TABLE OF CONTENTS

SURVEY OF INCOME AND PROGRAM PARTICIPATION (SIPP) 2004 PANEL WAVE 1 TOPICAL MODULE MICRODATA FILE

Abstract 1-1
File Information 2-1
Index 3-1
Variable Listing 4-1
How to Use the Data Dictionary 5-1
Data Dictionary 6-1
Source and Accuracy Statement 7-1
Wave 1 Topical Module Frequencies 8-1
Wave 1 Topical Module Univariates 9-1
Appendices
A. Wave 1 Questionnaire A-1
B. Working Papers B-1
C. User Notes C-1

Abstract

Survey of Income and Program Participation (SIPP) 2004 Panel Wave 1 Topical Module Microdata File, [machine-readable data file] / conducted by the U.S. Census Bureau. - Washington: The Bureau [producer and distributor], 2009.

Type of File

Microdata; unit of observation is an individual.

Universe Description

The universe is the resident population of the United States, excluding persons living in institutions and military barracks.

Subject-Matter Description

The file contains data primarily from the topical module portion of the questionnaire. However, for purposes of matching persons to the core file, which was released separately, the beginning of the file contains identifying information as well as some basic demographics and social characteristics that are also contained in the core file. The identifying information includes sample unit, household address id, and entry address id. Demographic and social characteristics include age, sex, race (White alone; Black alone; Asian alone; Residual), ethnic origin, marital status, household relationship, and education. Data in this topical module file include recipiency history and employment history.

The sample in each wave consists of 4 rotation groups, each interviewed in a different month. For Wave 1, the interview months were from February 2004 to May 2004. For each group, the reference period for reporting labor force activity and income is the four calendar months preceding the interview month.

SIPP is a longitudinal survey where each sampled household and each descendent household is reinterviewed at 4-month intervals for each interview or "wave." This file contains the results of the first interview. Unique codes are included on each record to allow linking together the same persons from the preceding and subsequent waves.

Geographic Coverage

United States. No geography below the national level is shown on this file. State and metropolitan status are shown. Codes are included for 50 individual States and the District of Columbia, although the sample was not designed to produce State estimates.

Technical Description

File Structure: Rectangular. Each logical record for a sampled person includes information on the household and family of which the person was a part during each month of the reference period, as well as characteristics of the person. The unit observation is one record for each person in sample.

File Size: 110,659 logical records; 288 characters per record
File Sort Sequence of Sample Units: Sampling unit sequence number, by entry address ID, and by person number within sampling unit.

Reference Materials

Survey of Income and Program Participation (SIPP) 2004 Panel, Wave 1 Topical Module Microdata File Technical Documentation. The documentation includes this abstract, the data dictionary, an index to the data dictionary, questionnaire facsimiles, and general information on SIPP.

Survey of Income and Program Participation Users' Guide. The Users' Guide contains a general overview of the file as well as chapters on survey design and content, structure and use of cross-sectional files, linking waves and reliability of the data. It is available at http://www.sipp.census.gov/sipp/pubs.html

Related Reports Online and in Print

Related reports include working papers, compilations of papers presented at annual meetings of the American Statistical Association, articles appearing in the Journal of Economic and Social Measurement, and reports in the P-70 series of the Current Population Reports. These reports are available online in PDF in the Publications Library at http://www.census.gov/prod/www/titles.html and in some cases in printed form from the Customer Services Center. Forthcoming reports will be cited in the Census Product Update, an online newsletter issued every two weeks. To subscribe or to view past issues, go to http://www.census.gov/mp/www/cpu.html

Related Machine-Readable Data Files

SIPP files from all Waves of the 1984 through 1993 Panels, 1996 Panel, 2001 Panel, and 2004 Panel are available from the Customer Services Center. Files (1990 forward) may be downloaded from the SIPP FTP website at http://www.bls.census.gov/sipp ftp.html\#sipp

File Availability

You can order the file on disc from the Customer Services Center at (301) 763-INFO (4636) or through our online sales catalog (click "Catalog" on the Census Bureau's home page). This file also may be downloaded from the SIPP FTP website at http://www.bls.census.gov/sipp ftp.html\#sipp

FILE INFORMATION

Matching Topical Module File with Core File

Since the core and topical module data are released as separate files, it may be necessary to match the two files. The two files contain the following information for linking purposes.

SSUID	Sample unit identifier
SPANEL	Panel year
SWAVE	Wave of data collection
SROTATION	Rotation of data collection
TFIPSST	FIPS State Code
EOUTCOME	Interview status code for this household
SHHADID	Household address ID differentiates hhlds in sample unit
SINTHHID	Household address ID of person in interview month
RFID	Family ID number for this month
RFID2	Family ID excluding related subfamily members
EPPIDX	Person index
EENTAID	Address ID of household where person entered sample
EPPPNUM	Person number
EPOPSTAT	Population status based on age in fourth reference month
EPPINTVW	Person's interview status
EPPMIS4	Person's fourth month interview status
ESEX	Sex of this person
ERACE	Race of this person
EORIGIN	Spanish, Hispanic or Latino
WPFINWGT	Person weight
ERRP	Household relationship
EMS	Marital status
EPNMOM	Person number of mother
EPNDAD	Person number of father
EPNGUARD	Person number of guardian
EPNSPOUS	Person number of spouse
RDESGPNT	Designated parent or guardian flag
TAGE	Age as of last birthday
EEDUCATE	Highest degree received or grade completed

Geographic Coverage

United States. State and metropolitan status are shown. Codes are included for 50 individual States and the District of Columbia, although the sample was not designed to produce State estimates. The file identifies the metropolitan status code for each household.

Identification Number System

The SIPP identification scheme is designed to uniquely identify individuals in each wave, provide a means of linking the same individuals over time, and group individuals into households and families over time. The various components of the identification scheme are listed below:

```
SSUID Sample Unit Identification Number
SINTHHID Address ID
EENTAID Entry Address ID
EPPPNUM Person Number
```

The sample unit identification number was created by scrambling together the PSU, segment, and serial numbers used for Census Bureau administrative purposes. This identifier is constructed the same way on each wave regardless of moves, to enable matching from wave to wave.

The two-digit address ID code identifies each household associated with the same sample unit identification number. The first digit of the address ID code indicates the wave in which that address was first assigned for interview. The second digit sequentially numbers multiple households that have the same serial number. The address ID code is 11 for all sample addresses in Wave 1. As SIPP sample persons move to new addresses, new address ID codes are assigned. Any new address to which sample unit members moved during Wave 4 is numbered in the 40's.

The person ID is a five-digit number consisting of the two-digit entry address ID and a three-digit person number. Person numbers 101, 102, etc., are assigned in Wave 1; 201, 202, etc., are assigned to persons added to the roster in Wave 2, and so forth. This five-digit number is not changed or updated, regardless of moves.

The sampling unit serial number and address ID code uniquely identifies each household in any given wave. The sampling unit serial number can link all households in subsequent waves back to the original Wave 1 household.

Topcoding of Income Variables

To protect against the possibility that a user might recognize the identity of a SIPP respondent with very high income, income from every source is "topcoded" so that no individual income amounts above $\$ 150,000$ are revealed. While the data dictionary indicates a topcode of 50,000 for monthly income, this topcode will rarely be used. In most cases the monthly income is shown as an individual dollar amount of $\$ 12,500$, with $\$ 12,500$ actually representing " $\$ 12,500$ or more." (The $\$ 150,000$ annual income topcode is $\$ 12,500$ multiplied by 12 months). Individual monthly amounts above $\$ 12,500$ may occasionally be shown if the respondent's income varied considerably from month to month, as long as the average does not exceed $\$ 12,500$. For example, if a respondents' income from a single job were concentrated in only one of the four reference months, a figure as high as $\$ 50,000$ could be shown. (Income from interest or property have lower topcodes).

Summary income figures on the person, family, and household records are simple sums of the components shown on the file after topcoding, and are not independently topcoded. Thus, a person with high income from several sources (jobs, businesses, property) could have aggregate monthly income well over the topcode for each source. Families and households with a number of high income members could theoretically have aggregate income shown well over $\$ 150,000$, though well below the $\$ 1.5$ million shown as the highest allowable value in the data dictionary.

The user is cautioned against trying to make much use of the occasional monthly figures above $\$ 12,500$, except in calculating aggregates or observing patterns across the 4-month period for a single individual, family, or household. Those units with higher monthly amounts shown are a biased sample of high income units, more likely to include units with income from multiple sources than other units with equally high aggregate income which comes from a single source.

INDEX TO 2004 WAVE 1 TOPICAL MODULE MICRODATA FILES

Key to Concept Labels

ED - Education Variables
EMP Employment History Topical Module Variables
FA - Family Variables
HH - Household Variables
PE - Person, Demographic, and Coverage Variables
REC Recipiency History Topical Module Variables
SU - Sample Unit Variables
WW - Weighting Variables

	Description	Variable	Position
ED:	Highest Degree received or grade completed	EEDUCATE	90-91
EMP:	Allocation flag for ENWRESN	ANWRESN	276-276
EMP:	Allocation flag for TFSTYRFR	AFSTYRFR	261-261
EMP:	Allocation flag for TFSTYRTO	AFSTYRTO	266-266
EMP:	Allocation flag for TMAKMNYR	AMAKMNYR	200-200
EMP:	Allocation flag for EANYOFF	AANYOFF	225-225
EMP:	Allocation flag for ECNTOTHR	ACNTOTHR	246-246
EMP:	Allocation flag for EFRSTALL1, EFRSTALL2, EFRSTALL3	AFSTALL	283-283
EMP:	Allocation flag for EFRSTRSN	AFRSTRSN	286-286
EMP:	Allocation flag for EHOWMANY	AHOWMANY	228-228
EMP:	Allocation flag for EMNRESON	AMNRESON	222-222
EMP:	Allocation flag for ENO6ALL1 thru ENO6ALL9	ANO6ALL	219-219
EMP:	Allocation flag for ENWALL1, ENWALL2 and ENWALL3	ANWALL	273-273
EMP:	Allocation flag for EOFF6MTN	AOFF6MTN	240-240
EMP:	Allocation flag for EOTHTIME	AOTHTIME	243-243
EMP:	Allocation flag for ETIMEOFF	ATIMEOFF	234-234
EMP:	Allocation flag for EWK1BFOR	AWK1BFOR	175-175
EMP:	Allocation flag for EWRK35HR	AWRK35HR	237-237
EMP:	Allocation flag for TFRMRYR	AFRMRYR	195-195
EMP:	Allocation flag for TLSTWRKY	ALSTWRKY	185-185
EMP:	Allocation flag for TNOWRKFR	ANOWRKFR	251-251
EMP:	Allocation flag for TNOWRKTO	ANOWRKTO	256-256
EMP:	Allocation flag for TPRVJBYR	APRVJBYR	190-190
EMP:	Allocation flag for TWK1LSTJB	AWK1LSJB	180-180
EMP:	Cumulative time out of wrk 6 months or more	ETIMEOFF	229-233
EMP:	End year,recent/only time not work to be caregiver	TNOWRKTO	252-255
EMP:	Ending year, first time not work to be a caregiver	TFSTYRTO	262-265
EMP:	Ever not wrk 6 straight mos since 1st long-term jb	EANYOFF	223-224
EMP:	Ever stopped working to become a caregiver	EOFF6MTN	238-239
EMP:	Main caregiving responsibilty recent/only episode	ENWRESN	274-275
EMP:	Main pers helped in first of $2+$ times of caregiving	EFRSTRSN	284-285
EMP:	Main reason never worked at a long-term pd job/bus	EMNRESON	220-221
EMP:	Num of add'l times stopped work to be a caregiver	ECNTOTHR	244-245
EMP:	Number of times did not work 6 months or longer	EHOWMANY	226-227
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL1	201-202
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL2	203-204
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL3	205-206
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL4	207-208
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL5	209-210
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL6	211-212
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL7	213-214

Description		Variable	Position
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL8	215-216
EMP:	Reason never worked at a long-term pd job/business	ENO6ALL9	217-218
EMP:	Recipient of first of 2+ episode of caregiving	EFSTALL1	277-278
EMP:	Recipient of first of 2+ episode of caregiving	EFSTALL2	279-280
EMP:	Recipient of first of 2+ episode of caregiving	EFSTALL3	281-282
EMP:	Recipient of most recent/only episode of caregiving	ENWALL1	267-268
EMP:	Recipient of most recent/only episode of caregiving	ENWALL2	269-270
EMP:	Recipient of most recent/only episode of caregiving	ENWALL3	271-272
EMP:	Start year, first time not work to be a caregiver	TFSTYRFR	257-260
EMP:	Start yr, recent/only time not wrk to be caregiver	TNOWRKFR	247-250
EMP:	Stopped working more than once to become caregiver	EOTHTIME	241-242
EMP:	Universe indicator.	EAEMUNV	171-172
EMP:	Usually worked 35 or more hours per week	EWRK35HR	235-236
EMP:	Whether working before start of job held in wk 1	EWK1BFOR	173-174
EMP:	Year first work at job/bus for 6 straight months	TMAKMNYR	196-199
EMP:	Year started last paid job/business	TFRMRYR	191-194
EMP:	Yr last work at pd job/bus(before $\mathrm{jb} / \mathrm{bus}$ in week 1)	TWK1LSJB	176-179
EMP:	Yr last worked at pd jb/bs(not working in ref per)	TLSTWRKY	181-184
EMP:	Yr last wrk before job/bus started aft wk 1 of ref	TPRVJBYR	186-189
FA:	Family ID Number for this month	RFID	33-35
FA:	Family ID excluding related subfamily members	RFID2	36-38
	Filler	FILLER	287-288
HH:	FIPS State Code	TFIPSST	25-26
HH:	Interview Status code for this household	EOUTCOME	30-32
PE:	Address ID of hhld where person entered sample	EENTAID	42-44
PE:	Age as of last birthday	TAGE	69-70
PE:	Designated parent or guardian flag	RDESGPNT	88-89
PE:	Household relationship	ERRP	67-68
PE:	Marital status	EMS	71-71
PE:	Person longitudinal key	LGTKEY	92-99
PE:	Person number	EPPPNUM	45-48
PE:	Person number of father	EPNDAD	80-83
PE:	Person number of guardian	EPNGUARD	84-87
PE:	Person number of mother	EPNMOM	76-79
PE:	Person number of spouse	EPNSPOUS	72-75
PE:	Person's interview status	EPPINTVW	50-51
PE:	Population status based on age in 4th reference month	EPOPSTAT	49-49
PE:	Sex of this person	ESEX	53-53
PE:	Spanish, Hispanic or Latino	EORIGIN	55-56
PE:	The race(s) the respondent is	ERACE	54-54
PE:	Person index	EPPIDX	39-41
PE:	Person's 4th month interview status	EPPMIS4	52-52
REC:	Allocation flag for EAPLAFDC	AAPLAFDC	113-113
REC:	Allocation flag for EAPLFS	AAPLFS	154-154
REC:	Allocation flag for ECURAFDC	ACURAFDC	107-107
REC:	Allocation flag for ECURFS	ACURFS	151-151
REC:	Allocation flag for ECURSSI	ACURSSI	132-132
REC:	Allocation flag for EEVRGARD	AVERGARD	110-110
REC:	Allocation flag for ERCVAFDC	ARCVAFDC	116-116
REC:	Allocation flag for ERECVFS	ARECVFS	157-157
REC:	Allocation flag for TAFDCLY	AAFDCLY	126-126
REC:	Allocation flag for TAFDCSTY	AAFDCSTY	121-121
REC:	Allocation flag for TAFDCTIM	AAFDCTIM	129-129
REC:	Allocation flag for TFSLY	AFSLY	167-167
REC:	Allocation flag for TFSSTRYR	AFSSTRYR	162-162
REC:	Allocation flag for TFSTIMES	AFSTIMES	170-170

	Description	Variable	Position
REC:	Allocation flag for TSSILY	ASSILY	$148-148$
REC:	Allocation flag for TSSISTRY	ASSISTRY	$143-143$
REC:	Any other time authorized to recieve SSI	ECURSSI	$130-131$
REC:	Any other time authorized to recieve public assist	ECURAFDC	$105-106$
REC:	Authorized to receive AFDC, TANF, or State Named	ERCVAFDC	$114-115$
REC:	Authorized to receive Food Stamps	ERECVFS	$155-156$
REC:	Authorized to receive SSI	ERECVSSI	$136-137$
REC:	Authorized to receive SSI allocation flag	ARECVSSI	$138-138$
REC:	Ever applied for AFDC, TANF, or State Named Program	EAPLAFDC	$111-112$
REC:	Ever applied for Food Stamp Program	EAPLFS	$152-153$
REC:	Ever applied for SSI allocation flag	AAPLSSI	$135-135$
REC:	Ever applied for SSI program	EAPLSSI	$133-134$
REC:	Has \ldots ever had a child or served as a legal guardian	EEVRGARD	$108-109$
REC:	Length of time received SSI(years)	TSSILY	$144-147$
REC:	Length of time received food stamp(years)	TFSLY	$163-166$
REC:	Number of separate times go on food stamps	TFSTIMES	$168-169$
REC:	Number of times received AFDC, TANF, or State Named	TAFDCTIM	$127-128$
REC:	Other Times When Authorized to Receive Food Stamps	ECURFS	$149-150$
REC:	Universe indicator.	EARCUNV	$103-104$
REC:	Year 1st received AFDC, TANF, or State Named Prog	TAFDCSTY	$117-120$
REC:	Year first received SSI benefits	TSSISTRY	$139-142$
REC:	Year first received food stamp	TFSSTRYR	$158-161$
REC:	Year last received AFDC, TANF, or State Named	TAFDCLY	$122-125$
SU:	Hhld Address ID differentiates hhlds in sample unit	SHHADID	$27-29$
SU:	Hhld Address ID of person in interview month	SINTHHID	$100-102$
SU:	Rotation of data collection	SROTATON	$24-24$
SU:	Sample Code - Indicates Panel Year	SPANEL	$18-21$
SU:	Sample Unit Identifier	SSUID	$6-17$
SU:	Sequence Number of Sample Unit - Primary Sort Key	SSUSEQ	$1-15$
SU:	Wave of data collection	SWAVE	$22-23$
WW:	Person weight	WPFINWGT	$57-66$

ALPHABETICAL VARIABLE LISTING TO 2004 WAVE 1 TOPICAL MODULE FILE

Key to Concept Labels

ED - Education Variables
EMP Employment History Topical Module Variables
FA - Family Variables
HH - Household Variables
PE - Person, Demographic, and Coverage Variables
REC Recipiency History Topical Module Variables
SU - Sample Unit Variables
WW - Weighting Variables

Variable	Description		Position
AAFDCLY	REC:	Allocation flag for TAFDCLY	126-126
AAFDCSTY	REC:	Allocation flag for TAFDCSTY	121-121
AAFDCTIM	REC:	Allocation flag for TAFDCTIM	129-129
AANYOFF	EMP:	Allocation flag for EANYOFF	225-225
AAPLAFDC	REC:	Allocation flag for EAPLAFDC	113-113
AAPLFS	REC:	Allocation flag for EAPLFS	154-154
AAPLSSI	REC:	Ever applied for SSI allocation flag	135-135
ACNTOTHR	EMP:	Allocation flag for ECNTOTHR	246-246
ACURAFDC	REC:	Allocation flag for ECURAFDC	107-107
ACURFS	REC:	Allocation flag for ECURFS	151-151
ACURSSI	REC:	Allocation flag for ECURSSI	132-132
AFRMRYR	EMP:	Allocation flag for TFRMRYR	195-195
AFRSTRSN	EMP:	Allocation flag for EFRSTRSN	286-286
AFSLY	REC:	Allocation flag for TFSLY	167-167
AFSSTRYR	REC:	Allocation flag for TFSSTRYR	162-162
AFSTALL	EMP:	Allocation flag for EFRSTALL1, EFRSTALL2, EFRSTALL3	283-283
AFSTIMES	REC:	Allocation flag for TFSTIMES	170-170
AFSTYRFR	EMP:	Allocation flag for TFSTYRFR	261-261
AFSTYRTO	EMP:	Allocation flag for TFSTYRTO	266-266
AHOWMANY	EMP:	Allocation flag for EHOWMANY	228-228
ALSTWRKY	EMP:	Allocation flag for TLSTWRKY	185-185
AMAKMNYR	EMP:	Allocation flag for TMAKMNYR	200-200
AMNRESON	EMP:	Allocation flag for EMNRESON	222-222
ANO6ALL	EMP:	Allocation flag for ENO6ALL1 thru ENO6ALL9	219-219
ANOWRKFR	EMP:	Allocation flag for TNOWRKFR	251-251
ANOWRKTO	EMP:	Allocation flag for TNOWRKTO	256-256
ANWALL	EMP:	Allocation flag for ENWALL1, ENWALL2 and ENWALL3	273-273
ANWRESN	EMP:	Allocation flag for ENWRESN	276-276
AOFF6MTN	EMP:	Allocation flag for EOFF6MTN	240-240
AOTHTIME	EMP:	Allocation flag for EOTHTIME	243-243
APRVJBYR	EMP:	Allocation flag for TPRVJBYR	190-190
ARCVAFDC	REC:	Allocation flag for ERCVAFDC	116-116
ARECVFS	REC:	Allocation flag for ERECVFS	157-157
ARECVSSI	REC:	Authorized to receive SSI allocation flag	138-138
ASSILY	REC:	Allocation flag for TSSILY	148-148
ASSISTRY	REC:	Allocation flag for TSSISTRY	143-143
ATIMEOFF	EMP:	Allocation flag for ETIMEOFF	234-234
AVERGARD	REC:	Allocation flag for EEVRGARD	110-110

Variable	Description		Position
AWK1BFOR	EMP:	Allocation flag for EWK1BFOR	175-175
AWK1LSJB	EMP:	Allocation flag for TWK1LSTJB	180-180
AWRK35HR	EMP:	Allocation flag for EWRK35HR	237-237
EAEMUNV	EMP:	Universe indicator.	171-172
EANYOFF	EMP:	Ever not wrk 6 straight mos since 1st long-term jb	223-224
EAPLAFDC	REC:	Ever applied for AFDC, TANF, or State Named Program	111-112
EAPLFS	REC:	Ever applied for Food Stamp Program	152-153
EAPLSSI	REC:	Ever applied for SSI program	133-134
EARCUNV	REC:	Universe indicator.	103-104
ECNTOTHR	EMP:	Num of add'l times stopped work to be a caregiver	244-245
ECURAFDC	REC:	Any other time authorized to recieve public assist	105-106
ECURFS	REC:	Other Times When Authorized to Receive Food Stamps	149-150
ECURSSI	REC:	Any other time authorized to recieve SSI	130-131
EEDUCATE	ED:	Highest Degree received or grade completed	90-91
EENTAID	PE:	Address ID of hhld where person entered sample	42-44
EEVRGARD	REC:	Has ... ever had a child or served as a legal guardian	108-109
EFRSTRSN	EMP:	Main pers helped in first of 2+ times of caregiving	284-285
EFSTALL1	EMP:	Recipient of first of 2+ episode of caregiving	277-278
EFSTALL2	EMP:	Recipient of first of 2+ episode of caregiving	279-280
EFSTALL3	EMP:	Recipient of first of 2+ episode of caregiving	281-282
EHOWMANY	EMP:	Number of times did not work 6 months or longer	226-227
EMNRESON	EMP:	Main reason never worked at a long-term pd job/bus	220-221
EMS	PE:	Marital status	71-71
ENO6ALL1	EMP:	Reason never worked at a long-term pd job/business	201-202
ENO6ALL2	EMP:	Reason never worked at a long-term pd job/business	203-204
ENO6ALL3	EMP:	Reason never worked at a long-term pd job/business	205-206
ENO6ALL4	EMP:	Reason never worked at a long-term pd job/business	207-208
ENO6ALL5	EMP:	Reason never worked at a long-term pd job/business	209-210
ENO6ALL6	EMP:	Reason never worked at a long-term pd job/business	211-212
ENO6ALL7	EMP:	Reason never worked at a long-term pd job/business	213-214
ENO6ALL8	EMP:	Reason never worked at a long-term pd job/business	215-216
ENO6ALL9	EMP:	Reason never worked at a long-term pd job/business	217-218
ENWALL1	EMP:	Recipient of most recent/only episode of caregiving	267-268
ENWALL2	EMP:	Recipient of most recent/only episode of caregiving	269-270
ENWALL3	EMP:	Recipient of most recent/only episode of caregiving	271-272
ENWRESN	EMP:	Main caregiving responsibilty recent/only episode	274-275
EOFF6MTN	EMP:	Ever stopped working to become a caregiver	238-239
EORIGIN	PE:	Spanish, Hispanic or Latino	55-56
EOTHTIME	EMP:	Stopped working more than once to become caregiver	241-242
EOUTCOME	HH:	Interview Status code for this household	30-32
EPNDAD	PE:	Person number of father	80-83
EPNGUARD	PE:	Person number of guardian	84-87
EPNMOM	PE:	Person number of mother	76-79
EPNSPOUS	PE:	Person number of spouse	72-75
EPOPSTAT	PE:	Population status based on age in 4th reference month	49-49
EPPIDX	PE:	Person index	39-41
EPPINTVW	PE:	Person's interview status	50-51
EPPMIS4	PE:	Person's 4th month interview status	52-52
EPPPNUM	PE:	Person number	45-48
ERACE	PE:	The race(s) the respondent is	54-54
ERCVAFDC	REC:	Authorized to receive AFDC, TANF, or State Named	114-115
ERECVFS	REC:	Authorized to receive Food Stamps	155-156
ERECVSSI	REC:	Authorized to receive SSI	136-137

Variable		Description	Position
ERRP	PE:	Household relationship	67-68
ESEX	PE:	Sex of this person	53-53
ETIMEOFF	EMP:	Cumulative time out of wrk 6 months or more	229-233
EWK1BFOR	EMP:	Whether working before start of job held in wk 1	173-174
EWRK35HR	EMP:	Usually worked 35 or more hours per week	235-236
FILLER		Filler	287-288
LGTKEY	PE:	Person longitudinal key	92-99
RDESGPNT	PE:	Designated parent or guardian flag	88-89
RFID	FA:	Family ID Number for this month	33-35
RFID2	FA:	Family ID excluding related subfamily members	36-38
SHHADID	SU:	Hhld Address ID differentiates hhlds in sample unit	27-29
SINTHHID	SU:	Hhld Address ID of person in interview month	100-102
SPANEL	SU:	Sample Code - Indicates Panel Year	18-21
SROTATON	SU:	Rotation of data collection	24-24
SSUID	SU:	Sample Unit Identifier	6-17
SSUSEQ	SU:	Sequence Number of Sample Unit - Primary Sort Key	1-5
SWAVE	SU:	Wave of data collection	22-23
TAFDCLY	REC:	Year last received AFDC, TANF, or State Named	122-125
TAFDCSTY	REC:	Year 1st received AFDC, TANF, or State Named Prog	117-120
TAFDCTIM	REC:	Number of times received AFDC, TANF, or State Named	127-128
TAGE	PE:	Age as of last birthday	69-70
TFIPSST	HH:	FIPS State Code	25-26
TFRMRYR	EMP:	Year started last paid job/business	191-194
TFSLY	REC:	Length of time received food stamp(years)	163-166
TFSSTRYR	REC:	Year first received food stamp	158-161
TFSTIMES	REC:	Number of separate times go on food stamps	168-169
TFSTYRFR	EMP:	Start year, first time not work to be a caregiver	257-260
TFSTYRTO	EMP:	Ending year, first time not work to be a caregiver	262-265
TLSTWRKY	EMP:	Yr last worked at pd jb/bs(not working in ref per)	181-184
TMAKMNYR	EMP:	Year first work at job/bus for 6 straight months	196-199
TNOWRKFR	EMP:	Start yr, recent/only time not wrk to be caregiver	247-250
TNOWRKTO	EMP:	End year,recent/only time not work to be caregiver	252-255
TPRVJBYR	EMP:	Yr last wrk before job/bus started aft wk 1 of ref	186-189
TSSILY	REC:	Length of time received SSI(years)	144-147
TSSISTRY	REC:	Year first received SSI benefits	139-142
TWK1LSJB	EMP:	Yr last work at pd job/bus(before jb/bus in week 1)	176-179
WPFINWGT	WW:	Person weight	57-66

HOW TO USE THE DATA DICTIONARY

The Data Dictionary describes the file contents and provides locations for each variable (record layout of the public-use computer tape file.) The first line ("D" Line) of each data item description gives the variable name, size of the data field, and the begin position of that field. The components include a short mnemonic or field name for use with software packages; field size; starting position; and a description of field contents with possible values.

The next few lines contain descriptive text and any applicable notes. Categorical value codes and labels are given where needed. Comment notes marked by an $\left({ }^{*}\right)$ are provided throughout for the rest of the dictionary components. Comments should be removed from the machine-readable version of the data dictionary before using it to help access the data file.

The first line of each data item description begins with the character "D" (left-justified, two characters). The " D " flag indicates lines in the data dictionary containing the name, size and begin position of each data item. The second line of each data item description begins with the character "T" (left-justified, two characters). The "T" flag indicates lines in the data dictionary containing the category code and short description of the variable. The line beginning with the character "U" describes the universe for that item. Lines containing categorical value codes and labels follow next and begin with the character "V". The special character (.) denotes the start of the value labels. Two examples of data item descriptions follow:

```
D TFSTIMES 2 168
T REC: Number of separate times go on food
    stamps
        TMFSTI ME
        How many separate times did
        ..go on food stamps?
U All adults who have ever received food
    stamps (ERECVFS=1 or ECURFS=1) and
    EPOPSTAT=1
                    1. One time on food stamps
                    2. Two times on food stamps
                3.Three or more times on food
                    .stamps
                    -1.Not in universe
D EFRSTRSN 2 284
T EMP: Main pers helped in first of 2+ times
    of caregiving
        FRSTRSN
        Which one would you say was...'s main
        care-giving responsibility at that time
        [(that is, during the period of time
        specified by EFSTYRFR and EFSTYRTO)]
U EOTHTI ME=1
V 1.A minor child
V 2.An elderly family member
                    2.An elderly family member
        family member
            -1.Not in universe
```


SURVEY OF INCOME AND PROGRAM PARTICIPATION, 2004 PANEL WAVE 1 TOPICAL MODULE DATA DICTIONARY

```
DATA SIZE BEGIN
D SSUSEQ 5 1
T SU: Sequence Number of Sample Unit - Primary
    Sort Key
U All persons
V 1:65000 .Sequence Number
D SSUID 12 6
T SU: Sample Unit Identifier
    Sample Unit identifier This identifier is
    created by scrambling together the PSU,
    Segment, Serial, Serial Suffix of the
    original sample address. It may be used
    in matching sample units from different
    waves.
U All persons
V 000000000000:999999999999 .Scrambled Id
D SPANEL 4 18
T SU: Sample Code - Indicates Panel Year
U All persons
V 2004 .Panel Year
D SWAVE 2 22
T SU: Wave of data collection
    There were 8 waves of data collection in
    the 2004 Panel
U All persons
V 1:8 .Wave of data collection
D SROTATON 1 24
T SU: Rotation of data collection
    Rotation within wave. Each wave of data
    is collected over a four calendar month
    period. The rotation field indicates
    which month within the wave a particular
    interview was conducted.
U All persons
V
D TFIPSST 2 25
T HH: FIPS State Code
    FIPS State Code Federal Information
    Processing Standards state (and state
    equivalent) code for the 50 states, and DC.
U All persons
V 01 .Alabama
V 02 .Alaska
V 04 .Arizona
V 05 .Arkansas
V 06 .California
V 08 .Colorado
V 09 .Connecticut
V 10.Delaware
```



```
DATA SIZE BEGIN
    all persons except related subfamily
        members.
U All persons except those in related subfamilies
    (excludes persons with ESFTYPE = 2)
V 1:120 .Family ID number
V -1 .Not in Universe
D EPPIDX 3 39
T PE: Person index
    Person index. This field differentiates
    persons within the sample unit. Person
    index is unique within the sample unit
    and wave.
U All persons
V 1:999 .Person index
D EENTAID 3 42
T PE: Address ID of hhld where person entered
        sample
            Address ID of the household that this
            person belonged to at the time this person
            first became part of the sample.
U All persons
V 011:119 .Entry address ID
D EPPPNUM 4 45
T PE: Person number
    Person number. This field differentiates
    persons within the sample unit. Person
    number is unique within the sample unit.
U All persons
V 0101:1199 .Person Number
D EPOPSTAT 1 49
T PE: Population status based on age in 4th
    reference month
        Population status. This field identifies
        whether or not a person was eligible to be
        asked a full set of questions, based on
        his/her age in the fourth month of the
        reference period.
U All persons
V 1 .Adult (15 years of age or older)
V 2 .Child (Under }15\mathrm{ years of age)
D EPPINTVW 2 50
T PE: Person's interview status
U All persons
V 1 .Interview (self)
V 2 .Interview (proxy)
V 3 .Noninterview - Type Z
V 4 .Noninterview - pseudo Type Z.
V .Left sample during the
V .reference period
V 5 .Children under 15 during
V .reference period
```



```
DATA SIZE BEGIN
U All persons
V 1001:70000001 .Longitudinal Key
D SINTHHID 3 100
T SU: Hhld Address ID of person in interview
    month
        Address ID of this person at time of
        interview (fifth month).
U All persons
V 011:119 .Household Address ID
V 0 .Not In Universe
D EARCUNV 2 103
T REC: Universe indicator.
            Universe indicator.
U All adults
V 1 .In universe
V -1 .Not in Universe
D ECURAFDC 2 105
T REC: Any other time authorized to receive
        public assist
            CURADC Have there been any other
            times before this when ... was authorized
            to receive AFDC,TANF, or any other state
            named program for ... and/or her child?
U All adults who currently receive AFDC/TANF and
    EPOPSTAT=1
V -1 .Not in Universe
V 1 .Yes
V 2 .No
D ACURAFDC 1 107
T REC: Allocation flag for ECURAFDC
            CURADC Allocation flag for ever
            applied for AFDC Program
                        0 .Not imputed
                        1 .Statistical imputation (hot deck)
                                2 .Cold deck imputation
                        3.Logical imputation (derivation)
D EEVRGARD 2 108
T REC: Has ... ever had a child or served as a
        legal guardian
            EVERGARD Some program benefits are
            designed to help needy children. Has ...
            ever had any children or served as a
            child's legal guardian?
U All adults who DO NOT currently receive
    AFDC/TANF and EPOPSTAT=1 and all adults who
    ARE NOT currently a parent or guardian
V -1 .Not in Universe
                        1.Yes
                        2.No
D AVERGARD 1 110
T REC: Allocation flag for EEVRGARD
```

```
DATA SIZE BEGIN
    EVERGARD Allocation flag for ever
        applied for AFDC/TANF program
    0 .Not imputed
    1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
D EAPLAFDC 2 111
T REC: Ever applied for AFDC, TANF, or State
    Named Program
        APLAFDC Has .... ever applied for
        public assistance such as AFDC,
        TANF, or [State Named] program?
U All adults who DO NOT receive AFDC/TANF and
        EPOPSTAT=1 and all adults who are or have
        ever been a parent or guardian (EEVRGARD <= 1)
V -1 .Not in Universe
V 1.Yes
V 2 .No
D AAPLAFDC 1 113
T REC: Allocation flag for EAPLAFDC
        APLAFDC Allocation flag for ever
        applied for AFDC, TANF, or [State
        Named] Program
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3.Logical imputation (derivation)
    D ERCVAFDC 2 114
T REC: Authorized to receive AFDC, TANF, or
        State Named
            RECVAFDC Has ... ever received any
            public assistance benefits such as
            AFDC, TANF, or [State Named] program?
U All adults who DO NOT currently receive
    AFDC/TANF and EAPLAFDC=1 and EPOPSTAT=1
V -1 .Not in Universe
V 1.Yes
V 2 .No
D ARCVAFDC 1 116
T REC: Allocation flag for ERCVAFDC
            RECVAFDC Allocation flag for
            authorized to receive AFDC/TANF
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D TAFDCSTY 4 117
T REC: Year 1st received AFDC, TANF, or State
        Named Prog
            AFDCWHEN@YR When did ... first start
            receiving public assistance benefits
            such as AFDC, TANF, or [State Named]
```

```
DATA SIZE BEGIN
    program?
U All adults who have ever received AFDC/TANF
    (ERCVAFDC=1 or ECURAFDC=1) and EPOPSTAT=1
V 1966:2004 .Year first received AFDC/TANF
V .benefits
V -1 .Not in Universe
D AAFDCSTY 1 121
T REC: Allocation flag for TAFDCSTY
    AFDCWHEN@YR Allocation flag for year
    1st received AFDC, TANF, or [State
    Named] benefits
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
D TAFDCLY 4 122
T Year last received AFDC, TANF, or state named
    prog
        TMAFDCLG@2 When did ... last
        receive public assistance such as AFDC,
        TANF, or [state named] program?
U All adults who have ever received AFDC/TANF
        (ERCVAFDC=1 or ECURAFDC=1) and EPOPSTAT=1
V 1981:2004 .Year last received AFDC, TANF, or
V .state named program
V -1 .Not in Universe
D AAFDCLY 1 126
T REC: Allocation flag for TAFDCLY
    TMAFDCLG@2 Allocation flag for
    length of time received AFDC, TANF, or
    [state named] program (year)
        0 .Not imputed
        1 .Statistical imputation (hot deck)
                                2 .Cold deck imputation
                                3.Logical imputation (derivation)
D TAFDCTIM 2 127
T REC: Number of times received AFDC, TANF, or
        State Named
            AFDCTIME How many times in all have
            there been when... received public
            assistance such as AFDC, TANF, or [state
            named] program?
U All adults who have ever received AFDC, TANF,
        or state named program (ERCVAFDC=1 or
        ECURAFDC=1) and EPOPSTAT=1
            1.One time on ADFC/TANF
                        2 .Two times on ADFC/TANF
                        3.Three or more times on ADFC/TANF
                        -1 .Not in Universe
    D AAFDCTIM 1 129
T REC: Allocation flag for TAFDCTIM
        AFDCTIME Allocation flag for number
```

```
DATA SIZE BEGIN
    program was received
    0 .Not imputed
    1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3.Logical imputation (derivation)
D ECURSSI 2 130
T REC: Any other time authorized to receive SSI
    CURSSI Besides the Supplemental
    Security Income ... received during
    the last four months, have there been
        any other times when ... was authorized
        to receive Supplemental Security
        Income benefits?
U All adults who currently receive SSI (fed
    and/or state) and EPOPSTAT=1
V -1 .Not in Universe
V 1 .Yes
V 2 .No
D ACURSSI 1 132
T REC: Allocation flag for ECURSSI
            CURSSI Allocation flag for ever
            applied for SSI Program
                0 .Not imputed
                1 .Statistical imputation (hot deck)
                2 . Cold deck imputation
                3.Logical imputation (derivation)
D EAPLSSI 2 133
T REC: Ever applied for SSI program
            APLSSI Has .... ever applied for
            benefits from the program called SSI
            or Supplemental Security Income?
U All adults who currently DO NOT receive SSI(fed
    and/or state) and EPOPSTAT=1
V
-1 .Not in Universe
V 1 .Yes
V 2 .No
D AAPLSSI 1 135
T REC: Ever applied for SSI allocation flag
    APLSSI Allocation flag for EAPLSSI
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D ERECVSSI 2 136
T REC: Authorized to receive SSI
            RECVSSI Has .... ever received SSI
            benefits?
U All adults who DO NOT currently receive SSI
    (fed and/or state) and EAPLSSI=1 and
    EPOPSTAT=1
V -1 .Not in Universe
```


SIPP 2004 PANEL WAVE 1 TOPICAL MODULE


```
DATA SIZE BEGIN
V 1969:2004 .Year
V -1 .Not in Universe
D AFSSTRYR 1 162
T REC: Allocation flag for TFSSTRYR
    FSWHEN@FSSTRTYR Allocation flag for
    year first received food stamps
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
D TFSLY 4 163
T REC: Length of time received food
    stamps(years)
            TMFSLONG@2 When did ... last receive
            Food Stamps?
U All adults who have ever received food stamps
        (ERECVFS=1 or ECURFS=1) and EPOPSTAT=1
V 1984:2004 .Year
V -1 .Not in Universe
D AFSLY 1 167
T REC: Allocation flag for TFSLY
    TMFSLONG@2 Allocation flag for
    length of time received Food Stamps (year)
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 . Cold deck imputation
        3.Logical imputation (derivation)
D TFSTIMES 2 168
T REC: Number of separate times go on food
        stamps
            TMFSTIME How many separate times did
            ... go on food stamps?
U All adults who have ever received food stamps
        (ERECVFS=1 or ECURFS=1) and EPOPSTAT=1
V
                1.One time on food stamps
        2 .Two times on food stamps
        3.Three or more times on food stamps
        -1 .Not in Universe
    D AFSTIMES 1 170
T REC: Allocation flag for TFSTIMES
            TMFSTIME Allocation flag for number
            of times received Food Stamps
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D EAEMUNV 2 171
T EMP: Universe indicator.
    Universe indicator.
U All persons 15+ at the end of reference period.
V 1.In universe
```

```
DATA SIZE BEGIN
V -1 .Not in Universe
D EWK1BFOR 2 173
T EMP: Whether working before start of job held
    in wk 1
        WK1BEFOR Were you working at some
    other job before the job (that was held
    in week 1 of the reference period, that
    was started earliest of all the person's
    existing jobs, and that was started more
    recently than one year before MONTH 1 of
    the reference period), or were you not
    working?
U All adults 18-75 who worked in the first week
    of the reference period((EPDJBTHN=1 and
    EWKSWK01=1) or (ECFLAG=1 and EWKWJB01=1)) and
    whose earliest existing job or business at
    that time began before the reference period
    and within one year of the middle of the
    interview month
V 1 .Working at another job/business
V 2 .Not working at another
V V -1 .Not in Universe
D AWK1BFOR 1 175
T EMP: Allocation flag for EWK1BFOR
    WK1BEFOR Allocation flag for whether
    ... was working before start of job
    held in week 1
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3.Logical imputation (derivation)
D TWK1LSJB 4 176
T EMP: Yr last work at pd job/bus(before jb/bus
    in week 1)
    WK1LSTJB Before that job started,
    [that is, the job that was held in week 1
    of the reference period, that was started
    earliest of all the person's jobs, and
    that was started less than 1 year before
    MONTH 1 of the reference period], in what
    year did you last work at a paid job or
    business?
U All adults 18-75 who had a job in week 1 of the
    reference period and were not working at some
    other job before starting the job held in
    week 1 of the reference period (EWK1BFOR=2)
                        0 .Never worked at another
V .job/business
V 1984:2004 .Year last worked
V -1 .Not in Universe
D AWK1LSJB 1 180
T EMP: Allocation flag for TWK1LSTJB
```

```
DATA SIZE BEGIN
    WK1LSTJB Allocation flag for year
    ... last worked at a paid job or business
    (before job/business held in reference
    week 1)
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
D TLSTWRKY 4 181
T EMP: Yr last worked at pd jb/bs(not working
        in ref per)
            LSTWRKY/LSTWRKY1 In what year did
            ... last work at a paid job or business?
U All adults 18-75 who did not work during the
    reference period(EPDJBTHN=2)
V 0 .Never worked
V 1970:2004 .Year worked
V -1 .Not in Universe
D ALSTWRKY 1 185
T EMP: Allocation flag for TLSTWRKY
    LSTWRKY/LSTWRKY1 Allocation flag
    for year ... last worked at a paid job
    or business
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D TPRVJBYR 4 186
T EMP: Yr last wrk before job/bus started aft
    wk 1 of ref
    PRVJOBYR Before (first month of
    reference period), in what year did
    you last work at a paid job or business?
U All adults 18-75 who started working after
    the first week of the reference period
    (EPDJBTHN=1 and ((EWKSWK01=0 or (ECFLAG=1
    and EWKWJB01=0)))
V 0 .Never worked at another
V .job/business
V 1993:2004 .Year last worked at a job/
V .business
V -1 .Not in Universe
D APRVJBYR 1 190
T EMP: Allocation flag for TPRVJBYR
    PRVJOBYR Allocation flag for year
    last worked before job/business started
    after week 1 of the reference period
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D TFRMRYR 4 191
```

```
DATA SIZE BEGIN
T EMP: Year started last paid job/business
    FRMRYR In what year did you START
    that job or business?
U All adults 18-75 whose last paid job/business
    was held in the last 10 years (TLSTWRKY is gt
    0 and ge 2004-10, or TPRVJBYR is gt 0 and ge
    2004-10, or EWK1BFOR=1) and ((who is less
    than 60 years old (TAGE < 60) OR not retired
    (ERSNOWRK ne 4 or EEVERET ne 1) OR last
    worked within the last 5 years (ELSTWRKY ge
    2004-5))
V 1968:2004 .Year started
V -1 .Not in Universe
D AFRMRYR 1 195
T EMP: Allocation flag for TFRMRYR
    FRMRYR Allocation flag for year ...
    started last paid job/business
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3.Logical imputation (derivation)
D TMAKMNYR 4 196
T EMP: Year first work at job/bus for 6
    straight months
        SIXMTHYR@1/SIXMTHYR@2 [In what
        year did] you first started working at a
        job or business that lasted at least 6
        straight months? COUNT ANY JOB
        OR BUSINESS EITHER FULL-TIME OR
        PART-TIME.
U All adults 18-75 who have TLSTWRKY ne 0 and
    TPRVJBYR ne 0 and ((who is less than 60 years
    old (TAGE < 60) OR not retired (ERSNOWRK ne 4
    or EEVERET ne 1) OR last worked within the
    last 5 years (ELSTWRKY GE 2004-5))
V 0 .Never worked 6 straight months
V 1953:2004 .Year worked
V -1 .Not in Universe
D AMAKMNYR 1 200
T EMP: Allocation flag for TMAKMNYR
        SIXMTHYR@1/SIXMTHYR@2 Allocation
        flag for the calendar year when ... first
        started working at a job or business
        that lasted at least 6 straight
        months
            0 .Not imputed
            1 .Statistical imputation (hot deck)
            2 .Cold deck imputation
            3.Logical imputation (derivation)
D ENO6ALL1 2 201
T EMP: Reason never worked at a long-term pd
    job/business
    N06ALL@1 Why has ... never worked 6
```

```
DATA SIZE BEGIN
    straight months at a paid job/business?
    MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
    1 .Taking care of a minor child
    -1 .Not in Universe
    0 .Not applicable
D ENO6ALL2 2 203
T EMP: Reason never worked at a long-term pd
    job/business
            N06ALL@2 Why has ... never worked 6
            straight months at a paid job/business?
            MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
V
V
V -1 .Not in Universe
V 0 .Not applicable
D ENO6ALL3 2 205
T EMP: Reason never worked at a long-term pd
    job/business
    N06ALL@3 Why has ... never worked
    6 straight months at a paid job/business?
    MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
V 1 .Taking care of a disabled but
                .non-elderly family member
                    -1 .Not in Universe
    0 .Not applicable
D ENO6ALL4 2 207
T EMP: Reason never worked at a long-term pd
    job/business
        N06ALL@4 Why has ... never worked 6
        straight months at a paid job/business?
        MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
    1.Other family or home
                .responsibilities
            -1 .Not in Universe
                        0 .Not applicable
D ENO6ALL5 2 209
T EMP: Reason never worked at a long-term pd
```

```
DATA SIZE BEGIN
    job/business
        N06ALL@5 Why has ... never worked 6
        straight months at a paid job/business?
        MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
V 1 .Own illness or disability
V -1 .Not in Universe
V 0 .Not applicable
D ENO6ALL6 2 211
T EMP: Reason never worked at a long-term pd
    job/business
    N06ALL@6 Why has ... never worked 6
    straight months at a paid job/business?
    MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
V 1 .Could not find work
V -1 .Not in Universe
V 0 .Not applicable
D EN06ALL7 2 213
T EMP: Reason never worked at a long-term pd
    job/business
        N06ALL@7 Why has ... never worked 6
        straight months at a paid job/business?
        MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
V
1 .Did not want to work
V -1 .Not in Universe
V 0 .Not applicable
D ENO6ALL8 2 215
T EMP: Reason never worked at a long-term pd
    job/business
        N06ALL@8 Why has ... never worked 6
        straight months at a paid job/business?
        MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
V 1 .Going to school
    -1 .Not in Universe
    0 .Not applicable
D ENO6ALL9 2 217
T EMP: Reason never worked at a long-term pd job/business
```

```
DATA SIZE BEGIN
    N06ALL@9 Why has ... never worked 6
    straight months at a paid job/business?
    MARK ALL THAT APPLY
U All adults 18-75 who either never held a paid
    job/business(ELSTWRKY=0), or who have held a
    paid job or business but never for 6 straight
    months(TPRVJBYR=0 or TMAKMNYR=0)
                        1 .Other reason
    -1 .Not in Universe
    0 .Not applicable
    D AN06ALL 1 219
    T EMP: Allocation flag for EN06ALL1 thru
    EN06ALL9
        N06ALL Allocation flag for reasons
        ... never worked 6 straight months at a
        job/business
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
    D EMNRESON 2 220
T EMP: Main reason never worked at a long-term
    pd job/bus
        NO6REASN What is the main reason ...
        never worked 6 straight months at a paid
        job or business?
U All adults 18-75 who either never held a paid
    job/business (TLSTWRKY=0), or who have held a
    paid job or business but never for six
    straight months (TPRVJBYR=0 or TMAKMNYR=0)
V 1 .Taking care of a minor child
    2 .Taking care of an elderly family
                .member
            3.Taking care of a disabled but
                .non-elderly family member
            4 .Other family or home
                .responsibilities
            5 .Own illness or disability
            6 .Could not find work
            7 .Did not want to work
            8.Going to school
            9 .Other
                    -1 .Not in Universe
    D AMNRESON 1 222
T EMP: Allocation flag for EMNRESON
    MNRESON Allocation flag for main
    reason ... never worked 6 straight
    months at a paid job or business
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
D EANYOFF 2 223
```

```
DATA SIZE BEGIN
T EMP: Ever not wrk 6 straight mos since 1st
    long-term jb
        ANYOFF Between the year ...'s
        first long-term job started and when ...
        last worked, were there any times when
        ... did not work for 6 straight months
        or more?
U All adults 18-75 for whom TMAKMNYR is gt 0 and
        EMAKMNYR is lt (2004-1)
V -1 .Not in Universe
V 1 .Yes
V 2 .No
D AANYOFF 1 225
T EMP: Allocation flag for EANYOFF
    ANYOFF Allocation flag for whether
    ... had times of 6 straight months or
    more when ... did not work since
    starting ... first long-term job
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D EHOWMANY 2 226
T EMP: Number of times did not work 6 months
        or longer
        HOWMANY6 How many times have you
        been out of work for 6 months or longer?
U EANYOFF = 1
V 0:99 .Number of times off
V -1 .Not in Universe
D AHOWMANY 1 228
T EMP: Allocation flag for EHOWMANY
    HOWMANY6 Allocation flag for the
    number of times ... did not work for
    six mnths or longer
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D ETIMEOFF 5 229
T EMP: Cumulative time out of wrk 6 months or
    more
    TMEOFF1 Adding up all the times when
    ... was out of work for 6 months or more,
    what was the total amount of time that
    ... spent out of work between the time
    ... first started working at a job or
    business that lasted 6 straight months
    (EMAKMNYR) and the time ... last worked
    [that is, the time last worked before the
        reference period (ELSTWRKY or EPRVJBYR)
        if (ELSTWRKY > 0 or EPRVJBYR > 0); or
        the time last worked at the job/business
```

```
DATA SIZE BEGIN
    held before the job/business held in
    week 1 of the reference period (EWK1LSJB)
    if EWK1LSJB > 0; or the week before week
    1 of the reference period for all other
    people)]?
U All adults 18-75 for whom EANYOFF=1
V 0:99999 .Months
V -1 .Not in Universe
D ATIMEOFF 1 234
T EMP: Allocation flag for ETIMEOFF
    TMEOFF1 Allocation flag for
    cumulative time when ... was out of
    work for 6 months or longer
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
D EWRK35HR 2 235
T EMP: Usually worked 35 or more hours per week
    WRK35HR During all the time since
    you first worked six consecutive months
    and the time when last worked at a job
    in or prior to the reference period
    [that is, the time between (EMAKMNYR)
    and: the time last worked before the
    reference period (ELSTWRKY or EPRVJBYR)
    if (ELSTWRKY> 0 or EPRVJBYR > 0); or the
    time last worked at the job/business
    held before the job/business held in
    week 1 of the reference period
    (EWK1LSJB) if EWK1LSJB > 0; or the week
    before week 1 of the reference period
    for all other people] have you mostly
    worked 35 or more hours per week?
U All adults 18-75 who have ever worked six
    consecutive months (TMAKMNYR > 0)
V -1 .Not in Universe
V 1 .Yes
V 2 .No
D AWRK35HR 1 237
T EMP: Allocation flag for EWRK35HR
    WRK35HR Allocation flag for usually
    worked 35 hours per week
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D EOFF6MTN 2 238
T EMP: Ever stopped working to become a
        caregiver
            OFF6MTH Since (year ... first worked
    6 \text { consecutive months have there been}
    any periods lasting 6 months or longer
```

```
DATA SIZE BEGIN
    when ... did not work at a paid job or
    business because ... was taking care of
    a child, an elderly person, or a
    disabled person?
U All adults 20-62 who have ever worked six
    straight months (TMAKMNYR> 0) and: either had
    times when they did not work for 6 months or
    more(EANYOFF=1), or had no such times but
    last worked more than }6\mathrm{ months before the
    start of the reference period (if ELSTWRKY >
    0 or EPRVJBYR > 0 or EWK1LSJB > 0) or the
    interview date(otherwise)
V -1 .Not in Universe
V 1 .Yes
V 2 .No
D AOFF6MTN 1 240
T EMP: Allocation flag for EOFF6MTN
            OFF6MTH Allocation flag for whether
        ... has ever stopped working for 6
        months or more to become a caregiver
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 . Cold deck imputation
        3.Logical imputation (derivation)
D EOTHTIME 2 241
T EMP: Stopped working more than once to become
        caregiver
        OTHTIMES Since (year ... first
        worked 6 straight months) were there
        any other long periods of time [before the
        period specified by ENOWRKFR and ENOWRKTO]
        when ... didn't work because ... was
        taking care of a child, an elderly person,
        or a disabled person?
U EOFF6MTN=1
V -1 .Not in Universe
V 1 .Yes
V 2 .No
D AOTHTIME 1 243
T EMP: Allocation flag for EOTHTIME
    OTHTIMES Allocation flag for
    whether ...did not work more than once
    for 6 months or more to become a caregiver
        0 .Not imputed
        1 .Statistical imputation (hot deck)
        2 .Cold deck imputation
        3 .Logical imputation (derivation)
D ECNTOTHR 2 244
T EMP: Num of add'l times stopped work to be a
        caregiver
            CNTOTHR How many other times did
            this happen?
U EOTHTIME=1
```

```
DATA SIZE BEGIN
V 0:99 .Number of times
V -1 .Not in Universe
D ACNTOTHR 1 246
T EMP: Allocation flag for ECNTOTHR
    CNTOTHR Allocation flag for number
    of additional times ... stopped working
    to become a caregiver
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D TNOWRKFR 4 247
T EMP: Start yr, recent/only time not wrk to be
    caregiver
    NOWRKSPL@NOWRKFR When did this [not
    working because of caregiving]
    happen most recently - from what year to
    what year?
U EOFF6MTN=1
V 1968:2004 .Year event started
V -1 .Not in Universe
D ANOWRKFR 1 251
T EMP: Allocation flag for TNOWRKFR
    NOWRKSPL@NOWRKFR Allocation flag
    for the starting year of ...'s most
    recent/only episode of not working to be
    a caregiver
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D TNOWRKTO 4 252
T EMP: End year, recent/only time not work to be
    caregiver
    NOWRKSPL@NOWRKTO When did this
    happen most recently - from what year to
    what year?
U EOFF6MTN=1
V 1975:2004 .Year event end
V -1 .Not in Universe
D ANOWRKTO 1 256
T EMP: Allocation flag for TNOWRKTO
    NOWRKSPL@NOWRKTO Allocation flag
    for the ending year of ... most recent/
    only episode of not working to be a
    caregiver
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D TFSTYRFR 4 257
```

```
DATA SIZE BEGIN
T EMP: Start year, first time not work to be a
    caregiver
        FRSTYR@FSTYRFRM When was the first
        time that this happened?
U All adults 21-62 and EOFF6MTN=1 and EOTHTIME=1
V 1969:2004 .Year this first happened
V -1 .Not in Universe
D AFSTYRFR 1 261
T EMP: Allocation flag for TFSTYRFR
    FRSTYR@FSTYRFRM Allocation flag for
    the starting year of ...'s first episode
    of not working to be a caregiver
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D TFSTYRTO 4 262
T EMP: Ending year, first time not work to be a
    caregiver
            FRSTYR@FSTYRTO When was the first
            time that this happened?
U All adults 21-62 with EOFF6MTN=1 and EOTHTIME=1
V 1971:2004 .Year this first happened
V -1 .Not in Universe
D AFSTYRTO 1 266
T EMP: Allocation flag for TFSTYRTO
    FRSTYR@FSTYRTO Allocation flag for
    the ending year of ...'s first episode
    of not working to be a caregiver
V 0 .Not imputed
V 1 .Statistical imputation (hot deck)
V 2 .Cold deck imputation
V 3 .Logical imputation (derivation)
D ENWALL1 2 267
T EMP: Recipient of most recent/only episode of
        caregiving
            NWALL@1 Who was ... taking care of
            at that time (that is, during the period
            of time specified by ENOWRKFR and
            ENOWRKTO)? MARK ALL THAT APPLY
U EOFF6MTN=1
V 1 .Taking care of a minor child
V -1 .Not in Universe
V 0 .Not applicable
D ENWALL2 2 269
T EMP: Recipient of most recent/only episode of
        caregiving
            NWALL@2 Who was ... taking care of
            at that time (that is, during the period
            of time specified by ENOWRKFR and
            ENOWRKTO)? MARK ALL THAT APPLY
U EOFF6MTN=1
```


SOURCE AND ACCURACY STATEMENT FOR THE SURVEY OF INCOME AND PROGRAM PARTICIPATION (SIPP) 2004, WAVE 1 - WAVE 12 PUBLIC USE (CORE) FILES¹

SOURCE OF DATA

The data were collected in the 2004 Panel of the Survey of Income and Program Participation (SIPP). The population represented in the 2004 SIPP (the population universe) is the civilian noninstitutionalized population living in the United States. The institutionalized population, which is excluded from the population universe, is composed primarily of the population in correctional institutions and nursing homes (91 percent of the 4.1 million institutionalized people in Census 2000).

The 2004 Panel of the SIPP sample is located in 351 Primary Sampling Units (PSUs), each consisting of a county or a group of contiguous counties. Of these 351 PSUs, 123 are self-representing (SR) and 228 are non-self-representing (NSR). SR PSUs have a probability of selection of one. NSR PSUs have a probability of selection of less than one. Within PSUs, housing units (HUs) were systematically selected from the master address file (MAF) used for the 2000 decennial census. To account for HUs built within each of the sample areas after the 2000 census, a sample containing clusters of four HUs was drawn from permits issued for construction of residential HUs up until shortly before the beginning of the panel. In jurisdictions that don't issue building permits or have incomplete addresses, we systematically sampled expected clusters of four HUs which were then listed by field personnel.

Sample households within a given panel are divided into four random subsamples of nearly equal size. These subsamples are called rotation groups and one rotation group is interviewed each month. Each household in the sample was scheduled to be interviewed at four-month intervals over a period of roughly four years beginning in February 2004. The reference period for the questions is the four-month period preceding the interview month. The most recent month is designated reference month 4 , the earliest month is reference month 1. In general, one cycle of four interview months covering the entire sample, using the same questionnaire, is called a wave. For example, Wave 1 rotation group 1 of the 2004 Panel was interviewed in February 2004 and data for the reference months October 2003 through January 2004 were collected.

In Wave 1, the 2004 SIPP began with a sample of about 62,700 HUs. About 11,300 of these HUs were found to be vacant, demolished, converted to nonresidential use, or otherwise ineligible for the survey. Field Representatives (FRs) were able to obtain interviews for about 43,700 of the eligible HUs. FRs were unable to interview approximately 7,700 eligible HUs in the panel because the occupants: (1) refused to be interviewed; (2) could not be found at home; (3) were temporarily absent; or (4) were otherwise unavailable. Thus, occupants of about 85 percent of all eligible HUs participated in the first interview of the panel.

[^0]For subsequent interviews, only original sample people (those in Wave 1 sample households and interviewed in Wave 1) and people living with them are eligible to be interviewed. The SIPP sample includes original sample people if they move to a new address, unless the new address was more than 100 miles from a SIPP sample area. In this case, FRs attempt telephone interviews. Based on these follow-up criteria, FRs were able to interview about 40,600 HUs of the approximately 44,200 eligible HUs for Wave 2, about 39,100 HUs of the approximately 44,600 eligible HUs for Wave 3, about 38,300 HUs of the approximately 44,900 eligible HUs for Wave 4, about 37,400 HUs of the approximately 45,400 eligible HUs for Wave 5, about 36,900 HUs of the approximately 45,600 eligible HUs for Wave 6, about 36,300 HUs of the approximately 45,700 eligible HUs for Wave 7, and about 36,000 HUs of the approximately 45,700 eligible HUs for Wave 8. In each of these waves, FRs were unable to interview some of the eligible housing units because the occupants either directly or indirectly refused to be interviewed in the same manner described for Wave 1 or moved to an unknown address. The rates of non-interviewed housing units due to direct or indirect refusal (Type A rate) were 6.6% for Wave 2, 9.9% for Wave 3, 11.6% for Wave $4,13.7 \%$ for Wave $5,15.0 \%$ for Wave $6,16.1 \%$ for Wave 7 , and 16.1% for Wave 8 . The rates of non-interviewed HUs due to moving to an unknown address (Type D rate) were 1.4% for Wave 2, 2.5% for Wave 3, 3.1\% for Wave 4, 3.7\% for Wave 5, 4.1% for Wave $6,4.5 \%$ for Wave 7, and 5.2% for Wave 8.

Because of budget constraints, a 53\% sample cut occurred at Wave 9. Essentially, 76 NSR PSUs were dropped from the sample, as well as 33% of the sample in SR PSUs. This resulted in approximately 21,300 eligible HUs for Wave 9. Out of these $21,300 \mathrm{HUs}$, FRs were able to interview about $16,600 \mathrm{HUs}$ for Wave 9, about 16,200 HUs for Wave 10, about 15,900 for Wave 11, and about 16,000 HUs for Wave 12. After the sample cut, the rates of non-interviewed housing units due to direct or indirect refusal (Type A rate) were 16.9% for Wave $9,18.5 \%$ for Wave $10,19.7 \%$ for Wave 11 , and 18.9% for Wave 12 . The rates of non-interviewed HUs due to moving to an unknown address (Type D rate) after the sample cut were 5.2% for Wave 9, 5.3% for Wave 10, 5.7% for Wave 11, and 6.4% for Wave 12.

Since SIPP follows all original sample members, those members that form new households are also included in the SIPP sample. This expansion of original households can be estimated within the interviewed sample, but is impossible to determine within the non-interviewed sample. Therefore, a growth factor based on the growth in the known sample is used to estimate the unknown expansion of the non-interviewed households.

Growth factors account for the additional nonresponse stemming from the expansion of non-interviewed households. They are used to get a more accurate estimate of the number of non-interviewed HUs at each wave, called sample loss. To calculate sample loss we use Formula (1):

$$
\begin{equation*}
\text { Sample Loss }=\frac{\left(A_{1} \times G F\right)+A_{C}+D_{C}}{I_{C}+\left(A_{1} \times G F\right)+A_{C}+D_{C}} \tag{1}
\end{equation*}
$$

where A_{1} is the number of Type A non-interviewed households in Wave $1, A_{\mathrm{C}}$ is the number of Type A non-interviewed households in the Current Wave, D_{C} is the number of Type D non-interviewed households in the current wave, I_{C} is the number of interviewed households in the current wave, and $G F$ is the growth factor associated with the current wave.

Table A. Sample Loss for SIPP 2004								
Wave	$\begin{gathered} \text { Eligible } \\ \text { HUs } \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Interviewed } \\ \text { HUs } \end{array} \\ \hline \end{array}$	Type As		Type Ds		Growth Factor	$\begin{gathered} \text { Sample } \\ \text { Loss } \end{gathered}$
			Total	Rate	Total	Rate		
1	51363	43711	7652	14.9\%				14.9\%
2	44150	40587	2935	6.6\%	628	1.4\%	1.0227	21.9\%
3	44614	39117	4395	9.9\%	1102	2.5\%	1.0356	25.5\%
4	44930	38309	5208	11.6\%	1413	3.1\%	1.0427	27.6\%
5	45350	37446	6229	13.7\%	1675	3.7\%	1.0490	29.8\%
6	45638	36931	6830	15.0\%	1877	4.1\%	1.0540	31.2\%
7	45688	36289	7342	16.1\%	2057	4.5\%	1.0571	32.5\%
8	45684	35966	7358	16.1\%	2360	5.2\%	1.0599	33.1\%
9	21296	16587	3608	16.9\%	1101	5.2\%	1.0619	34.0\%
10	21342	16235	3919	18.5\%	1188	5.3\%	1.0636	35.5\%
11	21347	15894	4173	19.7\%	1280	5.7\%	1.0653	36.9\%
12	21332	15952	4024	18.9\%	1356	6.4\%	1.0668	36.6\%

Note that the Wave 1 sample loss rate is the same as the Type A rate since growth factors and Type D (movers) are not applicable until Wave 2.

The public use files include core and supplemental (topical module) data. Core questions are repeated at each interview over the life of the panel. Topical modules include questions which are asked only in certain waves. The 2004 panel topical modules are given in Table 1.

Table 2 indicates the reference months and interview months for the collection of data from each rotation group for the 2004 panel. For example, Wave 1 rotation group 1 of the 2004 panel was interviewed in February 2004 and data for the reference months October 2003 through January 2004 were collected.

Estimation. The SIPP estimation procedure involves several stages of weight adjustments to derive the cross-sectional person level weights. First, each person is given a base weight ($B W$) equal to the inverse of the probability of selection of a person's household. Then a noninterview adjustment factor is applied to account for households which were eligible for the sample but which FRs could not interview in Wave $1\left(F_{N 1}\right)$. Next, a Duplication Control Factor $(D C F)$ is used to adjust for subsampling done in the field when the number of sample units is much larger than expected. A Mover's Weight ($M W$) is applied to adjust for persons in the SIPP universe who move into sample households after Wave 1. The last adjustment is the Second Stage Adjustment Factor $\left(F_{2 S}\right)$. This adjusts estimates to population controls and equalizes husbands' and wives' weights. The 2004 Panel adjusts weights to both national and state level controls.

The final cross-sectional weight is $F W_{c}=B W * D C F * F_{N 1} * F_{2 S}$ for Wave 1 and is $F W_{c}=I W * F_{N 2} * F_{2 S}$ for Waves 2+, where $I W$ is either $B W * D C F * F_{N 1}$ or $M W$. Additional details of the weighting process are in SIPP 2004+: Cross-Sectional Weighting Specifications for Wave 1 and Wave 2+.

Population Controls. The 2004 SIPP estimation procedure adjusts weighted sample results to agree with independently derived population estimates of the civilian noninstitutional population. National family type controls are obtained by taking the Current Population Survey (CPS) weights and doing a "March type" family equalization. That is, wives' weights are assigned to husbands and then proportionally adjusted to the weights of persons by month, rotation group, race, sex, age, and by the marital and family status of householders. This attempts to correct for undercoverage and thereby reduces the mean square error of the estimates. The national and state level population controls are obtained directly from the Population Division and are prepared each month to agree with the most current set of population estimates released by the Census Bureau's population estimates and projections program.

The national level controls are distributed by demographic characteristics as follows:

- Age, Sex, and Race (White Alone, Black Alone, and all other groups combined)
- Age, Sex, and Hispanic Origin

The state level controls are distributed by demographic characteristics as follows:

- \quad State by Age and Sex
- State by Hispanic origin
- State by Race (Black Alone, all other groups combined)

The estimates begin with the latest decennial census as the base and incorporate the latest available information on births and deaths along with the latest estimates of net international migration.

The net international migration component in the population estimates include a combination of:

- Legal migration to the U.S.,
- Emigration of foreign born and native people from the U.S.,
- Net movement between the U.S. and Puerto Rico,
- Estimates of temporary migration, and
- Estimates of net residual foreign-born population, which include unauthorized migration.

Because the latest available information on these components lags the survey date, to develop the estimate for the survey date, it is necessary to make short-term projections of these components.

Use of Weights. There are three primary weights for the analysis of SIPP data. The person month weight (one for each reference month) is for analyzing data at the person level. Everyone in the sample in a given reference month has a person month weight. The person month weight of the household reference person is used to analyze data at the household level (a household may consist of related and unrelated persons). The person month weight of the family reference person is the family weight. Use this weight to analyze family level questions. Weights are also available in the public use files for related subfamilies. Chapter 8 of the SIPP Users' Guide provides additional information on how to use these weights.

By selecting the appropriate reference month weight an analyst can obtain the average of an item such as income across several calendar months.

Example. Using the proper weights, one can estimate the monthly average number of households in a specified income range over December 2003 to January 2004. To estimate monthly averages of a given measure, e.g., total, mean, over a number of consecutive months, sum the monthly estimates and divide by the number of months. To form an estimate for a particular month, use the reference month weight for the month of interest, summing over all persons or households with the characteristic of interest whose reference period includes the month of interest.

The core wave file does not contain weights for characteristics that involve a person's or household's status over two or more months (such as, number of households with a 50 percent increase in income between December 2003 and January 2004).

Adjusting Estimates Which Use Less than the Full Sample. When estimates for months with less than four rotations worth of data are constructed from a wave file, factors greater than 1 must be applied. Multiply the sum by a factor to account for the number of rotations contributing data for the month. This factor equals 4 divided by the number of rotations contributing data for the month. For example, December 2003 data are only available from rotations 1-3 for Wave 1 of the 2004 Panel, so a factor of $4 / 3 \approx 1.3333$ must be applied. A list of appropriate factors is in Table 3.

ACCURACY OF ESTIMATES

SIPP estimates are based on a sample; they may differ somewhat from the figures that would have been obtained if a complete census had been taken using the same questionnaire, instructions, and enumerators. There are two types of errors possible in an estimate based on a sample survey: sampling and nonsampling. For a given estimator, the difference between an estimate based on a sample and the estimate that would result if the sample were to include the entire population is known as sampling error. For a given estimator, the difference between the estimate that would result if the sample were to include the entire population and the true population value being estimated is known as nonsampling error. We are able to provide estimates of the magnitude of SIPP sampling error, but this is not true of nonsampling error.

Nonsampling Error. Nonsampling errors can be attributed to many sources:

- Inability to obtain information about all cases in the sample
- Definitional difficulties
- Differences in the interpretation of questions
- Inability or unwillingness on the part of the respondents to provide correct information
- Errors made in the following: collection such as in recording or coding the data, processing the data, estimating values for missing data
- Biases resulting from the differing recall periods caused by the interviewing pattern used and undercoverage.

Quality control and edit procedures were used to reduce errors made by respondents, coders and interviewers. More detailed discussions of the existence and control of nonsampling errors in the SIPP can be found in the SIPP Quality Profile, 1998 SIPP Working Paper Number 230, issued May 1999.

Undercoverage in SIPP results from missed HUs and missed persons within sample HUs. It is known that undercoverage varies with age, race, and sex. Generally, undercoverage is larger for males than for females and larger for Blacks than for non-Blacks. Ratio estimation to independent age-race-sex population controls partially corrects for the bias due to survey undercoverage. However, biases exist in the estimates to the extent that persons in missed households or missed persons in interviewed households have characteristics different from those of interviewed persons in the same age-race-sex group.

A common measure of survey coverage is the coverage ratio, the estimated population before ratio adjustment divided by the independent population control. Table B below shows SIPP coverage ratios for age-sex-race groups for one month, January 2004, prior to the ratio adjustment. The SIPP coverage ratios exhibit some variability from month to month, but these are a typical set of coverage ratios. Other Census Bureau household surveys [like the CPS] experience similar coverage.

Comparability with Other Estimates. Caution should be exercised when comparing this data with data from other SIPP products or with data from other surveys. The comparability problems are caused by such sources as the seasonal patterns for many characteristics, different nonsampling errors, and different concepts and procedures. Refer to the SIPP Quality Profile for known differences with data from other sources and further discussions.

Sampling Variability. Standard errors indicate the magnitude of the sampling error. They also partially measure the effect of some nonsampling errors in response and enumeration, but do not measure any systematic biases in the data. The standard errors for the most part measure the variations that occurred by chance because a sample rather than the entire population was surveyed.

Table B. SIPP Average Coverage Ratios for January 2004 for Age by Race and Sex

Age	White Only		Black Only		Residual	
	Male	Female	Male	Female	Male	Female
<15	0.89	0.90	0.85	0.82	1.16	1.07
15	0.89	0.90	0.88	0.83	0.96	0.95
$16-17$	0.90	0.88	0.75	0.84	0.93	0.89
$18-19$	0.83	0.81	0.79	0.80	0.96	0.89
$20-21$	0.75	0.74	0.70	0.77	0.96	1.03
$22-24$	0.75	0.77	0.75	0.73	0.95	1.06
$25-29$	0.80	0.89	0.70	0.77	0.90	0.95
$30-34$	0.84	0.88	0.80	0.84	0.94	0.99
$35-39$	0.89	0.92	0.80	0.83	1.00	1.06
$40-44$	0.89	0.88	0.84	0.88	1.03	0.99
$45-49$	0.85	0.91	0.79	0.94	1.02	1.04
$50-54$	0.92	0.91	0.80	0.89	1.04	1.09
$55-59$	0.88	0.91	0.91	0.94	0.97	1.19
$60-61$	0.89	1.01	0.92	0.82	1.04	1.14
$62-64$	0.92	0.97	0.76	0.97	1.15	1.07
$65-69$	0.94	0.93	0.99	1.03	1.07	1.01
$70-74$	0.94	0.96	0.99	1.04	1.08	0.94
$75-79$	1.04	0.98	0.93	1.08	0.84	0.95
$80-84$	0.98	0.92	0.79	0.97	0.84	0.97
$85+$	0.94	0.85	0.74	1.00	0.79	1.03

USES AND COMPUTATION OF STANDARD ERRORS

Confidence Intervals. The sample estimate and its standard error enable one to construct a confidence interval. A confidence interval is a range about a given estimate that has a known probability of including the result of a complete enumeration. For example, if all possible samples were selected, each of these being surveyed under essentially the same conditions and using the same sample design, and if an estimate and its standard error were calculated from each sample, then:

1. Approximately 68 percent of the intervals from one standard error below the estimate to one standard error above the estimate would include the average result of all possible samples.
2. Approximately 90 percent of the intervals from 1.645 standard errors below the estimate to 1.645 standard errors above the estimate would include the average result of all possible samples.
3. Approximately 95 percent of the intervals from two standard errors below the estimate to two standard errors above the estimate would include the average result of all possible samples.

The average estimate derived from all possible samples is or is not contained in any particular computed interval. However, for a particular sample, one can say with a specified confidence that the average estimate derived from all possible samples is included in the confidence interval.

Hypothesis Testing. Standard errors may also be used for hypothesis testing, a procedure for distinguishing between population characteristics using sample estimates. The most common types of hypotheses tested are 1) the population characteristics are identical versus 2) they are different. Tests may be performed at various levels of significance, where a level of significance is the probability of concluding that the characteristics are different when, in fact, they are identical.

To perform the most common test, compute the difference $X_{A}-X_{B}$, where X_{A} and X_{B} are sample estimates of the characteristics of interest. A later section explains how to derive an estimate of the standard error of the difference $X_{A}-X_{B}$. Let that standard error be $S_{D I F F}$. If $X_{A}-X_{B}$ is between $\left(-1.645 \times S_{\text {DIFF }}\right)$ and $\left(+1.645 \times S_{\text {DIFF }}\right)$, no conclusion about the characteristics is justified at the 10 percent significance level. If, on the other hand $X_{A}-X_{B}$, is smaller than $\left(-1.645 \times S_{\text {DIFF }}\right)$ or larger than $\left(+1.645 \times S_{D I F F}\right)$, the observed difference is significant at the 10 percent level. In this event, it is commonly accepted practice to say that the characteristics are different. We recommend that users report only those differences that are significant at the 10 percent level or better. Of course, sometimes this conclusion will be wrong. When the characteristics are the same, there is a 10 percent chance of concluding that they are different.

Note that as more tests are performed, more erroneous significant differences will occur. For example, at the 10 percent significance level, if 100 independent hypothesis tests are performed in which there are no real differences, it is likely that about 10 erroneous differences will occur. Therefore, the significance of any single test should be interpreted cautiously. A Bonferroni correction can be done to account for this potential problem that consists of dividing your stated level of significance by the number of tests you are performing. This correction results in a conservative test of significance.

Note Concerning Small Estimates and Small Differences. Because of the large standard errors involved, there is little chance that estimates will reveal useful information when computed on a base smaller than 75,000 . For SIPP estimates calculated from Waves $9+$, bases smaller than 250,000 will likely yield little useful information. Also, nonsampling error in one or more of the small number of cases providing the estimation can cause large relative error in that particular estimate. Care must be taken in the interpretation of small differences since even a small amount of nonsampling error can cause a borderline difference to appear significant or not, thus distorting a seemingly valid hypothesis test.

Calculating Standard Errors for SIPP Estimates. There are three main ways we calculate the Standard Errors (SEs) for SIPP Estimates. They are as follows:

- Direct estimates using replicate weighting methods;
- Generalized variance function parameters (denoted as a and b); and
- Simplified tables of SEs based on the a and b parameters.

While the replicate weight methods provide the most accurate variance estimates, this approach requires more computing resources and more expertise on the part of the user. The Generalized Variance Function (GVF) parameters provide a method of balancing accuracy with resource usage as well as smoothing effect on SE estimates across time. SIPP uses the Replicate Weighting Method to produce GVF parameters (see K. Wolter, Introducation to Variance Estimation, Chapter 5 for more information). The GVF parameters are used to create the simplified tables of SEs.

Standard Error Parameters and Tables and Their Use. Most SIPP estimates have greater standard errors than those obtained through a simple random sample because of its two-stage cluster sample design. To derive standard errors that would be applicable to a wide variety of estimates and could be prepared at a moderate cost, a number of approximations were required.

Estimates with similar standard error behavior were grouped together and two parameters (denoted a and b) were developed to approximate the standard error behavior of each group of estimates. Because the actual standard error behavior was not identical for all estimates within a group, the standard errors computed from these parameters provide an indication of the order of magnitude of the standard error for any specific estimate. These a and b parameters vary by characteristic and by demographic subgroup to which the estimate applies. Table 4 provides base a and b parameters for the core domains to be used for the 2004 Panel Wave 1 to Wave 12 estimates. The base a and b parameters for the topical modules for Wave 1 to Wave 8 are found in Table 5.

For those users who wish further simplification, we have also provided base standard errors for estimates of totals and percentages in Tables 6 through 9 . Note that these base standard errors only apply when data from all four rotations are used and must be adjusted by an f factor provided in Table 4. The standard errors resulting from this simplified approach are less accurate. Methods for using these parameters and tables for computation of standard errors are given in the following sections.

Adjusting Standard Error Parameters for Estimates Which Use Less Than the Full Sample. If some rotation groups are unavailable to contribute data to a given estimate, then the estimate and its standard error need to be adjusted. The adjustment of the estimate is described in the previous section. The standard error is adjusted by multiplying the appropriate a and b parameters by a factor equal to 4 divided by the number of rotation groups contributing data to the estimate or it can be taken from Table 3 where the factor is given for each single reference month, October 2003 to March 2007.

Use Table 3 to select the adjustment factor appropriate to the wave. Multiply this factor by the a and b base parameters of Table 4 to produce a and b parameters for the variance estimate for a specific subgroup and reference period.

Illustration 1.

Using Table 4 for Wave 1 of the 2004 panel, the base a and b parameters for total number of households are -0.00002809 and 3,153, respectively. Using Table 3 for Wave 1, the factor for November 2003 is 2 since only two rotation months of data are available. So the a and b parameters for the variance estimate of a white household characteristic in November 2003 based on Wave 1 are:

$$
-0.00002809 \times 2=-0.00005618 \text { and } 3,153 \times 2=6,306, \text { respectively. }
$$

Similarly, the factor from Table 3 for the last quarter of 2003 is 1.8519 , since the only data available are the six rotation months from Wave 1. (Rotation 1 provides three rotation months, rotation 2 provides two rotation months, and rotation 3 provides one rotation month of data.) Thus, the a and b parameters for the variance estimate of a white household characteristic in the last quarter of 2003 are:

$$
-0.00002809 \times 1.8519=-0.00005202 \text { and } 3,153 \times 1.8519=5,839, \text { respectively } .
$$

Standard Errors of Estimated Numbers. The approximate standard error, $\boldsymbol{s}_{\boldsymbol{x}}$, of an estimated number of persons, households, families, unrelated individuals and so forth, can be obtained in two ways. Both apply when data from all four rotations are used to make the estimate. However, only Formula (2) should be used when less than four rotations of data are available for the estimate. Note that neither method should be applied to dollar values.

The standard error may be obtained by the use of Formula (2):

$$
\begin{equation*}
s_{x}=f \times s \tag{2}
\end{equation*}
$$

where f is the appropriate f factor from Table 4 , and s is the base standard error on the estimate obtained by interpolation from Tables 6 or 7. Alternatively, s_{x} may be approximated by Formula (3):

$$
\begin{equation*}
s_{x}=\sqrt{a x^{2}+b x} \tag{3}
\end{equation*}
$$

This formula was used to calculate the base standard errors in Tables 8 and 9. Here x is the size of the estimate and a and b are the parameters from Table 4 which are associated with the characteristic being estimated (and the wave which applies). Use of Formula (3) will generally provide more accurate results than the use of Formula (2).

Illustration 2.

Suppose SIPP estimates based on Wave 1 of the 2004 panel show that there were 2,000,000 females aged 25 to 44 with a monthly income of greater than $\$ 6,000$ in January 2004. The appropriate parameters and factor from Table 4 and the appropriate general standard error from Table 6 are:

$$
a=-0.00003059 \quad b=3,582 \quad f=1.007 \quad s=83,766
$$

Using Formula (2), the approximate standard error is:

$$
s_{x}=1.007 \times 83,766=84,352
$$

Using Formula (3), the approximate standard error is:

$$
s_{x}=\sqrt{\left(-0.00003059 \times 2,000,000^{2}\right)+(3,582 \times 2,000,000)}=83,914 \text { females }
$$

Using the standard error based on Formula (3), the approximate 90-percent confidence interval as shown by the data is from $1,861,961$ to $2,138,039$ females (i.e., $2,000,000 \pm 1.645 \times 83,914$). Therefore, a conclusion that the average estimate derived from all possible samples lies within a range computed in this way would be correct for roughly 90% of all samples.

Standard Error of a Mean. A mean is defined here to be the average quantity of some item (other than persons, families, or households) per person, family or household. For example, it could be the average
monthly household income of females age 25 to 34 . The standard error of a mean can be approximated by Formula (4) below. Because of the approximations used in developing Formula (4), an estimate of the standard error of the mean obtained from this formula will generally underestimate the true standard error. The formula used to estimate the standard error of a mean \bar{x} is:

$$
\begin{equation*}
s_{\bar{x}}=\sqrt{\left(\frac{b}{y}\right) s^{2}} \tag{4}
\end{equation*}
$$

where y is the size of the base, s^{2} is the estimated population variance of the item and b is the parameter associated with the particular type of item.

The population variance s^{2} may be estimated by one of two methods. In both methods, we assume x_{i} is the value of the item for $i^{\text {th }}$ unit. (A unit may be person, family, or household). To use the first method, the range of values for the item is divided into c intervals. The lower and upper boundaries of interval j are z_{j-1} and Z_{j}, respectively. Each unit, x_{i}, is placed into one of c intervals such that $Z_{j-1}<x_{i} \leq Z_{j}$.

The estimated population mean, \bar{x}, and variance, s^{2}, are given by the formulas:

$$
\begin{gather*}
\bar{x}=\sum_{j=1}^{c} p_{j} m_{j} \\
s^{2}=\sum_{j=1}^{c} p_{j} m_{j}^{2}-\bar{x}^{2} \tag{5}
\end{gather*}
$$

where $m_{j}=\left(Z_{j-1}+Z_{j}\right) / 2$, and p_{j} is the estimated proportion of units in the interval j. The most representative value of the item in the interval j is assumed to be m_{j}. If the interval c is open-ended, or no upper interval boundary exists, then an approximate value for m_{c} is

$$
m_{c}=\frac{3}{2} Z_{c-1} .
$$

In the second method, the estimated population mean, \bar{x}, and variance, s^{2} are given by:

$$
\begin{align*}
& \bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}} \\
& s^{2}=\frac{\sum_{i=1}^{n} w_{i} x_{i}^{2}}{\sum_{i=1}^{n} w_{i}}-\bar{x}^{2} \tag{6}
\end{align*}
$$

where there are n units with the item of interest and w_{i} is the final weight for $i^{\text {th }}$ unit. (Note that $\left.\sum w_{i}=y.\right)$

Illustration 3.

Suppose that based on Wave 1 data, the distribution of monthly cash income for persons age 25 to 34 during the month of January 2004 is given in Table 10. Using these data, the mean monthly cash income for persons aged 25 to 34 is $\$ 2$, 530 . Applying Formula (5), the approximate population variance, s^{2}, is:

$$
s^{2}=\left(\frac{1,371}{39,851}\right)(150)^{2}+\left(\frac{1,651}{39,851}\right)(450)^{2}+\ldots+\left(\frac{1,493}{39,851}\right)(9,000)^{2}-(2,530)^{2}=3,159,887 .
$$

Using Formula (4) and a base b parameter of 3,582 , the estimated standard error of a mean \bar{x} is:

$$
s_{\bar{x}}=\sqrt{\frac{3,582}{39,851,000} \times 3,159,887}=\$ 16.85 .
$$

Thus, the approximate 90-percent confidence interval as shown by the data ranges from $\$ 2,502.28$ to \$2,557.72.

Standard Error of an Aggregate. An aggregate is defined to be the total quantity of an item summed over all the units in a group. The standard error of an aggregate can be approximated using Formula (7).

As with the estimate of the standard error of a mean, the estimate of the standard error of an aggregate will generally underestimate the true standard error. Let y be the size of the base, s^{2} be the estimated population variance of the item obtained using Formula (5) or Formula (6) and b be the parameter associated with the particular type of item. The standard error of an aggregate is:

$$
\begin{equation*}
s_{x}=\sqrt{b \times y \times s^{2}} . \tag{7}
\end{equation*}
$$

Standard Errors of Estimated Percentages. The reliability of an estimated percentage, computed using sample data for both numerator and denominator, depends upon both the size of the percentage and the size of the total upon which the percentage is based. Estimated percentages are relatively more reliable than the corresponding estimates of the numerators of the percentages, particularly if the percentages are 50 percent or more, e.g., the percent of people employed is more reliable than the estimated number of people employed. When the numerator and denominator of the percentage have different parameters, use the parameter (and appropriate factor) of the numerator. If proportions are presented instead of percentages, note that the standard error of a proportion is equal to the standard error of the corresponding percentage divided by 100 .

There are two types of percentages commonly estimated. The first is the percentage of people sharing a particular characteristic such as the percent of people owning their own home. The second type is the percentage of money or some similar concept held by a particular group of people or held in a particular form. Examples are the percent of total wealth held by people with high income and the percent of total income received by people on welfare.

For the percentage of people, the approximate standard error, $s_{(x, p)}$, of the estimated percentage p can be obtained by the formula:

$$
\begin{equation*}
s_{(x, p)}=f \times s \tag{8}
\end{equation*}
$$

when data from all four rotations are used to estimate p. In this formula, f is the appropriate f factor from Table 4 (for the appropriate wave) and s is the base standard error of the estimate from Tables 8 or 9 .

Alternatively, it may be approximated by the formula:

$$
\begin{equation*}
s_{(x, p)}=\sqrt{\frac{b}{x}(p)(100-p)} \tag{9}
\end{equation*}
$$

from which the standard errors in Tables 8 and 9 were calculated. Here x is the size of the subclass of social units which is the base of the percentage, p is the percentage $(0<p<100)$, and b is the parameter associated with the characteristic in the numerator. Use of Formula (9) will give more accurate results than use of Formula (8) above and should be used when data from less than four rotations are used to estimate p.

Illustration 4.

Suppose that in January 2004, 6.7 percent of the $16,812,000$ persons in nonfarm households with a mean monthly household cash income of $\$ 4,000$ to $\$ 4,999$, were black. Using Formula (9), a b parameter of 3,253 , and a factor of 1 from Table 3 since all four rotations are used, the approximate standard error is:

$$
s_{(x, p)}=\sqrt{\frac{3,253}{16,812,000} \times 6.7 \times(100-6.7)}=0.35 \text { percent } .
$$

Consequently, the 90 percent confidence interval as shown by these data is from 6.12 to 7.28 percent.
For percentages of money, a more complicated formula is required. A percentage of money will usually be estimated in one of two ways. It may be the ratio of two aggregates:

$$
p_{I}=100\left(\frac{x_{A}}{x_{N}}\right),
$$

or it may be the ratio of two means with an adjustment for different bases:

$$
p_{I}=100\left(\hat{p}_{A} \frac{\bar{x}_{A}}{\bar{x}_{N}}\right),
$$

where x_{A} and x_{N} are aggregate money figures, \bar{x}_{A} and \bar{x}_{N} are mean money figures, and \hat{p}_{A} is the estimated number in group A divided by the estimated number in group N. In either case, we estimate the standard error as

$$
\begin{equation*}
s_{I}=\sqrt{\left(\frac{\hat{p}_{A} \bar{x}_{A}}{\bar{x}_{N}}\right)^{2}\left[\left(\frac{s_{p}}{\hat{p}_{A}}\right)^{2}+\left(\frac{s_{A}}{\bar{x}_{A}}\right)^{2}+\left(\frac{s_{B}}{\bar{x}_{N}}\right)^{2}\right]} \tag{10}
\end{equation*}
$$

where s_{p} is the standard error of \hat{p}_{A}, s_{A} is the standard error of \bar{x}_{A} and s_{B} is the standard error of \bar{x}_{N}. To calculate s_{p}, use Formula (9). The standard errors of \bar{x}_{N} and \bar{x}_{A} may be calculated using Formula (4).

It should be noted that there is frequently some correlation between \hat{p}_{A}, \bar{x}_{N}, and \bar{x}_{A}. Depending on the magnitude and sign of the correlations, the standard error will be over or underestimated.

Illustration 5.

Suppose that in January 2004, 9.8\% of the households own rental property, the mean value of rental property is $\$ 72,121$, the mean value of assets is $\$ 78,734$, and the corresponding standard errors are 0.18%, $\$ 5,468$, and $\$ 2,703$, respectively. In total there are $86,790,000$ households. Then, the percent of all household assets held in rental property is:

$$
100\left(0.098 \times \frac{72,121}{78,734}\right)=9.0 \%
$$

Using Formula (10), the appropriate standard error is:

$$
s_{I}=\sqrt{\left(\frac{0.098 \times 72,121}{78,734}\right)^{2}\left[\left(\frac{0.0018}{0.098}\right)^{2}+\left(\frac{5,468}{72,121}\right)^{2}+\left(\frac{2,703}{78,734}\right)^{2}\right]}=0.7 \%
$$

Standard Error of a Difference. The standard error of a difference between two sample estimates is approximately equal to

$$
\begin{equation*}
s_{(x-y)}=\sqrt{s_{x}^{2}+s_{y}^{2}} \tag{11}
\end{equation*}
$$

where s_{x} and s_{y} are the standard errors of the estimates x and y. The estimates can be numbers, percents, ratios, etc. The above formula assumes that the correlation coefficient between the characteristics estimated by x and y is zero. If the correlation is really positive (negative), then this assumption will tend to cause overestimates (underestimates) of the true standard error.

Illustration 6.

Suppose that for January 2004 SIPP estimates show the number of persons age 35-44 years with monthly cash income of $\$ 4,000$ to $\$ 4,999$ was $4,880,200$ and the number of persons age 25-34 years with monthly cash income of $\$ 4,000$ to $\$ 4,999$ in the same time period was $4,810,800$. Then, using the parameters $a=$ -0.00001583 and $b=3,582$ from Table 4 and Formula (3), the standard errors of these numbers are approximately 130,782 and 129,869 , respectively. The difference in sample estimates is 69,400 and using Formula (11), the approximate standard error of the difference is:

$$
\sqrt{130,782^{2}+129,869^{2}}=184,309 .
$$

Suppose that it is desired to test at the 10 percent significance level whether the number of persons with monthly cash income of $\$ 4,000$ to $\$ 4,999$ was different for people age $35-44$ years than for people age 2534 years. To perform the test, compare the difference of 69,400 to the product $1.645 \times 184,309=$ 303,188 . Since the difference is not greater than 1.645 times the standard error of the difference, the data show that the two age groups are not significantly different at the 10 percent significance level.

Standard Error of a Median. The median quantity of some item such as income for a given group of people is that quantity such that at least half the group have as much or more and at least half the group have as much or less. The sampling variability of an estimated median depends upon the form of the distribution of the item as well as the size of the group. To calculate standard errors on medians, the procedure described below may be used.

The median, like the mean, can be estimated using either data which have been grouped into intervals or ungrouped data. If grouped data are used, the median is estimated using Formulas (12) or (13) with $p=$ 0.5 . If ungrouped data are used, the data records are ordered based on the value of the characteristic, then the estimated median is the value of the characteristic such that the weighted estimate of 50 percent of the subpopulation falls at or below that value and 50 percent is at or above that value. Note that the method of standard error computation which is presented here requires the use of grouped data. Therefore, it should be easier to compute the median by grouping the data and using Formulas (12) or (13).

An approximate method for measuring the reliability of an estimated median is to determine a confidence interval about it. (See the section on sampling variability for a general discussion of confidence intervals.) The following procedure may be used to estimate the 68-percent confidence limits and hence the standard error of a median based on sample data.

1. Determine, using either Formula (8) or Formula (9), the standard error of an estimate of 50 percent of the group.
2. Add to and subtract from 50 percent the standard error determined in step 1 .
3. Using the distribution of the item within the group, calculate the quantity of the item such that the percent of the group with more of the item is equal to the smaller percentage found in step 2. This quantity will be the upper limit for the 68 -percent confidence interval. In a similar fashion, calculate the quantity of the item such that the percent of the group with more of the item is equal to the larger percentage found in step 2 . This quantity will be the lower limit for the 68 -percent confidence interval.
4. Divide the difference between the two quantities determined in step 3 by two to obtain the standard error of the median.

To perform step 3, it will be necessary to interpolate. Different methods of interpolation may be used. The most common are simple linear interpolation and Pareto interpolation. The appropriateness of the method depends on the form of the distribution around the median. If density is declining in the area, then we recommend Pareto interpolation. If density is fairly constant in the area, then we recommend linear interpolation. Note, however, that Pareto interpolation can never be used if the interval contains zero or negative measures of the item of interest. Interpolation is used as follows. The quantity of the item such that p percent have more of the item is:

$$
\begin{equation*}
X_{p N}=A_{1} \times \exp \left[\left(\frac{\ln \left(p N / N_{1}\right)}{\ln \left(N_{2} / N_{1}\right)}\right) \ln \left(\frac{A_{2}}{A_{1}}\right)\right] \tag{12}
\end{equation*}
$$

if Pareto Interpolation is indicated and:

$$
\begin{equation*}
X_{p N}=\left[A_{1}+\left(\frac{P N-N_{1}}{N_{2}-N_{1}}\right)\left(A_{2}-A_{1}\right)\right] \tag{13}
\end{equation*}
$$

if linear interpolation is indicated, where:
$N \quad$ is the size of the group,
A_{1} and $A_{2} \quad$ are the lower and upper bounds, respectively, of the interval in which $X_{p N}$ falls
N_{1} and $N_{2} \quad$ are the estimated number of group members owning more than A_{1} and A_{2}, respectively
$\exp \quad$ refers to the exponential function and
$\ln \quad$ refers to the natural logarithm function

Illustration 7.

To illustrate the calculations for the sampling error on a median, we return to Table 10. The median monthly income for this group is $\$ 2,158$. The size of the group is $39,851,000$.

1. Using Formula (9), the standard error of 50 percent on a base of $39,851,000$ is about 0.5 percentage points.
2. Following step 2, the two percentages of interest are 49.5 and 50.5 .
3. By examining Table 10, we see that the percentage 49.5 falls in the income interval from $\$ 2,000$ to $\$ 2,499$. (Since 55.5% receive more than $\$ 2,000$ per month, the dollar value corresponding to 49.5 must be between $\$ 2,000$ and $\$ 2,500$.) Thus, $A_{1}=\mathbf{2 , 0 0 0}, A_{2}=\$ 2,500, N_{1}=\mathbf{2 2 , 1 0 6}, \mathbf{0 0 0}$, and $N_{2}=$ 16,307,000.

In this case, we decided to use Pareto interpolation. Therefore, using Formula (12), the upper bound of a 68% confidence interval for the median is

$$
\$ 2,000 \times \exp \left[\frac{\ln ((0.495 \times 39,851,000) / 22,106,000)}{\ln (16,307,000 / 22,106,000)} \times \ln \left(\frac{2,500}{2,000}\right)\right]=\$ 2,174
$$

Also by examining Table 10 , we see that 50.5 falls in the same income interval. Thus, A_{1}, A_{2}, N_{1} and N_{2} are the same. We also use Pareto interpolation for this case. So the lower bound of a 68% confidence interval for the median is

$$
\$ 2,000 \times \exp \left[\frac{\ln ((0.505 \times 39,851,000) / 22,106,000)}{\ln (16,307,000 / 22,106,000)} \times \ln \left(\frac{2,500}{2,000}\right)\right]=\$ 2,142 .
$$

Thus, the 68 -percent confidence interval on the estimated median is from $\$ 2,142$ to $\$ 2,174$.
4. Then the approximate standard error of the median is

$$
\frac{\$ 2,174-\$ 2,142}{2}=\$ 16 .
$$

Standard Errors of Ratios of Means and Medians. The standard error for a ratio of means or medians is approximated by:

$$
\begin{equation*}
s_{\frac{x}{y}}=\sqrt{\left(\frac{x}{y}\right)^{2}\left[\left(\frac{s_{y}}{y}\right)^{2}+\left(\frac{s_{x}}{x}\right)^{2}\right]} \tag{13}
\end{equation*}
$$

where x and y are the means or medians, and s_{x} and s_{y} are their associated standard errors.

Formula (14) assumes that the means are not correlated. If the correlation between the population means estimated by x and y are actually positive (negative), then this procedure will tend to produce overestimates (underestimates) of the true standard error for the ratio of means.

Standard Errors Using SAS or SPSS. Standard errors and their associated variance, calculated by SAS or SPSS statistical software package, do not accurately reflect the SIPP's complex sample design. Erroneous conclusions will result if these standard errors are used directly. We provide adjustment factors by characteristics that should be used to correctly compensate for likely under-estimates. The factors called DEFF available in Table 4, must be applied to SAS or SPSS generated variances. The square root of DEFF can be directly applied to similarly generated standard errors. These factors approximate design effects which adjust statistical measures for sample designs more complex than simple random sample.

TABLES

Table 1. 2004 Panel Topical Modules

W1	- Recipiency History - Employment History	W5	- Adult Well-Being - Child Support Agreements - Functional Limitations/Disabilities-Adult - Functional Limitations/Disabilities-Child - Support for Non-household members - School Enrollment \& Financing - Employer-Provided Health Benefits
W2	- Work Disability - Marital History - Fertility History - Household Relationships - Education \& Training History - Migration History	W6	- Assets and Liabilities - Real Estate, Dependent Care, and Vehicles - Mortgage, Stocks, Int Acct, Rental, Val Bus, Other - Medical Expenses/Utilization of Health Care Services - Work-related Expenses - Child Support Paid
W3	- Child Well-Being - Work-related Expenses - Child Support Paid - Medical Expenses/Utilization of Health Care Services - Assets and Liabilities - Real Estate, Dependent Care, and Vehicles - Mortgage, Stocks, Int Acct, Rental, Val Bus, Other	W7	- Annual Income \& Retirement Accounts - Taxes - Informal Care Giving - Retirement \& Pension Plan Coverage
W4	- Annual Income \& Retirement Accounts - Taxes - Child Care - Work Schedule	W8	- Welfare Reform - Child Care - Child Well-Being

Table 2. SIPP Panel 2004 Reference Months (horizontal) for Each Interview Month (vertical)

$\begin{gathered} \text { Month } \\ \text { of } \\ \text { Interview } \end{gathered}$	$\begin{aligned} & \text { Wave / } \\ & \text { Rotation } \end{aligned}$	2003	2004							2005				2006						2007				
		$\begin{array}{\|c\|} \hline 4^{\text {th }} \\ \text { Quarter } \end{array}$	$\begin{array}{c\|} \hline 1^{\text {st }} \\ \text { Quarter } \end{array}$		$\begin{gathered} \mathbf{2}^{\text {Quarter }} \\ \text { Quart } \end{gathered}$		$\begin{array}{\|c\|} \hline 3^{\text {rid }} \\ \text { Quarter } \end{array}$	$\begin{gathered} 4^{\mathrm{Th}} \\ \text { Quarter } \end{gathered}$		$\begin{array}{c\|} 1^{\text {st }} \\ \text { Quarter } \end{array}$	$\begin{gathered} \mathbf{2}^{\text {nd }} \\ \text { Quarter } \end{gathered}$	$\begin{gathered} 3^{\text {rid }} \\ \text { Quarter } \end{gathered}$	$\begin{gathered} \mathbf{4}^{\mathrm{Th}} \\ \text { Quarter } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{1}^{\text {st }} \\ \text { Quarter } \\ \hline \end{array}$		$\begin{gathered} \mathbf{2}^{\text {nd }} \\ \text { Quarter } \end{gathered}$		$\begin{gathered} 3^{\text {rd }} \\ \text { Quarter } \end{gathered}$	$\begin{gathered} 4^{\mathrm{Th}} \\ \text { Quarter } \\ \hline \end{gathered}$		$\begin{gathered} \mathbf{1}^{\text {st }} \\ \text { Quarter } \end{gathered}$	$\begin{gathered} 2^{2 n 4} \\ \text { Quarter } \end{gathered}$	$\begin{gathered} 3^{\text {rd }} \\ \text { Quarter } \end{gathered}$	$\begin{gathered} 4^{4^{\mathrm{Tb}}} \\ \text { Quarter } \end{gathered}$
		$\left\lvert\, \begin{array}{lll} 0 & N & D \\ c & o & e \\ t & v & c \end{array}\right.$	$\begin{aligned} & \mathbf{J} \mathbf{~} \\ & \mathbf{a} \\ & \mathbf{n} \end{aligned}$	$\begin{array}{cc} \hline \mathbf{F} & \mathbf{M} \\ \mathbf{e} & \mathbf{a} \\ \mathbf{b} & \mathbf{r} \\ \hline \end{array}$	$\begin{array}{ll} \hline A & \mathbf{A} \\ \mathbf{p} & \mathbf{a} \\ \mathbf{r} & \mathbf{y} \end{array}$		$\begin{array}{lll} \mathbf{J} & \mathbf{A} & \mathbf{S} \\ \mathbf{u} & \mathbf{u} & \mathbf{p} \\ \mathbf{l} & \mathrm{g} & \mathrm{t} \end{array}$	$\begin{array}{ll} \hline 0 & N \\ c & 0 \\ c & 0 \\ t & v \end{array}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{e} \\ & \mathbf{c} \end{aligned}$	$\begin{array}{\|ccc\|} \hline \mathbf{J} & \text { F } & \mathbf{M} \\ \mathbf{a} & \mathbf{e} & \mathbf{a} \\ \mathrm{n} & \mathrm{~b} & \mathbf{r} \\ \hline \end{array}$		$\begin{array}{lll} \mathbf{J} & \mathbf{A} & \mathbf{S} \\ \mathbf{u} & \mathbf{u} & \mathrm{p} \\ \mathbf{1} & \mathrm{~g} & \mathrm{t} \end{array}$	$\left\|\begin{array}{lll} 0 & N & D \\ c & 0 & e \\ t & v & c \end{array}\right\|$		$\begin{array}{ll} \hline \mathrm{F} & \mathrm{M} \\ \mathrm{e} & \mathrm{a} \\ \mathrm{~b} & \mathrm{r} \end{array}$			$\begin{array}{lll} \mathbf{J} & \mathbf{A} & \mathbf{S} \\ \mathbf{u} & \mathbf{u} \\ \mathbf{l} & \mathrm{p} \\ \mathrm{~g} \end{array} \mathrm{t}$	$\begin{array}{lll} \hline \mathbf{O} & \mathbf{N} \\ \mathbf{c} & \mathbf{o} \\ \mathrm{t} & \mathrm{v} \end{array}$		$\begin{array}{lll} & \mathbf{F} & \mathbf{F} \\ \mathbf{a} & \text { e } & \mathbf{a} \\ \mathbf{n} & \mathbf{b} & \mathbf{r} \\ \hline \end{array}$	$\left.\begin{array}{ccc} A & \text { a } & J \\ p & a & u \\ r & y & u \end{array} \right\rvert\,$	$\begin{array}{\|lll} \hline \mathbf{J} & \mathbf{A} & \mathbf{S} \\ \mathbf{u} & \mathbf{u} & \text { p } \\ \mathrm{n} & \mathrm{~g} & \mathrm{t} \\ \hline \end{array}$	$\left.\begin{array}{\|ccc} 0 & N & D \\ c & o & e \\ t & v & c \end{array} \right\rvert\,$
Feb 04	1/1	123	4																					
Mar	1/2	1	3	4																				
Apr	1/3	1	2	34																				
May	1/4		1	23	4																			
Jun	2/1				34																			
July	2/2			1	23	4																		
Aug	2/3				12	3	4																	
Sept	2/4				1	2	4																	
Oct	3/1					1	3																	
Nov	3/2						$\begin{array}{lll}2 & 3 \\ 1 & 2\end{array}$	4 3 4																
Dec	3/3							34																
Jan 05	3/4						1	23	4															
Feb	4/1							12	3	4														
Mar	4/2							1	2	34														
Apr	4/3								1	$\begin{array}{llll}2 & 3 & 4\end{array}$														
May	4/4									123	4													
Jun	5/1										34													
July	5/2									1	$2 \begin{array}{lll}2 & 3\end{array}$													
Aug	5/3										$1 \begin{array}{lll}1 & 2 & 3\end{array}$													
Nov	61										1	$\left\|\begin{array}{lll} 2 & 3 & 4 \\ 1 & 2 & 3 \end{array}\right\|$												
Dec	6/3											$\left\lvert\, \begin{array}{rrrr}1 & 2 & 3 \\ & 1 & 2\end{array}\right.$	34											
Jan 06	6/4											1	234											
Feb	7/1												123	4										
Mar	$7 / 2$												12	3										
Apr	7/3												1		34									
May	$7 / 4$													1	23	4								
Jun	8/1														12	34								
July	8/2														1	23								
Aug	8/3															12	4							
Sep	8/4															1	3	4						
Oct	9/1															1	2	234						
Nov	9/2																1	123	4					
Dec	9/3																	12	34					
Jan 07	9/4																	1	23					
Feb	10/1																		12					
Mar	10/2																		1		34			
Apr	10/3																				234			
May	10/4																				123	4		
Jun	11/1																				12	34		
Jul	11/2																				1	1234		
Aug	11/3																					$1 \begin{array}{lll}1 & 2 & 3\end{array}$		
Sep	11/4																						3.4	
Oct	12/1																					1	23	
Nov	12/2																						12	4
Dec	12/3																						12	34
Jan 08	12/4																						1	234

Table 3. Factors to be Used When Using Less Than Full Sample

Number of Available Rotation Months	
Monthly Estimate	Factor
1	4.0000
2	2.0000
3	1.3333
4	1.0000
Quarterly Estimate	
6	1.8519
8	1.4074
9	1.2222
10	1.0494
11	1.0370
12	1.0000

Table 4. SIPP Generalized Variance Parameters for the 2004 Panel, Wave 1 File

Domain	Parameters			
\boldsymbol{a}	\boldsymbol{b}	DEFF	\boldsymbol{f}	
Poverty and Program Participation,				
Persons 15+	-0.00001545	3,497	1.76	0.995
Total	-0.00003203	3,497		
Male	-0.00002986	3,497		
Female				
Income and Labor Force	-0.00001583	3,582	1.80	1.007
Participation, Persons 15+	-0.00003281	3,582		
\quad Total	-0.00003059	3,582		
\quad Male				
Female	-0.00001231	3,533	1.78	1.000
	-0.00002519	3,533		
Other, Persons 0+	-0.00002407	3,533		
Total (or White)	-0.00009050	3,253	1.64	0.960
Male	-0.00019519	3,253		
Female	-0.00016874	3,253		
Black, Persons 0+	-0.00011811	4,736	2.38	1.158
Male	-0.00023067	4,736		
Female	-0.00024207	4,736		
Hispanic, Persons 0+				
Male	-0.00002809	3,153	1.59	1.000
Female	-0.00022908	3,153		
Households	-0.00026942	3,153		
Total (or White)				
Black				
Hispanic				

Notes on Domain Usage for Table 4:

Poverty and Program	Use these parameters for estimates concerning poverty rates, welfare program participation (e.g., foodstamp, SSI, TANF), and other programs for adults with low incomes.
Income and Labor Force	These parameters are for estimates concerning income, sources of income, labor force participation, economic well being other than poverty, employment related estimates (e.g., occupation, hours worked a week), and other income, job, or employment related estimates.
Other Persons	Use the "Other Persons" parameters for estimates of total (or white) persons aged $0+$ in the labor force, and all other characteristics not specified in this table, for the total or white population.
Black/Hispanic Persons	Use these parameters for estimates of Black and Hispanic persons $0+$.
Households	Use these parameters for all household level estimates.

Table 4. (Continued) SIPP Generalized Variance Parameters for the 2004 Panel, Wave 2 to Wave 4 File				
Domain	Parameters		DEFF	f
	a	b		
Poverty and Program Participation, Persons 15+ Total Male Female			2.09	1.084
	-0.00001806	4,155		
	-0.00003736	4,155		
	-0.00003495	4,155		
Income and Labor Force				
Participation, Persons 15+			2.12	1.091
Total	-0.00001829	4,209		
Male	-0.00003784	4,209		
Female	-0.00003540	4,209		
Other Persons 0+				
Total (or White)	-0.00001456	4,234	2.13	1.095
Male	-0.00002975	4,234		
Female	-0.00002850	4,234		
Black Persons 0+	-0.00010749	3,924	1.97	1.054
Male	-0.00023121	3,924		
Female	-0.00020087	3,924		
Hispanic Persons 0+	-0.00014490	6,028	3.03	1.306
Male	-0.00028231	6,028		
Female	-0.00029771	6,028		
Households				
Total (or White)	-0.00003296	3,769	1.89	1.093
Black	-0.00026726	3,769		
Hispanic	-0.00030744	3,769		

Table 4. (Continued) SIPP Generalized Variance Parameters for the 2004 Panel, Wave 5 to Wave 8 File						
Domain	Parameters		DEFF	f		
	a	b				
Poverty and Program Participation,Persons $15+$TotalMaleFemale			2.34	1.148		
	-0.00002001	4,660				
	-0.00004138	4,660				
	-0.00003874	4,660				
Income and Labor Force Participation, Persons 15+						
Total	-0.00001938	4,514	2.27	1.130		
Male	-0.00004008	4,514				
Female	-0.00003752	4,514				
Other, Persons 0+						
Total (or White)	-0.00001599	4,693	2.36	1.153		
Male	-0.00003267	4,693				
Female	-0.00003130	4,693				
Black, Persons 0+	-0.00011694	4,318	2.17	1.106		
Male	-0.00025188	4,318				
Female	-0.00021829	4,318				
Hispanic, Persons 0+	-0.00016261	6,984	3.51	1.406		
Male	-0.00031731	6,984				
Female	-0.00033355	6,984				
Households						
Total (or White)	-0.00003589	4,147	2.08	1.147		
Black	-0.00028996	4,147				
Hispanic	-0.00032503	4,147				

Notes: (1) The a and b parameters are higher than those in Waves $1-8$ because of the 53% sample cut that occurred for Waves $9+$.
(2) The effective Sampling Interval associated with the 53% sample cut for Waves $9+$ is 4282.

Characteristics	Parameters	
	a	b
Employment History, Wave 1		
Both Sexes, Age 18+	-0.00001583	3,582
Male, Age 18+	-0.00003281	3,582
Female, Age 18+	-0.00003059	3,582
Recipiency History, Wave 1		
Both Sexes, Age 18+	-0.00001545	3,497
Male, Age 18+	-0.00003203	3,497
Female, Age 18+	-0.00002986	3,497
Fertility History, Wave 2		
Women	-0.00002695	3,185
Births	-0.00004916	5,807
Education History, Wave 2	-0.00001897	4,338
Marital History, Wave 2		
Some Household Members	-0.00002873	6,564
All Household Members	-0.00002652	7,976
Migration History, Wave 2	-0.00002129	4,856
Assets and Liabilities		
Wave 3	-0.00001956	4,495
Wave 6	-0.00002076	4,831
Child Well-Being (Under 18)		
Wave 3	-0.00005695	4,176
Wave 8	-0.00006638	4,882
Child Care (Age 0 to 15)		
Wave 4	-0.00006287	4,589
Wave 8	-0.00006765	5,020
Child Support, Wave 5	-0.00004819	5,791
Support for Non-Household Members, Wave 5	-0.00002499	5,791
Health and Disability, Wave 5	-0.00002381	7,247
Welfare Reform, Wave 8	-0.00005981	13508

Table 6. Base Standard Errors of Estimated Numbers of Household or Families

Size of Estimate	Standard Error	Size of Estimate	Standard Error
200,000	25,089	$30,000,000$	263,266
300,000	30,714	$40,000,000$	284,914
500,000	39,617	$50,000,000$	295,677
750,000	48,466	$60,000,000$	296,742
$1,000,000$	55,901	$70,000,000$	288,217
$2,000,000$	78,700	$80,000,000$	269,191
$3,000,000$	95,949	$90,000,000$	237,152
$5,000,000$	122,730	$95,000,000$	214,529
$7,500,000$	148,551	$99,500,000$	188,747
$10,000,000$	169,473	$105,000,000$	146,194
$15,000,000$	202,422	$110,000,000$	83,313
$25,000,000$	247,525	$112,246,000$	1052

Note: These estimates are calculations using the Household Total(or White) a and b parameters from Table 4.

Table 7. Base Standard Errors of Estimated Numbers of Persons

Size of Estimate	Standard Error	Size of Estimate	Standard Error
200,000	26,573	$110,000,000$	489,570
300,000	32,539	$120,000,000$	496,685
500,000	37,566	$130,000,000$	501,249
750,000	51,408	$140,000,000$	503,333
$1,000,000$	59,335	$150,000,000$	502,966
$2,000,000$	83,766	$160,000,000$	500,144
$3,000,000$	102,412	$170,000,000$	494,824
$5,000,000$	131,747	$180,000,000$	486,925
$7,500,000$	160,640	$190,000,000$	476,318
$10,000,000$	184,659	$200,000,000$	462,817
$15,000,000$	224,110	$210,000,000$	446,160
$25,000,000$	283,956	$220,000,000$	425,977
$30,000,000$	308,076	$230,000,000$	401,735
$40,000,000$	348,746	$240,000,000$	372,645
$50,000,000$	381,936	$250,000,000$	337,454
$60,000,000$	409,468	$260,000,000$	293,980
$70,000,000$	432,425	$270,000,000$	237,720
$80,000,000$	451,504	$275,000,000$	201,572
$90,000,000$	467,182	$280,000,000$	155,358
$100,000,000$	479,792	$286,997,543$	4158

Notes: (1) These estimates are calculations using the Other Persons $0+a$ and b parameters from Table 4.
(2) To calculate the standard for another domain multiply the standard error from this table by the appropriate f factor from Table 4 .

Table 8. Base Standard Errors for Percentages of Households or Families

Base of Estimated Percentages	Estimated Percentages					
	$\leq \mathbf{1}$ or $\geq \mathbf{9 9}$	$\mathbf{2}$ or 98	$\mathbf{5}$ or 95	$\mathbf{1 0}$ or 90	$\mathbf{2 5}$ or 75	$\mathbf{5 0}$
200,000	1.25%	1.76%	2.74%	3.77%	5.44%	6.28%
300,000	1.02%	1.44%	2.23%	3.08%	4.44%	5.13%
500,000	0.79%	1.11%	1.73%	2.38%	3.44%	3.97%
750,000	0.65%	0.91%	1.41%	1.95%	2.81%	3.24%
$1,000,000$	0.56%	0.79%	1.22%	1.68%	2.43%	2.81%
$2,000,000$	0.40%	0.56%	0.87%	1.19%	1.72%	1.99%
$3,000,000$	0.32%	0.45%	0.71%	0.97%	1.40%	1.62%
$5,000,000$	0.25%	0.35%	0.55%	0.75%	1.09%	1.26%
$7,500,000$	0.20%	0.29%	0.45%	0.62%	0.89%	1.03%
$10,000,000$	0.18%	0.25%	0.39%	0.53%	0.77%	0.89%
$15,000,000$	0.14%	0.20%	0.32%	0.43%	0.63%	0.72%
$25,000,000$	0.11%	0.16%	0.24%	0.34%	0.49%	0.56%
$30,000,000$	0.10%	0.14%	0.22%	0.31%	0.44%	0.51%
$40,000,000$	0.09%	0.12%	0.19%	0.27%	0.38%	0.44%
$50,000,000$	0.08%	0.11%	0.17%	0.24%	0.34%	0.40%
$60,000,000$	0.07%	0.10%	0.16%	0.22%	0.31%	0.36%
$70,000,000$	0.07%	0.09%	0.15%	0.20%	0.29%	0.34%
$80,000,000$	0.06%	0.09%	0.14%	0.19%	0.27%	0.31%
$90,000,000$	0.06%	0.08%	0.13%	0.18%	0.26%	0.30%
$105,000,000$	0.05%	0.08%	0.12%	0.16%	0.24%	0.27%
$110,000,000$	0.05%	0.07%	0.12%	0.16%	0.23%	0.27%
$112,236,860$	0.05%	0.07%	0.12%	0.16%	0.23%	0.27%

Note: These estimates are calculations using the Households Total (or White) b parameter from Table 4.

Table 9. Base Standard Errors for Percentages of Persons

Base of Estimated Percentages	Estimated Percentages					
	$\leq \mathbf{1}$ or $\geq \mathbf{9 9}$	$\mathbf{2}$ or 98	$\mathbf{5}$ or 95	$\mathbf{1 0}$ or 90	$\mathbf{2 5} \mathbf{\text { or 75 }}$	$\mathbf{5 0}$
200,000	1.32%	1.86%	2.90%	3.99%	5.76%	6.65%
300,000	1.08%	1.52%	2.37%	3.26%	4.70%	5.43%
500,000	0.84%	1.18%	1.83%	2.52%	3.64%	4.20%
750,000	0.68%	0.96%	1.50%	2.06%	2.97%	3.43%
$1,000,000$	0.59%	0.83%	1.30%	1.78%	2.57%	2.97%
$2,000,000$	0.42%	0.59%	0.92%	1.26%	1.82%	2.10%
$3,000,000$	0.34%	0.48%	0.75%	1.03%	1.49%	1.72%
$5,000,000$	0.26%	0.37%	0.58%	0.80%	1.15%	1.33%
$7,500,000$	0.22%	0.30%	0.47%	0.65%	0.94%	1.09%
$10,000,000$	0.19%	0.26%	0.41%	0.56%	0.81%	0.94%
$15,000,000$	0.15%	0.21%	0.33%	0.46%	0.66%	0.77%
$25,000,000$	0.12%	0.17%	0.26%	0.36%	0.51%	0.59%
$30,000,000$	0.11%	0.15%	0.24%	0.33%	0.47%	0.54%
$40,000,000$	0.09%	0.13%	0.20%	0.28%	0.41%	0.47%
$50,000,000$	0.08%	0.12%	0.18%	0.25%	0.36%	0.42%
$60,000,000$	0.08%	0.11%	0.17%	0.23%	0.33%	0.38%
$70,000,000$	0.07%	0.10%	0.15%	0.21%	0.31%	0.36%
$100,000,000$	0.06%	0.08%	0.13%	0.18%	0.26%	0.30%
$110,000,000$	0.06%	0.08%	0.12%	0.17%	0.25%	0.28%
$120,000,000$	0.05%	0.08%	0.12%	0.16%	0.23%	0.27%
$130,000,000$	0.05%	0.07%	0.11%	0.16%	0.23%	0.26%
$140,000,000$	0.05%	0.07%	0.11%	0.15%	0.22%	0.25%
150000,000	0.05%	0.07%	0.10%	0.15%	0.21%	0.24%
$160,000,000$	0.05%	0.07%	0.10%	0.14%	0.20%	0.23%
$170,000,000$	0.05%	0.06%	0.10%	0.14%	0.20%	0.23%
180000,000	0.04%	0.06%	0.10%	0.13%	0.19%	0.22%
$190,000,000$	0.04%	0.06%	0.09%	0.13%	0.19%	0.22%
$200,000,000$	0.04%	0.06%	0.09%	0.13%	0.18%	0.21%
$210,000,000$	0.04%	0.06%	0.09%	0.12%	0.18%	0.21%
$220,000,000$	0.04%	0.06%	0.09%	0.12%	0.17%	0.20%
$230,000,000$	0.04%	0.05%	0.09%	0.12%	0.17%	0.20%
240000,000	0.04%	0.05%	0.08%	0.12%	0.17%	0.19%
$250,000,000$	0.04%	0.05%	0.08%	0.11%	0.16%	0.19%
$280,000,000$	0.04%	0.05%	0.08%	0.11%	0.15%	0.18%
$286,997,543$	0.03%	0.05%	0.08%	0.11%	0.15%	0.18%

Notes: (1) These estimates are calculations using the Other Persons $0+a$ and b parameter from Table 4.
(2) To calculate the standard for another domain multiply the standard error from this table by the appropriate f factor from Table 4.

Table 10. Distribution of Monthly Cash Income Among People 25 to 34 Years Old (Not Actual Data, Only Use for Calculation Illustrations)													
	Interval of Monthly Cash Income												
	Under \$300	$\begin{gathered} \$ 300 \\ \text { to } \\ \$ 599 \end{gathered}$	$\begin{gathered} \$ 600 \\ \text { to } \\ \$ 899 \end{gathered}$	$\begin{gathered} \$ 900 \\ \text { to } \\ \$ 1,199 \end{gathered}$	$\begin{aligned} & \$ 1,200 \\ & \text { to } \\ & \$ 1,499 \end{aligned}$	$\begin{gathered} \$ 1,500 \\ \text { to } \\ \$ 1,999 \end{gathered}$	$\begin{aligned} & \$ 2,000 \\ & \text { to } \\ & \$ 2,499 \end{aligned}$	$\begin{gathered} \$ 2,500 \\ \text { to } \\ \$ 2,999 \end{gathered}$	$\begin{gathered} \$ 3,000 \\ \text { to } \\ \$ 3,499 \end{gathered}$	$\begin{gathered} \$ 3,500 \\ \text { to } \\ \$ 3,999 \end{gathered}$	$\begin{aligned} & \$ 4,000 \\ & \text { to } \\ & \$ 4,999 \end{aligned}$	$\begin{gathered} \$ 5,000 \\ \text { to } \\ \$ 5,999 \end{gathered}$	$\begin{gathered} \$ 6,000 \\ \text { and } \\ \text { Over } \end{gathered}$
Number of People in Each Interval (in thousands)	1,371	1,651	2,259	2,734	3,452	6,278	5,799	4,730	3,723	2,519	2,619	1,223	1,493
Cumulative Number of People with at Least as Much as Lower Bound of Each Interval (in thousands)	$\begin{gathered} 39,851 \\ \text { (Total } \\ \text { People) } \end{gathered}$	38,480	36,829	34,570	31,836	28,384	22,106	16,307	11,577	7,854	5,335	2,716	1,493
Percent of People with at Least as Much as Lower Bound of Each Interval	100	96.6	92.4	86.7	79.9	71.2	55.5	40.9	29.1	19.7	13.4	6.8	3.7

WAVE 1 TOPICAL MODULE FREQUENCIES

SINTHHID	Frequency	Percent	Cumulative Frequency	Cumulative Percent
11	110659	100.00	110659	100.00
EARCUNV	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	29765	26.90	29765	26.90
1	80894	73.10	110659	100.00

| | | | Cumulative
 ECURAFDC | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Frequency | Percent |
| :---: | :---: | :---: |

ACURAFDC	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110594	99.94	110594	99.94
1	65	0.06	110659	100.00

EEVRGARD	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	64414	58.21	64414	58.21
1	18448	16.67	82862	74.88
2	27797	25.12	110659	100.00

AVERGARD	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109002	98.50	109002	98.50
1	1657	1.50	110659	100.00

EAPLAFDC	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	58309	52.69	58309	52.69
1	4463	4.03	62772	56.73
2	47887	43.27	110659	100.00

AAPLAFDC	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109196	98.68	109196	98.68
1	1463	1.32	110659	100.00
ERCVAFDC	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106196	95.97	106196	95.97
1	3392	3.07	109588	99.03
2	1071	0.97	110659	100.00
ARCVAFDC	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110492	99.85	110492	99.85
1	167	0.15	110659	100.00

| | | | Cumulative
 AAFDCSTY | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Frequency | Percent |
| :---: | :---: | :---: |

AAFDCLY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110125	99.52	110125	99.52
1	308	0.28	110433	99.80
2	9	0.01	110442	99.80
3	217	0.20	110659	100.00

TAFDCTIM	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106982	96.68	106982	96.68
1	2971	2.68	109953	99.36
2	508	0.46	110461	99.82
3	198	0.18	110659	100.00

AAFDCTIM	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110079	99.48	110079	99.48
1	580	0.52	110659	100.00

| | | | Cumulative
 ECURSSI | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Frequency | Percent |
| :---: | :---: | :---: |

			Cumulative	Cumulative
ACURSSI	Frequency	Percent	Frequency	Percent

EAPLSSI	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	32110	29.02	32110	29.02
1	2054	1.86	34164	30.87
2	76495	69.13	110659	100.00

AAPLSSI	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	108365	97.93	108365	97.93
1	2294	2.07	110659	100.00

ERECVSSI	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	108605	98.14	108605	98.14
1	955	0.86	109560	99.01
2	1099	0.99	110659	100.00

ARECVSSI	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110581	99.93	110581	99.93
1	78	0.07	110659	100.00

ASSISTRY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110400	99.77	110400	99.77
1	118	0.11	110518	99.87
2	22	0.02	110540	99.89
3	119	0.11	110659	100.00

ASSILY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110372	99.74	110372	99.74
1	166	0.15	110538	99.89
2	6	0.01	110544	99.90
3	115	0.10	110659	100.00

ECURFS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106874	96.58	106874	96.58
1	1572	1.42	108446	98.00
2	2213	2.00	110659	100.00

| | | | Cumulative
 ACURFS | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Frequency | Percent |
| :---: | :---: | :---: |

EAPLFS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	33550	30.32	33550	30.32
1	7217	6.52	40767	36.84
2	69892	63.16	110659	100.00

AAPLFS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	107623	97.26	107623	97.26
1	3036	2.74	110659	100.00

ERECVFS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	103442	93.48	103442	93.48
1	6070	5.49	109512	98.96
2	1147	1.04	110659	100.00

ARECVFS	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110304	99.68	110304	99.68
1	355	0.32	110659	100.00

| | | | Cumulative
 AFSSTRYR | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Frequency | Percent |
| :---: | :---: | :---: |

AFSLY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109668	99.10	109668	99.10
1	692	0.63	110360	99.73
2	49	0.04	110409	99.77
3	250	0.23	110659	100.00

TFSTIMES	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	103017	93.09	103017	93.09
1	5447	4.92	108464	98.02
2	1759	1.59	110223	99.61
3	436	0.39	110659	100.00

| | | | Cumulative
 AFSTIMES | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Frequency | Percent |
| :---: | :---: | :---: |

EAEMUNV	Frequency	Percent	Cumulative Frequency	Cumulative Percent
---1	35518	32.10	35518	32.10
--1	75141	67.90	110659	100.00

EWK1BFOR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	104188	94.15	104188	94.15
1	3861	3.49	108049	97.64
2	2610	2.36	110659	100.00

AWK1BFOR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109924	99.34	109924	99.34
1	735	0.66	110659	100.00

AWK1LSJB	Frequency	Percent	Cumulative Frequency	Cumulative Percent
\bigcirc	110232	99.61	110232	99.61
1	425	0.38	110657	100.00
2	2	0.00	110659	100.00

ALSTWRKY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
\bigcirc	108780	98.30	108780	98.30
1	1494	1.35	110274	99.65
2	385	0.35	110659	100.00

| | | | Cumulative
 APRVJBYR | Frequency |
| :---: | :---: | :---: | :---: | :---: |\quad| Cumulative |
| :---: |

AFRMRYR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
\bigcirc	108181	97.76	108181	97.76
1	2366	2.14	110547	99.90
2	112	0.10	110659	100.00

AMAKMNYR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	103506	93.54	103506	93.54
1	7148	6.46	110654	100.00
3	5	0.00	110659	100.00

EN06ALL1	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106006	95.80	106006	95.80
\bigcirc	3766	3.40	109772	99.20
1	887	0.80	110659	100.00

EN06ALL2	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106006	95.80	106006	95.80
0	4586	4.14	110592	99.94
1	67	0.06	110659	100.00

EN06ALL3	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106006	95.80	106006	95.80
\bigcirc	4576	4.14	110582	99.93
1	77	0.07	110659	100.00

EN06ALL4	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106006	95.80	106006	95.80
0	3816	3.45	109822	99.24
1	837	0.76	110659	100.00

| | | | Cumulative
 EN06ALL5 | Frequency |
| :---: | :---: | :---: | :---: | :---: |\quad| Cumulative |
| :---: |

EN06ALL6	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106006	95.80	106006	95.80
0	4331	3.91	110337	99.71
1	322	0.29	110659	100.00

EN06ALL7	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106006	95.80	106006	95.80
0	4254	3.84	110260	99.64
1	399	0.36	110659	100.00

EN06ALL8	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106006	95.80	106006	95.80
\bigcirc	2741	2.48	108747	98.27
1	1912	1.73	110659	100.00

			Cumulative	Cumulative
EN06ALL9	Frequency	Percent	Frequency	Percent

AN06ALL	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110234	99.62	110234	99.62
1	425	0.38	110659	100.00
EMNRESON	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	106007	95.80	106007	95.80
1	719	0.65	106726	96.45
2	25	0.02	106751	96.47
3	52	0.05	106803	96.52
4	651	0.59	107454	97.10
5	589	0.53	108043	97.64
6	251	0.23	108294	97.86
7	281	0.25	108575	98.12
8	1801	1.63	110376	99.74
9	283	0.26	110659	100.00

AMNRESON	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110228	99.61	110228	99.61
1	425	0.38	110653	99.99
3	6	0.01	110659	100.00

EANYOFF	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	45151	40.80	45151	40.80
1	23118	20.89	68269	61.69
2	42390	38.31	110659	100.00

AANYOFF	Frequency	Percent	Cumulative Frequency	Cumulative Percent
\bigcirc	105086	94.96	105086	94.96
1	5573	5.04	110659	100.00

			Cumulative	Cumulative
EHOWMANY	Frequency	Percent	Frequency	Percent

7				
8	116	0.10	110082	99.48
9	97	0.09	110179	99.57
10	41	0.04	110220	99.60
11	17	0.16	110396	99.76
12	15	0.01	110411	99.78
13	5	0.05	110465	99.82
14	13	0.01	110478	99.84
15	11	0.01	110489	99.85
16	30	0.03	110519	99.87
17	12	0.01	110531	99.88
18	8	0.01	110539	99.89
19	9	0.01	110548	99.90
20	8	0.01	110556	99.91
21	35	0.03	110591	99.94
22	2	0.00	110593	99.94
23	6	0.01	110599	99.95
24	1	0.00	110600	99.95
25	5	0.00	110605	99.95
26	5	0.00	110610	99.96
27	2	0.00	110612	99.96
28	3	0.00	110615	99.96
29	3	0.00	110618	99.96
30	2	0.00	110620	99.96
31	10	0.01	110630	99.97
35	2	0.00	110632	99.98
38	1	0.00	110633	99.98
39	3	0.00	110636	99.98
40	1	0.00	110637	99.98
42	4	0.00	110641	99.98
43	1	0.00	110642	99.98
46	1	0.00	110643	99.99
48	1	0.00	110644	99.99
50	1	0.00	110645	99.99
53	2	0.00	110647	99.99
54	1	0.00	110648	99.99
58	1	0.00	110649	99.99
82	1	0.00	110650	99.99
99	1	0.00	110651	99.99
	8	0.01	110659	100.00

AHOWMANY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	107584	97.22	107584	97.22
1	2977	2.69	110561	99.91
2	8	0.01	110569	99.92
3	90	0.08	110659	100.00
ATIMEOFF	Frequency	Percent	Cumulative Frequency	Cumulative Percent
\bigcirc	107361	97.02	107361	97.02
1	3080	2.78	110441	99.80
2	218	0.20	110659	100.00

EWRK35HR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	44306	40.04	44306	40.04
1	52854	47.76	97160	87.80
2	13499	12.20	110659	100.00

			Cumulative	Cumulative
AWRK35HR	Frequency	Percent	Frequency	Percent

E0FF6MTN	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	82869	74.89	82869	74.89
1	10004	9.04	92873	83.93
2	17786	16.07	110659	100.00

A0FF6MTN	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	107489	97.14	107489	97.14
1	3155	2.85	110644	99.99
2	14	0.01	110658	100.00
3	1	0.00	110659	100.00

EOTHTIME	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	100655	90.96	100655	90.96
1	967	0.87	101622	91.83
2	9037	8.17	110659	100.00

AOTHTIME	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109387	98.85	109387	98.85
1	1077	0.97	110464	99.82
3	195	0.18	110659	100.00

ECNTOTHR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	109692	99.13	109692	99.13
0	23	0.02	109715	99.15
1	615	0.56	110330	99.70
2	208	0.19	110538	99.89
3	77	0.07	110615	99.96
4	28	0.03	110643	99.99
5	7	0.01	110650	99.99
6	4	0.00	110654	100.00
7	1	0.00	110655	100.00
9	1	0.00	110656	100.00
15	2	0.00	110658	100.00
99	1	0.00	110659	100.00

ACNTOTHR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110384	99.75	110384	99.75
1	171	0.15	110555	99.91
3	104	0.09	110659	100.00

ANOWRKFR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109205	98.69	109205	98.69
1	1383	1.25	110588	99.94
2	45	0.04	110633	99.98
3	26	0.02	110659	100.00

ANOWRKTO	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-0	109284	98.76	109284	98.76
1	1367	1.24	110651	99.99
2	3	0.00	110654	100.00
3	5	0.00	110659	100.00

AFSTYRFR	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110428	99.79	110428	99.79
1	173	0.16	110601	99.95
2	5	0.00	110606	99.95
3	53	0.05	110659	100.00

| | | | Cumulative
 AFSTYRTO | Frequency |
| :---: | :---: | :---: | :---: | :---: | Percent | Frequency | Percent |
| :---: | :---: | :---: |

ENWALL1	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	100655	90.96	100655	90.96
0	834	0.75	101489	91.71
1	9170	8.29	110659	100.00

ENWALL2	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	100655	90.96	100655	90.96
0	9204	8.32	109859	99.28
1	800	0.72	110659	100.00

ENWALL3	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	100655	90.96	100655	90.96
0	9622	8.70	110277	99.65
1	382	0.35	110659	100.00

ANWALL	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109568	99.01	109568	99.01
1	1091	0.99	110659	100.00

ENWRESN	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	100655	90.96	100655	90.96
1	9170	8.29	109825	99.25
2	599	0.54	110424	99.79
3	235	0.21	110659	100.00

ANWRESN	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	109568	99.01	109568	99.01
1	1091	0.99	110659	100.00

EFSTALL1	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	109692	99.13	109692	99.13
\bigcirc	78	0.07	109770	99.20
1	889	0.80	110659	100.00

EFSTALL2	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	109692	99.13	109692	99.13
0	911	0.82	110603	99.95
1	56	0.05	110659	100.00

EFSTALL3	Frequency	Percent	Cumulative Frequency	Cumulative Percent
-1	109692	99.13	109692	99.13
0	930	0.84	110622	99.97
1	37	0.03	110659	100.00

AFSTALL	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110499	99.86	110499	99.86
1	160	0.14	110659	100.00

EFRSTRSN	Frequency	Percent	Cumulative Frequency	Cumulative Percent
$-0-1$	109692	99.13	109692	99.13
1	889	0.80	110581	99.93
2	52	0.05	110633	99.98
3	26	0.02	110659	100.00

AFRSTRSN	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	110499	99.86	110499	99.86
1	160	0.14	110659	100.00

WAVE 1 TOPICAL MODULE UNIVARIATES

The UNIVARIATE Procedure Variable: TMTHRNT

Moments
N
Mean
Std Deviation
Skewness
Uncorrected SS
Coeff Variation

366682	Sum Weights	366682
11.383354	Sum Observations	4174071
69.9172997	Variance	4888.4288
7.65667106	Kurtosis	65.1107787
1840008889	Corrected SS	1792493961
614.206498	Std Error Mean	0.11546221

Basic Statistical Measures
Location Variability

Mean	11.38335	Std Deviation	69.91730
Median	0.00000	Variance	4888
Mode	0.00000	Range	775.00000
		Interquartile Range	0

Tests for Location: Mu0=0					
Test	--Statistic--				
Student's t	t	98.58944	$\mathrm{Pr}>$		<. 0001
Sign	M	7293	Pr >=		<. 0001
Signed Rank	S	53191496	$\operatorname{Pr}>=$	\|S	<. 0001

Quantiles (Definition 5)
Quantile Estimate
100\% Max 775
99\% 400
95\% 0
90\% 0
75\% Q3 0
50\% Median 0
25\% Q1 0
10\% 0
5\% 0
1\% 0
0\% Min 0

Extreme Observations

-----Lowest----	--- - Highest---		
Value	Obs	Value	Obs
0	366682	775	365161
0	366681	775	365166
0	366680	775	365167
0	366679	775	365168
0	366678	775	365169

The UNIVARIATE Procedure Variable: TAFDCSTY

Moments

N	110659	Sum Weights	110659
Mean	65.0578624	Sum Observations	7199238
Std Deviation	356.320866	Variance	126964.559
Skewness	5.20888856	Kurtosis	25.1338644
Uncorrected SS	$1.4518 E 10$	Corrected SS	$1.40496 E 10$
Coeff Variation	547.698391	Std Error Mean	1.07114406

Basic Statistical Measures					
Location		Variability			
Mean	65.05786	Std Deviation	356.32087		
Median	-1.00000	Variance	126965		
Mode	-1.00000	Range	2005		
		Interquartile Range	0		

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2004
99\% 1994
95\% -1
90\% -1
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

-- --Lowest----	--- Highest--		
Value	Obs	Value	Obs
-1	110659	2004	45446
-1	110658	2004	62157
-1	110657	2004	63255
-1	110656	2004	69139
-1	110655	2004	78827

```
The UNIVARIATE Procedure
Variable: TAFDCLY
```

Moments

N	110659	Sum Weights	110659
Mean	65.2370074	Sum Observations	7219062
Std Deviation	357.284875	Variance	127652.482
Skewness	5.20878054	Kurtosis	25.1323392
Uncorrected SS	$1.45967 E 10$	Corrected SS	1.41258 E 10
Coeff Variation	547.67208	Std Error Mean	1.07404199

Basic Statistical Measures						
Location		Variability				
Mean	65.23701	Std Deviation	357.28488			
Median	-1.00000	Variance	127652			
Mode	-1.00000	Range	2005			
		Interquartile Range	0			

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2004
99\% 1998
95\% -1
90\% -1
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

-- --Lowest----	--- Highest--		
Value	Obs	Value	Obs
-1	110659	2004	106243
-1	110658	2004	106727
-1	110657	2004	106915
-1	110656	2004	107438
-1	110655	2004	109987

The UNIVARIATE Procedure
Variable: TSSISTRY

Moments

N	110659	Sum Weights	110659
Mean	23.4016573	Sum Observations	2589604
Std Deviation	219.166328	Variance	48033.8794
Skewness	8.87053101	Kurtosis	76.6892828
Uncorrected SS	5375934056	Corrected SS	5315333031
Coeff Variation	936.541908	Std Error Mean	0.65884076

Basic Statistical Measures			
Location		Variability	
Mean	23.40166	Std Deviation	219.16633
Median	-1.00000	Variance	48034
Mode	-1.00000	Range	2005
		Interquartile Range	0

Tests for Location: Mu0=0					
Test	-Statistic-		-----p Value-----		
Student's t	t	35.51944	Pr >	t\|	<. 0001
Sign	M	-53974.5	$\operatorname{Pr}>=$		<. 0001
Signed Rank	S	-2.912E9	$\operatorname{Pr}>=$	\|S	<. 0001

Quantiles(Definition 5$)$ Quantile 100% Max $99 \%$$\quad 2004$	
95%	1984
90%	-1
75% Q3	-1
50% Median	-1
25% Q1	-1
10%	-1
5%	-1
1%	-1
0% Min	-1
	-1

Extreme Observations

--- Lowest----		-- -Highest---	
Value	Obs	Value	Obs
-1	110659	2004	88337
-1	110658	2004	94621
-1	110656	2004	101398
-1	110655	2004	102474
-1	110654	2004	109476

Tests for Location: Mu0=0				
Test	-Statistic-			
Student's t	t	35.52447	$\operatorname{Pr}>\|t\|$	<. 0001
Sign	M	-53974.5	$\operatorname{Pr}>=\|M\|$	<. 0001
Signed Rank	S	-2.912E9	$\operatorname{Pr}>=\|S\|$	<. 0001

Quantiles (Definition 5)

Quantile	Estimate
100% Max	2004
99%	1992
95%	-1
90%	-1
75% Q3	-1
50% Median	-1
25% Q1	-1
10%	-1
5%	-1
1%	-1
0% Min	-1

Extreme Observations

-- --Lowest----	--- Highest---		
Value	Obs	Value	Obs
-1	110659	2004	109722
-1	110658	2004	110215
-1	110656	2004	110216
-1	110655	2004	110306
-1	110654	2004	110621

The UNIVARIATE Procedure Variable: TFSSTRYR

Moments

N	110659	Sum Weights	110659
Mean	136.412971	Sum Observations	15095323
Std Deviation	504.529629	Variance	254550.146
Skewness	3.39940965	Kurtosis	9.55659049
Uncorrected SS	3.02272 E 10	Corrected SS	2.8168 E 10
Coeff Variation	369.854585	Std Error Mean	1.51667771

Basic Statistical Measures					
Location		Variability			
			504.52963		
Mean	136.4130	Std Deviation	254550		
Median	-1.0000	Variance	2005		
Mode	-1.0000	Range	0		

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2004
99\% 2001
95\% 1982
90\% -1
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

----Lowest----	--- Highest--		
Value	Obs	Value	Obs
-1	110659	2004	93886
-1	110658	2004	99656
-1	110657	2004	101639
-1	110656	2004	101847
-1	110655	2004	108853

| | The UNIVARIATE Procedure
 Variable:
 TFSLY | |
| :--- | ---: | :--- | ---: |
| | Moments | |

Basic Statistical		Measures			
Location		Variability			
			505.89403		
Mean	136.7854	Std Deviation	255929		
Median	-1.0000	Variance	2005		
Mode	-1.0000	Range	0		

Quantiles (Definition 5)

Quantile	Estimate
100% Max	2004
99%	2003
95%	1987
90%	-1
75% Q3	-1
50% Median	-1
25% Q1	-1
10%	-1
5%	-1
1%	-1
0% Min	-1

Extreme Observations

----Lowest----	--- Highest--		
Value	Obs	Value	Obs
-1	110659	2004	109661
-1	110658	2004	109886
-1	110657	2004	110148
-1	110656	2004	110562
-1	110655	2004	110563

The UNIVARIATE Procedure
Variable: TWK1LSJB Variable: TWK1LSJB

Moments

N	110659	Sum Weights	110659
Mean	37.0225287	Sum Observations	4096876
Std Deviation	273.279915	Variance	74681.9118
Skewness	7.0491605	Kurtosis	47.6916294
Uncorrected SS	8415827700	Corrected SS	8264150991
Coeff Variation	738.14492	Std Error Mean	0.82151282

Basic Statistical Measures					
Location		Variability			
Mean	37.02253	Std Deviation	273.27991		
Median	-1.00000	Variance	74682		
Mode	-1.00000	Range	2004		
		Interquartile Range	0		

Tests for Location: Mu0=0				
Test	-Statistic-			
Student's t	t	45.06628	$\operatorname{Pr}>\|t\|$	<. 0001
Sign	M	-52974	$\operatorname{Pr}>=\|M\|$	<. 0001
Signed Rank	S	-2.804E9	$\operatorname{Pr}>=\|S\|$	<. 0001

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2003
99\% 2002
95\% -1
90\% -1
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

----Lowest----	--- Highest--		
Value	Obs	Value	Obs
-1	110659	2003	109997
-1	110657	2003	110136
-1	110656	2003	110455
-1	110655	2003	110572
-1	110654	2003	110658

The UNIVARIATE Procedure
Variable: TLSTWRKY

Moments

N	110659	Sum Weights	110659
Mean	332.555743	Sum Observations	36800286
Std Deviation	744.828943	Variance	554770.154
Skewness	1.78549028	Kurtosis	1.18814722
Uncorrected SS	$7.36279 E 10$	Corrected SS	$6.13898 E 10$
Coeff Variation	223.971156	Std Error Mean	2.23904681

Basic				
Statistical Measures				
Location		Variability		
Mean	332.5557	Std Deviation	744.82894	
Median	-1.0000	Variance	554770	
Mode	-1.0000	Range	2004	
		Interquartile Range	0	

Tests for Location: Mu0=0				
Test	-Statistic-	$----p$ Value-----		
Student's t	t	148.5256	$\mathrm{Pr}>\|\mathrm{t}\|$	$<.0001$
Sign	M	-35390.5	$\mathrm{Pr}>=\|\mathrm{M}\|$	$<.0001$
Signed Rank	S	-1.082 E 9	$\mathrm{Pr}>=\|\mathrm{S}\|$	$<.0001$

Quantiles (Definition 5)

Quantile	Estimate
100% Max	2003
99%	2003
95%	2002
90%	1997
75% Q3	-1
50% Median	-1
25% Q1	-1
10%	-1
5%	-1
1%	-1
0% Min	-1

Extreme Observations

--- Lowest----		--- Highest--	
Value	Obs	Value	Obs
-1	110659	2003	110491
-1	110658	2003	110538
-1	110657	2003	110562
-1	110656	2003	110579
-1	110653	2003	110588

The UNIVARIATE Procedure
Variable: TPRVJBYR

Moments

N	110659	Sum Weights	110659
Mean	54.0654262	Sum Observations	5982826
Std Deviation	327.507962	Variance	107261.465
Skewness	5.77982373	Kurtosis	31.4069792
Uncorrected SS	$1.21928 E 10$	Corrected SS	$1.18693 E 10$
Coeff Variation	605.762287	Std Error Mean	0.98452895

Basic Statistical			Measures
Location		Variability	
Mean	54.06543	Std Deviation	327.50796
Median	-1.00000	Variance	107261
Mode	-1.00000	Range	2004
		Interquartile Range	0

Quantiles (Definition 5)

Quantile	Estimate
100% Max	2003
99%	2003
95%	-1
90%	-1
75% Q3	-1
50% Median	-1
25% Q1	-1
10%	-1
5%	-1
1%	-1
0% Min	-1

Extreme Observations

----Lowest----	--- Highest---		
Value	Obs	Value	Obs
-1	110659	2003	110453
-1	110658	2003	110460
-1	110657	2003	110462
-1	110656	2003	110505
-1	110655	2003	110632

The UNIVARIATE Procedure Variable: TFRMRYR
 Moments

N	110659	Sum Weights	110659
Mean	332.139076	Sum Observations	36754178
Std Deviation	744.406497	Variance	554141.033
Skewness	1.78708357	Kurtosis	1.19388307
Uncorrected SS	$7.35276 E 10$	Corrected SS	$6.13201 E 10$
Coeff Variation	224.124938	Std Error Mean	2.23777689

Basic Statistical Measures					
Location		Variability			
Mean	332.1391	Std Deviation	744.40650		
Median	-1.0000	Variance	554141		
Mode	-1.0000	Range	2005		
		Interquartile Range	0		

Test	-Statistic-		-----p Value-----	
Student's t	t	148.4237	$\operatorname{Pr}>\|t\|$	<. 0001
Sign	M	-36864.5	$\operatorname{Pr}>=\|M\|$	<. 0001
Signed Rank	S	-1.189E9	$\operatorname{Pr}>=\|S\|$	<. 0001

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2004
99\% 2003
95\% 2002
90\% 1998
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

----Lowest----	--- Highest---		
Value	Obs	Value	Obs
-1	110659	2004	20143
-1	110658	2004	55747
-1	110657	2004	71704
-1	110656	2004	84954
-1	110655	2004	98711

The UNIVARIATE Procedure Variable: TMAKMNYR

Moments

N	110659	Sum Weights	110659
Mean	1186.94843	Sum Observations	131346526
Std Deviation	970.763401	Variance	942381.581
Skewness	-0.4062735	Kurtosis	-1.8344977
Uncorrected SS	$2.60184 E 11$	Corrected SS	1.04282 E 11
Coeff Variation	81.7864853	Std Error Mean	2.9182334

Basic Statistical Measures				
Location		Variability		
Mean	1186.948	Std Deviation	970.76340	
Median	1966.000	Variance	942382	
Mode	-1.000	Range	2005	
		Interquartile Range	1985	

Tests for Location: Mu0=0				
Test	-Statistic-		-----p Value-----	
Student's t	t	406.7353	$\operatorname{Pr}>\|\mathrm{t}\|$	<. 0001
Sign	M	11756	$\operatorname{Pr}>=\|M\|$	<. 0001
Signed Rank	S	2.0632E9	$\operatorname{Pr}>=\|S\|$	<. 0001

Quantiles (Definition 5)

Quantile	Estimate
100\% Max	2004
99%	2002
95%	1999
90%	1995
75% Q3	1984
50% Median	1966
25% Q1	-1
10%	-1
5%	-1
1%	-1
0% Min	-1

Extreme Observations

----Lowest----	--- Highest--		
Value	Obs	Value	Obs
-1	110655	2004	84596
-1	110653	2004	90053
-1	110652	2004	101060
-1	110651	2004	104279
-1	110648	2004	110331

The UNIVARIATE Procedure Variable: ETIMEOFF

Moments

N	110659	Sum Weights	110659
Mean	9.80635104	Sum Observations	1085161
Std Deviation	36.1250085	Variance	1305.01624
Skewness	5.68437601	Kurtosis	42.8534686
Uncorrected SS	155051957	Corrected SS	144410487
Coeff Variation	368.383799	Std Error Mean	0.10859619

Basic Statistical Measures			
Location		Variability	
Mean	9.80635	Std Deviation	36.12501
Median	-1.00000	Variance	1305
Mode	-1.00000	Range	670.00000
		Interquartile Range	\bigcirc

Test	-Statistic-		-----p Value-----	
Student's t	t	90.30106	$\operatorname{Pr}>\|t\|$	<. 0001
Sign	M	-32219.5	$\operatorname{Pr}>=\|M\|$	<. 0001
Signed Rank	S	-7.725E8	$\operatorname{Pr}>=\|S\|$	<. 0001

Quantiles (Definition 5)
Quantile Estimate
100\% Max 669

99\% 192
95\% 60
90\% 24
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1
0\% Min -1

Extreme Observations

--- Lowest----		-- -Highest--	
Value	Obs	Value	Obs
-1	110659	578	13931
-1	110658	588	21354
-1	110657	588	28431
-1	110656	600	11776
-1	110655	669	272

The UNIVARIATE Procedure Variable: TNOWRKFR

Moments

N	110659	Sum Weights	110659
Mean	177.850279	Sum Observations	19680734
Std Deviation	569.137252	Variance	323917.212
Skewness	2.86808505	Kurtosis	6.2264101
Uncorrected SS	$3.93443 E 10$	Corrected SS	3.5844510
Coeff Variation	320.009199	Std Error Mean	1.71089612

Basic Statistical Measures			
Location		Variability	
Mean			
Median	177.8503	Std Deviation	569.13725
Mode	-1.0000	Variance	323917
	-1.0000	Range	2004
		Interquartile Range	0

Test	-Statistic-			
Student's t	t	103.9515	$\operatorname{Pr}>\|t\|$	<. 0001
Sign	M	-45383.5	$\operatorname{Pr}>=\mid \mathrm{M\mid}$	<. 0001
Signed Rank	S	-2.01E9	$\operatorname{Pr}>=\|S\|$	<. 0001

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2003
99\% 2001
95\% 1989
90\% -1
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

----Lowest----	--- Highest--		
Value	Obs	Value	Obs
-1	110659	2003	105920
-1	110658	2003	106920
-1	110657	2003	109211
-1	110656	2003	109295
-1	110655	2003	110158

The UNIVARIATE Procedure Variable: TNOWRKTO

Moments

N	110659	Sum Weights	110659
Mean	178.370164	Sum Observations	19738264
Std Deviation	570.789205	Variance	325800.317
Skewness	2.86804052	Kurtosis	6.22605103
Uncorrected SS	$3.95731 E 10$	Corrected SS	$3.60524 E 10$
Coeff Variation	320.002624	Std Error Mean	1.7158621

Basic			Statistical Measures
Location		Variability	
Mean	178.3702	Std Deviation	570.78921
Median	-1.0000	Variance	325800
Mode	-1.0000	Range	2005
		Interquartile Range	0

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2004
99\% 2004
95\% 1996
90\% -1
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

-- - Lowest----		-- -Highest---	
Value	Obs	Value	Obs
-1	110659	2004	110319
-1	110658	2004	110385
-1	110657	2004	110513
-1	110656	2004	110529
-1	110655	2004	110570

The UNIVARIATE Procedure Variable: TFSTYRFR

Moments

N	110659	Sum Weights	110659
Mean	16.302045	Sum Observations	1803968
Std Deviation	184.569342	Variance	34065.8419
Skewness	10.5740997	Kurtosis	109.816372
Uncorrected SS	3799066300	Corrected SS	3769657932
Coeff Variation	1132.1852	Std Error Mean	0.55483799

Basic Statistical Measures					
Location		Variability			
			184.56934		
Mean	16.30205	Std Deviation	34066		
Median	-1.00000	Variance	2004		
Mode	-1.00000	Range	0		

Tests for Location: Mu0=0						
Test	-Statistic-		-----p Value-----			
Student's t	t	29.38163	$\operatorname{Pr}>$	t	<. 0001	
Sign	M	-54365.5	$\operatorname{Pr}>=$		<. 0001	
Signed Rank	S	-2.955E9	$\operatorname{Pr}>=$	\|S		<. 0001

Quantiles (Definition 5)
Quantile Estimate
100\% Max 2003
99\% -1
95\% -1
90\% -1
75\% Q3 -1
50\% Median -1
25\% Q1 -1
10\% -1
5\% -1
1\% -1

0\% Min -1

Extreme Observations

--- - Lowest----	-- -Highest--		
Value	Obs	Value	Obs
-1	110659	2003	50638
-1	110658	2003	55057
-1	110657	2003	68600
-1	110656	2003	81774
-1	110655	2003	100456

```
The UNIVARIATE Procedure
                        Variable: TFSTYRTO
```

Moments

N	110659	Sum Weights	110659
Mean	16.3227934	Sum Observations	1806264
Std Deviation	184.790399	Variance	34147.4915
Skewness	10.5740513	Kurtosis	109.815001
Uncorrected SS	3808176394	Corrected SS	3778693120
Coeff Variation	1132.10033	Std Error Mean	0.55550252

Basic Statistical Measures				
Location		Variability		
Mean	16.32279	Std Deviation	184.79040	
Median	-1.00000	Variance	34147	
Mode	-1.00000	Range	2004	
		Interquartile Range	0	

Quantiles (Definition 5)

Quantile	Estimate
100\% Max	2003
99%	-1
95%	-1
90%	-1
75% Q3	-1
50% Median	-1
25% Q1	-1
10%	-1
5%	-1
1%	-1
0% Min	-1

Extreme Observations

----Lowest----	--- Highest---		
Value	Obs	Value	Obs
-1	110659	2003	93767
-1	110658	2003	100456
-1	110657	2003	102705
-1	110656	2003	105022
-1	110655	2003	105920

APPENDIX A
Questionnaire
Section Page
Section: Recipiency History Module 1
Section: Employment History Module 8

Items Booklet for

Mark One Only

CURADC
Earlier I recorded that [fill TEMPNAME] [fill RECEIVFIL]
[fill PATANFFIL1], or AFDC [fill MONTHXFIL] Have there been any
other times before this past [fill MONTH1] when [fill TEMPNAME]
[fill WASWERE] authorized to receive AFDC, or TANF, or any other state cash assistance program for [fill TEMPNAME] and [fill HISHER]
children?
(1) Yes
(2) No
@

Mark One Only

EVERGARD
ASK OR VERIFY:

Some benefit programs are designed to help needy children. [fill HAVHAS] [fill TEMPNAME] ever had any children, or served as a child's legal guardian?
(1) Yes
(2) No
@

Mark One Only		APLAFDC
[fill C_HAVHAS] [fill TEMPNAME] EVER	\| NAMES	
applied ${ }^{-}$for AFDC, [fill TANFFIL1],	\| (display children's names for whom R is	
[fill TANFFIL2][if TANFFIL2 ne <>], [endif]\|	\|mom, dad or guardian)	
[fill TANFFIL3][if TANFFIL3 ne <>], [endif]\|		
or any other cash assistance program for \|		
[fill TEMNAME] or [fill CHILDFIL]	,	
	I	
	\|	
(1) Yes	I	
(2) No	\|	
@	।	

Mark One Only		RECVAFDC
[fill REFERFIL]	\| NAMES	
	\| (display children's name	
And [fill C_HAVHAS] [fill HESHE] ever	\| for whom R is a mom, dad,	
RECEIVED AFDC, or TANF, or any other	\| or guardian)	
state cash assistance program for)	
[fill SELF]and [CHILDFIL]?	!	
	\|	
(1) Yes	\|	
(2) No	\|	
	\|	
©	\|	
	\|	
	\|	
	\|	
	I	
	1	

Mark One Only		ADCWHEN1
Earlier I recorded that the most recent	\| NAMES	
time [fill TEMPNAME]started receiving	\| (display children's names	
[fill PATANFFILI] was [fill TIMEFIL].	\| for whom R is a mom, dad, \| or guardian)	
Was that the first time [fill HESHE] had		
ever received AFDC, [fill TANFFIL1],	\|	
[fill TANFFIL2] [if TANFFIL2 ne <>],	\|	
[endif][fill TANFFIL3][if TANFFIL3 ne <>],	\|	
[endif] or any other state cash assistance	\|	
program for [fill SELF] and [CHILDFIL]	\|	
(1) [fill MONTHFIL] [FILL YEARFIL]	\|	
was first time on public assistance	\|	
(2) On public assistance before	I	
@		

Multiple Entry

When did [fill TEMPNAME] first start	INAMES	
receiving AFDC, or TANF, or some other	(display children's names	
state cash assistance program for	for whom R is a mom, dad,	
[fill SELF] and [CHILDFIL]	or guardian)	
MONTH: @MTH		
YEAR: @YR		

Multiple Entry

AFDCWHEN

```
WE WANT TO KNOW WHEN THE PERSON FIRST RECEIVED AFDC/TANF
ON HIS/HER OWN, OR IN HIS/HER OWN NAME - E.G.,
AS THE "HEAD" OF [fill HISHER] OWN FAMILY - NOT AS A CHILD
WHOSE PARENT (S) RECEIVED IT
When did [fill TEMPNAME] first start receiving those AFDC or
TANF (or other) benefits on [fill HISHER] Own, or in [fill HISHER]
own name?
MONTH: @MTH
    ENTER (N) DID NOT EVER RECEIVE PUBLIC ASSISTANCE ON HIS/HER OWN, OR
    IN HIS/HER OWN NAME
```

Multiple Entry	TMAFDCLG
Mark One Only	AL_TMAFDCLG
DO NOT READ TO RESPONDENT ENTRY ILLOGICAL. MEANS THAT: Assistance ended before beginning date. PRESS F1 TO BACKUP AND CORRECT/(P) TO PROCEED @	
Mark One Only	ADC1TIME
```[fill REFERFIL] And did [fill HESHE] receive that cash assistance every month between [fill DATEONEFIL] and [fill DATETWOFIL]? \\ (1) Yes \\ (2) No \\ @```	
Mark One Only	AFDCTIME
SEPARATE RECEIPT SPELLS REQUIRE A BREAK OF AT LEAST ONE MONTH OF NO RECEIPT (E.G., DO NOT COUNT SIMPLE "RE-CERTIFICATION" AS A BREAK BETWEEN TWO SPELLS OF RECEIPT)   How many separate times did [fill TEMPNAME] go on public assistance [fill RECEIPTFIL]?   @	
Mark One Only	CURSSI
Earlier I recorded that [fill TEMPNAME] [fill RECEIVFIL]   Supplemental Security Income, or SSI, [fill MONTHXFIL] Have there been any other times before this past [fill MONTH1] when [fill TEMPNAME] [fill WASWERE] authorized to receive SSI benefits [fill CHILDFIL]?   (1) Yes   (2) No   @	


Mark One Only	APLSSI
[fill BENEFITSFIL]   (1) Yes   (2) No   @	
Mark One Only	RECVSSI
```[fill REFERFIL] [fill C_HAVHAS] [fill HESHE] EVER received SSI benefits [fill C\overline{HILDFIL]?} \\ (1) Yes \\ (2) No \\ @```	

Mark One Only
SSIWHEN1
Earlier I recorded that the most recent time [fill TEMPNAME] started receiving SSI benefits was [fill TIMEFIL].

Was that the first time [fill HESHE] had EVER received SSI, or had [fill HESHE] received SSI benefits before then [fill CHILDFIL]?
(1) [fill MONTHFIL] [FILL YEARFIL] was first time on SSI (2) On SSI before
©

Multiple Entry
SSIWHEN2
When did [fill TEMPNAME] first start receiving SSI benefits
[fill CHILDFIL]?
MONTH: @MTH
YEAR: @YR

Multiple Entry

```
WE WANT TO KNOW WHEN THE PERSON FIRST RECEIVED SSI IN HIS/HER]
    OWN NAME OR AS THE PARENT/GUARDIAN OF A CHILD BENEFICIARY - NOT AS
    A CHILD BENEFICIARY HIM/HERSELF
    When did [fill TEMPNAME] first start receiving SSI benefits in
    [fill HISHER] own name [fill CHILDFIL]
        MONTH: @MTH
            YEAR: @YR
    ENTER (N) DID NOT RECEIVE SSI IN HIS/HER OWN NAME
```

 Multiple Entry
 [fill BEFOREFIL] did [fill TEMPNAME]
last receive SSI benefits [fill CHILDFIL]?
MONTH: @MTH
YEAR: @YR

Mark One Only
AL_TMSSILNG
DO NOT READ TO RESPONDENT
ENTRY ILLOGICAL. MEANS THAT: Assistance ended before beginning date. PRESS F1 TO BACKUP AND CORRECT/(P) TO PROCEED @

Mark One Only

CURFS
Earlier I recorded that [fill TEMPNAME]
[fill EARLIERFIL] Have there been any
other times before this past [fill MONTH1] when [fill TEMPNAME]
[fill WASWERE] authorized to receive food stamps?
(1) Yes
(2) No
©

Mark One Only
APLFS
[if APLSSI eq <2> and APLSSI onpath]
How about Food Stamps...? ([fill C_HAVHAS] [fill TEMPNAME]
ever applied for Food Stamps in [fill HISHER] own name?)
[else]
[fill C_HAVHAS] [fill TEMPNAME] ever applied for Food Stamps
in [fill HISHER] own name?[endif]
(1) Yes
(2) No
@
Mark One Only
APLFS2
What about when [fill TEMPNAME] [fill WASWERE] on
[fill INCOMEFIL] before this past [MONTH1]?
(Did [fill TEMPNAME] apply for Food Stamps then?)
(1) Yes
(2) No
@

Mark One Only

RECVFS
[fill REFERFIL]
And [fill C_HAVHAS] [fill HESHE] EVER been authorized to receive Food Stamps?
(1) Yes
(2) No
@

Mark One Only

RECVFS2
What about when [fill TEMPNAME] [fill WASWERE] on [fill
TANFFIL1], [fill TANFFIL2][if TANFFIL2 ne <>], [endif][fill
TANFFIL3][if TANFFIL3 ne <>], [endif]or AFDC [or] [SSI]] before
this past[MONTH1]?
(fill C_WASWERE) [fill TEMPNAME] also authorized to receive
Food Stāmps then?)
(1) Yes
(2) No
@

Mark One Only	FSWHEN1
Earlier I recorded that the most recent time [fill TEMNAME] started receiving Food Stamps was [fill TIMEFIL].	
Was that the first time [fill HESHE] had EVER received Food Stamps, or had [fill HESHE] been on Food Stamps before then?	
(1) [fill MONTHFIL] [fill YEARFIL] was first time on Food Stamps (2) On Food Stamps before	
®	

Mark One Only

RECVFS3
What about when [fill TEMPNAME] [fill WASWERE] on
[fill INCOMEFIL] before [fill BEGDATE]?
(Did [fill TEMPNAME] also receive Food Stamps then?)
(1) Yes
(2) No

Multiple Entry
FSWHEN2
When did [fill TEMPNAME] first start receiving Food Stamps?
MONTH: @MTH
YEAR: @YR
ENTER (N) DID NOT RECEIVE FOOD STAMPS IN HIS/HER OWN NAME BEFORE

Multiple Entry

FSWHEN

```
WE WANT TO KNOW WHEN THE PERSON FIRST RECEIVED FOOD STAMPS
ON HIS/HER OWN, OR IN HIS/HER OWN NAME - E.G., AS
THE "HEAD" OF HIS/HER FAMILY - NOT AS A CHILD WHOSE PARENT(S)
RECEIVED THEM
When did [fill TEMPNAME] first start receiving Food Stamps on
[fill HISHER] own, or in [fill HISHER] own name?
            MONTH: @MTH
            YEAR: @YR
```

 ENTER (N) DID NOT RECEIVE SSI ON HIS/HER OWN, OR IN
 HIS/HER OWN NAME BEFORE

Multiple Entry

TMFSLONG
[fill BEFOREFIL] did [fill TEMPNAME]
last receive food stamps?
$\begin{aligned} \text { MONTH: } & \text { @MTH } \\ \text { YEAR: } & \text { @YR }\end{aligned}$

Mark One Only

AL_TMFSLONG
DO NOT READ TO RESPONDENT
ENTRY ILLOGICAL. MEANS THAT: Assistance ended before beginning date.
PRESS F1 TO BACKUP AND CORRECT/(P) TO PROCEED @

Mark One Only

FS1TIME
[fill REFERFIL]
And did [fill HESHE] receive Food Stamps every month
between [FSWHEN date] and [TMFSLONG date]?
(1) Yes
(2) No
©
Mark One Only
TMFSTIME

```
IF RECEIPT WAS CONTINUOUS, DO NOT COUNT SIMPLE "RE-CERTIFICATION"
    AS A BREAK BETWEEN TWO SPELLS OF RECEIPT; SEPARATE RECEIPT SPELLS
    REQUIRE A BREAK OF AT LEAST ONE MONTH OF NO RECEIPT
    How many separate times did [fill TEMPNAME] go on
    Food Stamps between [fill RECEIPTFIL]?
        @
```

Mark One Only	EMPHINTRO
```Now I have some questions about [fill PTEMPNAME] general work history. PRESS "ENTER" TO CONTINUE @```	
Mark One Only	WK1BEFOR
Earlier I recorded that [fill TEMPNAME] started [fill HISHER] [fill JOBBIZNAMEFIL] in [fill JOBBIZMONFIL] of [JOBBIZYRFIL]. [fill C_WASWERE] [fill HESHE] working at some other job before [fill JOBBIZFIL], or [fill WASWERE] [fill HESHE] not working?   (1) Working at another job/business   (2) Not working   @	
Mark One Only	WK1LSTJB
Before [fill JOBBIZSTRTFIL], in what   year did [fill TEMPNAME] last work at a paid job or business?   ENTER (N) FOR NO PRIOR JOB/BUSINESS   YEAR: @	
Mark One Only	WK1WRK15
ASK OR VERIFY:   So, before the [fill JOBBIZFIL] that started in [fill JOBBIZMONFIL] [fill JOBBIZYRFIL], [fill TEMPNAME] was about [fill AGEFIL] when [fill HESHE] last worked before that - is that right?   (1) Yes; correct   (2) No (backup and correction WK1LSTJB entry)   @	
Mark One Only	WK1LWRKM
In what month was that?   MONTH   @	
Mark One Only	LSTWRKY1
[fill B4JOBBIZFIL] what year did [fill TEMPNAME] last work at a paid job or business?   ENTER (N) FOR NEVER WORKED   YEAR: @	


Mark One Only	LSTWRK15
ASK OR VERIFY:   So [fill TEMPNAME] [fill WASWERE] about [fill AGEFIL] when [fill HESHE] last worked - is that right?   (1) Yes; correct   (2) No (backup and correction LSTWRKY1 entry)   ©	
Mark One Only	LSTWRKM1
In what month was that?   MONTH: @	
Mark One Only	PRVJOBYR
Before [fill MONTH1], in what year did [fill TEMPNAME] last work at a paid job or business?   ENTER (N) FOR NEVER WORKED AT ANOTHER JOB/BUSINESS YEAR: @	
Mark One Only	PRVJOB15
ASK OR VERIFY:   So [fill Tempname] was about [fill Agefil] when [fill HeShe] last worked - is that right?   (1) Yes; correct   (2) No (backup and correction PRVJOBYR entry)   ©	
Mark One Only	PRVJOBMN
In what month was that?   MONTH: ©	
Mark One Only	FRMRYR
In what year did [fill TEMPNAME] START that[fill PREVIOUSFIL] job or business? YeAR: @	
Mark One Only	FRMRYR15
ASK OR VERIFY:   So [fill TEMPNAME] [fill WASWERE] about [fill AGEFIL] when [fill HESHE] started that work is that right?   (1) Yes; correct (within 1 year)   (2) No (backup and correction FRMRYR entry)   @	

## Mark One Only

FRMRMN

In what month was that?   MONTH: @	
Mark One Only	FIRST6JOB
```[fill INCLUDEAFFIL] was the first job or business [fill TEMPNAME] had that lasted 6 straight months or more? ENTER EITHER NAME OF EMPLOYER OR TYPE OF WORK COUNT ANY JOB OR BUSINESS, EITHER FULL-TIME OR PART-TIME ENTER (N) FOR NEVER WORKED 6 STRAIGHT MONTHS AT A JOB OR BUSINESS 1st 6+ month job/busines: @```	
Multiple Entry	SIXMTHYR
```How old [fill WASWERE] [fill HESHE] when [fill HESHE] [fill STARTEDWRKFIL]? (Or do you remember the year?) COUNT ANY JOB OR BUSINESS, EITHER FULL-TIME OR PART-TIME. [fill ALSOAFFIL] ENTER (N) FOR NEVER WORKED 6 STRAIGHT MONTHS AT A JOB OR BUSINESS AGE:@1 OR CALENDAR YEAR: @2```	

Mark One Only
SIXMTH15
ASK OR VERIFY:
So [fill TEMPNAME] [fill WASWERE] about [fill AGE] when
[fill HISHER] first long-term job or business started - is that right?
(1) Yes; correct (within 1 year)
(2) No (back up and correct SIXMTHYR entry)

## Mark One Only

YRSIXMTH
That would be around [fill MAKEMTHYR].
Is that correct?
(1) Yes
(2) No
@
Mark One Only
SXMTHYR2
I'm sorry. What year was it?
ENTER START YEAR OF THE PERSON'S FIRST "6-STRAIGHT-MONTH OR MORE"
JOB OR BUSINESS
YEAR: @

Mark All That Apply	NO6ALL
SHOW FLASHCARD MP-J   [fill WHYNOWRKFIL] at a paid job or business [fill AFTER15FIL]   ENTER ALL THAT APPLY   RE-ENTER PRECODE TO DELETE   ENTER (N) FOR NO MORE   (1) Taking care of a minor child   (2) Taking care of an elderly family member   (3) Taking care of a disabled but non-elderly family member   (4) Other family or home responsibilities   (5) Own illness or disability   (6) Could not find work   (7) Did not want to work   (8) Going to school   (9) Other   @KEY	
Mark One Only	NO6REASN
```What is the main reason? (- the main reason [fill HESHE] never worked [fill 6MOSFIL] at a paid job or business?) [fill NO6ALL1FIL] [fill NO6ALL2FIL] [fill NO6ALL3FIL] [fill NO6ALL4FIL] [fill NO6ALL5FIL] [fill NO6ALL6FIL] [fill NO6ALL7FIL] [fill NO6ALL8FIL] [fill NO6ALL9FIL] @```	
Mark One Only	SIXMTHMN
In what month was that? @	
Mark One Only	WRK35HR

	Mark One Only	ANY60FF
```We've been talking about when [fill TEMPNAME] [fill HAVHAS] worked. Next are questions about when [fill HESHE] [fill WASWERE] NOT working. [fill SINCEFIL] [fill THEYEARFIL] [fill SIXMTHFIL], [fill WERETHEREFIL] any times when [fill TEMPNAME] did not work for 6 straight months or more? \\ (1) Yes \\ (2) No \\ @```		
	Mark One Only	HOWMANY6
```How many times [fill HASFIL] that [fill HAPPENFIL]? ([fill BETWNFIL], how many times [fill BEENFIL] out of work for 6 months or more?) @```		
	Multiple Entry	TIMEOFF
```TIME PERIOD: SINCE [fill SIXMNTHYR] or BETWEEN [fill SIMNTHYR] AND [fill LSTWKFIL] or BETWEEN [fill SIXMTHYR] AND [fill PRVJOBFIL] or BETWEEN [fill SIXMTHYR] AND [fill WKLSTFIL] [fill COUNTFIL] what was the total amount of time that [fill TEMPNAME] spent out of work [fill PERIODFIL]? @NM (1) MONTHS (2) YEARS @MY```		
	Mark One Only	AL_TIMEOFF
	DO NOT READ TO RESPONDENT   ENTRY ILLOGICAL. MEANS THAT: number of years greater than amount of wor PRESS F1 TO BACK UP AND CORRECT/(P) TO PROCEED @	
	Mark One Only	OFF6MTH
```If ANY6OFF=<1>, display: Since [fill SIXMTHFIL] [fill HAVHAS] [fill TEMPNAME] had any long periods off work because [fill HESHE] [fill WASWERE] taking care of someone else -- specifically, a child, an elderly person, or a disabled person? Else, display: Since [fill LASTYRFIL], have there been any periods of time when [fill TEMPNAME] [fill WASWERE] off work for 6 months or more because [fill HESHE] [fill WASWERE] taking care of someone else -- specifically, a child, an elderly person, or a disabled person? (1) Yes (2) No @```		


Multiple Entry	NOWRKSPL
When did this happen most recently - from what year to what year?	
FROM: @NOWRKFR T0: @to	
ENTER (P) For "TO the present time"	
Mark All That Apply	NWALL
ASK OR VERIFY	
Who [fill HAVEWEREFIL] [fill TEMPNAME] [fill BEENFIL] taking care of [fill ATTIMEFIL]?	
read categories if necessary Enter all that Apply Re-Enter precode to delete ENTER (N) FOR NO MORE	
(1) A minor child (2) An elderly family member (3) A disabled but non-elderly family member	
@KEy	
Mark One Only	NWRESN
Which one would you say [fill ISWASFIL] [fill PTEMPNAME] main caregiving responsibility?	
[if NWALLL1 eq <1>] (1) A minor child [if NWALLL eq < <2] (2) An elderly family member [if NWALLC eq $<3>$ (3) A disabled but non-elderly family member	
© ${ }^{\text {c }}$	

Mark One Only

OTHTIMES
Since [fill OTHDATEFIL], were there any OTHER long periods of
time when [fill TEMPNAME] didn't work because
[fill HESHE] [fill WASWERE] caring for someone else -- specifically, a child, or elderly, or disabled person?
(1) Yes
(2) No
@

Mark One Only

How many other times did this happen?
@
Multiple Entry
FRSTYR

When was the first time this happened - from what year to what year?	
FROM: @FSTYRFRM	TO: @FSTYRTO

Mark All That Apply	FRSTALL
ASK OR VERIFY Who [fill WASWERE] [fill TEMPNAME] taking care of at that time? READ CATEGORIES IF NECESSARY ENTER ALL THAT APPLY RE-ENTER PRECODE TO DELETE ENTER (N) FOR NO MORE (1) A minor child (2) An elderly family member (3) A disabled but non-elderly family member @KEY	
Mark One Only	FRSTRSN
Which one would you say was [fill PTEMPNAME] main care-giving responsibility (at that earlier time)? [if FRSTALL@1 eq <1>](1) A minor child [if FRSTALL@2 eq <2>] (2) An elderly family member [if FRSTALL@3 eq <3>](3) A disabled but non-elderly family member a	

Items Booklet Index for

Alphabetical index for the Items Booklet

Object Name	Page	Object Name	Page
A		NOWRKSPL	13
		NWALL	13
ADC1TIME	3	NWRESN	13
ADCWHEN1	2		
ADCWHEN2	2	0	
AFDCTIME	3	OFF6MTH	12
AFDCWHEN	2	OTHTIMES	13
AL_TIMEOFF	12	P	
AL_TMAFDCLG	3		
AL_TMFSLONG	6	PRVJOB15	9
AL_TMSSILNG	4	PRVJOBMN	9
ANY6OFF	12	PRVJOBYR	9
APLAFDC	1	R	
APLFS	5	RECVAFDC	1
APLFS2	5	RECVFS	5
APLSSI	4	RECVFS2	5
C		RECVFS3	6
CNTOTHR	13	RECVSSI	4
CURADC	1	S	
CURFS	5	SIXMTH15	10
CURSSI	3	SIXMTHMN	11
E		SIXMTHYR	10
EMPHINTRO	8	SSIWHEN	4
EVERGARD	1	SSIWHEN1	4
		SSIWHEN2	4
F		SXMTHYR2	10
FIRST6JOB	10	T	
FRMRMN	10	TIMEOFF	
FRMRYR	9	TIMEOFF	12
FRMRYR15	9	TMAFDCLG	3
FRSTALL	14	TMFSLONG	6
FRSTRSN	14	TMFSTIME	7
FRSTYR	13	TMSSILNG	4
FS1TIME	7	W	
FSWHEN	6	WK1BEFOR	8
FSWHEN1	6	WK1LSTJB	8
FSWHEN2	6	WK1LWRKM	8
H		WK1WRK15	8
HOWMANY6	12	WRK35HR	11
L		Y	
LSTWRK15	9	YRSIXMTH	10
LSTWRKM1	9		
LSTWRKY1	8		
N			
NO6ALL	11		
NO6REASN	11		

APPENDIX B

Working Papers

This appendix provides a list of SIPP Working Papers. These papers are available on the Census Bureau's Internet site http://www.census.gov

Old New

(8401) 1 (Update No. 1, Revised 12/85) "An Overview of the Survey of Income and Program Participation," D. NELSON, D. B. MCMILLEN, and D. KASPRZYK (Census Bureau)
(8501) 2 "The Survey of Income and Program Participation: Uses and Applications,"
K. S. SHORT (Census Bureau)
(8502) 3 "Applications of a Matched File Linking the Bureau of the Census Survey of Income and Program Participation and Economic Data," S. HABER (The George Washington University)
(8503) 4 "Using the Survey of Income and Program Participation for Research on the Older Population," D. B. MCMILLEN, C. M. TAEUBER, and J. MARKS (Census Bureau)
(8504) 5 "Summary of the Content of the 1984 Panel of the Survey of Income and Program Participation," D. T. FRANKEL (Census Bureau)
(8505) 6 "Enhancing Data from the Survey of Income and Program Participation with Data from Economic Censuses and Surveys," D. K. SATER (Census Bureau)
(8506) 7 "Methodologies for Imputing Longitudinal Survey Items," V. J. HUGGINS, L. WEIDMAN, and M. E. SAMUHEL (Census Bureau)
(8507) 8 "New Household Survey and the CPS: A Look at Labor Force Differences," P. M. RYSCAVAGE (Census Bureau) and J. E. BREGGER (Bureau of Labor Statistics)
(8601) 9 "Some Aspects of SIPP," compiled and edited by R. A. HERRIOT and D. KASPRZYK (Census Bureau)
(8602) 10 "Nonsampling Error Issues in the SIPP," G. KALTON (University of Michigan), D. B. MCMILLEN, and D. KASPRZYK (Census Bureau)
(8603) 11 "An Investigation of Model-Based Imputation Procedures Using Data from the Income Survey Development Program," V. J. HUGGINS and L. WEIDMAN (Census Bureau)
(8604) 12 "Food Stamp Participation: A Comparison of SIPP with Administrative Records," S. CARLSON and R. DALRYMPLE (Food and Nutrition Service)
(8605) 13 "SIPP Longitudinal Household Estimation for the Proposed Longitudinal Definition," L. R. ERNST (Census Bureau)
(8606) 14 "A Comparison of Seven Imputation Procedures for ISDP" V. J. HUGGINS (Census Bureau)

Old
15

16 "Evaluation of Training Materials and Methods for the Survey of Income and Program Participation," M. HOLT (Survey Research Consultant) 17 "Patterns of Household Composition and Family Status Change," C. F. CITRO (ASA/Census Research Fellow), and H. W. WATTS (Department of Economics, Columbia University)

18 "A Composite Estimation for SIPP A Preliminary Report," R. P. CHAKRABARTY (Census Bureau)

19 "Longitudinal Household Concepts in SIPP: Preliminary Results," C. F. CITRO
"Longitudinal Household Concepts in SIPP: Preliminary Results," C. F. CITRO
(ASA/Census Research Fellow), D. J. HERNANDEZ, and R. A. HERRIOT (Census Bureau)
"Following Children in the Survey of Income and Program Participation," E. K. MCARTHUR, and K. S. SHORT (Census Bureau)

21 "SIPP Labor Force Transitions: Problems and Promises," P. RYSCAVAGE and K. S. SHORT (Census Bureau)
"Augmenting Data Reported in the Survey of Income and Program Participation with Administrative Record Data--A Brief Discussion," D. K. SATER (Census Bureau)
"Tracking Persons Over Time," A. C. JEAN and E. K. MCARTHUR (Census Bureau)
24 "Preliminary Data from the SIPP 1983-84 Longitudinal Research File," J. F. CODER, D. BURKHEAD, A. FELDMAN-HARKINS, and J. MCNEIL (Census Bureau)
"Work Experience Data from SIPP," P. RYSCAVAGE and A. FELDMAN-HARKINS (Census Bureau)

26 "The Treatment of Person-Wave Nonresponse in Longitudinal Surveys," G. KALTON, J. LEPKOWSKI, S. HEERINGA, TING-KWONG LIN, and M. E. MILLER (Survey Research Center, University of Michigan)

27 "SIPP: Filling Data Gaps on the Poverty and Social Welfare Fronts," P. RYSCAVAGE (Census Bureau)

28 "Response Errors in Labor Surveys: Comparisons of Self and Proxy," D. HILL (University of Michigan)
"An Investigation of the Imputation of Monthly Earnings for the Survey of Income and Program Participation Using Regression Models," V. J. HUGGINS and L. WEIDMAN (Census Bureau) Nutrition Service, U.S. Department of Agriculture)
"Quality Profile for the Survey of Income and Program Participation," K. KING, R. PETRONI, and R. SINGH (Census Bureau)
"Survey of Income and Program Participation (SIPP) Sample Loss and the Efforts to Reduce It," D. NELSON, C. BOWIE, and A. WALKER (Census Bureau)

Old New

(8710) 32 "The Impact of Imputation Procedures on Distributional Characteristics of the Low Income Population," P. DOYLE (Mathematica Policy Research), and R. DALRYMPLE (Food and Nutrition Service, U.S. Department of Agriculture)
(8711) 33 "Job Tenure, Lifetime Work Interruptions and Wage Differentials," J. MCNEIL, E. LAMAS (Census Bureau), and S. HABER (The George Washington University)
(8712) 34 "Measuring the Bias in Gross Flows in the Presence of Auto-Correlated Response Errors," D. HUBBLE (Census Bureau), and D. JUDKINS (Westat, Inc.)

35 "Investigation of Possible Causes of Transition Patterns from SIPP," L. WEIDMAN (Census Bureau)
(8714) 36 "Households and Income Sources: Monthly Averages for 1984," J. MOORMAN (Census Bureau)
(8715) 37 "Creating SIPP Longitudinal Files Using OSIRIS IV," M. SERVAIS (University of Michigan)
"Transitions In and Out of Poverty: New Data from the Survey of Income and Program Participation," P. RUGGLES (The Urban Institute), and R. WILLIAMS (Congressional Budget Office)

39 "On Their Own: The Self-Employed and Others in Private Business," S. HABER (The George Washington University), E. LAMAS (Census Bureau), and J. LICHTENSTEIN (U.S. Small Business Administration)

40 "Factors Associated with Household Net Worth," E. LAMAS and J. MCNEIL (Census Bureau)

41 "Exploring Changes in Health Care Coverage Using the SIPP Longitudinal Research File," D. BURKHEAD and A. FELDMAN and HARKINS (Census Bureau)

42 "Geographical Mobility and the Life Course: Moves Associated with Individual Life Events," D. DAHMANN and E. MCARTHUR (Census Bureau)

43 "A Review of the Use of Administrative Records in the Survey of Income and Program Participation," C. BOWIE and D. KASPRZYK (Census Bureau)

44 "Survey of Income and Program Participation Update," D. KASPRZYK (Census Bureau)

45 "Measuring Poverty with the SIPP and the CPS," R. WILLIAMS (Congressional Budget Office)

46
"The Statistically Invisible Minority Aged," C. TAEUBER (Census Bureau), and E. ATTAH (Atlanta University)
"An Analysis of the SIPP Asset and Liability Feedback Experiment," E. LAMAS and J. MCNEIL (Census Bureau)
"The Impact of the Unit of Analysis on Measures of Serial Multiple Program Participation," P. DOYLE and S. K. LONG (Mathematica Policy Research, Inc.)

Old
 New

(8802) 49 "Short Term Fluctuations in Income and Their Relationship to the Characteristics of the Low Income Population: New Data from the Survey of Income and Program Participation," P. RUGGLES (The Urban Institute)
(8803) 50 "Residential Mobility of One-Person Households," J. WITTE and H. LAHMANN (German Institute for Economic Research)
(8804) 51 "Year-Apart Estimates of Household Net Worth from the Survey of Income and Program Participation," J. MCNEIL and E. LAMAS (Census Bureau)
(8805) 52 "Measuring Poverty and Crises: A Comparison of Annual and Subannual Accounting Periods Using the Survey of Income and Program Participation," M. DAVID and J. FITZGERALD (Institute for Research on Poverty)

53 "Using Administrative Record Data to Evaluate the Quality of Survey Estimates," J. MOORE and K. MARQUIS (Census Bureau)

54 "The Wealth of the Aged and Nonaged, 1984," D. RADNER (Social Security Administration)

55 "Examining the Dynamics of Health Insurance Loss: A Tale of Two Cohorts," A. C. MONHEIT and C. L. SCHUR (National Center for Health Services Research)

56 "The Dynamics of Medicaid Enrollment," P. FARLEY-SHORT, J. A. CANTOR and A. C. MONHEIT (National Center for Health Services Research)

57 "The Discourage Worker Effect: A Reappraisal Using Spell Duration Data," A. MARTINI (University of Wisconsin-Madison)

58 "Income as a Proxy for the Economic Status of the Elderly," D. J. CHOLLET and R. B. FRIEDLAND (Employee Benefit Research Institute)

59 "The SIPP: Data from the Social Security Administration's 1987 Annual Statistical Supplement."

60 "Participation in Industrial Training Programs," S. HABER (The George Washington University)
(8814) 61 "A Methodological Study Using Administrative Records: The Special Frames Study of the Income Survey Development Program," W. J. LOGAN (Social Security Administration),. D. KASPRZYK and R. CAVANAUGH (Census Bureau)
"The Effect of Income Taxation on Labor Supply When Deductions are Endogenous," R. K. TRIEST (The Johns Hopkins University)

64 "How are the Elderly Housed? New Data from the 1984 Survey of Income and Program Participation," A. GOLDSTEIN (Census Bureau)

65 "Welfare Recipient as Observed in the SIPP," J. CODER (Census Bureau) and P. RUGGLES (The Urban Institute)

Old New

(8819) 66 "Reservation Wages and Subsequent Acceptance Wages of Unemployed Persons," P. RYSCAVAGE (Census Bureau)
(8820) 67 "Selected References from the Income Survey Development Program (ISDP) and Survey of Income and Program Participation (SIPP)."
(8821) 68 "Training, Wage Growth, Firm Size," S. HABER (The George Washington University) and E. LAMAS (Census Bureau)
(8822) 69 "Defining and Measuring Nonmetro Poverty: Results from the Survey of Income and Program Participation," R. HOPPE (Economic Research Service, U.S. Department of Agriculture)
(8823) 70 "Nonresponse Adjustment Methods for Demographic Surveys at the U.S. Bureau of the Census," R. SINGH and R. PETRONI (Census Bureau)
(8824) 71 "Testing Telephone Interviewing in the Survey of Income and Program Participation and Some Early Results," S. DURANT and P. GBUR (Census Bureau)
(8825) 72 "Excluding Sample that Misses Some Interviews from SIPP Longitudinal Estimates," L. R. ERNST and D. GILLMAN (Census Bureau)

73 "The Employment of Mothers and the Prevention of Poverty," M. HILL (University of Michigan) and H. HARTMANN (Rutgers University)

74 "Using Administrative Record Data to Describe SIPP Response Errors," J. MOORE and K. MARQUIS (Census Bureau)
(8828) 75 "A Look at Welfare Dependency Using the 1984 SIPP Panel File," J. CODER, D. BURKHEAD, and A. FELDMAN-HARKINS (Census Bureau)
"Census Bureau Microdata: Providing Useful Research Data While Protecting the Anonymity of Respondents," G. GATES (Census Bureau)
(8830) 77 "The Survey of Income and Program Participation: An Overview and Discussion of Research Issues," D. KASPRZYK (Census Bureau)
"Quality of SIPP Estimates," R. P. SINGH, L. WEIDMAN, and G. SHAPIRO (Census Bureau)
"Two Notes on Sampling Variance Estimates from the 1984 SIPP Public-Use Files," B. BYE and S. J. GALLICCHIO (Social Security Administration)
"Longitudinal vs. Retrospective Measures of Work Experience," P. RYSCAVAGE and J. CODER (Census Bureau)
(8904) 81 "Analyzing the Characteristics of Blacks: A Comparison of Data from SIPP and CPS," R. FARLEY and L. J. NEIDERT (University of Michigan)
(8905) 82 "Enhanced Demographic-Economic Data Sets,"R. HERRIOT, C. BOWIE, D. KASPRZYK, and S. HABER (Census Bureau)

83 "Reflections on the Income Estimates from the Initial Panel of the Survey of Income and Program Participation (SIPP)," D. VAUGHAN (Social Security Administration)

Old
 New

(8907) 84 "Measuring Spells of Unemployment and Their Outcomes," P. RYSCAVAGE (Census Bureau)
(8908) 85 "Welfare Dependency and its Causes: Determinants of the Duration of Welfare Spells," P. RUGGLES (The Urban Institute)
(8909) 86 "Measuring the Duration of Poverty Spells," P. RUGGLES (The Urban Institute) and R. WILLIAMS (Congressional Budget Office)

87 "Methods of Processing Unit Data Longitudinally on the SIPP," K. SMITH (Congressional Budget Office)

88 "Composite Estimation for SIPP Annual Estimates," R. P. CHAKRABARTY (Census Bureau)

89 "Research and Evaluation Conducted on the Survey of Income and Program Participation," R. PETRONI, T. CARMODY, and V. HUGGINS (Census Bureau)
(8913) 90 "A Poisson Model of Response and Procedural Error Analysis of SIPP Reinterview Data," D. HILL (University of Michigan)
(8914) 91 "The Economic Resources of the Elderly: A Comprehensive Income Approach," S. CRYSTAL and D. SHEA (Rutgers University)

92 "Multivariate Analysis by Users of SIPP Micro-Data Files" R. P. CHAKRABARTY (Census Bureau)
(8918)

9

96 "Income and Assets of Social Security Beneficiaries by Type of Benefit," S. GRAD (Social Security Administration)

97 "Development and Evaluation of a Survey-Based Type of Benefit Classification for the Social Security Program," D. VAUGHAN (Social Security Administration)

98 "Wave Seam Effects in the SIPP," N. YOUNG (The Urban Institute)
99 "Components of Longitudinal Household Change for 1984-1985: An Evaluation of National Estimates from the SIPP," D. J. HERNANDEZ (Census Bureau)

100 "Database Design for Large-Scale, Complex Data," M. H. DAVID and A. ROBBIN (University of Wisconsin)
(8924) 101 "Measuring the Frequency and Consequences of Job Separations: Data from the Survey of Income and Program Participation," J. MCNEIL and E. LAMAS (Census Bureau)

Old New

(8925) 102 "The Regular Receipt of Child Support: A Multi-Step Process," J. PETERSON and C. NORD (Child Trends, Inc.)
(8926) 103 "The Potential for Comparative Panel Research Using Data from the Survey of Income and Program Participation and the German Socio-Economic Panel," J. C. WITTE (Harvard University)
(8927) 104 "Offer Arrivals Versus Acceptance: Interpreting Demographic Reemployment Patterns in the Search Framework," T. J. DEVINE (The Pennsylvania State University)
(8928) 105 "Findings from the SIPP Fringe Benefits Feasibility Study: Response Rates and Data Quality," S. HABER (The George Washington University)
(9001) 106 "Recent Developments in the Survey of Income and Program Participation," C. BOWIE (Census Bureau)
(9002) 107 "An Analysis of Leaving Home Using Data from the 1984 Panel of the SIPP," A. SPEARE, JR., R. AVERY, and F. GOLDSCHEIDER (Brown University)
(9003) 108 "The Effect of the Marriage Market on First Marriages: Evidence from SIPP," J. FITZGERALD (Bowdoin College)
(9004) 109 "Counting Spells of Unemployment," P. RYSCAVAGE and K. SHORT (Census Bureau)
(9005) 110 "The Elderly and Their Sources of Income: Implications for Rural Development," R. HOPPE (Economic Research Service, U.S. Department of Agriculture)
(9006) 111 "Alternative Estimates of Economic Well-Being by Age Using Data on Wealth and Income," D. RADNER (Social Security Administration)
(9007) 112 "Longitudinal Analysis of Federal Survey Data," P. RUGGLES (Joint Economic Committee)
(9008) 113 "Measurement Errors in SIPP Program Reports," K. H. MARQUIS and J. C. MOORE (Census Bureau)
(9009) 114 "Handling Single Wave Nonresponse in A Panel Survey," R. SINGH, V. HUGGINS, and D. KASPRZYK (Census Bureau)
(9010) 115 "Nonresponse Research for the SIPP," R. PETRONI (Census Bureau)
(9011) 116 "The Seam Effect in Panel Surveys," G. KALTON, D. HILL, and M. MILLER (University of Michigan)
(9012) 117 "The Effects of Being Uninsured on Health Care Service Use: Estimates from the SIPP," S. H. LONG and J. RODGERS (Congressional Budget Office)
(9013) 118 "Wage Differential and Job Changes," S. SENINGER and D. GREENBERG (University of Maryland) From SIPP
(9014) 119 "Wages and Employment Among the Working Poor: New Evidence from SIPP," S. K. LONG (The Urban Institute) and A. MARTINI (Mathematica Policy Research)

Old New
(9015) 120 "Pension Portability \& Labor Mobility: Evidence from SIPP," A. GUSTMAN (Dartmouth College) and T. STEINMEIER (Texas Tech University)
(9016) 121 "Response \& Procedural Error Variance in Surveys: An Application of Poisson and Newman Type A Regression," D. HILL (University of Toledo)
(9017) 122 "Aging and the Income Value of Housing Wealth," S. F. VENTI (Dartmouth College) and D. A. WISE (Harvard University)
(9018) 123 "Welfare Participation and Welfare Recidivism: The Role of Family Events,"
S. K. LONG (The Urban Institute)
(9019) 124 "Racial Differences in Health and Health Care Service Utilization: The Effect of Socioeconomic Status," J. E. MUTCHLER and J. A. BURR (State University of New York at Buffalo)
(9020) 125 "Living Benefits: Closing the Gap for LTC Financing," D. G. SHEA (Pennsylvania State University)
(9021) 126 "SIPP Record Check Results: Implications for Measurement Principles and Practice," K. H. MARQUIS and J. C. MOORE (Census Bureau)"
(9022) 127 "Workers with Disabilities in Large and Small Firms: Profiles from the SIPP," D. DRURY (Berkeley Planning Associates)
(9023) 128 "Entry into Marriage and the Transition to Adulthood Among Recent Birth Cohorts of Young Adults in the United States and the Federal Republic of Germany," J. WITTE (Harvard University)
(9024) 129 "The Saving Effect of Tax-Deferred Retirement Accounts: Evidence from the SIPP," S. VENTI (Dartmouth College) and D. A. WISE (Harvard University)
(9025) 130 "Children and Welfare: Patterns of Multiple Program Participation," S. K. LONG (The Urban Institute)
(9026) 131 "Household and Nonhousehold Living Arrangements in Later Life: A Longitudinal Analysis of A Social Process," J. E. MUTCHLER and J. A. BURR (University of Buffalo)
(9027) 132 "The SIPP Event History Calendar: Aiding Respondents in the Dating of Longitudinal Processes," R. KOMINSKI (Census Bureau)
(9028) 133 "Estimates of Employer Contributions for Health Insurance by Worker Characteristics," S. HABER (George Washington University)
(9029) 134 "Two Notes on Relating the Risk of Disclosure for Microdata and Geographic Area Size," B. GREENBERG and L. VOSHELL (Census Bureau)
(9030) 135 "Childcare Effects on Social Security Benefits (91 ARC)," H. M. IAMS (Social Security Administration)
(9031) 136 "The Effect of the Medicaid Program on Welfare Participation \& Labor Supply," R. MOFFIT (Brown University) and B. WOLFE (University of Wisconsin)
(9032)

137 "Proxy Reports: Results from a Record Check Study," J. C. MOORE (Census Bureau)

Old New

(9033) 138 "Spells Without Health Insurance: What Affects Spell Durations and Who are the Chronically Uninsured?," T. MCBRIDE and K. SWARTZ (The Urban Institute)
(9035) 140 "Discrete Time Models of Entry into Marriage Based on Retrospective Marital Histories of Young Adults in the U.S. and the Federal Republic of Germany," J. WITTE (Harvard University)
(9101) 141 "Trends in Income and Wealth of the Elderly in the 1980's," P. RYSCAVAGE (Census Bureau)
(9102) 142 "The Impact of Survey and Questionnaire Design on Longitudinal Labor Force Measures," A. MARTINI (Mathematica Policy Research) and P. RYSCAVAGE (Census Bureau)
(9103) 143 "Using SIPP to Analyze Black-White Differences in Youth Employment," G. C. CAIN and P. M. GLEASON (University of Wisconsin)

144 "A Random-Effects Approach to Attrition Bias in the SIPP Health Insurance Data," J. A. KLERMAN (The Rand Corporation)

Old
 New

154

155
"Within-PSU Sort and Stratification Research to Improve Survey Efficiency," M. GORSAK, K. MANSUR, D. FENSTERMAKER and R. PETRONI (Census Bureau)

156 "Marital Separation and the Economic Well-Being of Children and Their Absent Fathers," S. M. BIANCHI (Census Bureau)

157 "Rationale for a SIPP-Based Microsimulation Model of SSI and OASDI," B. WIXON and D. R. VAUGHAN (Social Security Administration)

158 "Implementing an SSI Model Using the Survey of Income and Program Participation," D. R. VAUGHAN and B. WIXON (Social Security Administration)

159 "Local Labor Markets and Local Area Effects on Welfare Duration: Evidence from SIPP," J. FITZGERALD (Census Bureau) X. ZUO (Dowdoin College and Shanghai Academy of Social Science)

160 "Oversampling the Low-Income Population in the Survey of Income and Program Participation (SIPP)," G. D. WELLER, V. J. HUGGINS and R. P. SINGH (Census Bureau)

161 "Estimates of the Uninsured Population from the Survey of Income and Program Participation: Size, Characteristics, and the Possibility of Attrition Bias," K. SWARTZ (The Urban Institute)

162 "Changes in Parent-Child Coresidence in Later Life," A. SPEARE, JR. (Census Bureau/Brown University) and R. AVERY (Brown University)

163 "Who Helps Whom in Older Parent-Child Families," A. SPEARE, JR. (Population Studies and Training Center) R. AVERY (Brown University)

164 "Testing Alternative Household Roster Questions for the Survey of Income and Program Participation," D. CANTOR and C. EDWARDS

165 "Pretest Results of an Alternative Measurement Design for the Survey of Income and Program Participation," K. BOGEN, J. C. MOORE and K. H. MARQUIS (Center for Survey Methods Research and Census Bureau)

166 "Dependent and Independent Data Collection in Panel Surveys: Analysis of 1985, 1986 SIPP Occupation and Industry Data," D. H. HILL (Survey Research Institute/University of Toledo)

167 "The Survey of Income and Program Participation in the 1990's," D. H. WEINBERG and R. J. PETRONI (Census Bureau)

168 "A Statistical Profile of At-Risk Children in the United States," C. WINQUIST NORD and A. RHOADS (Child Trends, Inc.)

169 "Social Security Earnings of Wives Relative to Their Husbands: A Cohort Analysis," H. M. IAMS (Social Security Administration)

SIPP FILES

Old New

(9209) 170 "Private Health Insurance and the Utilization of Medical Care by the Elderly," V. WILCOX-GOK and J. RUBIN
(9210) 171 "Analyzing Spells of Program Participation in the SIPP," G. KALTON, D. P. MILLER, AND J. LEPKOWSKI
(9211) 172 "Time in Panel Effects in the SIPP," G. KALTON, J. M. LEPKOWSI, S. G. PENNELL, D. P. MILLER AND E. LUIS.
(9301) 173 "Multiple Program Use in a Dynamic Context: Data from the SIPP," R. M. BLANK (Northwestern University) and P. RUGGLES (The Urban Institute)
(9302) 174 "A Comparative Analysis of the Labor Force Activities of Ethnic Populations," F. D. WILSON (University of Wisconsin-Madison ASA/NSF/Census Fellow) and L. L. WU (University of Wisconsin-Madison)
(9303) 175 "Variance Estimation by Users of SIPP Micro-Data Files," R. P. CHAKRABARTY (Census Bureau)
(9304) 176 "Measurements of Job Exits: What Difference Does Ambiguity Make?," T. J. DEVINE (Pennsylvania State University)
(9305) 177 "The Seasonality of Moving: An Analysis of Data from the Survey of Income and Program Participation," D. DEARE (Census Bureau)
(9313) 185 "Effects of a Cognitive Interviewing Approach on Response Quality in a Pretest for the SIPP," K. H MARQUIS, J. C. MOORE and K. BOGEN (Census Bureau)
(9314) 186 "Cross-Sectional Imputation and Longitudinal Editing Procedures in the Survey of Income and Program Participation," S. G. PENNELL (The University of Michigan)

Old New
(9315) 187 "Who's Wealthy? Who's Not? Stability and Change in Sociodemographic Covariate Structures of Positive, Zero, and Negative Net Worth Data in the Survey of Income and Program Participation," K. C. LAND and S. T. RUSSELL
(9316) 188 "Are College-Educated Young Persons Finding Good Jobs? A Look at Some of the Evidence" P. RYSCAVAGE (Census Bureau)
(9401) 189 "A Comparison of Attrition in the Panel Study of Income Dynamics and the Survey of Income and Program Participation," J. E. ZABEL
(9402) 190 "The Effect of Attrition on Income and Poverty Estimates from the Survey of Income and Program Participation (SIPP)," E. LAMAS, J. TIN and J. EARGLE
(9403) 191 "An Analysis of Attrition in the PSID and SIPP with an Application to a Model of Labor Market Behavior," J. E. ZABEL
(9404) 192 "Mover Nonresponse Adjustment Research for the Survey of Income and Program Participation," T. M. ALLEN and R. J. PETRONI
(9405) 193 "Use of Administrative Data in SIPP Longitudinal Estimation," S. M. DORINSKI and H. HUANG
(9406) 194 "Longitudinal Imputation of SIPP Food Stamp Benefits," A. TREMBLAY
(9407) 195 "Testing a New Attrition Nonresponse Adjustment Method for SIPP," R. E. FOLSOM and M. B. WITT
(9408) 196 "Oversampling in Panel Surveys," R. SINGH, R. J. PETRONI and T. M. ALLEN (U.S. Bureau of the Census)
(9409) 197 "An Experiment to Reduce Measurement Error in the SIPP: Preliminary Results," K. H. MARQUIS, J. C. MOORE and K. BOGEN (Census Bureau)
(9410) 198 "Changing Social Security Survivorship Benefits and the Poverty of Widows," M. D. HURD (State University of New York and D. A. WISE (Harvard University)
(9411) 199 "Weighting Schemes for Household Panel Surveys," G. KALTON and J. M. BRICK (Westat, Inc.)
(9412) 200 "Weighting Adjustments for Panel Nonresponse in the SIPP," L. RIZZO, G. KALTON and J. M. BRICK (Westat, Inc.)

201 "Overview of SIPP Nonresponse Research Data," S. MACK and R. PETRONI (Census Bureau)
(9414) 202 "Regression Weighting Methods for SIPP Data," A. B. AN, F. J. BREIDT and W. A. FULLER (Iowa State University)
(9415) 203 "The Redesign of the SIPP," V. J. HUGGINS and D. P. FISCHER (Census Bureau)
(9501) 204 "Adjusting for Attrition in Event History Analysis," D. H. HILL (Survey Research Institute, University of Toledo)

Old New

(9502) 205 "Regression Adjustment for Nonresponse," A. B. AN and W. A. FULLER (Iowa State University)
(9503) 206 "Nonresponse Research Plans for the Survey of Income and Program Participation," S. P. MACK and P. J. WAITE (Census Bureau)
(9504) 207 "Income Poverty Times Series Data from the Survey of Income and Program Participation," V. J. HUGGINS and F. WINTERS (Census Bureau)
(9505) 208 "Longitudinal Imputation of SIPP Food Stamp Benefits," A. TREMBLAY (Census Bureau)
(9506) 209 "Continuing Research on Use of Administrative Data in SIPP Longitudinal Estimation," S. M. DORINSKI (Census Bureau)
(9507) 210 "Overview of Redesign Methodology for the Survey of Income and Program Participation," P. H. SIEGEL and S. P. MACK (Census Bureau)
(9508) 211 "Research on Characteristics of Survey of Income and Program Participation Nonrespondents Using IRS Data," M. R. HENDRICK, K. E. KING and J. B. BIENIAS (Census Bureau)
(9601) 212 "The SIPP Cognitive Research Evaluation Experiment: Basic Results and Documentation," J. C. MOORE, K. H. MARQUIS and K. BOGEN (Census Bureau)
(9602) 213 "The Effects of Special Saving Programs on Saving and Wealth," J. M. POTERBA, S. F. VENTI and D.A. WISE (National Bureau of Economic Research)
(9603) 214 "Past is Prologue: Simulating Lifetime Social Security Earnings for the Twenty-First Century," H. M. IAMS and S. H. SANDELL (Office of Research \& Statistics, Social Security Administration)
(9604) 215 "Evaluating the Quality of Income Data Collected in the Annual Supplement to the March Current Population Survey and the Survey of Income and Program Participation," J. CODER and L. SCOON-ROGERS (Census Bureau)
(9605) 216 "Compensating for Missing Wave Data in the Survey of Income and Program Participation," T. R. WILLIAMS and L. BAILEY (Census Bureau)
(9606) 217 "The Effect of the SIPP Redesign on Employment and Earnings Data," E. LAMAS, T. PALUMBO and J. EARGLE (Census Bureau)
(9607) 218 "A Comparative Analysis of Health Insurance Coverage Estimated: Data from CPS and SIPP," R. L. BENNEFIELD
(9608) 219 "Work Related Expenditures in a New Measure of Poverty," K. SHORT, M. SHEA, and T. J. ELLER (Census Bureau)
(9609) 220 "Who Moonlights and Why? Evidence from the SIPP," J. KIMMEL (W.E. Upjohn Institute) and K. S. CONWAY (University of New Hampshire)
(9610) 221 "An Evaluation and Analysis of Reservation Wage Data from SIPP," P. RYSCAVAGE (Census Bureau)
(9611) 222 "Program Participation and Attrition: The Empirical Evidence," J. TIN (Census Bureau)
(9612) 223 "Reducing the Welfare Dependence of Single-Mother Families: Health Related Employment Barriers and Policy Responses," J. KIMMEL

224
"Changing Social Security Benefits to Reflect Child Care Years: A Policy Proposal Whose Time Has Passed," H. M. IAMS and S. SANDELL

226 "Comparing Certain Effects of Redesign on Data from the Survey of Income and Program Participation," E. C. HOCK and F. WINTERS
"The Structure and Consequences of Eligibility Rules for a Social Program: A Study of the Job Training Partnership Act (JTPA)," T. J. DEVINE and J. J. HECKMAN

228 "Developing Extended Measures of Well-Being: Minimum Income and Subjective Income Assessments," R. KOMINSKI and K. SHORT
"Surveys-On-Call: On-Line Access to Survey Data," S. FURUKAWA and E. LAMAS "SIPP Quality Profile, 1998," G. KALTON ($3^{\text {rd }}$ Edition, Westat)
"Preliminary Estimates on Caregiving from Wave 7 of the 1996 Survey of Income and Program Participation," J. M. MCNEIL
"The Survey of Income and Program Participation - Recent History and Future Developments," D.WEINBERG
"The Survey of Income and Program Participation - The Wealth of U.S. Families: Analysis of Recent Census Data," J. M. ANDERSON
"The Survey of Income and Program Participation (SIPP) Methods Panel Improving Income Measurement," PAT DOYLE, BETSY MARTIN, and JEFF MOORE
"Social Security Benefit Reporting in the Survey of Income and Program Participation and in Social Security Administration Records," JANICE A. OLSON
"Food Stamp Receipt: Those Who Left Versus Those Who Stayed in a Time of Welfare Reform," JOHN J. HISNANICK, and KATHRINE G. WALKER
"Home Equity, Wealth, and Financial Assets of U.S. Households in 1995," JOSEPH M. ANDERSON
"The Assessment of Survey of Income and Program Participation (SIPP) Benefit Data Using Longitudinal Administrative Records," MINH HUYNH, KALMAN RUPP, and JAMES SEARS
"Type of OASDI Benefit and Year of Death based on an Exact Match to Social Security Administration Benefit Records, 1990 and 1991 Panels of the Survey of Income and Program Participation (SIPP): Description of the Development of the Data for Public Release and a Preliminary Evaluation of Data Quality," DENTON R. VAUGHAN

240 "Using the Survey of Income and Program Participation for Policy Analysis," DANIEL H. WEINBERG

241 "AAPOR Roundtable: Improving Income Measurement," PAT DOYLE
242 "Longitudinal Attrition in Survey of Income and Program Participation (SIPP) and Survey of Program Dynamics (SPD)," DENTON VAUGHAN

243 "People with Health Insurance: A Comparison of Estimates from Two Surveys," SHAILESH BHANDARI

244 "Assessing the Effect of Allocated Data on the Estimated Value of Total Household Income in the Survey of Income and Program Participation (SIPP)," PATRICIA J. FISHER (Census Bureau)

245 "The Low-Income Dynamics and Persistent Poverty of U.S. Families," JOHN J. HISNANICK (Census Bureau)

246 "An Analysis of the Characteristics of Multiple Program Participation Using the Survey of Income and Program Participation (SIPP)," KANIN L. REESE (Census Bureau)

247 "Factors that Facilitated and Inhibited Job-holding Among Female AFDC/TANF Recipients in 1996," DENTON R. VAUGHAN

APPENDIX C

User Notes

This section is reserved for any information relevant to the SIPP, 2004 Panel Wave 1 Topical Module Microdata File that indicates specific problems with the data, or that becomes available after the file is released. Any such information should be filed behind this page.

For an updated list of user notes always refer to the U.S. Census Bureau's SIPP Internet site at http://www.bls.census.gov/sipp/ The user notes are found under "UserNotes/ListServe/News." The Internet site will be updated as additional user notes become available.

[^0]: ${ }^{1}$ For questions or further assistance with the information provided in this document contact: Tracy Mattingly of the Demographic Statistical Methods Division on 301/763-6445 or via the email at Tracy.L.Mattingly@census.gov.

