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We examine the effect of regularly scheduled macroeconomic announcements on the beliefs and

preferences of participants in the U.S. Treasury market by comparing the option-implied state-price

density (SPD) of bond prices shortly before and after the announcements. We find that the

announcements reduce the uncertainty implicit in the second moment of the SPD regardless of the

content of the news. The changes in the higher-order moments, in contrast, depend on whether the

news is good or bad for economic prospects. Using a standard model for interest rates to disentangle

changes in beliefs and changes in preferences, we demonstrate that our results are consistent with

time-varying risk aversion in the spirit of habit formation.
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1 Introduction

The market for U.S. Treasury securities is the largest and most active financial market in the

world.1 Understanding the functioning of this market is therefore of primary importance to

academics, policy makers, and practitioners alike. Financial theory predicts that asset prices

reflect information about cash-flows and discount rates. In the case of riskfree government

bonds, the cash-flows are fixed and the only relevant quantities for pricing are discount rates

determined by the general macroeconomic environment. It follows logically that Treasury

bond prices should vary with news about macroeconomic indicators. Motivated by this

reasoning, a number of recent studies have investigated the response of U.S. Treasury bond

prices to regularly scheduled U.S. macroeconomic information releases. The availability of

high frequency data has dramatically enhanced detection and estimation of announcement

effects in bond prices (e.g., Ederington and Lee, 1993), return volatility (e.g., Bollerslev

et al., 2000), and market liquidity (e.g., Fleming and Remolona, 1997, 1999). The results

reveal a significant and extremely quick impact of certain announcement types on bond

prices accompanied by substantial intradaily fluctuations in volatility and liquidity. All of

these studies share an ex-post perspective by describing the realized market dynamics.

Our research takes an ex-ante perspective. We examine the effect of the macroeconomic

information releases on the forward-looking beliefs and preferences of participants in the

U.S. Treasury market. Specifically, we compare the state-price density (SPD) of bond prices

shortly before and after the announcements. The SPD, which can be recovered from option

prices, is distinct from the objective probability density function (PDF) because it combines

the beliefs of market participants about the likelihood of future states with their preferences

toward these states. A high value of the SPD for a particular state indicates that market

participants consider the state to be relatively likely to occur, that they dislike the state,

or both. The changes in the SPD associated with the macroeconomic announcements can

therefore be due to changes in beliefs and/or changes in preferences. The contribution of our

paper is to document how the SPD of bond prices changes in response to the information

contained in macroeconomic announcements and then to disentangle the two components of

the SPD to determine the extent to which changes in the SPD reflect changes in the beliefs

or changes in the preferences of market participants.

The design of our analysis is straightforward. We extract SPDs for U.S. Treasury bond

futures prices at several times during announcement and non-announcement days using

transactions data on options traded on the Chicago Board of Trade (CBOT) over a five-year

1As of December 2000, the amount of outstanding U.S. Treasury securities privately held was $2,469
billion (Source: Treasury Bulletin, December 2000).

1



sample period. We obtain the SPDs as Edgeworth expansions around log-normal densities,

along the lines of Jarrow and Rudd (1982). The results from comparing the SPDs shortly

before and after the regularly scheduled information releases are intriguing. We find that the

announcements reduce the uncertainty implicit in the second moment of the SPD, regardless

of their content. The direction and magnitude of the changes in the higher-order moments

of the SPD, in contrast, depend on the information content. The SPD becomes less (more)

negatively skewed and less (more) fat-tailed in response to bad (good) news for the bond

market. Furthermore, the results are asymmetric, in that bad news have a greater impact

on the higher-order moments of the SPD than do good news.

We use a standard jump-diffusion model for the futures price to interpret these results

and, more importantly, to disentangle changes in beliefs and in preferences. The effect of

the announcements on the second moments of the SPD is consistent with a drop in the

jump intensity. The changes in the higher-order moments, however, cannot be attributed to

variation in the price process. Instead, we show that the changes in the higher-order moments

are consistent with time-varying risk aversion. Bad news for the bond market leads market

participants to become less risk averse and for the SPD to be more similar to the PDF. Since

bad news for the bond market tends to be good news for economic prospects, this variation

in risk aversion is consistent with the intuition underlying habit formation models.

The paper proceeds as follows. In Section 2 we describe the announcements and options

data. Section 3 explains our econometric approach for estimating the options-implied SPDs.

We present our empirical results in Section 4 and then interpret these results in Section 5.

Section 6 concludes with a summary of our findings.

2 Data and Preliminaries

2.1 Survey and Announcement Data

We obtain data on the dates, release times, actual released figures, and median forecasts

for the ten most important U.S. macroeconomic information releases from Money Market

Services (MMS) covering the period from January 1995 through December 1999. MMS

conducts a survey of about 40 money market managers on the Friday of the week before

the release of each economic indicator.2 MMS reports the median forecast from the survey,

2The announcement of a given economic indicator typically occurs on the same day of the week and tends
to be concentrated in the last two days of the week. Hence, the distance between survey and announcement
tends to be the same across announcements. In our sample, the average number of days between survey and
announcement is 5.48 with a standard deviation of 1.46.
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which is made available to the market and the business press immediately after the survey

is taken.3

The set of ten announcements is fairly complete in that it describes: the inflationary

process by the consumer price index (CPI) and producer price index (PPI); the situation in

the labor market by the civilian unemployment rate (CUR) and non-farm payrolls (NFP);

the dynamic of consumption by the retail sales (RS); the state of the economy by the

industrial production (IP); the perceived state of the economy by consumer confidence

(CC) and the national association of purchasing managers index (NAPM); the conditions

of the money market by the Federal Open Market Committee federal funds target rate

(FOMC) and the situation in the real estate market by housing starts (HS). Most of these

announcements are released widely and virtually instantaneously at a precise scheduled time.

The statistical agencies impose lock-up conditions to ensure that the information is not

released to the public before the scheduled time (see Fleming and Remolona, 1999). With a

few exceptions, the announcements are timed as follows:4 six annoucements are at 8:30am

ET (CUR, NFP, CPI, HS, PPI, and RS), two are at 10:00am ET (CC and NAPM), and the

remaining two announcements are at 09:15am ET (IP) and at 2:15pm ET (FOMC). All of

the announcements are monthly, except for the eight FOMC meetings per year. A majority

of the announcements occur on a Friday and the employment report (CUR and NFP) is

normally the first government incofmation release concerning economic activity in a given

month. Table 1 describes in more detail the announcement timing in our sample.

2.2 Options and Futures Data

We collect tick-by-tick prices of options written on the U.S. Treasury bond futures. The

options are American-style, which means they can be exercised at any time before expiration,

and are traded alongside the underlying bond futures contracts at the Chicago Board of

Trade (CBOT). The options data covers the same sample period as the announcements data

(January 1995 through December 1999). Each data record specifies the option type (call

or put), the expiration year and month, the strike price, the date, the time to the nearest

second, the exact price, and the type of price (actual trade, reported quote, or nominal

price set by the CBOT). In order to have liquid option prices reflecting actual transactions,

we exclude quotes and nominal prices. We also exclude transactions that occurred outside

3Several studies have examined the accuracy of the MMS forecasts. Using a methodology that accounts for
potential non-stationarity of the series, we find strong evidence that the MMS median forecast has predictive
ability for the actual release. We also find that the median forecast is usually an unbiased predictor.

4For instance, in August 1999 the NAPM announcement was released one day before the scheduled date.
Moreover, the release time was at 10:45am instead of at 10:00am.
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the open outcry time period (before 8:20am or after 3:00pm ET). Finally, we apply the

usual data filters to reduce the influence of measurement errors and market microstructure

problems (see Hentschel, 2002). The final sample consists of 1,004,068 observations.

We also obtain tick-by-tick prices of the underlying U.S. Treasury bond futures. The

bond futures contracts require delivery of a U.S. Treasury bond with 15 or more years to

maturity and are the most heavily traded long-term interest rate instruments in the world.

The contracts mature in March, June, September, and December. Each data record specifies

the time to the nearest second and the exact price of the futures transaction. Given this

data, we match every option price with the corresponding prevailing futures price (i.e., the

most recent price of the futures contract for the appropriate maturity).

Finally, we use daily U.S. dollar LIBOR rates to proxy for the term structure of riskfree

interest rates. We match every option price with the LIBOR rate reported the same trading

day for the monthly maturity closest to the expiration date of the option.

2.3 Implied Volatility Patterns

It is common to describe the features of options data through the volatility of the underlying

security implied by a standard option pricing model, such as that of Black and Scholes (1973).

Since we are dealing with American-style options on futures contracts, we use a binomial tree

version of the Black (1976) model to compute implied volatilities for each option price. We

then sort the options into six moneyness categories (two groups of out-of-the-money options,

two groups of in-the-money options and two groups of at-the-money options) and four time

to maturity categories (eight to 30 days, 30 to 60 days, 60 to 180 day, and more than 180

days). We define moneyness as:

m =
ln

(K

F

)

σatm

√
T − t

, (1)

where K is the strike price, F is the futures price, σatm is the at-the-money implied volatility

and T − t is the time to maturity. This measure of moneyness indicates how many standard

deviations the option is in- or out-of-the-money.

Table 2 shows the means and standard deviations of the implied volatilities across the

24 moneyness and time to maturity categories. Comparing options with the same time

to maturity but different moneyness, we observe an implied volatility smile with some

negative asymmetry. The average implied volatility is higher for far in- and out-of-the

money options than for the corresponding at-the-money options (the smile). Furthermore,

the average implied volatility is slightly higher for out-of-the-money put options than for
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equally out-of-the-money call options (the negative asymmetry). Comparing at-the-money

options with different times to maturity, we also observe a monotonically increasing term

structure of average implied volatilities. Both of these patters in the implied volatilities are

well summarized in the smoothed implied volatility surface depicted in Figure 1.

Table 2 also shows the number of observations in each category. Using this statistic as

indication of liquidity, it is clear that short-dated out- or at-the-money put and call options

are the most liquid. Long-dated or in-the-money options are traded much less frequently.

3 Econometric Approach

3.1 Estimation of the SPD

We infer the SPD from the prices of options with the same time to maturity but different

levels of moneyness using the Gram-Charlier expansion approach pioneered by Jarrow and

Rudd (1982). However, rather than approximate the density of the price of the underlying

security, as they do, we follow Backus et al. (1997) in approximating the density of the log

price change. This latter approach leads to a simple characterization of the option prices in

terms of the higher-order moments of the distribution of the log price change.

Let the one-period change in the log futures price be:

xt+1 = ln Ft+1 − ln Ft, (2)

where Ft is the futures price at date t. Over n periods, the log futures price is:

ln Ft+n = ln Ft +
n∑

j=1

xt+j = log Ft + xt+1,t+n, (3)

so that the distribution of Ft+n conditional on Ft depends on the distribution of the log price

change xt+1,t+n. The price of a European-style call option on the futures with expiration date

t + n and with strike price K is:

Ct,n,K = Et

[
Mt,t+n (Ft+n −K)+]

(4)

where Mt,t+n denotes a stochastic discount factor and x+ ≡ max (0, x). Assuming markets

are complete, we express, without loss of generality, the stochastic discount factor as a
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function of the futures prices Mt,t+n = M(Ft, Ft+n). The price of the call option is then:

Ct,n,K =

∫ ∞

0

M (Ft, Ft+n) (Ft+n −K)+ p (Ft, Ft+n) dFt+n

= e−rntn

∫ ∞

0

(Ft+n −K)+ q (Ft, Ft+n) dFt+n,

(5)

where p(Ft, Ft+n) denotes the conditional distribution of the futures price, q(Ft, Ft+n) denotes

the corresponding risk-neutral distribution defined by the transformation:

q(Ft, Ft+n) ≡ erntnM (Ft, Ft+n) p (Ft, Ft+n) , (6)

and rnt is the continuously compounded n-period interest rate. Finally, we transform the

risk-neutral distribution of the futures price to that of the n-period log price change and

eliminate the max operator by limiting the range of integration:

Ct,n,K = e−rntn

∫ ∞

ln(K/Ft)

(Fte
xt+1,t+n −K) q (xt+1,t+n) dxt+1,t+n. (7)

The risk-neutral distribution q(x) is the object which we referred to earlier as the SPD.

Equation (6) illustrates that the SPD combines the beliefs of market participants about the

likelihood of future states, p(Ft, Ft+n) in our case, with the preferences of market participants

toward these states, as measured by the stochastic discount factor M(Ft, Ft+n).

In the special case in which the SPD of the n-period log price change is conditionally

Gaussian with mean µn and standard deviation σn, the risk-neutral distribution of Ft+n is

conditionally log-normal and the solution to equation (7) is the Black (1976) formula:

Ct,n,K = erntn [FtN (d)−KN (d− σn)] , (8)

where

d =
ln (Ft/K) + σ2

n/2

σn

(9)

and N(x) denotes the standard normal cumulative distribution function evaluated at x.

In general, the SPD of the log price change can be non-Gaussian. Backus et al. (1997)

show that an analytically convenient way to capture the non-normalities of the SPD is

through a Gram-Charlier expansion of the SPD around a Gaussian density. Let xt+1,t+n

have mean µn and standard deviation σn and define the standardized log price change:

ωt+1,t+n =
xt+1,t+n − µn

σn

. (10)
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The Gram-Charlier expansion approach is based on the following fourth-order approximation

of the distribution of ω:

q (ω) = ϕ (ω)− γ1n
1

3!
D3ϕ (ω) + γ2n

1

4!
D4ϕ (ω) , (11)

where ϕ(x) is the standard normal density evaluated at x and Dj denotes the jth derivative

operator. Equation (11) serves as an approximation to an arbitrary density with non-zero

higher-order moments in which the departures from normality are captured by measures of

skewness and kurtosis. Specifically, the cumulant generating function of the Gram-Charlier

expansion reveals that the parameters γ1n and γ2n correspond to the standard skewness and

excess kurtosis statistics, respectively.

Applying the approximation (11) to the SPD in equation (7), we derive the following

expression for the call option price (see the Appendix for details):

Ct,n,K
∼= e−rntn [FtN (d)−KN (d− σn)]

+ Fte
−rntnϕ (d) σn

[γ1n

3!
(2σn − d)− γ2n

4!

(
1− d2 + 3dσn − 3σ2

n

)]
,

(12)

where all of the variables are as defined above. Equation (12) expresses the call option price

as the Black (1976) formula plus terms involving the skewness and excess kurtosis of the

n-period change in the log futures price.

The final step of our econometric approach is to estimate the parameters of the Gram-

Charlier expansion of the SPD using prices of options with the same expiration date but

with different strike prices. Consider a cross-section of N prices of call options which differ

only in their strike prices, {Ct,n,K1 , Ct,n,K2 , . . . , Ct,n,KN
}. We estimate the three parameters

σn, γ1n, and γ2n by numerically solving the non-linear least-squares (NLLS) problem:

min
σn,γ1n,γ2n

N∑
i=1

[Ct,n,Ki
− Ct,n,Ki

(σn, γ1n, γ2n)]2 , (13)

where the first option price in the brackets represents the data and the second term is the

corresponding theoretical price from equation (12).

3.2 Extensions

3.2.1 Non-Negativity Constraint

An obvious problem with using polynomial expansions to approximate probability densities

is that unconstrained expansions can imply negative probabilities. In the context of Gram-
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Charlier expansions, Jondeau and Rockinger (2001) derive constraints on the skewness and

kurtosis parameters in the NLLS problem (13) which guarantee positivity. In addition, they

provide a computationally efficient algorithm for solving this constrained problem.

To get a sense for the importance of imposing this positivity constraints in our application,

we present in Panel A of Table 3 unconstrained and constrained estimates of the SPD for

a randomly selected sub-sample of 3,000 options with 30, 60, and 90 days to maturity. For

all three maturities, the unconstrained and constrained estimates are identical, which means

that the constraint is not binding. At least for this randomly selected sub-sample, the

departures from normality implied by our options data are not severe enough to require a

positivity constraint on the Gram-Charlier density approximation. Nonetheless, throughout

our empirical work we check that the estimated moments of the SPD satisfy the constraints

guaranteeing positivity and, in the few cases when they do not, impose the constraints using

the algorithm described by Jondeau and Rockinger (2001).

3.2.2 Implied Volatility Based Estimates

Backus et al. (1997) suggest a further simplification of the NLLS estimation problem (13).

Their approach is based on linearizing the call option price in equation (12) in terms of

volatility, which leads to the following implied volatility function:

vn (d) ∼= σn

[
1 +

γ1n

3!
(2σn − d)− γ2n

4!

(
1− d2 + 3dσn − 3σ2

n

)]
, (14)

where vn is the Black-implied volatility of the option which equates the theoretical price

corresponding to the Black (1976) model to the observed price. Using this implied volatility

function, Backus et al. estimate the parameters of the Gram-Charlier approximation using

the following NLLS estimation problem based on implied volatilities:

min
σn,γ1n,γ2n

N∑
i=1

[vn,i − vn(di)]
2 . (15)

This implied volatility based estimator is computationally more efficient than our price based

counterpart (13) because it is easier to evaluate the expression (14) than (12).

Panel A of Table 3 shows both price and implied volatility based estimates of the SPD

for the random sample of 3,000 option prices described above. The results illustrate clearly

that the implied volatility based estimates can be substantially different from the price based

estimates. For example, for the 60-day horizon the skewness of the SPD from the price based

estimates is -0.182 with a standard error of 0.017 while the volatility based estimates give
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a skewness of 0.065 with a standard error of 0.050. Furthermore, judging by the standard

errors in parentheses, the implied volatility based estimates are all approximately half as

precise as the corresponding price based estimates. This observation is consistent with the

finding of Christoffersen and Jacobs (2002) that implied volatility based estimates of option

pricing models are substantially more noisy than price based estimates. Because of this

greater imprecision of the implied volatility based estimates and because it is unclear how

accurate the linearization of the option price underlying equation (14) is in our context, we

use price based estimates of the SPD throughout our empirical work.

3.2.3 Early Exercise of American-Style Options

Our econometric approach treats the options as if they are European-style although in

actuality we are dealing with American-style options. Following Melick and Thomas (1997),

we incorporate the early exercise feature by expressing the values of the American-style call

and put options as convex combinations of upper and lower bounds:

C∗
t,n,K

∼= λc
n,KCu

t,n,K +
(
1− λc

n,K

)
C l

t,n,K

P ∗
t,n,K

∼= λp
n,KP u

t,n,K +
(
1− λp

n,K

)
P l

t,n,K ,
(16)

with

Cu
t,n,K = Et [max (0, (Ft+n −K))]

C l
t,n,K = max

(
Et [Ft+n]−K, e−rntnEt [max (0, (Ft+n −K))]

)

P u
t,n,K = Et [max (0, (K − Ft+n))]

P l
t,n,K = max

(
K − Et [Ft+n] , e−rntnEt [max (0, (K − Ft+n))]

)
.

(17)

The lower bound is the European-style option price and the upper bound is derived in

Chaudhary and Wei (1994). Applying the Gram-Charlier approximation (11) to the SPDs

embedded in equation (17), we can derive analytic expressions for the upper and lower

bounds (see the Appendix for details). Notice that for out-of-the-money options the upper

and lower bounds differ only by the discount factor and their spread is therefore very tight,

especially when interest rates are low and the maturity date is near. In fact, the maximum

relative difference between the upper and lower bounds for our sample of options is only 0.59

percent, which suggests already that the early exercise feature is negligible.

To incorporate these bounds into our econometric approach, we assume that the

parameters λc
n,K and λp

n,K are the same for all options with a given maturity. We then
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include this single parameter λn in the NLLS problem:5

min
σn,γ1n,γ2n,λn

N∑
i=1

M∑
j=1

((
Ct,n,Ki

− C∗
t,n,Ki

(.)
)2

+
(
Pt,n,Kj

− P ∗
t,n,Kj

(.)
)2

)
, (18)

where C∗
t,n,K and P ∗

t,n,K are the American-style option prices in equation (16).

Panel B of Table 3 compares estimates of σ, γ1, and γ2 obtained from the estimators (13),

which treats the options as European-style, and (18), which explicitly incorporates the early

exercise feature, for the random sample of 3,000 option prices described above. The results

are strikingly similar. Even at the 60-day horizon, for which the differences in the estimates

are most pronounced, the skewness and kurtosis of the SPD from the two estimators are well

within two standard errors of each other. Furthermore, the estimates of the parameter λn are

always less than 1/1000 in magnitude and are statistically indistinguishable from zero. This

implies that the option price is essentially determined by the lower bound, the European-style

price, which is consistent with the options normally being exercised at maturity. Indeed, the

actual exercise data for our sample periods reveals that 83 percent the exercises occurred at

the expiration date and more than 90 percent occurred in the week prior to the expiration

date. Because of these findings and because the estimator (13) is easier to implement (it

involves the computation of only one option price as opposed to two), we pretend as if the

options are European-style throughout our empirical work.

4 Empirical Results

4.1 Seasonality and Time Horizon

Before we can study the effects of the macroeconomic announcements on the SPD, we first

need to address two issues which arise in this analysis: the possibility of intra-weekly and

intra-daily seasonalities of the SPD and the dependence of the SPD on the time horizon.

We first compare the average at-the-money implied volatility and the moments of the

option-implied SPD on announcement and non-announcement days for different days of the

week and times of the day. We compute the at-the-money implied volatility by inverting a

binomial tree version of the Black (1976) formula for options with moneyness m between

-0.5 and 0.5. We estimate the moments of the SPD through the NLLS estimator (13). In

both cases, we use the most liquid cross-section of options with eight to 44 days to maturity.

5We also considered specifications with separate parameters for call and put options as well as with
parameterizations of λn as a function of the strike price. The results are qualitatively the same.
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The first plot in the first row of Figure 2 shows that if we consider only days during

which at least one of the ten announcements occurs, the at-the-money implied volatility and

the second moment of the option-implied SPD exhibit a similar decreasing pattern, with

Mondays displaying the highest value and Fridays the lowest. Mondays and Fridays are the

days with the least and most announcements, respectively (28 versus 207 releases), suggesting

that the announcements reduce the uncertainty implicit in both the at-the-money implied

volatility and the second moment of the SPD.6 In contrast, the higher-order moments of

the SPD do not exhibit such a pattern. The second plot in the first row demonstrates that

the day-of-the-week effects in the at-the-money implied volatility and the second moment

of the SPD are specific to the announcement days. If we consider only non-announcement

days, these two uncertainty measures are virtually constant throughout the week. There is a

slight increase in uncertainty on Thursdays, the most frequent pre-announcement day, which

is consistent with uncertainty being greatest just prior to the announcements.

The second row of Figure 2 plots the at-the-money implied volatility and moments of

the SPD at different times during the day. The first plot for announcement days shows

that uncertainty is decreasing substantially throughout the day. The largest drop occurs

after 8:30am, which corresponds to the time at which most of the announcements occur. In

contrast, the higher-order moments of the SPD are again constant throughout the day. The

second plot of the second row shows that on non-announcement days there are two much

smaller decreases in uncertainty at the beginning and at the end of the trading day, which

may be attributable to the opening and closing of daily positions.

We conclude from Figure 2 that the SPD exhibits no apparent intra-weekly and intra-

daily seasonalities other than the ones associated with the announcements. This conclusion

implies that there is no need to control for the day of the week and time of the day in our

empirical work. Furthermore, the day-of-the-week and time-of-the-day effects observed on

announcement days foreshadow some of our empirical results in the next section.

Another issue which arises in our empirical work is the varying time horizon of the SPD.

Since we are using exchange-traded options with specific expiration dates, the horizon of the

option-implied SPD varies in a sawtooth-like fashion throughout the sample. Due to the

regularity of both the expiration and announcement calendars, certain announcements tend

to be released just days before the next expiration date while others are typically released

shortly after an expiration and hence about a month before the following expiration date. To

6Ederington and Lee (1996) document a similar day-of-the-week effect in the at-the-money implied
volatility of options on Treasury bond futures for a different sample period (1988-1992).
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the extent that the non-normalities of the SPD depend on the time horizon, this correlation

between the announcement and expiration dates may lead to difficulties in comparing the

results across the different announcement types.

We mitigate this problem in two ways. First, we concentrate on the cross-section of

options with the shortest maturity between eight and 44 days.7 These short-term options are

the most liquid. Furthermore, it is reasonable to expect that the effect of the announcements

is most pronounced for short horizons that do not cover another information release of the

same type.8 Second, we include the time to maturity as an explanatory variable in each of

the following empirical specifications. If an announcement has a different effect at different

horizons, this will be reflected in the time variable and the effect of an announcement release

can therefore be disentangled from the effect of the time to maturity.

4.2 Unconditional Response of the SPD

We first study the unconditional response of the SPD to the macroeconomic announcements

without considering whether an announcement is “good” or “bad” news. We examine the

changes in both the average at-the-money implied volatility and the moments of the fitted

SPD at the daily and intra-daily frequency. For the daily analysis, we construct daily time-

series of the average at-the-money implied volatility and moments of the fitted SPD using

all transactions of the shortest maturity options available each day.9 Given dummy variables

Dkt, where Dkt = 1 if announcement k is made on day t and Dkt = 0 otherwise, we estimate

the following regression:

(µt − µt−1) = αt +
9∑

k=1

βktDkt + γtT + et, (19)

where T is the time to maturity of the option and µt−µt−1 represents the day-to-day change

in either the average at-the-money implied volatility or in the standard deviation σn, absolute

value of skewness abs (γ1n), or excess kurtosis γ2n of the fitted SPD.

Although we include all ten announcements in the regression, we only present and discuss

here the results for the CPI, Employment Report (ER), and PPI announcements. Ederington

and Lee (1993) and Bollerslev et al. (2000) document that these three announcement types

are by far the most influential for Treasury returns and their volatility. The results for the

7It is common to ignore options with less than a week to expiration due to market microstructure issues.
8Consistent with this argument, the results for medium- and long-term options are qualitatively the same,

but less pronounced than for short-term options. The results for longer horizons are available on request.
9Since most announcements take place at 8:30am ET, we exclude the first ten minutes of trading to

sharpen the distinction between announcement and non-announcement days.
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other announcements, which we include in the regression mostly to disentangle the effects

of concurrent announcements, are weaker but qualitatively similar.

Panel A of Table 4 shows that almost one third of the variance of the day-to-day changes

in the average at-the-money implied volatility is attributable to the announcements. All

coefficients are highly significant with negative signs, consistent with the intuition that the

announcements reduce uncertainty. The strongest effect is registered for the employment

report with an average drop in the at-the-money implied volatility of 0.85 percent.

It is possible that the response of the at-the-money implied volatility masks changes in

the higher-order moments of the SPD. However, Panel B of Table 4 shows that this is not

the case in general. The skewness and excess kurtosis of the option-implied SPD are not

systematically affected by the event of an announcement. Even considering the absolute value

of skewness, a more uncertainty-related measure, we obtain just a ten percent significance

level for the employment report. We conclude from these results that the unconditional

reduction in uncertainty is almost completely exerted on the second moment.

To further sharpen this analysis, we examine next the intra-day changes of the at-the-

money implied volatility and moments of the fitted SPD surrounding the macroeconomic

announcements. For this, we replace the daily changes µt−µt−1 in equation (19) with intra-

daily changes µpost−µpre, where the pre and post statistics are computed using all transaction

during the 45 minutes preceding and following the typical release time, respectively. In the

case of the early 8:30am announcements, the pre interval is 2:15 to 3:00pm of the prior day

since the market opens only at 8:20am.

Panel A of Table 5 shows that the at-the-money implied volatility drops significantly

during the 45 minutes after the CPI, ER, and PPI releases. This indicates a very quick

reaction of the SPD to the announcements, consistent with the results of Fleming and

Remolona (1999) and Bollerslev et al. (2000) for bond returns and their realized volatility,

respectively. Moreover, comparing the intra-daily results to the corresponding daily results in

Panel A of Table 4 reveals that the drop in implied volatility is not transitory. The 45-minute

change does not seem to revert over the remainder of the day. The differences between the

daily and intra-daily coefficient are greatest for the PPI release. This is consistent with the

PPI often being released the day before the CPI, so that the afternoon of the PPI release

is the pre-annoucement period of the CPI release.10 Finally, Panel B of Table 5 shows that

the results for the at-the-money implied volatility relates directly to the second moment of

the SPD. The higher-order moments of the fitted SPD are again unaffected.

10The PPI is released the day before the CPI about 40 percent of the times in our five-year sample.

13



4.3 Conditional Response of the SPD

We now turn to the conditional effect of the macroeconomic announcements on the SPD,

where we condition our previous analysis on the content of the news. To gauge the extent to

which an announcement contains new information, we construct the following standardized

measure of surprise:

Sk =
Ak −Xk

σk

, (20)

where Ak is the value of the main statistic released in announcement k, Xk denotes the

corresponding median survey forecast, and σk is the empirical standard deviation of the

innovations Ak −Xk. Standardizing the surprise by σk allows us to compare the regression

coefficients across different announcement types. We then estimate for each announcement

type the following regression:

(µt − µt−1) = αk + βkSk +
H∑

h=1

δhSh + γkT + ek, (21)

where µt − µt−1 represents again the day-to-day change in either the average at-the-money

implied volatility or in the standard deviation σn, skewness γ1n (signed here), or excess

kurtosis γ2n of the fitted SPD. The subscript h refers to announcements which are released

concurrently with announcement k.11 Including the terms subscribed by h in the regression

serves to isolate the marginal effect of each announcement type.

Table 6 presents the regression results for the CPI, NFP and PPI announcements. Panel

A shows again that the event of an announcement leads to a drop in the at-the-money implied

volatility. The intercepts of the regressions are all negative and statistically significant at

the one-percent level. However, the information content appears irrelevant for this drop in

implied volatility. The slope coefficients are insignificant in all cases and the adjusted R2 are

substantially lower than in Panel A of Table 4.

The results for the standard deviation of the SPD in Panel B of Table 6 are qualitatively

the same as for the implied volatility. The standard deviation drops after an announcement

irrespective of the information content. However, the results for higher-order moments of

the SPD are very different. A positive (negative) surprise in the CPI release does not affect

the standard deviation of the SPD, but significantly increases (decreases) its skewness and

decreases (increases) its excess kurtosis. This pattern in the coefficients is the same for the

NFP announcement, although the significance levels are lower.

11For the announcements considered here, CUR and NFP are always released jointly in the Employment
Report. The CPI and PPI are occasionally released together with RS. Table 1 summarizes the number of
concurrent announcements in our sample.
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Given that the SPD is on average negatively skewed on both announcement and non-

announcement days (see Figure 2), we can interpret these findings as follows. A positive

surprise results in a SPD which is closer to being Gaussian, with less negative skewness and

less excess kurtosis. The opposite is true for a negative surprise. To better understand this

pattern, we classify surprises as being good (bad) news for the Treasury market depending

on whether the surprise is on average positively (negatively) correlated with bond returns

over the 30 minutes following the announcement. For all of the announcements except the

CUR, a positive (negative) surprise corresponds to bad (good) news, consistent with the

literature (e.g., Edison, 1996). Therefore, bad news for Treasuries leads to a more Gaussian

SPD. We will return to the broader economic significance of this finding below.

We further examine whether the announcement effects vary with the sign of the surprise.

For this, we generalize equation (21) by allowing for different slope coefficients depending on

the good and bad news as follows:

(µt − µt−1) = αk +

{
βGk|Sk|
βBk|Sk|

+
H∑

h=1

{
δGh|Sh|
δBh|Sh|

+ γkT + ek (22)

where the subscripts G and B indicate whether an announcement is good or bad.

Table 7 presents the results for this specification. Panel A shows that the announcement

related drop in the at-the-money implied volatility documented in the previous tables

depends to some extent on the information content of the announcement. For both the CPI

and NFP annoucements, the slope coefficients are significantly positive, which, together with

the negative intercepts, means that the at-the-money implied volatility drops comparatively

less when these announcements contain bad news. However, Panel B of Table 7 reveals

that this asymmetry in the at-the-money implied volatility response is actually an artifact

of asymmetric responses of the higher-order moments of the SPD, rather than due to an

asymmetric change in uncertainty. The slope coefficients for the standard deviation of the

SPD are insignificant in almost all cases, while we observe a significant increase in the

skewness of the SPD after CPI and NFP bad news and a significant reduction in the excess

kurtosis of the SPD after CPI, NFP, and PPI bad news. We conclude from these results

that the response of the SPD to the announcements is mostly driven by bad news.12

In tables 8 and 9 we repeat the conditional analysis above for intra-day changes in the

12Since we use the absolute value of the surprise in this specification, the asymmetric pattern depends
on our definition of good or bad news as well as on the magnitude of the surprise. We verified for all of
the announcements that a dummy variable for good or bad news alone is never significant. The magnitude
of the surprise is thus important in determining the change in the higher-order moments of the SPD. The
results are qualitatively similar if we use the squared surprise instead of its absolute value.
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at-the-money implied volatility and moments of the option-implied SPD. The results confirm

that the information content of the announcement plays a negligible role for changes in the

at-the-money implied volatility, with the exception of bad NFP news (Panel A of tables 8

and 9). The tables also support our previous finding that positive (negative) CPI, NFP, and

PPI surprises lead to a reduction (increase) in the negative skewness and excess kurtosis of

the SPD (Panel B of Table 8). Furthermore, the explanatory power is again considerably

enhanced by differentiating between the effects of good and bad news, in which case only

the effect of bad news remains highly significant (Panel B of Table 9).

We conclude this section with a test of the predictive ability of the SPD. Specifically,

we examine whether the moments of the SPD estimated shortly before an announcement

help predict the announcement surprise relative to the MMS survey forecasts. The results

are unimpressive and hence not tabulated here. Consistent with the MMS forecasts being

unbiased and efficient, the moments of the SPD do not help predict the magnitude or absolute

value of the surprise. There is some marginal statistical evidence of the higher order moments

of the SPD being able to predict the sign of the surprise in a multinomial logit specification,

but the magnitude of this effect is small in an economic sense.

5 Changing Beliefs or Changing Preferences?

Having documented systematic changes in the option-implied SPD in response to major

macroeconomic announcements, we now turn to an interpretation of our empirical results

with the specific aim to disentangle changes in the beliefs and changes in the preferences of

market participants. We first interpret our results in the context of a stylized jump-diffusion

model and then show that this interpretation also holds in a far less structural setting.

5.1 Jump-Diffusion Model

The sharpest price changes of U.S. Treasuries tend to be associated with macroeconomic

announcements and occur within a few minutes of the news (Fleming and Remolona, 1997).

It is therefore sensible to assume that bond futures prices follow a jump-diffusion process:

dF

F
=

(
µ− λk̄

)
dt + σdZ + kdq, (23)

where F denotes the futures price, σ is the instantaneous volatility of futures returns in the

absence of jumps, Z is a standard Wiener process, k measures the magnitude of percentage

price jumps and is distributed as ln(1+k) ∼ N[µJ− 1
2
σ2

J , σ2
J ], k̄ denotes the average percentage
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price jump exp (µJ)− 1, and q is a Poisson counter with instantaneous intensity λ such that

Prob[dq = 1] = λdt. Under this model, the futures prices follows a geometric Brownian

motion most of the time, except when, an average of λ times per year, the price jumps

discretely by a random percentage k. Notice that although we know the timing of the

announcements, we make the standard assumption of random Poisson jump arrivals as

opposed to using a deterministic jump process. The reason is that we do not know if a specific

announcement induces a jump and, more importantly, there are a number of instances in

which bond prices appear to have jumped on non-announcement days.

Following the approach of Naik and Lee (1990), we use an equilibrium pricing kernel to

obtain the risk-neutral price dynamics:

dF

F
=

(
c− λ∗k̄∗

)
dt + σdZ + k∗dq∗, (24)

where c is the cost of carry of the asset (zero for futures), k∗ measures the magnitude of

risk-neutral percentage price jumps and is distributed as ln (1 + k∗) ∼ N[µ∗J − 1
2
σ2

J , σ2
J ], k̄∗

denotes the risk-neutral average percentage price jump exp (µ∗J) − 1, and q∗ is a Poisson

counter with risk neutral instantaneous intensity λ∗. Naik and Lee show that when there

exists a representative agent maximizing a utility function with constant relative risk aversion

Γ, the relationship between the risk-neutral parameters to their physical counterparts is:

λ∗ = λ exp
[−ΓµJ + 0.5σ2

J

(
Γ2 + Γ

)]

µ∗J = µJ − Γσ2
J .

(25)

Pricing European-style option with these risk-neutral price dynamics is straightforward

(e.g., Merton, 1976). Specifically, the price of a call option with strike price K and time to

expiration T is:

C = exp (−rT ) exp (−λ∗T )
∞∑

j=0

(λ∗T )j

j!
BLj, (26)

where for j = 0, 1, ... jumps, we have:

BLj = F exp (rjT ) N[dj]−K N[dj − σjT ] (27)
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with

rj = − λ∗k̄∗ +
jµ∗J
T

σ2
j = σ2 +

jσ2
J

T

dj =
ln(F/K) + T (rj + 0.5σ2

j )

σj

√
T

.

(28)

To interpret our empirical results in the context of this jump-diffusion framework, we

need to calibrate the parameters of the model to our data. For this, we simply classify as

jumps the 25 largest absolute price changes or equivalently the 98 percentile of the empirical

absolute return distribution. This classification corresponds approximately to a physical

jump intensity of λ = 5. It results in an estimate of the physical mean jump size k̄ that is

not significantly different from zero and an estimate of the physical jump volatility σJ of two

percent. We then set the variance of the diffusion to be the difference between the sample

variance of daily returns and the variance induced by the jumps, or σ2 = σ2
j − (jσ2

J) /T .

Finally, we let risk aversion Γ range from zero to 15.

An intuitive way to check that this calibration is sensible is to compare the SPD implied

by the model to our empirical estimates. We use the calibrated model to simulate a set of

option prices for levels of moneyness, time to maturity, and a risk-free rate which match the

average features of our sample. We then fit a Gram-Charlier expansion of the SPD to this

simulated data and compare the results to our empirical estimates. The general conclusion

from this exercise is that, with risk aversion of Γ = 5, the SDPs implied by our calibrated

model are very similar to our empirical estimates.

Figure 3 presents the key insights from this jump-diffusion model. The first plot illustrates

the effects of a reduction in the physical jump intensity from λ = 5 to λ = 4 on the implied

volatilities of options with different moneyness. The at-the-money implied volatility drops

substantially. The shape of the smile, however, is more or less unchanged, suggesting that

the higher order moments of the SPD are unaffected. The second plot shows the effects of

a reduction in risk aversion from Γ = 10 to Γ = 1. In striking contrast to the first plot,

the at-the-money implied volatility remains constant but the smile becomes more symmetric

and less pronounced, implying a less negatively skewed and less fat-tailed SPD. The third

plot confirms this relationship between risk aversion and the higher-order moments of the

SPD. It shows that, as Γ drops from 15 to zero, the negative skewness of the SPD decreases

from -0.31 to -0.01 and the excess kurtosis decreases from 1.18 to 1.05.
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In the context of our empirical results, each announcement is likely to be associated with

a perceived reduction in the physical jump intensity λ. Since we are considering fairly short-

term options and since macroeconomic announcements are the most likely cause of jumps,

having one less announcement until a given option matures is analogous to having a lower

jump intensity (for the purpose of pricing that particular option). The first plot in Figure 3

shows that such reduction in the jump intensity produces a drop in uncertainty but leaves

the higher-order moments of the SPD largely unchanged.13 This reasoning is consistent with

our observation in Table 4, that the event of an announcement is associated with a drop in

the subsequent uncertainty, measured either by the implied volatility or standard deviation

of the SPD, but is not related to changes in the higher-order moments of the SPD.

It is much more difficult to explain the results in the remaining tables with a perceived

change in the physical price process. Recall our most striking result is that bad news leads

to a less negatively skewed and also less fat-tailed SPD. In the jump-diffusion model above,

the higher-order moments of the physical return distribution are mostly controlled by the

parameters µJ and σJ . To be consistent with our empirical results, bad news, which is likely

to be associated with a negative jump in the futures price, would have to lead to an increase

in µJ , so future jumps are less negative on average, as well as a drop in σJ , causing future

jumps to also be less volatile. It is difficult, at least for us, to think of an economic or

statistical explanation for such change in the physical price process.

The results for the higher-order moments are instead more consistent with a change in risk

aversion. As the second and third plots of Figure 3 illustrate, a drop in risk aversion has little

effect on the standard deviation of the SPD but results in less negative skewness as well as

less excess kurtosis. To explain the results with a change in risk aversion, bad news for bonds

must lead a decrease in risk aversion and vice versa for good news, although to a lesser extent.

Such correlation between macroeconomic announcements and risk aversion is consistent with

economic intuition because bad news for bonds tends to be good news for economic prospects.

Therefore, risk aversion decreases when consumers receive good news for economic prospects

and hence for future consumption, which is exactly the intuition underlying the literature on

habit formation models. In habit formation models (e.g., Campbell and Cochrane, 1999), the

risk aversion of the representative agent varies with this difference between the consumption

of the agent and a habit level formed through past consumption. Holding the habit level

constant, a negative shock to consumption growth lowers the difference between consumption

and the habit level, causing the agent to become more risk adverse. The opposite is true for

a positive consumption growth shock. It follows that, consistent with our empirical results,

13This statement clearly depends on the magnitude of the reduction in the jump intensity. A substantial
decrease in λ does reduce the excess kurtosis of the SPD along with the standard deviation of the SPD.
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bad (good) news for bonds, which corresponds to good (bad) news for consumption growth,

lowers (raises) aggregate risk aversion.

In summary, our empirical results suggest that macroeconomic announcements lead to

changes in both the beliefs and preferences of market participants. On one hand, the observed

decrease in the uncertainty implied by the SPD is consistent with market participants

anticipating one less jump over a fixed horizon. On the other hand, the empirical correlations

between the news content and the higher-order moments of the SPD indicate a change in risk

aversion. Furthermore, the way the preferences of market participants change in response to

the announcements agrees with the intuition underlying habit formation models.

5.2 Model-Free Approach

It is natural to wonder to what extent the interpretation of our empirical results offered above

hinges on the specification of the jump diffusion model and on the calibrated parameter

values. To address this issue, we alternatively consider the much more general framework of

Bakshi et al. (2003) who characterize the link between the moments or the SPD, risk aversion,

and the moments of the physical distribution. Specifically, they show that in power utility

economies with aggregate relative risk aversion Γ, the risk-neutral skewness and kurtosis are

linked to their physical counterparts by:14

γ1n ≈ γ1n − Γγ2nσn

γ2n ≈ γ2n − Γ [2 (γ2n + 5) γ1n + γ3n] σn,
(29)

where σn, γ1n, γ2n and γ3n are the standard deviation, skewness, excess kurtosis, and fifth

normalized moment of log returns under the physical probability measure, respectively.

Equation (29) shows immediately how a drop in risk aversion Γ leads to a less negatively

skewed and also less fat-tailed SPD. It also shows that in order to obtain the same effect

through a change in the physical distribution, requires a strong correlation between the news

content and the physical excess kurtosis γ̄2n, such that bad news for bonds makes subsequent

extreme price changes less likely. To check whether there is any evidence of such correlation

in the data, we compute the excess kurtosis of daily returns for the months following the

25 most positive price changes and for the months following the 25 most negative price

changes. The estimated excess kurtosis is 1.6 after large positive price changes and 2.5 after

large negative price changes, suggesting that, if anything, bad news for bonds leads to an

14The power utility assumption is not critical. Bakshi et al. (2003) also generalize these results to a broader
family of utility functions with possibly time-varying risk aversion.
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increase in the excess kurtosis of the physical distribution, rather than to a decrease. We

therefore conclude that the much more general framework of Bakshi et al. (2003) confirms

our earlier interpretation of our empirical results. Macroeconomic announcements lead to

changes in both the beliefs and preferences of market participants.

6 Conclusion

We examined the effect of regularly scheduled macroeconomic announcements on the beliefs

and preferences of participants in the U.S. Treasury market by comparing the option-implied

SPD of bond prices shortly before and after the announcements. At least two stylized

facts emerged from our empirical analysis. First, the announcements reduce the uncertainty

implicit in the second moment of the SPD, regardless of the content of the news. Second,

the changes in higher-order moments of the SPD depend on whether the news is good or

bad. Specifically, bad news for bonds, which tends to be good news for economic prospects,

leads to a less negatively skewed and also less fat-tailed SPD.

We used both a jump diffusion model and a model-free approach to interpret these

results and, more importantly, to disentangle changes in beliefs and changes in preferences.

The effect of the announcements on the second moments of the SPD is consistent with a

drop in the jump intensity. The changes in the higher-order moments, however, cannot be

attributed to variation in the price process. Instead, we show that the changes in the higher-

order moments are consistent with time-varying risk aversion. Bad news for bonds leads

market participants to become less risk averse and for the SPD to be more similar to the

PDF. Since bad news for bonds tends to be good news for economic prospects, this variation

in risk aversion is consistent with the intuition underlying habit formation models.
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A Appendix

A.1 Gram-Charlier Density for Futures Options

Recall the Gram-Charlier density function (11) and its components:

f (ω) = ϕ (ω)− γ1n

3!
D3ϕ (ω) +

γ2n

4!
D4ϕ (ω) , (A.1)

with ω =
(
xn

t+1 − µn

)
/σn and ϕ (ω) = (2π)−1/2 exp (−ω2/2). Under risk-neutrality, the call

option price depends on the conditional distribution of the standardized log price change ω:

∫ ∞

ω∗

(
Fte

µn+σnω −K
)
f (ω) dω =

∫ ∞

ω∗

(
Fte

µn+σnω −K
)
ϕ (ω) dω

− γ1n

3!

∫ ∞

ω∗

(
Fte

µn+σnω −K
)
ϕ′′′ (ω) dω

+
γ2n

4!

∫ ∞

ω∗

(
Fte

µn+σnω −K
)
ϕ′′′′ (ω) dω

= I1 − γ1n

3!
I2 +

γ2n

4!
I3,

(A.2)

with ω∗ = (log (K/Ft)− µn) /σn. The first term on the right side of this equality is the
Black (1976) call option price capitalized to the end of the period:

I1 = FtN (d)−KN (d− σn) . (A.3)

For the second term, we obtain by repeated integration by parts and using the fact that
limx→∞ exϕ(n) (x) = 0, the expression:

I2 = −σnKϕ (ω∗) (ω∗ + σn)− σ3
nI1 − σ3

nKN (−ω∗) . (A.4)

The third term is:

I3 = σnKϕ (ω∗)
[
(ω∗)2 − 1 + ω∗σn + σ2

n

]
+ σ4

nI1 + σ4
nKN (−ω∗) . (A.5)

The call option price is therefore:

Cnt = e−rntn
(
I1 − γ1n

3!
I2 +

γ2n

4!
I3

)

=e−rntn [FtN (d)−KN (d− σn)]
(
1 +

γ1n

3!
σ3

n +
γ2n

4!
σ4

n

)

+
γ1n

3!

[
e−rntnσnKϕ (ω∗) (ω∗ + σn) + e−rntnσ3

nKN (−ω∗)
]

+
γ2n

4!

[
e−rntnσnKϕ (ω∗)

[
(ω∗)2 − 1 + ω∗σn + σ2

n

]
+ e−rntnσ4

nKN (−ω∗)
]
.

(A.6)

Finally, we obtain equation (12) from equation (A.6) by (i) substituting the identities
ω∗ = σn − d and Ftϕ (d) = Kϕ (d− σn) (which is equivalent to Ftϕ (d) = Kϕ (σn − d)),
(ii) applying the arbitrage condition µn = −σ2

n/2−σ3
nγ1n/3!−σ4

nγ2n/4!, and (iii) eliminating

22



the terms involving σ3
n and σ4

n , which are very small (see Backus et al., 1997).

Consider now a linear approximation of the Black (1976) formula as a function of implied
volatility vn around the point vn = σn:

Cnt = e−rntn [FtN [d (vn)]−KN [d (vn)− vn]]
∼= e−rntn [FtN [d (σn)]−KN [d (σn)− σn]] + Fte

−rntnϕ (d) (v − σn) .
(A.7)

If we equate the approximated call option price in equation (A.7) to the Gram-Charlier call
option price in equation (12), we obtain the implied volatility function in equation (14).

We briefly repeat the same steps for a put option:

∫ ω∗

−∞

(
K − Fte

µn+σnω
)
f (ω) dω =

∫ ω∗

−∞

(
K − Fte

µn+σnω
)
ϕ (ω) dω

− γ1n

3!

∫ ω∗

−∞

(
K − Fte

µn+σnω
)
ϕ′′′ (ω) dω

+
γ2n

4!

∫ ω∗

−∞

(
K − Fte

µn+σnω
)
ϕ′′′′ (ω) dω

= I4 − γ1n

3!
I5 +

γ2n

4!
I6,

(A.8)

with ω∗ = (log (K/Ft)− µn) /σn. Using the same logic as for the call option, we obtain:

I4 = KN (σn − d)− FtN (−d)

I5 = σnKϕ (ω∗) (−ω∗ − σn) + σ3
nKN (ω∗)

I6 = −σnKϕ (ω∗)
(
1− (ω∗)2 − σnω

∗ − σ2
n

)− σ4
nKN (ω∗) .

(A.9)

The put price is then:

Pnt = e−rntn
(
I4 − γ1n

3!
I5 +

γ2n

4!
I6

)

= e−rntn [KN (σn − d)− FtN (−d)]

+
γ1n

3!

[
e−rntnσnKϕ (ω∗) (−ω∗ − σn) + e−rntnσ3

nKN (ω∗)
]

+
γ2n

4!

[−e−rntnσnKϕ (ω∗)
(
1− (ω∗)2 − σnω

∗ − σ2
n

)− e−rntnσ4
nKN (ω∗)

]
.

(A.10)

Applying the same substitutions as for the call option formula and observing again that
ω∗ = σn − d, we obtain the Gram-Charlier put option price:

Pnt
∼= e−rntn [KN (σn − d)− FtN (−d)]

+ Fte
−rntnϕ (d) σn

[γ1n

3!
(−2σn + d)− γ2n

4!

(
1− d2 + 3dσn − 3σ2

n

)]
.

(A.11)

We obtain the put option implied volatility function, analogous to equation (14), by
equating a linear approximation of the Black formula for the put option similar to equation
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(A.7), to the Gram-Charlier put option price in equation (A.11). The result is:

vn (d) ∼= σn

[
1 +

γ1n

3!
(−2σn + d)− γ2n

4!

(
1− d2 + 3dσn − 3σ2

n

)]
. (A.12)

A.2 American-Style Option Pricing with Gram-Charlier Densities

We integrate the upper and lower bounds for the American-style call option price defined in
equation (17) with respect to the risk neutral density function given by the Gram-Charlier
expansion. The upper bound is just the undiscounted value of a European-style call option
derived in equation (12):

Cu
nt
∼= FtN (d)−KN (d− σn)

+ Ftϕ (d) σn

[γ1n

3!
(2σn − d)− γ2n

4!

(
1− d2 + 2dσn − 2σ2

n − σn + d
)]

.
(A.13)

The lower bound is the maximum between the price of the European-style call option,
equation (12), and the intrinsic value of the option, that is the difference between the
expected future terminal price and the strike price. Obtaining the intrinsic value for an
option on a bond futures is straightforward:

Et [Ft+n]−K =

∫ ∞

−∞
Ftf (ω) dω −K

=

∫ ∞

−∞
Ft

(
ϕ (ω)− γ1n

3!
D3ϕ (ω) +

γ2n

4!
D4ϕ (ω)

)
dω −K

=Ft −K,

(A.14)

and hence we get:

C l
nt = max

[
Ft −K, Fte

−rntnN (d)−Ke−rntnN (d− σn) +
Fte

−rntnϕ (d) σn

[
γ1n

3!
(2σn − d)− γ2n

4!
(1− d2 + 2dσn − 2σ2

n − σn + d)
]

]
. (A.15)

The formula for the Gram-Charlier American-style call price is the weighted average of the
upper and lower bound:

C∗
nt

∼= λnC
u
nt (Ft, K, rnt, d; σn, γ1n, γ2n)

+ (1− λn) C l
nt (Ft, K, rnt, d; σn, γ1n, γ2n)

= λn

[
FtN (d)−KN (d− σn)

+Ftϕ (d) σn

[
γ1n

3!
(2σn − d)− γ2n

4!
(1− d2 + 2dσn − 2σ2

n − σn + d)
]

]
+

(1− λn) max




Fte
−rntnN (d)−Ke−rntnN (d− σn)

+Fte
−rntnϕ (d) σn

[
γ1n

3!
(2σn − d)−

γ2n

4!
(1− d2 + 2dσn − 2σ2

n − σn + d)

]
,

Ft −K


 .
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In the empirical implementation, we replace the max operator with a logistic approximation,
to help in the non-linear optimization:

logit max [x, y] =
1

1 + exp [−8 (x− y)]
,

max [x, y] ∼= logit max [x, y] x + (1− logit max [x, y]) y.

Melick and Thomas (1997) use a similar technique.

The American-style Gram-Charlier put option price can be obtained by analogous steps.
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Table 1: Announcement Timing

Panel A shows the announcements, their abbreviations, the reported units of the variables, the times
at which the announcements are normally released, and the number of times two announcements
are concurrent (same date and time). Panel B shows the distribution of the announcements over
the days of the week and the typical sequence of the announcements in a given month. The sample
period is January 1995 through December 1999.

Panel A

Time Concurrent Announcements
Announcement Abbrev. Units (ET) 1 2 3 4 5 6 7 8 9 10

Consumer Price Index CPI % Change 8:30 60 8 0 0 0 16 0 0 0 0
Housing Starts HS Millions of Units 8:30 59 0 0 1 0 0 0 0 0
Civilian Unemployment CUR % Level 8:30 60 60 0 0 0 0 0 0
Nonfarm Payrolls NFP Thousands 8:30 60 0 0 0 0 0 0
Producer Price Index PPI % Change 8:30 60 14 0 0 0 0
Retail Sales RS % Change 8:30 60 0 0 0 0
Industrial Production IP % Change 9:15 60 0 0 0
Consumer Confidence CC % Level 10:00 60 2 0
NAPM index NAPM % Level 10:00 60 0
FOMC Target FOMC % Rate 14:15 40

Panel B

M T W T F Sequence

CPI 0 22 14 14 10 8th
HS 0 21 17 11 10 4th
CUR 0 0 0 3 57 3rd
NFP 0 0 0 3 57 3rd
PPI 0 6 11 14 29 6th
RS 0 17 8 20 15 5th
IP 4 15 12 8 21 7th
CC 0 58 2 0 0 1st
NAPM 24 12 8 8 8 2nd
FOMC 0 28 11 1 0 na
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Table 2: Implied Volatility

This table shows the mean of the annualized volatility (in percent) implied by a binomial tree
version of the Black (1976) formula, the standard deviation of the implied volatility, and the
number of observations for each moneyness and time to maturity category. Moneyness is defined
as m = ln(K/F )/(σatm

√
T − t).

Days to Maturity
Call Options Put Options

m 8-30 30-60 60-180 ≥180 8-30 30-60 60-180 ≥180 Total

<-2 28.50 23.03 18.75 12.79 10.93 11.24 11.01 11.33 19.72
(9.38) (7.24) (6.65) (1.36) (2.48) (2.19) (1.56) (1.69) (10.75)
16360 2774 507 10 6709 4654 5942 240 37196

[-2 , -1] 9.33 9.82 10.10 10.64 9.61 9.80 9.87 10.04 9.72
(2.14) (1.41) (1.33) (1.56) (1.53) (1.49) (1.03) (0.98) (1.44)
5456 1608 1247 25 45172 23878 29805 1139 108330

[-1 , 0] 8.72 9.08 9.26 9.42 9.17 9.26 9.45 9.60 9.18
(1.64) (1.09) (0.85) (0.90) (1.47) (1.21) (0.89) (0.78) (1.33)
52414 17625 15956 254 146231 71262 71897 1919 377558

[0 , 1] 8.88 8.96 9.14 9.25 8.87 9.09 9.28 9.43 8.97
(1.37) (1.08) (0.84) (0.76) (1.59) (1.26) (0.85) (0.75) (1.23)

152985 77513 81250 2084 40279 13876 11993 374 380354

[1 , 2] 9.13 9.23 9.37 9.22 9.49 9.19 9.54 9.65 9.24
(1.46) (1.36) (0.95) (0.84) (2.47) (1.62) (1.26) (0.96) (1.36)
37746 19494 26909 983 3158 824 651 29 89794

>2 10.83 10.19 10.43 10.84 14.08 12.74 13.73 12.32 10.80
(2.43) (1.69) (1.47) (1.80) (7.08) (4.38) (3.65) (5.17) (2.75)
4111 2602 3153 102 577 162 124 5 10836

Total 10.12 9.38 9.28 9.32 9.27 9.43 9.62 9.83 9.57
(5.42) (2.63) (1.17) (0.92) (1.65) (1.42) (1.05) (1.05) (3.17)

269072 121616 129022 3458 242126 114656 120412 3706 1004068
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Table 3: Econometric Issues

Panel A compares the annualized volatility σn, skewness γ1n, and excess kurtosis γ2n of a Gram-
Charlier expansion of the SPD estimated using either a least squares criterion for option prices or a
least squares criterion for implied volatilities based on a linearization of the option pricing formula.
Panel B compares the estimated moments of the SPD obtained either by treating the options as
European style or by explicitly incorporating the American style early exercise feature. In all cases,
the expansion of the SPD is either unconstrained or constrained to the positive domain. The results
are based on a random sample of 3,000 options with 30, 60 and 90 days to maturity.

Panel A

Price Based Price Based Impl.Vol. Based Impl.Vol. Based
Unconstrained Constrained Unconstrained Constrained

30 Days σn 0.092 0.092 0.092 0.092
(se) (0.001) (0.001) (0.001) (0.001)
γ1n -0.088 -0.088 -0.105 -0.105
(se) (0.025) (0.025) (0.070) (0.070)
γ2n 1.363 1.363 1.211 1.211
(se) (0.070) (0.070) (0.121) (0.121)

60 Days σn 0.097 0.097 0.093 0.093
(se) (0.001) (0.001) (0.001) (0.001)
γ1n -0.182 -0.182 0.065 0.065
(se) (0.017) (0.017) (0.050) (0.050)
γ2n 1.633 1.633 0.753 0.753
(se) (0.051) (0.051) (0.080) (0.080)

90 Days σn 0.102 0.102 0.099 0.099
(se) (0.001) (0.001) (0.001) (0.001)
γ1n -0.389 -0.389 -0.205 -0.205
(se) (0.014) (0.014) (0.043) (0.043)
γ2n 1.877 1.877 1.125 1.125
(se) (0.041) (0.041) (0.074) (0.074)
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Panel B

Price Based Price Based Price Based Price Based
European European American American

Unconstrained Constrained Unconstrained Constrained

30 Days σn 0.092 0.092 0.092 0.092
(se) (0.001) (0.001) (0.001) (0.001)
γ1n -0.087 -0.087 -0.087 -0.087
(se) (0.025) (0.025) (0.035) (0.035)
γ2n 1.363 1.363 1.363 1.363
(se) (0.070) (0.070) (0.232) (0.232)
λn – – 0.000 0.000
(se) (0.007) (0.007)

60 Days σn 0.097 0.097 0.096 0.096
(se) (0.001) (0.001) (0.001) (0.001)
γ1n -0.182 -0.182 -0.142 -0.142
(se) (0.017) (0.017) (0.025) (0.025)
γ2n 1.633 1.633 1.580 1.580
(se) (0.051) (0.051) (0.150) (0.150)
λn – – 0.000 0.000
(se) (0.005) (0.005)

90 Days σn 0.102 0.102 0.102 0.102
(se) (0.001) (0.001) (0.001) (0.001)
γ1n -0.389 -0.389 -0.389 -0.389
(se) (0.014) (0.014) (0.019) (0.019)
γ2n 1.877 1.877 1.877 1.877
(se) (0.041) (0.041) (0.125) (0.125)
λn – – 0.000 0.000
(se) (0.004) (0.004)
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Table 4: Daily Effects of the Announcement

This table shows selected parameter estimates for the following regression:

µt − µt−1 = αt +
9∑

k=1

βktDkt + γtT + et.

In Panel A, µt is the average at-the-money implied volatility on day t. In Panel B, it is the second
moment σn, absolute value of skewness abs(γ1n), or excess kurtosis γ2n of the SPD. Dkt is a dummy
variance indicating whether announcement k occurs on day t and T is the maturity of the options.

Panel A

α βCPI βER βPPI R2

vn -0.004 -0.266∗∗∗ -0.845∗∗∗ -0.279∗∗∗ 0.265

Panel B

α βCPI βER βPPI R2

σn 0.053 -0.398∗∗∗ -0.997∗∗∗ -0.283∗∗∗ 0.235
abs(γ1n) 0.021 -0.000 -0.043∗ 0.036 0.026

γ2n 0.030 0.039 0.065 0.103 0.019

∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the one, five, and 10 percent levels, respectively. Significance
levels do not change if heteroscedasticity corrected standard errors are used.
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Table 5: Intradaily Effects of the Announcement

This table shows selected parameter estimates for the following regression:

µpost − µpre = αt +
9∑

k=1

βktDkt + γtT + et.

In Panel A, µpre and µpost are the average at-the-money implied volatility during the 45 minutes
before and after the release, respectively. In Panel B, they are the second moment σn, absolute
value of skewness abs (γ1n), or excess kurtosis γ2n of the corresponding SPDs. Dkt is a dummy
variance indicating whether announcement k occurs on day t and T is the maturity of the options.

Panel A

α βCPI βER βPPI R2

vn 0.024 -0.225∗∗∗ -0.815∗∗∗ -0.320∗∗∗ 0.326

Panel B

α βCPI βER βPPI R2

σn 0.036 -0.254∗∗∗ -0.918∗∗∗ -0.461∗∗∗ 0.184
abs(γ1n) -0.008 0.010 -0.017 -0.002 0.008

γ2n 0.135 0.263 0.083 0.153 0.019

∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the one, five, and 10 percent levels, respectively. Significance
levels do not change if heteroscedasticity corrected standard errors are used.
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Table 6: Daily Effect of the Information Content

This table shows selected parameter estimates for the following regression:

µt − µt−1 = αk + βkSk +
H∑

h=1

δhSh + γkT + ek.

In Panel A, µt is the average at-the-money implied volatility on day t. In Panel B, it is the
second moment σn, skewness γ1n, or excess kurtosis γ2n of the SPD. S denotes the standardized
announcement surprise, h enumerates announcements which are released concurrently with
announcement k, and T is the maturity of the options.

Panel A

vn

αk βk R2

CPI -0.981∗∗∗ 0.057 0.238
NFP -1.242∗∗∗ 0.063 0.211
PPI -0.662∗∗∗ 0.023 0.150

Panel B

σn γ1n γ2n

αk βk R2 αk βk R2 αk βk R2

CPI -1.752∗∗∗ -0.024 0.405 0.023 0.048∗∗ 0.233 -0.067 -0.193∗∗ 0.276
NFP -1.257∗∗∗ -0.020 0.149 0.020 0.034∗ 0.087 0.087 -0.122∗ 0.122
PPI -0.482∗∗ 0.139 0.053 -0.043 -0.016 0.020 0.038 0.057 0.059

∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the one, five, and 10 percent levels, respectively. Significance
levels do not change if heteroscedasticity corrected standard errors are used.
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Table 7: Daily Effect of Good and Bad News

This table shows selected parameter estimates for the following regression:

µt − µt−1 = αk +
{

βGk|Sk|
βBk|Sk| +

H∑

h=1

{
δGh|Sh|
δBh|Sh| + γkT + ek.

In Panel A, µt is the average at-the-money implied volatility on day t. In Panel B, it is the
second moment σn, skewness γ1n, or excess kurtosis γ2n of the SPD. S denotes the standardized
announcement surprise, h enumerates announcements which are released concurrently with
announcement k, and T is the maturity of the options.

Panel A

vn

αk βGk βBk R2

CPI -1.039∗∗∗ 0.029 0.171∗∗ 0.319
NFP -1.531∗∗∗ 0.102 0.369∗∗∗ 0.372
PPI -0.726∗∗∗ -0.021 0.026 0.158

Panel B

σn γ1n γ2n

αk βGk βBk R2 αk βGk βBk R2 αk βGk βBk R2

CPI -1.826∗∗∗ 0.143 0.109 0.459 0.023 -0.035 0.097∗∗ 0.254 -0.079 0.104 -0.238∗∗ 0.331
NFP -1.487∗∗∗ 0.191 0.224 0.186 -0.087 0.034 0.087∗∗ 0.169 0.043 -0.103 -0.356∗∗ 0.184
PPI -0.643∗∗ -0.309 -0.203 0.129 -0.040 0.141∗ 0.136∗ 0.103 0.038 -0.364∗∗ -0.353∗∗ 0.171

∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the one, five, and 10 percent levels, respectively. Significance
levels do not change if heteroscedasticity corrected standard errors are used.
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Table 8: Intradaily Effect of the Information Content

This table shows selected parameter estimates for the following regression:

µpost − µpre = αk + βkSk +
H∑

h=1

δhSh + γkT + ek.

In Panel A, µpre and µpost are the average at-the-money implied volatility during the 45 minutes
before and after the release, respectively. In Panel B, they are the second moment σn, skewness
γ1n, or excess kurtosis γ2n of the corresponding SPDs. S denotes the standardized announcement
surprise, h enumerates announcements which are released concurrently with announcement k, and
T is the maturity of the options.

Panel A

vn

αk βk R2

CPI -0.530∗∗ 0.063 0.158
NFP -0.884∗∗∗ 0.075 0.128
PPI -0.409∗∗ 0.042 0.136

Panel B

σn γ1n γ2n

αk βk R2 αk βk R2 αk βk R2

CPI -0.410∗∗ -0.028 0.081 -0.031 0.064∗∗ 0.081 0.137 -0.179∗ 0.077
NFP -0.912∗∗∗ -0.076 0.124 0.073 0.073∗∗ 0.104 0.085 -0.262∗∗ 0.115
PPI -0.290∗∗ -0.016 0.032 -0.048 0.074∗ 0.066 0.239 -0.190∗ 0.050

∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the one, five, and 10 percent levels, respectively. Significance
levels do not change if heteroscedasticity corrected standard errors are used.
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Table 9: The Intradaily Effect of Good and Bad News

This table shows selected parameter estimates for the following regression:

µpost − µpre = αk +
{

βGk|Sk|
βBk|Sk| +

H∑

h=1

{
δGh|Sh|
δBh|Sh| + γkT + ek.

In Panel A, µpre and µpost are the average at-the-money implied volatility during the 45 minutes
before and after the release, respectively. In Panel B, they are the second moment σn, skewness
γ1n, or excess kurtosis γ2n of the corresponding SPDs. S denotes the standardized announcement
surprise, h enumerates announcements which are released concurrently with announcement k, and
T is the maturity of the options.

Panel A

vn

αk βGk βBk R2

CPI -0.556∗∗ -0.039 0.122∗ 0.206
NFP -1.093∗∗∗ 0.105 0.267∗∗ 0.223
PPI -0.477∗∗ -0.042 0.038 0.151

Panel B

σn γ1n γ2n

αk βGk βBk R2 αk βGk βBk R2 αk βGk βBk R2

CPI -0.542∗∗ -0.008 -0.049 0.142 -0.033 0.080 0.109∗∗ 0.098 0.164 -0.074 -0.412∗∗ 0.097
NFP -1.167∗∗∗ 0.035 0.007 0.179 0.068 -0.011 0.140∗∗ 0.145 0.021 -0.009 -0.556∗∗∗ 0.164
PPI -0.382∗∗ -0.112 -0.107 0.106 -0.091 0.173∗∗ 0.289∗∗∗ 0.174 0.047 -0.232∗ -0.790∗∗∗ 0.107

∗, ∗∗, and ∗ ∗ ∗ denote statistical significance at the one, five, and 10 percent levels, respectively. Significance
levels do not change if heteroscedasticity corrected standard errors are used.
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Figure 1: Implied Volatility Surface

This figure plots the implied volatility of U.S. Treasury bond futures options from 1995 to 1999
as a function of time to maturity and moneyness. Implied volatilities are computed by inverting a
binomial tree version of the Black (1976) formula and are smoothed using a two-dimensional kernel
regression. Moneyness is defined as m = ln(K/F )/(σatm

√
T − t).
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Figure 2: Day of the Week and Time of the Day Effects

This figure plots the average at-the-money implied volatility (circles) as well as the standard
deviation (crosses), skewness (triangles), and excess kurtosis (squares) of the option-implied SPD
for different days of the week and different times of the day.
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Figure 3: Jump-Diffusion Simulated Patterns

The top left plot shows the relationship between the implied volatility and moneyness for a jump-
diffusion model with jump-intensity λ = 5 (continuous line) or λ = 4 (crossed line) and with
constant relative risk aversion Γ = 5. The top right plot shows the effect of changing risk aversion
from Γ = 10 (continuous line) to Γ = 1 (crossed line) with a jump-intensity of λ = 5. The bottom
plot shows the relationships between the skewness (triangles) or excess kurtosis (circles) of the
option-implied SPD and risk aversion Γ with a jump-intensity of λ = 5.
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