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behavior that violates the principle is genuinely undesirable, since all of the RE equilibria fail to be

learnable.
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1. Introduction 

 A sizeable fraction of recent research on monetary policy has been concerned 

with issues relating to analytical “indeterminacies”—i.e., multiple solutions in  rational 

expectations (RE) models.  Prominent topics for which this type of indeterminacy is 

central to the analysis include (i) the “Taylor principle” [Clarida, Gali, and Gertler (1999, 

2000), King (2000), Woodford (2001)]; (ii) inflation forecast targeting [Woodford (1994, 

2002), Bernanke and Woodford (1996), Kerr and King (1996), Carlstrom and Fuerst 

(2001), Bullard and Mitra (2002)]; (iii) the zero-lower-bound deflation trap [Benhabib, 

Schmitt-Grohe, and Uribe (2001, 2002), Alstadheim and Henderson (2002)], and (iv) the 

fiscal theory of the price level [Woodford (1994, 1995, 2002), Sims (1994), Cochrane 

(1998), Kocherlakota and Phelan (1999)].  The papers just mentioned, moreover, include 

only a sample of leading items, not an exhaustive listing.  Most of the literature features 

sophisticated RE analysis conducted within dynamic models that reflect optimizing 

behavior by individual agents and incorporate Taylor-style policy rules. 

 A few papers have suggested that some of the particular indeterminacy arguments 

are misleading or irrelevant; these include Buiter (1999) and McCallum (1999b, 2001a, 

2001b).  For the most part, however, there has been little dissent from the position that 

these indeterminacies present a genuine problem for monetary policy makers.  The 

purpose of the present paper, by contrast, is to argue that conclusions based on multiple-

solution indeterminacy findings are of dubious merit rather generally.  In each of the 

mentioned cases, that is, there is at most one RE solution that should be regarded as 

plausible, the others reflecting theoretical curiosities that are not of relevance for actual 

economies.  As it happens, the plausible solution in most or all of the cases studied is the 
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minimum-state-variable (MSV) solution defined in McCallum (1983, 1999b), which is 

unique by construction in linear models.  The principle basis of the argument developed 

here depends, however, not on any alleged “fundamental” or “bubble-free” nature of the 

MSV solution, but on the E-stability and adaptive learnability of this solution as defined 

and explored in important recent publications by Evans and Honkapohja (1999, 2001). 

 The outline of the paper is as follows.  In Section 2, two preliminary issues of a 

partly terminological but also substantive nature are taken up, so as to avoid ambiguity or 

confusion later in the discussion.  Next, Section 3 provides a brief summary of the  

E-stability/ least-squares learnability approach and includes a brief argument for its 

importance.  Then in Sections 4-7 the four topics mentioned above are considered in turn, 

with each presented in the simplest possible setting.  Finally, a short concluding section is 

provided. 

2. Preliminaries 

 There are two partly terminological issues that should be confronted at the outset, 

so as to avoid ambiguities based on different implicit definitions.  The first of these is the 

nature of the MSV solution.  Throughout, I will be using that term to designate the 

solution yielded by the procedure of McCallum (1983, 1999b), which is designed to be 

unique by construction.  This terminological usage agrees with that of Evans (1986, 

1989) and Evans and Honkapohja (E&H) (1992) but differs from that employed in the 

latter’s more recent publications (E&H, 1999, p. 496; 2001, p. 194).  Either terminology 

could be used, of course, but the one adopted here is more appropriate and convenient for 

the issues at hand.  

 To clarify the distinction, consider first the univariate model 
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(1) , t t t 1 t 1y aE y cy+ −= α + + + tu

twhere a ≠ 0 and with t t 1u u −= ρ + ε 1ρ < and εt being white noise.  Then the usual listing 

of relevant state variables (i.e., determinants of yt) would include just yt-1 and ut (plus a 

constant term), so the MSV solution will be of the form 

(2) , t 0 1 t 1 2y y −= φ + φ + φ tu

which includes no extraneous state variables and in which φ0, φ1, and φ2 are restricted to 

be real.  This implies that Etyt+1 = φ0 + φ1(φ0 + φ1yt-1 + φ2ut) + φ2ρut and substitution into 

(1) requires that the φj coefficients must satisfy the following conditions: 

(3a) φ0 = α + aφ0 + aφ1φ0 

(3b) φ1 = a φ1
2 + c 

(3c) φ2 = aφ1φ2 + aρφ2 + 1. 

Clearly, the second of these conditions yields two potential values for φ1, namely,  

[1 ± 1 4ac− ]/2a.  These represent two different functions of a and c, say  and φ , 

which therefore define two different RE solutions.  In what sense, then, is there a unique 

MSV solution?  By definition, it is the one that includes no extraneous state variable for 

any relevant value of a and c.  In other words, extraneous state variables are excluded for 

all values of a and c in broad open sets that include a = 0 and c = 0.  Thus the MSV 

solution will be the one provided by use of the φ  root, because it is the one that implies 

φ

( )
1

+φ ( )
1

−

( )
1

−

1 = 0 in cases in which c = 0.1  (Use of φ would give φ( )
1

+
1 = 1/a in these cases, even 

though yt-1 does not appear in the model .)  Then with φ1 uniquely determined, the values 

                                                 
1 In the very unlikely case that φ and  both equal 0 at c = 0, then the one with a continuous first 
derivative would be designated as φ1 for the MSV solution. 

( )
1

+ ( )
1

−φ
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of φ0 and φ2 are given unambiguously by (3a) and (3c).  Evans (1986, 1989) termed this 

the MSV solution—indeed, he coined the term—whereas E&H (1999, 2001) refer to both 

of the solutions of form (2) as MSV solutions (with non-MSV solutions also including 

terms such as yt-2 and ut-1, as well as “sunspot” variables unrelated to the model).   

 The same type of procedure applies in multivariate linear models.  Suppose that 

the model includes a m×1 vector yt of endogenous variables, as in  

(4) yt = A Etyt+1 + C yt-1 + ut,                                                   A ≠ 0 

where ut = Rut-1 + εt  includes exogenous variables and shocks, with R a stable m×m 

matrix and εt a white noise vector. (Constant terms are absent for expositional purposes.)  

Then the MSV solution will be of the form 

(5) yt = Ω yt-1 + Γ ut. 

There are many Ω matrices that will satisfy the quadratic matrix equation analogous to 

(3b), which is Ω = AΩ2 + C, but the MSV value is the one that equals 0 when C = 0.  In 

most cases it will coincide with the one whose m eigenvalues are the smallest (in 

modulus).  For additional discussion, see McCallum (1999b).   

 The second preliminary issue to be discussed involves the contention of 

McCallum (1986, 1999a, 2001b) that it is important to distinguish between two different 

types of indeterminacy, which may be referred to as nominal indeterminacy and multiple 

solutions.  The term “indeterminacy” first became prominent in monetary economics 

from a series of writings by Patinkin (1949, 1965) about an alleged logical inconsistency 

in classical monetary theory.  Some of Patinkin’s conclusions were disputed by Gurley 

and Shaw (1960) and the resulting controversy was reviewed in an influential survey 

article by Johnson (1962).  In all of this earlier literature, it must be noted, the 
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phenonmenon under discussion was “price level indeterminacy” such that the models in 

question fail to determine the value of any nominal variable, including the money supply.  

That type of failure occurs basically because of postulated policy behavior that is entirely 

devoid of any nominal anchor—i.e., there is no concern by the central bank for nominal 

variables.2  Since rational private households and firms care only about real variables, 

according to standard neoclassical analysis, the absence of any “money illusion” by them 

and by the central bank must imply that no agent (in the model) has any concern for any 

nominal variable.  Thus there is in effect no nominal variable appearing anywhere in the 

model, so naturally it cannot determine the value of such variables. 

 The type of indeterminacy under discussion in the current monetary policy 

literature, with which the present paper is concerned, is very different.  Instead of a 

failure to determine any nominal variable (with no implied problematic behavior for real 

variables), the recent literature is concerned with a multiplicity of stable equilibria in 

terms of real variables, typically with an exogenous path specified for some nominal 

variable.3  This type of aberrational behavior stems not from the absence of any nominal 

anchor (a static concept) but from the essentially dynamic fact that various paths of real 

variables can be consistent with rational expectations under certain conditions.  In order 

to avoid possible semantic confusions, McCallum (1986) proposed that different terms be 

used for the two types of aberrational behavior—nominal indeterminacy and solution 

multiplicity, respectively.4  This proposal has not met with widespread acceptance, 

                                                 
 
2 See Patinkin (1965, p. 309). 
3 It is dynamically stable equilibria that are most relevant, because explosive paths of real variables are 
often ruled out by transversality conditions that show them to be suboptimal for individual private agents. 
4 The adjective “nominal” was omitted from my original proposal, but seems clearly to be desirable.  
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although some writers are careful to refer to the second type as involving a “real 

indeterminacy.” 

 Woodford (2002, Ch. 2, p. 50) has disputed the claim that it is important to 

distinguish between nominal indeterminacy and multiple solutions (or real 

indeterminacy).  His argument is that a case of multiple solutions (from, e.g., an interest 

rate policy rule that fails to respect the Taylor principle) is not qualitatively different than 

the nominal indeterminacy that results (in a flexible price model) because the policy rule 

refers to no nominal variable at all, “even though in the latter special case it happens that 

the self-fulfilling expectations have no effect upon expected inflation, interest rates, or 

real balances” (2002, p. 50)—i.e., upon the model’s real variables.  I would suggest, 

however, that this “even though” proviso actually negates the argument being made.  

Second, Woodford goes on to say that “once we generalize our model to allow for 

staggered price setting” [i.e., sticky prices] “even a pure interest-rate peg ceases to result 

in 'nominal indeterminacy' ….”  But the particular form of sticky prices that Woodford 

considers is such that the model continues to include nominal variables even when 

monetary policy supplies no nominal anchor, because private behavior involves a type of 

dynamic money illusion.5  If instead one incorporates sticky price adjustments of a type 

that respects the natural rate hypothesis, as in the P-bar model used by McCallum and 

Nelson (1999), then nominal indeterminacy will prevail if the monetary authority fails to 

provide a nominal anchor.6  Quite generally, nominal indeterminacy occurs if and only if 

                                                 
5 Specifically, price adjustments are of the Calvo (1983) type, which does not conform to the natural rate 
hypothesis—see McCallum and Nelson (1999, pp. 26-27). 
6 The nominal indeterminacy will be basically of the type described in McCallum (1986, pp. 143-9), but 
with the words “price level” appearing instead of “money stock” in several places.  Thus the model will not 
determine the absolute level of prices but will determine the expected inflation rate.  Stochastic properties 
of the log price level will not be fully determined. 
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the model includes only real variables whereas multiple-solution RE indeterminacy can 

occur only in dynamic RE models in which expectations of future endogenous variables 

appear.  This distinction would seem to be of considerable theoretical importance since 

one concept involves multiple paths of real variables while the other does not, since one 

is dynamic and the other static, and since they stem from fundamentally different 

sources.7  I agree entirely, however, with Woodford’s apparent view that nominal 

indeterminacy is unlikely to be of importance in actual economies, since only a small 

degree of money illusion—on the part of either private agents or the monetary 

authority—will rule it out.   

3. E-stability and Least Squares Learnability 

 In this section the object is to provide a short review of the concepts known as  

E-stability and LS learnability.  Evans (1985, 1986), building upon a result of DeCanio 

(1979), initially developed iterative E-stability as a selection criterion for RE models with 

multiple solutions.  The basic presumption is that individual agents will not be endowed 

with exact knowledge of the economic system’s structure, so it must be considered 

whether plausible correction mechanisms are convergent.  Consider, for example, model 

(1).  The usual “fundamentals” RE solution will be of the form (2), as stated above, but 

suppose that agents do not initially know the true values of the φj parameters.  If at any 

date t the agents’ prevailing belief is that their values are φ0(n), φ1(n), and φ2(n)—where n 

indexes iterations—so that the perceived law of motion (PLM) is  

(6) yt = φ0(n) + φ1(n)yt-1 + φ2(n)ut, 

then the implied unbiased expectation of yt+1  would be 

                                                 
7 Thus the presence of a policy-provided nominal anchor will rule out nominal indeterminacy but not 
solution multiplicity. 
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(7) φ0(n) + φ1(n)yt + φ2(n)ρut. 

Using this last expression in place of Etyt+1 in (1)—which implies that we have 

temporarily abandoned RE—gives  

(8) yt = α + a[φ0(n) + φ1(n)yt + φ2(n)ρut] + cyt-1 + ut. 

Thus with rearrangement we have 

(9) yt = [1−aφ1(n)]-1 [α + aφ0(n) + aφ2(n)ρut + cyt-1] + ut  

as the system’s actual law of motion  (ALM).  Now imagine a sequence of iterations from 

the PLM to the ALM.  Writing the left-hand side of (9) in the form (6) for iteration n+1 

implies that  

(10a) φ0(n+1) = [1 − aφ1(n)]-1[α + aφ0(n)] 

(10b) φ1(n+1) = [1 − aφ1(n)]-1c 

(10c) φ2(n+1) = [1 − aφ1(n)]-1[aφ2(n)ρ + 1]. 

The issue, then, is whether iterations defined by (10) are such that the φj(n) converge to 

the φj values in an expression of form (2) as n → ∞ .  If they do, then that solution is said 

to be iteratively E-stable, and similar investigations can be made for any other RE 

solutions.  Evans (1986) found that in several prominent and controversial examples the 

MSV solution is iteratively E-stable. 

 On the basis of results by Marcet and Sargent (1989), Evans (1989) and E&H 

(1992) switched attention to E-stability without the “iterative” qualification, defined as 

follows.  Conversion of equations (10) to a continuous form, appropriate as the iteration 

interval approaches zero,8 results in 

 
                                                 
8 There is also a positive speed-of-adjustment coefficient in each of equations (11), but its magnitude is 
irrelevant for the convergence issue so is usually (as here) set equal to 1.  See, e.g., Evans (1989,  p. 299).  
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(11a) dφ0(n)/dn = [1 − aφ1(n)]-1[α + a φ0(n)] − φ0(n) 

(11b) dφ1(n)/dn = [1 − aφ1(n)]-1c − φ1(n) 

(11c) dφ2(n)/dn = [1 − aφ1(n)]-1[a φ2(n)ρ + 1] − φ2(n). 

If the differential equation system (11) is such that φj(n) → φj for all j, the solution (2) is 

E-stable.  The crucial feature of this continuous version of the iterative process is that it is 

intimately related to an adaptive learning process that is modeled as taking place in real 

time.9  For most models of interest, that is, values of parameters analogous to the φj in (2) 

that are estimated by LS regressions, based on data from periods t−1, t−2,…,1 and used 

to form expectations in period t, will converge to the actual values in (2) as time passes if 

equations (11) converge to those values and (2) is dynamically stable (non-explosive).  

Also, such convergence will not occur if equations (11) do not converge.  Thus E-

stability and LS learnability typically go hand in hand.  This result, which is discussed 

extensively by Evans and Honkapohja (1999, 2001), is useful because it is technically 

much easier, in many cases, to establish E-stability than to establish LS learnability.  The 

latter concept is arguably the more important, in a fundamental sense, as learnability of 

some type might be regarded as a necessary condition for the relevance of a RE 

equilibrium.    

 Some analysts have expressed doubts concerning the relevance of the LS 

learnability criterion; see, e.g., Buiter and Panigirtzoglu (2002).  As a sufficient condition 

the criterion is not very convincing—obviously, other learning procedures could be 

considered—but as a necessary condition it seems highly attractive.  In this regard, note 

that the LS learning process assumes that (i) agents are collecting an ever-increasing 

                                                 
9 The E-stability process is itself conceived of as taking place in notional time (meta time). 
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number of observations on all relevant variables while (ii) the structure is remaining 

unchanged.  Furthermore, (iii) the agents are estimating the relevant unknown parameters 

with an appropriate estimator in (iv) a properly specified model.  Thus if a proposed RE 

solution is not learnable by the process in question, it would seem rather implausible that 

it could prevail in practice.     

  4. The Taylor Principle 

 Let us begin our set of indeterminacy examples by considering the Taylor 

principle in a simple version of today’s near-canonical monetary policy model.10  The 

latter consists of an optimizing demand relation, the Calvo price-adjustment scheme, and 

a monetary policy rule for the one-period interest rate: 

(12) yt = Etyt+1 + b0 + b1(Rt − Εt∆pt+1) + vt                                                                              b1 < 0 

(13) ∆pt = βEt∆pt+1 + αyt                                                                               α > 0 

(14) Rt = r + ∆pt + µ1(∆pt − π*) + µ2yt. 

Here yt, ∆pt, and Rt represent the output gap, inflation, and the interest rate while vt is a 

AR(1) disturbance term, with AR coefficient ρ, incorporating shocks to preferences and 

the natural-rate (i.e., flexible-price) level of output (treated for simplicity as 

exogenous).11  Also, π* is the central bank’s inflation target, r = −b0/b1 is the average real 

interest rate, and β is the discount factor for private agents (0 < β < 1). 

 In this setting, the Taylor principle is a condition pertaining to policy parameters 

µ1 and µ2 that is said to be necessary for desirable behavior of the inflation rate.  The 
                                                 
10 Some economists have objected to the term “Taylor principle” on the grounds that the basic idea was 
recognized earlier by other analysts.  But the term has by now been adopted by so many writers that I feel 
its use is, given Taylor’s (1999b) emphasis on the idea, appropriate. 
11 The model is often written with disturbance terms in (13) and/or (14), but they are unnecessary and 
irrelevant for present purposes.  If there is variable government consumption, vt will also include its 
expected change.  Other fiscal variables are irrelevant under fairly broad, but not universal, conditions—see 
Section 7 below. 
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condition is often expressed for µ2 = 0, in which case it becomes µ1 > 0.  Then the model 

can be written as (13) plus 

(15) yt = Etyt+1 + b0 + b1[r + (1+µ1)∆pt  − µ1π* − Εt∆pt+1] + vt  

and the MSV solution is of the form 

(16a) ∆pt = φ10 + φ11vt 

(16b) yt = φ20 + φ21vt. 

Thus Et∆pt = φ10 + φ11ρvt with Etyt+1 = φ20 + φ21ρvt and the basic undetermined 

coefficients procedure implies the following solution: 

(17a) ∆pt = π* + α[(1−ρ)(1−ρβ) − αb1(1+µ1−ρ)]-1vt 

(17b) yt = (1−β)π*/α + (1−ρβ)[(1−ρ)(1−ρβ) − αb1(1+µ1−ρ)]-1vt. 

Suppose, however, that one considers non-MSV solutions of the form 

(18a) ∆pt = φ10 + φ11vt + φ12∆pt-1 + φ13vt-1 

(18b) yt = φ20 + φ21vt + φ22∆pt-1 + φ23vt-1. 

Then going through the same steps as before one finds that relations (18) admit a 

multiplicity of RE solutions.  One of these is the MSV solution given by (17) but there 

are others as well.  Their dynamic properties clearly depend upon φ12, whose value is 

given by the quadratic equation βφ12
2 − φ12(1+β−αb1) + [1−αb1(1+µ1)] = 0.  Given our 

structural sign restrictions, one root of the latter is invariably greater than 1, but the other 

root will lie between 0 and 1, yielding a second stable solution, if µ1 < 0.  Thus there is 

multiple-solution indeterminacy if the Taylor-principle condition does not hold. 

 Is this result—two stable RE solutions—something to be concerned about?  My 

proposed answer is “not necessarily.”  Suppose that there were some convincing reason 

to believe that one of the solutions would prevail and that it is one that will not support 
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“sunspot” terms.  Then the existence of one or more additional solutions would not pose a 

practical problem for policy conducted according to the rule (14).  Or, to approach the 

issue in a different fashion, let us ask: what undesirable real-world phenomenon is 

supposed to result as a consequence of the existence of two stable solutions?  Clearly it is 

not explosive inflation, as some discussions of the failure of the Taylor principle would 

seem to suggest.  Instead, it seems that it is the possibility of sunspot solutions and their 

associated variability that is of principal concern in situations of indeterminacy.12  But, as 

stated above, we must consider whether such a solution is likely to prevail in the case 

under discussion. 

 In that regard, there is in my opinion a genuine problem that prevails when µ1 < 0.  

It is that neither of the RE solutions is learnable, in the least-squares sense described 

above.  There is therefore no good reason to believe that either of the RE solutions would 

provide a plausible description of the behavior of inflation and the output gap, even if the 

simple model provided by (12) and (13) were adequate.   

 How does one carry out E-stability analysis for the two stable solutions found for 

the model (13)(15)?  Given its simple structure, a starting point might be to write the 

model in first order form, i.e., as 

(19) xt = AEtxt+1 + ut, 

where xt is the column vector [∆pt  yt]′ and ut is the relevant vector of exogenous driving 

variables, assumed to be first-order autoregressive with stable parameter matrix R.13  

Then one could examine the eigenvalues of A and apply results developed by Evans 

(1986, 1989) and generalized by E&H (2001, Ch. 10).  These indicate that the MSV 
                                                 
12 Woodford (1986) has shown that under certain conditions there is an if-and-only-if relationship between 
local indeterminacy (with a continuum of solutions) and existence of sunspot equilibria. 
13 Constant terms are neglected in this discussion for simplicity. 
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solution is E-stable if and only if both eigenvalues of A have real parts less than 1 and, in 

addition, all four products of the eigenvalues of A and R have real parts less than 1.  

Implementation of this procedure is tedious, however, and furthermore does not provide 

results pertaining to all of the non-MSV solutions.14  Fortunately, thorough analysis has 

been provided by the recent papers of Bullard and Mitra (2002) and Honkapohja and 

Mitra (2001).  Together they indicate that, in the setting at hand, learnability of the MSV 

solution obtains if and only if µ1 > 0, i.e., if the Taylor principle is respected by the policy 

rule.15  In addition Honkapohja and Mitra (2001, p. 19) establish that non-MSV equilibria 

are not learnable in the model at hand—their Example 1—when the Taylor principle is 

not satisfied.  Honkapohja and Mitra suggest that this result provides an important 

argument—one that differs from the suggestion of Clarida, Gali, and Gertler (2000)—in 

support of the idea that it is crucial for interest rate policy rules to satisfy the Taylor 

principle. 

 The foregoing discussion constitutes the main substance of this section, but it may 

be of interest to illustrate the analysis for an even simpler version of the model.  

Accordingly, let us retain the demand relation (12) but replace the Calvo price-

adjustment equation (13) with the assumption that prices adjust promptly, thereby 

keeping output continually at its flexible-price level (i.e., keeping yt = 0).16  Then the 

system (13) (15) reduces to 0 = b1[(1+µ1)∆pt − µ1π* − Et∆pt+1] + vt.  Clearly, the latter 

can be written as ∆pt = µ1π*(1+µ1)-1 + (1+µ1)-1Et∆pt+1 − b1
-1vt, which is of form (19).  

Then the relevant eigenvalue condition for E-stability of the MSV solution is simply 

(1+µ1)-1 < 1, provided that vt is white noise or has a positive AR(1) parameter.  Thus this 
                                                 
14 There might exist “sunspot” solutions in addition to the two solutions of form (18) mentioned above. 
15 See Proposition 2 of Bullard and Mitra (2002). 
16 An equivalent system has been studied by Woodford (2002, Ch. 2). 
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special case illustrates more generally the point of this section, that the Taylor principle is 

of importance because its non-satisfaction leads to a situation in which all RE solutions 

fail to be learnable.17 

5. Inflation Forecast Targeting 

 Next we turn to a second type of multiple-solution indeterminacy, which can arise 

when the central bank’s interest rate policy rule responds to an expected future inflation 

rate, rather than the actual current inflation rate.  This case was introduced by Woodford 

(1994), and has since been discussed by many analysts including Bernanke and 

Woodford (1997), Kerr and King (1996), King (2000), Carlstrom and Fuerst (2001), and 

Bullard and Mitra (2002).  Svensson (1997)—who suggests that the relevant form of 

policy behavior should not be termed inflation forecast targeting but instead “responding 

to inflation forecasts”—refers to the potential problem as “the Woodford warning.” 

 To illustrate the problem, let us again consider the canonical system (12)-(14), but 

with Et∆pt+1 replacing ∆pt in the policy rule (14).  Then with µ2 = 0 equation (15) 

becomes  

(15’) yt = Etyt+1 + b0 + b1[r + µ1Εt∆pt+1] + vt.      

Again there is a MSV solution of form (16) and also solutions of form (18) based on 

roots to a quadratic equation for φ12.  In this case the quadratic is βφ12
2 − φ12(1+β+αb1µ1) 

+ 1 = 0.  Thus the roots are φ12 = [ 2d d 4± − β

                                                

]/2β, where d = 1+β+αb1µ1.  These roots 

will be imaginary if 0 < µ1 < µ = [2βc
1

0.5 + 1 + β]/(−b1α), in which case the MSV solution 

will be the only real solution.  But if  µ1 < 0 or µ1 > , then there will be multiple stable c
1µ

 
17 This situation can be overturned by the adoption of certain rather extreme fiscal policy rules; see Section 
7 below. 
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solutions.18   

 To assess the E-stability and LS learnability of the MSV and non-MSV solutions 

we again draw on results of Bullard and Mitra (2002) and Honkapohja and Mitra (2001).  

Proposition 5 of the former indicates that the MSV solution is E-stable if and only if µ1 > 

0, showing that the Taylor principle is again relevant.  For the non-MSV solutions of 

form (18), moreover, Honkapohja and Mitra (2001, p. 20) find that they are not E-stable 

for any value of µ1.  Thus the LS learnability criterion lends some support to the 

suggestion that the MSV solution is the only plausible RE solution even in cases referred 

to by the Woodford warning. 

 This support is not complete, for Honkapohja and Mitra (2001, pp. 19-20) find 

that another form of non-explosive RE solution is E-stable and learnable.  Specifically, 

they find that non-explosive resonant frequency sunspot equilibria can exist and be E-

stable in the case under discussion.  Indeed, they state that this result “strengthens the 

worries concerning the indeterminacy problems with forward looking interest rules 

pointed out” by Bernanke and Woodford (1997). 

 I would argue, however, that these resonant frequency sunspot equilibria should 

be viewed as mathematical curiosa, not as plausible paths relevant for economic analysis 

of actual economies.  My argument is based on the nature of the resonant frequency 

sunspot process.  It presumes that there is a finite-state Markov process for an exogenous 

sunspot variable, with fixed transition probabilities and with specified effects on the 

system’s endogenous variables that result from the different sunspot states.  Then for the 

                                                 
18 Carlstrom and Fuerst (2001) obtain some quite different results, which they attribute to an altered timing 
assumption regarding the money or asset balances that provide transaction-facilitating services: start of 
period versus end of period.  Actually, however, the crucial change in their analysis is in the optimizing IS 
function comparable to (12).  That no such change is necessitated by use of start-of-period money balances 
is shown in various writings, including McCallum (2001a, pp. 20-21). 
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resonant frequency sunspot solutions to exist, there must be an eigenvalue of the matrix 

of state transition probabilities that is exactly equal to the inverse of an eigenvalue of a 

matrix such as A in (19) for the model at hand.19  But if there is no causal connection 

between the sunspot disturbance process (i.e., the transition probabilities) and the model’s 

behavioral parameters, then the requisite condition will hold only on a parameter space of 

measure zero.  Thus the plausibility of such sunspot equilibria is at least one or two 

orders of magnitude smaller than that for sunspots of the more familiar type that permits 

their generating process to be any martingale difference process.20 

 In sum, then, I would argue that the Honkapohja and Mitra (2001) analysis 

actually provides more support for the view that only MSV equilibria are learnable in the 

model at hand—that is, the canonical model with inflation forecast targeting—than for 

the view that non-MSV equilibria can be E-stable and learnable.  

 6. Zero-Lower-Bound Deflation Trap 

 The third topic to be investigated is prompted by recent papers by Benhabib, 

Schmitt-Grohe, and Uribe (2001, 2002), Buiter and Panigirtzoglu (2002), and Alstadheim 

and Henderson (2002), among others, which argue that recognition of the existence of a 

zero lower bound (ZLB) on nominal interest rates leads to the conclusion that inflation 

targeting rules—or ones of the more general Taylor type—are likely to fail.  The alleged 

reason is that the existence of a ZLB implies that RE solutions to standard optimizing 

models with Taylor rules are not globally unique and that one solution, likely to be 

attained, involves a deflationary liquidity trap.   

                                                 
19 See Honkapohja and Mitra (2001, Proposition 2).  
20 At the time of the conference, both Michael Woodford and George Evans announced that the necessary 
condition will be less stringent in a nonlinear version of the model.  Even so, I would suggest that resonant-
frequency sunspots are much less plausible than those of the more familiar type considered in Honkapohja 
and Mitra’s Proposition 3. 
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 For analysis of this topic, consider again the canonical model (12)-(14) but with 

the flexible price assumption yt = 0 replacing, only for simplicity, the Calvo price 

adjustment equation (13).  Also let µ2 = 0.  Then the model reduces to 

(20) 0 =  b0 + b1[r + (1+µ1)∆pt  − µ1π* − Εt∆pt+1] + vt 

so the MSV solution is of the form 

(21) ∆pt = φ0 + φ1vt, 

implying Et∆pt+1 = φ0 + φ1ρvt.  Then substitution into (20) and application of the 

undetermined coefficient procedure yields the requirement that 

(22)       0 = b0 + b1[r − µ1π* + (1+µ1)(φ0 + φ1vt) − (φ0 + φ1ρvt)] + vt 

holds identically for all realizations of vt.  The latter implies unique values for φ0 and φ1 

that, with r = − b0/b1, yield the MSV solution 

(23)       ∆pt = π* − [b1(1 + µ1 − ρ)]-1vt. 

Therefore, since the unconditional expectation E(vt) = 0, it is clear that E∆pt = π*, i.e., the 

long-run average rate of inflation given by the MSV solution is equal to the target value 

specified by the central bank’s policy rule. 

 There is, however, another solution that satisfies the usual conditions for a RE 

equilibrium.  Consider the solution form 

(24)       ∆pt = φ0 + φ1vt + φ2∆pt-1 + φ3vt-1, 

which implies Et∆pt+1 = φ0 + φ1ρvt + φ2(φ0 + φ1vt + φ2∆pt-1+φ3vt-1) + φ3vt.  Then the 

undetermined coefficient conditions are 

(25a)       b1[−µ1π* + (1+µ1)φ0 − φ0(1+φ2)] = 0 

(25b)       b1[(1+µ1)φ1 − φ1ρ − φ2φ1 − φ2φ3] + 1 = 0 

(25c)       φ2
2   = φ2(1 + µ1) 
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(25d)     b1[(1+µ1)φ3 − φ2φ3] = 0.  

Thus there are two possibilities for φ2, namely, 0 and 1+µ1.  If the former is selected we 

have the MSV solution as given in (23), but if φ2 = 1+µ1 is designated as relevant, the 

solution becomes 

(26)       ∆pt = − µ1π* + (1+µ1)∆pt-1 + φ1vt + [(1−b1ρφ1)/(1+µ1)]vt-1 

for any φ1.  Clearly, with µ1 > 0 the latter is explosive.  Consequently, if the system 

“begins” with ∆pt-1 > π* then inflation will increase explosively, and if the startup value 

is below π* then ∆pt will have a tendency to approach −∞, according to (26) and as 

illustrated in Figure 1 (which abstracts from the stochastic element provided by vt) . 

 But the last statement ignores the existence of a ZLB on the nominal interest rate.  

In the flexible price system at hand, the latter translates into a lower bound on Et∆pt+1; we 

have the restriction Et∆pt+1 ≥ −r.  Thus if the system begins with ∆pt-1 < π*, inflation 

cannot behave as specified by (26).  Instead, the alleged outcome is that ∆pt → −r, which 

corresponds to Rt → 0.  Crucially, there is no violation of a transversality condition, as 

there would be if ∆pt were to approach −∞.  So in this case the policy rule (14) fails to 

stabilize inflation around its target value, π*.  This is the failure of the Taylor rule 

proposed and emphasized in the papers mentioned above.   

 Again, however, the agenda here is to consider the E-stability of the two solutions 

(23) and (26).  For both, the analysis for this form of model is provided by Evans (1986, 

1989), who shows that the MSV solution (23) is E-stable and learnable, whereas a 

solution such as (26) is not E-stable or learnable.21 

                                                 
21 If one were to believe that the non-MSV solution (26) is relevant, then he would need to consider what 
happens if the system begins with ∆pt-1 > π*, since there is no transversality condition to rule out ∆pt →∞. 
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 The foregoing statement applies literally to the model without the ZLB constraint.  

But the latter does not affect the analysis, which is local in nature, of the MSV solution.  

Then for the non-MSV solution, we need to replace (20) with the ZLB constraint. This 

can be done by rewriting (20) so as to pass through the point (−r, −r) and inserting a 

parameter that controls its slope.  Then the ZLB constraint would be imposed by letting 

the slope approach zero. Thus the analysis would be as before, but with a slope of less 

than 1.0 at the non-MSV solution, which would imply E-instability.  

 A more satisfying approach might be to recognize that the lower bound on the 

nominal interest rate is actually the consequence of a decreasing net marginal benefit, via 

facilitation of transactions, provided by holdings of money.22  Then the relevant 

functional form would be as illustrated in Figure 2.  There the MSV solution is at point A 

and the liquidity trap at point B.  For this continuous nonlinear case, the analysis in 

Chapter 11 of E&H (2001) indicates that the MSV solution is E-stable and the trap 

solution is not, at least with a small variance for vt.  Accordingly, while a ZLB situation 

may arise if the target inflation rate is set too low, the indeterminacy-based mechanism 

described above does not seem plausible. 

7. Fiscal Theory of the Price Level 

 The fourth and final topic to be considered is the fiscal theory of the price level, 

for which the most important references are Woodford (1994, 1995, 2001, 2002), Sims 

(1994), Cochrane (1998), and Kocherlakota and Phelan (1999)—with Buiter (1999) and 

McCallum (1999a, 2001a) as the main critics.  The relationship to solution multiplicity is 

different in this case, as will be seen in the development below.  Before undertaking that 

                                                 
22 See, e.g.,  McCallum (2001b). 
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development, however, it should be emphasized just how drastically unorthodox and 

counter-traditional the fiscal theory of price level determination is.  Specifically, it does 

not suggest merely that fiscal as well as monetary policy stances are significant for price 

level behavior; instead it features a leading example in which the price level moves over 

time in a manner that mimics the path of government bonds and is entirely unlike the path 

of the money stock.  Accordingly, it is not the case that the argument involves fiscal 

behavior that drives an accommodative monetary authority, as when rapid base money 

growth is adopted to finance a fiscal deficit.  Indeed, it is this drastic aspect of the fiscal 

theory that has made it a subject of great interest.23   

 What is the policy issue that is posed by the fiscal theory of the price level?  The 

two main suggestions are apparently (i) that the behavior of the price level and other 

macro variables may be very different than predicted by orthodox monetary analysis 

and/or  (ii) that coordination between monetary and fiscal policy authorities is necessary 

for satisfactory macroeconomic performance.  To consider these suggestions, let us begin 

with an extremely simple formulation.  Specifically, suppose that the (per capita) money 

demand function for a closed economy is of the textbook form 

(27) mt – pt = c0 + c1yt + c2Rt + vt    c1 > 0, c2 < 0, 

where mt, pt, and yt are logs of the (base) money stock, price level, and output (income) 

for period t, while Rt denotes a one-period nominal interest rate.  The disturbance vt is 

taken for simplicity to be white noise.  It is well known that there are rigorous dynamic 

                                                 
23 In this regard, an important point is that the type of model typically utilized in the literature’s analysis is 
not of the overlapping generations type, in which the Ricardian equivalence proposition is known to fail—
implying that tax changes will affect price level behavior.  Instead, the model is basically of the Sidrauski-
Brock type, in which Ricardian equivalence results are normally obtained, i.e., results implying that bond-
financed tax changes have no effect on the price level or other macroeconomic variables of primary 
interest.  In such a setting, fiscalist positions are truly striking. 
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general equilibrium models with optimizing agents that will justify (27) as a linear 

approximation to a combination of implied Euler equations (first-order optimality 

conditions).  Furthermore, assume that the economy is one in which output and the real 

rate of interest are constant over time so that (27) reduces to  

(28) mt – pt = γ + α(Etpt+1 – pt) + vt   α = c2 < 0, 

which is the familiar Cagan specification for money demand.  Also suppose that the 

quantity of  (base) money is kept constant by the central bank, so that 

(29) mt = m. 

Then (28) and (29) plus rational expectations govern the behavior of pt for time periods  

t = 1, 2, ….  It is possible that the structure was different prior to period 1. 

 In this setting, the MSV solution for pt is of the form 

(30) pt = φ0 + φ1vt, 

so Etpt+1 = φ0 and the usual analysis yields 

 (31) pt = m − γ − vt/(1−α). 

Thus, pt fluctuates randomly around a constant value and if money demand shocks were 

absent we would have pt = m − γ. 

 But while (31) gives the traditional, “monetarist,”  bubble-free solutions for this 

model, there are other expressions as well that satisfy the model with RE.  To see this, 

conjecture a solution of the form 

(32) pt = ψ0 + ψ1 pt-1 + ψ2vt + ψ3vt-1, 

instead of pt = φ0 + φ1vt.  Then working through the same type of analysis as before, one 

finds that the relevant UC conditions are 
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(33) 0 = α ψ1
2 + (1−α) ψ1 

 0 = α ψ1 ψ2 + α ψ3 + (1−α) ψ2 + 1 

 0 = α ψ1 ψ3 + (1−α) ψ3 

 m = γ + α ψ0 + α ψ1 ψ0 + (1−α) ψ0. 

By inspection we see that the first of these has two roots ψ1
(1) = 0 and ψ1

(2) = (α−1)/α.  If 

the former is the relevant root, then the same solution as in (31) is obtained.  But if ψ1
(2) 

is relevant, then ψ3 = −1/α and ψ0 = (m − γ)/α while any value of ψ2 is possible.  So an 

infinity of solution paths is in this case consistent with the model.  Note, moreover, that 

ψ1
(2) = (α−1)/α > 1.0, so most of these solution paths are explosive.  One such path is 

illustrated in Figure 3, where the random component is suppressed. 

 There are, however, additional variables and conditions in a fully specified model 

of the economy under consideration.  In particular, let Bt+1 denote the (per capita) 

quantity of one-period government bonds purchased in t, with each bond purchased at the 

price 1/(1+Rt) and redeemed in t+1 for one unit of money.  Then a full-fledged 

optimizing analysis would require that  

(34) lim  Et βj (Mt+j + Bt+j) /Pt+j  = 0, 
  j→∞ 

i.e., that a transversality condition pertaining to real financial wealth must be satisfied.  

Here β is a typical agent’s discount factor, β = 1/(1+ρ), with ρ > 0 so that 0 < β < 1.  

(Note that ρ has a different meaning here than in previous sections.)  

 We are now prepared to describe the fiscalist theory in this setting.  With 

government bonds recognized, we can write the consolidated government budget 

constraint (GBC) in per capita terms as 
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(35) Pt (gt – txt) = Mt+1 – Mt + (1 + Rt)-1 Bt+1 – Bt, 

where gt and txt are real government purchases and (lump sum) tax collections, 

respectively.  In real terms, this constraint could then be expressed as 

(36) gt – txt = (Mt+1 – Mt)/Pt + (1 + Rt)-1 (Pt+1/Pt) bt+1 − bt,                   t = 1, 2, …,  

where bt = Bt/Pt.  Note the mixed notation being utilized: bt = Bt/Pt whereas mt = log Mt 

and pt = log Pt.   

 Now consider (36) when Mt and thus mt are constant.  Also let the random shock 

vt be absent so that Pt+1 is correctly anticipated in t and suppose that fiscal policy aims for 

a constant surplus txt − gt = s > 0 with gt = g.  Then with the real rate of interest on bonds 

rt defined by 1 + rt = (1 + Rt)/(1 + πt+1), where πt+1 = (Pt+1 – Pt)/Pt, and with rt = ρ, as 

would be implied by optimizing behavior in the absence of shocks, the government 

budget constraint becomes 

(37) bt+1 = (1 + ρ) bt + (1 + ρ) (gt – txt)                                t = 1,2,…. 

But since 1 + ρ > 1, if gt – txt is constant the last equation reveals a strong tendency for bt 

to explode as time passes.  As t grows without limit, bt approaches growth at the rate ρ, 

i.e., behaves like (1+ρ)t.  Thus the transversality condition (34) tends  to be violated since 

growth of bt  just offsets the shrinkage of βt = 1/(1 + ρ)t, yielding a limit that is positive. 

 In fact, in this case there are two paths for bt that, with gt – tx constant, will satisfy 

(37) and also (32)(33)(34) for t = 1,2,….  One of these obtains if the value b1 equals 

–(1 + ρ)(g – tx)/ρ, for then (37) implies that 

(38) b2 = (1 + ρ) [−(1 + ρ) (g − tx)/ρ] + (1 + ρ) (g – tx) 

              = (1 + ρ) (g – tx) [−(1+ρ)/ρ + 1] = −(1 + ρ) (g – tx) /ρ 

and that same value prevails in all succeeding periods.  Here b1 = B1/P1, and B1 is the 
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number of nominal government bonds outstanding at the beginning of the initial period,   

t = 1.  Thus if the price level in this first period, P1, adjusts to equal the value P1 =  

B1ρ/(1 + ρ) (tx – g), then condition (34) as well as (37) will be satisfied.  Indeed, this is 

what the fiscalist theory predicts: that P1 adjusts relative to B1 and tx – g > 0 so as to 

satisfy the individual agents’ optimality condition (34). 

 What about the necessary condition for money demand?  In this regard, the 

fiscalist answer is that although the path just described will not conform to the pt = m − γ  

solution implied by (31), it can and will satisfy the alternative solution pt = 

[(α − 1)/α]pt-1 + (m − γ)/α for all t = 2,3,….  The price level P1, and thus p1, is determined 

by B1 and the value of b1 necessary to satisfy (34), with subsequent Pt and pt values being 

given by (32) with ψ1 = (α − 1)/α.  The price level explodes as time passes, despite the 

constant value of Mt, but all of the model’s equilibrium conditions are satisfied 

nevertheless.  Since Pt and Bt are growing at the same (explosive) rate, while Mt is 

constant, the outcome is rightfully regarded as highly “fiscalist.”24 

 But let us consider a second path of bt that will, with g – tx constant, satisfy the 

TC (34) as well as (32), (33), and (37).  It is one in which bt+1 = 0 for all t = 1, 2 ,….  

Then, clearly, (34) will be satisfied with Bt+1 = 0 and in that case places no constraint on 

Pt values.  Thus these are free to obey pt = m − γ, as in the special case of (32)-(33) given 

by (31).  Therefore this solution is the orthodox or monetarist solution. 

 It remains to be considered how the GBC (37) can be satisfied with this solution, 

i.e., with Bt+1 = 0 for t = 1, 2, … and txt − g > 0.  The explanation is as follows.  In a 

                                                 
24  There is a serious problem, however, with this solution if B1 is such that the implied value of P1 is 
smaller than P* = Me−γ.  In this case the fiscalist equilibrium does not exist because Pt approaches 0, 
leading to violation of the transversality condition (34). Also, if tx – g < 0, then a negative price level 
would be required for satisfaction of  (37) by the assumed value of b1.   
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market economy, it is not appropriate to specify fiscal policy as controlling both gt and txt 

(with an Mt path given) because with such a policy (37) could imply that the number of 

bonds sold to the private sector is greater than the number demanded.  Thus the analysis 

needs to distinguish between bond supply BS
t+1 and bond demand BD

t+1, and policy is 

appropriately specified in terms of Mt, gt, and BS
t+1 with one relevant equilibrium 

condition being BD
t+1 ≤ BS

t+1.  In the case under consideration, the planned value of txt − 

g > 0 reflects BS
t+1, whereas the realized values involve Bt+1 = BD

t+1 = 0 and txt − g = 0.  

The tx – g values realized are smaller than planned because real revenues from bond sales 

are larger—zero, rather than the planned negative value, which is −ρb1/(1 + ρ).  It is not 

surprising that some such adjustment is needed since the experiment at hand involves 

monetary (Mt) and fiscal (gt and BS
t+1) policies that are set independently and 

exogenously.  The monetarist and fiscalist solutions reflect two different ways by which 

these potentially conflicting policies can be reconciled. 

 In sum, we end up with two RE solutions that represent two competing 

hypotheses regarding price level behavior in an economy such as the one under study.  

The crucial issue, then, is which of the two solutions provides the better guide to reality, 

i.e., to price level behavior in actual economies?  In previous writings (McCallum 1999a, 

2001a) I have argued that the traditional equilibrium is the “fundamentals” or “bubble-

free” solution provided by the MSV solution concept, whereas the fiscalist solution 

represents a bubble solution.  I have suggested that this is a plausible reason—in addition 

to existing empirical evidence—for preferring the former, but for many analysts that 
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argument may not be persuasive.25  Accordingly, we now consider the E-stability and 

learnability properties of the two solutions. 

 As it happens, that comparison is easy for the case at hand.  Write the model as 

(39) pt = [α/(α−1)] Etpt+1 + (m−γ)/(1−α) + [1/(α−1)]vt 

and note that with α < 0, the coefficient on Etpt+1 lies between 0 and 1.  Thus the 

eigenvalue for A in equation (19) is smaller than 1, and the results described at the end of 

Section 4 pertain: the MSV (monetarist) solution is E-stable and learnable, while the non-

MSV (fiscalist) solution is not.  Note that although (39) does not explicitly refer to the 

fiscal variable Bt, it does not exclude the possibility that the fiscal solution can be 

learned, since ψ1 can adjust toward (α−1)/α and ψ0 can adjust to the value, 

log[B1ρ/(1+ρ)(tx−g)] − [(α−1)/α]p0, that makes p1 equal the fiscalist value described 

above.26 

The foregoing result is for a highly special case; can it be generalized in any way?  

With respect to functional form of the money demand equation, the answer is yes. 

Ignoring stochastic terms, the linear model that we have used to this point can be 

represented graphically as in Figure 3.  There the traditional MSV solution is that pt = p*, 

at the intersection point, for each t = 1, 2, ….  The fiscalist solution, by contrast, implies 

pt values given by paths such as that of the thin line in Figure 3.   Most of the literature 

has, of course, utilized explicit optimizing models that imply an analogous diagram as 

shown in Figure 4, where there is a nonlinear Pt to Pt+1 mapping that has an positive but 

increasing slope.  Do the results above carry over to such models?  Although there are 

                                                 
25 For example, Woodford (2001, p. 701) argues that “what constitutes a ‘bubble equilibrium’ is often in the 
eye of the beholder….” 
26 This argument can be extended to the case with stochastic disturbances. 
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some qualifications, the answer is basically “yes.”  The main point is that E-stability is a 

local concept, so that conclusions pertaining to the MSV solution in Figure 3 apply to 

models of the type in Figure 4.  Thus the MSV solution is E-stable.  Indeed, very recent 

analysis by E&H (2002b) obtains the same result in an explicitly nonlinear model, and 

also obtains results as above for the non-MSV solutions. 

The foregoing discussion represents our basic application of the paper’s argument 

to the fiscal theory of the price level; it improves upon the argument of McCallum 

(2001a) significantly by adoption of the learnability criterion.  It is clear, however, that 

the policy specification considered is quite special, so there remains a need to extend the 

learnability analysis to a broader class of policy regimes.  The most well-known 

specification of such regimes is that of Leeper (1991), in which the monetary authority 

adjusts a one-period nominal interest rate instrument according to a rule of the form 

(40) Rt = µ0 + (1 + µ1)∆pt + θt 

while simultaneously the fiscal authority holds gt = 0 and implements a (lump-sum) tax 

rule of the form 

(41) txt = τ0 + τ1bt + ζt. 

Here θt and ζt are white noise policy shocks.   Leeper (1991) classifies monetary policy 

as “active” if |(1 + µ1)β| > 1 and as “passive” otherwise, and classifies fiscal policy as 

active if |β−1 − τ1| > 1 and passive otherwise.   

Very recently, E&H (2002b) have conducted analysis based on policy rules (40) 

and (41), sensibly focusing on cases in which 1 + µ1 > 0 and τ1> 0.  Using a linearized 

version of their extended model, E&H (2002b) find that there are solutions of two types 

that correspond in several ways to the monetarist and fiscalist solutions discussed above.  
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For example, in the monetarist solution the inflation rate depends only upon a constant 

and θt, the current monetary policy shock, while the fiscalist solution has the inflation 

rate also depending on the previous period’s real bond stock.  For the most part, the 

monetarist solution is E-stable and LS learnable when monetary policy is active and 

fiscal policy passive, whereas the fiscalist solution is E-stable and LS learnable when 

monetary policy is passive and fiscal policy active.  When non-explosive, the fiscalist 

solution does not imply outcomes inconsistent with beliefs of monetarist economists 

[e.g., Brunner and Meltzer (1972)] since there is no major discrepancy between the paths 

of the price level and the money stock.27  There is also a small region of the policy 

parameter space that leads to E-stability with explosive solutions, but it seems 

questionable whether one of these should be regarded as an equilibrium since explosive 

behavior of the real bond stock would seem to imply failure of a transversality condition 

that would be necessary for private optimality.  

From a practical perspective, emphasis should, I believe, be given to the region in 

which (1 + µ1)β > 1 and ρ < τ1 < 1 + ρ, for the following reason.  The former condition 

represents the Taylor principle in the model at hand, while the latter calls for taxes to be 

levied at a rate that would be large enough to make bt non-explosive, in the absence of 

any government revenue from money creation, and yet not so large as to imply that taxes 

in a single period would reduce government debt by more than the amount outstanding.  

That is, a positive fraction of outstanding bonds would be retired in each period.28  Then 

                                                 
27 Whether this is a MSV solution remains to be determined.   
28 It seems peculiar that Leeper (1991) would designate such behavior as representing “passive” fiscal 
policy, since it represents feedback responses designed to stabilize the stock of bonds outstanding.  More 
generally, Leeper’s policy rule specification seems somewhat inappropriately designed for analysis of the 
issue emphasized by Woodford (1995), namely, whether price level determination is basically monetary or 
fiscal in nature.  To represent the traditional monetary point of view, it would seem preferable to specify 
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the E&H results indicate that, over this entire region, the monetarist solution is E-stable 

(and the fiscalist solution is not).  This result seems especially important in that it 

indicates that well behaved (and orthodox) outcomes, as given by the MSV solution, will 

result when monetary and fiscal policy rules are each sensible on their own terms, with 

no overt coordination or dependence by either policy authority on the behavior of the 

other.29   

8. Concluding Remarks 

 The foregoing pages have discussed four current topics in monetary policy 

analysis, each of which hinges in some way on the possibility of multiple solutions that 

satisfy the usual definition of rational expectations.  In two of these cases,30 analysis of 

the adaptive learnability of the multiple solutions suggests that only one of them is a 

viable candidate for a RE equilibrium when account is taken of the need for corrections 

to occur in response to small departures away from that equilibrium.  Thus it is suggested 

that the dangers alleged to prevail, in these cases, are not ones with which actual 

policymakers need to be concerned.  In the case of the Taylor principle, by contrast, it has 

been argued that the consequences of policy behavior that violates the principle are 

genuinely undesirable, since all of the RE equilibria fail to be learnable.  Finally, our 

analysis of the simplest version of the fiscal theory of the price level suggests that the 

traditional solution is learnable and the fiscalist solution is not.  With more general 

specifications of the policy rules, the outcome is not so clear-cut.  It appears doubtful, 

                                                                                                                                                 
monetary policy in terms of a rule governing responses of a narrow monetary aggregate (e.g., base money) 
to inflation or price-level departures from target values.  This contention does not involve any denial, of 
course, that most actual central banks employ an interest rate instrument. 
29The result does not imply, evidently, that there are no parameter regions in which the fiscalist solution (as 
classified by E&H (2002b)) is learnable.  
30The forecast targeting and ZLB trap cases.  
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nevertheless, that any equilibrium, in which price level and money stock behavior are 

very different, is learnable.     

 More generally, these examples suggest that learnability, not indeterminacy, 

should be viewed as the relevant issue for policy-oriented theoretical analysis of 

monetary policy.  More contentiously, it might be argued that RE solution multiplicity 

should be viewed basically as a mathematical curiosity, stemming from an insufficiently 

specific definition of rational expectations, rather than as a substantive problem for actual 

policy makers.  Whatever the conclusion drawn, a unified treatment would of course 

provide a more attractive argument than the foregoing catalog of examples.  I hope to be 

able to produce one in the future. 
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