138 1.1053 0.8680 1.0211 1.0008 1.0402 0.9086 1.1147
[0.1845] [0.1439] [0.1439] [0.1621] [0.1583] [0.1633] [0.1004] [0.1430]

Marginal price 1.0206 1.1277 0.8500 1.0387 1.0121 1.0637 0.9338 1.1259
[0.2260] [0.186] [0.173] [0.1983] [0.1905] [0.2021] [0.1448] [0.1944]

Therms 35.4626 37.7541 31.8135 33.8273 50.9544 17.7311 33.1136 34.4204
[33.7995] [36.0107] [29.5791] [30.7697] [35.2487] [11.5803] [28.7629] [32.3306]

Days 30.3992 30.4282 30.3530 30.3994 30.5876 30.2225 30.4040 30.3955
[1.4275] [1.2667] [1.6505] [1.3038] [1.3843] [1.1966] [1.2761] [1.3263]

Therms per day 1.1592 1.2355 1.0378 1.1063 1.6588 0.5871 1.0840 1.1249
[1.0921] [1.1698] [0.9426] [0.9936] [1.1354] [0.3838] [0.9304] [1.0429]

Total bill 36.8703 42.3938 28.0747 34.9508 52.0750 18.8573 30.3135 38.8040
[39.5758] [44.0564] [29.0445] [33.8812] [39.8973] [14.0069] [27.2567] [38.1017]

(Percent) CARE 27.43% 26.35% 29.15% 45.38% 45.00% 45.74% 100% 0%

Notes: Unbracketed values provide the variables’ means; bracketed values denote the variables’ standard deviations. The 5% sample of California is based upon 5% of
PG&E’s and SoCalGas’s natural gas bills from 2010–2014, sampling at the 5-digit zip code. The border-discontinuity sample represents all bills from PG&E and SoCalGas
for the 18 5-digit zip codes served by both utilities from 2010–2014.
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Table 4: Balance on observables: Comparing utilities’ customers across the discontinuity

Non-CARE CARE

Variable PG&E SoCalGas Diff. PG&E SoCalGas Diff.

Panel A: Summer

Therms consumed 17.61 17.29 0.32 19.35 18.00 1.34
[10.8] [11.7] [11.3] [11.3] [11.3] [11.3]

Days in bill 30.31 29.97 0.34 30.29 29.96 0.33
[1.16] [1.36] [1.28] [1.16] [1.36] [1.22]

Allowance 14.17 17.22 −3.05 14.14 17.11 −2.96
[0.805] [8.05] [6.14] [0.851] [8.17] [4.33]

Total bill 21.58 16.45 5.14 19.03 13.52 5.51
[14.8] [12.4] [13.8] [12.4] [9.35] [11.9]

HDDs 0.16 0.25 −0.08 0.14 0.26 −0.12
(thousands) [0.309] [0.407] [0.367] [0.267] [0.418] [0.315]

N 810,949 961,824 1,772,773 973,063 320,082 1,293,145

Panel B: Winter

Therms consumed 51.40 54.07 −2.67 49.60 49.94 −0.34
[33.8] [35.7] [34.8] [31.1] [33.1] [31.6]

Days in bill 30.55 30.78 −0.24 30.57 30.83 −0.26
[1.31] [1.8] [1.59] [1.31] [1.81] [1.45]

Allowance 46.70 49.07 −2.37 47.16 49.68 −2.52
[12.8] [10.7] [11.8] [12.4] [10.4] [12]

Total bill 59.79 50.60 9.19 45.35 36.51 8.84
[41.8] [36.4] [39.4] [30.3] [26.5] [29.7]

HDDs 1.69 1.73 −0.04 1.70 1.75 −0.05
(thousands) [0.467] [0.437] [0.452] [0.439] [0.422] [0.435]

N 746,140 800,037 1,546,177 871,795 270,198 1,141,993

Notes: Unbracketed values provide the variables’ means; bracketed values denote the variables’ standard
deviations. The standard deviations below the difference column (Diff.) are pooled across utilities. The difference
column denotes the difference in means across utilities for the given cross-section of data. For example, the
rightmost Diff. column in Panel A gives the difference between the PG&E mean and the SoCalGas mean for
CARE households in summer months, X̄P G E − X̄S C G . CARE households participate in the California Alternative
Rates for Energy (CARE) program. CARE targets low-income households and provides a 20 percent discount on
natural gas bills. Heating degree days (HDDs) are in thousands. We calculate the number of heating degrees for
day t with mean temperature T̄t (in ◦F) as HDDt = 1

{
T̄t < 65

}
×

(
65 − T̄t

)
. The HDDs variable above is thus

HDDS =
∑

t HDDt/1000.
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Table 5: OLS Results: Estimating elasticities, varying the dataset, price, and fixed effects

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4) (5) (6)

Log(Marginal price) 0.4698∗∗∗ 0.4346∗∗∗ 0.4276∗∗∗

(0.0106) (0.0136) (0.0134)

Log(Baseline price) 0.0217 −0.0918∗∗∗ −0.1009∗∗∗

(0.0147) (0.0201) (0.0209)

Bill HDDs T T T T T T
Household FE T T T T T T
Month-of-sample FE T T F T T F
City by month-of-sample FE F F T F F T
Sample 5% CA Border Border 5% CA Border Border
N 12,855,910 5,754,088 5,754,088 12,855,910 5,754,088 5,754,088

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at
which price varies). All regressions include heating degree days (HDDs) within the households’ billing cycle. Base or baseline price refers to the price the household
pays for its first unit (therm) of natural gas. Each price in the table is the second lag of price, i.e., the prices from two bills prior to the current bill. Significance levels:
*10%, **5%, ***1%.
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Table 6: First- and second-stage results:
Instrumenting consumers’ prices with the Henry Hub spot price

Dependent variable: Log(Consumption, daily avg.)

Panel A: First-stage results
(1) (2) (3) (4) (5)

Marginal Average Avg. Mrg. Baseline Sim. Mrg.

Spot price 0.3679∗∗∗ 0.3697∗∗∗ 0.3384∗∗∗ 0.4699∗∗∗ 0.3949∗∗∗

(0.0774) (0.0521) (0.0570) (0.0434) (0.0840)

Spot price 0.7868∗∗∗ 0.7174∗∗∗ 0.9389∗∗∗ 0.8212∗∗∗ 0.8174∗∗∗

× SoCalGas (0.0299) (0.0186) (0.0198) (0.0176) (0.0317)

Panel B: Second-stage results

Log(Price) −0.2098∗∗∗ −0.2312∗∗∗ −0.1734∗∗∗ −0.2030∗∗∗ −0.1705∗∗

(instrumented) (0.0706) (0.076) (0.0585) (0.065) (0.0698)

First-stage F stat. 418.4 899.4 1,311.0 1,333.2 369.9
Bill HDDs T T T T T
Household FE T T T T T
City mo.-of-sample FE T T T T T
N 5,754,085 5,754,085 5,754,085 5,754,085 4,682,526

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the houesholds’ bill. (HH) Spot price refers to the weekly average spot price for natural gas
at Louisiana’s Henry Hub in the week preceding the utility’s price change. Each price in the table is the second
lag of price, i.e., the prices from two bills prior to the current bill. Avg. or average price is the total bill divided by
quantity. Avg. Mrg. or average marginal price denotes the quantity-weighted average of the household’s marginal
price. Sim. Mrg. or simulated marginal price is the household’s marginal price (using the relevant pricing regime)
as a function of the household’s historical consumption patterns (lagged bills 10 through 14). As discussed in the
empirical strategy section, the numbers of observations differ due to the lags required to calculate the simulated
instrument for marginal price. Significance levels: *10%, **5%, ***1%.
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Table 7: Comparing lags, second-stage results: Marginal and average prices with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Marginal Price Average Price

(1) (2) (3) (4) (5) (6) (7) (8)
1 Lead No lag 1 Lag 2 Lags 1 Lead No lag 1 Lag 2 Lags

Log(Price) 0.0480 −0.1121 −0.0223 −0.2098∗∗∗ 0.0515 −0.1244 −0.0177 −0.2312∗∗∗

instrumented (0.0902) (0.0762) (0.0668) (0.0706) (0.0972) (0.0805) (0.0730) (0.0760)

First-stage F stat. 326.7 337.9 410.8 418.4 679.1 725.8 884.4 899.4
Bill HDDs T T T T T T T T
Household FE T T T T T T T T
City month-of-sample FE T T T T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,501,467 5,754,088 5,754,088 5,754,085

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to the price on the household’s previous bill; etc. Avg. or
average price is the total bill divided by quantity. (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s Henry Hub in the week preceding
the utility’s price change. Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance levels: *10%, **5%, ***1%.
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Table 8: Heterogeneity by season or income:
Second-stage results, instrumenting marginal price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

Split by Season Split by CARE (Income)

(1) (2) (3) (4)
Summer Winter CARE Non-CARE

Log(Price) 0.0519∗ −0.3769∗∗∗ −0.2443∗∗∗ −0.1413∗∗

instrumented (0.0285) (0.1399) (0.0794) (0.0684)

First-stage F stat. 319.6 174.2 393.7 335.8
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 3,065,917 2,688,168 2,435,135 3,318,950

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Summer includes April through September. Winter includes October
through March. CARE households participate in the California Alternative Rates for Energy (CARE) program.
CARE targets low-income households and provides a 20 percent discount on natural gas bills. We estimate the
heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then individually
estimating the models. Significance levels: *10%, **5%, ***1%.
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Table 9: Heterogeneity by season and income:
Second-stage results, instrumenting marginal price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

(1) (2) (3) (4)
Summer Summer Winter Winter

CARE Non-CARE CARE Non-CARE

Log(Price) 0.0457 0.0742∗∗ −0.5226∗∗∗ −0.3173∗∗

instrumented (0.0353) (0.0324) (0.1424) (0.1498)

First-stage F stat. 303.4 237.1 145.6 156.7
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 1,293,144 1,772,773 1,141,991 1,546,177

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Summer includes April through September. Winter includes October
through March. CARE households participate in the California Alternative Rates for Energy (CARE) program.
CARE targets low-income households and provides a 20 percent discount on natural gas bills. We estimate the
heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then individually
estimating the models. Significance levels: *10%, **5%, ***1%.
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A Appendix

A.1 Appendix figures

Figure A1: California’s 16 CEC climate zones determine daily allowance within season

Notes: The shapefile underlying this map comes from the California Energy Commission (CEC). This map
constitutes the CEC’s climate-based building zones, which affect a number of energy policies, including households’
baseline allowances. California Energy Commission 2015, 2017
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Figure A2: Example bill: PG&E residential natural gas bill

Notes: This 30-day bill for a PG&E customer (one of the authors) overlaps two calendar months in 2016: 7 days in November (24–30) and 23 days in December
(01–23). Because PG&E’s prices vary with the calendar month, PG&E needs to split consumption by calendar month. To achieve this task, PG&E assumes the customer
consumed evenly across all days in the bill. Specifically, PG&E calculates that the customer consumed 10 therms and assigns the same amount of consumption to each
day during the 30-day period. Thus, PG&E assigns 10 × 7/30 ≈ 2.33 to November (the consumer spent 7 days in November in this 30-day bill) and 10 × 23/30 ≈ 7.67 to
December (the consumer spent 23 days in November in this 30-day bill).
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Figure A3: PRISM: Mean temperature raster for 15 June 2010
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Figure A4: Expanding the study area: Zip codes neighboring the study’s zip codes

Zip-code group

Common Zips: zip codes served by both utilities

Neighbors 1: neighbors to Common Zips

Neighbors 2: neighbors to Neighbors 1

Neighbors 3: neighbors to Neighbors 2

Notes: This figure illustrates the four groups of zip codes referenced in Table A16. The groups begin
with Common Zips—the group in which each zip code receives natural gas service from both PG&E
and SoCalGas—and expands by adding each group’s immediately proximate neighbors. E.g.,
Neighbors 2 consists of all zip codes that neighbor a zip code in Neighbors 1 (excluding those zip codes
already included in another group).
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A.2 Appendix tables

Table A1: Price correlation: Bivariate correlations between types of prices

Type of Price

Marginal Average Avg. Mrg. Baseline Sim. mrg.

Marginal 1

Average 0.8898 1

Avg. Mrg. 0.8628 0.9421 1

Baseline 0.7901 0.942 0.9202 1

Sim. mrg. 0.8503 0.849 0.8174 0.781 1

Notes: Avg. or average price is the total bill divided by quantity. Avg. Mrg. or average marginal price denotes the
quantity-weighted average of the household’s marginal price. Base or baseline price refers to the price the
household pays for its first unit (therm) of natural gas. Sim. Mrg. or simulated marginal price is the household’s
marginal price (using the relevant pricing regime) as a function of the household’s historical consumption
patterns (lagged bills 10 through 14).

Table A2: Testing the simulated instrument:
Regressing marginal price on simulated marginal price

Dependent variable: Marginal price

(1) (2)

Simulated marginal price 0.6425∗∗∗ 0.6444∗∗∗

(0.00435) (0.00433)

Bill HDDs T T
Household FE T T
City month-of-sample FE T T
Lags used for sim. inst. 10–14 11–13
N 4,892,064 4,785,877

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Sim. Mrg. or simulated marginal price is the household’s
marginal price (using the relevant pricing regime) as a function of the household’s historical consumption
patterns (lagged bills 10 through 14 or 11 through 13). As discussed in the empirical strategy section, the
numbers of observations differ due to the lags required to calculate the simulated instrument for marginal price.
Significance levels: *10%, **5%, ***1%.
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Table A3: Comparing lags, second-stage results: Marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0480 −0.1121 −0.0223 −0.2098∗∗∗ −0.1582∗∗

instrumented (0.0902) (0.0762) (0.0668) (0.0706) (0.0698)

First-stage F stat. 326.7 337.9 410.8 418.4 403.4
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. (HH) Spot price refers to the weekly average spot price for natural
gas at Louisiana’s Henry Hub in the week preceding the utility’s price change. Each column denotes a separate
regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the households’
billing period. Significance levels: *10%, **5%, ***1%.

Table A4: Comparing lags, second-stage results: Sim. marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Simulated Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0317 −0.0549 0.0329 −0.1705∗∗ −0.1596∗∗

instrumented (0.0899) (0.0718) (0.0626) (0.0698) (0.0720)

First-stage F stat. 354.7 379.6 393.2 369.9 332.1
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 4,778,382 4,892,064 4,785,877 4,682,526 4,590,790

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Sim. Mrg. or simulated marginal price is the household’s marginal
price (using the relevant pricing regime) as a function of the household’s historical consumption patterns (lagged
bills 10 through 14). (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s Henry
Hub in the week preceding the utility’s price change. Each column denotes a separate regression. Errors are
two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which price
varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance
levels: *10%, **5%, ***1%.
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Table A5: Comparing lags, second-stage results: Avg. marginal price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Average Marginal Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0432 −0.0853 −0.0313 −0.1734∗∗∗ −0.1356∗∗

instrumented (0.0745) (0.0618) (0.0568) (0.0585) (0.0585)

First-stage F stat. 969.4 1,036.4 1,275.3 1,311.0 1,306.1
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Sim. Mrg. or simulated marginal price is the household’s marginal
price (using the relevant pricing regime) as a function of the household’s historical consumption patterns (lagged
bills 10 through 14). (HH) Spot price refers to the weekly average spot price for natural gas at Louisiana’s Henry
Hub in the week preceding the utility’s price change. Each column denotes a separate regression. Errors are
two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at which price
varies). All regressions include heating degree days (HDDs) within the households’ billing period. Significance
levels: *10%, **5%, ***1%.

Table A6: Comparing lags, second-stage results: Avgerage price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Average Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0515 −0.1244 −0.0177 −0.2312∗∗∗ −0.1680∗∗

instrumented (0.0972) (0.0805) (0.0730) (0.0760) (0.0749)

First-stage F stat. 679.1 725.8 884.4 899.4 923.7
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Avg. or average price is the total bill divided by quantity. (HH) Spot
price refers to the weekly average spot price for natural gas at Louisiana’s Henry Hub in the week preceding the
utility’s price change. Each column denotes a separate regression. Errors are two-way clustered within (1)
household and (2) utility by climate-zone by billing-cycle (the level at which price varies). All regressions include
heating degree days (HDDs) within the households’ billing period. Significance levels: *10%, **5%, ***1%.
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Table A7: Comparing lags, second-stage results: Baseline price with HH spot price IV

Dependent variable: Log(Consumption, daily avg.)

Lag of Baseline Price

(1) (2) (3) (4) (5)
1 Lead No lag 1 Lag 2 Lags 3 Lags

Log(Price) 0.0420 −0.1164∗ −0.0066 −0.2030∗∗∗ −0.1396∗∗

instrumented (0.0839) (0.0684) (0.0637) (0.0650) (0.0630)

First-stage F stat. 1,085.3 1,143.4 1,241.8 1,333.2 1,533.2
Bill HDDs T T T T T
Household FE T T T T T
City month-of-sample FE T T T T T
N 5,501,467 5,754,088 5,754,088 5,754,085 5,754,079

Notes: With regard to lags: No lag refers to the price for the household’s contemporaneous bill; 1 Lag refers to
the price on the household’s previous bill; etc. Base or baseline price refers to the price the household pays for its
first unit (therm) of natural gas. (HH) Spot price refers to the weekly average spot price for natural gas at
Louisiana’s Henry Hub in the week preceding the utility’s price change. Each column denotes a separate
regression. Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle
(the level at which price varies). All regressions include heating degree days (HDDs) within the households’
billing period. Significance levels: *10%, **5%, ***1%.
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Table A8: Heterogeneity by season or income:
Second-stage results, instrumenting average price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Average Price

Split by Season Split by CARE (Income)

(1) (2) (3) (4)
Summer Winter CARE Non-CARE

Log(Price) 0.0579∗ −0.4694∗∗∗ −0.2650∗∗∗ −0.1557∗∗

instrumented (0.0316) (0.1586) (0.0834) (0.0740)

First-stage F stat. 765.7 223.4 814.7 745.8
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 3,065,917 2,688,168 2,435,135 3,318,950

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Summer includes April through September. Winter includes
October through March. CARE households participate in the California Alternative Rates for Energy (CARE)
program. CARE targets low-income households and provides a 20 percent discount on natural gas bills. We
estimate the heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then
individually estimating the models. Avg. or average price is the total bill divided by quantity. Each price in the
table is the second lag of price, i.e., the prices from two bills prior to the current bill. Significance levels: *10%,
**5%, ***1%.
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Table A9: Heterogeneity by season and income:
Second-stage results, instrumenting average price with HH spot price

Dependent variable: Log(Consumption, daily avg.)

Average Price

(1) (2) (3) (4)
Summer Summer Winter Winter

CARE Non-CARE CARE Non-CARE

Log(Price) 0.0495 0.0828∗∗ −0.6106∗∗∗ −0.3971∗∗

instrumented (0.0384) (0.0359) (0.1570) (0.1687)

First-stage F stat. 691.5 591.9 212.7 184.8
Bill HDDs T T T T
Household FE T T T T
City month-of-sample FE T T T T
N 1,293,144 1,772,773 1,141,991 1,546,177

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Summer includes April through September. Winter includes October
through March. CARE households participate in the California Alternative Rates for Energy (CARE) program.
CARE targets low-income households and provides a 20 percent discount on natural gas bills. We estimate the
heterogeneity results by splitting the sample along the dimension(s) of heterogeneity and then individually
estimating the models. Avg. or average price is the total bill divided by quantity. Each price in the table is the
second lag of price, i.e., the prices from two bills prior to the current bill. Significance levels: *10%, **5%, ***1%.
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Table A10: First-stage results:
Robustness to specification: Marginal price instrumented with spot price

Dependent variable: Log(Marginal price)

(1) (2) (3) (4)

Spot price 0.3398∗∗∗ 0.3679∗∗∗ 0.3806∗∗∗ 0.3955∗∗∗

(0.0757) (0.0774) (0.0798) (0.0547)

Spot price × SoCalGas 0.7858∗∗∗ 0.7868∗∗∗ 0.7856∗∗∗ 0.7385∗∗∗

(0.0300) (0.0299) (0.0302) (0.0378)

First-stage F stat. 416.1 418.4 415.2 367.0
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. (HH) Spot price refers to the weekly average spot price for natural
gas at Louisiana’s Henry Hub in the week preceding the utility’s price change. Significance levels: *10%, **5%,
***1%.

Table A11: Second-stage results:
Robustness to specification: Marginal price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Marginal price) −0.3623∗∗∗ −0.2098∗∗∗ −0.1705∗∗∗ −0.1495∗∗

instrumented (0.0854) (0.0706) (0.0621) (0.063)

First-stage F stat. 416.1 418.4 415.2 367.0
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Significance levels: *10%, **5%, ***1%.
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Table A12: Second-stage results:
Robustness to specification: Average price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Average price) −0.4076∗∗∗ −0.2312∗∗∗ −0.1891∗∗∗ −0.1574∗∗

instrumented (0.0911) (0.076) (0.067) (0.0656)

First-stage F stat. 897.5 899.4 881.1 661.1
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Avg. or average price is the total bill divided by quantity.
Significance levels: *10%, **5%, ***1%.

Table A13: Second-stage results:
Robustness to specification: Avg. mrg. price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Avg. marginal price) −0.2951∗∗∗ −0.1734∗∗∗ −0.1529∗∗∗ −0.1330∗∗

instrumented (0.0697) (0.0585) (0.0514) (0.0549)

First-stage F stat. 1,299.9 1,311.0 1,275.8 780.6
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Avg. Mrg. or average marginal price denotes the quantity-weighted
average of the household’s marginal price. Significance levels: *10%, **5%, ***1%.
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Table A14: Second-stage results:
Robustness to specification: Baseline price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Simulated mrg. price) −0.3148∗∗∗ −0.1705∗∗ −0.1310∗∗ −0.1025
instrumented (0.0843) (0.0698) (0.0602) (0.0675)

First-stage F stat. 368.9 369.9 331.3 181.9
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 4,682,526 4,682,526 4,682,526 4,682,526

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Sim. Mrg. or simulated marginal price is the household’s marginal
price (using the relevant pricing regime) as a function of the household’s historical consumption patterns (lagged
bills 10 through 14). Significance levels: *10%, **5%, ***1%.

Table A15: Second-stage results:
Robustness to specification: Baseline price instrumented with spot price

Dependent variable: Log(Consumption, daily avg.)

(1) (2) (3) (4)

Log(Baseline price) −0.3643∗∗∗ −0.2030∗∗∗ −0.1653∗∗∗ −0.1376∗∗

instrumented (0.077) (0.065) (0.0576) (0.0572)

First-stage F stat. 1,322.9 1,333.2 1,187.3 762.5
Bill HDDs F T T T
Household FE T T T T
City by month-of-sample FE T T F F
City by week-of-sample FE F F T F
Zip by week-of-sample FE F F F T
N 5,754,085 5,754,085 5,754,085 5,754,085

Notes: Each column denotes a separate regression. Errors are two-way clustered within (1) household and (2)
utility by climate-zone by billing-cycle (the level at which price varies). All regressions include heating degree
days (HDDs) within the households’ billing period. Each price in the table is the second lag of price, i.e., the
prices from two bills prior to the current bill. Base or baseline price refers to the price the household pays for its
first unit (therm) of natural gas. Significance levels: *10%, **5%, ***1%.
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Table A16: Second-stage results: Extending the set of zip codes to neighboring zip codes

Dependent variable: Log(Consumption, daily avg.)

Marginal Price

(1) (2) (3) (4)
Common Zips Neighbors 1 Neighbors 2 Neighbors 3

Log(Marginal price) −0.2098∗∗∗ −0.1896∗∗∗ −0.1241∗∗∗ −0.0946∗∗∗

instrumented (0.0706) (0.049) (0.0401) (0.0357)

First-stage F stat. 418.4 713.0 735.8 1,182.9
Bill HDDs T T T T
Household FE T T T T
City by month-of-sample FE T T T T
Levels of neighboring zip codes 0 1 2 3
N 5,754,085 11,679,371 19,629,128 28,277,567

Notes: Common zips refers the set of zip codes in which each zip code receives natural gas from both PG&E and
SoCalGas. Neighbors 1 includes the common zips and the zip codes that immediately neighbor the common zips.
Neighbors 2 adds the neighbors of these neighbors (adding the neighbors of Neighbors 1). Neighbors 3 adds the
neighbors of Neighbors 2. Figure A4 depicts these sets of zip codes. Each column denotes a separate regression.
Errors are two-way clustered within (1) household and (2) utility by climate-zone by billing-cycle (the level at
which price varies). All regressions include heating degree days (HDDs) within the households’ billing period.
Each price in the table is the second lag of price, i.e., the prices from two bills prior to the current bill.
Significance levels: *10%, **5%, ***1%.
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Table A17: Billing data description: Columns within the billing data

Feature name Description

Account ID Unique identifier for household account with the utility

Premise ID Unique physical-location based identifier

Prior read date Effectively the start date of the bill

Current read date Effectively the end date of the bill

Gas rate schedule Classifies type of customer (and the customer’s price regime)

Gas usage Volume of gas consumed during billing period (in therms)

Bill revenue Total bill charged to household for the current billing period

Climate band California Public Utility Commission-based climate region

Service address 9-digit zip Household’s 9-digit zip code

Service start date Date on which the household began service

Service stop date Date on which the household ended service
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A.3 Calculating bills

As discussed in the body of the paper, the majority of bills do not line up with calendar months.

Consequently, households’ billing periods do not line up with utilities’ monthly changes in

price (or with changes in daily allowances resulting from changes in seasons). Thus, a single

bill will typically span multiple price regimes. The two utilities deal with change in price

in subtly different ways. This “problem” results from the fact that neither utility knows

households’ daily consumption.

PG&E When a PG&E customer’s bill spans multiple calendar months (price regimes), PG&E

calculates individual bills for each month. However, because PG&E does not know the daily

consumption levels, they assume constant daily consumption throughout the billing period.

SoCalGas In the case that a SoCalGas customer’s bill spans multiple calendar months (price

regimes), SoCalGas computes time-weighted average prices (and allowances) by aggregating

the prices and allowances from the calendar months by the number of days the bill spent in

each month.

A.4 Data work

In this section, we describe the exclusion and cleaning choices that we made while preparing

the data for analysis. Our R scripts are available upon request, though the data themselves

cannot be shared due to agreements with the utilities and the IRB.

Exclusions:

• We omitted SoCalGas price data from advice letters 3644, 3680, 3695, 3807, 4053,

and 4061, as they were updated by letters 3660, 3697, 3697, 3810, 4055, and 4069,

respectively.

• We dropped pre-2008 data (PG&E and prices/allowances), as SoCalGas did not share

billing data for pre-2009 bills.

• We trimmed the shortest 2.5% and longest 2.5% bills (resulted in keeping bills of length

between 28-34 days). We did this to omit the first or last bills for a household and bills
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that were irregular for any other reasons. We applied this requirement of 28–34 days

to the current bill and the first through the third lagged bills, because we consider the

effect of lagged prices on contemporaneous consumption.

• We dropped bills missing any critical information: number of therms (quantity), revenue,

etc.

• We dropped bills outside the central 99% of data (i.e., the bill’s revenue or volume

fall in the bottom 0.5% or in the top 0.5%). Our main results apply this rule for the

contemporaneous and the first three lagged bills.

• We dropped bills whose total revenue we could not predict within five percent (using

known prices, quantities, and discounts).

• We dropped bills for exactly zero therms.

CARE status While the datasets presumably denoted CARE (California Alternate Rates for

Energy) households, we found many households not denoted as CARE households whose

charges were consistent with CARE pricing (i.e., charges were 80 percent of the standard

tariffs). We classified these households as CARE households.
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