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ABSTRACT

We propose a discrete-time stochastic volatility model in which regime switching serves three purposes.

First, changes in regimes capture low frequency variations, which is their traditional role. Second, they

specify intermediate frequency dynamics that are usually assigned to smooth autoregressive processes.

Finally, high frequency switches generate substantial outliers. Thus, a single mechanism captures three

important features of the data that are typically addressed as distinct phenomena in the literature.

Maximum likelihood estimation is developed and shown to perform well in finite sample. We estimate

on exchange rate data a version of the process with four parameters and more than a thousand states.

The estimated model compares favorably to earlier specifications both in- and out-of-sample.

Multifractal forecasts slightly improve on GARCH(1,1) at daily and weekly intervals, and provide

considerable gains in accuracy at horizons of 10 to 50 days.
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1. Introduction

Over the past fifteen years, stochastic regime-switching (Hamilton 1989, 1990) has
proven to be extremely useful for modeling economic and financial time series.1

While the theoretical formulation is very general, empirical researchers most com-
monly apply this approach to low frequency variations and rely on other techniques
for shorter-run dynamics. For example, Markov-switching ARCH and GARCH
processes separately specify regime shifts at low frequencies, smooth autoregres-
sive volatility transitions at mid-range frequencies, and a thick-tailed conditional
distribution of returns at high-frequency (Cai, 1994; Hamilton and Susmel, 1994;
Gray, 1996; Klaassen, 2002). In this paper, we propose an alternative volatility
model based on pure regime-switching at all frequencies.

Previous empirical applications typically employ only a small number of dis-
crete states. This partly stems from the common view that regime switches oc-
cur infrequently. A more practical limitation is that the number of parameters
grows quadratically with the cardinality of the state space in a general formula-
tion. Restrictions on state parameters and switching probabilities offer a natural
solution, as pursued for example by Bollen, Gray, and Whaley (2000) in a four-
regime model.2 We extend this approach by considering a tight set of restrictions
inspired by the multifractal literature. This permits the routine estimation of
good-performing models with over a thousand states, a dense transition matrix,
and only four parameters.

Our specification is particularly influenced by an innovation in multifractal

1The likelihood-based estimation of Markov-switching processes was developed by Lindgren
(1978) and Baum et al. (1980) in the statistics literature. A seminal series of papers by Hamilton
(1989, 1990) introduced these processes to econometrics and spurred the development of a large
body of research. Contributions to the original version of the model advance estimation and
testing (Albert and Chibb, 1993; Garcia, 1998; Hansen, 1992; Shephard, 1994), and investigate
a wide range of empirical applications (e.g. Hamilton, 1988; Garcia and Perron, 1996). The ap-
proach has been extended to incorporate GARCH transitions (Cai, 1994; Gray, 1996; Hamilton
and Susmel, 1994; Kim, 1994; Kim and Nelson, 1999; Klaassen, 2002), vector processes (Hamil-
ton and Lin, 1996; Hamilton and Perez-Quiros, 1996), and time-varying transition probabilities
(Diebold, Lee, and Weinbach, 1994; Durland and McCurdy, 1994; Filardo, 1994; Perez-Quiros
and Timmerman, 2000). See Hamilton and Raj (2002) for a recent survey.

2Duration-dependent Markov-switching models also use restrictions on state parameters and
switching probabilities. For example, Maheu and McCurdy (2000) expand a two-state model by
conditioning the volatility level and switching probability on duration in the state. The resulting
transition matrix is sparse, and the system either progresses to the next duration of the same
state or the first duration of the other state.
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modelling from Calvet and Fisher (2001). This earlier theoretical research uses
Markov-switching to develop the first time-stationary formulation of multifractal
diffusions, and also provides a weakly convergent sequence of discrete filters. We
now propose a variant of these filters to directly model financial series in discrete
time. In this framework, total volatility is the multiplicative product of a large
but finite number of random components. We assume for simplicity that these
components are first order Markov and identical except for time scale. The com-
ponents have identical marginal distributions and differ only in their switching
probabilities. The specification is completed by assuming that the progression of
switching probabilities is approximately geometric. This parsimonious model de-
livers long-memory features in volatility, substantial outliers, and a decomposition
into components with heterogenous decay rates.

An empirical investigation of four daily exchange rate series shows that our
model performs well in comparison with the Student-GARCH(1,1) of Bollerslev
(1987), and the Markov-switching GARCH (MS-GARCH) of Klaassen (2002).
The choice of alternative processes is guided by several considerations. First, our
process easily permits maximum likelihood estimation and analytical multistep
forecasting, and we therefore select for comparison models that also have these
features. GARCH(1,1) is an obvious choice because it is a leading model for
volatility forecasting.3 MS-GARCH provides another useful comparison because it
combines regime-shifts with smooth weighting of past shocks, and thus represents
a potentially appealing compromise between the two approaches.4

The multifractal process compares favorably with GARCH(1,1) both in- and
out-of-sample. Our model has a higher likelihood in-sample for all currencies, and
the statistical significance of these differences is confirmed by a HAC-adjusted
version of the Vuong (1989) test. Since both models have the same number of
parameters, the multifractal is also preferred by standard selection criteria. Anal-
ogous results are obtained out-of-sample. While one-day forecasts from the two
models perform similarly, the multifractal dominates at longer horizons. The dif-
ference is most pronounced for 20 and 50 days. For example, in the case of the
British Pound, the 50-day forecasting R2 is 27.3% for our model as compared to
−2.6% for GARCH(1,1). Similar gains are obtained for other currencies. The em-

3See, for example, Akgiray (1989), Andersen and Bollerslev (1998), Hansen and Lunde (2001),
Pagan and Schwert (1990), and West and Cho (1995).

4The original MS-GARCH process of Gray (1996) does not conveniently permit multistep
forecasting, and we therefore consider the variant formulation introduced for this purpose by
Klaassen (2002).

2



pirical evidence thus shows that the multifractal model improves on GARCH(1,1)
both in- and out-of-sample.

The MS-GARCH process gives substantially better fit than GARCH(1,1) in-
sample. This is partly attributable to a larger number of parameters, and suggests
the possibility of overfitting. Using a BIC criterion, the multifractal is statisti-
cally indistinguishable from MS-GARCH in-sample for all four currencies. Out-
of-sample, MS-GARCH is also comparable to the multifractal at short horizons,
but substantially dominated at longer horizons. The multifractal is overall the
best performing model.

A pure Markov-switching model thus captures the same dynamics that in pre-
vious literature have required not only regime-switching but also linear GARCH
transitions and a thick-tailed conditional distribution of returns. It is striking
that a single mechanism can play all three of these roles so effectively. Our in-
novation that achieves this surprising economy of modelling technique is based
on scale-invariance. We make this principle operational by introducing a pure
Markov-switching formulation where scale-invariance helps to specify the param-
eters and transitions of a high-dimensional state space.

Our paper contributes to the multifractal literature by offering a convenient
time-series construction accompanied by effective estimation and testing meth-
ods. Calvet, Fisher, and Mandelbrot (1997) introduce the multifractal model of
asset returns (MMAR), a class of diffusions that capture the outliers, moment-
scaling, and long memory in volatility exhibited by many financial time series.
While providing an excellent fit to many aspects of financial data, the MMAR
uses a combinatorial construction that is not well-suited to econometrics. In
particular, regime changes take place at predetermined dates, making the model
non-stationary. Early efforts at estimation thus focus on unconditional moments
of returns.5 Calvet and Fisher (2002) use moment-scaling to develop an estimator
and diagnostic tests of the model, while Lux (2001) constructs a GMM estimator
based on high-frequency autocovariances. This previous empirical work is con-
strained in many ways by the non-stationarity of the MMAR. Now using a model
that is stationary and a special case of the Hamilton formulation, we develop
maximum likelihood estimation, which to the best of our knowledge is new to the

5The MMAR implies that return moments vary as power functions of the observation interval,
which is consistent with many financial series. Calvet, Fisher, and Mandelbrot (1997) and Calvet
and Fisher (2002) find evidence of moment-scaling in powers of the absolute value of returns.
Further evidence is provided by Andersen, Bollerslev, Diebold and Labys (2001) and Barndorff-
Nielsen and Shephard (2003). See LeBaron (2001) for a discussion of robustness.
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literature on multifractal measures and processes.
Section 2 presents the discrete-time model. Section 3 develops the ML esti-

mator and assesses its accuracy in Monte Carlo simulations. Section 4 discusses
estimation results for four exchange rates. Section 5 compares our model with
alternative processes both in- and out-of-sample. Section 6 concludes. All proofs
are in the Appendix.

2. The Markov-Switching Multifrequency Process

This section develops a discrete-time Markov process with multi-frequency stochas-
tic volatility. The process has a finite number k of latent volatility state variables,
each of which corresponds to a different frequency.

2.1. Stochastic Volatility

We consider an economic series Xt defined in discrete time on the regular grid
t = 0, 1, 2, ...,∞. In applications, Xt will be the log-price of a financial asset or
exchange rate. Define the innovations xt ≡ Xt − Xt−1. A common modeling
methodology assumes that the system is hit every period by a single shock that
progressively phases out over time (e.g., Engle, 1982). We consider instead an
economy with k components M1,t,M2,t, ...,Mk,t, which decay at heterogeneous

frequencies γ1, .., γk. Such a model could be very unwieldy as the number k
becomes very large. We will see, however, that the process can be nonetheless
parsimoniously described by a small set of parameters.

We model the innovations xt ≡ Xt −Xt−1 by

xt = σ(M1,tM2,t...Mk,t)
1/2εt, (2.1)

where the parameter σ is a positive constant and the random variables εt are IID
standard GaussiansN (0, 1). The random multipliers or volatility components Mk,t

are persistent, non-negative and satisfy E(Mk,t) = 1. We consider for simplicity
that the multipliers M1,t,M2,t...Mk,t at a given time t are statistically independent.
The parameter σ is then equal to the unconditional standard deviation of the
innovation xt.

Equation (2.1) defines a stochastic volatility model xt = σtεt with the multi-
plicative structure σt = σ(M1,tM2,t...Mk,t)

1/2. We conveniently stack the period t
volatility components multipliers into a vector

Mt =
(
M1,t,M2,t, ..., Mk,t

)
.
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For any m = (m1, .., mk̄) ∈ Rk̄, let g(m) denote the product
∏k̄

i=1 mi. Volatility
at time t is then σt = σ[g (Mt)]

1/2.
The properties of volatility are driven by the stochastic dynamics of the vector

Mt. We assume for parsimony that Mt is first-order Markov. This facilitates the
construction through time of {xt} and permits maximum likelihood estimation.
It is then natural to call Mt the volatility state vector, and each component Mk,t

a state variable. The econometrician observes the returns xt = σ[g (Mt)]
1/2εt, but

not the vector Mt itself. The vector Mt is therefore latent, and must be inferred
recursively by Bayesian updating.

Each Mk,t follows a process that is identical except for time scale. Assume
that the volatility state vectors have been constructed up to date t− 1. For each
k ∈ {1, .., k̄}, the next period multiplier Mk,t is drawn from a fixed distribution
M with probability γk, and is otherwise equal to its current value: Mk,t = Mk,t−1.
The dynamics of Mk,t can be summarized as:

Mk,t drawn from distribution M with probability γk

Mk,t = Mk,t−1 with probability 1− γk.

The switching events and new draws from M are assumed to be independent
across k and t. The volatility components Mk,t thus differ in their transition
probabilities γk but not in their marginal distribution M . These features greatly
contribute to the parsimony of the model.

The transition probabilities γ ≡ (γ1, γ2, ..., γk) are specified as

γk = 1− (1− γ1)
(bk−1) , (2.2)

where γ1 ∈ (0, 1) and b ∈ (1,∞). This specification is introduced in Calvet and
Fisher (2001) in connection with the discretization of a Poisson arrival process.

Since 1− γk = (1− γ1)
(bk−1), the logarithms of staying probabilities are exponen-

tially decreasing with k. Consider a process with very persistent components, or
equivalently a very small parameter γ1. For small values of k, the quantity γ1b

k−1

remains small and the transition probability satisfies:

γk ∼ γ1b
k−1.

The transition probabilities of low frequency components grow approximately at
geometric rate b. At higher frequencies (γk ∼ 1), the rate of increase slows down
and condition (2.2) guarantees that the parameter γk remains lower than 1. In
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empirical applications, it is numerically convenient to estimate parameters of the
same magnitude. Since γ1 < ... < γ k̄ < 1 < b, we choose (γk̄, b) to specify the set
of transition probabilities.

The integer k determines the number of volatility frequencies in the model, and
we view this choice as a model selection problem. Our approach is consistent with
methods commonly employed for ARMA(p, q) and GARCH(p, q) models, where
estimation is developed for a fixed number of lags and p and q are determined by
model selection. The multifractal construction imposes only minimal restrictions
on the marginal distribution of the multipliers: M ≥ 0 and E(M) = 1. While
this allows flexible parametric or even nonparametric specifications of M , this
paper focuses on the most parsimonious setup. We assume that M is drawn from
a family of unit mean distributions specified by a single parameter m0. Useful
examples include log-normal distributions: ln M ∼ N (m0,−m2

0/2), or binomial
random variables taking values m0 or 2 − m0 with equal probability. The full
parameter vector is then

ψ ≡ (m0, σ, b, γk̄) ∈ R4,

where m0 characterizes the distribution of the multipliers, σ is the unconditional
standard deviation of returns, and b and γk̄ define the set of switching proba-
bilities. In Section 3, we will develop and empirically implement the maximum
likelihood estimation of this vector.

We find it convenient to call this construct the Markov-Switching Multifractal
(or Markov-Switching Multifrequency) process. The notation MSM(k) will refer
to versions of the model with k frequencies. Economic intuition and earlier work
suggest that the multiplicative structure (2.1) is appealing to model the high
variability and high volatility persistence exhibited by financial time series. When
a low level multiplier changes, volatility varies very discontinuously and has strong
degree of persistence. In addition, high frequency multipliers introduce substantial
outliers.

2.2. Properties

The MSM construction permits low frequency regime shifts, and thus long volatil-
ity cycles in sample paths. We will see that in exchange rate series, the duration of
the most persistent component, 1/γ1, is typically of the same order as the length
of the data. Estimated processes thus tend to generate volatility cycles with peri-
ods proportional to the sample size, a property also apparent in the sample paths
of long memory processes.
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Long memory is often defined by a hyperbolic decline in the autocovariance
function as the lag goes to infinity. Fractionally integrated processes generate
such patterns by assuming that an innovation linearly affects future periods at
a hyperbolically declining weight. As a result, fractional integration tends to
produce smooth volatility processes. By contrast, our approach generates long
cycles with a switching mechanism that also gives abrupt volatility changes. The
combination of long-memory behavior with sudden volatility movements has a
natural appeal for financial econometrics.

In earlier work, we proposed a definition of long memory that applies to con-
tinuous time processes defined on a bounded time domain. This definition is based
on increments over progressively smaller intervals. Our discrete-time process can
also generate a hyperbolic decline in autocovariances for a range of lags. For every
integer n and every q ≥ 0, let ρq(n) = Corr(|xt|q , |xt+n|q) denote the autocorre-
lation in levels. We choose a fixed vector ψ and consider the positive parameter
δ(q) = logb

E(Mq)

[E(Mq/2)]2
. Consider two arbitrary numbers α1 and α2 in the open inter-

val (0, 1). The set of integers Ik̄ = {n : α1 logb(b
k̄) ≤ logb n ≤ α2 logb(b

k̄)} contains
a large range of intermediate lags. We show in the Appendix

Proposition. The autocorrelation in levels satisfies

sup
n∈Ik̄

∣∣∣∣
ln ρq(n)

ln n−δ(q)
− 1

∣∣∣∣ → 0

as k̄ → +∞.

MSM thus mimics the hyperbolic autocovariograms ln ρq(n) ∼ −δ(q) ln n exhib-
ited by many financial series (e.g., Dacorogna et al., 1993; Ding and Granger,
1993). This result complements earlier research that has emphasized the difficulty
of distinguishing between long memory and structural change in finite samples
(e.g., Bhattacharya et al., 1983; Künsch, 1986; Hidalgo and Robinson, 1996; Lo-
bato and Savin, 1997; Diebold and Inoue, 2001). MSM illustrates that a Markov-
chain regime-switching model can theoretically exhibit one of the defining features
of long memory, a hyperbolic decline of the autocovariogram.

A representative return series is illustrated in Figure 1. The graph reveals that
multiple switching frequencies help to generate large heterogeneity in volatility
levels and substantial outliers. This is notable since the return process has by
construction finite moments of every order. We will see that it is nonetheless
sufficient to capture the tail properties of the exchange rate data. In Calvet and
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Fisher (2001), we introduced Paretian tails by considering IID shocks of the form
εt = ZtΩt, where {Zt} are IID standard Gaussians and {Ωt} are IID random
variables drawn from a Paretian distribution Ω. The random variable Ω is the
limit distribution of a renormalized squared variation of the price process over a
fixed horizon, and is fully specified by the existing parameters m0, b, and γk̄. In the
current empirical study, we find it computationally more convenient to consider
the Gaussian case because the likelihood is then available in closed-form. The
discrete-time process with εt = ZtΩt is a promising direction for future empirical
research.

Another interesting property of our multifractal model is that when k̄ → ∞,
the limiting continuous time process lies outside the class of Itô diffusions. The
sample paths are continuous but exhibit a high degree of heterogeneity in local
behavior, which is characterized by a continuum of local Hölder exponents in any
finite time interval. We refer the reader to Calvet and Fisher (2001, 2002) for a
full development of the continuous-time multifractal limit.

3. Maximum Likelihood Estimation

When the multiplier M has a discrete distribution, there exist a finite number of
volatility states. Standard filtering methods then provide the likelihood function
in closed-form.

3.1. Updating the State Vector

We assume in the rest of this paper that the multiplier M takes a finite number of
values bm. The vector Mt =

(
M1,t, M2,t, ..., Mk,t

)
has therefore d = bk

m possible val-

ues m1, ..., md ∈ Rk
+. The dynamics of the Markov chain Mt are characterized by

the transition matrix A = (ai,j)1≤i,j≤d with components aij = P(Mt+1 = mj|Mt =
mi).6

Let n (.) denote the density of a standard normal. The density of the innovation
xt conditional on Mt is fxt (x |Mt = mi ) = [σg (mi)]−1n [x/σg (mi)] . Consider the

6We note that aij =
∏k̄

k=1

[
(1− γk) 1{mi

k=mj
k} + γkP(M = mj

k)
]
, where mi

k denotes the mth

component of vector mi, and 1{mi
k=mj

k} is the dummy variable equal to 1 if mi
k = mj

k, and 0
otherwise. In Calvet and Fisher (2001) the transition matrix differs because an innovation to a
lower frequency multiplier causes switching in all higher frequency multipliers. Here, we assume
that arrival times are independent across frequencies.
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conditional probabilities

Πj
t ≡ P

(
Mt = mj|x1, .., xt

)

over the unobserved states m1, ..., md. We can stack these conditional probabilities
in the row vector Πt =

(
Π1

t , .., Π
d
t

) ∈ Rd
+. Let ι = (1, ., 1) ∈ Rd. We know that

Πtι
′ = 1.
Using Bayes’ rule, we update the new belief Πt+1 from the old belief Πt and

the new innovation xt+1. Consider the function

ω(xt) =

[
n (xt/σg (m1))

σg (m1)
, ...,

n
(
xt/σg

(
md

))

σg (md)

]
.

and let x ∗ y denote the Hadamard product (x1y1, .., xdyd) of any x, y ∈ Rd. We
show in the Appendix that

Πt+1 =
ω(xt+1) ∗ (ΠtA)

[ω(xt+1) ∗ (ΠtA)] ι′
. (3.1)

This formula expresses the conditional probability Πt+1 as a function of the ob-
servation xt+1 and the probability Πt calculated in period t. These results imply
that Πt can be computed recursively. In empirical applications, we choose the
initial vector Π0 to be equal to the ergodic distribution of the Markov process.
Since the multipliers (M1,1, .., Mk,1) are independent, the components of Π0 are

uniquely determined by Πj
0 =

∏k
l=1 P(M = mj

l ) for all j.

3.2. The Likelihood Function

Having solved the conditioning problem, we show in the Appendix that the log
likelihood function is

ln L (x1, ..., xT ; ψ) =
T∑

t=1

ln[ω(xt) · (Πt−1A)].

For a fixed k̄, we know that the maximum likelihood estimator (ML) is consis-
tent and asymptotically efficient as T → ∞. An important difference between
MSM and standard Markov switching models stems from the parsimonious pa-
rameterization of the transition matrix A. This allows us to estimate MSM with
reasonable precision even in the presence of a very large state space. While the
Expectation Maximization (EM) algorithm proposed in Hamilton (1990) is not di-
rectly applicable with constrained transition probabilities, we find that numerical
optimization of the likelihood function produces good results.

9



3.3. Small-Sample Properties

This section assesses the small sample properties of the ML estimator in Monte
Carlo simulations. The models investigated have k̄ = 8 frequencies, which is large
enough to represent specifications that perform well in later empirical sections.
We also restrict attention to the simple binomial specification where the multiplier
M takes values m0 and 2−m0 with equal probability.

The four required parameters are thus the binomial value m0, the uncondi-
tional standard deviation σ, the frequency growth rate b, and the high frequency
switching probability γk. The choice of the unconditional standard deviation
is not consequential since it is simply a normalization of size, and we therefore
choose σ = 1. The remaining parameters are set to values that are represen-
tative of empirical results in later sections. Specifically, all simulations have
b = 3 and γk = 0.95, and the binomial parameter takes one of three values
m0 ∈ {1.3, 1.4, 1.5}. We also consider three sample lengths T ∈ {T1, T2, T3},
where T1 = 2, 500, T2 = 5, 000, and T3 = 10, 000.

Table 1 reports the simulation results. Each of the nine columns is based on a
different combination of one of the three values of m0 with one of the three values of
the sample length T . For each column, we simulate 400 independent sample paths
of the corresponding model and sample length. Maximum likelihood estimation
then provides a set of parameter estimates and asymptotic standard errors for
each path.7 The table has four rows corresponding to each parameter. The
first row gives the average point estimate over the simulated paths. The second
row is the standard error of these point estimates, or the finite sample standard
error (FSSE). The third row gives the root mean squared error (RMSE) of the
parameter estimates relative to the true parameter values.8 Finally, the average
asymptotic standard error (AASE) gives the average over the 400 simulations of
the asymptotic standard errors calculated from the information matrix. As sample
size becomes large, we expect that the AASE and the FSSE become close.

The results of Table 1 show that maximum likelihood estimation works well.
For m0, σ, and b, the biases are small and become negligible as sample size in-
creases. The parameter m0 has a low standard error relative to its size and is

7We start the optimizations at the true parameter values and iterate to convergence once.
Preliminary work considered searching for multiple local optima, and although these occasionally
exist, they do not significantly affect the means or standard deviations of the reported Monte
Carlo results.

8The RMSE will always be greater than or equal to the FSSE, and equal to the FSSE only
when the average point estimate is identical to the true parameter value.
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thus well identified, which is important because this parameter largely determines
the variability of volatility. By contrast, the unconditional standard deviation σ
has standard errors that, although declining as expected with sample length, are
roughly ten percent of the true parameter value. We interpret this result as a
strength of the model, as it is consistent with the idea that low-frequency vari-
ations create considerable uncertainty about long-run averages. The parameter
b shows a moderate degree of uncertainty about the amount of spacing between
frequencies. Finally, the high-frequency switching probability γk̄ is the only pa-
rameter that shows more than a small bias. This disappears quickly as sample
size increases, and the standard errors are not generally large. Overall the Monte
Carlo simulations show that maximum likelihood estimation produces reliable re-
sults given the sample sizes considered in subsequent sections. We also note that
the convenience and efficiency of maximum likelihood offers significant advantages
relative to previous moment-based estimators for multifractal processes.

4. Empirical Results

Using a binomial specification for the multiplier M , we apply ML estimation to
four exchange rate series and obtain preferred specifications with a large number
of volatility frequencies.

4.1. Exchange Rate Data

The empirical analysis uses daily exchange rate data for the Deutsche Mark
(DEM), Japanese Yen (JPY), British Pound (GBP), and Canadian Dollar (CAD),
all against the US Dollar. The data consists of daily prices reported at noon by
the Federal Reserve Bank of New York.9 The fixed exchange rate system broke
down in early 1973, and the DEM, JPY and GBP series accordingly begin on 1
June 1973. The CAD series starts a year later (1 June 1974) because the Cana-
dian currency was held essentially at parity with the US Dollar for several months
after the demise of Bretton Woods. The Deutsche Mark was replaced by the Euro
at the beginning of 1999. The DEM data accordingly ends on 31 December 1998,
while the other three series run until 30 June 2002. Overall, the series contains
6,420 observations for the Deutsche Mark, 7,049 observations for the Canadian
Dollar, and 7,299 observations for the Yen and the Pound.

9More specifically, the data consist of buying rates for wire transfers at 12:00 PM Eastern
time.
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Figure 2 plots the daily returns of each series. Consistent with earlier studies,
we observe apparent volatility clustering on a range of frequencies. For each series,
Table 2 reports the standard deviation of returns computed over the entire sample
and over four subsamples of equal length. We observe that the sample standard
deviation can vary quite substantially across subperiods, which is consistent with
the low-frequency regime shifts in our model.

4.2. ML Estimation Results

Table 3 reports MLE results for all four currencies. The columns of the table
correspond to the number of frequencies k̄ varying from 1 to 10. The first column
is thus a standard Markov-switching model with only two possible values for
volatility. As k̄ increases, the number of states increases at the rate 2k̄. There are
thus over one thousand states when k̄ = 10.

We first examine the DEM data, and note that the multiplier value m̂0 tends
to decline with k̄. This is because with a larger number of volatility components,
less variability is required in each individual component to generate the same
aggregate amount of stochastic volatility. The estimates of σ̂ show variability of a
different type across k̄, with no particular pattern of increasing or decreasing. This
is again consistent with the idea that the long-run average of volatility is difficult
to identify in a model that permits long volatility cycles. We finally examine the
frequency parameters γ̂k̄ and b̂. When k̄ = 1, the parameter γ̂k̄ indicates a switch
in the single multiplier a little less than once every two weeks. As k̄ increases, the
switching probability of the highest frequency multiplier increases until for large
values of k̄ a switch occurs almost every day. At the same time, the estimated
value b̂ decreases steadily with k̄. We can use (2.2) to calculate that when k̄ = 10,
a switch in the lowest frequency multiplier occurs approximately once every ten
years, or about one third the sample size. Thus, as k̄ increases, the range of
frequencies spreads out while the spacing between frequencies becomes tighter.

The parameter estimates for the other three currencies show many similarities.
In all cases, the value of m̂0 tends to decrease with k̄. We also observe that the
values of m̂0, and thus the importance of stochastic volatility, are largest for JPY
and GBP and smallest for CAD. Consistent with this, variability across k̄ in
the estimates of σ̂ is also greatest for JPY and GBP and least for CAD. As k̄
increases all currencies also show the highest frequency multiplier switching more
often and the spacing between frequencies becoming tighter. The spacing between
frequencies is widest for JPY and GBP and tightest for CAD. We correspondingly
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observe that the duration of the lowest frequency multiplier is longest for JPY at
approximately three times the sample size, and smallest for CAD at approximately
one tenth the sample size. We also note that all asymptotic standard errors are
roughly consistent with the magnitudes obtained in our Monte Carlo simulations.

The estimated MSM
(
k̄
)

processes generate substantial outliers for large values
of k̄ despite the fact that they have finite moments of every order. To confirm this,
for each data set we use the estimated process with k̄ = 10 frequencies to generate
ten thousand paths of the same length as the data. We then compute a Hill tail
index α for each simulated path. Basing the index on 100 order statistics, the
empirical tail index and the average α in the simulated samples are respectively
equal to 4.74 and 4.34 (DEM), 3.91 and 3.75 (JPY), 4.59 and 4.03 (GBP), and
4.40 and 4.79 (CAD). Furthermore, for all currencies we cannot at the 10% level
reject equality of the simulated and empirical tail statistics. This result is caused
by the high frequency variations in volatility in the MSM model. With the highest
frequency multipliers taking new values almost daily, the distribution of returns
is strongly affected by being composed of a mixture of distributions. Even though
this mixture of distributions has finite moments of every order, it is more than
sufficient to capture the tail characteristics of the data, even in sample sizes as
large as almost thirty years of daily observations.

We finally examine the behavior of the log-likelihood function as the number
of frequencies k̄ increases. For each currency, the likelihood goes up substantially
when k̄ is low. As k̄ gets larger, the likelihood continues to increase in most
cases, but at a decreasing rate. The only exception to the monotonic increase in
likelihood is the DEM series, for which the likelihood reaches a peak at k̄ = 7.
In all other cases the likelihood reaches a maximum at k̄ = 10. This behavior
of the likelihood confirms one of the main premises of the multifractal approach.
Specifically, volatility fluctuations have a multiplicity of frequencies, and explicitly
incorporating a larger number of frequencies results in a better fit. We next
examine the statistical significance of these results.

4.3. Model Selection

This section investigates whether the estimated MSM(k̄) models have significant
differences in likelihoods. We compare two processes MSM(k̄) and MSM(k̄′),
k̄ 6= k̄′, with respective densities f and g. The processes are non-nested and have
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log-likelihood difference:

√
T (ln Lf

T − ln Lg
T ) =

1√
T

T∑
t=1

ln
f(xt |x1, ..., xt−1 )

g(xt |x1, ..., xt−1 )
.

Consider the null hypothesis that the models have identical unconditional ex-
pected log-likelihoods. When the observations {xt} are IID, Vuong (1989) shows
that the difference ln Lf

T − ln Lg
T is asymptotically normal under the null.10 In

addition, the variance of this difference is consistently estimated by the sample
variance of the addends ln[f(xt |x1, ..., xt−1 )/g(xt |x1, ..., xt−1 )]. Because it is a
strong assumption that the conditional likelihoods are IID, we construct in the
Appendix a HAC-adjusted version of the Vuong test. Our discussion is a sim-
plified version of the broader approach recently proposed by Rivers and Vuong
(2002).

For each k̄ ∈ {1, .., 9}, we test in Table 4 the null hypothesis that MSM(k̄)
and MSM(10) fit the data equally well. Since HAC-adjusted tests tend to perform
poorly in small samples,11 we compute t-ratios and one-sided p values using both
the original and the HAC-adjusted methods. For k̄ ∈ {1, 2, 3}, the log-likelihood
difference is significant at the 1% level in the non-adjusted case (Table 4A) and at
the 5% level in the HAC case (Table 4B). This is strong evidence that MSM(10)
significantly outperforms models with 1 to 3 frequencies. For k̄ ∈ {4, 5}, we
reject the null at the 5% (non-adjusted) and 20% (HAC-adjusted) levels in almost
all cases. We view these results as rather substantial evidence that MSM(10)
outperforms models with 4 or 5 frequencies. Lower significance levels are obtained
for larger values of k̄, and the overall conclusion is that the MSM model works
better for larger numbers k̄ of frequencies. For this reason and also to maintain
consistency in the remaining analysis, we henceforth focus on the MSM(k̄ = 10)
process for all currencies.

5. Comparison with Alternative Models

This Section compares the multifractal model with GARCH(1,1) and Markov-
switching GARCH (MS-GARCH) both in- and out-of-sample.

10See the Appendix for a more detailed discussion of Vuong tests.
11See for example Andrews (1991), Andrews and Monahan (1992), and den Haan and Levin

(1997).

14



5.1. In-Sample Comparison

We consider alternative processes of the form xt = h
1/2
t et, where ht is the con-

ditional variance of xt at date t − 1, and {et} are IID Student innovations with
unit variance and ν degrees of freedom (d.f.’s). GARCH(1,1) assumes the re-
cursion ht+1 = ω + αε2

t + βht. MS-GARCH combines short-run autoregressive
dynamics with low frequency regime shifts (Gray, 1996; Klaassen, 2002). A latent
state st ∈ {1, 2} follows a first-order Markov process with transition probabilities
pij = P(st+1 = j|st = i). In every period, the econometrician observes the return
xt but not the latent st. For i = {1, 2}, let ht+1(i) = V art(xt+1|st+1 = i) de-
note the variance of xt+1 conditional on past returns {xt}t

s=1 and st+1 = i. The
quantity ht is latent in every period, and the econometrician can similarly de-
fine Et [ ht(st) |st+1 = i ] , the expectation of ht conditional on st+1 = i and past
returns. Klaassen (2002) assumes the conditional dynamics:

ht+1(i) = ωi + αiε
2
t + βiEt [ ht(st) |st+1 = i ] . (5.1)

The equation conditions volatility on a larger information set than the Gray speci-
fication: ht+1(i) = ωi +αiε

2
t +βiEt−1 ht(st). We prefer (5.1) for two reasons. First,

Klaassen shows that his model has better forecasting performance on three of the
exchange rates considered in this paper (DEM, JPY and GBP), and attributes
these improvements to finer conditioning. Second, the Klaassen version permits
analytical multi-step forecasting, which is a key part of our out-of-sample analysis.

We report in Table 5 the ML estimates of the alternative processes. The
coefficient 1/ν is the inverse of the degrees of freedom in the Student distribution.
This is a convenient renormalization that has been frequently used in the literature
(e.g., Bollerslev, 1987). Each coefficient σi, i = 1, 2, represents the standard
deviation of returns conditional on the volatility state: σ2

i = ωi/(1 − αi − βi).
These coefficients are easier to interpret across models than the intercepts ωi. As
shown in Table 6, the multifractal has a higher likelihood than GARCH(1,1) for
all exchange rates in spite of the fact that both processes have the same number
of parameters. Note that GARCH(1,1) approximately matches the likelihoods
obtained by MSM with only 3 or 4 frequencies. The multifractal model thus gives
an improved fit over GARCH(1,1) in-sample.

The MS-GARCH model raises different issues because it uses more parameters
(9) than either the GARCH or MSM processes (4). Thus, although MS-GARCH
has higher likelihoods than either GARCH or MSM, we obtain a different ordering
when using the Schwarz BIC criterion. In particular, the multifractal model is
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then indistinguishable from MS-GARCH in the GBP data, and is preferred for
DEM and CAD.

As suggested by Vuong (1989), we can also test the statistical significance
of differences in the BIC criterion. The last two columns of Table 6 test the
GARCH and MS-GARCH models against MSM under this metric.12 We again
give p-values for both the original version of the test as well as a HAC adjusted
variant. Under the original version, the in-sample performance of the MSM model
over GARCH(1,1) is highly significant for DEM, JPY and GBP, and somewhat
significant for CAD. The HAC adjustments produce analogous but slightly weaker
results. In comparing the MSM model to MS-GARCH, there is some evidence
that the multifractal model is a better performer for DEM and CAD, but the
significance is marginal at best. Overall, this analysis suggests that in-sample the
multifractal matches the performance MS-GARCH and significantly outperforms
GARCH(1,1).

5.2. Out-of-Sample Forecasts

We now investigate the out-of-sample forecasting performance of the competing
models. We use forecasting horizons ranging from 1 to 50 days. For each currency,
we estimate the three processes on the beginning of the series, and use the last
twelve years of data (or approximately half the sample) for our out-of-sample
forecasting comparison.

Table 7 reports results of one-day forecasts. The first two columns correspond
to the coefficients γ0 and γ1 from the Mincer-Zarnowitz OLS regressions x2

t+1 =
γ0 + γ1Etx

2
t+1 + ut of squared returns on a constant and one-day forecasts. These

regressions are common in the financial econometrics literature (e.g., Pagan and
Schwert, 1990; West and Cho, 1995; Andersen, Bollerslev, and Meddahi, 2002),
and unbiased forecasts would imply γ0 = 0 and γ1 = 1. We adjust the standard
errors of γ0 and γ1 for parameter uncertainty as in West and McCracken (1998),
and for HAC effects using the weighting and lag selection methodology of Newey
and West (1987, 1994).

The MSM results show that for each currency, the estimated intercept γ̂0 is
slightly positive and the slope γ̂1 is slightly lower than 1. These small biases,
however, are not statistically significant. In particular, the hypothesis γ0 = 0
is accepted at the 5% confidence level for all currencies, and γ1 = 1 is accepted

12Note that a BIC test of GARCH against the multifractal model is identical to a likelihood
test since both have the same number of parameters.
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at the 5% level for JPY and CAD and at the 1% level for DEM and GBP. The
Mincer-Zarnowitz regressions thus show little evidence of bias in MSM forecasts.

The point estimates γ̂0 and γ̂1 are slightly worse with GARCH(1,1) than with
the multifractal. All intercepts are more positive, and the slopes are further away
from 1 for three currencies. The biases are also statistically significant. The hy-
potheses γ0 = 0 and γ1 = 1 are rejected at the 5% level in seven out of eight cases.
Since 0 < γ̂1 < 1, these results suggest that GARCH forecasts are too variable
and can be improved by the linear smoothing γ̂0 + γ̂1Etx

2
t+1. In contrast, Markov-

switching GARCH improves on the out-of-sample performance of GARCH(1,1).
We accept that γ0 = 0 at the 5% confidence level for all currencies, and that
γ1 = 1 at the 1% level for DEM, GBP and CAD. Furthermore, the regression
estimates are best with MS-GARCH for two currencies (DEM and GBP), and
with the multifractal for the other two. The two processes thus seem to perform
quite similarly out-of-sample at the one-day horizon. We also report in Table 7
two standard measures of goodness of fit: the Mean Squared Error (MSE) and the
restricted R2 coefficient.13 The multifractal produces the best forecasting R2 for
DEM and JPY. On the other hand, GARCH produces better results for the GBP
and MS-GARCH for the CAD. To summarize the one-day forecast results, the
multifractal model appears to slightly dominate GARCH(1,1) and to give results
comparable to MS-GARCH.

Multistep forecasts provide sharper evidence of differences between the three
models. We report in Table 8 the results for 20-day forecasts, which are repre-
sentative of longer horizons. Since our data sets contain only business days, this
frequency corresponds to about a month of calendar time. Following Andersen
and Bollerslev (1998) and Klaassen (2002), the dependent variable is the sum of
squared daily returns

∑t+19
s=t x2

s over the twenty-day period. Because the average
size of returns increases with the sampling interval, the estimated intercepts γ̂0

are larger in Table 8 than in Table 7. For each currency, the multifractal produces
point estimates of γ0 and γ1 that are closest to their preferred values. We also
accept the hypotheses γ0 = 0 and γ1 = 1 in all cases at the 5% confidence level.
By contrast, for the other models each currency gives a strong rejection of either
one hypothesis (MS-GARCH) or both (GARCH) at the 5% confidence level. The
reported MSE and R2 further confirm that the multifractal provides the best 20-

13The Mean Squared Error (MSE) quantifies forecast errors in the out-of-sample pe-
riod: L−1

∑T
t=T−L+1(x

2
t − Et−1x

2
t )2. The coefficient of determination is defined by R2 =

1 − MSE/TSS, where TSS is the out-of-sample variance of squared returns: TSS =
L−1

∑T
t=T−L+1(x

2
t −

∑T
i=T−L+1 x2

i /L)2.
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day forecasts for all currencies. The difference is particularly large in the case of
the DEM and JPY. The R2 coefficient is 13.5% and 20.5% respectively for DEM
and JPY with the multifractal, while negative values are produced by GARCH
and MS-GARCH.14

Table 9 reports summary forecasting results and significance tests for horizons
of 1, 5, 10, 20 and 50 days. Panel A shows the forecasting R2 for each model.
For the Mark and the Yen, the multifractal model is quite dominant at the 5-day
horizon, and increasingly outperforms other models at longer horizons. For the
Pound and the Canadian Dollar, the multifractal is only dominant at horizons of
20 days and higher. Panel B analyzes the statistical significance of these results.
At horizons of 50 days, the multifractal model outperforms the other models very
significantly for DEM, GBP and JPY, and at a moderate or marginal significance
level for CAD. The superior forecasts of the multifractal are also highly significant
at horizons of 10 and 20 days for the DEM, and somewhat strong at the 20-day
horizons for JPY and GBP.

These results are quite impressive for the multifractal model. Although this
is the first forecasting evaluation of MSM and only the simplest binomial specifi-
cation has been investigated, our process compares well with established models.
In particular, GARCH(1,1) is often viewed as a standard benchmark that is very
difficult to outperform in forecasting exercises (e.g., West and Cho, 1995; An-
dersen and Bollerslev, 1998; Hansen and Lunde, 2001). Nonetheless, our results
have shown the multifractal model to match or slightly outperform GARCH and
MS-GARCH at short horizons, and in many cases to substantially dominate these
models at longer horizons.

6. Conclusion

This paper proposes an expanded role for regime-switching in modeling volatility.
Traditional approaches, such as Markov-switching ARCH (Cai, 1994; Hamilton
and Susmel, 1994) and GARCH (Gray, 1996; Klaassen, 2002), consider separately
three categories of volatility dynamics. High-frequency variation is captured by a
thick-tailed conditional distribution of returns, mid-range frequencies by smooth
ARCH or GARCH components, and only very low frequencies are modeled with

14The multifractal yields a higher R2 for 20-day returns than for daily returns. This stems
from the fact that our measure of 20-day volatility is a sum of daily squared returns

∑t+19
s=t x2

s.
As in Andersen and Bollerslev (1998), reduced noise in the volatility measure leads to an increase
in explanatory power.
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regime-switching. We suggest an alternative approach based on regime-switching
at all frequencies. The model is very tightly parameterized in spite of a high
dimensional state space. Using four long series of daily exchange rates, we find
that MSM matches or dominates the performance of previous models across a
range of in-sample and out-of-sample measures. Thus, the primary contribution
of the paper is to show that regime-switching can have a much broader scope than
previously envisioned. In particular, our pure regime switching model provides a
viable alternative to approaches that combine regime-switching, linear volatility
dynamics, and flexible tail distributions.

Researchers often focus on applications of immediate practical value when
assessing statistical models. We have similarly shown that MSM does well by
several standard measures of performance. From a theoretical perspective, good
econometric descriptions are also useful as the first step in explanation. Whereas
the standard approach requires the understanding of three statistical phenom-
ena, MSM offers the possibility of a much more parsimonious elucidation. More
specifically, this paper invites the theorist to determine the economic mechanism
causing the self-similar form of regime-switching exhibited by financial series.

Returning to the more immediate contributions of our work, this is the first
paper to develop and use a comprehensive econometric toolkit to estimate and
test multifractal processes. We develop the first maximum likelihood estimator
for multifractal processes, which is based on the filter developed by Hamilton
(1989). This estimator works well in Monte Carlo simulations, and the application
to exchange rates leads to several observations. First, the likelihood function of
MSM increases monotonically as we add volatility components. This finding is
important because it confirms substantial heterogeneity in volatility persistence,
which is one of the primary motivations of the multifractal approach. Consistent
with intuition, the spacing of volatility components across frequencies becomes
tighter and the contribution of individual volatility components becomes smaller
as the number of components increases.

We then compared the multifractal model with Student GARCH and MS-
GARCH, which are chosen because of demonstrated good performance with ex-
change rate data under a variety of metrics. Like MSM, these models conveniently
permit maximum likelihood estimation and analytical forecasting. In-sample, the
likelihood is significantly higher for the multifractal than for GARCH even though
these processes have the same number of parameters. We use a BIC criterion to
compare goodness-of-fit of MS-GARCH and MSM, and find no significant differ-
ence between the two models. Out-of-sample evidence further validates the multi-
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fractal process. MSM matches or slightly outperforms GARCH and MS-GARCH
at short horizons, and in many cases substantially dominates these models at
longer horizons. The multifractal model thus appears to be a serious contender
among volatility models, and well-deserving of further empirical and theoretical
investigation.
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7. Appendix

7.1. Autocorrelogram

Consider a sequence of processes with fixed parameter vector ψ = (m0, σ, b, γ∗).
Note in particular that γk̄ = γ∗ for all k̄. For any integer n ≥ 0 and real q ∈
[0,∞), it is convenient to define Kq(n) = E(|xt|q |xt+n|q)/[E(|xt|2q)] and cq =
[E(|εt|q)]2/[E(|εt|2q)]. Multipliers in different stages of the cascade are statistically
independent. The definition of returns, xt = σ(M1,tM2,t...Mk,t)

1/2εt and xt+n =

σ(M1,t+nM2,t+n...Mk,t+n)1/2εt+n, implies

Kq(n) = cq[E(M q)]−k
∏k̄

k=1
E(M

q/2
k,t M

q/2
k,t+n).

Note that E(M
q/2
k,t M

q/2
k,t+n) = E(M q)(1− γk)

n + [E(M q/2)]2[1− (1− γk)
n] or equiv-

alently
E(M

q/2
k,t M

q/2
k,t+n) = [E(M q/2)]2 [1 + aq(1− γk)

n],

where aq = E(M q)/[E(M q/2)]2 − 1. Since 1 − γk = (1 − γk̄)
bk−k̄

and γk̄ = γ∗, we
obtain

ln
Kq(n)

cq

=
k∑

k=1

ln
1 + aq(1− γ∗)nbk−k̄

1 + aq

. (7.1)

As k increases from 1 to k̄, the expression (1−γ∗)nbk−k̄
declines from (1−γ∗)nb1−k̄

to (1− γ∗)n. The maximum (1− γ∗)nb1−k̄
is close to 1 and the minimum (1− γ∗)n

is close to 0 when bk̄/n and n are large. Intermediate values are observed when

(1− γ∗)nbk−k̄ ≈ 1− γ∗, or equivalently k ≈ logb(b
k̄/n). Let i(n) denote the unique

integer such that i(n) ≤ logb(b
k̄/n) < i(n) + 1. We anticipate that

ln
Kq(n)

cq

≈
k̄∑

k=i(n)+1

ln
1

1 + aq

= −[k̄ − i(n)] ln(1 + aq),

and thus ln Kq(n) ≈ −(logb n) ln(1 + aq) = −δ(q) ln n.
To formalize this intuition, consider the interval Ik̄ = {n : α1 logb(b

k̄) ≤
logb n ≤ α2 logb(b

k̄)}. Note that logb(b
k̄/n) ≥ (1 − α2) logb(b

k̄) for all n ∈ Ik̄. We
henceforth assume that k̄ is sufficiently large so that i(n) ≥ b ∀ n ∈ Ik̄. Consider
an arbitrary sequence of strictly positive integers j(n) monotonically diverging to
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+∞. The precise definition of j(n) is temporarily postponed. Let

un = j(n) ln (1 + aq) +

i(n)+j(n)∑

k=i(n)−j(n)+1

ln
1 + aq(1− γ∗)nbk−k̄

1 + aq

.

By (7.1), ln[Kq(n)/cq] can be decomposed into four components:

ln
Kq(n)

cq

= −[k̄ − i(n)] ln(1 + aq) +

i(n)−j(n)∑

k=1

ln
1 + aq(1− γ∗)nbk−k̄

1 + aq

(7.2)

+un +
k∑

k=i(n)+j(n)+1

ln[1 + aq(1− γ∗)nbk−k̄

].

We successively examine each component on the righ-hand side.

• The first component is between −δ(q) (ln n + ln b) and −δ(q) ln n.

• The second component contains terms (1−γ∗)nbk−k̄
that are bounded below

by (1− γ∗)nbi(n)−j(n)−k̄
. The definition of i(n) implies nbi(n)−k̄ ≤ 1 and thus

∣∣∣∣∣∣

i(n)−j(n)∑

k=1

ln
1 + aq(1− γ∗)nbk−k̄

1 + aq

∣∣∣∣∣∣
≤ i(n) ln

1 + aq

1 + aq(1− γ∗)b−j(n)
.

By standard concavity arguments, we infer ln 1+aq

1+aq(1−γ∗)b−j(n) ≤ aq[1 − (1 −
γ∗)b−j(n)

] and 1− eb−j(n) ln(1−γ∗) ≤ b−j(n) |ln(1− γ∗)| . The second component
of (7.2) is therefore bounded by i(n)b−j(n)aq| ln(1− γ∗)|.

• The third component, un, contains terms 1+aq(1−γ∗)nbk−k̄
that are between

1 and 1 + aq. Hence |un| ≤ j(n) ln (1 + aq) ≤ aqj(n).

• The fourth component is positive and bounded above by

aq

k∑

k=i(n)+j(n)+1

(1− γ∗)nbk−k̄ ≤ aq

∞∑

k=0

(1− γ∗)bknbi(n)+j(n)+1−k̄

.

We check that nbi(n)+j(n)+1−k̄ ≥ 1 and bk ≥ k(b− 1). The fourth component
is therefore bounded above by aq

∑∞
k=0(1− γ∗)k(b−1) = aq

1−(1−γ∗)b−1 .
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This establishes that∣∣∣∣
ln Kq(n)

ln n−δ(q)
− 1

∣∣∣∣ ≤
c∗q + aqj(n) + aqi(n)b−j(n)| ln(1− γ∗)|

δ(q) ln n
,

where c∗q = δ(q) ln b+ | ln cq|+aq/[1−(1−γ∗)(b−1)]. We now choose a sequence j(n)
such that the right-hand side of the inequality converges to 0. More specifically,
consider the unique integer such that15 j(n) ≤ 2 logb i(n) < j(n) + 1. It is easy to
check that i(n)b−j(n) = blogb i(n)−j(n) ≤ 1 and j(n) ≤ 2 logb(logb bk̄) = 2 logb k̄. For

all n ∈ Ik̄, the quantity
∣∣∣ ln Kq(n)

ln n−δ(q) − 1
∣∣∣ is therefore bounded above by

ηk̄ =
1

k̄ δ(q)α1 ln b

[
2aq logb k̄ + c∗q + aq| ln(1− γ∗)|] , (7.3)

which is independent of n. We infer that sup
n∈Ik̄

∣∣∣ ln Kq(n)

ln n−δ(q) − 1
∣∣∣ → 0 as k̄ → +∞.

Finally, it is easy to show that the autocorrelation ρq(n) satisfies

1 ≤ Kq(n)

ρq(n)
=

1− cq(1 + aq)
−k̄

1− cq(1 + aq)−k̄/Kq(n)
≤ 1

1− cq(1 + aq)−k̄/Kq(n)
. (7.4)

Equation (7.3) implies that for all n ∈ Ik̄, logb Kq(n) ≥ −δ(q)(1 + ηk̄)α2k̄, and
thus

logb[Kq(n)/(1 + aq)
−k̄] ≥ k̄δ(q)(1− α2 − α2ηk̄/k̄). (7.5)

Combining (7.4) and (7.5), we conclude that supn∈Ik̄

∣∣∣ln Kq(n)

ρq(n)

∣∣∣ → 0 and thus that

the Proposition holds.

7.2. Bayesian Updating

Denote the set of past observations It ≡ {xs}t
s=1. We note that the conditional

probability Πj
t+1 = P (Mt+1 = mj |It, xt+1 ) satisfies

Πj
t+1 = fxt+1

(
xt+1|Mt+1 = mj

)
P

(
Mt+1 = mj |It

)
/fxt+1 (xt+1 |It ) ,

which can be rewritten as

Πj
t+1 =

n[xt+1/σg (mj)]
(∑d

i=1 aijΠ
i
t

)

σg (mj) fxt (xt+1 |It )
. (7.6)

This implies (3.1) since
∑

j Πj
t+1 = 1.

15We check that when k̄ is large enough, 1 ≤ j(n) ≤ i(n) and j(n) + i(n) ≤ k̄ for all n ∈ Ik̄.
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7.3. Likelihood Function

We know that L (x1, ..., xT ; ψ) =
∑T

t=1 ln f(xt |x1, ..., xt−1 ). Bayes’ rule implies
that

f(xt |x1, ..., xt−1 ) =
d∑

i=1

P(Mt = mi|x1, ..., xt−1)f(xt|Mt = mi)

=
d∑

i=1

P(Mt = mi|x1, ..., xt−1)
1

σg (mi)
n

(
x

σg (mi)

)

and thus f(xt |x1, ..., xt−1 ) = ω(xt) · (Πt−1A).

7.4. HAC-Adjusted Vuong Test

We consider the probability space (Ω,F ,P0) and a stochastic process {xt}+∞
t=−∞.

Each xt is a random variable taking values on the real line. For every t, it is
convenient to consider the vector of past values Xt−1 = {xs}t−1

s=−∞. The econo-
metrician directly observes a finite number of realizations of xt, but ignores the
true data generating process. She instead considers two competing families of
models specified by their conditional densities Mf = {f(xt|Xt−1, θ); θ ∈ Θ} and
Mg = {g(xt|Xt−1, γ); γ ∈ Γ}. These families may or may not contain the true
data generating process. The pseudo true value θ∗ specifies the model in Mf with
the optimal Kullback-Leibler Information Criterion:

θ∗ = arg max
θ∈Θ

E0[ln f(xt|Xt−1, θ)].

The pseudo true value γ∗ is similarly defined.
Consider the log-likelihood functions:

Lf
T (θ) ≡

T∑
t=1

ln f(xt|Xt−1, θ), Lg
T (γ) ≡

T∑
t=1

ln g(xt|Xt−1, γ).

By definition, the MLE estimators θ̂T and γ̂T maximize the functions Lf
T (θ) and

Lg
T (γ). The corresponding FOCs are

∂Lf
T

∂θ
(θ̂T ) = 0,

∂Lg
T

∂θ
(γ̂T ) = 0. (7.7)
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We now examine the likelihood ratio

LRT (θ̂T , γ̂T ) = Lf
T (θ̂T )− Lg

T (γ̂T ) =
T∑

t=1

ln
f(xt|Xt−1, θ̂T )

g(xt|Xt−1, γ̂T )
.

By equation (7.7), a second order expansion of LRT implies that 1√
T
LRT (θ̂T , γ̂T ) =

1√
T
LRT (θ∗, γ∗) + op(1), and thus

1√
T

LRT (θ̂T , γ̂T ) =
1√
T

T∑
t=1

ln
f(xt|Xt−1, θ

∗)
g(xt|Xt−1, γ∗)

+ op(1).

Let at = ln[f(xt|Xt−1, θ
∗)/g(xt|Xt−1, γ

∗)] and ât = ln[f(xt|Xt−1, θ̂T )/g(xt|Xt−1, γ̂T )].
When the observations xt are IID, the addends at are also IID. If the models

f and g have equal Kullback-Leibler Information criterion, the CLT implies

1√
T

LRT (θ̂T , γ̂T )
d→ N (0, σ2

∗),

where σ2
∗ = V ar(at). The variance is consistently estimated by the sample variance

of {ât}.
In the non-IID case, we need to adjust for the correlation in the addends at.

Let

σ2
T =

1

T

T∑
s=1

T∑
t=1

E(asat).

We know that 1√
T
LRT (θ̂T , γ̂T ) = σT Z + op(1), where Z is a standard Gaussian.

Following Newey-West (1987), we estimate σT by

σ̂2
T = Ω̂0 + 2

mT∑
j=1

w(j, m)Ω̂j,

where Ω̂j =
∑T

t=j+1 âtât−j/T denotes the sample covariance of {ât}, and w(j,m) =
1 − j/(m + 1) is the Bartlett weight. We choose mT using the automatic lag
selection method of Newey and West (1994).
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TABLE 1. – Monte Carlo MLE Results
m0 = 1.3 m0 = 1.4 m0 = 1.5

T1 T2 T3 T1 T2 T3 T1 T2 T3

m̄sim 1.288 1.293 1.297 1.392 1.393 1.397 1.494 1.494 1.497
FSSE (0.026) (0.018) (0.012) (0.031) (0.019) (0.015) (0.032) (0.025) (0.015)
RMSE (0.029) (0.019) (0.012) (0.032) (0.021) (0.015) (0.033) (0.025) (0.016)
AASE (0.019) (0.013) (0.010) (0.018) (0.014) (0.011) (0.019) (0.014) (0.011)

σ̄sim 1.014 1.004 0.999 1.031 1.011 1.005 1.026 1.017 1.006
FSSE (0.167) (0.102) (0.073) (0.221) (0.147) (0.091) (0.255) (0.224) (0.105)
RMSE (0.167) (0.102) (0.073) (0.223) (0.148) (0.092) (0.256) (0.225) (0.105)
AASE (0.072) (0.056) (0.046) (0.091) (0.075) (0.057) (0.111) (0.088) (0.067)

γ̄sim 0.867 0.908 0.934 0.907 0.935 0.940 0.924 0.938 0.944
FSSE (0.164) (0.113) (0.068) (0.111) (0.069) (0.047) (0.087) (0.055) (0.037)
RMSE (0.184) (0.120) (0.070) (0.119) (0.070) (0.048) (0.091) (0.056) (0.037)
AASE (0.181) (0.114) (0.071) (0.110) (0.068) (0.048) (0.078) (0.052) (0.036)

b̄sim 2.853 2.942 2.988 3.052 2.938 2.973 3.054 2.987 2.979
FSSE (0.934) (0.670) (0.416) (0.963) (0.480) (0.363) (0.735) (0.565) (0.316)
RMSE (0.945) (0.673) (0.416) (0.964) (0.484) (0.364) (0.737) (0.565) (0.317)
AASE (0.677) (0.471) (0.331) (0.599) (0.367) (0.264) (0.476) (0.323) (0.225)

Notes: This table is based on J = 400 simulated paths for each column. All simulations are based on a
multifractal process with k̄ = 8. The columns are distinguished by combinations of m0 ∈ {1.3, 1.4, 1.5} and
sample lengths of T1 = 2500, T2 = 5000, and T3 = 10000. Parameters that are fixed across all simulations
are σ = 1, γk = 0.95, and b = 3. These parameters provide a reasonable approximation to values that are
estimated on exchange rate data in future sections of the paper. In each set of four rows, the first row is
the average MLE parameter value over the J simulated paths. In the remaining rows, FSSE denotes finite
sample standard error, RMSE the root mean squared error, and AASE the average asymptotic standard
error. To derive AASE, the asymptotic variance is calculated for each j ∈ {1, .., J} path from the inverse of
the information matrix and the average is taken over the J simulations.
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TABLE 2. – FX Return Variability
Standard Deviation of Returns

Entire By Subperiod
Sample 1 2 3 4

DEM 0.664 0.587 0.716 0.708 0.635
JPY 0.657 0.545 0.640 0.646 0.775
GBP 0.607 0.486 0.724 0.699 0.473
CAD 0.274 0.220 0.255 0.284 0.327

Notes: For each data set, the first column shows the standard deviation
of returns over the entire sample period. In the next four columns, each
data series is broken into quarters and the same statistic is calculated for
each subperiod. The results show that the variability of return variance is
substantial even at very low frequencies.
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TABLE 3. – Maximum Likelihood Results
k̄ = 1 2 3 4 5 6 7 8 9 10

Deutsche Mark / US Dollar
m̂0 1.654 1.590 1.555 1.492 1.462 1.413 1.380 1.353 1.351 1.326

(0.013) (0.012) (0.013) (0.013) (0.012) (0.013) (0.012) (0.011) (0.013) (0.015)
σ̂ 0.682 0.651 0.600 0.572 0.512 0.538 0.547 0.550 0.674 0.643

(0.012) (0.018) (0.014) (0.016) (0.018) (0.026) (0.021) (0.025) (0.035) (0.073)
γ̂k̄ 0.075 0.107 0.672 0.714 0.751 0.858 0.932 0.974 0.966 0.959

(0.011) (0.022) (0.151) (0.096) (0.106) (0.128) (0.071) (0.042) (0.065) (0.066)

b̂ - 8.01 21.91 10.42 7.89 5.16 4.12 3.38 3.29 2.70
( 2.58) ( 7.30) ( 1.92) ( 1.31) ( 0.76) ( 0.48) ( 0.36) ( 0.47) ( 0.36)

ln L -5920.86 -5782.96 -5731.78 -5715.31 -5708.25 -5706.91 -5704.48 -5704.77 -5704.86 -5705.09

Japanese Yen / US Dollar
m̂0 1.797 1.782 1.693 1.654 1.640 1.573 1.565 1.513 1.475 1.448

(0.011) (0.009) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011)
σ̂ 0.630 0.538 0.566 0.462 0.709 0.642 0.518 0.514 0.486 0.461

(0.011) (0.009) (0.017) (0.013) (0.023) (0.023) (0.018) (0.020) (0.026) (0.036)
γ̂k̄ 0.199 0.345 0.312 0.697 0.778 0.899 0.897 0.975 0.995 0.998

(0.019) (0.033) (0.054) (0.080) (0.076) (0.060) (0.057) (0.034) (0.010) (0.006)

b̂ - 134.20 12.46 15.58 16.03 8.07 7.46 5.65 4.43 3.76
( 48.27) ( 2.18) ( 2.67) ( 2.67) ( 1.03) ( 0.89) ( 0.78) ( 0.53) ( 0.45)

ln L -6451.80 -6102.18 -5959.72 -5900.67 -5882.93 -5871.35 -5867.88 -5863.20 -5863.01 -5862.68

British Pound / US Dollar
m̂0 1.716 1.671 1.648 1.609 1.579 1.534 1.503 1.461 1.428 1.403

(0.012) (0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.011) (0.011) (0.009)
σ̂ 0.609 0.590 0.513 0.467 0.421 0.468 0.389 0.384 0.374 0.370

(0.009) (0.011) (0.016) (0.016) (0.017) (0.019) (0.014) (0.015) (0.022) (0.022)
γ̂k̄ 0.110 0.222 0.278 0.645 0.637 0.784 0.811 0.958 0.964 0.982

(0.017) (0.034) (0.052) (0.080) (0.075) (0.078) (0.083) (0.052) (0.043) (0.031)

b̂ - 19.90 14.29 12.51 11.02 8.32 6.72 5.23 4.08 3.45
( 5.19) ( 2.58) ( 2.00) ( 1.74) ( 1.15) ( 0.91) ( 0.69) ( 0.41) ( 0.32)

ln L -5960.18 -5724.37 -5622.73 -5570.02 -5537.80 -5523.64 -5516.89 -5515.37 -5515.28 -5514.94

Canadian Dollar / US Dollar
m̂0 1.646 1.556 1.474 1.435 1.386 1.374 1.338 1.319 1.296 1.278

(0.012) (0.012) (0.014) (0.015) (0.012) (0.013) (0.012) (0.016) (0.013) (0.012)
σ̂ 0.280 0.278 0.293 0.263 0.251 0.295 0.282 0.262 0.259 0.262

(0.005) (0.006) (0.014) (0.009) (0.010) (0.011) (0.013) (0.017) (0.015) (0.021)
γ̂k̄ 0.064 0.109 0.129 0.171 0.441 0.524 0.593 0.594 0.631 0.644

(0.009) (0.016) (0.040) (0.062) (0.153) (0.128) (0.145) (0.151) (0.155) (0.158)

b̂ - 10.92 4.76 3.95 4.02 4.08 3.11 2.72 2.35 2.11
( 3.12) ( 1.15) ( 0.83) ( 0.76) ( 0.58) ( 0.39) ( 0.39) ( 0.25) ( 0.18)

ln L -271.01 -129.80 -105.16 -91.32 -88.41 -84.73 -84.03 -83.40 -83.06 -83.00

Notes: This table shows maximum likelihood estimation results for the binomial multifractal model for all
four exchange rate series. Columns correspond to the number of frequencies k̄ in the estimated model. The
likelihood function increases monotonically in the number of volatility frequencies for all data sets except
DEM, which obtains a maximum at k̄ = 7. Asymptotic standard errors are in parenthesis.
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TABLE 4. – Multifractal Model Selection
k̄ = 1 2 3 4 5 6 7 8 9

A. Vuong (1989) Test
Mark -8.655 -5.523 -2.972 -1.858 -0.688 -0.733 0.341 0.204 0.337

(0.000) (0.000) (0.001) (0.032) (0.246) (0.232) (0.633) (0.581) (0.632)
Yen -13.067 -8.406 -5.342 -3.154 -2.156 -1.192 -1.108 -0.180 -0.162

(0.000) (0.000) (0.000) (0.001) (0.016) (0.117) (0.134) (0.429) (0.436)
Pound -11.810 -8.337 -6.267 -4.360 -2.984 -1.334 -0.408 -0.149 -0.236

(0.000) (0.000) (0.000) (0.000) (0.001) (0.089) (0.342) (0.441) 0.407)
Canada -8.475 -4.421 -3.289 -1.795 -2.108 -0.862 -0.825 -0.472 -0.158

(0.000) (0.000) (0.000) (0.036) (0.017) (0.194) (0.205) (0.318) (0.437)
B. HAC Adjusted Vuong Test

Mark -4.285 -3.033 -1.683 -1.101 -0.402 -0.424 0.197 0.120 0.194
(0.000) (0.001) (0.046) (0.135) (0.344) (0.336) (0.578) (0.548) (0.577)

Yen -5.219 -4.262 -2.865 -1.645 -1.224 -0.648 -0.663 -0.105 -0.098
(0.000) (0.000) (0.002) (0.050) (0.111) (0.259) (0.254) (0.458) (0.461)

Pound -3.788 -2.804 -2.803 -2.195 -1.759 -0.779 -0.242 -0.088 -0.137
(0.000) (0.003) (0.003) (0.014) (0.039) (0.218) (0.404) (0.465) (0.446)

Canada -4.237 -2.383 -1.789 -1.019 -1.150 -0.480 -0.445 -0.276 -0.091
(0.000) (0.009) (0.037) (0.154) (0.125) (0.316) (0.328) (0.391) (0.464)

Notes: This table reports t-ratios and one-sided p-values for the log-likelihood difference of the model
in each column against the multifractal with ten frequencies. Panel A uses the Vuong (1989) methodology
and Panel B adjusts for heteroskedasticity and autocorrelation using Newey and West (1987, 1994). A
low p-value indicates that the corresponding model would be rejected in favor of the multifractal with ten
frequencies.
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TABLE 5. – Alternative Processes

Regime 1 Regime 2
1/ν σ1 α1 β1 p11 σ2 α2 β2 p22 ln L

Deutsche Mark / US Dollar
GARCH 0.1929 1.5539 0.0879 0.9108 -5730.52

(0.011) (0.405) (0.009) (0.009)
MS-GARCH 0.2041 1.0749 0.2048 0.7896 0.9998 1.3145 0.0718 0.9241 0.9999 -5694.78

(0.011) (0.288) (0.023) (0.024) (0.0003) (0.282) (0.010) (0.011) (0.0002)

Japanese Yen / US Dollar
GARCH 0.2290 0.1638 0.0652 0.9348 -5965.07

(0.0002) (0.059) (0.006) (0.006)
MS-GARCH 0.2632 0.4443 0.3420 0.6500 0.9999 0.9639 0.0650 0.9227 0.9999 -5833.59

(0.012) (0.137) (0.040) (0.040) (0.0002) (0.121) (0.010) (0.013) (0.0002)

British Pound / US Dollar
GARCH 0.2007 0.2365 0.0681 0.9319 -5562.00

(0.0077) (0.070) (0.0046) (0.0046)
MS-GARCH 0.2202 0.8423 0.3653 0.6051 0.9860 0.9343 0.0587 0.9365 0.9986 -5492.44

(0.009) (0.013) (0.053) (0.056) (0.005) (0.012) (0.008) (0.008) (0.0003)

Canadian Dollar / US Dollar
GARCH 0.1528 0.3108 0.0810 0.9108 -96.03

(0.037) (0.008) (0.008) (0.010)
MS-GARCH 0.1385 0.2046 0.0584 0.9361 0.9896 0.2972 0.2587 0.2925 0.9415 -73.51

(0.011) (0.035) (0.009) (0.010) (0.004) (0.025) (0.074) (0.215) (0.023)

Notes: This table shows maximum likelihood estimation results for alternative processes for the four
exchange rate series. Asymptotic standard errors are in parenthesis. For the GARCH(1,1) model, the
parameter estimates for JPY/USD and GBP/USD are on the boundary of the restriction α + β ≤ 1 − ε,
where ε = 10−5.
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TABLE 6. – In-Sample Model Comparison
No. of BIC p-value

Parameters ln L BIC vs. Multifractal
Vuong HAC
(1989) Adj

Deutsche Mark / US Dollar
Binomial Multifractal 4 -5705.09 1.7830
GARCH 4 -5730.52 1.7910 0.005 0.071
MS-GARCH 9 -5694.78 1.7866 0.140 0.248

Japanese Yen / US Dollar
Binomial Multifractal 4 -5862.68 1.6115
GARCH 4 -5965.07 1.6396 0.000 0.008
MS-GARCH 9 -5833.59 1.6097 0.619 0.572

British Pound / US Dollar
Binomial Multifractal 4 -5514.94 1.5162
GARCH 4 -5562.00 1.5291 0.004 0.070
MS-GARCH 9 -5492.44 1.5162 0.505 0.503

Canadian Dollar / US Dollar
Binomial Multifractal 4 -83.00 0.0286
GARCH 4 -96.03 0.0323 0.072 0.200
MS-GARCH 9 -73.51 0.0322 0.092 0.235

Notes: This table summarizes information about in-sample goodness of fit for the three
models. The Bayesian Information Criterion is given by BIC = T−1(−2 ln L + NP ln T ).
The sample lengths are 6419 for DEM/USD, 7298 for JPY/USD and GBP/USD, and 7048
for CAD/USD. The last two columns give p-values from a test that the corresponding
model dominates the multifractal model by the BIC criterion. The first value uses the
Vuong (1989) methodology, and the second value adjusts the test for heteroskedasticity and
autocorrelation. A low p-value indicates that the corresponding model would be rejected in
favor of the multifractal model.
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TABLE 7. – One-Day Forecasts
Mincer- Restricted

Zarnowitz γ0 = 0, γ1 = 1
γ0 γ1 MSE R2

Deutsche Mark / US Dollar
Binomial Multifractal 0.098 0.703 0.7263 0.041

(0.072) (0.126)
GARCH 0.153 0.622 0.7304 0.035

(0.061) (0.105)
MS-GARCH 0.042 0.740 0.7296 0.037

(0.080) (0.130)

Japanese Yen / US Dollar
Binomial Multifractal 0.028 0.772 1.6053 0.053

(0.090) (0.117)
GARCH 0.172 0.668 1.6137 0.048

(0.075) (0.105)
MS-GARCH 0.080 0.709 1.6141 0.048

(0.084) (0.109)

British Pound / US Dollar
Binomial Multifractal 0.053 0.715 0.5081 0.057

(0.049) (0.100)
GARCH 0.085 0.751 0.4980 0.076

(0.044) (0.098)
MS-GARCH 0.017 0.814 0.4997 0.072

(0.051) (0.108)

Canadian Dollar / US Dollar
Binomial Multifractal 0.015 0.905 0.0345 0.051

(0.016) (0.156)
GARCH 0.033 0.679 0.0348 0.042

(0.012) (0.111)
MS-GARCH 0.025 0.785 0.0344 0.055

(0.013) (0.124)

Notes: This table gives out of sample forecasting results for the three models. The first
two columns correspond to parameter estimates from the Mincer-Zarnowitz OLS regression
e2
t+1 = γ0 +γ1Et(e2

t+1)+ut. For an unbiased forecast we expect γ0 = 0 and γ1 = 1. Asymptotic
standard errors in parenthesis are corrected for heteroskedasticity and autocorrelation using the
method of Newey and West (1987,1994) and for parameter uncertainty using the method of
West and McCracken (1998). MSE is the mean square forecast error, and R2 is one less the
MSE divided by the sum of squared demeaned squared returns in the out of sample period.
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TABLE 8. – Twenty-Day Forecasts
Mincer- Restricted

Zarnowitz γ0 = 0, γ1 = 1
γ0 γ1 MSE R2

Deutsche Mark / US Dollar
Binomial Multifractal 1.749 0.706 37.12 0.135

(1.649) (0.150)
GARCH 4.474 0.443 49.24 -0.147

(1.108) (0.092)
MS-GARCH 1.934 0.568 50.66 -0.180

(1.577) (0.118)

Japanese Yen / US Dollar
Binomial Multifractal -1.248 0.909 76.95 0.205

(2.160) (0.155)
GARCH 5.311 0.488 99.15 -0.024

(1.233) (0.086)
MS-GARCH 2.148 0.573 103.29 -0.067

(1.776) (0.108)

British Pound / US Dollar
Binomial Multifractal 0.330 0.792 27.35 0.250

(1.114) (0.120)
GARCH 2.702 0.606 29.61 0.188

(0.760) (0.085)
MS-GARCH 0.641 0.730 29.08 0.203

(1.021) (0.105)

Canadian Dollar / US Dollar
Binomial Multifractal -0.038 1.179 1.6339 0.217

(0.385) (0.221)
GARCH 0.676 0.707 1.6615 0.204

(0.243) (0.121)
MS-GARCH 0.630 0.754 1.6719 0.199

(0.270) (0.140)

Notes: This table gives out of sample forecasting results for the three models. The first
two columns correspond to parameter estimates from the Mincer-Zarnowitz OLS regression
e2
t+1 = γ0 +γ1Et(e2

t+1)+ut. For an unbiased forecast we expect γ0 = 0 and γ1 = 1. Asymptotic
standard errors in parenthesis are corrected for heteroskedasticity and autocorrelation using the
method of Newey and West (1987,1994) and for parameter uncertainty using the method of
West and McCracken (1998). MSE is the mean square forecast error, and R2 is one less the
MSE divided by the sum of squared demeaned squared returns in the out of sample period.
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TABLE 9. – Forecast Summary,
Multiple Horizons

Horizon (Days)
1 5 10 20 50

A. Restricted R2

Deutsche Mark / US Dollar
Binomial Multifractal 0.041 0.124 0.160 0.135 0.038
GARCH 0.035 0.069 0.033 -0.147 -0.761
MS-GARCH 0.039 0.072 0.030 -0.180 -1.137

Japanese Yen / US Dollar
Binomial Multifractal 0.053 0.113 0.142 0.205 0.213
GARCH 0.048 0.054 0.011 -0.024 -0.358
MS-GARCH 0.048 0.044 -0.009 -0.067 -0.569

British Pound / US Dollar
Binomial Multifractal 0.057 0.165 0.235 0.250 0.273
GARCH 0.076 0.191 0.244 0.188 -0.026
MS-GARCH 0.072 0.165 0.238 0.203 0.038

Canadian Dollar / US Dollar
Binomial Multifractal 0.051 0.172 0.221 0.217 0.111
GARCH 0.042 0.154 0.205 0.204 0.070
MS-GARCH 0.055 0.181 0.229 0.199 0.036

B. MSE Test vs. Multifractal (p-value)

Deutsche Mark / US Dollar
GARCH 0.307 0.040 0.009 0.001 0.000
MS-GARCH 0.314 0.004 0.000 0.000 0.000

Japanese Yen / US Dollar
GARCH 0.426 0.208 0.144 0.117 0.063
MS-GARCH 0.415 0.143 0.071 0.021 0.000

British Pound / US Dollar
GARCH 0.906 0.824 0.606 0.156 0.016
MS-GARCH 0.857 0.499 0.547 0.108 0.000

Canadian Dollar / US Dollar
GARCH 0.294 0.3590 0.410 0.447 0.292
MS-GARCH 0.597 0.603 0.565 0.380 0.065

Notes: This table summarizes out of sample forecasting results across multiple horizons.
Panel A gives the restricted forecasting R2 for each model and horizon. Panel B gives p-values
from testing that the corresponding model has a lower out of sample forecasting MSE than the
binomial multifractal. The tests are corrected for autocorrelation and heteroskedasticity using
Newey and West (1987, 1994). A low p-value indicates that forecasts from the corresponding
model would be rejected in favor of multifractal forecasts.

39



0 1000 2000 3000 4000 5000 6000 7000
−5

−2

0

2

5

R
et

ur
n(

%
)

Figure 1: Simulated Multifractal Process. This figure shows simulated log price
differences of a multifractal process. The process has k̄ = 8 frequencies and parameter values
m = 1.4, σ = 0.5, γk̄ = 0.95, and b = 3. These parameter values are roughly consistent with
estimates that are found to provide a good description of several exchange rate series in later
sections of the paper.
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Figure 2: Exchange Rate Data. This figure shows the daily log price differences of the four
exchange rate series.
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