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ABSTRACT

We present a structural model of firm growth, learning, and survival and consider its identification

and estimation. In the model, entrepreneurs have private and possibly error-ridden observations of

persistent and transitory shocks to profit. We demonstrate that the model's parameters can be

recovered from public observations of sales and survival, and we estimate them using monthly data

from new bars in Texas. We find that entrepreneurs observe profit's persistent component without

error. In this sense, their information is substantially superior to the public's.
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1 Introduction

We present in this paper a structural model of �rm growth, learning, and survival; and we

consider its identi�cation and estimation using a panel of Texas bars' monthly sales histories.

As in panel data commonly available from company directories or tax returns, these histories

record each �rm's sales from its birth until the end of the sampling period or its exit. In

the model a �rm's sales is a linear and increasing function of its pro�t, but transitory shocks

make it an imperfect indicator of pro�t's persistent component. Entrepreneurs observe some

of these shocks, so their forecasts of future pro�t are necessarily superior to those of the

public. Maximum likelihood estimation of the model's parameters measures the extent of

entrepreneurs' Bayesian learning while accounting for their private information. We �nd that

the entrepreneurs in our sample observe pro�t's persistent component without error. In this

sense, their information is substantially superior to the public's.

Our analysis begins with an extension of Jovanovic's (1982) model of �rm selection. The

logarithm of each �rm's pro�t is the sum of three components, one that displays persistence

and two others that are transitory. Unlike in Jovanovic's original model, the persistent

component possibly changes through time. After the entrepreneur observes her pro�t, she

must decide either to remain open or to close the �rm and avoid future �xed costs. An

entrepreneur only observes her pro�t and one of its transitory components, and she bases her

continuation decision on her posterior belief regarding the persistent component. We follow

Jovanovic and assume that the components unobserved by the entrepreneur have normal

distributions. Hence, the entrepreneur's posterior beliefs are also normal with a history-

dependent mean and an age-dependent variance. The �rm exits when the posterior's mean

falls below an age-speci�c threshold. The data available to the econometrician are these

continuation decisions' outcomes and the history of the �rm's sales. The econometrician

cannot predict the �rm's future as well as the entrepreneur, because he observes neither of

pro�t's transitory components.

The characterization of entrepreneurs' private information using only their discrete con-

tinuation decisions and public sales data is not straightforward, because the information

relevant for their continuation decisions is both hidden from the econometrician and persis-

tent. The hidden state variable distinguishes our analysis from estimation procedures that use

observations of a continuous forward-looking choice to infer a relevant state variable's value,

as in Olley and Pakes (1996). Our work also di�ers from structural dynamic discrete choice

estimation that incorporates Rust's (1987) conditional-independence assumption, because

the hidden state variable displays persistence even after conditioning on the entrepreneur's
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observed choice.

Although continuation decisions do not reveal the relevant state variable, the model's

parameters can be recovered from �rm histories such as those we observe. We show that

di�erences between all �rms' average sales and the average sales of those �rms that subse-

quently survive reveals the distribution of the entrepreneurs' observations as well as the rules

they use for their exit decisions. Heuristically, if these samples are very similar we conclude

that most observed variation across �rms re
ects shocks that the entrepreneur perceives to

be irrelevant for the �rm's future. This step only requires that the entrepreneur bases her

decisions on her private information. It does not require the entrepreneur to form rational ex-

pectations or to make optimal decisions. The identi�ed distributions and exit rules uniquely

determine the parameters relevant for the entrepreneur's signal extraction problem.

Our data contain monthly records of the �rst year in the lives of 305 new �rms that

operated a single bar in Texas. To calculate maximum likelihood estimates using this data,

we augment the Kalman �lter to account for sample selection. The resulting estimates

measure the variances of the shocks that contaminate the entrepreneur's and econometrician's

observations of pro�t's persistent component. We �nd that the entrepreneur observes this

component without error.

Pakes and Ericson (1998) precede us in the empirical detection of Bayesian learning by

entrepreneurs. One observable implication of Bayesian learning about a �xed parameter

is that a �rm's initial size is useful for forecasting its size throughout its life. Pakes and

Ericson formally develop this idea and nonparametrically test for such Bayesian learning by

estimating the relevance of initial size in a �rm size regression. With private entrepreneurial

information a �rm's initial size may improve the public's forecast even without entrepreneurial

learning. We apply a test similar in spirit to Pakes and Ericson's to our sample of Texas bars

and �nd that initial size does indeed improve forecasts of �rm sizes. However, the estimates

of our structural model's parameters indicate that entrepreneurs' private information can

account for this �nding without reference to entrepreneurial learning.

Our estimates indicate that entrepreneurs face no signal extraction problem. However, a

policy maker with access to only public information should use Bayesian updating to learn

about a particular �rm's pro�t. Because our estimates directly characterize the informational

di�erences between such a policy maker and an entrepreneur, they can serve as an important

input into the evaluation of information-constrained policy interventions such as the taxation

of entrepreneurship. We defer the analysis of such policies to future research.

The remainder of the paper proceeds as follows. The next section describes the data and

some of its salient characteristics. Section 3 presents the structural model, and Sections 4 and
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5 consider its identi�cation and estimation. Section 6 presents and discusses our maximum

likelihood estimates, and the �nal section o�ers some concluding remarks.

2 Histories of Firm Growth and Survival

Readily available data sources| such as public tax records, business directories, or economic

census records| allow the construction of data documenting the growth and survival of a

cohort of entering �rms. Gort and Klepper (1982), Dunne, Roberts, and Samuelson (1989),

Bahk and Gort (1992), Jovanovic and MacDonald (1994), Holmes and Schmitz (1994), and

Pakes and Ericson (1998) have all examined such data sets and characterized their implica-

tions for various aspects of �rm and industry growth. Our analysis uses a similar data set

constructed from a panel of Texas alcohol tax returns. The state of Texas collects a 14% tax

on the sale of alcohol for on-premise consumption, and the Texas Alcoholic Beverage Control

Board (TABC) makes these returns publicly available. Returns are �led monthly, and a �rm

must �le a separate return for each of its establishments. Information included with each

return includes the identity and street address of the establishment's parent �rm, its trade

name, its own street address, the date its alcohol license was issued, the date it was returned

if the establishment no longer operates, and its tax payment for that month.

2.1 Sample Construction

Our observations begin in December, 1993 and end in March, 2001. To account for in
a-

tion over the sample period and persistent di�erences in input prices across locations, we

divided all sales observations in our sample by the geometric average of tax returns from

the establishment's county �led in the same month. We used alcohol tax identi�cation num-

bers and the establishments' street addresses to group these observations into establishment

histories. Our linking process accounts for the fact that a single establishment may have

multiple owners over its lifetime.1 A tax return must be �led for each establishment in every

month, even if the establishment sold no alcohol for that month. Therefore, our data contain

several reports of zero sales. The data also contain tax returns with a very low tax payment.2

1In our sample, there are numerous instances of an establishment being transferred from an individual to a

corporate entity with the same address. These appear to be simply legal reorganizations with few immediate

economic implications.
2Some of these re
ect operation during only part of the �rst or last month of the establishments' operation.

When the given dates of license issuance and return indicate that this is the case, we divide the tax payment
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These apparently re
ect unobserved shutdown of the establishment for part of the month or

a very small scale of operation. When constructing establishment histories, we equate any

tax payment of less than $750 with zero. We consider an establishment to be born in the

�rst month that it pays more than $750 in tax, and we date its exit in the �rst month that it

fails to pay that amount. If an establishment's tax payment temporarily falls below $750, we

consider that establishment to have temporarily shut down. We exclude such establishments

from our data set altogether.

Alcohol sales is of primary importance for bars, but restaurants substantially pro�t from

both alcohol and food sales. So that our sample is as homogeneous as possible in this regard,

we focus only on those establishments that present themselves to the public as bars. To

be included in our sample, a �rm's trade name must include the word \bar" or one of 10

other words indicative of a drinking place, and it must not include the word \restaurant" or

one of 20 words indicating the presence of substantial food service.3 Given the limitations

of the data, this minimizes the risk of falsely including restaurants at the expense of falsely

excluding bars.

There are also substantial di�erences between multiple establishment �rms and their

counterparts that only operate one location. The manager of an incumbent �rm's new

establishment can use that �rm's history and experience to plan its operations and judge its

prospects. An entrepreneur starting a single establishment �rm has no such information to

rely upon. Accordingly, we exclude any establishment founded by a �rm with two or more

establishments in Texas from our data set. There are 305 single-establishment �rms in our

data set that were born in the �ve years beginning in 1994 and ending in 1999. These single

establishment �rms comprise our sample.

by the fraction of the month the establishment operated. Even after this correction, there remain several tax

returns with very small but positive tax payments. The smallest positive tax payment in our data is under

$1.
3The words that qualify a �rm for inclusion in the data set are \bar", \cantina", \cocktail", \drink",

\lounge", \pub", \saloon", \tap", and \tavern." In addition to \restaurant" the words that exclude a

�rm from our analysis are \bistro", \brasserie", \cafe", \club", \diner", \dining", \food", \grill", \grille",

\hotel", `oyster", \restaurante", \shrimp", \steak", \steakhouse", \sushi", and \trattoria". When selecting

this sample, we consider only the trade name listed on the �rm's �rst tax return that reports a tax payment

greater than $750.
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2.2 Summary Statistics

Table 1 reports summary statistics from our sample of �rms. For each age we consider, one

to thirteen months old, it reports the number of �rms that survived to that age; the mean,

standard deviation, skewness, and kurtosis of the logarithm of sales among these survivors;

and the fraction of them that did not operate in the following month (the exit rate). Selection

during these �rms' �rst year was extensive. Over the course of the year, 20% of the �rms

exited. The exit rates vary greatly over the course of the �rst year. Exit rates near the end

of the �rm's �rst year are relatively high, and no �rms in our sample exited following their

sixth and thirteenth months.

The lack of exits following the thirteenth month is particularly notable because it con-

tinues into the (unreported) fourteenth month. One possible explanation for this sudden

and persistent decrease in exit is that the renewal of an annual lease on a commercial lo-

cation is a watershed event that induces many unpro�table businesses to exit after twelve

months. In this case, �rms that survived their �rst year were relatively �t and unlikely to

have immediately exited.

Unsurprisingly, survivors' average size increases quickly with age. Initial average sales of

all bars is slightly greater than the average sales of all license holders. After one year, the

survivors' average size is approximately 27% greater than this overall average. The standard

deviation of �rms' initial sales is 0:87, and this cross-sectional standard deviation changes

little over the �rst year. The skewness of sales is very close to zero except in the eighth and

tenth months, while the kurtosis varies between a high value of 3:53 in the �rst month and

a low value of 3:08 in the �fth month. To better understand the statistical signi�cance of

these estimates, we have tabulated 95% bootstrap con�dence intervals for all of the statistics

in Table 1. These (unreported) con�dence intervals reveal that the skewness and kurtosis

coeÆcients are estimated much less precisely than the means and standard deviations. The

average width of a con�dence interval for a mean is 0:20, while the analogous average for

the standard deviations' con�dence intervals is 0:16. In contrast, the average widths of the

skewness and kurtosis coeÆcients' con�dence intervals are 0:62 and 1:20.4

To assess the role of selection in the evolution of these summary statistics, it is helpful to

inspect the analogous statistics from those �rms that survived the entire sample period. Table

2 reports these statistics for the 244 �rms that operated for thirteen or more months. There

are no striking di�erences between the selected sample's second and higher moments and

4The bootstrap con�dence intervals were constructed from 10; 000 random samples of 305 �rms drawn

with replacement from our data set.
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those of the complete sample. However, the means of the selected sample are considerably

higher than their analogues from the complete sample. The average log sales in the �rst month

of a �rm that survives its �rst year is eleven percentage points higher than the unconditional

average, 0:17 versus 0:06. Thus, selection and the growth of surviving �rms each account for

approximately one half of the complete sample's mean growth.

2.3 Firm Growth

As in many other panels of �rm histories, entrepreneurs' exit decisions clearly contribute

to the evolution of our sample. To better understand the importance of entrepreneurial

learning for this selection and other forward-looking decisions, Pakes and Ericson (1998)

advocate examining the persistence of surviving �rms' sales. In particular, they derive robust

predictions from two models of learning. In the model of passive learning, entrepreneurs

apply Bayesian updating to learn about a time-invariant and �rm-speci�c parameter, as in

Jovanovic (1982). This model implies that a �rm's initial sales will be useful for forecasting

its sales throughout its life. In the active learning model, �rms invest to improve their

products and processes. Because the outcome of this investment is stochastic and very

successful �rms optimally choose to invest little and allow their knowledge to depreciate, a

�rm's initial sales becomes progressively less relevant for forecasting its future as it ages.

Pakes and Ericson test these models' contrasting predictions using panels of Wisconsin retail

and manufacturing �rms. They �nd that initial sales improves forecasts of retailers' future

sales, but manufacturers' future sales appear to be Markovian. From this, they conclude that

an approach to �rm dynamics based on Bayesian learning is promising for retail �rms.

We have assessed the properties of our sample of bars by conducting a similar empirical

investigation. For each month of the life cycle that we consider, we have nonparametrically

characterized the regression of the logarithm of a �rm's sales on the logarithms of its sales in

the previous and �rst months. For this we estimated density-weighted average derivatives of

the regression functions using Powell, Stock, and Stoker's (1989) nonparametric instrumental-

variables estimator.5 These estimates rely on no distributional assumptions beyond standard

regularity conditions, so they are appropriate for investigating the importance of a �rm's

initial sales on its evolution when the structural parameters relevant for the survival decision

are unknown.

5To implement this estimation, we follow Powell, Stock, and Stoker's (1998) recommendation and use the

bias-reducing kernel discussed by Bierens (1987). Before estimation, we scaled both explanatory variables by

their standard deviations. We used a tenth-order kernel with a bandwidth of 2.
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Table 3 reports these estimates as well as standard errors based on their Gaussian asymp-

totic distributions. All of the derivative estimates are positive and statistically signi�cant at

the 5% level. The derivatives with respect to the previous month's sales are surprisingly sim-

ilar across months. They are nearly all between 0:80 and 0:95. The derivatives with respect

to the �rm's sales in its �rst month are smaller but not negligible. Furthermore, there is no

apparent tendency for the �rm's initial sales to become less relevant for forecasting as the

�rm ages. When the dependent variable is the �rm's sales in the third month, the derivative

with respect to the �rst month's sales equals 0.154. This is nearly identical to the analogous

coeÆcient when the dependent variable is the thirteenth month's sales, 0.168. The analogous

coeÆcients in the other months vary from a low estimate of 0:021 to a high of 0:190. Overall,

the estimates indicate that no low-order Markov process can �t surviving �rms' observed

sales well. Expanding the set of regressors to include the past three months' sales attenuates

the estimated e�ect of the �rst month's sales, but does not alter this conclusion.

Pakes and Ericson (1998) emphasize that the observable di�erences between the two mod-

els they consider only apply to very old �rms if sales depend on transitory shocks observed

by only the entrepreneur. Thus, any conclusion about the importance of Bayesian learn-

ing based on the application of their methodology to our sample of new �rms is necessarily

suspect. The structural analysis we will pursue next overcomes this diÆculty by using en-

trepreneurs' observed continuation decisions to measure the variation in sales due to those

transitory shocks that the entrepreneur observes.

3 A Structural Model of Firm Growth and Survival

In this section, we present a structural model of �rm growth and survival in a monopolistically

competitive industry. We assume that potential entrants are ex ante identical and that �rms

only compete anonymously ex post. That is, the behavior of any single �rm only possibly

depends on the behavior of other �rms through some aggregate statistics. There is no direct

strategic interaction between any two �rms. We �rst discuss this assumption's content and

empirical plausibility. We then detail the �rm's stochastic environment and optimization

problem. Finally, we consider the entrepreneur's procedure for optimally assessing her �rm's

future and deciding upon its survival.
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3.1 Imperfect Competition and Firm Dynamics

Bars produce heterogeneous goods and compete with each other in local markets. This

compels us to consider imperfect competition as the most likely market structure for our

sample of �rms. The theory of competition among a large number of producers o�ers us two

distinct approaches to consider, monopolistic and oligopolistic competition.

In models of monopolistic competition such as Dixit and Stiglitz's (1977), Hart's (1985),

and Wolinsky's (1986), producers compete anonymously, and strategic interaction is absent.

These models inherit the simplicity of perfect competition. The actions of any single pro-

ducer are irrelevant for any competitor's pro�ts. This irrelevance immediately implies that

idiosyncratic shocks to demand and cost have no e�ect on competitors' pro�ts or optimal

actions. Therefore, the empirical analysis of a monopolistic competition model can proceed

by considering each producer's choice problem in isolation from those of her rivals after

conditioning on the appropriate aggregate variables.

In contrast, models of oligopolistic competition, such as Prescott and Visscher's (1977)

and Salop's (1979), emphasize strategic interaction. A producer's actions impact the pro�ts

of her neighbors in geographic or product space, so shocks that directly in
uence only one

producer's pro�ts can a�ect her competitors indirectly. The presence of these indirect e�ects

complicates these models' empirical analysis.6

Campbell and Hopenhayn (2002) suggest a simple procedure for distinguishing between

these two approaches to imperfect competition based on cross-market comparisons of the pro-

ducer size distribution. A robust prediction of anonymous monopolistic competition is that

the producer size distribution is invariant to market size if factor prices, demographics, and

technology are held constant.7 This prediction follows directly from the the failure of entry

to erode monopolistic competitors' market power. In contrast, models of oligopolistic com-

petition generally predict that producers in large and competitive markets recover their �xed

costs by selling more at a lower markup than their counterparts in small and less competitive

markets. Thus, a comparison of average producer size across large and small markets can

6The observation that consumers view similar goods available at di�erent geographic locations as imperfect

substitutes does not immediately imply that competition is oligopolistically competitive. Campbell and

Lapham (2001) illustrate this with a model of monopolistic competition and cross-border shopping. Although

competition is anonymous in that model, goods produced in the same location are better substitutes than

are goods produced in di�erent locations.
7Campbell (2002) demonstrates that this familiar feature of symmetric monopolistic competition models

with free entry and a single technology is robust to introducing product placement and technology choice

decisions of arbitrary complexity.
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determine which of these two approaches to competition among large numbers of producers

is more empirically promising. We have implemented Campbell and Hopenhayn's procedure

for our bars' parent four-digit industry, Drinking Places, using exactly the same sample of

markets, control variables, measures of market size, and measures of establishment size that

they do. Unlike in the majority of industries that Campbell and Hopenhayn consider, we fail

to �nd a statistically signi�cant e�ect of market size on average establishment size in Drinking

Places. In most of the speci�cations we have considered, the estimated coeÆcient on market

size is negative and statistically insigni�cant. This cross-market comparison of establishment

sizes does not refute the assumption that bars are monopolistic competitors. The remainder

of our analysis rests accordingly on the assumption of monopolistic competition.

3.2 The Stochastic Environment

Consider the life of a single �rm, which begins production at time t = 1. The �rm is

a monopolistic competitor that produces a single good at a single location. Idiosyncratic

shocks cause the demand curve for the �rm's product to vary over time. In period t, it

is Qt = eXt+WtP�"t , where " > 1 is the absolute value of the �rm's demand elasticity and

Pt is its price. The composite random variable Xt +Wt shifts the demand curve's location

through time, and we explain the properties of its two components below. Throughout, we

adopt conventional notation and reserve capital letters for random variables and small letters

for their realizations.

An aÆne cost function, # � Qt + �t, describes the �rm's technology, with both # and �t

strictly greater than zero. In our application to Texas' bars, time variation in the �xed cost

�t may re
ect the fact noted in Section 2 that leases on bars typically have �xed terms. It is

straightforward to show that the entrepreneur's pro�t-maximizing price choice is constant,

Pt =
�

"
"�1

�
#. The resulting sales and pro�ts are

eSt = PtQt =

�
"

"� 1

�1�"

eXt+Wt#1�" (1)

and

(Pt � #)Qt � �t =

�
1

"� 1

��
"

"� 1

�
�"

eXt+Wt#1�" � �t; (2)

We choose the unit of account to set # = ("� 1)=", so that log sales are simply St = Xt+Wt

and the �rm's pro�t equals "�1eSt � �t.
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The random variables Wt and Xt represent the transitory and persistent components of

the �rm's pro�t. The transitory component is independent through time and continuously

distributed with density fWt
in period t. We assume that this random variable has mean

zero, but currently we leave its distribution otherwise unspeci�ed. The persistent component

follows a Gaussian linear state-space model with parameters that (potentially) depend on

the �rm's age. That is

At = �t + �tAt�1 + Zt with Zt � N (0; �2t ) (3)

and

Xt = At + Ut with Ut � N (0; �2t ): (4)

In (3), �1 � 0 and �t > 0 for all t > 1, so that At and Xt are positively autocorrelated. The

disturbance processes fZtg and fUtg are independent over time and mutually independent

of each other. The intercept �t re
ects systematic �rm growth as the �rm ages, such as that

arising from passive learning about the production process.

For concreteness, we have assumed that variation in the �rm's pro�t re
ects only demand

shocks and that the �rm's marginal cost is constant. We could alternatively have assumed

that demand is constant and marginal cost is stochastic, or that both are stochastic. If we

only have data on sales and survival, all of these models are observationally equivalent. In

this paper, we restrict attention to the analysis of such data and we do not address the

separate identi�cation of idiosyncratic demand and cost shocks. If we also observed �rms'

price choices, the assumption of a constant percentage markup would allow us to identify

separate shocks to demand and marginal cost.

3.3 Bayesian learning and selection

We assume that the entrepreneur observes Wt and Xt separately at the beginning of period t,

but she observes neither At nor Ut. At the end of each period, the entrepreneur must decide

whether or not to close the �rm and exit. Exit is an irreversible decision, and its payo�

equals zero. The entrepreneur is risk-neutral and discounts the �rm's future pro�ts with the

constant factor Æ < 1.

The normality of Zt and Ut imply that the entrepreneur can use the Kalman �lter to

calculate an optimal inference of At given the information at hand, (X1; : : : ; Xt) � �Xt.

Denote this optimal forecast and its mean squared error with

Ât � E [At j �Xt] and �t � E

��
At � Ât

�2�
:
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The Kalman �lter calculates Ât and �t recursively using

Ât = �t + �tÂt�1 + �t(Xt � �t � �tÂt�1); (5)

and

�t = �2t �t; (6)

where

�t �
�2t�t�1 + �2t

�2t�t�1 + �2t + �2t
: (7)

The initialization of (7) uses �0 = 0. The coeÆcient �t is the Kalman gain, and it mea-

sures the informativeness of the entrepreneurs' observation of Xt. The �rm's sales re
ects

both Xt and Wt, so the entrepreneur's inference of At is necessarily superior to that of an

econometrician using only the current and past realizations of St.

Although the entire history of Xt is in principle relevant for the entrepreneur's exit deci-

sion, Ât and the �rm's age are suÆcient for characterizing the distribution of future pro�ts

given the information in �Xt. De�ne vt

�
Ât; St

�
to be the value of a �rm of age t to an

entrepreneur who estimates At to be Ât and observes current sales to be St. The Bellman

equation that this value function satis�es is

vt

�
Ât; St

�
= "�1eSt � �t + Æmaxf0; E t [vt+1(Ât+1; St+1)]g: (8)

The entrepreneur calculates the expectation E t in (8) using the joint distribution of Ât+1 and

St+1 conditional on the available information at time t, for which (t; Ât) is suÆcient.

The owner's optimal exit policy is simple. The expectation in the right-hand side of (8)

is a function of (t; Ât) and it is continuous and increasing in Ât. Therefore, there exists a

threshold value �t such that the owner chooses to exit if and only if Ât � �t. De�ne Nt to be

an indicator variable that equals one if the �rm has survived through that date and equals

zero otherwise. Given the exit rule, this is generated recursively by

Nt =

(
1 if Nt�1 = 1 and Ât�1 > �t�1

0 otherwise
: (9)

This speci�cation of our model assumes that the market is in a stationary equilibrium,

as in Hopenhayn (1992), so that aggregate disturbances change neither the �rm's demand

nor its cost structure. This assumption is undesirable if aggregate shocks are important for

the industry under consideration. However, it is straightforward to generalize the model to

allow the evolution of the sales process and the chosen exit policy to depend on aggregate

statistics such as the number of producers per customer.
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4 Identi�cation

Suppose an econometrician observes a set of �rms from our model for T periods. On each

date, the econometrician records both St and Nt. For completeness, we de�ne St = 0 if

Nt = 0. At the end of period T , the econometrician also records NT+1. That is, the �rms'

survival at the end of the sample period is known. In this section, we investigate which of

the parameters of our structural model can be recovered from the joint distribution of these

observations.

In our model, the exit thresholds (�1; : : : ; �T ) � ��T represent the entrepreneur's optimal

exit decisions. Unlike Rust's (1987) nested �xed-point algorithm, our approach to identi�-

cation and estimation does not rely on an explicit solution to the entrepreneur's dynamic

programming problem. Rather, we treat these thresholds as parameters to be estimated

jointly with parameters that determine the evolution of St; ��T , ��T , ��
2
T and ��2T , and the un-

known densities (fW1
; : : : ; fWT

). The statistical problem we face is to identify and estimate

the true values of these parameters and functions using the realizations of ( �ST ; �NT+1) from

a large cross-section of �rms. We do not identify or estimate the parameters that in
uence

the observable data only through the choice of ��T . These are Æ, ", and ��T .

We begin by placing our model into a less restrictive encompassing model in which neither

the latent variable At nor the entrepreneur's Bayesian learning play an explicit role in the

evolution of Xt, St, and Nt. Rust (1994) refers to such a model that directly characterizes

dynamic decisions without reference to the parameters of technology or preferences as a

reduced-form model, and we adopt this terminology here. We �rst show that the parameters

of the reduced-form model are identi�ed. Then, we prove that these parameters can be

used to recover all of our structural model's parameters except �1, �1, �
2
1, �

2
1, �2, and �2.

The identi�cation of these remaining parameters requires one additional restriction. This

sequential approach to identi�cation broadens the applicability of our results beyond the

speci�c structural model we consider.

4.1 A Reduced-Form Model of Survival and Growth

Our structural model can be viewed as a special case of a less restrictive model of �rm

growth and survival in which (3) and (4) are replaced by a sequence of age-speci�c regression

functions,

Xt = �t
�
�Xt�1

�
+ Vt (10)
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for t = 1; : : : ; T . The expectational error Vt is normally distributed with mean zero and

variance !2
t ( �Xt�1) conditional on �Xt�1. �t and !t are arbitrary (measurable) functions of

�Xt�1. The �rm has no history at t = 1, so �1 and !1 are simply constant parameters.

The entrepreneur's exit rule also makes no reference to At or Bayesian learning. Instead,

the entrepreneur closes the �rm if and only if Xt falls below a history-dependent threshold,

�t
�
�Xt�1

�
. Again, �t is an arbitrary (measurable) function of �Xt�1 and �1 is simply a constant

parameter. The recursive rule determining Nt in this case is

Nt =

(
1 if Nt�1 = 1 and Xt�1 > �t�1

�
�Xt�2

�
0 otherwise

: (11)

The model given by (10), (11), and

St = Nt(Xt +Wt) (12)

encompasses the structural model. For given values of the structural model's parameters,

there are unique choices of �t, !
2
t and �t that yield the same distribution of ( �ST ; �NT+1; �XT ).

In particular, equations (3) and (4) imply that �t( �Xt�1) = �t + �tÂt�1, so that we can build

the regression functions �t recursively using (5), (6), and (7). The regression error Vt is

simply Xt � �t( �Xt�1) = �t(At�1 � Ât�1) + Zt + Ut, so that !2
t = �2t�t�1 + �2t + �2t . Finally,

the exit threshold that is consistent with the structural model's exit rule is

�t
�
�Xt�1

�
=
�t � �t

�
�Xt�1

�
�t

+ �t
�
�Xt�1

�
: (13)

Because its parameters display general history dependence, the reduced form model's

identi�cation demonstrates that structural models of �rm growth and survival other than

our own also have empirical content. In particular, the heteroskedasticity of the errors in

the state-evolution equation (10) allows the volatility of �rms' pro�ts to depend on the

resolution of a pro�t-relevant event, such as acquiring a stable clientele. Such modi�cations

to our relatively simple structural model may be relevant for considering other aspects of the

life cycle in other industries, and we defer their exploration to future research.

4.2 Identi�cation of the Reduced Form Model

Identi�cation of the reduced form model requires deconvolution of the observed sales process

fStg into the two components observed by the entrepreneur, fXtg and fWtg. To achieve

identi�cation, we use sample selection to partially solve the deconvolution problem. Because
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the entrepreneur's continuation decisions only depend on fXtg, we can disentangle fXtg

and fWtg by comparing the unconditional distribution of St with its distribution conditional

on Nt+1 = 1. Our solution is partial in the sense that we identify �t
�
�Xt�1

�
, !2

t

�
�Xt�1

�
, and

�t
�
�Xt�1

�
only for those values of �Xt�1 that imply Nt = 1. The following proposition formally

states this result.8

Proposition 1. (Identi�ability of the reduced-form model) The joint distribution of�
�ST ; �NT+1

�
uniquely determines the density fWt

and the functions �t, !
2
t , and �t for all �Xt�1

such that Nt = 1 for t = 1; : : : ; T .

Proof. The proof proceeds recursively. It is helpful to de�ne ~St and ~Nt+1 to be the ran-

dom vectors (St; : : : ; ST ) and (Nt+1; : : : ; NT+1). Denote their joint density with �Xt�1 by

f~St; ~Nt+1; �Xt�1
(�). We begin with the assumption that the econometrician knows this joint

density for a particular age t. For t = 1, f~S1; ~N2; �X0
(�) is simply the joint density of the econo-

metrician's data. We �rst show that �t, !
2
t , �t and fWt

can be recovered from f~St; ~Nt+1

�
�j �Xt�1

�
.

We then demonstrate that these parameters in turn identify f~St+1; ~Nt+2; �Xt
(�) if t < T , allowing

the recursion to continue.

We begin with the identi�cation of �t
�
�Xt�1

�
, !t

�
�Xt�1

�
and �t

�
�Xt�1

�
for some value

of �Xt�1 such that Nt = 1. This requires only the knowledge of the expected value of St

conditional on this history, the conditional probability of survival, and the expected value of

St given this history and survival to period t+ 1. These are

E [St j �Xt�1] = �t( �Xt�1); (14)

E [Nt+1 j �Xt�1] = 1� �

�
�t( �Xt�1)� �t( �Xt�1)

!t( �Xt�1)

�
; (15)

E [St j �Xt�1; Nt+1 = 1] = �t( �Xt�1) + !t( �Xt�1)�

�
�t( �Xt�1)� �t( �Xt�1)

!t( �Xt�1)

�
(16)

=

�
1� �

�
�t( �Xt�1)� �t( �Xt�1)

!t( �Xt�1)

��
where �(�) and �(�) and the c.d.f. and p.d.f. of a standard normal random variable. Because

the joint distribution of (St; Nt+1) conditional on the given history is assumed to be known,

these three equations immediately yield �t
�
�Xt�1

�
, !t

�
�Xt�1

�
and �t

�
�Xt�1

�
. To obtain fWt

,

8Because we have not even assumed continuity of fW1
; : : : ; fWT

, �2; : : : ; �T , !2; : : : ; !T and �2; : : : ; �T ,

these functions can only possibly be identi�ed up to almost-everywhere equivalence. We will not explicitly

qualify our results this way.
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note that the probability density of St conditional on the given history can be written as

fSt
�
sj �Xt�1

�
=

Z
1

�1

1

!t( �Xt�1)
�

 
x� �t

�
�Xt�1

�
!t( �Xt�1)

!
fWt

(s� x) dx: (17)

All components of (17) except fWt
are known, so applying a standard deconvolution argument

establishes that fWt
is identi�ed.9

We will now show that f~St+1; ~Nt+2; �Xt
(�) is identi�ed. The independence of Wt from ~Wt+1

and �XT implies that the joint distribution of Wt and Xt conditional upon
�
�Xt�1; ~St+1; ~Nt+1

�
displays independence. Therefore, the probability density of St conditional on these variables

is

fSt

�
sj �Xt�1; ~St+1; ~Nt+1

�
=

Z
1

�1

fXt

�
xj �Xt�1; ~St+1; ~Nt+1

�
fWt

(s� x) dx: (18)

As in (17), �Xt�1 is assumed to imply that Nt = 1. The left-hand side of (18) and fWt

are known, so deconvolution yields fXt

�
�j �Xt�1; ~St+1; ~Nt+1

�
. For any value of Xt such that

�Xt �
�
Xt; �Xt�1

�
implies that Nt+1 = 1, we can immediately recover the joint distribution of

interest by multiplying this conditional distribution by the known joint distribution of the

conditioning variables. Thus, the recursion may continue.

Equation (16) directly parallels Heckman's (1979) decomposition of the regression func-

tion of a selected sample into the unconditional regression function and the expectation of

the error conditional upon selection. As in his model, the choice probability in (15) imme-

diately identi�es the inverse of Mill's ratio in (16), but without imposing further parametric

restrictions on �t( �Xt�1) and !t( �Xt�1), the resulting equation does not uniquely determine the

model's parameters. However, because we observe the unselected sample, the identi�cation

of �t( �Xt�1) is immediate using (14). With this additional information, the identi�cation of

!t( �Xt�1) is straightforward.

Our analysis is also related to Blundell and Preston's (1998) identi�cation of a consumer's

permanent income process using the covariance of his current income (a noisy proxy) with

his consumption (a forward-looking choice). To see this, rewrite equation (16) using (14) and

(15) as

E [StNt+1j �Xt�1]� E [St j �Xt�1]E [Nt j �Xt�1] = !t( �Xt�1)�
�
��1

�
1� E [Nt j �Xt�1]

��
This equation immediately yields !( �Xt) from the observed covariance of St with Nt. As

the covariance approaches zero for a given survival probability, so does the inferred value

9See Feller (1971) for an introduction to deconvolution.
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of !( �Xt). Thus, if current size is very helpful at forecasting survival in a linear probability

model, we infer that much of the observed variance of St re
ects persistent shocks. Otherwise,

we infer that transitory shocks without dynamic implications for the entrepreneur dominate

variation in St.
10

4.3 Identi�cation of the Structural Model

Proposition 1 shows that identi�cation of �XT 's distribution and the �rm's exit policy relies on

only on the assumption that fXtg follows some (possibly non-linear, higher-order, and het-

eroskedastic) auto-regression with normal disturbances and that the entrepreneur uses some

history-dependent threshold-based exit rule. We now turn to the implications of Proposition

1 for our particular structural model. If we assume that entrepreneurial learning is absent

from our framework, then the identi�cation of the structural model's remaining parameters

is immediate. The following proposition asserts that the addition of entrepreneurial learning

imposes no fundamental obstacle to identi�cation.

Proposition 2. Given the functions �t, !t, �t for t = 1; : : : ; T , the following parame-

ters of the structural model are uniquely determined: �1; �3; : : : ; �T ; �
2
3; : : : ; �

2
T ; �3; : : : ; �T ;

�22; : : : ; �
2
T ; and �2; : : : ; �T . Furthermore, these functions uniquely determine the values of

�2 + �2�1, �
2
1 + �21, �1�2, �

2
2�1 + �22, and (�1 � �1) =�

2
1.

Proposition 2 can be easily proven using the choices of �t, !t, and �t that are consistent

with the structural model. The proof is available from the authors upon request. The intu-

ition behind this result is straightforward: if entrepreneurial learning is unimportant, then

�t( �Xt�1) will depend only on Xt�1 and �t( �Xt�1) will be a constant. With entrepreneurial

learning, both of these functions depend in general on the entire history �Xt�1. Therefore, it

is possible to use these functions' history dependence to infer the presence and magnitude of

entrepreneurial learning. Because the lag structure plays a crucial role here, Proposition 2

does not deliver full identi�cation of the structural model. In particular, there may be multi-

ple ways of decomposing X1 into the persistent component unobserved by the entrepreneur,

A1, and the noise that masks it, U1. However, this lack of identi�cation can be addressed

with a single additional restriction. In all of our empirical speci�cations, we will impose the

10This argument depends critically on the assumption that Vt has a normal distribution. Because this

assumption arises repeatedly in theoretical treatments of entrepreneurial learning, such as that of Jovanovic

(1982), we view our structural model as a natural benchmark. The identi�cation of a variant of the reduced

form model without the assumption of normality is a subject of our current research.
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assumption that �2 = �3 = : : : = �T , which is more than suÆcient to guarantee identi�cation

of all the structural model's parameters.11

4.4 Discussion

Before proceeding to the estimation of our model, we wish to consider brie
y our identi�ca-

tion result from the perspective of the extensive literature on the identi�cation of discrete

choice models. A key aspect of our analysis is that entrepreneurs base their decisions on

information that is unavailable to the econometrician. This is embodied in our model by the

assumption that the econometrician only observes a noisy signal, St, of the relevant state

variable, Xt. As such, our discrete-choice problem involves an error that is independent of

the latent variable that determines the entrepreneur's choice. Therefore, we cannot directly

apply non-parametric identi�cation results for static binary-choice models involving an error

that is independent of the observed covariates, such as some of Manski's (1988) results. The

discrepancy between private and public information in our model furthermore implies a vio-

lation of Rust's (1987) conditional-independence assumption. Taber (2000) and Magnac and

Thesmar (2002) have studied the identi�ability of dynamic discrete-choice models without

this assumption. Our identi�cation result di�ers from theirs, because we observe no state

variable.

5 Maximum Likelihood Estimation

The proof of Proposition 1 is constructive, so it immediately suggests a semi-parametric esti-

mator for our model built on the empirical analogues of (14), (15), and (16). Forming these

moment conditions requires repeated deconvolution applied to the joint density of ( �ST ; �NT+1).

Rather than pursuing this semi-parametric approach, we consider instead parametric max-

imum likelihood estimation. To this end, we assume that Wt is normally distributed with

mean zero and variance 
2t . Maximum likelihood estimation poses no conceptual problems,

but computation of the likelihood is nontrivial because the model involves repeated selection

on the basis of a persistent latent state variable.

11The structural model also implies several cross-equation restrictions that allow one to test the hypotheses

that (i) the persistence inXt re
ects the evolution of a single latent factor and (ii) entrepreneur's exit decisions

are based on a rational assessment of this latent factor. We will explore these cross-equation restrictions in

future work.
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In the following, we suppose that the structural model's parameters are themselves known

functions of a vector of \primitive" parameters, $. Our method of calculating the likelihood

function follows the non-Gaussian state-space model approach of Kitagawa (1987), which

utilizes the likelihood's prediction-error decomposition

f �YT+1
�
Y T+1;$

�
= fY1 (Y1;$)

T+1Y
t=2

fYt
�
YtjY t�1;$

�
; (19)

where Yt � (St; Nt) unless t = T +1, in which case it equals NT+1. In (19), we have explicitly

included the vector of primitive parameters to be estimated as an argument.

Consider the �rst term in (19), the density of Y1. Because N1 = 1 always, this is simply

fY1 ((S1; 1);$) =
1p

!2
1 + 
21

�

 
S1 � �1p
!2
1 + 
21

!
; (20)

where !2
t = �2t�t�1+�2t +�2t is the variance de�ned in the analysis of the reduced form model.

Our recursive procedure for computing the likelihood's remaining terms is based on ini-

tializing and updating the density of bAt given �Yt. The distribution of bA1 given S1 is nor-

mal with mean �1 + �1!
2
1 (S1 � �1) = (!

2
1 + 
21) and variance �21!

2
1


2
1= (!

2
1 + 
21). Therefore,

f
bA1
(ba1jY1;$) is known.

To recursively calculate the likelihood function's remaining terms, suppose that for a given

t � 2, the conditional density f
bAt�1

�
ât�1j �Yt�1;$

�
is known. We consider three separate cases.

If the �rm exits production following period t� 1, then Nt = 0 and the relevant term in the

likelihood function is the probability of exit conditional on the observed history.

fYt
�
(0; 0)j �Yt�1;$

�
=

Z �t�1

�1

f
bAt�1

�
ât�1j �Yt�1;$

�
dât�1 (21)

Following exit, the evolution of St is trivial and the remaining terms in the prediction error

decomposition identically equal one. In the second case, the �rm continues production fol-

lowing period t� 1, but t = T +1 so the data do not contain the realized value of St. In this

case of right censoring, the �nal term in the prediction error decomposition is

fYT+1
�
1j �YT ;$

�
=

Z
1

�T

f
bAT

�
âT j �YT ;$

�
dâT (22)

In the �nal case, the �rm produces in period t < T + 1, so Nt = 1. For this case, the

term of interest in the likelihood function can be written as

fYt
�
(St; 1)j �Yt�1;$

�
=

Z
1

�t�1

1p
!2
t + 
2t

�

 
St � �t � �tbat�1p

!2
t + 
2t

!
f
bAt�1

�
ât�1j �Yt�1;$

�
dât�1 (23)
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Equation (23) follows from Bayes' rule and the de�nition of bAt�1.

This �nal case is the only one in which we wish to continue the recursion. To do so, we

must calculate f
bAt

�batj �Yt;$�, which is

f
bAt

�
âtj �Yt;$

�
=

R
1

�t�1
f
bAt;St

(ât; Stjât�1;$) f
bAt�1

�
ât�1j �Yt�1;$

�
dât�1

fYt
�
Ytj �Yt�1;$

� : (24)

The distribution of
� bAt; St

�
conditional on bAt�1 is bivariate normal, so both terms in the

integrand of (24) are known. Therefore, the recursion can continue.

Iterating on (23) and (24) until the individual either exits or is right censored produces the

likelihood function at any given choice of $. In practice, evaluating the likelihood function

requires approximating the integrals in (21), (22), (23), and (24). We do so using a Gaussian

quadrature procedure.

6 Empirical Results

We now turn to maximum likelihood estimation of our model's parameters using the TABC

panel. We begin with a relatively simple model based on Hopenhayn's (1992) industry dy-

namics model. In this model, the entrepreneur faces no signal extraction problem because

�2t = 0 and Wt has an age-invariant normal distribution with variance 
2. Furthermore, the

evolution of At does not directly depend on the �rm's age because �t, �t, and �2t equal the

constants �, �, and �2 for t � 2: If the �xed production cost does not vary with age, then the

optimal exit policy in such a stationary environment is itself stationary. We impose this by

constraining �t for all t to equal the constant �. We refer to this below as the model's station-

ary speci�cation. After considering these estimates, we turn to a nonstationary speci�cation

in which �t and �t are both allowed to be arbitrary functions of t. Finally, we further gen-

eralize the nonstationary speci�cation by introducing entrepreneurial learning. To do so, we

assume that �2t equals a possibly nonzero constant, �2, for all t. This section then concludes

with a brief summary of our results.

6.1 Stationary Speci�cation

Table 4 reports the maximum likelihood estimates of our model's stationary speci�cation

using the sample of 305 new bars described in Section 2. Below each estimate is its asymptotic

standard error, which we calculated using the outer product estimate of the information
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matrix. First, consider the estimates of �1, �1, and 
, which jointly determine the distribution

of �rms' initial sizes. The estimate of �1, 0:109, is somewhat higher than the unconditional

mean of �rms' initial size reported in Table 1, 0:06. However, the standard error attached to

this estimate is relatively large, 0:055. The estimates of �1 and 
1, 0:766 and 0:294, together

imply that the standard deviation of S1 equals 0:82, which di�ers little from the estimated

standard deviation of 0:87. At these parameter estimates, the transitory shock W1 accounts

for approximately 13% of the variance of S1. The remainder is attributable to the persistent

shock X1. The estimate of � equals �1:23, implying that the probability of a �rm exiting

after just one month of operation is 0:04. This is substantially higher than the exit rate we

observe in the TABC sample.

Perhaps the most striking feature of Table 4 is the estimated value of �, which is exactly

one. That is, the persistent component of pro�tability in the model follows a random walk.

This is estimated with great precision | its standard error equals 0.006. With this estimate

of � the intercept � becomes the drift in the random walk of At. This estimate is negative,

�0:017 and signi�cantly di�erent from zero. The innovation to this random walk has a

standard deviation of �, which we estimate to equal 0:187. Together, the estimated negative

drift and substantial innovation variance imply that the expected growth rate of the persistent

component's level, E [e�At � 1] is slightly above zero. Given the estimates of � and 
, we

can calculate the variance of the change in St, �
2 + 2
2. The associated standard deviation

equals 0:46. Variation in Wt accounts for just over 80% of this variance.

To help gauge how well the estimated model �ts the data, Table 5 reports the population

values of the summary statistics we considered above in Section 2.12 As we noted above, the

exit rate for new �rms in the model is much higher than its empirical analogue. Similarly,

the model's exit rates for �rms nine to twelve months old are lower than those we estimate.

Overall, the model with a stationary exit threshold �ts the observed exit rates poorly. As in

the data, selection drives growth in the average size of survivors, and it has little impact on

the standard deviation of their sizes. As expected, selection increases the cohort's skewness

as it ages. The cohort's kurtosis initially falls with selection and then gradually increases.

Recall from Section 2 that these latter two moments are very imprecisely estimated, so

the di�erences between the model's predictions of skewness and kurtosis and their sample

counterparts does not indicate a poor �t between the model and the data.

12We calculated these summary statistics using 100000 simulated �rm histories from the estimated model.
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6.2 Nonstationary Speci�cation

The discrepancy between the very low frequency of exit among brand-new entrants and the

relatively high rate predicted by the estimated stationary speci�cation suggests that the

model's �t could be improved by allowing either the evolution of At or the exit policy to

depend on t. The nonstationary speci�cation allows for both of these sources of age depen-

dence. Table 6 contains the maximum likelihood estimates of its parameters, and Table 7

presents the estimated speci�cation's summary statistics. The estimates of those parameters

that are common to the two speci�cations, �1, �1, �, �, and 
, are very close to the analogous

estimates in Table 4. In particular, the estimate of �, 0:992, is statistically indistinguishable

from one. Next, consider the estimates of the age-speci�c intercepts, �2; : : : ; �12. These are

measured relatively imprecisely, but the tendency for them to be negative is clear: only three

of the eleven estimates are positive. Overall, these estimates reveal no substantial tendency

for a �rm's growth to accelerate or decelerate as it ages.

The �nal parameters to report are those describing the entrepreneurs' exit policy, ��12.

Unlike with the estimated intercepts, these are clearly not constant. The estimate of the

initial exit threshold is �1:94. This is estimated imprecisely, as the relatively little exit

following the �rst month leads us to expect. Nevertheless, it is substantially below the

estimated exit threshold from the stationary speci�cation. The implied probability that a

�rm exits following its �rst month, 0:008, is much closer to that we observe. As the �rm

ages, the estimated exit thresholds tend to rise. Although this increase is not uniform over

time, its e�ects are clear. The estimate of �2 is �1:53, while that for �12 is �0:97. These

are both relatively precisely estimated. The only remaining exit threshold that we estimate

imprecisely is �6. This is unsurprising, given the fact that no �rm in our sample exits

immediately following its sixth month of operation. Overall, allowing �t to vary with the

�rm's age signi�cantly improves the model's �t with the data.13 A comparison of the model's

summary statistics with those of the data reinforces this impression. As in the data, the exit

rate from the model is initially low and then gradually rises through the cohort's �rst year.

Similarly, the growth of surviving �rms' average size matches that from the data reasonably

well.

13To formally gauge this improvement, we have calculated a likelihood ratio statistic of the hypothesis

that that the values of �t are unconstrained and �t = � for all t relative to the alternative hypothesis

embodied in the nonstationary speci�cation. The likelihood ratio test statistic equals 236:09, which exceeds

all conventional critical values for a �2 random variable with 11 degrees of freedom.
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6.3 Maximum Likelihood Estimation of �2

We now turn to the estimation of �2, which determines the speed and extent of entrepreneurial

learning. Figure 1 summarizes our results. For values of �2 between zero and 0:07, it plots the

value of the likelihood function after enveloping out the nonstationary speci�cation's other

parameters. The result is clear: the likelihood function attains its maximum at �2 = 0. That

is, our maximum likelihood estimates imply that entrepreneurs observe the persistent com-

ponent of pro�t without error. We have conducted the same exercise for several alternative

speci�cations of our model, and they have all yielded this result. Thus, we �nd no evidence

that entrepreneurial learning contributes to the dynamics of the �rms in this sample.

6.4 Summary of Results

Four results summarize our estimates. First, pro�t's persistent component follows a random

walk. Thus, a version of Gibrat's law characterizes our young and small �rms. Second, the

variance of �rms' growth rates is dominated by transitory shocks. In both speci�cations, these

account for approximately 80% of the observed variance. Third entrepreneurs' exit thresholds

increase as the �rm ages. Because we observe no �rms exiting after their thirteenth and

fourteenth months, we believe that the annual timing of lease renewals plays a large role in

the increasing exit thresholds we estimate. Finally, entrepreneurs' observe pro�t's persistent

component without error. That is, entrepreneurial learning appears to be irrelevant for the

�rms in our sample.

7 Conclusion

Our model of �rm growth and survival with private entrepreneurial information has empirical

content. In particular, the extent of entrepreneurial learning is econometrically identi�ed,

even though entrepreneurs' observations are hidden from the econometrician. Our maximum

likelihood estimates indicate that entrepreneurs' observe pro�t's persistent component with-

out error, so the theoretical identi�cation result has empirical relevance for our sample of

new bars in Texas.

The model we develop in this paper is structural| its unknown parameters either are

primitive to the entrepreneur's decision problem or represent the entrepreneur's solution to

it. Because we estimate the entrepreneur's decision rule directly, our procedure avoids the

repeated solution of the decision maker's dynamic programming problem inherent to Rust's
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(1987) nested �xed point algorithm. An additional advantage of estimating entrepreneurs'

exit policies directly is that the procedure thereby accounts for the entrepreneur's superior

understanding of her pro�t maximization problem. The nonstationarity of the estimated

exit thresholds illustrates this. Time-varying �xed costs associated with annual lease renewal

can manifest themselves in the estimated exit thresholds even if the econometrician fails to

appreciate their importance before estimation.

One obvious omission from this paper's model is the in
uence of observable covariates

on either the stochastic process for �rm size or the entrepreneur's exit thresholds. Incorpo-

rating observable covariates is a straightforward extension of our analysis, but it may be of

considerable relevance for the model's further application. A structural model of the growth

and survival of new establishments owned by incumbent �rms should incorporate observ-

able characteristics of the parent �rms as covariates. Examples of such characteristics in

the TABC data set are �rm size, geographic location, and use of a franchised identity. The

e�ects of these variables on establishment growth and survival are of independent relevance

for theories of contracts and �rm formation. We plan to pursue these applications in future

research.
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Table 1: Summary Statistics from the First 13 Months in the Lives of New Texas Bars(i)

Age(ii) Firms Mean Standard Deviation Skewness Kurtosis Exit Rate(iii)

1 305 0.06 0.87 -0.003 3.53 0.003

2 304 0.08 0.89 -0.066 3.39 0.016

3 299 0.10 0.86 0.085 3.17 0.007

4 297 0.11 0.85 0.114 3.24 0.020

5 291 0.12 0.85 0.071 3.08 0.017

6 286 0.11 0.87 0.034 3.28 0.000

7 286 0.11 0.89 0.058 3.33 0.028

8 278 0.17 0.84 0.199 3.34 0.004

9 277 0.17 0.86 0.101 3.49 0.032

10 268 0.20 0.86 0.218 3.35 0.019

11 263 0.20 0.89 -0.006 3.23 0.042

12 252 0.23 0.89 0.037 3.23 0.032

13 244 0.27 0.87 0.052 3.30 0.000

Notes: (i) See the text for details regarding the sample's construction. (ii) Age is measured

in months and equals one for a �rm �ling its �rst tax return. (iii) The exit rate is de�ned as

the number of �rms operating in month t that do not operate in month t+ 1 divided by the

number of �rms operating in month t.
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Table 2: Summary Statistics from the First 13 Months in the Lives of Surviving Bars(i)

Age(ii) Mean Standard Deviation Skewness Kurtosis

1 0.17 0.85 0.089 3.38

2 0.21 0.86 -0.033 3.53

3 0.20 0.86 0.083 3.13

4 0.23 0.85 0.079 3.25

5 0.24 0.83 0.006 3.16

6 0.21 0.87 -0.065 3.51

7 0.24 0.84 0.166 3.35

8 0.24 0.83 0.204 3.40

9 0.25 0.84 0.205 3.41

10 0.26 0.85 0.194 3.11

11 0.24 0.88 0.074 3.24

12 0.25 0.89 0.015 3.30

13 0.27 0.87 0.052 3.30

Notes: (i) The reported statistics are for the sample of �rms that operated for at least 13

months. See the text for further details regarding its construction. (ii) Age is measured in

months and equals one for a �rm �ling its �rst tax return.
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Table 3: Regression Estimates of Sales on Previous and First Months' Sales(i)

Logarithm of Sales in

Age(ii) Previous Month First Month

3 0.809 0.154

(0.010) (0.010)

4 0.778 0.190

(0.008) (0.008)

5 0.942 0.021

(0.008) (0.008)

6 0.859 0.088

(0.008) (0.008)

7 0.880 0.086

(0.010) (0.009)

8 0.851 0.132

(0.009) (0.008)

9 0.905 0.073

(0.005) (0.005)

10 0.916 0.058

(0.006) (0.006)

11 0.894 0.062

(0.006) (0.006)

12 0.830 0.122

(0.009) (0.007)

13 0.822 0.168

(0.008) (0.007)

Notes: (i) For the third to thirteenth months, this table reports Powell, Stock, and Stoker's

(1989) instrumental variable density-weighted average derivative estimates for single-index

regression models of log sales on the logarithms of sales in the previous and �rst months.

Standard errors are reported in parentheses below each estimate. For each month, the es-

timation was conducted using the sample of �rms that survived to that month. (ii) Age is

measured in months and equals one for a �rm �ling its �rst tax return.

28



Table 4: Maximum Likelihood Estimates: Stationary Speci�cation(i)

Parameter(ii) �1 �1 � � � � 


Estimate 0.109 0.766 1.000 -0.017 0.187 -1.230 0.294

Standard Error(iii) (0.055) (0.037) (0.006) (0.005) (0.004) (0.007) (0.002)

Notes: (i) This speci�cation assumes that entrepreneurs face no signal extraction problem

(�2 = 0), that the parameters determining the evolution of Xt and Wt after the �rm's birth

do not depend on the �rm's age, and that the entrepreneur's exit threshold also does not

vary with age. (ii) The parameters � and � refer to �t and �t for t � 2. All other parameters

without a time subscript are assumed to be invariant to the �rm's age. (iii) The standard

errors are calculated using an estimate of the information matrix based on the outer product

of the scores. See the text for further details.
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Table 5: Summary Statistics from the Stationary Speci�cation(i)

Age(ii) Firms(iii) Mean Standard Deviation Skewness Kurtosis Exit Rate(iv)

1 100.0 0.11 0.82 0.00 3.00 0.041

2 95.9 0.16 0.78 0.22 2.84 0.014

3 94.6 0.17 0.79 0.25 2.87 0.012

4 93.4 0.17 0.80 0.28 2.88 0.012

5 92.3 0.18 0.81 0.30 2.89 0.013

6 91.1 0.18 0.82 0.33 2.91 0.013

7 89.9 0.18 0.83 0.34 2.91 0.013

8 88.8 0.19 0.84 0.36 2.93 0.013

9 87.6 0.19 0.85 0.37 2.93 0.013

10 86.4 0.20 0.86 0.39 2.94 0.013

11 85.3 0.20 0.87 0.40 2.95 0.014

12 84.1 0.20 0.88 0.42 3.00 0.014

Notes: (i) The reported statistics are calculated from a synthetic sample of 100; 000 �rm

histories drawn from the estimated stationary speci�cation. (ii) Age is measured in months

and equals one for a new �rm. (iii) The number of �rms is measured in thousands. (iv) The

exit rate is de�ned as the number of �rms operating in month t that do not operate in month

t+ 1 divided by the number of �rms operating in month t.
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Table 6: Maximum Likelihood Estimates: Nonstationary Speci�cation(i)

Parameter(ii) �1 � � 


Estimate 0.832 0.190 0.992 0.278

Standard Error(iii) (0.040) (0.004) (0.005) (0.003)

Parameter �1 �2 �3 �4 �5 �6

Estimate 0.063 0.026 -0.014 -0.001 -0.024 -0.030

Standard Error(iii) (0.067) (0.048) (0.045) (0.047) (0.048) (0.041)

Parameter �7 �8 �9 �10 �11 �12

Estimate 0.004 0.017 -0.008 -0.013 -0.029 -0.017

Standard Error(iii) (0.041) (0.043) (0.051) (0.054) (0.046) (0.035)

Parameter �1 �2 �3 �4 �5 �6

Estimate -1.94 -1.53 -1.44 -1.19 -1.27 -1.55

Standard Error(iii) (0.17) (0.03) (0.04) (0.03) (0.03) (0.31)

Parameter �7 �8 �9 �10 �11 �12

Estimate -1.32 -1.45 -1.16 -1.10 -0.92 -0.97

Standard Error(iii) (0.03) (0.04) (0.03) (0.04) (0.02) (0.02)

Notes: (i) This speci�cation assumes that entrepreneurs face no signal extraction problem

(�2 = 0) and that the evolution of Xt andWt depends directly on age only because �t may be

a nontrivial function of t. (ii) The parameter � refers to �t for t � 2. The other parameters

without a time subscript are assumed to be invariant to the �rm's age. (iii) The standard

errors are calculated using an estimate of the information matrix based on the outer product

of the scores. See the text for further details.
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Table 7: Summary Statistics from the Nonstationary Speci�cation(i)

Age(ii) Firms(iii) Mean Standard Deviation Skewness Kurtosis Exit Rate(iv)

1 100.0 0.07 0.88 0.00 3.00 0.007

2 99.2 0.11 0.87 0.09 2.87 0.021

3 97.1 0.13 0.85 0.19 2.85 0.014

4 95.7 0.16 0.85 0.24 2.85 0.035

5 92.4 0.19 0.83 0.32 2.87 0.010

6 91.5 0.17 0.83 0.34 2.90 0.001

7 91.4 0.17 0.85 0.31 2.89 0.013

8 90.3 0.21 0.85 0.34 2.91 0.003

9 90.0 0.20 0.86 0.32 2.90 0.027

10 87.6 0.23 0.85 0.38 2.93 0.022

11 85.7 0.24 0.84 0.41 2.95 0.051

12 81.3 0.29 0.82 0.47 3.05 0.017

Notes: (i) The reported statistics are calculated from a synthetic sample of 100; 000 �rm

histories drawn from the estimated nonstationary speci�cation. (ii) Age is measured in

months and equals one for a new �rm. (iii) The number of �rms is measured in thousands.

(iv) The exit rate is de�ned as the number of �rms operating in month t that do not operate

in month t+ 1 divided by the number of �rms operating in month t.
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Figure 1: Maximum Likelihood Estimation of �2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
−2900

−2800

−2700

−2600

−2500

−2400

−2300

−2200

−2100

η2

Lo
g 

Li
ke

lih
oo

d 
Fu

nc
tio

n 
Va

lu
e

33




