TABLE OF CONTENTS

SURVEY OF INCOME AND PROGRAM PARTICIPATION (SIPP) 2008 PANEL WAVE 13 TOPICAL MODULE MICRODATA FILE

Abstract 1-1
File Information 2-1
Index 3-1
Variable Listing 4-1
How to Use the Data Dictionary. 5-1
Data Dictionary 6-1
Source and Accuracy Statement 7-1
Wave 13 Topical Module Frequencies 8-1
Wave 13 Topical Module Univariates 9-1
Appendices
A. Wave 13 Questionnaire A-1
B. Working Papers B-1
C. User Notes. C-1

ABSTRACT
Survey of Income and Program Participation (SIPP) 2008 Panel Wave 13 Topical Module Microdata File, [machine-readable data file]/ conducted by the U.S. Census Bureau. Washington: The Bureau [producer and distributor], 2015.

Type of File

Microdata; unit of observation is an individual.

Universe Description

The universe is the resident population of the United States, excluding persons living in institutions and military barracks.

Subject-Matter Description

The file contains data primarily from the topical module portion of the questionnaire. However, for purposes of matching persons to the core file, which was released separately, the beginning of the file contains identifying information as well as some basic demographics and social characteristics that are also contained in the core file. The identifying information includes sample unit, household address id, and entry address id. Demographic and social characteristics include age, sex, race (White alone; Black alone; Asian alone; Residual), ethnic origin, marital status, household relationship, and education. Data in this topical module file include professional certifications and educational certificates.

The sample in each wave consists of 4 rotation groups, each interviewed in a different month. For Wave 13, the interview months were from September 2012 to December 2012. For each group, the reference period for reporting labor force activity and income is the four calendar months preceding the interview month.

SIPP is a longitudinal survey where each sampled household and each descendent household is reinterviewed at 4-month intervals for each interview or "wave." This file contains the results of the thirteenth interview. Unique codes are included on each record to allow linking together the same persons from the preceding and subsequent waves.

Geographic Coverage

United States. No geography below the national level is shown on this file. State and metropolitan status are shown. Codes are included for 50 individual States and the District of Columbia, although the sample was not designed to produce State estimates.

Technical Description

File Structure: Rectangular. Each logical record for a sampled person includes information on the household and family of which the person was a part during each month of the reference period, as well as characteristics of the person. Beginning in 1990 the unit observation changed from one record for each person to one record for each person for each month in sample.

File Size: 76,034 logical records; 132 characters per record
File Sort Sequence of Sample Units: Sampling unit sequence number, by entry address ID, by person number within sampling unit and reference month.

Reference Materials

Survey of Income and Program Participation (SIPP) 2008 Panel, Wave 13 Topical Module Microdata File Technical Documentation. The documentation includes this abstract, the data dictionary, an index to the data dictionary, questionnaire facsimiles, and general information on SIPP.

Survey of Income and Program Participation Users' Guide. The Users' Guide contains a general overview of the file as well as chapters on survey design and content, structure and use of cross-sectional files, linking waves and reliability of the data. It is available at http://www.census.gov/programs-surveys/sipp/methodology/users-guide.html

Related Reports Online and in Print

Related reports include working papers, compilations of papers presented at annual meetings of the American Statistical Association, articles appearing in the Journal of Economic and Social Measurement, and reports in the P-70 series of the Current Population Reports. These reports are available online in PDF in the Publications Library at http://census.gov/library/publications.html

Related Machine-Readable Data Files

SIPP files from all Waves of the 1984 through 1993 Panels, 1996 Panel, 2001 Panel, 2004 Panel, and 2008 Panel are available from the Customer Services Center. Files (1990 forward) may be downloaded from the SIPP FTP website at http://thedataweb.rm.census.gov/ftp/sipp_ftp.html

File Availability

You can order the file on disc from the Customer Services Center at (301) 763-INFO (4636) or through our online sales catalog (click "Catalogs" on the Census Bureau's home page). This file also may be downloaded from the SIPP FTP website at http://thedataweb.rm.census.gov/ftp/sipp ftp.html

FILE INFORMATION

Matching Topical Module File with Core File

Since the core and topical module data are released as separate files, it may be necessary to match the two files. The two files contain the following information for linking purposes.

SSUID	Sample unit identifier
SPANEL	Panel year
SWAVE	Wave of data collection
SROTATON	Rotation of data collection
TFIPSST	FIPS State Code
EOUTCOME	Interview status code for this household
SHHADID	Household address ID differentiates hhlds in sample unit
SINTHHID	Household address ID of person in interview month
RFID	Family ID number for this month
RFID2	Family ID excluding related subfamily members
EPPIDX	Person index
EENTAID	Address ID of household where person entered sample
EPPPNUM	Person number
EPOPSTAT	Population status based on age in fourth reference month
EPPINTVW	Person's interview status
EPPMIS4	Person's fourth month interview status
ESEX	Sex of this person
ERACE	Race of this person
EORIGIN	Spanish, Hispanic or Latino
WPFINWGT	Person weight
ERRP	Household relationship
EMS	Marital status
EPNMOM	Person number of mother
EPNDAD	Person number of father
EPNGUARD	Person number of guardian
EPNSPOUS	Person number of spouse
RDESGPNT	Designated parent or guardian flag
TAGE	Age as of last birthday
EEDUCATE	Highest degree received or grade completed

Geographic Coverage

United States. State and metropolitan status are shown. Codes are included for 50 individual States and the District of Columbia, although the sample was not designed to produce State estimates. The file identifies the metropolitan status code for each household.

Identification Number System

The SIPP identification scheme is designed to uniquely identify individuals in each wave, provide a means of linking the same individuals over time, and group individuals into households and families over time.

The various components of the identification scheme are listed below:

SSUID	Sample Unit Identification Number
SINTHHID	Address ID
EENTAID	Entry Address ID
EPPPNUM	Person Number

The sample unit identification number was created by scrambling together the PSU, segment, and serial numbers used for Census Bureau administrative purposes. This identifier is constructed the same way on each wave regardless of moves, to enable matching from wave to wave.

The two-digit address ID code identifies each household associated with the same sample unit identification number. The first digit of the address ID code indicates the wave in which that address was first assigned for interview. The second digit sequentially numbers multiple households that have the same serial number. The address ID code is 11 for all sample addresses in Wave 1. As SIPP sample persons move to new addresses, new address ID codes are assigned. Any new address to which sample unit members moved during Wave 4 is numbered in the 40's.

The person ID is a five-digit number consisting of the two-digit entry address ID and a three-digit person number. Person numbers 101, 102, etc., are assigned in Wave 1; 201, 202, etc., are assigned to persons added to the roster in Wave 2, and so forth. This five-digit number is not changed or updated, regardless of moves.

The sampling unit serial number and address ID code uniquely identifies each household in any given wave. The sampling unit serial number can link all households in subsequent waves back to the original Wave 1 household.

Topcoding of Income Variables

To protect against the possibility that a user might recognize the identity of a SIPP respondent with very high income, income from every source is "topcoded" so that no individual income amounts above $\$ 150,000$ are revealed. While the data dictionary indicates a topcode of 50,000 for monthly income, this topcode will rarely be used. In most cases the monthly income is shown as an individual dollar amount of $\$ 12,500$, with $\$ 12,500$ actually representing " $\$ 12,500$ or more." (The $\$ 150,000$ annual income topcode is $\$ 12,500$ multiplied by 12 months). Individual monthly amounts above $\$ 12,500$ may occasionally be shown if the respondent's income varied considerably from month to month, as long as the average does not exceed $\$ 12,500$. For example, if a respondents' income from a single job were concentrated in only one of the four reference months, a figure as high as $\$ 50,000$ could be shown. (Income from interest or property have lower topcodes).

Summary income figures on the person, family, and household records are simple sums of the components shown on the file after topcoding, and are not independently topcoded. Thus, a person with high income from several sources (jobs, businesses, property) could have aggregate monthly income well over the topcode for each source. Families and households with a number of high income members could theoretically have aggregate income shown well over $\$ 150,000$, though well below the $\$ 1.5$ million shown as the highest allowable value in the data dictionary.

The user is cautioned against trying to make much use of the occasional monthly figures above $\$ 12,500$, except in calculating aggregates or observing patterns across the 4-month period for a single individual, family, or household. Those units with higher monthly amounts shown are a biased sample of high income units, more likely to include units with income from multiple sources than other units with equally high aggregate income which comes from a single source.

INDEX TO 2008 WAVE 13 TOPICAL MODULE FILE

Key to Concept Labels

AEC - Professional Certifications and Educational Certificates Variables
ED - Education Variables
FA - Family Variables
HH - Household Variables
PE - Person, Demographic, and Coverage Variables
SU - Sample Unit Variables
WW - Weighting Variables

Description

AEC: Can cert be used to get a job
AEC: Demo skills take test or exam to earn cert or license
AEC: Ever earned this type of certificate
AEC: Have a professional or state or industry cert
AEC: How long to earn certificate
AEC: Is certification or license required
AEC: MOST RECENT completed certificate
AEC: Mainly for work-related or personal interest
AEC: Mainly self-study or classes or course
AEC: Major subject or field of study
AEC: Take course or training to earn cert or license
AEC: Take test or class or earn CEUs
AEC: Type of school or organization
AEC: Universe indicator.
AEC: Who awarded this certification or license
ED: Highest Degree received or grade completed
FA: Family ID Number for this month
FA: Family ID excluding related subfamily members
HH: FIPS State Code
HH: Interview Status code for this household
PE: Address ID of hhld where person entered sample
PE: Age as of last birthday
PE: Designated parent or guardian flag
PE: Household relationship
PE: Marital status
PE: Person index
PE: Person longitudinal key
PE: Person number
PE: Person number of father
PE: Person number of guardian
PE: Person number of mother
PE: Person number of spouse
PE: Person's 4th month interview status
PE: Person's interview status

Variable	Position		
IJOBPCER	113	-	114
IEXPCERT	119	-	120
ICERT	123	-	124
IPROCERT	105	-	106
ITIMCERT	131	-	132
IRJPCERT	115	-	116
IFLDCERT	125	-	126
IWHYPCER	109	-	110
ISDYCERT	129	-	130
IFLDPCER	111	-	112
ITRNPCER	117	-	118
ICDPCERT	121	-	122
ISCHCERT	127	-	128
EAECUNV	103	-	104
IWHOPCER	107	-	108
EEDUCATE	90	-	91
RFID	33	-	35
RFID2	36	-	38
TFIPSST	25	-	26
EOUTCOME	30	-	32
EENTAID	42	-	44
TAGE	69	-	70
RDESGPNT	88	-	89
ERRP	67	-	68
EMS	71	-	71
EPPIDX	39	-	41
LGTKEY	92	-	99
EPPPNUM	45	-	48
EPNDAD	80	-	83
EPNGUARD	84	-	87
EPNMOM	76	-	79
EPNSPOUS	72	-	75
EPPMIS4	52	-	52
EPPINTVW	50		51

ALPHABETICAL VARIABLE LISTING TO 2008 WAVE 13 TOPICAL MODULE FILE

Key to Concept Labels

AEC - Professional Certifications and Educational Certificates Variables
ED - Education Variables
FA - Family Variables
HH - Household Variables
PE - Person, Demographic, and Coverage Variables
SU - Sample Unit Variables
WW - Weighting Variables

Variable		Description	Position		
EAECUNV	AEC:	Universe indicator.	103		10
EEDUCATE	ED:	Highest Degree received or grade completed	90		91
EENTAID	PE:	Address ID of hhld where person entered sample	42		44
EMS	PE:	Marital status	71		71
EORIGIN	PE:	Spanish, Hispanic or Latino	55		56
EOUTCOME	HH:	Interview Status code for this household	30		32
EPNDAD	PE:	Person number of father	80		83
EPNGUARD	PE:	Person number of guardian	84		87
EPNMOM	PE:	Person number of mother	76		79
EPNSPOUS	PE:	Person number of spouse	72		75
EPOPSTAT	PE:	Population status based on age in 4th reference month	49		49
EPPIDX	PE:	Person index	39		41
EPPINTVW	PE:	Person's interview status	50		51
EPPMIS4	PE:	Person's 4th month interview status	52		52
EPPPNUM	PE:	Person number	45		48
ERACE	PE:	The race(s) the respondent is	54		54
ERRP	PE:	Household relationship	67		68
ESEX	PE:	Sex of this person	53		53
ICDPCERT	AEC:	Take test or class or earn CEUs	121		
ICERT	AEC:	Ever earned this type of certificate	123		124
IEXPCERT	AEC:	Demo skills take test or exam to earn cert or license	119		120
IFLDCERT	AEC:	MOST RECENT completed certificate	125		126
IFLDPCER	AEC:	Major subject or field of study	111		112
IJOBPCER	AEC:	Can cert be used to get a job	113		114
IPROCERT	AEC:	Have a professional or state or industry cert	105		106
IRJPCERT	AEC:	Is certification or license required	115		116
ISCHCERT	AEC:	Type of school or organization	127		128
ISDYCERT	AEC:	Mainly self-study or classes or course	129		130
ITIMCERT	AEC:	How long to earn certificate	131		132
ITRNPCER	AEC:	Take course or training to earn cert or license	117		118
IWHOPCER	AEC:	Who awarded this certification or license	107		108
IWHYPCER	AEC:	Mainly for work-related or personal interest	109		
LGTKEY	PE:	Person longitudinal key	92		

SIPP 2008 WAVE 13 TOPICAL MODULE MICRODATA FILES

Variable		Description	Position		
RDESGPNT	PE:	Designated parent or guardian flag	88	-	89
RFID	FA:	Family ID Number for this month	33	-	35
RFID2	FA:	Family ID excluding related subfamily members	36	-	38
SHHADID	SU:	Hhld Address ID differentiates hhlds in sample unit	27	-	29
SINTHHID	SU:	Hhld Address ID of person in interview month	100	-	102
SPANEL	SU:	Sample Code - Indicates Panel Year	18	-	21
SROTATON	SU:	Rotation of data collection	24	-	24
SSUID	SU:	Sample Unit Identifier	6	-	17
SSUSEQ	SU:	Sequence Number of Sample Unit - Primary Sort Key	1	-	5
SWAVE	SU:	Wave of data collection	22	-	23
TAGE	PE:	Age as of last birthday	69	-	70
TFIPSST	HH:	FIPS State Code	25	-	26
WPFINWGT	WW:	Person weight	57	-	66

HOW TO USE THE DATA DICTIONARY

The Data Dictionary describes the file contents and provides locations for each variable (record layout of the public-use computer tape file.) The first line ("D" Line) of each data item description gives the variable name, size of the data field, and the begin position of that field. The components include a short mnemonic or field name for use with software packages; field size; starting position; and a description of field contents with possible values.

The next few lines contain descriptive text and any applicable notes. Categorical value codes and labels are given where needed. Comment notes marked by an (*) are provided throughout for the rest of the dictionary components. Comments should be removed from the machine-readable version of the data dictionary before using it to help access the data file.

The first line of each data item description begins with the character "D" (left-justified, two characters). The "D" flag indicates lines in the data dictionary containing the name, size and begin position of each data item. The second line of each data item description begins with the character "T" (left-justified, two characters). The "T" flag indicates lines in the data dictionary containing the category code and short description of the variable. The line beginning with the character "U" describes the universe for that item. Lines containing categorical value codes and labels follow next and begin with the character "V". The special character (.) denotes the start of the value labels. Two examples of data item descriptions follow:

```
D IPROCERT 2 105
T AEC: Have a professional or state or industry
cert
            PROCERT Now I'd like to ask you about
            professional certification and licensure.
            Did ... have a professional certification
            or state or industry license? **NOTE: This
            variable has not been edited** Universe =
            All persons age 16+ (TAGE ge
            16)
V -2 .Refused
V -1 .Don't know
V 0 .Not answered
V 1 .Yes
V 2 .No
D ICERT 2 123
T AEC: Ever earned this type of certificate CERT
    Some people decide to enroll at a college,
    university, community college, or trade
    school to earn a certificate rather than a
    degree. Has ... ever earned this type of
    certificate? **NOTE: This variable has not
    been edited** Universe = All persons age
    16+ (TAGE ge 16)
V -2 .Refused
V -1 .Don't know
V 0 .Not answered
V 1.Yes
V 2 .No
```

```
DATA SIZE BEGIN
D SSUSEQ 5 1
T SU: Sequence Number of Sample Unit - Primary
    Sort Key
U All persons
V 1:65000 .Sequence Number
D SSUID 12 6
T SU: Sample Unit Identifier
    Sample Unit identifier This identifier is
    created by scrambling together the PSU,
    Segment, Serial, Serial Suffix of the
    original sample address. It may be used
    in matching sample units from different
    waves.
U All persons
V 000000000000:999999999999 .Scrambled Id
D SPANEL 4 18
T SU: Sample Code - Indicates Panel Year
U All persons
V 2008 .Panel Year
D SWAVE 2 22
T SU: Wave of data collection
    There were 16 waves of data collection in
    the 2008 Panel Universe =
    All persons
V 1:16 .Wave of data collection
D SROTATON 1 24
T SU: Rotation of data collection
    Rotation within wave. Each wave of data
    is collected over a four calendar month
    period. The rotation field indicates
    which month within the wave a particular
    interview was conducted.
U All persons
V 1:4 .Rotation of data collection
D TFIPSST 2 25
T HH: FIPS State Code
    FIPS State Code Federal Information
    Processing Standards state (and state
    equivalent) code for the 50 states, and
    DC.
U All persons
V 01 .Alabama
V 02 .Alaska
V 04 .Arizona
```

V	05	. Arkansas
V	06	. California
V	08	. Colorado
V	09	. Connecticut
V	10	. Delaware
V	11	. DC
V	12	. Florida
V	13	. Georgia
V	15	. Hawaii
V	16	. Idaho
V	17	. Illinois
V	18	. Indiana
V	19	. Iowa
V	20	. Kansas
V	21	. Kentucky
V	22	. Louisiana
V	23	. Maine
V	24	. Maryland
V	25	. Massachusetts
V	26	. Michigan
V	27	. Minnesota
V	28	. Mississippi
V	29	. Missouri
V	30	. Montana
V	31	. Nebraska
V	32	. Nevada
V	33	. New Hampshire
V	34	. New Jersey
V	35	. New Mexico
V	36	. New York
V	37	. North Carolina
V	38	. North Dakota
V	39	. Ohio
V	40	. Oklahoma
V	41	. Oregon
V	42	. Pennsylvania
V	44	. Rhode Island
V	45	. South Carolina
V	46	. South Dakota
V	47	. Tennessee
V	48	. Texas
V	49	. Utah
V	50	.Vermont
V	51	. Virginia
V	53	.Washington
V	54	. West Virginia
V	55	.Wisconsin
V	56	. Wyoming

D SHHADID 37

T SU: Hhld Address ID differentiates hhlds in sample unit

Household Address ID. This field
differentiates households within the sample PSU, segment, serial, serial suffix; that is, households spawned from an original sample household. Universe =

All persons

V 011:169.Household Address ID

	EOUTCOME	$3 \quad 30$
	HH: Intervie	ew Status code for this household
U All persons in households		
V	201	. Completed interview
V	203	.Compl. partial- missing data; no
V		. TYPE-Z
V	207	. Complete partial - TYPE-Z; no
V		.futher followup
V	213	.TYPE-A, language problem
V	216	.TYPE-A, no one home (noh)
V	217	.TYPE-A, temporarily absent (ta)
V	218	.TYPE-A, hh refused
V	219	.TYPE-A, other occupied (specify)
V	234	.TYPE-B, entire hh institut. or
V.		.temp. ineligible
V	248	.TYPE-C, other (specify)
V	249	.TYPE-C, sample adjustment
V	250	.TYPE-C, hh deceased
V	251	.TYPE-C, moved out of country
V	252	.TYPE-C, living in armed forces
V		. barracks
V	253	.TYPE-C, on active duty in Armed
		. Forces
V	254	.TYPE-C, no one over age 15 years
		.in household
V	255	.TYPE-C, no Wave 1 persons
V		. remaining in household
	260	.TYPE-D, moved address unknown
V		. -SPAWN
V	261	.TYPE-D, moved within U.S. but
V$V$$V$. outside SIPP -SPAWN
	262	.TYPE-C, merged with another SIPP
		. household
VVV	270	.TYPE-C, mover, no longer located
		.in FR's area -PARENT
VVV	271	.TYPE-C, mover, new address
		.located in same FR's area
V		. -PARENT
	280	. TYPE-D, mover, no longer located
		.in FR's assignment area
		-SPAWN

D RFID 33

T FA: Family ID Number for this month
Family ID number may be used to identify all persons in the same family in a given month. This ID is used for primary families, unrelated subfamilies, and primary and secondary individuals.
Persons in related subfamilies have the primary family ID in this field.
U All persons
V 1:120. Family ID number

```
D RFID2 3 36
T FA: Family ID excluding related subfamily
    members
        Family ID number excluding members of
        related subfamilies. This ID is used for
        all persons except related subfamily
        members.
U All persons except those in related subfamilies
        (excludes persons with ESFTYPE = 2)
V -1 .Not in Universe
V 1:120 .Family ID number
D EPPIDX 3 39
T PE: Person index
            Person index. This field differentiates
                persons within the sample unit. Person
                index is unique within the sample unit
            and wave.
U All persons
V 1:999 .Person index
D EENTAID 3 42
T PE: Address ID of hhld where person entered
        sample
            Address ID of the household that this
            person belonged to at the time this person
            first became part of the sample. Universe
            = All persons
V 011:169 .Entry Address ID
D EPPPNUM 4 45
T PE: Person number
            Person number. This field differentiates
            persons within the sample unit. Person
            number is unique within the sample unit.
            Universe = All persons
V 0101:1699 .Person Number
D EPOPSTAT 1 49
T PE: Population status based on age in 4th
        reference month
            Population status. This field identifies
            whether or not a person was eligible to be
            asked a full set of questions, based on
            his/her age in the fourth month of the
            reference period.
U All persons
V 1 .Adult (15 years of age or older)
V 2 .Child (Under 15 years of age)
D EPPINTVW 2 50
T PE: Person's interview status
U All persons
V 1 .Interview (self)
V 2 .Interview (proxy)
```

```
V 3 .Noninterview - Type Z
V 4 .Noninterview - pseudo Type Z.
V .Left sample during the
V .reference period
V
V
D EPPMIS4 1 52
T PE: Person's 4th month interview status
    Person's interview status for month 4
U All persons
V 1 .Interview
V 2 .Non-interview
D ESEX 1 53
T PE: Sex of this person
U All persons
V 1 .Male
V 2 .Female
D ERACE 1 54
T PE: The race(s) the respondent is
    What race(s) does ... consider
    herself/himself to be? 1 White 2 Black or
    African American 3 American Indian or
    Alaska Native 4 Asian 5 Native Hawaiian or
    Other Pacific Islander
U All persons
V 1 .White alone
V 2 .Black alone
V 3 .Asian alone
V 4 .Residual
D EORIGIN 2 55
T PE: Spanish, Hispanic or Latino
    Is ... Spanish, Hispanic or Latino?
U All persons
V 1 .Yes
V 2 .No
D WPFINWGT 10 57
T WW: Person weight
    Final person weight Four implied decimal
    places.
U All persons
V 0.0000:99999.9999 .Final person weight
D ERRP 2 67
T PE: Household relationship
U All persons
V 1 .Reference person with related
V
                .persons in household
V 2 .Reference Person without related
V .persons in household
V 3.Spouse of reference person
```

```
V
V 5 .Grandchild of reference person
V 6 .Parent of reference person
V 7 .Brother/sister of reference person
V 8 .Other relative of reference person
V 9 .Foster child of reference person
V 10 .Unmarried partner of reference
    .person
    11 .Housemate/roommate
    12 .Roomer/boarder
    13 .Other non-relative of reference
        .person
    D TAGE 2 69
T PE: Age as of last birthday
    Edited and imputed age as of last
    birthday. Topcoding combines persons into
    last two single year of age groups. User
    should combine last two age groups for
    microdata analysis.
U All persons
V 0 .Less than 1 full year old V
    1:88 .Number of years old
D EMS 1 71
T PE: Marital status
U All adults (EPOPSTAT = 1)
V 1 .Married, spouse present
V 2 .Married, spouse absent
V 3 .Widowed
V 4 .Divorced
V 5 .Separated
V 6 .Never Married
D EPNSPOUS 4 72
T PE: Person number of spouse
    Universe = All persons V 0101:1699
.Person Number
V 9999 .Spouse not in household or person
V .not married
D EPNMOM 4 76
T PE: Person number of mother
    Universe = All persons V 0101:1699
.Person Number
V 9999 .No mother in household
D EPNDAD 4 80
T PE: Person number of father
    Universe = All persons V 0101:1699
.Person Number
V 9999 .No father in household
D EPNGUARD 4 84
T PE: Person number of guardian
    Universe = All persons, 19
```

```
        years and under TAGE
            -1 .Not in Universe
    0101:1699 .Person Number
        9999 .Guardian not in household
    D RDESGPNT 2 88
T PE: Designated parent or guardian flag
    Is ... the designated parent or guardian
    of children under age 18 who live in this
    household?
U All persons 15+ at the end of the reference
    period. EPOPSTAT = 1
V -1 .Not in Universe
            1.Yes
            2 .No
D EEDUCATE 2 90
T ED: Highest Degree received or grade completed
    What is the highest level of school ...
    has completed or the highest degree ...
    has received?
U All persons age 15 and over
V -1 .Not in Universe
V 31 .Less Than 1st Grade
V 32 .1st, 2nd, 3rd or 4th grade
V 33 .5th Or 6th Grade
V 34 .7th Or 8th Grade
V 35 .9th Grade
V 36 .10th Grade
V 37 .11th Grade
V 38 .12th grade, no diploma
V 39 .High School Graduate - (diploma
V .or GED or equivalent)
V 40 .Some college, but no degree
V 41 .Diploma or certificate from a
V .vocational, technical,
V .trade or business school
V .beyond high
V 43 .Associate (2-yr) college degree
V .(include
V .academic/occupational
V .degree)
V 44 .Bachelor's degree (for example:
V .BA, AB, BS)
V 45 .Master's degree (For example: MA,
V .MS, MEng, MEd, MSW, MBA)
V 46 .Professional School degree (for
V .example: MD(doctor),DDS(dentist),JD(la-
V .wyer)
V 47 .Doctorate degree (for example:
V .Ph.D., Ed.D)
D LGTKEY 8 92
T PE: Person longitudinal key
    NOTE: This variable is not used on the
    Preliminary Wave 1 file. The longitudinal
    key is in sort by scrambled id (SSUID).
```

The first five digits of the key contain a longitudinal sequence number which is unique for the sample unit across all waves. The last three digits contain a person's index which identifies a person within a sample unit and is unique for a person across all waves. This key can be used to merge people longitudinally.
U All persons
V 1001:70000001 .Longitudinal Key
D SINTHHID 300
T SU: Hhld Address ID of person in interview month

Address ID of this person at time of interview (fifth month). Universe = All persons
0 . Not In Universe
V
V
D EAECUNV 2103
T AEC: Universe indicator.
Universe indicator. Universe = All persons age 16+ (TAGE ge 16)
V -1 .Not in Universe
V 1 .In universe
D IPROCERT 2105
T AEC: Have a professional or state or industry cert

PROCERT Now I'd like to ask you about professional certification and licensure. Did ... have a professional certification or state or industry license? **NOTE: This variable has not been edited** Universe = All persons age 16+ (TAGE ge 16)
-1 .Don't know
$V \quad 0$.Not answered
V 1 .Yes
V 2 .No
D IWHOPCER 2107
T AEC: Who awarded this certification or license WHOPCERT The next set of questions refers to ...'s MOST RECENT certification or license. Who awarded this certification or license? **NOTE: This variable has not been edited** Universe $=$ All persons age 16+ (TAGE ge 16) and IPROCERT=1

```
    3.Local government
    4 .Industry
    5 .Business, company, or non-profit
        .organization
    6 \text { .Professional Association}
    7.Other
    IWHYPCER 2 109
T AEC: Mainly for work-related or personal
    interest
    WHYPCERT Did ... get this certification or
    license mainly for work-related reasons or
    mainly for personal interest? **NOTE: This
    variable has not been edited** Universe =
    All persons age 16+ (TAGE ge 16)and
    IPROCERT=1 V-2 .Refused
    -1 .Don't know
    0 .Not answered
    1 .Mainly work-related
    2 .Mainly personal interest
D IFLDPCER 2 111
T AEC: Major subject or field of study
    FLDPCERT What is the major subject or
    field of study for this certification or
    license? **NOTE: This variable has not
    been edited** Universe = All persons
    age 16+ (TAGE ge 16)and IPROCERT=1
        -2 .Refused
        -1 .Don't know
            0 .Not answered
            1 .Architecture and engineering
            2 .Computer networking and
                .administration
            3.Computer applications and design
            4 .Business/finance management
            5 .Administrative support
            6 .Nursing/nurse assisting
            7 .Other medical/health care
            8.Cosmetology
            9 .Culinary arts
            10 .Protective services
            11 .Legal and social services
            12.Education
            13.Construction and manufacturing
                .trades
            14 .Transportation and material moving
            15 .Public utilities
            16 .Other
D IJOBPCER 2 113
T AEC: Can cert be used to get a job
    JOBPCERT Can this certification or license
    be used if ... wanted to get a job with
    any employer in that field?
```

```
    (CERTIFICATIONS AND LICENSES THAT ARE
    RECOGNIZED STATE-WIDE SHOULD BE RECORDED
    AS "YES".) **NOTE: This variable has not
    been edited** Universe = All persons
    age 16+ (TAGE ge 16)and IPROCERT=1
        -2 .Refused
        -1 .Don't know
        0 .Not answered
        1.Yes
        2 .No
    IRJPCERT 2 115
AEC: Is certification or license required
        REQJOBPCERT Is this certification or
        license required for ...'s current or most
        recent job? **NOTE: This variable has not
        been edited** Universe = All persons age
        16+ (TAGE ge 16) and IPROCERT=1
        -2 .Refused
        -1 .Don't know
        0 .Not answered
        1.Yes
        2 .No
        3.Not applicable(never worked)
D ITRNPCER 2 117
T AEC: Take course or training to earn cert or
    license
        TRNPCERT Did ... take courses or training
        to earn the certification or license?
        **NOTE: This variable has not been
        edited** Universe = All persons age
        16+ (TAGE ge 16) and IPROCERT=1
V -2 .Refused
V -1 .Don't know
            0 .Not answered
                1.Yes
                2 .No
    IEXPCERT 2 119
T AEC: Demo skills take test or exam to earn
        cert or license
            EXAMPCERT Did ... have to demonstrate
            skills while on the job or pass a test or
            exam to earn the certification or license?
            **NOTE: This variable has not been
            edited** Universe = All persons age
            16+ (TAGE ge 16)and IPROCERT=1
V -2 .Refused
V -1 .Don't know
V 0 .Not answered
V 1.Yes
V 2 .No
```

```
D ICDPCERT 2 121
T AEC: Take test or class or earn CEUs
    CEDPCERT Did ... have to take periodic
    tests or continuing education classes or
    earn CEUs to maintain the certification or
    license? **NOTE: This variable has not
    been edited** Universe = All persons age
    16+ (TAGE ge 16) and IPROCERT=1
    -2 . Refused
        -1 .Don't know
        0 .Not answered
        1.Yes
        2 .No
D ICERT 2 123
T AEC: Ever earned this type of certificate
    CERT Some people decide to enroll at a
    college, university, community college, or
    trade school to earn a certificate rather
    than a degree. Has ... ever earned this
    type of certificate? **NOTE: This variable
    has not been edited** Universe =
        All persons age 16+ (TAGE ge 16)
        -2 .Refused
        -1 .Don't know
        0 .Not answered
        1.Yes
        2 .No
D IFLDCERT 2 125
T AEC: MOST RECENT completed certificate
    FLDCERT The next set of questions refers
    to ...'s MOST RECENT completed
    certificate. What is the major subject or
    field of study for this certificate?
    **NOTE: This variable has not been
    edited** Universe = All persons age 16+
    (TAGE ge 16)and ICERT=1
        -2 .Refused
        -1 .Don't know
        0 .Not answered
        1.Architecture and engineering
        2 .Communications
            .technologies/technologists
        3 .Computer and information sciences
        4 .Engineering and related
                .technologies
            5 .Business management
            6 .Business support
            7.Marketing
            8 .Health professions, except nursing
            9.Nursing
            10.Health technologists and
                .technicians
            11 .Health aides
```

```
V 12 .Cosmetology
V 13 .Culinary arts
V
V
V
V
v
v
v
v
V
V
v
v
    14 .Personal services(other than
        .cosmetology and culinary
        .arts)
    15 .Protective services
    16 .Public and social services(other
        .than protective services)
    17.Education
    18.Construction trades
    19 .Manufacturing
    20.Mechanic and repair technologies
    21.Transportation and material moving
    22 .OTHER
D ISCHCERT 2 127
T AEC: Type of school or organization
    SCHLCERT What type of school or
    organization provided the certificate
    program? **NOTE: This variable has not
    been edited** Universe = All persons
    age 16+ (TAGE ge 16) and ICERT=1
        -2 .Refused
        -1 .Don't know
        0 .Not answered
        1 .A community college
        2 .A university or college other
                .than a community college
        3 .A trade, vocational, technical,
            .or business school
        4 .Business or company
        5 .Professional organization
        6 .Trade union
        7.Non-profit organization
        8 .Federal, state, or local
                .government
        9 .Military
        10 .Someplace else
D ISDYCERT 2 129
T AEC: Mainly self-study or classes or course
    STUDYCERT Was the training for this
    certificate mainly self-study or mainly
    classes or courses with an instructor?
    **NOTE: This variable has not been
    edited** Universe = All persons age 16+
    (TAGE ge 16)and ICERT=1
V -2 .Refused
V -1 .Don't know
V 0 .Not answered
V 1 .Mainly self-study
V 2 .Mainly Instructor
D ITIMCERT 2 131
T AEC: How long to earn certificate
    TIMECERT How long did it take to earn this
```

```
    certificate? **NOTE: This variable has not
    been edited** Universe = All persons age
    16+ (TAGE ge 16) and ICERT=1
        -2 . Refused
        -1 .Don't know
        0 .Not answered
        1.Less than one week
        2 .One week to one month
        3 .More than one month
```


Source and Accuracy Statement for the Survey of Income and Program Participation 2008 Wave 1 to Wave 16 Public Use Files ${ }^{2}$

Source of Data

Source of Data. The data were collected in the 2008 Panel of the Survey of Income and Program Participation (SIPP). The population represented in the 2008 SIPP (the population universe) is the civilian noninstitutionalized population living in the United States. The institutionalized population, which is excluded from the population universe, is composed primarily of the population in correctional institutions and nursing homes (91 percent of the 4.1 million institutionalized people in Census 2000).

The 2008 Panel of the SIPP sample is located in 351 Primary Sampling Units (PSUs), each consisting of a county or a group of contiguous counties. Of these 351 PSUs, 123 are self-representing (SR) and 228 are non-self-representing (NSR). SR PSUs have a probability of selection of one. NSR PSUs have a probability of selection of less than one. Within PSUs, housing units (HUs) were systematically selected from the master address file used for the 2000 decennial census. To account for HUs built within each of the sample areas after the 2000 census, a sample containing clusters of four HUs was drawn from permits issued for construction of residential HUs up until shortly before the beginning of the panel. In jurisdictions that don't issue building permits or have incomplete addresses, we systematically sampled expected clusters of four HUs which were then listed by field personnel.

Households were classified into two strata, such that one strata had a higher concentration of low-income households than the other. We oversampled the low-income stratum by 44 percent to increase the accuracy of estimates for statistics of low-income households and program participation. Analysts are strongly encouraged to use the SIPP weights when creating estimates since households are not selected with equal probability.

Sample households within a given panel are divided into four random subsamples of nearly equal size. These subsamples are called rotation groups and one rotation group is interviewed each month. Each household in the sample was scheduled to be interviewed at four-month intervals over a period of roughly five years beginning in September 2008. The reference period for the questions is the four-month period preceding the interview month. The most recent month is designated reference month 4 , the earliest month is reference month 1 . In general, one cycle of four interview months covering the entire sample, using the same questionnaire, is called a wave. For example, Wave 1 rotation group 1 of the 2008 Panel was interviewed in September 2008 and data for the reference months May 2008 through August 2008 were collected.

[^0]In Wave 1, the 2008 SIPP began with a sample of about 65,500 HUs. About 13,500 of these HUs were found to be vacant, demolished, converted to nonresidential use, or otherwise ineligible for the survey. Field Representatives (FRs) were able to obtain interviews for about 42,000 of the eligible HUs. FRs were unable to interview approximately 10,000 eligible HUs in the panel because the occupants: (1) refused to be interviewed; (2) could not be found at home; (3) were temporarily absent; or (4) were otherwise unavailable. Thus, occupants of about 81 percent of all eligible HUs participated in the first interview of the panel.

For subsequent interviews, only original sample people (those in Wave 1 sample households and interviewed in Wave 1) and people living with them are eligible to be interviewed. The SIPP sample includes original sample people if they move to a new address, unless the new address was more than 100 miles from a SIPP sample area. In this case, FRs attempt telephone interviews.

Since SIPP follows all original sample members, those members that form new households are also included in the SIPP sample. This expansion of original households can be estimated within the interviewed sample, but is impossible to determine within the non-interviewed sample. Therefore, a growth factor based on the growth in the known sample is used to estimate the unknown expansion of the non-interviewed households.

Growth factors account for the additional nonresponse stemming from the expansion of non-interviewed households. They are used to get a more accurate estimate of the weighted number of non-interviewed HUs at each wave, called sample loss. To calculate sample loss we use Formula (1):

$$
\begin{equation*}
\text { Sample Loss }=\frac{\left(A_{1} \times G F\right)+A_{C}+D_{C}}{I_{C}+\left(A_{1} \times G F\right)+A_{C}+D_{C}} \tag{1}
\end{equation*}
$$

where A_{1} is the weighted number of Type A non-interviewed households in Wave $1, A_{C}$ is the weighted number of Type A non-interviewed households in the Current Wave, D_{C} is the weighted number of Type D non-interviewed households in the current wave, I_{C} is the weighted number of interviewed households in the current wave, and GF is the growth factor associated with the current wave.

Table A. Sample Loss and Response Rate for SIPP 2008

Wave	$\begin{array}{\|c\|} \hline \text { Eligible } \\ \text { HUs } \\ \hline \end{array}$	Interviewed HUs	Type As		Type Ds		Growth Factor	Weighted Sample Loss	Weighted Response Rates
			Total	Weighted Rate	Total	Weighted Rate			
1	52,031	42,032	9,999	19.4\%				19.4\%	80.6\%
2	42,481	39,000	2,921	6.9\%	560	1.3\%	1.01	25.9\%	91.8\%
3	42,779	37,651	4,159	9.7\%	969	2.3\%	1.02	29.0\%	88.1\%
4	43,176	36,195	5,693	13.2\%	1,288	2.9\%	1.03	32.4\%	83.9\%
5	43,422	35,873	6,060	14.0\%	1,489	3.3\%	1.04	33.3\%	82.7\%
6	43,544	34,891	6,894	15.9\%	1,759	4.0\%	1.04	35.5\%	80.1\%
7	43,619	33,827	7,901	18.2\%	1,891	4.2\%	1.05	37.5\%	77.6\%
8	43,609	33,417	8,231	19.0\%	1,961	4.3\%	1.05	38.2\%	76.7\%
9	43,621	32,567	8,880	20.4\%	2,174	4.7\%	1.04	39.7\%	74.9\%
10	43,690	31,445	9,877	22.7\%	2,368	5.1\%	1.05	41.9\%	72.2\%
11	43,720	31,007	10,256	23.5\%	2,457	5.3\%	1.05	42.7\%	71.2\%
12	43,678	30,716	10,381	24.0\%	2,581	5.6\%	1.05	43.4\%	70.4\%
13	43,654	30,213	10,901	25.2\%	2,540	5.6\%	1.05	44.4\%	69.2\%
14	43,600	29,810	11,272	26.0\%	2,518	5.5\%	1.05	44.9\%	68.5\%
15	43,653	28,885	11,982	27.5\%	2,786	5.8\%	1.06	46.5\%	66.7\%
16^{3}	32,566	20,135	10,228	31.4\%	2,203	6.1\%	1.06	53.0\%	62.5\%

[^1]
Table B. Percent of Type As by Nonresponse Status for SIPP 2008

Wave	Language Problem	Unable to Locate	No One Home	Temporarily Absent	Household Refused	Other
$\mathbf{1}$	1.2%	0.8%	16.6%	3.4%	67.2%	10.9%
$\mathbf{2}$	0.8%		19.2%	5.2%	61.3%	13.4%
$\mathbf{3}$	0.5%		18.6%	5.7%	60.7%	14.5%
$\mathbf{4}$	0.4%		18.4%	3.9%	62.5%	14.7%
$\mathbf{5}$	0.4%		16.6%	3.4%	64.7%	15.1%
$\mathbf{6}$	0.4%		14.8%	3.7%	67.8%	13.3%
$\mathbf{7}$	0.4%		15.3%	2.9%	62.8%	18.7%
$\mathbf{8}$	0.2%		13.7%	2.4%	62.7%	20.9%
$\mathbf{9}$	0.3%		13.8%	2.7%	62.7%	20.5%
$\mathbf{1 0}$	0.3%		12.0%	2.2%	65.7%	19.9%
$\mathbf{1 1}$	0.3%		10.8%	1.8%	71.4%	15.8%
$\mathbf{1 2}$	0.2%		11.1%	2.3%	72.5%	13.9%
$\mathbf{1 3}$	0.2%		11.1%	2.2%	72.8%	13.7%
$\mathbf{1 4}$	0.2%		9.6%	1.7%	78.3%	10.3%
$\mathbf{1 5}$	0.2%		10.0%	2.0%	78.1%	9.8%
$\mathbf{1 6}$	0.2%		12.1%	1.7%	72.1%	13.9%

Note that in Table A the Wave 1 weighted sample loss rate is the same as the weighted Type A rate since growth factors and Type D (movers) are not applicable until Wave 2.

The public use files include core and supplemental (topical module) data. Core questions are repeated at each interview over the life of the panel. Topical modules include questions which are asked only in certain waves. The 2008 panel topical modules are given in Table 1.

Table 2 indicates the reference months and interview months for the collection of data from each rotation group for the 2008 panel. For example, Wave 1 rotation group 1 of the 2008 panel was interviewed in September 2008 and data for the reference months May 2008 through August 2008 were collected.

Estimation. The SIPP estimation procedure involves several stages of weight adjustments to derive the cross-sectional person level weights. First, each person is given a base weight ($B W$) equal to the inverse of the probability of selection of a person's household. Next, a Duplication Control Factor (DCF) is used to adjust for subsampling done in the field when the number of sample units is much larger than expected. Then a noninterview adjustment factor is applied to account for households which were eligible for the sample but which FRs could not interview in Wave $1\left(F_{N 1}\right)$. Similarly for subsequent waves i, the noninterview adjustment factor is $\left(F_{N i}\right)$. A Mover's Weight (MW) is applied in Waves 2+ to adjust for persons in the SIPP universe who
move into sample households after Wave 1. The last adjustment is the Second Stage Adjustment Factor ($F_{2 S}$). This adjusts estimates to population controls and equalizes husbands' and wives' weights. The 2008 Panel adjusts weights to both national and state level controls.

The final cross-sectional weight is $F W_{c}=B W * D C F * F N_{1} * F_{2 S}$ for Wave 1 and is $F W_{c}=$ $I W * F N_{2} * F_{2 S}$ for Waves $2+$, where $I W$ is either $B W * D C F * F_{N 1}$ or $M W$. Additional details of the weighting process are in SIPP 2008: Cross-Sectional Weighting Specifications for Wave 1 and Wave 2+.

Population Controls. The 2008 SIPP estimation procedure adjusts weighted sample results to agree with independently derived population estimates of the civilian noninstitutional population. National family type controls are obtained by taking the Current Population Survey (CPS) weights and doing a "March type" family equalization. That is, wives' weights are assigned to husbands and then proportionally adjusted to the weights of persons by month, rotation group, race, sex, age, and by the marital and family status of householders. This attempts to correct for undercoverage and thereby reduces the mean square error of the estimates. The national and state level population controls are obtained directly from the Population Division and are prepared each month to agree with the most current set of population estimates released by the U.S. Census Bureau's population estimates and projections program.

The national level controls are distributed by demographic characteristics as follows:

- Age, Sex, and Race (White Alone, Black Alone, and all other groups combined)
- Age, Sex, and Hispanic Origin

The state level controls are distributed by demographic characteristics as follows:

- State by Age and Sex
- State by Hispanic origin
- State by Race (Black Alone, all other groups combined)

The estimates begin with the latest decennial census as the base and incorporate the latest available information on births and deaths along with the latest estimates of net international migration.

The net international migration component in the population estimates includes a combination of:

- Legal migration to the U.S.,
- Emigration of foreign born and native people from the U.S.,
- Net movement between the U.S. and Puerto Rico,
- Estimates of temporary migration, and
- Estimates of net residual foreign-born population, which include unauthorized migration.

Because the latest available information on these components lags the survey date, to develop the estimate for the survey date, it is necessary to make short-term projections of these components.

Use of Weights. There are three primary weights for the analysis of SIPP data. The person month weight (one for each reference month) is for analyzing data at the person level. Everyone in the sample in a given reference month has a person month weight. The person month weight of the household reference person is used to analyze data at the household level (a household may consist of related and unrelated persons). The person month weight of the family reference person is the family weight. Use this weight to analyze family level questions. Weights are also available in the public use files for related subfamilies. Chapter 8 of the SIPP Users' Guide provides additional information on how to use these weights.

By selecting the appropriate reference month weight an analyst can obtain the average of an item such as income across several calendar months.

Example. Using the proper weights, one can estimate the monthly average number of households in a specified income range over August 2008 to September 2008. To estimate monthly averages of a given measure, e.g., total, mean, over a number of consecutive months, sum the monthly estimates and divide by the number of months. To form an estimate for a particular month, use the reference month weight for the month of interest, summing over all persons or households with the characteristic of interest whose reference period includes the month of interest.

The core wave file does not contain weights for characteristics that involve a person's or household's status over two or more months (such as, number of households with a 50 percent increase in income between December 2008 and January 2009).

Adjusting Estimates Which Use Less than the Full Sample. When estimates for months with less than four rotations worth of data are constructed from a wave file, factors greater than 1 must be applied. Multiply the sum by a factor to account for the number of rotations contributing data for the month. This factor equals 4 divided by the number of rotations contributing data for the month. For example, July 2008 data are only available from rotations 1-3 for Wave 1 of the 2008 Panel, so a factor of $4 / 3$ or 1.3333 must be applied. A list of appropriate factors is in Table 3a.

Accuracy of Estimates

SIPP estimates are based on a sample; they may differ somewhat from the figures that would have been obtained if a complete census had been taken using the same questionnaire, instructions, and enumerators. There are two types of errors possible in an estimate based on a sample survey: sampling and nonsampling. For a given estimator, the difference between an estimate based on a sample and the estimate that would result if the sample were to include the entire population is known as sampling error. For a given estimator, the difference between the estimate that would result if the sample were to include the entire population and the true population value being estimated is known as nonsampling error. We are able to provide estimates of the magnitude of SIPP sampling error, but this is not true of nonsampling error.

Nonsampling Error. Nonsampling errors can be attributed to many sources:

- inability to obtain information about all cases in the sample
- definitional difficulties
- differences in the interpretation of questions
- inability or unwillingness on the part of the respondents to provide correct information
- errors made in the following: collection such as in recording or coding the data, processing the data, estimating values for missing data
- biases resulting from the differing recall periods caused by the interviewing pattern used and undercoverage.

Quality control and edit procedures were used to reduce errors made by respondents, coders and interviewers. More detailed discussions of the existence and control of nonsampling errors in the SIPP can be found in the SIPP Quality Profile, 1998 SIPP Working Paper Number 230, issued May 1999.

Undercoverage in SIPP results from missed HUs and missed persons within sample HUs. It is known that undercoverage varies with age, race, and sex. Generally, undercoverage is larger for males than for females and larger for Blacks than for non-Blacks. Ratio estimation to independent age-race-sex population controls partially corrects for the bias due to survey undercoverage. However, biases exist in the estimates to the extent that persons in missed households or missed persons in interviewed households have characteristics different from those of interviewed persons in the same age-race-sex group.

A common measure of survey coverage is the coverage ratio, the estimated population before ratio adjustment divided by the independent population control. Table C below shows SIPP coverage ratios for age-sex-race groups for one month, August 2013, prior to the ratio adjustment. The SIPP coverage ratios exhibit some variability from month to month, but these are a typical set of
coverage ratios. Other Census Bureau household surveys [like the CPS] experience similar coverage.

Age	White Only		Black Only		Residual	
	Male	Female	Male	Female	Male	Female
<15	0.81	0.82	0.62	0.65	0.62	0.68
15	0.82	0.77	0.78	0.69	0.69	0.71
16-17	0.86	0.85	0.81	0.76	0.75	0.71
18-19	0.83	0.82	0.77	0.76	0.72	0.65
20-21	0.74	0.76	0.56	0.67	0.72	0.65
22-24	0.66	0.65	0.60	0.63	0.70	0.65
25-29	0.62	0.62	0.45	0.46	0.54	0.58
30-34	0.69	0.82	0.49	0.58	0.52	0.59
35-39	0.79	0.83	0.54	0.78	0.64	0.69
40-44	0.79	0.83	0.60	0.74	0.65	0.74
45-49	0.82	0.83	0.69	0.76	0.88	0.86
50-54	0.82	0.88	0.69	0.82	0.93	0.86
55-59	0.92	0.95	0.91	0.97	0.95	1.03
60-61	1.02	1.07	0.91	1.06	0.92	1.00
62-64	0.99	1.06	0.94	1.00	0.99	0.99
65-69	0.87	0.89	1.12	1.02	0.96	0.89
70-74	0.88	0.95	1.05	1.07	0.98	0.89
75-79	0.93	0.91	0.95	1.09	0.94	0.88
80-84	1.00	1.04	1.06	1.03	0.94	0.95
85+	1.00	0.95	1.07	0.99	0.95	0.94

Comparability with Other Estimates. Caution should be exercised when comparing this data with data from other SIPP products or with data from other surveys. The comparability problems are caused by such sources as the seasonal patterns for many characteristics, different nonsampling errors, and different concepts and procedures. Refer to the SIPP Quality Profile for known differences with data from other sources and further discussions.

Sampling Variability. Standard errors indicate the magnitude of the sampling error. They also partially measure the effect of some nonsampling errors in response and enumeration, but do not measure any systematic biases in the data. The standard errors for the most part measure the variations that occurred by chance because a sample rather than the entire population was surveyed.

Uses and Computation of Standard Errors

Confidence Intervals. The sample estimate and its standard error enable one to construct a confidence interval. A confidence interval is a range about a given estimate that has a known probability of including the result of a complete enumeration. For example, if all possible samples were selected, each of these being surveyed under essentially the same conditions and using the same sample design, and if an estimate and its standard error were calculated from each sample, then:

1. Approximately 68 percent of the intervals from one standard error below the estimate to one standard error above the estimate would include the average result of all possible samples.
2. Approximately 90 percent of the intervals from 1.645 standard errors below the estimate to 1.645 standard errors above the estimate would include the average result of all possible samples.
3. Approximately 95 percent of the intervals from two standard errors below the estimate to two standard errors above the estimate would include the average result of all possible samples.

The average estimate derived from all possible samples is or is not contained in any particular computed interval. However, for a particular sample, one can say with a specified confidence that the average estimate derived from all possible samples is included in the confidence interval.

Hypothesis Testing. Standard errors may also be used for hypothesis testing, a procedure for distinguishing between population characteristics using sample estimates. The most common types of hypotheses tested are 1) the population characteristics are identical versus 2) they are different. Tests may be performed at various levels of significance, where a level of significance is the probability of concluding that the characteristics are different when, in fact, they are identical.

To perform the most common test, compute the difference $X_{A}-X_{B}$, where X_{A} and X_{B} are sample estimates of the characteristics of interest. A later section explains how to derive an estimate of the standard error of the difference $X_{A}-X_{B}$. Let that standard error be $S_{D I F F}$. If $X_{A}-X_{B}$ is between $\left(-1.645 \times S_{D I F F}\right)$ and $\left(+1.645 \times S_{D I F F}\right)$, no conclusion about the characteristics is justified at the 10 percent significance level. If, on the other hand $X_{A}-X_{B}$, is smaller than $\left(-1.645 \times S_{D I F F}\right)$ or larger than $\left(+1.645 \times S_{D I F F}\right)$, the observed difference is significant at the 10 percent level. In this event, it is commonly accepted practice to say that the characteristics are different. We recommend that users report only those differences that are significant at the 10 percent level or better. Of course, sometimes this conclusion will be wrong. When the characteristics are the same, there is a 10 percent chance of concluding that they are different.

Note that as more tests are performed, more erroneous significant differences will occur. For example, at the 10 percent significance level, if 100 independent hypothesis tests are performed in which there are no real differences, it is likely that about 10 erroneous differences will occur.

Therefore, the significance of any single test should be interpreted cautiously. A Bonferroni correction can be done to account for this potential problem that consists of dividing your stated level of significance by the number of tests you are performing. This correction results in a conservative test of significance.

Note Concerning Small Estimates and Small Differences. Because of the large standard errors involved, there is little chance that estimates will reveal useful information when computed on a base smaller than 75,000 . Also, nonsampling error in one or more of the small number of cases providing the estimation can cause large relative error in that particular estimate. Care must be taken in the interpretation of small differences since even a small amount of nonsampling error can cause a borderline difference to appear significant or not, thus distorting a seemingly valid hypothesis test.

Calculating Standard Errors for SIPP Estimates. There are three main ways we calculate the Standard Errors (SEs) for SIPP Estimates. They are as follows:

- Direct estimates using replicate weighting methods;
- Generalized variance function parameters (denoted as a and b); and
- Simplified tables of SEs based on the a and b parameters.

While the replicate weight methods provide the most accurate variance estimates, this approach requires more computing resources and more expertise on the part of the user. The Generalized Variance Function (GVF) parameters provide a method of balancing accuracy with resource usage as well as smoothing effect on SE estimates across time. SIPP uses the Replicate Weighting Method to produce GVF parameters (see K. Wolter, Introduction to Variance Estimation, for more information). The GVF parameters are used to create the simplified tables of SEs.

Standard Error Parameters and Tables and Their Use. Most SIPP estimates have greater standard errors than those obtained through a simple random sample because of its two-stage cluster sample design. To derive standard errors that would be applicable to a wide variety of estimates and could be prepared at a moderate cost, a number of approximations were required.

Estimates with similar standard error behavior were grouped together and two parameters (denoted as a and b) were developed to approximate the standard error behavior of each group of estimates. Because the actual standard error behavior was not identical for all estimates within a group, the standard errors computed from these parameters provide an indication of the order of magnitude of the standard error for any specific estimate. These a and b parameters vary by characteristic and by demographic subgroup to which the estimate applies. Table 4 provides a and b parameters for the core domains to be used for the 2008 Panel Wave 1 to Wave 16 estimates. The base a and b parameters for the topical modules for Wave 1 to Wave 11 are found in Table 5.

For those users who wish further simplification, we have also provided base standard errors for estimates of totals and percentages in Tables 6 through 9. Note that these base standard errors only apply when data from all four rotations are used and must be adjusted by an f factor provided in Table 4. The standard errors resulting from this simplified approach are less accurate.

Methods for using these parameters and tables for computation of standard errors are given in the following sections

Adjusting Standard Error Parameters for Estimates Which Use Less Than the Full Sample If some rotation groups are unavailable to contribute data to a given estimate, then the estimate and its standard error need to be adjusted. The adjustment of the estimate is described in the previous section. The standard error is adjusted by multiplying the appropriate a and b parameters by a factor equal to 4 divided by the number of rotation groups contributing data to the estimate or it can be taken from Table 3a where the factor is given for each single reference month, May 2008 to August 2008.

For monthly and quarterly estimates, use Table 3a to select the adjustment factor appropriate to the number of rotation months. Multiply this factor by the a and b base parameters of Table 4 to produce a and b parameters for the variance estimate for a specific subgroup and reference period.

Illustration 1.

Using Table 4 for Wave 1 of the 2008 panel, the base a and b parameters for total number of households are -0.00002703 and 3,179 , respectively. Using Table 3a for Wave 1, the factor for June 2008 is 2 since only two rotation months of data are available. So the a and b parameters for the variance estimate of a white household characteristic in June 2008 based on Wave 1 are:

$$
-0.00002703 \times 2=-0.00005406 \text { and } 3,179 \times 2=6,358 \text {, respectively } .
$$

Similarly, the factor from Table 3a for the third quarter of 2008 is 1.0370 , since the only data available are the eleven rotation months from Wave 1. (Rotation 1 provides three rotation months, rotation 2 provides three rotation months, rotation 3 provides three rotation months, and rotation 4 provides two rotation months of data.) Thus, the a and b parameters for the variance estimate of a white household characteristic in the third quarter of 2008 are:

$$
-0.00002703 \times 1.0370=-0.00002803 \text { and } 3,179 \times 1.0370=3,297, \text { respectively } .
$$

Standard Errors of Estimated Numbers. The approximate standard error, s_{x}, of an estimated number of persons, households, families, unrelated individuals and so forth, can be obtained in two ways. Both apply when data from all four rotations are used to make the estimate. However, only Formula (2) should be used when less than four rotations of data are available for the estimate. Note that neither method should be applied to dollar values.

The standard error may be obtained by the use of Formula (2):

$$
\begin{equation*}
s_{x}=f \times s, \tag{2}
\end{equation*}
$$

where f is the appropriate f factor from Table 4 , and s is the base standard error on the estimate obtained by interpolation from Tables 6 or 7 .

Alternatively, s_{x} may be approximated by Formula (3):

$$
\begin{equation*}
s_{x}=\sqrt{a x^{2}+b x} \tag{3}
\end{equation*}
$$

This formula was used to calculate the base standard errors in Tables 6 and 7. Here x is the size of the estimate and a and b are the parameters from Table 4 which are associated with the characteristic being estimated (and the wave which applies). Use of Formula (3) will generally provide more accurate results than the use of Formula (2).

Illustration 2.

Suppose SIPP estimates based on Wave 1 of the 2008 panel show that there were 2,000,000 females aged 25 to 44 with a monthly income of greater than $\$ 6,000$ in September 2008. The appropriate parameters and factor from Table 4 and the appropriate general standard error from Table 7 are:

$$
a=-0.00002917 \quad b=3,584 \quad f=0.989 \quad s=85,282
$$

Using Formula (2), the approximate standard error is:

$$
s_{x}=0.989 \times 85,282=84,344 .
$$

Using Formula (3), the approximate standard error is:

$$
s_{x}=\sqrt{\left(-0.00002917 \times 2,000,000^{2}\right)+(3,584+2,000,000)}=83,972 \text { females } .
$$

Using the standard error based on Formula (3), the approximate 90-percent confidence interval as shown by the data is from $1,861,866$ to $2,138,134$ females (i.e., $2,000,000 \pm 1.645 \times 83,972$). Therefore, a conclusion that the average estimate derived from all possible samples lies within a range computed in this way would be correct for roughly 90% of all samples.

Standard Error of a Mean. A mean is defined here to be the average quantity of some item (other than persons, families, or households) per person, family or household. For example, it could be the average monthly household income of females age 25 to 34 . The standard error of a mean can be approximated by Formula (4) below. Because of the approximations used in developing Formula (4), an estimate of the standard error of the mean obtained from this formula will generally underestimate the true standard error. The formula used to estimate the standard error of a mean \bar{x} is:

$$
\begin{equation*}
s_{\bar{x}}=\sqrt{\left(\frac{b}{y}\right) s^{2}} \tag{4}
\end{equation*}
$$

where y is the size of the base, s^{2} is the estimated population variance of the item and b is the parameter associated with the particular type of item.

The population variance s^{2} may be estimated by one of two methods. In both methods, we assume x_{i} is the value of the item for $i^{\text {th }}$ unit. (A unit may be person, family, or household). To use the first method, the range of values for the item is divided into c intervals. The lower and upper boundaries of interval j are Z_{j-1} and Z_{j}, respectively. Each unit, x_{i}, is placed into one of c intervals such that $Z_{j-1}<x_{i} \leq Z_{j}$. The estimated population mean, \bar{x}, and variance, s^{2}, are given by the formulas:

$$
\begin{gather*}
\bar{x}=\sum_{j=1}^{c} p_{j} m_{j} \\
s^{2}=\sum_{j=1}^{c} p_{j} m_{j}^{2}-\bar{x}^{2} \tag{5}
\end{gather*}
$$

where $m_{j}=\left(Z_{j-1}+Z_{j}\right) / 2$, and p_{j} is the estimated proportion of units in the interval j. The most representative value of the item in the interval j is assumed to be m_{j}. If the interval c is open-ended, or no upper interval boundary exists, then an approximate value for m_{c} is

$$
m_{c}=\frac{3}{2} Z_{c-1} .
$$

In the second method, the estimated population mean, \bar{x}, and variance, s^{2} are given by:

$$
\begin{gather*}
\bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}} \\
s^{2}=\frac{\sum_{i=1}^{n} w_{i} x_{i}^{2}}{\sum_{i=1}^{n} w_{i}}-\bar{x}^{2} \tag{6}
\end{gather*}
$$

where there are n units with the item of interest and w_{i} is the final weight for $i^{\text {th }}$ unit. (Note that $\sum w_{i}=y$.)

Illustration 3.

Suppose that based on Wave 1 data, the distribution of monthly cash income for persons age 25 to 34 during the month of September 2008 is given in Table 10. Using these data, the mean monthly cash income for persons aged 25 to 34 is $\$ 2,530$. Applying Formula (5), the approximate population variance, s^{2}, is:

$$
s^{2}=\left(\frac{1,371}{39,851}\right)(150)^{2}+\left(\frac{1,651}{39,851}\right)(450)^{2}+\cdots+\left(\frac{1,493}{39,851}\right)(9,000)^{2}-(2,530)^{2}=3,159,887
$$

Using Formula (4) and a base b parameter of 3,584 , the estimated standard error of a mean \bar{x} is:

$$
s_{\bar{x}}=\sqrt{\frac{3,584}{39,851,000} \times 3,159,887}=\$ 16.86
$$

Thus, the approximate 90 -percent confidence interval as shown by the data ranges from $\$ 2,502.27$ to $\$ 2,557.73$.

Standard Error of an Aggregate. An aggregate is defined to be the total quantity of an item summed over all the units in a group. The standard error of an aggregate can be approximated using Formula (7). As with the estimate of the standard error of a mean, the estimate of the standard error of an aggregate will generally underestimate the true standard error. Let y be the size of the base, s^{2} be the estimated population variance of the item obtained using Formula (5) or Formula (6) and b be the parameter associated with the particular type of item. The standard error of an aggregate is:

$$
\begin{equation*}
s_{x}=\sqrt{b \times y \times s^{2}} . \tag{7}
\end{equation*}
$$

Standard Errors of Estimated Percentages. The reliability of an estimated percentage, computed using sample data for both numerator and denominator, depends upon both the size of the percentage and the size of the total upon which the percentage is based. Estimated percentages are relatively more reliable than the corresponding estimates of the numerators of the percentages, particularly if the percentages are 50 percent or more, e.g., the percent of people employed is more reliable than the estimated number of people employed. When the numerator and denominator of the percentage have different parameters, use the parameter (and appropriate factor) of the numerator. If proportions are presented instead of percentages, note that the standard error of a proportion is equal to the standard error of the corresponding percentage divided by 100 .

There are two types of percentages commonly estimated. The first is the percentage of people sharing a particular characteristic such as the percent of people owning their own home. The second type is the percentage of money or some similar concept held by a particular group of people or held in a particular form. Examples are the percent of total wealth held by people with high income and the percent of total income received by people on welfare.

For the percentage of people, the approximate standard error, $s_{(x, p)}$, of the estimated percentage p can be obtained by the formula:

$$
\begin{equation*}
s_{(x, p)}=f \times s \tag{8}
\end{equation*}
$$

when data from all four rotations are used to estimate p. In this formula, f is the appropriate f factor from Table 4 (for the appropriate wave) and s is the base standard error of the estimate from Tables 8 or 9 .

Alternatively, it may be approximated by the formula:

$$
\begin{equation*}
s_{(x, p)}=\sqrt{\frac{b}{x}(p)(100-p)} \tag{9}
\end{equation*}
$$

from which the standard errors in Tables 8 and 9 were calculated. Here x is the size of the subclass of social units which is the base of the percentage, p is the percentage ($0<p<100$), and b is the parameter associated with the characteristic in the numerator. Use of Formula (9) will give more accurate results than use of Formula (8) above and should be used when data from less than four rotations are used to estimate p.

Illustration 4.

Suppose that in September 2008, 6.7 percent of the 16,812,000 persons in nonfarm households with a mean monthly household cash income of $\$ 4,000$ to $\$ 4,999$ were black. Using Formula (9), a b parameter of 3,534 , and a factor of 1 from Table 3a since all four rotations are used, the approximate standard error is:

$$
s_{(x, p)}=\sqrt{\frac{3,534}{16,812,000} \times 6.7 \times(100-6.7)}=0.36 \text { percent }
$$

Consequently, the 90 percent confidence interval as shown by these data is from 6.11 to 7.29 percent.

For percentages of money, a more complicated formula is required. A percentage of money will usually be estimated in one of two ways. It may be the ratio of two aggregates:

$$
p_{I}=100\left(\frac{x_{A}}{x_{N}}\right)
$$

or it may be the ratio of two means with an adjustment for different bases:

$$
p_{I}=100\left(\hat{p}_{A}\left(\frac{\bar{x}_{A}}{\bar{x}_{N}}\right)\right),
$$

where x_{A} and x_{N} are aggregate money figures, \bar{x}_{A} and \bar{x}_{N} are mean money figures, and \hat{p}_{A} is the estimated number in group A divided by the estimated number in group N. In either case, we estimate the standard error as

$$
\begin{equation*}
s_{I}=\sqrt{\left(\frac{\hat{p}_{A} \bar{x}_{A}}{\bar{x}_{N}}\right)^{2}\left[\left(\frac{s_{p}}{\hat{p}_{A}}\right)^{2}+\left(\frac{s_{A}}{\bar{x}_{A}}\right)^{2}+\left(\frac{s_{B}}{\bar{x}_{N}}\right)^{2}\right]} \tag{10}
\end{equation*}
$$

where s_{p} is the standard error of \hat{p}_{A}, s_{A} is the standard error of \bar{x}_{A} and s_{B} is the standard error of \bar{x}_{N}. To calculate s_{p}, use Formula (9). The standard errors of \bar{x}_{N} and \bar{x}_{A} may be calculated using Formula (4).

It should be noted that there is frequently some correlation between \hat{p}_{A}, \bar{x}_{N}, and \bar{x}_{A}. Depending on the magnitude and sign of the correlations, the standard error will be over or underestimated.

Illustration 5.

Suppose that in September 2008, 9.8\% of the households own rental property, the mean value of rental property is $\$ 72,121$, the mean value of assets is $\$ 78,734$, and the corresponding standard errors are $0.18 \%, \$ 5,468$, and $\$ 2,703$, respectively. In total there are $86,790,000$ households. Then, the percent of all household assets held in rental property is:

$$
100\left(0.098 \times \frac{72,121}{78,734}\right)=9.0 \%
$$

Using Formula (10), the appropriate standard error is:

$$
s_{I}=\sqrt{\left(\frac{0.098 \times 72,121}{78,734}\right)^{2}\left[\left(\frac{0.0018}{0.098}\right)^{2}+\left(\frac{5,468}{72,121}\right)^{2}+\left(\frac{2,703}{78,734}\right)^{2}\right]}=0.7 \%
$$

Standard Error of a Difference. The standard error of a difference between two sample estimates is approximately equal to

$$
\begin{equation*}
s_{(x-y)}=\sqrt{s_{x}^{2}+s_{y}^{2}} \tag{11}
\end{equation*}
$$

where s_{x} and s_{y} are the standard errors of the estimates x and y. The estimates can be numbers, percents, ratios, etc. The above formula assumes that the correlation coefficient between the characteristics estimated by x and y is zero. If the correlation is really positive (negative), then this assumption will tend to cause overestimates (underestimates) of the true standard error.

Illustration 6.

Suppose that for September 2008 SIPP estimates show the number of persons age 35-44 years with monthly cash income of $\$ 4,000$ to $\$ 4,999$ was $4,880,200$ and the number of persons age 25-34 years with monthly cash income of $\$ 4,000$ to $\$ 4,999$ in the same time period was $4,810,800$. Then, using the parameters $a=-0.00001504$ and $b=3,584$ from Table 4 and Formula (3), the standard errors of these numbers are approximately 130,891 and 129,976 , respectively. The difference in sample estimates is 69,400 and using Formula (11), the approximate standard error of the difference is:

$$
\sqrt{130,891^{2}+129,976^{2}}=184,462
$$

Suppose that it is desired to test at the 10 percent significance level whether the number of persons with monthly cash income of $\$ 4,000$ to $\$ 4,999$ was different for people age $35-44$ years than for people age 25-34 years. To perform the test, compare the difference of 69,400 to the product $1.645 \times 184,462=303,440$. Since the difference is not greater than 1.645 times the standard
error of the difference, the data show that the two age groups are not significantly different at the 10 percent significance level.
Standard Error of a Median. The median quantity of some items such as income for a given group of people is that quantity such that at least half the group have as much or more and at least half the group have as much or less. The sampling variability of an estimated median depends upon the form of the distribution of the item as well as the size of the group. To calculate standard errors on medians, the procedure described below may be used.

The median, like the mean, can be estimated using either data which have been grouped into intervals or ungrouped data. If grouped data are used, the median is estimated using Formulas
(12) or (13) with ${ }^{2}=0.5$. If ungrouped data are used, the data records are ordered based on the value of the characteristic, then the estimated median is the value of the characteristic such that the weighted estimate of 50 percent of the subpopulation falls at or below that value and 50 percent is at or above that value. Note that the method of standard error computation which is presented here requires the use of grouped data. Therefore, it should be easier to compute the median by grouping the data and using Formulas (12) or (13).

An approximate method for measuring the reliability of an estimated median is to determine a confidence interval about it. (See the section on sampling variability for a general discussion of confidence intervals.) The following procedure may be used to estimate the 68-percent confidence limits and hence the standard error of a median based on sample data.

1. Determine, using either Formula (8) or Formula (9), the standard error of an estimate of 50 percent of the group.
2. Add to and subtract from 50 percent the standard error determined in step 1 .
3. Using the distribution of the item within the group, calculate the quantity of the item such that the percent of the group with more of the item is equal to the smaller percentage found in step 2. This quantity will be the upper limit for the 68-percent confidence interval. In a similar fashion, calculate the quantity of the item such that the percent of the group with more of the item is equal to the larger percentage found in step 2 . This quantity will be the lower limit for the 68-percent confidence interval.
4. Divide the difference between the two quantities determined in step 3 by two to obtain the standard error of the median.

To perform step 3, it will be necessary to interpolate. Different methods of interpolation may be used. The most common are simple linear interpolation and Pareto interpolation. The appropriateness of the method depends on the form of the distribution around the median. If density is declining in the area, then we recommend Pareto interpolation. If density is fairly constant in the area, then we recommend linear interpolation. Note, however, that Pareto interpolation can never be used if the interval contains zero or negative measures of the item of interest. Interpolation is used as follows.

The quantity of the item such that p percent have more of the item is:

$$
\begin{equation*}
X_{p N}=A_{1} \times \exp \left[\left(\frac{\ln \left(\frac{p N}{N_{1}}\right)}{\ln \left(\frac{N_{2}}{N_{1}}\right)}\right) \ln \left(\frac{A_{2}}{A_{1}}\right)\right] \tag{12}
\end{equation*}
$$

if Pareto Interpolation is indicated and:

$$
\begin{equation*}
X_{p N}=\left[A_{1}+\left(\frac{P N-N_{1}}{N_{2}-N_{1}}\right)\left(A_{2}-A_{1}\right)\right] \tag{13}
\end{equation*}
$$

if linear interpolation is indicated, where:

N	is the size of the group,
A_{1} and A_{2}	are the lower and upper bounds, respectively, of the interval in which $X_{p N}$ falls
N_{1} and N_{2}	are the estimated number of group members owning more than A_{1} and A_{2}, respectively
\exp	refers to the exponential function and \ln
refers to the natural logarithm function	

Illustration 7.

To illustrate the calculations for the sampling error on a median, we return to Table 10. The median monthly income for this group is $\$ 2,158$. The size of the group is $39,851,000$.

1. Using Formula (9), the standard error of 50 percent on a base of $39,851,000$ is about 0.5 percentage points.
2. Following step 2, the two percentages of interest are 49.5 and 50.5.
3. By examining Table 10, we see that the percentage 49.5 falls in the income interval from $\$ 2,000$ to $\$ 2,499$. (Since 55.5% receive more than $\$ 2,000$ per month, the dollar value corresponding to 49.5 must be between $\$ 2,000$ and $\$ 2,500$.) Thus, $A_{1}=\$ 2,000, A_{2}=$ $\$ 2,500, N_{1}=22,106,000$ and $N_{2}=16,307,000$.

In this case, we decided to use Pareto interpolation. Therefore, using Formula (12), the upper bound of a 68% confidence interval for the median is

$$
\$ 2,000 \times \exp \left[\left(\frac{\ln \left(\frac{0.495 \times 39,851,000}{22,106,000}\right)}{\ln \left(\frac{16,307,000}{22,106,000}\right)}\right) \times \ln \left(\frac{2,500}{2,000}\right)\right]=\$ 2,174
$$

Also by examining Table 10, we see that 50.5 falls in the same income interval. Thus, A_{1}, A_{2}, N_{1} and N_{2} are the same. We also use Pareto interpolation for this case. So the lower bound of a 68% confidence interval for the median is

$$
\$ 2,000 \times \exp \left[\left(\frac{\ln \left(\frac{0.505 \times 39,851,000}{22,106,000}\right)}{\ln \left(\frac{16,307,000}{22,106,000}\right)}\right) \times \ln \left(\frac{2,500}{2,000}\right)\right]=\$ 2,142 .
$$

Thus, the 68 -percent confidence interval on the estimated median is from $\$ 2,142$ to $\$ 2,174$.
4. Then the approximate standard error of the median is

$$
\frac{\$ 2,174-\$ 2,142}{2}=\$ 16
$$

Standard Errors of Ratios of Means and Medians. The standard error for a ratio of means or medians is approximated by:

$$
\begin{equation*}
s_{\frac{x}{y}}=\sqrt{\left(\frac{x}{y}\right)^{2}\left[\left(\frac{s_{y}}{y}\right)^{2}+\left(\frac{s_{x}}{x}\right)^{2}\right]} \tag{14}
\end{equation*}
$$

where x and y are the means or medians, and s_{x} and s_{y} are their associated standard errors. Formula (14) assumes that the means are not correlated. If the correlation between the population means estimated by x and y are actually positive (negative), then this procedure will tend to produce overestimates (underestimates) of the true standard error for the ratio of means.

Standard Errors Using SAS or SPSS. Standard errors and their associated variance, calculated by SAS or SPSS statistical software package, do not accurately reflect the SIPP's complex sample design. Erroneous conclusions will result if these standard errors are used directly. We provide adjustment factors by characteristics that should be used to correctly compensate for likely under-estimates. The design effect (DEFF) factors that are available in Table 4, must be applied to SAS or SPSS generated variances. The square root of DEFF can be directly applied to similarly generated standard errors. These factors approximate design effects which adjust statistical measures for sample designs more complex than a simple random sample.

Cross-sectional replicate weights for SIPP are also provided and can be used to estimate more accurate standard errors and variances. While replicate weighting methods require more computing resources, many statistical software packages, including SAS, have procedures that simplify the use of replicate weights for users. To calculate variances using replicate weights use the formula:

$$
\begin{equation*}
\operatorname{Var}\left(\theta_{0}\right)=\frac{1}{G(0.5)^{2}} \times \sum_{i=1}^{G}\left(\theta_{i}-\theta_{0}\right)^{2} \tag{15}
\end{equation*}
$$

where G is the number of replicates, θ_{0} is the estimate using the full sample weights, and θ_{i} is the estimate using the replicate weights. For the 2008 panel, $\mathrm{G}=120$ for the number of replicate weights provided in the public use files. Replicate weights are created using Fay's method, with a Fay coefficient of 0.5 .

Instead of direct computation, various SAS procedures include options to use replicate weights when estimating standard errors or variances. To use replicate weights in SAS include the VARMETHOD=BRR(FAY=0.5) option in the PROC statement and specify the replicate weights with a REPWEIGHTS statement.

Illustration 8.

In SAS, the SURVEYMEANS procedure is used to estimate statistics such as means, totals, proportions, quantiles, and ratios for a survey sample. An example syntax for estimating the mean of the total household income (THTOTINC) using SIPP replicate weights is:

```
proc surveymeans data=l08puw1 varmethod=brr(Fay=0.5) mean;
    var THTOTINC;
    weight WPFINWGT;
    repweights REPWGT1-REPWGT120;
run;
```

Similarly, replicate weights can be used to estimate standard errors in the SURVEYFREQ (for frequency tables and cross-tabulations), SURVEYREG (for regression analysis), SURVEYLOGISTIC (for logistic regression analysis), and SURVEYPHREG (for proportional hazards regression analysis) SAS procedures by using the same VARMETHOD=BRR(FAY=0.5) option and the REPWEIGHTS statement.

In Stata, the SVY command is used to fit a statistical model to a complex survey dataset. SVYSET is used to determine the survey design and provide information about the variance estimation. The following Stata syntax is equivalent to using SURVEYMEANS by SAS:

```
use lgt08puw1.dta
svyset [pweight=wpfinwgt], brrweight(repwgt1-repwgt120) fay(.5) vce(brr) mse
svy: mean thtotinc
```


References

U.S. Census Bureau (1999). SIPP Quality Profile, 1998, SIPP Working Paper No. 230. Washington, DC: U.S. Census Bureau, May 1999.
U.S. Census Bureau (2008). "Chapter 8: Using Sampling Weights on SIPP Files," Survey of Income and Program Participation Users ' Guide, 3rd Ed. Washington, DC: U.S. Census Bureau.

Wolter, Kirk M. (2007). "Chapter 7: Generalized Variance Functions," Introduction to Variance Estimation, $2^{\text {nd }}$ Ed. New York: Springer, pp. 272-297.

TABLES

Table 1. 2008 Panel Topical Modules
$\left.\begin{array}{|l|l|l|l|}\hline \text { W1 } & \begin{array}{ll}\bullet \text { Recipiency History } \\ \bullet \text { Employment History } \\ \bullet \text { Tax Rebates }\end{array} & & \begin{array}{l}\text { - Assets and Liabilities } \\ \bullet \text { Real Estate, Dependent Care, and Vehicles } \\ \bullet \text { Int Act, Stocks, Mortg, Rental, Val of Bus, } \\ \text { Other }\end{array} \\ & & & \begin{array}{l}\text { Medical Expenses/Utilization of Health } \\ \text { Care Services }\end{array} \\ \bullet \text { W2 Poverty (Work-related Expenses/Child } \\ \text { Support Paid) }\end{array}\right]$

Table 2. SIPP Panel 2008 Reference Months (horizontal) for Each Interview Month (vertical)

		2nd	${ }_{\text {a }}^{\substack{\text { surnter }}}$	${ }_{\text {lin }}^{\text {funter }}$	${ }_{\text {lenter }}^{\text {luater }}$	${ }_{\substack{\text { 2nd }}}^{\text {2nater }}$	${ }_{\text {and }}^{\text {surder }}$	${ }_{\text {lath }}^{\text {tunter }}$	${ }_{\text {luater }}^{\text {liter }}$	${ }_{\substack{\text { 2nd } \\ \text { enarer }}}^{\text {and }}$	${ }_{\substack{\text { 3red } \\ \text { eurater }}}$	${ }_{\text {lint }}^{\text {linter }}$	${ }_{\text {lenter }}^{\text {duater }}$	${ }_{\substack{\text { 2nd } \\ \text { euater }}}$		${ }_{\substack{\text { lint } \\ \text { duarer }}}^{\text {der }}$		${ }_{\substack{\text { 2nd }}}^{\text {2nater }}$			${ }_{\text {later }}^{\text {luater }}$			${ }_{\text {din }}^{\text {dinter }}$
			गA	0 N ${ }^{0}$	ग F			0 N			${ }^{1}$					${ }^{1}$	T ${ }^{\text {F }}$							
	${ }_{\substack{\text { Waped } \\ \text { Ratation }}}^{\substack{\text { a }}}$	${ }^{\text {a }}$	\%	c:			\%	c:		¢	"1: ${ }^{1}$	cio	(Pr		cre			\%	c:		\%	":	c
	${ }_{\text {l/2 }}^{1 / 1}$																							
	¢		[103	${ }_{3}{ }^{4}$																				
${ }_{\substack{\text { janag } \\ \text { Feb }}}^{\text {job }}$	$\underset{\substack{2 / 1 \\ 21}}{2}$			[20.																				
$\underset{\substack{\text { mab } \\ \text { Mar } \\ \text { per }}}{\text { col }}$				1-120	4 3 4 3 4 2																			
${ }^{\text {May }}$					${ }^{1}$																			
	3/3/3																							
$coct Nor$	${ }_{4}^{4 / 2}$						[2:3																	
	44																							
	(in							[23																
$\underset{\substack{\text { May } \\ \text { Jun }}}{ }$	${ }_{61}^{612}$								1-2															
cos	${ }_{6 / 4}^{6 / 3}$									[120														
${ }_{\substack{\text { sep } \\ \text { oct }}}$	$\stackrel{711}{712}$										[13													
coick	${ }_{\substack{7 / 3}}^{7 / 4}$										[12lll	${ }_{3}{ }^{4}$												
(ricr	${ }_{\substack{8 / 3 \\ 8,3}}$											123												
$\underset{\substack{\text { May } \\ \text { Jun }}}{ }$	${ }_{9}^{9}$												12	34										
	${ }_{9 /}^{9 / 3}$													[12										
${ }_{\substack{\text { sep } \\ \text { oot }}}$																								
(oa															${ }^{2}$									
$\underbrace{\text { fab }}_{\substack{\text { jan } \\ \text { Feb }}}$	- $11 / 11$																							
																${ }^{2} 3$	4 3 3 4 2 4							
Jun	122																	34						
(inl	${ }_{124}^{123}$																							
¢	${ }_{\substack{131 \\ 132}}^{1}$																		[104					
(in	${ }_{\substack{13 / 3 \\ 13 / 4}}$																							
${ }^{\text {Jan }}$																				23				
reb Mar	142																			23				
$\underset{\substack{\text { Mapy } \\ \text { Jun }}}{ }$	${ }_{\substack{151 \\ 151}}^{\text {151 }}$																				2 1 1 1	${ }_{3} 4$		
	,																					(1)		
$csep Oct$	$\substack{161 \\ 162}_{\substack{161}}$																						[14	
	$\substack{163 \\ 164}_{164}$																							${ }_{3}{ }_{3}$

Wave 16 is missing data from rotation 2 due to the government shutdown (see Tables 3 a and 3 b for missing rotation).

Table 3a. Factors to be Used When Using Less Than Full Sample	
Number of Available Rotation Months 4	Factor
Monthly Estimate $^{\mathbf{5}}$	
1	4.0000
2	2.0000
3	1.3333
4	1.0000
Quarterly Estimate ${ }^{\mathbf{6}}$	
6	1.8519
8	1.4074
9	1.2222
10	1.0494
11	1.0370
12	1.0000

Table 3b. Factors to be Used When Using June - November 2013		
2013 Monthly Estimate	Number of Available Rotation Per Month	Factor
June, July, and August	3	1.3333
September and October	2	2.0000
November	1	1.0000

4 The number of available rotation months for a given estimate is the sum of the number of rotations available for each month of the estimates.

Adjustment factors for monthly estimates are equal to 4 divided by the number of rotation groups contributing data to the estimate.

Adjustment factors for quarterly estimates are calculated as follows:
Assume:

1. No change within rotation (i.e., no change in value for a variable across months).
2. Rotations are independent.
3. All sigmas are equal.

The monthly factor for each month are equal to 4 divided by the number of rotation groups contributing data to the estimate.
Therefore, the variance of the estimate for the full sample is: $\sum_{\text {Rotation }} \operatorname{Var}\left(X_{J a n}+X_{F e b}+X_{M a r c h}\right)=36 \sigma^{2}$. The variance of the estimate for less than a full sample is: the sum of the squared monthly factors for each rotation month $* \sigma^{2}$. The adjustment factor for the quarterly estimate is: (the sum of the squared monthly factors for each rotation month $\left.* \sigma^{2}\right) /\left(36 \sigma^{2}\right)$.

Table 4. SIPP Generalized Variance Parameters for the 2008 Panel, Wave 1

Domain	Parameters		DEFF ${ }^{6}$	f
	a	b		
Poverty and Program Participation, Persons 15+				
Total	-0.00001532	3,651	1.84	1.000
Male	-0.00003163	3,651		
Female	-0.00002971	3,651		
Income and Labor Force Participation, Persons 15+				
Total	-0.00001504	3,584	1.80	0.989
Male	-0.00003105	3,584		
Female	-0.00002917	3,584		
Other, Persons 0+				
Total (or White)	-0.00001223	3,661	1.84	1.000
Male	-0.00002496	3,661		
Female	-0.00002397	3,661		
Black, Persons 0+	-0.00009339	3,534	1.78	0.983
Male	-0.00020096	3,534		
Female	-0.00017447	3,534		
Hispanic, Persons 0+	-0.00009852	4,588	2.31	1.119
Male	-0.00019194	4,588		
Female	-0.00020241	4,588		
Households				
Total (or White)	-0.00002703	3,179	1.60	1.000
Black	-0.00021922	3,179		
Hispanic	-0.00023147	3,179		

Notes on Domain Usage for Table 4:
Poverty and Program Use these parameters for estimates concerning poverty rates, welfare program Participation participation (e.g., SNAP, SSI, TANF), and other programs for adults with low incomes.

Income and Labor Force
These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.

Other Persons Use the "Other Persons" parameters for estimates of total (or white) persons aged 0+in the labor force, and all other characteristics not specified in this table, for the total or white population.

Black/Hispanic Persons
Households

6

Use these parameters for estimates of Black and Hispanic persons 0+.
Use these parameters for all household level estimates.
$\mathrm{DEFF}=\mathrm{b} /$ sample interval, where sample interval $=1,989$

Table 4.(Cont.) SIPP Generalized Variance Parameters for the 2008 Panel, Wave 2-3

Domain	Parameters		DEFF ${ }^{6}$	f
	a	b		
Poverty and Program Participation, Persons 15+				
Total	-0.00001786	4,295	2.16	1.083
Male	-0.00003687	4,295		
Female	-0.00003465	4,295		
Income and Labor Force Participation, Persons 15+				
Total	-0.00001721	4,137	2.08	1.063
Male	-0.00003552	4,137		
Female	-0.00003338	4,137		
Other, Persons 0+				
Total (or White)	-0.00001434	4,327	2.18	1.087
Male	-0.00002926	4,327		
Female	-0.00002811	4,327		
Black, Persons 0+	-0.00011484	4,376	2.20	1.093
Male	-0.00024713	4,376		
Female	-0.00021452	4,376		
Hispanic, Persons 0+	-0.00011685	5,561	2.80	1.232
Male	-0.00022778	5,561		
Female	-0.00023994	5,561		
Households				
Total (or White)	-0.00003137	3,722	1.87	1.082
Black	-0.00025251	3,722		
Hispanic	-0.00026735	3,722		

Notes on Domain Usage for Table 4:

Poverty and Program Participation

Use these parameters for estimates concerning poverty rates, welfare program participation (e.g., SNAP, SSI, TANF), and other programs for adults with low incomes.

Income and Labor Force
These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.
Other Persons Use the "Other Persons" parameters for estimates of total (or white) persons aged 0+ in the labor force, and all other characteristics not specified in this table, for the total or white population.

Black/Hispanic Persons
Households
$6 \quad \mathrm{DEFF}=\mathrm{b} /$ sample interval, where sample interval=1,989

Table 4.(Cont.) SIPP Generalized Variance Parameters for the 2008 Panel, Wave 4-6

Domain	Parameters		DEFF ${ }^{6}$	f
	a	b		
Poverty and Program Participation, Persons 15+				
Total	-0.00001993	4,834	2.43	1.149
Male	-0.00004111	4,834		
Female	-0.00003867	4,834		
Income and Labor Force Participation, Persons 15+				
Total	-0.00001855	4,500	2.26	1.109
Male	-0.00003827	4,500		
Female	-0.00003600	4,500		
Other, Persons 0+				
Total (or White)	-0.00001592	4,851	2.44	1.151
Male	-0.00003248	4,851		
Female	-0.00003122	4,851		
Black, Persons 0+	-0.00012441	4,818	2.42	1.147
Male	-0.00026711	4,818		
Female	-0.00023288	4,818		
Hispanic, Persons 0+	-0.00012848	6,302	3.17	1.312
Male	-0.00025001	6,302		
Female	-0.00026432	6,302		
Households				
Total (or White)	-0.00003401	4,037	2.03	1.127
Black	-0.00026961	4,037		
Hispanic	-0.00029139	4,037		

Notes on Domain Usage for Table 4:
Poverty and Program Use these parameters for estimates concerning poverty rates, welfare program Participation participation (e.g., SNAP, SSI, TANF), and other programs for adults with low incomes.

Income and Labor Force
These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.

Other Persons Use the "Other Persons" parameters for estimates of total (or white) persons aged 0+ in the labor force, and all other characteristics not specified in this table, for the total or white population.
Black/Hispanic Persons
Households
6

Use these parameters for estimates of Black and Hispanic persons 0+.
Use these parameters for all household level estimates.
$\mathrm{DEFF}=\mathrm{b} /$ sample interval, where sample interval $=1,989$

Table 4.(Cont.) SIPP Generalized Variance Parameters for the 2008 Panel, Wave 7-9

Domain	Parameters		DEFF ${ }^{6}$	f
	a	b		
Poverty and Program Participation, Persons 15+				
Total	-0.00002221	5,426	2.73	1.217
Male	-0.00004571	5,426		
Female	-0.00004319	5,426		
Income and Labor Force Participation, Persons 15+				
Total	-0.00002011	4,913	2.47	1.158
Male	-0.00004139	4,913		
Female	-0.00003911	4,913		
Other, Persons 0+				
Total (or White)	-0.00001765	5,409	2.72	1.216
Male	-0.00003594	5,409		
Female	-0.00003467	5,409		
Black, Persons 0+	-0.00014401	5,635	2.83	1.241
Male	-0.00030883	5,635		
Female	-0.00026984	5,635		
Hispanic, Persons 0+	-0.00013176	6,604	3.32	1.343
Male	-0.00025629	6,604		
Female	-0.00027116	6,604		
Households				
Total (or White)	-0.00003687	4,425	2.22	1.180
Black	-0.00028880	4,425		
Hispanic	-0.00031165	4,425		

Notes on Domain Usage for Table 4:

Poverty and Program Participation

Use these parameters for estimates concerning poverty rates, welfare program participation (e.g., SNAP, SSI, TANF), and other programs for adults with low incomes.

Income and Labor Force
These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.

Other Persons
Use the "Other Persons" parameters for estimates of total (or white) persons aged $0+$ in the labor force, and all other characteristics not specified in this table, for the total or white population.
Black/Hispanic Persons
Households
6
DEFF=b/sample interval, where sample interval=1,989

Table 4.(Cont.) SIPP Generalized Variance Parameters for the 2008 Panel, Wave 10-11

Domain	Parameters		DEFF ${ }^{6}$	f
	a	b		
Poverty and Program Participation, Persons 15+				
Total	-0.00002316	5,688	2.86	1.247
Male	-0.00004766	5,688		
Female	-0.00004507	5,688		
Income and Labor Force Participation, Persons 15+				
Total	-0.00002171	5,331	2.68	1.207
Male	-0.00004467	5,331		
Female	-0.00004224	5,331		
Other, Persons 0+				
Total (or White)	-0.00001851	5,701	2.87	1.250
Male	-0.00003769	5,701		
Female	-0.00003638	5,701		
Black, Persons 0+	-0.00015183	5,978	3.01	1.279
Male	-0.00032574	5,978		
Female	-0.00028438	5,978		
Hispanic, Persons 0+	-0.00013671	6,966	3.50	1.379
Male	-0.00026565	6,966		
Female	-0.00028165	6,966		
Households				
Total (or White)	-0.00003865	4,637	2.33	1.125
Black	-0.00030277	4,637		
Hispanic	-0.00032246	4,637		

Notes on Domain Usage for Table 4:

Poverty and Program Participation

Use these parameters for estimates concerning poverty rates, welfare program participation (e.g., SNAP, SSI, TANF), and other programs for adults with low incomes

These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.

Other Persons Use the "Other Persons" parameters for estimates of total (or white) persons aged 0+ in the labor force, and all other characteristics not specified in this table, for the total or white population.

Use these parameters for estimates of Black and Hispanic persons 0+.
Use these parameters for all household level estimates.
DEFF=b/sample interval, where sample interval=1,989

Table 4.(Cont.) SIPP Generalized Variance Parameters for the 2008 Panel, Wave 12-13

Domain	Parameters		DEFF ${ }^{6}$	f		
	a	b				
Poverty and Program Participation, Persons 15+						
Total	-0.00002420	6,019	3.03	1.283		
Male	-0.00005011	6,019				
Female	-0.00004678	6,019				
Income and Labor Force Participation, Persons 15+						
Total	-0.00002233	5,556	2.79	1.231		
Male	-0.00004625	5,556				
Female	-0.00004318	5,556				
Other, Persons 0+						
Total (or White)	-0.00001940	6,012	3.02	1.281		
Male	-0.00003972	6,012				
Female	-0.00003791	6,012				
Black, Persons 0+	-0.00014983	5,986	3.01	1.279		
Male	-0.00032196	5,986				
Female	-0.00028026	5,986				
Hispanic, Persons 0+	-0.00014633	7,735	3.89	1.454		
Male	-0.00029028	7,735				
Female	-0.00029508	7,735				
Households						
Total (or White)	-0.00004077	4,991	2.51	1.252		
Black	-0.00031806	4,991				
Hispanic	-0.00032259	4,991				

Notes on Domain Usage for Table 4:

Poverty and Program Participation

Use these parameters for estimates concerning poverty rates, welfare program participation (e.g., SNAP, SSI, TANF), and other programs for adults with low incomes

These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.

Other Persons Use the "Other Persons" parameters for estimates of total (or white) persons aged 0+ in the labor force, and all other characteristics not specified in this table, for the total or white population.

Black/Hispanic Persons
Households 6

Use these parameters for estimates of Black and Hispanic persons 0+.
Use these parameters for all household level estimates.
DEFF=b/sample interval, where sample interval=1,989

Table 4.(Cont.) SIPP Generalized Variance Parameters for the 2008 Panel, Wave 14-16

Domain	Parameters		DEFF ${ }^{6}$	f		
	\boldsymbol{a}	b				
Poverty and Program Participation, Persons 15+						
Total	-0.00002550	6,381	3.21	1.321		
Male	-0.00005281	6,381				
Female	-0.00004931	6,381				
Income and Labor Force Participation, Persons 15+						
Total	-0.00002303	5,763	2.90	1.255		
Male	-0.00004769	5,763				
Female	-0.00004453	5,763				
Other, Persons 0+						
Total (or White)	-0.00002029	6,316	3.18	1.315		
Male	-0.00004154	6,316				
Female	-0.00003965	6,316				
Black, Persons 0+	-0.00016289	6,562	3.30	1.339		
Male	-0.00034931	6,562				
Female	-0.00030524	6,562				
Hispanic, Persons 0+	-0.00014824	7,903	3.97	1.469		
Male	-0.00029449	7,903				
Female	-0.00029848	7,903				
Households						
Total (or White)	-0.00004256	5,256	2.64	1.285		
Black	-0.00032875	5,256				
Hispanic	-0.00033469	5,256				

Notes on Domain Usage for Table 4:

Poverty and Program Participation

Income and Labor Force

Use these parameters for estimates concerning poverty rates, welfare program participation (e.g., SNAP, SSI, TANF), and other programs for adults with low incomes

These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.

Other Persons Use the "Other Persons" parameters for estimates of total (or white) persons aged $0+$ in the labor force, and all other characteristics not specified in this table, for the total or white population.

Use these parameters for estimates of Black and Hispanic persons 0+.
Use these parameters for all household level estimates.
$\mathrm{DEFF}=\mathrm{b} /$ sample interval, where sample interval=1,989

Table 5. SIPP Topical Module Generalized Variance Parameters for the 2008 Panel

Characteristics	Parameters	
	\boldsymbol{a}	\boldsymbol{b}
Employment History, Wave 1	-0.00001504	3,584
Both Sexes, Age 18+	-0.00003105	3,584
Male, Age 18+	-0.00002917	3,584
Female, Age 18+		
Recipiency History, Wave 1	-0.00001532	3,651
Both Sexes, Age 18+	-0.00003163	3,651
Male, Age 18+	-0.00002971	3,651
Female, Age 18+	-0.00002596	3,240
Fertility History, Wave 2	-0.00004735	5,907
Women	-0.00001836	4,412
Births	-0.00002780	6,677
Education History, Wave 2	-0.00002566	8,113
Marital History, Wave 2	-0.00002060	4,939
Some Household Members	-0.00001359	4,093
All Household Members	-0.00005229	12,135
Migration History, Wave 2		
Household Relationship, Wave 2	-0.00001905	4,671
Welfare Reform, Wave 3	-0.00002124	5,178
Assets and Liabilities	-0.00002321	5,696
Wave 4		
Wave 7	-0.00005835	4,508
Wave 10	-0.00006757	5,292
Child Well-Being (Under 18),	-0.00006277	4,821
Wave 4	-0.00006694	5,216
Wave 10	-0.00001826	4,423
Child Care (Age 0 to 15), Wave 5	-0.00004807	6,062
Wave 8	-0.00002493	6,062
Work Schedule (15+), Wave 5	-0.00002375	7,585
Child Support, Wave 6		
Support for Non-Household Members, Wave 6		
Health and Disability - Adults, Wave 6		

Table 6. Base Standard Errors of Estimated Numbers of Households or Families			
Size of Estimate	Standard Error	Size of Estimate	Standard Error
200,000	25,194	$30,000,000$	266,539
300,000	30,843	$40,000,000$	289,676
500,000	39,784	$50,000,000$	302,283
750,000	48,673	$60,000,000$	305,666
$1,000,000$	56,142	$70,000,000$	300,138
$2,000,000$	79,056	$80,000,000$	285,181
$3,000,000$	96,404	$90,000,000$	259,166
$5,000,000$	123,366	$95,000,000$	240,955
$7,500,000$	149,406	$99,500,000$	220,696
$10,000,000$	170,549	$105,000,000$	189,180
$15,000,000$	203,969	$110,000,000$	150,423
$25,000,000$	250,162	$117,610,000$	447

Note: These estimates are calculations using the Household Total (or White) a and b parameters from Table 4.

Table 7. Base Standard Errors of Estimated Numbers of Persons

Size of Estimate	Standard Error	Size of Estimate	Standard Error
200,000	27,050	$110,000,000$	504,705
300,000	33,124	$120,000,000$	513,038
500,000	42,749	$130,000,000$	518,886
750,000	52,334	$140,000,000$	522,333
$1,000,000$	60,405	$150,000,000$	523,426
$2,000,000$	85,282	$160,000,000$	522,180
$3,000,000$	104,273	$170,000,000$	518,578
$5,000,000$	134,161	$180,000,000$	512,570
$7,500,000$	163,614	$190,000,000$	504,070
$10,000,000$	188,114	$200,000,000$	492,950
$15,000,000$	228,393	$210,000,000$	479,027
$25,000,000$	289,623	$220,000,000$	462,048
$30,000,000$	314,361	$230,000,000$	441,659
$40,000,000$	356,191	$240,000,000$	417,363
$50,000,000$	390,480	$250,000,000$	388,426
$60,000,000$	419,085	$260,000,000$	353,712
$70,000,000$	443,106	$270,000,000$	311,292
$80,000,000$	463,258	$275,000,000$	286,149
$90,000,000$	480,028	$280,000,000$	257,387
$100,000,000$	493,761	$299,340,000$	4,636

Notes: (1) These estimates are calculations using the Other Persons $0+a$ and b parameter from Table 4.
(2) To calculate the standard for another domain multiply the standard error from this table by the appropriate f factor from Table 4 .

Table 8. Base Standard Errors for Percentages of Households or Families

	Estimated Percentages					
Base of Estimated Percentages	$\leq \mathbf{1}$ or $\geq \mathbf{9 9}$	$\mathbf{2}$ or 98	$\mathbf{5}$ or 95	$\mathbf{1 0}$ or 90	$\mathbf{2 5}$ or 75	$\mathbf{5 0}$
200,000						
300,000	1.25%	1.77%	2.75%	3.78%	5.46%	6.30%
500,000	0.79%	1.12%	1.74%	2.39%	3.45%	3.99%
750,000	0.65%	0.91%	1.42%	1.95%	2.82%	3.26%
$1,000,000$	0.56%	0.79%	1.23%	1.69%	2.44%	2.82%
$2,000,000$	0.40%	0.56%	0.87%	1.20%	1.73%	1.99%
$3,000,000$	0.32%	0.46%	0.71%	0.98%	1.41%	1.63%
$5,000,000$	0.25%	0.35%	0.55%	0.76%	1.09%	1.26%
$7,500,000$	0.20%	0.29%	0.45%	0.62%	0.89%	1.03%
$10,000,000$	0.18%	0.25%	0.39%	0.53%	0.77%	0.89%
$15,000,000$	0.14%	0.20%	0.32%	0.44%	0.63%	0.73%
$25,000,000$	0.11%	0.16%	0.25%	0.34%	0.49%	0.56%
$30,000,000$	0.10%	0.14%	0.22%	0.31%	0.45%	0.51%
$40,000,000$	0.09%	0.12%	0.19%	0.27%	0.39%	0.45%
$50,000,000$	0.08%	0.11%	0.17%	0.24%	0.35%	0.40%
$60,000,000$	0.07%	0.10%	0.16%	0.22%	0.32%	0.36%
$70,000,000$	0.07%	0.09%	0.15%	0.20%	0.29%	0.34%
$80,000,000$	0.06%	0.09%	0.14%	0.19%	0.27%	0.32%
$90,000,000$	0.06%	0.08%	0.13%	0.18%	0.26%	0.30%
$105,000,000$	0.05%	0.08%	0.12%	0.17%	0.24%	0.28%
$110,000,000$	0.05%	0.08%	0.12%	0.16%	0.23%	0.27%
$117,610,000$	0.05%	0.07%	0.11%	0.16%	0.23%	0.26%

Note: These estimates are calculations using the Households Total (or White) b parameter from Table 4.

Table 9. Base Standard Errors for Percentages of Persons

Base of Estimated Percentages	Estimated Percentages					
	≤ 1 or ≥ 99	2 or 98	5 or 95	10 or 90	25 or 75	50
200,000	1.35\%	1.89\%	2.95\%	4.06\%	5.86\%	6.76\%
300,000	1.10\%	1.55\%	2.41\%	3.31\%	4.78\%	5.52\%
500,000	0.85\%	1.20\%	1.86\%	2.57\%	3.71\%	4.28\%
750,000	0.70\%	0.98\%	1.52\%	2.10\%	3.03\%	3.49\%
1,000,000	0.60\%	0.85\%	1.32\%	1.82\%	2.62\%	3.03\%
2,000,000	0.43\%	0.60\%	0.93\%	1.28\%	1.85\%	2.14\%
3,000,000	0.35\%	0.49\%	0.76\%	1.05\%	1.51\%	1.75\%
5,000,000	0.27\%	0.38\%	0.59\%	0.81\%	1.17\%	1.35\%
7,500,000	0.22\%	0.31\%	0.48\%	0.66\%	0.96\%	1.10\%
10,000,000	0.19\%	0.27\%	0.42\%	0.57\%	0.83\%	0.96\%
15,000,000	0.16\%	0.22\%	0.34\%	0.47\%	0.68\%	0.78\%
25,000,000	0.12\%	0.17\%	0.26\%	0.36\%	0.52\%	0.61\%
30,000,000	0.11\%	0.15\%	0.24\%	0.33\%	0.48\%	0.55\%
40,000,000	0.10\%	0.13\%	0.21\%	0.29\%	0.41\%	0.48\%
50,000,000	0.09\%	0.12\%	0.19\%	0.26\%	0.37\%	0.43\%
60,000,000	0.08\%	0.11\%	0.17\%	0.23\%	0.34\%	0.39\%
70,000,000	0.07\%	0.10\%	0.16\%	0.22\%	0.31\%	0.36\%
100,000,000	0.06\%	0.08\%	0.13\%	0.18\%	0.26\%	0.30\%
110,000,000	0.06\%	0.08\%	0.13\%	0.17\%	0.25\%	0.29\%
120,000,000	0.05\%	0.08\%	0.12\%	0.17\%	0.24\%	0.28\%
130,000,000	0.05\%	0.07\%	0.12\%	0.16\%	0.23\%	0.27\%
140,000,000	0.05\%	0.07\%	0.11\%	0.15\%	0.22\%	0.26\%
150,000,000	0.05\%	0.07\%	0.11\%	0.15\%	0.21\%	0.25\%
160,000,000	0.05\%	0.07\%	0.10\%	0.14\%	0.21\%	0.24\%
170,000,000	0.05\%	0.06\%	0.10\%	0.14\%	0.20\%	0.23\%
180,000,000	0.04\%	0.06\%	0.10\%	0.14\%	0.20\%	0.23\%
190,000,000	0.04\%	0.06\%	0.10\%	0.13\%	0.19\%	0.22\%
200,000,000	0.04\%	0.06\%	0.09\%	0.13\%	0.19\%	0.21\%
210,000,000	0.04\%	0.06\%	0.09\%	0.13\%	0.18\%	0.21\%
220,000,000	0.04\%	0.06\%	0.09\%	0.12\%	0.18\%	0.20\%
230,000,000	0.04\%	0.06\%	0.09\%	0.12\%	0.17\%	0.20\%
240,000,000	0.04\%	0.05\%	0.09\%	0.12\%	0.17\%	0.20\%
250,000,000	0.04\%	0.05\%	0.08\%	0.11\%	0.17\%	0.19\%
280,000,000	0.04\%	0.05\%	0.08\%	0.11\%	0.16\%	0.18\%
299,340,000	0.03\%	0.05\%	0.08\%	0.10\%	0.15\%	0.17\%

Notes: (1) These estimates are calculations using the Other Persons $0+a$ and b parameter from Table 4.
(2) To calculate the standard for another domain multiply the standard error from this table by the appropriate f factor from Table 4.

Table 10. Distribution of Monthly Cash Income Among People 25 to 34 Years Old (Not Actual Data, Only Use for Calculation Illustrations)													
	Interval of Monthly Cash Income												
	$\begin{aligned} & \text { Under } \\ & \$ 300 \end{aligned}$	$\begin{gathered} \$ 300 \\ \text { to } \\ \$ 599 \end{gathered}$	$\begin{gathered} \$ 600 \\ \text { to } \\ \$ 899 \end{gathered}$	$\begin{gathered} \$ 900 \\ \text { to } \\ \$ 1,199 \end{gathered}$	$\begin{gathered} \$ 1,200 \\ \text { to } \\ \$ 1,499 \end{gathered}$	$\begin{aligned} & \$ 1,500 \\ & \text { to } \\ & \$ 1,999 \end{aligned}$	$\begin{gathered} \$ 2,000 \\ \text { to } \\ \$ 2,499 \end{gathered}$	$\begin{gathered} \$ 2,500 \\ \text { to } \\ \$ 2,999 \end{gathered}$	$\begin{aligned} & \$ 3,000 \\ & \text { to } \\ & \$ 3,499 \end{aligned}$	$\begin{gathered} \$ 3,500 \\ \text { to } \\ \$ 3,999 \end{gathered}$	$\begin{gathered} \$ 4,000 \\ \text { to } \\ \$ 4,999 \end{gathered}$	$\begin{gathered} \$ 5,000 \\ \text { to } \\ \$ 5,999 \end{gathered}$	$\begin{gathered} \$ 6,000 \\ \text { and } \\ \text { Over } \end{gathered}$
Number of People in Each Interval (in thousands)	1,371	1,651	2,259	2,734	3,452	6,278	5,799	4,730	3,723	2,519	2,619	1,223	1,493
Cumulative Number of People with at Least as Much as Lower Bound of Each Interval (in thousands)	39,851 (Total People)	38,480	36,829	34,570	31,836	28,384	22,106	16,307	11,577	7,854	5,335	2,716	1,493
Percent of People with at Least as Much as Lower Bound of Each Interval	100	96.6	92.4	86.7	79.9	71.2	55.5	40.9	29.1	19.7	13.4	6.8	3.7

WAVE 13 TOPICAL MODULE FREQUENCIES

SINTHHID	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	221	0.29	221	0.29
11	51588	67.85	51809	68.14
21	1086	1.43	52895	69.57
22	9	0.01	52904	69.58
23	9	0.01	52913	69.59
31	1316	1.73	54229	71.32
32	32	0.04	54261	71.36
41	1592	2.09	55853	73.46
42	63	0.08	55916	73.54
51	1463	1.92	57379	75.46
52	57	0.07	57436	75.54
61	1707	2.25	59143	77.78
62	46	0.06	59189	77.85
63	2	0.00	59191	77.85
71	1865	2.45	61056	80.30
72	52	0.07	61108	80.37
73	11	0.01	61119	80.38
81	1778	2.34	62897	82.72
82	66	0.09	62963	82.81
91	1876	2.47	64839	85.28
92	30	0.04	64869	85.32
101	2464	3.24	67333	88.56
102	51	0.07	67384	88.62
111	2279	3.00	69663	91.62
112	66	0.09	69729	91.71
113	3	0.00	69732	91.71
121	2655	3.49	72387	95.20
122	101	0.13	72488	95.34
123	5	0.01	72493	95.34
131	3419	4.50	75912	99.84
132	113	0.15	76025	99.99
133	6	0.01	76031	100.00
134	3	0.00	76034	100.00
EAECUNV	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	15717	20.67	15717	20.67
1	60317	79.33	76034	100.00

IPROCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	981	1.29	981	1.29
-1	435	0.57	1416	1.86
0	19873	26.14	21289	28.00
1	11243	14.79	32532	42.79
2	43502	57.21	76034	100.00
IWHOPCER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	31	0.04	31	0.04
-1	123	0.16	154	0.20
0	64793	85.22	64947	85.42
1	568	0.75	65515	86.17
2	7073	9.30	72588	95.47
3	257	0.34	72845	95.81
4	1118	1.47	73963	97.28
5	616	0.81	74579	98.09
6	1168	1.54	75747	99.62
7	287	0.38	76034	100.00
IWHYPCER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	16	0.02	16	0.02
-1	12	0.02	28	0.04
0	64795	85.22	64823	85.26
1	10784	14.18	75607	99.44
2	427	0.56	76034	100.00
IFLDPCER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	32	0.04	32	0.04
-1	31	0.04	63	0.08
0	64796	85.22	64859	85.30
1	268	0.35	65127	85.66
2	135	0.18	65262	85.83
3	126	0.17	65388	86.00
4	655	0.86	66043	86.86
5	102	0.13	66145	86.99
6	1514	1.99	67659	88.99
7	1296	1.70	68955	90.69
8	402	0.53	69357	91.22
9	161	0.21	69518	91.43
10	241	0.32	69759	91.75
11	502	0.66	70261	92.41

IFLDPCER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
12	1886	2.48	72147	94.89
13	759	1.00	72906	95.89
14	717	0.94	73623	96.83
15	119	0.16	73742	96.99
16	2292	3.01	76034	100.00
I JOBPCER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	21	0.03	21	0.03
-1	58	0.08	79	0.10
0	64796	85.22	64875	85.32
1	10732	14.11	75607	99.44
2	427	0.56	76034	100.00
IRJPCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	15	0.02	15	0.02
-1	39	0.05	54	0.07
0	64797	85.22	64851	85.29
1	8454	11.12	73305	96.41
2	2559	3.37	75864	99.78
3	170	0.22	76034	100.00
ITRNPCER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	24	0.03	24	0.03
-1	54	0.07	78	0.10
0	64797	85.22	64875	85.32
1	10388	13.66	75263	98.99
2	771	1.01	76034	100.00
IEXPCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	25	0.03	25	0.03
-1	114	0.15	139	0.18
0	64797	85.22	64936	85.40
1	10188	13.40	75124	98.80
2	910	1.20	76034	100.00

ICDPCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	49	0.06	49	0.06
-1	254	0.33	303	0.40
0	64800	85.23	65103	85.62
1	7143	9.39	72246	95.02
2	3788	4.98	76034	100.00
ICERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	1028	1.35	1028	1.35
-1	521	0.69	1549	2.04
0	19891	26.16	21440	28.20
1	4667	6.14	26107	34.34
2	49927	65.66	76034	100.00
IFLDCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	9	0.01	9	0.01
-1	16	0.02	25	0.03
0	71368	93.86	71393	93.90
1	73	0.10	71466	93.99
2	51	0.07	71517	94.06
3	240	0.32	71757	94.37
4	91	0.12	71848	94.49
5	216	0.28	72064	94.78
6	107	0.14	72171	94.92
7	21	0.03	72192	94.95
8	421	0.55	72613	95.50
9	495	0.65	73108	96.15
10	211	0.28	73319	96.43
11	138	0.18	73457	96.61
12	223	0.29	73680	96.90
13	66	0.09	73746	96.99
14	49	0.06	73795	97.06
15	87	0.11	73882	97.17
16	81	0.11	73963	97.28
17	564	0.74	74527	98.02
18	226	0.30	74753	98.32
19	52	0.07	74805	98.38
20	254	0.33	75059	98.72
21	99	0.13	75158	98.85
22	876	1.15	76034	100.00

ISCHCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	19	0.02	19	0.02
-1	56	0.07	75	0.10
0	71368	93.86	71443	93.96
1	977	1.28	72420	95.25
2	1276	1.68	73696	96.93
3	1479	1.95	75175	98.87
4	219	0.29	75394	99.16
5	209	0.27	75603	99.43
6	51	0.07	75654	99.50
7	26	0.03	75680	99.53
8	175	0.23	75855	99.76
9	38	0.05	75893	99.81
10	141	0.19	76034	100.00
ISDYCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	12	0.02	12	0.02
-1	28	0.04	40	0.05
0	71369	93.86	71409	93.92
1	438	0.58	71847	94.49
2	4187	5.51	76034	100.00
ITIMCERT	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-2	18	0.02	18	0.02
-1	83	0.11	101	0.13
0	71369	93.86	71470	94.00
1	186	0.24	71656	94.24
2	245	0.32	71901	94.56
3	4133	5.44	76034	100.00

WAVE 13 TOPICAL MODULE UNIVARIATES

The UNIVARIATE Procedure
Variable: LGTKEY
Moments

N	76034	Sum Weights	76034
Mean	32884887.2	Sum Observations	2.50037 E 12
Std Deviation	18965109.2	Variance	3.59675 E 14
Skewness	-0.0058259	Kurtosis	-1.2046399
Uncorrected SS	1.09572 E 20	Corrected SS	2.73472 E 19
Coeff Variation	57.6712002	Std Error Mean	68778.2985

Extreme Observations

Value	Obs	Value	Obs
1001	16583	65516002	5803
1002	16584	65516003	5804
1003	16585	65516004	5805
2001	16411	65516005	5806
2002	16412	65520001	9263

Appendix A

Questionnaire

Section Page

Section: Professional Certifications and Educational Certificates

Items Booklet

Mark One Only

Now I'd like to ask you about professional certification and licensure.
[FILL C_DODOES] [FILL TEMPNAME] have a professional certification or state or industry license?
[r]H[n]
(1) Yes
(2) No
@
Mark One Only

The next set of questions refers to [FILL HISHER] MOST RECENT
certification or license. Who awarded this certification or license?
SHOW FLASHCARD AA
(1) Federal government
(2) State government
(3) Local government
(4) Industry
(5) Business, company, or non-profit organization
(6) Professional Association
(7) Other
@
Mark One Only
WHYPCERT

Did [FILL HESHE] get this certification or license mainly for work-related reasons or mainly for personal interest?
(1) Mainly work-related
(2) Mainly personal interest
@

Mark One Only

What is the major subject or field of study for this certification or license?
SHOW FLASHCARD BB
(1) Architecture and engineering
(2) Computer networking and administration
(3) Computer applications and design
(4) Business/finance management
(5) Administrative support
(6) Nursing/nurse assisting
(7) Other medical/health care
(8) Cosmetology
(9) Culinary arts
(10) Protective services
(11) Legal and social services
(12) Education
(13) Construction and manufacturing trades
(14) Transportation and material moving
(15) Public utilities
(16) Other
@
Mark One Only

Can this certification or license be used if [FILL HESHE] wanted to get a job with any employer in that field?
[b]CERTIFICATIONS AND LICENSES THAT ARE RECOGNIZED STATE-WIDE SHOULD BE RECORDED AS "YES."[n]
(1) Yes
(2) No
@

Mark One Only

REQJOBPCERT
Is this certification or license required for [FILL HISHER] current or most recent job?
(1) Yes
(2) No
(3) Not applicable (never worked)
@

Mark One Only

Did [FILL HESHE] take courses or training to earn the certification
or license?
(1) Yes
(2) No
@

Did [FILL HESHE] have to demonstrate skills while on the job or pass a test or exam to earn the certification or license?
(1) Yes
(2) NO
@
Mark One Only
CEDPCERT
[FILL C_DODOES] [FILL HESHE] have to take periodic tests or continuing educatiōn classes or earn CEUs to maintain the certification or license?
(1) Yes
(2) No
@

Mark One Only

Some people decide to enroll at a college, university, community college, or trade school to earn a certificate rather than a degree.
[FILL C_HAVHAS] [FILL HESHE] ever earned this type of certificate?
[r]H[n]
(1) Yes
(2) No
@

Mark One Only

The next set of questions refers to [FILL HISHER] MOST RECENT completed
certificate.
What is the major subject or field of study for this certificate? SHOW FLASHCARD CC

(1)	Architecture and engineering	(11)	Health aides
(2)	Communications technologies	(12)	Cosmetology
	/technologists	(13)	Culinary arts
(3)	Computer and information sciences	(14)	Personal services (other than cosmetology and culinary arts)
(4)	Engineering and related	(15)	Protective services
	technologies	(16)	Public and social services (other
(5)	Business management		than protective services)
(6)	Business support	(17)	Education
(7)	Marketing	(18)	Construction trades
(8)	Health professions,	(19)	Manufacturing
	except nursing	(20)	Mechanic and repair technologies
(9)	Nursing	(21)	Transportation and material moving
(10)	Health technologists and	(22)	Other

```
What type of school or organization provided the certificate program?
```

SHOW FLASHCARD DD
(1) A community college
(2) A university or college other than a community college
(3) A trade, vocational, technical, or business school
(4) Business or company
(5) Professional organization
(6) Trade union
(7) Non-profit organization
(8) Federal, state, or local government
(9) Military
(10) Someplace else
@
Mark One Only

Was the training for this certificate mainly self-study or mainly classes or courses with an instructor?
(1) Mainly self-study
(2) Mainly instructor
@
Mark One Only
TIMECERT

How long did it take to earn this certificate?
(1) Less than one week
(2) One week to one month
(3) More than one month
@

Items Booklet Index

Alphabetical index

APPENDIX B

Working Papers

For an updated list of SIPP Working Papers always refer to the U.S. Census Bureau's SIPP Internet site at http://www.census.gov/programs-surveys/sipp/working-papers.html. The Internet site will be updated as additional Working Papers become available.

APPENDIX C

User Notes

This section is reserved for User Notes, which provide any information relevant to the SIPP, 2008 Panel Wave 13 Topical Module Microdata File that indicates any specific problems with the data. User Notes are organized by Panel and Wave.

For an updated list of User Notes always refer to the U.S. Census Bureau's SIPP Internet site at http://www.census.gov/programs-surveys/sipp/. The User Notes can be found on the "Data" page under the Panel and Wave designation. For example, if you are looking for User Notes for Wave 12 of SIPP 2008 you click the link for "2008 Panel" on the "Data" page, then click the link for "2008 Panel Wave 12" and cursor down the page until you find the "Wave 12 User Notes". The Internet site will be updated as additional User Notes become available.

[^0]: ${ }^{2}$ For questions or further assistance with the information provided in this document contact: Tracy Mattingly of the Demographic Statistical Methods Division at (301) 763-6445 or via the e-mail at Tracy.L.Mattingly@census.gov.

[^1]: ${ }^{3}$ Wave 16 is missing data from rotation 2 due to the government shutdown.

