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1 Introduction

Most macroeconomic empirical analysis are based on a handful of variables. For example, a typical

VAR has around six and rarely more than ten variables. While abandoning information in a

large number of series can be justified only under rather restrictive assumptions about the joint

distribution of the data, use of large scale models remains an exception rather than the rule. In part,

this is because of the computation burden involved with large models, and in part, this is because

not every available series can be informative, so that including irrelevant information may also come

at a cost. In recent years, a new strand of research has made it possible to use information from

a large number of variables while keeping the empirical framework small. These studies are based

on the assumption that the data admit a factor structure and thus have a common-idiosyncratic

decomposition. Factor analysis provides a formal way of defining what type of variation is relevant

for the panel of data as a whole.

A factor model with mutually uncorrelated idiosyncratic errors is a ‘strict factor model’, and use

of these models is not new. However, the new generation of ‘large dimensional approximate’ factor

models differ from the classical ones in at least two important ways:- (i) the idiosyncratic errors can

be weakly serially and cross-sectionally correlated, and (ii) the number of observations is large in

both the cross-section (N) and the time (T ) dimensions. Allowing the errors to be correlated makes

the framework suited for a wider range of economic applications. The large dimensional nature

of the panel makes it possible to exploit more data in the analysis. It also opens the horizon for

consistent estimation of the factors, something that is not possible when the number of cross-section

units is small.

In applications, approximate factor models are typically estimated by the method of principal

components, by which an eigenvalue decomposition of the sample covariance matrix (the static

approach) or the spectral density matrix (the dynamic approach). The results thus far are en-

couraging is performed. Forni and Lippi (1997) and Forni and Reichlin (1998) found two factors

formed from 450 disaggregated series to be helpful in understanding aggregate dynamics. Stock

and Watson (2002b), and Chan, Stock and Watson (1998) showed that the forecast errors of many

macroeconomic variables can be reduced by extracting three factors from around 150 series. Forni,

Hallin, Lippi and Reichlin (2001a) obtained a similar result using 123 series to estimate two factors.

Bernanke and Boivin (2002), Bernanke, Boivin and Eliasz (2002) used roughly the same data as

Stock and Watson and found that information in the factors is relevant for the empirical mod-

eling of monetary policy. Using as many as 479 series, Giannone, Reichlin and Sala (2002) also

adopted a factor approach to assess the conduct of monetary policy. Stock and Watson (2001)
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and Forni, Hallin, Lippi and Reichlin (2001b) used factors estimated from around 150 and 400

series respectively, to assess whether financial variables help forecast inflation and real activity.

Forni and Reichlin (1998) used data from 138 regions in Europe to extract country and Europe-

specific factors, while Cristadoro, Forni, Reichlin and Giovanni (2001) used 447 series to construct

a four-factor core inflation index for the Euro area.

The studies cited above are evidently quite different from the small scale VARs that have

dominated the literature, as each study has used at least 100 cross-section units to estimate the

factors. However, Watson (2000) also found that the marginal gain (in terms of forecast mean-

squared error) from increasing N beyond 50 appears less substantial. Bai and Ng (2002) found

that in simulations, the number of factors can be quite precisely estimated with N as small as 40

when the errors are iid. This suggests that N does not need to be extremely large for the principal

components estimator to give reasonably precise estimates.

Could it be that increasing N beyond a certain point is not even desirable? This might appear to

be an implausible outcome at first thought, as basic statistical principles suggest more data always

improve statistical efficiency. However, whereas a typical panel is sampled to be representative

of a cross section, with indicators provided by the data releasing agency to reflect the sampling

design, the data used in macroeconomic type factor analysis is not subject to the same scrutiny.

The factors are always defined with respect to a specific set of data, and ‘correctness’ of the dataset

depends very much on the exercise on hand. Every rule used to select the data is in some sense

ad-hoc. By different choices of the data, two researchers using the same estimator can end up with

different factor estimates. The choice of data is thus not innocuous.

The basic intuition for why using more data to estimate the factors might not be desirable is as

follows. The asymptotic theory under which the method of principal components is based assumes

that the cross-correlation in the errors is not too large, and that the variability of the common

component is not too small. In practice, our data are typically drawn from a small number of

broad categories (such as industrial production, prices, interest rates). Think of ordering the

series within a category by the importance of its common component, and put together a dataset

comprising of high ranked series from each category. Now expand this dataset by adding the lower

ranked, or ’noisy’ series. Two things will happen. The average size of the common component will

fall as more series are added, and the possibility of correlated errors will increase as more series

from the same category are included. When enough of the ‘noisy’ series are added, the average

common component will be smaller, and/or the residual cross-correlation will eventually be larger

than that warranted by theory, creating a situation where more data might not be desirable.

The objective of this paper is to provide an empirical assessment of the extent to which the
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properties of the data affect the factor estimates. To our knowledge, this paper is the first to focus

on the finite sample properties of the principal component estimator in the presence of cross-section

correlation in the idiosyncratic errors, which is a pervasive feature of the data. In the empirical

application considered, the errors of 115 out of the 147 series have correlation coefficients larger

than .5. Section 2 begins by using simple examples to show how and to what extent adding more

data can have adverse effects on the factor estimates. We use monte carlo simulations in Section

3 to document the conditions under which adding more data can be undesirable. In Section 4, we

use 147 series as in Stock and Watson (2002b) to obtain standard (unweighted) factor estimates.

We then consider procedures that weigh or drop some of the data before extracting the principal

components. We find that when used to forecast eight macroeconomic time series, the forecasts

using the weighted estimates generally have smaller errors than the unweighted ones. In some

sense, this result is encouraging, as it indicates that we have not fully exploited the potential of

factor analysis. However, the results also point to a need to develop more efficient estimators as it

is not simply N that determines estimation and forecast efficiency. The information that the data

can convey about the factor structure is also important.

2 The Role of N in Theory

Suppose we are interested in the one-period ahead forecast of a series yt. The model that generates

yt is not known. Given the history of yt, a naive forecast can be obtained using an AR(p) model

ŷt+1|yt,...y1
= α̂0 +

p∑

j=1

γ̂jyt−j+1 (1)

with forecast error variance σ̂2
p, where γ̂j , j = 0, . . . , p are the least squares estimates. Suppose we

also observe N series, Xt = (X1t, . . . XNt)′, some of which are informative about yt+1. If N is small

(and smaller than T ), we can consider the forecast

ŷt+1|yt,...y1,Xt
= η̂0 +

N∑

i=1

η̂′1iXit +
p∑

j=1

γ̂jyt−j+1.

However, if N is large, such a forecast will not be efficient because sampling variability will increase

with the number of regressors. When N > T , the forecast is not even feasible.

Now assume Xit admits a factor structure:

Xit = λ0′
i F 0

t + eit ≡ χit + eit, i = 1, . . . N, t = 1, . . . T.

In the above, F 0
t is a r × 1 vector of factors common to all variables, λ0

i is the vector of factor

loadings for series i, χit = λ0′
i Ft is the common component of series i, and eit is an idiosyncratic
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error with E(e2
i ) = σ2

i . If we observe the factors F 0
t , we can consider the forecast:

ŷt+1|yt,...y1,F 0
t

= β̂0 + β̂′1F
0
t +

p∑

j=1

γ̂jyt−j+1 (2)

whose forecast error variance is σ̂2bε,0. The appeal of (2) is that it allows information in a large

number of observed data Xt to be summarized in a small number of variables, F 0
t . But F 0

t is not

observed. Let F̂t,N be a consistent estimate of F 0
t using data from N series. Then the feasible

factor-augmented forecast, referred to by Stock and Watson (2002a) as a ‘diffusion index’ forecast,

is

ŷ
t+1|yt,...y1, bFt,N

= β̂0 + β̂′1F̂t,N +
p∑

j=1

γ̂jyt−j+1, (3)

with forecast error σ̂2bε . Now the difference between the diffusion index forecast and the naive AR(p)

forecast is σ̂2bε−σ̂2
p =

[
σ̂2bε − σ̂2bε,0]+

[
σ̂2bε,0 − σ̂2

p

]
. If F 0

t was observed, the first error would be irrelevant

and a feasible diffusion forecast can do no worse than the AR(p) forecast. This follows from the fact

that (2) nests (1) and the mean squared error from using the latter for forecasting cannot exceed

the former. But the feasible forecast is based upon (3), which involves the generated regressors

F̂t,N . In finite samples, the desirability of a feasible diffusion index forecast depends crucially on

the estimates of F 0
t . We follow the literature and consider the method of principal components.1

Let ΣX and Σχ be the population variance of the data and of the unobserved common compo-

nents associated with N observations, respectively. Let Ω be the covariance matrix of the idiosyn-

cratic errors. These can be thought of as N -dimensional sub-matrices of the infinite dimensional

population covariances. A factor model has population covariance structure ΣX = Σχ + Ω. As

F 0
t is common to all variables, Σχ has r non-zero eigenvalues, and they increase with N . A fun-

damental feature of factor models is that the r largest eigenvalues of ΣX also increase with N .

This suggests that the space spanned by the factors can be estimated using an eigenvalue decom-

position of the the sample estimate of ΣX . Denote by λ̂′i = (λ̂i1 . . . λ̂ir) the estimated loadings,

and let F̂t,N = (F̂ 1
t,N . . . F̂ r

t,N )′ be the estimated factors. Let vj = (v1j , . . . vNj)′ be the eigenvector

corresponding to the jth largest eigenvalue of the N×N sample covariance matrix, Σ̂X . The jth esti-

mated factor is F̂ j
t,N = 1√

N

∑N
i=1 Xitvij , and the corresponding loading is estimated as λ̂ij =

√
Nvij .

Stock and Watson (2002a) and Bai and Ng (2002), showed that the factor space can be consistently

estimated as N, T → ∞ if (i) the errors are stationary, (ii) the factors have non-trivial loadings,

and (iii) the idiosyncratic errors have weak correlation both serially and cross-sectionally. The
1Kapetanios and Marcellino (2002) compared the properties of the static and the dynamic principal components

estimator. As both are aimed at large dimensional panels, the issues to be discussed are relevant to both. Our
discussion follows the simpler static principal components estimator.
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first condition can be relaxed.2 The second condition is necessary for distinguishing the pervasive

factors from the idiosyncratic noise. Under the third condition, Ω need not be a diagonal matrix

for a given N . But, as N tends to infinity, the non-diagonal elements of Ω should go to zero, and

the diagonal terms should approach the cross-section idiosyncratic variance.3 Bai (2003) further

showed that F̂t,N , suitably scaled, is
√

N consistent for F 0
t . The various asymptotic results lead to

the natural presumption that the factor estimates are more efficient the larger is N .

Intuition about the large sample properties of the factor estimates is best seen from a model

with one factor (r = 1), and identical loadings (λ0
i = λ ∀i). Given a panel of N cross sections, a

decomposition of ΣX (assumed known) would yield F̂t,N = Ft + 1
N

∑N
i=1 eit, from which it follows

that var(F̂t,N ) = var( 1
N

∑N
i=1 eit). If eit is iid, var(F̂t,N ) = σ2

N would decrease with N irrespective

of the value of λ. The result is analogous to classical regression analysis when the loadings are

observed. In that case, Ft can be estimated from a cross-section regression of the data at time t on

the N loadings. If the errors are iid, then by the Gauss Markov Theorem, the estimator is efficient,

and the variance of the estimates falls with N .

However, even in a regression setting, the relation between the variance of the least squares

estimates and the sample size is not unambiguous when the iid assumption is relaxed. Consider

estimation of the sample mean. Suppose N1 series are drawn from a population with variance σ2
1,

from which we can compute a sample mean, ȳ. Suppose an additional N2 series are drawn from

a population with variance σ2
2, where σ2

1 < σ2
2. With N = N1 + N2 series, we obtain a sample

mean ỹ. It is easy to see that var(ey)
var(ȳ) > 1 if N1σ2

1+N2σ2
2

N2 >
σ2
1

N1
. Whether or not more data yield more

efficient estimates depend very much on the properties of the additional series.

Indeed, this intuition extends to factor analysis. Consider the special case when a researcher

unintentionally included N1 series twice. More precisely, there are N = 2N1 series, but N1 pairs

of the idiosyncratic errors are perfectly correlated. When the errors are iid, it can be shown that

var(F̂t,N ) = σ2

N1
which depends on N1, not the total number of series used, N . Nothing is gained by

adding more data because the duplicated series increase the variation of the common component,

but the variance of the now cross correlated errors is also larger by the same proportion. It is then

not hard to construct cases when some series have errors so strongly correlated with others that

adding them reduces rather than improves the efficiency of the factor estimates.

It is also useful to see why the properties of the errors are important from a different viewpoint.
2Bai and Ng (2001) showed uniform consistency when the idiosyncratic errors are non-stationary. This means that

even when the individual regressions are spurious, the common factors can be consistently estimated from a large
dimensional panel.

3Connor and Korajzcyk (1986) provided the first results for this estimator using sequential asymptotics. The
asymptotic properties of the dynamic estimator are analyzed in Forni, Hallin, Lippi and Reichlin (2000) under
similar conditions.
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In a strict factor model, Ω is assumed to be a diagonal matrix. With N fixed, the maximum

likelihood estimates of λ for arbitrary Ω̃ (a diagonal matrix) are the eigenvectors of Ω̃−1/2Σ̂XΩ̃−1/2.4

The principal components estimates, on the other hand, are the eigenvectors of Σ̂X , which evidently

correspond to the maximum likelihood estimates only when Ω is a scalar matrix. Accordingly, for

a given N , the principal components estimator can be expected to be less precise the further are

the errors from being homoskedastic and mutually uncorrelated.

3 Monte Carlo Simulations

In this section, we set up two monte carlo experiments to study how the data might affect the

factor estimates. The series to be forecasted in both monte carlos are generated by

yt+1 =
r∑

j=1

βjF
0
jt + εt+1 ≡ yF 0,t+1|t + εt+1,

where εt ∼ N(0, σ2
ε), and σ2

ε is chosen such that the R2 of the forecasting equation is κy. When

β and F 0
t are observed, we denote the forecast by yF 0,t+1|t. The infeasible diffusion index forecast

is ŷF 0,t+1|t, which only requires estimation of β. The feasible diffusion index forecast is denoted

ŷ bF ,t+1|t, which requires estimation of both the factors and β. The Xit are simulated from a model

with r factors:

Xit =
r∑

m=1

λimFmt + eit.

The factor loadings vary across i and are assumed to be N(1,1). Assumptions on eit will be made

precise below.

Our monte carlo experiments are designed to focus on the effects of heteroskedasticity and

cross-correlated errors on the factor estimates. This is based on two considerations. First, pre-

vious simulation studies on the principal components estimator generally assume iid errors (see

Kapetanios and Marcellino (2002) and Forni et al. (2000), for example). Stock and Watson (2002a)

and Bai and Ng (2002) considered a case where an error is correlated with the one ordered before

and after it. But as we will see, the cross-correlation found in the data is more substantial. Second,

previous simulation studies tend to assume the error variances are constant across i. In the data,

the variation in the errors is more substantial.

3.1 Model 1: Correlated and Noisy Errors

In this monte carlo experiment, the factors are assumed to be iid. The total number of series

available is N = N1 +N2 +N3. With uit ∼ N(0, 1), i = 1, . . . , N as the building block, we consider
4See Anderson (1984), p. 589.
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three types of idiosyncratic errors:

N1: eit = σ1uit,

N2: eit = σ2uit,

N3: eit = σ3ẽit, ẽit = uit +
∑C

j=1 ρijujt .

The first N1 series are what we call ‘clean’ series as their errors are mutually uncorrelated. The next

N2 series also have mutually uncorrelated errors, but differ from the N1 series because σ2
2 > σ2

1.

Each N3 series is correlated with some C series that belong to the N1 set. The N1 × N3 matrix

Ω13 has C × N3 non-zero elements and is the source of cross-correlation. More precisely, series

i ∈ [N1 + N2 + 1, N1 + N2 + N3] is correlated with series j ∈ [1, N1] with coefficient ρij . Since two

series in the N3 group can be correlated with the same series in the N1 group, the errors of the N3

type can also be mutually correlated. To isolate cases with cross-correlated errors from cases with

large error variances, we let σ1 = σ3 < σ2.5 These assumptions on the idiosyncratic errors yield an

Ω with the following property:

Ω =




σ2
1IN1 0N1×N2 Ω13

0N2×N1 σ2
2IN2 0N2×N3

Ω′13 0N3×N2 Ω33


 .

We consider data generated by up to three factors. For a given r (the true number of factors),

we estimate k = 1, . . . 3 factors. Thus, if k < r, the assumed number of factors is too small. We

let N3 = n3N1. We vary n3 and draw ρij from a uniform distribution with a lower bound of .05

and an upper bound of .7. The σ2
i are chosen such that the factors explain κi of the variation in

the data, given χit, with κ3 set to .01.6 We consider three N1 values, five N2 values, ten pairs of

(N3, C), nine sets of (κ1, κ2, κy). Each of the 12,150 configurations is simulated M=1000 times.

Let xit be the standardized data (with mean zero and unit variance) to which the method of

principal components is used to extract k factors, where k can be different from r. This yields F̂t, χ̂it,

and êit. Chamberlain and Rothschild (1983) showed that asset prices have an approximate factor

structure if the largest eigenvalue (and hence all of the eigenvalues) of Ω = E(ete
′
t) is bounded. But

the largest eigenvalue of Ω is bounded by maxi
∑N

j=1 |τij |, where τij = E(eitejt). Thus, under the

assumptions of an approximate factor model, there should exist a P such that
∑N

j=1 |τij | ≤ P < ∞
for all i and for all N . While P is useful for the development of theory, it does not provide a

practical guide of how much cross-correlation is permitted in practice. Consider τ̂∗i =
∑N

j=1 |τ̂ij |,
5To ensure that the presence of cross correlation does not reduce the importance of the factors, the eeit are

standardized to have unit variance.
6More precisely, κ = var(χ)

var(χ)+σ2
e

which can be used to solve for σ2
e , given var(χ) implied by the other parameters.
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where τ̂ij = 1
T

∑T
t=1 êitêjt. We then use τ̂∗ = 1

N maxi τ̂
∗
i as an indicator for P/N . This quantity

should be small and decrease with N .

To assess the relative importance of the common component, we consider

R2 =
1
N

N∑

i=1

R2
i , and Rq = R2

.9N −R2
.1N

where R2
i =

PT
t=1 bχ2

itPT
t=1 x2

it

indicates the relative importance of the common component in series i. The

average of R2
i measures the average importance of the common component in the data as a whole.

The cross-section dispersion of the common component is measured by Rq, the difference between

the R2
i in the 90 and the 10 percentile.

Given F̂t, β is estimated by OLS, and the diffusion index forecast ŷ bF ,t+1|t is obtained. We use

three statistics to gauge the properties of the factor estimates and the forecasts:

SF,F0 =
tr(F 0′F̂ (F̂ ′F̂ )−1F̂ ′F 0)

tr(F 0′F 0)

Sy,y0 = 1−
∑T

t=1(ŷF 0,t+1|t − ŷ bF ,t+1|t)
2

∑T
t=1 ŷ2

F 0,t+1|t

Sbβ,β
=

∑T
t=1(y bF ,t+1|t − ŷ bF ,t+1|t)

2

∑T
t=1 y2bF ,t+1|t

.

Since we can only identify the space spanned by the factors, the second factor need not coincide

with the second estimated factor. We therefore project each of the true factors on all estimated

factors. A small SF,F0 thus indicates a small discrepancy between the space spanned by the actual

and the estimated factors. Similarly, the larger is Sy,y0, the closer are the diffusion index forecasts to

those generated by the (infeasible) forecasts based on observed factors. The Sbβ,β
statistic assesses

the feasible diffusion index forecasts relative to the conditional mean. This latter evaluation is

possible (but not in an empirical setting) because the model that generates the data is known in

the simulations.

Some summary statistics of the simulated data are given in the second panel of Table 1. Notably,

the experimental design generates substantial variation in the factor estimates, with SF,F0 ranging

from .04 (almost unpredictable) to .99 (almost perfectly predictable). The mean-squared forecast

errors ranges from .072 to .964, while Sy,y0 ranges from .071 to .99.

Because of the large number of configurations involved, we summarize the results using response

surfaces. We begin with a general specification that includes higher order terms and gradually drop

the statistically insignificant ones. Table 1 reports the estimates, along with the robust standard
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errors. Recall that the larger is SF,F0 , the more precise are the factor estimates. Increasing N1 by

one increases SF,F0 by less than one basis point, but increases Sy,y0 by more than one basis point.

Not surprisingly, increasing N1 reduces Sbβ,β
, but at a declining rate.

Under-estimating the number of factors (r > k) reduces the precision of both the factor estimates

and the forecasts, while overestimating (r < k) the number of factors has the opposite effect. An

additional factor reduces SF,F0 by about 7 basis points. The mean-squared forecast error is also

higher the larger the number of true factors, as having to estimate more factors inevitably increases

sampling variability.

Adding series with relatively large idiosyncratic variances has first order effects on SF,F0 and

Sy,y0 that are positive, but second order effects that are negative. Thus, adding another series has

efficiency gains when N2 is small, but negative when N2 is sufficiently large. To be precise, the effect

of N2 on SF,F0 becomes negative when N2 is around 22 (1.925/.088), all else equal. Coincidentally,

the threshold of N2 for Sy,y0 is also around 22.

Of special interest to us are two results. First, the common factors are more precisely estimated

when the common component is important, as indicated by the coefficient on the variable labeled

R2 in Table 1. However, the larger the dispersion in the importance of the common component, as

indicated by the effect on Rq, the less precise are the estimates. This suggests that adding data with

large idiosyncratic errors or weak factor loadings need not be desirable. Second, SF,F0 and Sy,y0 are

both decreasing in N3 and C, holding other parameters fixed. This suggests that the forecasts and

the factor estimates are adversely affected by cross correlation in the errors. A summary statistic

for the extent of cross correlation is τ̂∗, since it depends on C, N3, and ρij . Evidently, increasing

τ̂∗ by .01 reduces SF,F0 and Sy,y0 by .86 and .90 basis points, respectively.7

The present monte carlo exercise highlights the fact that while increasing N1 is desirable from

both an estimation and forecasting standpoint, this is not always the case if we increase data of

the N2 and N3 type. The factor estimates and forecasts are clearly less efficient when the errors

are cross correlated and/or have vastly unequal idiosyncratic error variances.

3.2 Model 2: Oversampling

In empirical work, we almost always work with only a subset of the data available. To understand

if it matters which N series are being used for analysis, we simulate data from a strict factor model

in this subsection. We assume that there are two serially correlated factors driving the data, viz:

Xit = λi1F1t + λi2F2t + eit, with

Fmt = .5Fmt−1 + umt, umt ∼ N(0, 1), m = 1, 2..

7The second order effect is positive, but numerically small. Evaluated at bτ∗ = .1, the second order effect is 1.81.
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Two series are to be forecasted and are generated as follows:

yA
t+1 = βAF1t + εA

t+1

yB
t+1 = βBF2t + εB

t+1,

with σA
ε = σB

ε . There are five types of data in this monte carlo, with sample size Ns, s = 1, . . . 5:

N1: Xit = .8F1t + eit, σ
2
i ∼ N(0, 1− .82) ;

N2: Xit = .6F2t + eit, σ
2
i ∼ N(0, 1− .62);

N3: Xit = .4F1t + .1F2t + eit, σ
2 ∼ N(0, 1− .42 − .12);

N4: Xit = .1F1t + .4F2t + eit, σ
2 ∼ N(0, 1− .12 − .42);

N5: Xit = eit, σ
2
i ∼ N(0, 1).

The simulated data have two features. First, some series are driven by one factor, some by two

factors, and some do not obey a factor structure. Second, some series weigh factor 1 more heavily

than factor 2 and vice versa. To fix ideas of the situation that the experiment attempts to mimic,

suppose factor one is real and factor two is nominal. The N1 series might be output and employment

type series, the N2 series might be prices, the N3 series might be interest rate type series, and the

N4 series might be stock market type series. Variations in the N5 series are purely idiosyncratic.

The errors are mutually uncorrelated within and between groups. Cross correlation is not an issue

in this experiment.

The simulation results are reported in Table 2. The main features of the previous monte carlo

are also apparent here when the errors are not cross-correlated. First, under-estimating the number

of factors has large efficiency loss, while over-estimating has little impact on the estimates or the

forecasts. Second, the factor estimates are no less precise when the noisy data are dropped, even

though the nominal sample size is smaller. Remarkably, when the number of assumed factors is at

least as large as that in the underlying data, the space spanned by the factors can be quite precisely

estimated by the method of principal components with as few as 40 series, provided the data are

informative about the factors. With 40 series (case 3), SF,F0 is .944. In none of the remaining

cases with two or more factors estimated was there a noticeable improvement in SF,F0 . With 100

series, SF,F0 improves to only .955 in case 9. Thus as in the previous monte carlo, efficiency of the

factor estimates is determined not simply by whether the sample size is 40 or 100, but also by the

informativeness of the data about the factors.

One motivation for the present monte carlo is to highlight the fact that the factor space being

estimated depends on the choice of data. In case 1 when the N1 series was used, the first principal
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component estimates the space spanned by F1. For this reason, extracting one factor given the

N1 dataset is adequate for forecasting yA. Analogously, extracting one factor from the N2 dataset

is adequate for the purpose of forecasting yB. However, if the first factor dominates the variation

of the second, we will need to estimate two factors from N1 + N2 series to forecast yB efficiently.

Analogously, if we had data in which F2 dominates F1, such as case 4, forecasting yA using one

factor would have been disastrous. We refer to a situation in which the data are more informative

about some factors than the others as ‘oversampling’.

More generally, let m be the true number of factors in the forecasting equation. The foregoing

results suggest that when the data are oversampled, the number of estimated factors that will

efficiently forecast a series that depends on m factors will be larger than m, if the m factors are not

the m most dominant factors in X. A criterion that determines the optimal number of factors in

X can be a misleading indicator of the number of factors needed for forecasting a single series, y.

The problem of oversampling is helpful in understanding why in Table 2, yA is always forecasted

more precisely than yB, even though both series have the same degree of predictability (since

σA
ε = σB

ε and βA = βB). This result arises because efficient forecasts of yB requires inclusion of

more estimated factors than yA. But more estimated factors also induce more sampling variability

into the forecasts. For this reason, forecasts of a series that depend on the less important factors

in X will tend to be inferior to those that depend on the dominant factors in X.

As noted earlier, macroeconomic panels are ‘put together’ by the researcher, and as such, the

factors are always sample dependent. As seen from the results, the forecast error for yB using

N2 + N3 series is larger than using N2 series alone. Likewise, the forecast error for yA from using

N1 + N3 series is larger than using the N1 series alone. This raises the possibility that if we think

the series to be forecasted depends on F1 and F2, estimating F1 from N1 series and F2 from N2

series could outperform estimating F1 and F2 jointly from a larger dataset comprising of series with

varying factor structures. This alternative will be explored in the next section.

4 The Role of N in Real Time Forecasting

The goal of this section is to see if ŷ
t+1|yt,...y1, bFt,N

depends on N in real-time, 12 month ahead fore-

casting of a large number of economic time series with special attention to eight commonly studied

economic indicators: industrial production (ip), real personal income less transfers (gmyxspq), real

manufacturing trade and sales (msmtq), number of employees on nonagricultural payrolls (lpnag),

the consumer price index (punew), the personal consumption expediture deflator (gmdc), the CPI

less food and energy (puxx), and the producer price index for finished goods (pwfsa). The loga-

rithms of the four real variables are assumed to be I(1), while the logarithms of the four prices are

12



assumed to be I(2).

Let yt generically denote one of the eight series after logarithmic transformation. Define the

h step ahead growth to be yh
t+h = 100[yt+h − yt] and the scaled one period growth to be zt =

100 · h[yt − yt−1]. The diffusion index forecasts are obtained from the equation

ŷ
t+h|yt,...y1, bFt

≡ ŷt+h|t = β̂0 + β̂′1F̂t,N +
p∑

j=1

γ̂jzt−j+1, (4)

where β̂0, β̂1 and γ̂ are OLS estimates. The univariate forecasts are based on the model that excludes

the factors. Since our primary interest is in the role of N , we fix p to 4 to compare univariate AR(4)

forecasts with those augmented with up to k = 6 factors.8 We then use the BIC as suggested in

Stock and Watson (2002b) to determine the number of factors used in the forecasting equation

with ω set to 0.001.

The base case of Xit is a balanced panel of N=147 monthly series available from 1959:1 to

1998:12. Following Stock and Watson (2002b), the data are standardized and transformed to achieve

stationarity where necessary. The data can roughly be classified into 13 groups:- [1]: real output

and income (series 1-19), [2]: employment and hours (series 20-44), [3]: retail and manufacturing

trade (series 45-53), [4]: consumption (series 54-58), [5]: housing starts and sales (series 59-65), [6]:

inventories (series 66-76), [7]: orders (series 77-92), [8]: stock prices (series 93-99), [9]: exchange

rate (series 100-104), [10]: interest rates (105-120), [11]: money and credit (series 121-127), [12]:

price indexes (series 128-145), [13]: misc (series 146-147). Details are given in Appendix A. The

relative importance of the common component for each series are denoted R2
i (3) and R2

i (6), when

three and six factors are being estimated respectively.

The forecasting exercise begins with data from 1959:3-1970:1. A 12 period ahead forecast is

formed by using values of the regressors at 1970:1 to give yh
1970:1+h for h = 12. The sample is

updated by one period, the factors and the forecasting model are both re-estimated, and a 12

month forecast for 1971:2 is formed. The final forecast is made for 1998:12 in 1998:12-h. The

rolling AR(4) forecasts are likewise constructed. We evaluate the k factor diffusion index forecasts

relative to those of the AR(4) forecasts (i.e. with zero factors). The results, when k is chosen

optimally by the BIC, are reported in the first row of columns 5 to 12 of Table 3. Incidentally, the

BIC usually suggests two factors. An entry less than one indicates that the diffusion index forecast

is superior to the naive AR(4) forecast. The results confirm the findings of Stock and Watson that

the diffusion indices can be useful for real time forecasting, even though the factors have to be

estimated.
8The main difference between our analysis and that of Stock and Watson is that we did not allow lags of the

factors to enter the forecasting model.

13



But can more efficient factor augmented forecasts be obtained? A look at the properties of

the data reported in Appendix A reveal several features. First, there are more series from some

groups than others, so the problem of oversampling is conceivable. Second, many of the R2
i s are

very small. For example, three factors explain only .01 of the variation in IPUT (series 15). Even

with six factors, R2
i is improved to a mere .08, much smaller than series such as PMEMP that has

an R2
i of .8. The dispersion in the importance of the common component is thus quite large. Our

monte carlo results suggest that such dispersion can have adverse effects on the forecasts.

Third, there is substantial cross correlation in the idiosyncratic errors. To gauge the problem,

we obtain τ̂ij , the correlation coefficient between the residuals for series i and j, obtained from

estimation of a six (and three) factor model over the entire sample, 71:1-97:12. For each series i,

we can identify

τ̂∗1 (i) = max
j
|τ̂ij | = τ̂ij1

i
.

That is, j1
i is the series whose idiosyncratic error is most correlated with series i, and the correlation

between series i and j1
i is τ̂∗1 (i). For example, the IPCD and IPCN errors are both most correlated

with IPC, with correlation coefficients of .66 and .69, respectively. The errors of FSPCOM and

FSNCOM have a correlation coefficient of .99 (see Appendix A). Evidently, the maximum residual

cross correlation in the data is non-trivial. As the maximum correlation coefficient could be an

outlier, we also report the second largest residual cross correlation for each series (see the last two

and three columns of Appendix A). That is, we identify j2
i . Then τ̂∗2 (i) is the second largest residual

correlation for series i. Many of these correlation coefficients remain quite high.

As a final check, the quantity
∑

j |τij | should be bounded under the assumptions of the ap-

proximate factor model. These are reported in the last column of Appendix A. This series has a

mean of 14.62 and a standard deviation of 5.10. As we have 147 series in the analysis, the average

cross-correlation is around .1. In many cases,
∑

j |τ̂ij | is large even though τ̂∗1 (i) is not. See, for

example, series LPCC and FSPUT. This suggests many of the τij are non-zero. In particular, the

idiosyncratic errors of the data in groups 1 (industrial production) and 7 (manufacturing series) ex-

hibit especially strong correlation. These results suggest that the issues of oversampling, correlated

errors, and noisy data could be relevant to the present forecasting exercise.

4.1 Weighted Principal Components

In classical regression analysis, generalized least squares is more efficient than ordinary least squares

when the errors are non-spherical. This suggests that if we observe Ω, we can consider an efficient

principal components estimator that weighs the data with Ω, by analogy to GLS. The problem
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is that we do not observe Ω. The analogous feasible GLS estimator would be to replace Ω by Ω̂,

the sample error covariance matrix from unweighted estimation of a k factor model. But Ω̂ is a

matrix of rank N − k and thus not invertible. Thus, while minimizing V (k) = 1
NT

∑N
i=1

∑T
t=1 e2

it is

suboptimal, minimizing W ∗(k) = ‖ 1
NT

∑T
t=1 e′tΩ̂−1et‖ is infeasible. Another solution is to subtract

Ω̂, which is a diagonal matrix in classical analysis, from Σ̂X . However, Ω̂ is not diagonal in

approximate factor models. The eigenvectors of Σ̂X − Ω̂ in fact span the same space as those of

Σ̂X . There is, to our knowledge, no obvious way to exploit the entire Ω̂ matrix to improve efficiency.

Although optimal weighting is not possible, some form of weighting may still be desirable.

Consider the objective function

W (k) =
1

NT

N∑

i=1

wiT

T∑

t=1

e2
it,

where wiT is chosen to reflect the informativeness of series i. Notice that the objective function

weighs the variance of each series; the covariances are not weighted as in feasible GLS. When N

is large, this can be advantageous because having to estimate N instead of N(N + 1)/2 weights

induces less sampling variability.

As wiT is meant to be data dependent, we rely on a first step estimation of the factor model

to get the estimated residuals. If the number of factors is too small in this step, the errors will be

correlated by construction which could lead to inaccurate weighting. The base case of our first step

extracts six factors from X, from which the residuals are used to construct Ω̂ and the weights as

defined below. For robustness check, we also consider using three factors in the first step. In the

second step, a new set of factors is estimated using different weighted criteria. After the factors are

re-estimated, the BIC is used to determine how many of them are used in forecasting. This step is

repeated for each of the eight y series under investigation.

We consider the following sets of weights:

Rule SWa: wiT is the inverse of the ith diagonal element of Ω̂T , estimated using data up to time T .9

Rule SWb: wiT is the inverse of 1
N

∑N
j=1 |Ω̂T (i, j)|.

Rule 1: Let j1 = {j1
i } be the set of series whose error is most correlated with some other series. These

series are all dropped. If j1
i = j1

i′ , i.e. if series i and i′ are most correlated with each other,
series i′ is dropped if R2

i′ < R2
i . Of the 147 series, 73 are dropped, leaving us with 71 series.

Rule 2: From Rule 1, we also drop a series if its error is second most correlated with another series.
This removes 38 series from the 71 series in the previous set, leaving us with 33 series.

9One can also think of weighting each series by
bω−1

iPN
i=1 bω−1

i

. This gives the same relative weight between series i

and j as the one we considered, namely
bωjbωi

.
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Rule 1c The j1 set in Rule 1 is based on Ω̂T , the full sample estimate of Ω. In real time, this estimate
can be updated continuously. Rule 1c uses Ω̂t to obtain wit.

Rule 2c Follows Rule 2 but allows for continuous updating as in Rule 1c.

Rule SWa was also considered in Jones (2001). It is aimed at accounting for heteroskedasticity

in the errors, but not cross-correlation. Rule SWb weights the data by the magnitude of residual

cross-correlation. With Rules SWa and SWb, all 147 series are used to estimate the factors as the

weights are never exactly zero. In contrast, wiT is a binary variable under Rules 1 and 2. A series

is either in or out based on the properties of the residuals over the entire sample. Rules 1c and 2c

provide further flexibility by allowing wiT to be updated as the sample size (in the time dimension)

changes.

The above weighting schemes are aimed at accounting for the properties of the residuals. How-

ever, our second monte carlo exercise also suggests that it may be more efficient to estimate the

factors from a small dataset than from one with additional series that does not contain information

about the factor. Inspection of Appendix A reveals that while many series (in particular, the real

variables) are quite well explained by the first three factors, many series (in particular, the price

variables) are better explained by factors three through six. For example, the R2
i (6) for the price

variables is generally much higher than R2
i (3). In light of the results in our second monte carlo ex-

periment, the 147 series are reclassified into three categories. The ‘real’ (R) category consists of 60

series from output, employment, retail and manufacturing trade, consumption, and miscellaneous.

The ‘nominal’ (N) category consists of 46 series relating to exchange rate, interest rates, money

and credit, and price indexes. The ‘volatile/leading indicator’ (V) category consists of 41 series of

high volatility, including housing starts, inventories, orders, and stock prices.10 An appeal of this

grouping is that it provides some economic interpretation to the factors. Obviously, this amounts

to having three additional sets of wiT . For example, the real factors are essentially extracted with

wiT such that it is one if a series is real and zero otherwise. After the data are classified, we then

estimate three real factors using data exclusively from the real series, three nominal factors from

the nominal variables, and three volatile factors from the volatile series. These T × 1 vectors are

denoted F̂ k
j , j = 1, . . . 3, k = R, N, V . It remains to determine the order in which the factors are

added to the forecasting equation. We consider 4 sets of orderings:

Rule A: FR
1 , FR

2 , FR
3 Rule B: FN

1 , FN
2 , FN

3

Rule C: F V
1 , F V

2 , F V
3 Rule D: FR

1 , FN
1 , F V

1 ;

As is evident, Rule A uses only the real factors, Rule B uses only the nominal factors, while Rule

C uses only the volatile factors. Rule D eventually has one factor from each category.
10The ‘real’ variables are thus from groups 1-4, plus 13, the ‘nominal’ variables are from groups 9-12, and the

volatile group are variables from 5-8.
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There is undoubtedly a certain ad-hocness in all these rules, but if cross-correlated errors are not

prevalent in the data, or if oversampling of the data is inconsequential, dropping the data should

make the estimates less efficient, not more, since the sample size is smaller. The results using these

weighting schemes are therefore revealing even if they are not optimal.

The results with weights obtained from a first step estimation of 6 and 3 factors are reported in

Table 3 and 4, respectively. The real factors (Rule A) apparently have little predictive power for

the real variables. This is perhaps to be expected since the forecasting equation already has four

lags of each series, which are themselves real variables. However, the nominal factors, extracted

from 46 series (Rule B), are extremely effective for forecasting all real series. It beats the forecasts

from the factors extracted from all 147 series (Rule SW). This result can be explained by the fact

that the first factor in the Stock and Watson data is understood to be a real factor. This means

that the nominal factors are not the most important factors in the panel of 147 series. As suggested

by our second monte carlo, extracting these factors from a large panel is inferior to extracting them

from data in which the factor is dominant, which is the case with Rule B. This would be consistent

with real series being over-sampled in the data set.

Turning now to the inflation series, using factors associated with Rule B are evidently uninfor-

mative, as lagged prices have likely encompassed much of the information in the nominal factors.

Adding one real factor or one volatile factor both lead to smaller forecast errors than the AR(4)

forecasts. Although none of the methods considered appear to perform noticeably better than the

base case, the forecasts with 147 series are closely matched by those with factors extracted from 33

series, ie Rule 2.

Overall, Rules 2 and SWb produce results that are comparable, and often times better, than

SW for all eight series considered. As these results are specific to a selected set of series, one might

wonder whether our findings are general. To address this issue, we repeat the forecasting exercise

for each of the 147 series in X and assess the performance of each rule. The results from averaging

over all the real and all the nominal series are reported in Tables 3 and 4. Rule B continues to do

well for the real series, though SWb is not far behind, suggesting that reducing the extent of cross-

correlation in the errors can improve the factor forecasts of the real variables. As for the nominal

variables, the weighting schemes did not improve the SW forecasts, but they did no worse either,

suggesting again that using a smaller number of series to construct the factors could have been

adequate. We also use two graphs to summarize the 147 forecasts. Figure 1 shows the percentage

of series for which a given rule is the best one. While SW is best in about 10 percent of the cases,

Rules SWa, SWb and B are better more often. As none of them systematically perform better than

all the others, it is not clear from Figure 1 alone which rule one should prefer. Therefore in Figure
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2, we present the percentage of series for which a given rule beats SW. In about 65 percent of the

series, SWb outperforms SW.

While we make no claim that these rules are optimal, two observations are useful to highlight.

First, the fact that Rules 2 and B used fewer than 50 series underscores our main point that use of

more data to extract the factors does not necessarily yield better results. Reducing the sample size

can sometimes help sharpen the factor structure and enables more efficient estimation. As well,

use of more series in the estimation increases the possibility of correlated errors. Both observations

serve as a reminder that the principal components estimator has many desirable properties if certain

regularity conditions are satisfied. The selection of data is not innocuous because it determines

how close are these conditions from being violated in practice.

Second, instead of dropping series with highly correlated errors, we can also downweigh their

influence on the objective function. This is perhaps a more appealing way of dealing with the

intrinsic properties of the data from a statistical perspective because no information is wasted.

This is what rules SWa and SWb attempt to accomplish, and as we can see, with encouraging

outcomes. We can expect more formal weighting schemes than the crude ones used here to be able

to further enhance the properties of principal components estimator.

5 Conclusion

A feature stressed in recent applications of factor models is the use of data from ‘large’ panels.

Because the theory is developed for large N and T , there is a natural tendency for researchers to

use as much data as are available. But in simulations and the empirical examples considered, the

factors extracted from as few as 40 series seem to do no worse, and in many cases, better than the

ones extracted from 147 series.

In applications, the number of series available for analysis can be quite large. Suppose we

have included the all-item CPI in the analysis. Would it be useful to also include CPI ex-food and

energy? Suppose we have a large number of disaggregated series, plus a small number of aggregated

ones. Should we use all series? What are the consequences of oversampling data from particular

groups? Is there a trade-off between the quantity and quality of the data? There is at the moment

no guide to what data should be used in factor analysis. Our results nonetheless suggest that

sample size alone does not determine the properties of the estimates. The quality of the data must

be taken into account. There is room to further exploit the diffusion index forecasting technology

by efficiently incorporating information about the properties of the data in the construction of the

factors.

18



Appendix I: Data

Series name tcode group R2
i (3) R2

i (6) j1 j2 bτ∗1 bτ∗2 P
i |bτij |

1 IP 5 1 0.70 0.73 11 9 0.89 0.81 25.53
2 IPP 5 1 0.62 0.68 3 4 0.93 0.78 22.74
3 IPF 5 1 0.55 0.61 2 4 0.93 0.81 20.69
4 IPC 5 1 0.41 0.48 3 2 0.81 0.78 20.52
5 IPCD 5 1 0.37 0.45 4 3 0.66 0.57 17.34
6 IPCN 5 1 0.14 0.16 4 13 0.69 0.66 14.77
7 IPE 5 1 0.44 0.48 3 2 0.55 0.47 11.33
8 IPI 5 1 0.42 0.45 11 1 0.41 0.41 14.24
9 IPM 5 1 0.51 0.53 1 11 0.81 0.67 17.47
10 IPMND 5 1 0.36 0.37 13 36 0.61 0.27 11.89
11 IPMFG 5 1 0.71 0.75 1 12 0.89 0.85 25.83
12 IPD 5 1 0.62 0.67 11 1 0.85 0.78 22.57
13 IPN 5 1 0.41 0.43 6 10 0.66 0.61 17.42
14 IPMIN 5 1 0.05 0.05 9 1 0.47 0.34 8.48
15 IPUT 5 1 0.01 0.08 57 45 0.45 0.24 10.44
16 IPXMCA 1 1 0.70 0.77 43 42 0.63 0.63 11.69
17 PMI 1 1 0.75 0.77 77 18 0.87 0.85 18.43
18 PMP 1 1 0.68 0.71 17 77 0.85 0.82 15.91
19 GMYXPQ 5 1 0.38 0.39 140 144 0.27 0.25 11.97
20 LHEL 5 2 0.32 0.36 21 30 0.69 0.18 9.66
21 LHELX 5 2 0.45 0.49 20 138 0.69 0.21 11.14
22 LHEM 5 2 0.24 0.27 23 33 0.90 0.27 9.25
23 LHNAG 5 2 0.28 0.30 22 9 0.90 0.20 9.07
24 LHUR 1 2 0.49 0.72 43 42 0.72 0.67 14.57
25 LHU680 1 2 0.41 0.63 28 29 0.78 0.60 16.86
26 LHU5 1 2 0.38 0.82 27 67 0.72 0.32 14.32
27 LHU14 1 2 0.53 0.89 26 29 0.72 0.62 19.69
28 LHU15 1 2 0.50 0.83 29 25 0.88 0.78 19.59
29 LHU26 1 2 0.56 0.87 28 27 0.88 0.62 18.71
30 LPNAG 5 2 0.72 0.76 31 37 0.93 0.71 16.52
31 LP 5 2 0.70 0.77 30 32 0.93 0.67 16.28
32 LPGD 5 2 0.72 0.77 34 31 0.74 0.67 16.42
33 LPCC 5 2 0.22 0.29 32 31 0.42 0.34 13.24
34 LPEM 5 2 0.69 0.72 35 32 0.92 0.74 16.34
35 LPED 5 2 0.62 0.65 34 32 0.92 0.67 16.52
36 LPEN 5 2 0.44 0.46 34 32 0.41 0.35 11.45
37 LPSP 5 2 0.39 0.41 30 31 0.71 0.57 12.74
38 LPTX 5 2 0.35 0.39 37 31 0.55 0.39 12.11
39 LPFR 5 2 0.17 0.20 62 78 0.31 0.31 10.76
40 LPS 5 2 0.20 0.21 37 30 0.45 0.33 9.79
41 LPGOV 5 2 0.11 0.21 37 30 0.47 0.31 7.30
42 LPHRM 1 2 0.20 0.21 43 24 0.93 0.67 12.87
43 LPMOSA 1 2 0.10 0.16 42 24 0.93 0.72 13.16
44 PMEMP 1 2 0.80 0.80 17 18 0.73 0.64 15.11
45 MSMTQ 5 3 0.62 0.77 72 46 0.80 0.64 20.54
46 MSMQ 5 3 0.58 0.64 73 47 0.91 0.87 16.96
47 MSDQ 5 3 0.53 0.59 46 73 0.87 0.78 15.68
48 MSNQ 5 3 0.23 0.26 86 46 0.66 0.45 11.89
49 WTQ 5 3 0.18 0.32 51 74 0.85 0.82 14.06
50 WTDQ 5 3 0.30 0.34 49 74 0.58 0.49 11.75
51 WTNQ 5 3 0.04 0.18 49 74 0.85 0.70 11.02
52 RTQ 5 3 0.20 0.33 75 54 0.79 0.61 15.50
53 RTNQ 5 3 0.07 0.16 56 52 0.81 0.59 13.15
54 GMCQ 5 4 0.18 0.36 55 56 0.75 0.61 16.81
55 GMCDQ 5 4 0.13 0.22 58 54 0.86 0.75 13.41
56 GMCNQ 5 4 0.07 0.19 53 54 0.81 0.61 12.53
57 GMCSQ 5 4 0.06 0.14 15 54 0.45 0.26 7.48
58 GMCANQ 5 4 0.10 0.19 55 54 0.86 0.57 11.06
59 HSFR 4 5 0.42 0.61 64 62 0.87 0.80 21.58
60 HSNE 4 5 0.36 0.42 59 43 0.55 0.49 13.92
61 HSMW 4 5 0.44 0.47 59 63 0.54 0.37 14.81
62 HSSOU 4 5 0.22 0.59 59 64 0.80 0.76 18.85
63 HSWST 4 5 0.22 0.41 59 64 0.77 0.72 15.93
64 HSBR 4 5 0.33 0.57 59 62 0.87 0.76 20.62
65 HMOB 4 5 0.08 0.34 62 64 0.51 0.41 13.63
66 IVMTQ 5 6 0.43 0.44 67 68 0.59 0.55 16.14
67 IVMFGQ 5 6 0.40 0.43 68 66 0.89 0.59 13.12
68 IVMFDQ 5 6 0.37 0.39 67 66 0.89 0.55 12.15
69 IVMFNQ 5 6 0.12 0.17 67 28 0.48 0.24 8.06
70 IVWRQ 5 6 0.12 0.12 66 74 0.47 0.41 7.93
71 IVRRQ 5 6 0.09 0.11 75 66 0.61 0.51 10.69
72 IVSRQ 2 6 0.67 0.79 45 85 0.80 0.59 21.99
73 IVSRMQ 2 6 0.64 0.67 46 47 0.91 0.78 17.49
74 IVSRWQ 2 6 0.19 0.31 49 51 0.82 0.70 13.27
75 IVSRRQ 2 6 0.12 0.24 52 71 0.79 0.61 16.10
76 PMNV 1 6 0.61 0.62 17 78 0.52 0.39 11.88

Notes: tcode is the transformation code, taken from Stock and Watson (2002a). 1=no transformation, 2=first dif-

ference, 4=logarithm, 5=first difference of logarithms, 6=second difference. The data can be classified into 13 groups,

1=real output and income, (2)=employment and hours, (3)=retail and manfacturing trade, (4)=consumption,
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Appendix I: continued

Series name tcode group R2
i (3) R2

i (6) j1 j2 bτ∗1 bτ∗2 P
i |bτij |

77 PMNO 1 7 0.66 0.71 17 18 0.87 0.82 16.53
78 PMDEL 1 7 0.52 0.57 17 76 0.63 0.39 14.84
79 MOCMQ 5 7 0.55 0.58 47 46 0.51 0.42 13.21
80 MDOQ 5 7 0.50 0.61 84 85 0.99 0.91 24.79
81 MSONDQ 5 7 0.12 0.21 91 92 0.83 0.83 17.44
82 MO 5 7 0.63 0.73 84 80 0.90 0.88 26.15
83 MOWU 5 7 0.44 0.55 85 84 0.98 0.90 24.69
84 MDO 5 7 0.50 0.61 80 85 0.99 0.92 24.99
85 MDUWU 5 7 0.39 0.50 83 84 0.98 0.92 24.38
86 MNO 5 7 0.36 0.39 48 87 0.66 0.52 14.52
87 MNOU 5 7 0.18 0.21 86 90 0.52 0.42 9.66
88 MU 5 7 0.41 0.47 89 85 0.99 0.43 17.21
89 MDU 5 7 0.39 0.46 88 85 0.99 0.44 16.84
90 MNU 5 7 0.22 0.25 87 134 0.42 0.21 10.36
91 MPCON 5 7 0.09 0.17 92 81 1.00 0.83 16.70
92 MPCONQ 5 7 0.08 0.16 91 81 1.00 0.83 16.64
93 FSNCOM 5 8 0.28 0.64 94 95 0.98 0.96 22.10
94 FSPCOM 5 8 0.28 0.64 95 93 0.99 0.98 22.23
95 FSPIN 5 8 0.27 0.62 94 93 0.99 0.96 21.45
96 FSPCAP 5 8 0.22 0.54 95 94 0.87 0.84 18.44
97 FSPUT 5 8 0.24 0.45 93 94 0.33 0.32 14.01
98 FSDXP 2 8 0.30 0.64 95 94 0.77 0.77 18.72
99 FSPXE 2 8 0.18 0.39 94 95 0.58 0.57 16.42
100 EXRUS 5 9 0.10 0.20 101 103 0.84 0.83 13.71
101 EXRGER 5 9 0.08 0.15 102 100 0.87 0.84 12.87
102 EXRSW 5 9 0.08 0.15 101 100 0.87 0.81 12.95
103 EXRJAN 5 9 0.06 0.15 100 102 0.83 0.57 10.87
104 EXRCAN 5 9 0.03 0.10 19 100 0.19 0.17 7.57
105 FYFF 2 10 0.23 0.26 106 94 0.30 0.28 11.08
106 FYGT5 2 10 0.26 0.45 107 108 0.94 0.77 17.68
107 FYGT10 2 10 0.23 0.43 106 108 0.94 0.83 17.65
108 FYAAAC 2 10 0.28 0.49 107 109 0.83 0.82 16.92
109 FYBAAC 2 10 0.32 0.50 108 107 0.82 0.69 15.40
110 FYFHA 2 10 0.22 0.33 107 106 0.60 0.60 14.32
111 FM1 6 11 0.05 0.10 112 113 0.62 0.45 7.69
112 FM2 6 11 0.04 0.08 113 111 0.64 0.62 9.15
113 FM3 6 11 0.02 0.04 112 111 0.64 0.45 7.73
114 FM2DQ 5 11 0.24 0.29 62 16 0.36 0.35 11.99
115 FMFBA 6 11 0.03 0.03 116 117 0.67 0.32 7.71
116 FMRRA 6 11 0.03 0.03 115 117 0.67 0.49 8.71
117 FMRNBC 6 11 0.05 0.08 116 115 0.49 0.32 7.91
118 PMCP 1 12 0.47 0.50 147 141 0.55 0.38 11.81
119 PWFSA 6 12 0.03 0.28 120 129 0.88 0.33 9.12
120 PWFCSA 6 12 0.03 0.30 119 129 0.88 0.30 9.23
121 PSM99Q 6 12 0.02 0.03 97 107 0.20 0.20 6.99
122 PUNEW 6 12 0.08 0.68 131 83 0.33 0.26 12.84
123 PU83 6 12 0.03 0.09 124 120 0.26 0.20 5.24
124 PU84 6 12 0.04 0.31 123 129 0.26 0.25 8.67
125 PU85 6 12 0.00 0.01 128 117 0.19 0.12 4.96
126 PUC 6 12 0.08 0.69 134 130 0.36 0.26 13.52
127 PUCD 6 12 0.01 0.04 133 134 0.28 0.24 7.32
128 PUS 6 12 0.02 0.05 129 134 0.32 0.32 8.10
129 PUXF 6 12 0.04 0.33 119 128 0.33 0.32 9.71
130 PUXHS 6 12 0.09 0.66 126 82 0.26 0.21 10.95
131 PUXM 6 12 0.08 0.62 122 128 0.33 0.22 12.62
132 GMDC 6 12 0.09 0.67 135 134 0.66 0.36 12.45
133 GMDCD 6 12 0.00 0.04 127 132 0.28 0.23 5.41
134 GMDCN 6 12 0.10 0.71 132 126 0.36 0.36 13.96
135 GMDCS 6 12 0.01 0.10 132 126 0.66 0.25 7.30
136 LEHCC 6 13 0.02 0.02 137 33 0.26 0.24 8.46
137 LEHM 6 13 0.01 0.02 35 136 0.31 0.26 8.81
138 SFYCP90 1 10 0.23 0.75 140 141 0.40 0.32 12.95
139 SFYGM3 1 10 0.51 0.83 140 141 0.83 0.46 16.57
140 SFYGM6 1 10 0.53 0.86 139 141 0.83 0.77 22.09
141 SFYGT1 1 10 0.52 0.80 140 142 0.77 0.62 19.82
142 SFYGT5 1 10 0.67 0.86 143 145 0.96 0.83 25.60
143 SFYGT10 1 10 0.69 0.86 142 144 0.96 0.91 25.90
144 SFYAAAC 1 10 0.70 0.83 145 143 0.92 0.91 24.65
145 SFYBAAC 1 10 0.74 0.85 144 143 0.92 0.88 23.35
146 SFYFHA 1 10 0.70 0.86 143 144 0.86 0.83 23.29
147 HHSNTN 1 10 0.38 0.58 118 25 0.55 0.40 10.65

(5)-housing starts and sales, (6)= inventories, (7)=orders, (8)=stock prices, (9)=exchange rate, (10)=interest

rates, (11)=money and credit, (12)=prices, (13)=misc. R2
i (3) and R2

i (6) are the fraction of variation in series i

explained by three and six factors, respectively. j1 and j2 are the series whose errors are most correlated and second

most correlated with series i. The corresponding correlation coefficients are bτ∗1 and bτ∗2 , respectively.
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Table 1: Response Surface for Monte Carlo 1
Estimates Summary Statistics of Simulated Data

100× SF,F0 100× Sy,y0 100× Sbβ,β mean s.d. min max
N1 0.874 1.172 -1.214 40 16.33 20 60

(18.38) (20.05) (25.33)
N2

1 -0.006 -0.007 0.007
(9.16) (10.08) (12.08)

(r − k) > 0 -21.873 -2.195 1.888 .4444 .684 0 2
(100.92) (7.69) (8.37)

(k − r) > 0 14.388 6.882 -8.244 .4444 .684 0 2
(77.40) (32.08) (44.16)

r -7.058 2.176 2.635 2 .816 1 3
(28.80) (8.35) (12.36)

N2 1.925 1.983 -1.862 5 5.773 0 15
(21.70) (18.27) (21.09)

N2
2 -0.088 -0.089 0.083

(13.70) (11.15) (12.72)
R2 145.383 171.275 -187.590 .350 .143 .071 .721

(32.37) (29.45) (37.57)
R2

2 -49.465 -105.62 94.508
(8.86) (14.74) (15.07)

Rq -12.137 18.773 -32.184 .462 .187 .089 .850
(3.46) (4.49) (8.93)

R2
q -22.023 -62.641 68.285

(5.66) (13.43) (16.69)
N3 -0.483 -0.663 0.689 15.2 16.237 1 60

(19.01) (20.31) (24.94)
N2

3 0.007 0.008 -0.009
(15.60) (15.52) (19.46)

C -0.333 -0.655 0.649 24 22.301 0 75
(16.77) (25.83) (30.06)

C2 0.001 0.004 -0.003
(3.79) (10.72) (11.84)

τ̂∗ -86.512 -90.361 134.357 .140 .058 .068 .452
(9.30) (7.22) (13.15)

[τ̂∗]2 180.718 358.357 -309.556
(8.73) (12.25) (13.04)

cons 34.884 14.159
(27.23) (8.62)

R2 .8449 .6232 .7184
SF,F0 .603 .292 .04 .991
Sy,y0 .740 .23 .071 .99
msey .458 .222 .072 .964

We considered a total of 12150 configurations of Model 1, each simulated 1000 times. The parameters that

we vary between configurations are N1, N2, N3, C, r, k, κ1, κ2 and κy. We use R2, R2
q and τ∗ to summarize the

properties of the data. Summary statistics for the simulated data are given in the second panel of Table 1. For each

configuration, forecast performance is measured using three statistics: SF,F0, Sy,y0, and MSE. We use a response

surface to summarize the sensitivity of forecast performance to the properties of the factor model. The coefficients

are reported in columns 2, 3, and 4.
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Table 2: Monte Carlo 2 with r = 2 factors:
N1 N2 N3 N4 N5 N k SF,F0 SAbβ,β

MSEBbβ,β

1 20 0 0 0 0 20 1 0.488 0.173 1.084
20 0 0 0 0 20 2 0.491 0.188 1.090
20 0 0 0 0 20 3 0.493 0.203 1.096

2 0 20 0 0 0 20 1 0.464 0.991 0.284
0 20 0 0 0 20 2 0.467 0.995 0.299
0 20 0 0 0 20 3 0.470 1.005 0.305

3 20 20 0 0 0 40 1 0.499 0.222 1.070
20 20 0 0 0 40 2 0.944 0.185 0.300
20 20 0 0 0 40 3 0.944 0.194 0.311

4 0 20 20 0 0 40 1 0.471 0.957 0.356
0 20 20 0 0 40 2 0.870 0.414 0.299
0 20 20 0 0 40 3 0.871 0.419 0.307

5 20 0 20 0 0 40 1 0.487 0.182 1.079
20 0 20 0 0 40 2 0.506 0.192 1.063
20 0 20 0 0 40 3 0.519 0.202 1.053

6 0 20 0 40 0 60 1 0.477 0.976 0.273
0 20 0 40 0 60 2 0.492 0.976 0.283
0 20 0 40 0 60 3 0.504 0.976 0.291

7 20 20 20 0 0 60 1 0.494 0.221 1.066
20 20 20 0 0 60 2 0.943 0.184 0.296
20 20 20 0 0 60 3 0.944 0.196 0.304

8 20 20 0 40 0 80 1 0.501 0.825 0.579
20 20 0 40 0 80 2 0.955 0.187 0.253
20 20 0 40 0 80 3 0.955 0.197 0.262

9 20 20 20 40 0 100 1 0.502 0.594 0.838
20 20 20 40 0 100 2 0.955 0.186 0.251
20 20 20 40 0 100 3 0.955 0.196 0.262

10 20 20 0 0 40 80 1 0.499 0.223 1.070
20 20 0 0 40 80 2 0.942 0.187 0.304
20 20 0 0 40 80 3 0.942 0.200 0.313

11 20 0 20 0 40 80 1 0.487 0.183 1.079
20 0 20 0 40 80 2 0.492 0.198 1.079
20 0 20 0 40 80 3 0.497 0.210 1.085

12 20 20 20 0 40 100 1 0.494 0.221 1.066
20 20 20 0 40 100 2 0.942 0.185 0.300
20 20 20 0 40 100 3 0.942 0.201 0.309

13 20 20 0 40 40 120 1 0.500 0.825 0.579
20 20 0 40 40 120 2 0.954 0.188 0.254
20 20 0 40 40 120 3 0.954 0.202 0.262

14 20 20 20 40 40 140 1 0.502 0.594 0.838
20 20 20 40 40 140 2 0.954 0.186 0.252
20 20 20 40 40 140 3 0.954 0.200 0.261
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Table 3: Forecast Errors Relative to AR(4), 6 Factors: 71:1-97:12
rule N ip gmyxspq msmtq lpnag Real punew gmdc puxx pwfsa Nominal
SW 147 0.632 0.906 0.580 0.919 0.759 0.734 0.832 0.843 0.825 0.808
1 71 0.756 1.006 0.694 0.986 0.860 0.745 0.833 0.827 0.837 0.810
2 33 0.615 0.835 0.576 0.867 0.723 0.740 0.843 0.844 0.818 0.811
1c 71 0.661 0.819 0.620 0.872 0.743 0.771 0.874 0.880 0.840 0.841
2c 33 0.715 0.801 0.640 0.853 0.752 0.794 0.869 0.876 0.864 0.851

SWa 147 0.625 0.813 0.569 0.618 0.656 0.831 0.912 0.934 0.908 0.896
SWb 147 0.594 0.921 0.564 0.797 0.719 0.743 0.848 0.845 0.810 0.811

A 60 1.009 1.008 1.012 0.983 1.003 0.789 0.863 0.853 0.868 0.843
B 46 0.585 0.753 0.543 0.645 0.632 1.024 1.075 1.100 0.983 1.045
C 41 1.019 1.055 1.035 0.963 1.018 0.800 0.893 0.841 0.882 0.854
D 60 0.612 0.750 0.530 0.813 0.676 0.789 0.863 0.890 0.868 0.852

AR(4) 0.050 0.027 0.046 0.017 0.035 0.021 0.016 0.019 0.035 0.023

The number of factors is selected using the information criterion proposed by Stock and Watson (2002b), with

ω = 0.001. SW is the base case using 147 series. Let τij be cross-correlation between the residuals of series i and j

from full sample estimation of a six factor model. Define j∗1i = maxj |τij | to the series most correlated with series

i. Rule 1 removes all series in {j∗i }. For each i, we find the series with the second largest |τij |. Rule 2 additionally

removes those series. Rules 1c and 2c are based on rolling estimation of the correlation matrix, so the series that are

dropped can change as we roll the sample. Rules A, B, and C extract three real, three nominal, and three volatile

factors factors from subsets of the data. Rule D uses one real, one nominal, and one volatile factor in the forecasting

exercise.

Table 4: Forecast Errors Relative to AR(4), 3 Factors: 71:1-97:12
rule N ip gmyxspq msmtq lpnag Real punew gmdc puxx pwfsa Nominal
SW 147 0.632 0.906 0.580 0.919 0.759 0.734 0.832 0.843 0.825 0.808
1 71 0.702 0.940 0.626 0.947 0.804 0.721 0.816 0.806 0.819 0.790
2 33 0.918 1.084 0.798 0.948 0.937 0.743 0.859 0.822 0.852 0.819
1c 71 0.701 0.890 0.612 0.901 0.776 0.752 0.834 0.860 0.845 0.822
2c 33 0.650 0.897 0.585 0.877 0.752 0.770 0.851 0.903 0.851 0.844

SWa 147 0.624 0.836 0.590 0.778 0.707 0.808 0.913 0.867 0.861 0.862
SWb 147 0.628 0.833 0.594 0.916 0.743 0.741 0.837 0.830 0.833 0.810

A 60 1.009 1.008 1.012 0.983 1.003 0.789 0.863 0.853 0.868 0.843
B 46 0.585 0.753 0.543 0.645 0.632 1.024 1.075 1.100 0.983 1.045
C 41 1.019 1.055 1.035 0.963 1.018 0.800 0.893 0.841 0.882 0.854
D 60 0.612 0.750 0.530 0.813 0.676 0.789 0.863 0.890 0.868 0.852

AR(4) 0.050 0.027 0.046 0.017 0.035 0.021 0.016 0.019 0.035 0.023

The number of factors is selected using the information criterion proposed by Stock and Watson (2002b), with

ω = 0.001. SW is the base case using 147 series. Let τij be cross-correlation between the residuals of series i and

j from full sample estimation of a three factor model. Define j∗1i = maxj |τij | to the series most correlated with

series i. Rule 1 removes all series in {j∗i }. Rule 1 removes all series in {j∗i }. For each i, we find the series with the

second largest |τij |. Rule 2 additionally removes those series. Rules 1c and 2c are based on rolling estimation of the

correlation matrix, so the series that are dropped can change as we roll the sample. Rules A, B, and C extract three

real, three nominal, and three volatile factors factors from subsets of the data. Rule D uses one real, one nominal,

and one volatile factor in the forecasting exercise.
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Figure 1:
Fraction of series (over all 147) a rule outperforms all the others. Selection based on 6 factors
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Figure 2:
Fraction of series (over all 147) a given rule outperforms SW. Selection based on 6 factors.




