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ABSTRACT

Applied economists often wish to measure the effects of managerial decisions or policy

changes on plant-level productivity patterns. But plant-level data on physical quantities of output,

capital, and intermediate inputs are usually unavailable. Therefore, when constructing productivity

measures, most analysts proxy these variables with real sales revenues, depreciated capital spending,

and real input expenditures. The first part of this paper argues that the resultant productivity indices

have little to do with technical efficiency, product quality, or contributions to social welfare.

Nonetheless, they are likely to be correlated with policy shocks and managerial decisions in

misleading ways.

The second part of the paper develops an alternative approach to inference. Using Steven

Berry's (1994, RAND Journal) representation of equilibrium in a differentiated product market, we

show how to impute each plant's unobserved marginal costs and product quality from its observed

revenues and costs, and how to use this mapping to calculate plant-specific welfare-based

performance measures. (Bayesian estimation techniques are required because the vector of unknown

parameters is under-identified.) The final part of the paper demonstrates our methodology using

panel data on Colombian pulp and paper plants.
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I. Overview 

 Economists often seek to quantify the effects of a policy or event on the 

performance of the manufacturing sector. Recurrent questions include: How much, if at 

all, does trade liberalization improve efficiency? Do multinational investments cause 

firms to perform significantly better? How big are the efficiency gains from R&D 

spending? Are there learning spillovers between firms within an industry?  How do entry 

regulations affect an industry’s performance?  

 To address these issues, many analysts rely on plant- or firm-level productivity 

analysis. They posit that each establishment’s output is a function of the inputs it employs 

and its productivity level, hereafter indexed by φ . Then, using the available output and 

input measures, they estimate this function and solve for producer- and time-specific 

approximations to φ , hereafter, φ~ . Finally, looking across producers and/or though time, 

they correlate φ~  with things like the extent of foreign ownership, intensity of R&D 

activity, whether the firms are exporting, rates of effective protection for the firm’s 

product, and whether entry and exit are institutionally constrained.  

When output and input characteristics are common across plants, and when data 

on the physical quantities of these variables are available, the use of φ~ -type measures 

makes good sense. Indeed, most of the methodological literature on this approach to 

analyzing firm or plant-level performance presumes that these conditions hold.1 But in 

practice, φ~ -type measures are more commonly applied to differentiated product and/or 

differentiated input industries, where the characteristics of products and factor inputs vary 

                                                 
1 Particular attention has been devoted to the issues of how to estimate the functional relationship and how 
to separate noise from “true” productivity shocks in jtφ . 
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considerably across producers.2 Under these circumstances data on physical volumes are 

usually unavailable, so analysts are forced to make do with information on the values of 

production, material inputs, and capital stocks.3  The resulting performance measures are 

therefore, roughly speaking, indices of revenue per unit input expenditure.  

Such measures are viewed as a practical solution to the problem of imperfect data, 

and because they are expressed in relative value terms, they are commonly presumed to 

avoid the problem of comparing heterogeneous goods and factors. Our first objective in 

this paper is to argue that this benign view is misguided, and that standard performance 

measures can be very misleading when applied to differentiated product industries 

(Section II).  Even if the functional relationship between inputs and outputs is precisely 

estimated, they are contaminated by variation in factor prices and demand elasticities. At 

worst, they have nothing to do with firms’ productive efficiency, product quality or 

contribution to consumer surplus.  

Our second objective is to develop an alternative approach to inference (Section 

III). Specifically, we view firms’ costs and revenues as resulting from a Bertrand-Nash 

equilibrium in a differentiated product industry, as in Berry (1994), and we incorporate 

the demand system explicitly in the analysis. This allows us to impute the quantities, 

qualities, marginal costs, and prices of each good from the observed revenues and 

                                                 
2 A complete list of the relevant studies would take pages. Recent examples include Olley and Pakes 
(1996), Bahk and Gort (1993), Caves and Barton (1990), Griliches (1986); Aitken and Harrison (1999), 
Tybout et al (1991); Tybout and Westbrook (1995); Pavcnik (2002); Levinsohn and Petrin (forthcoming), 
and Aw, Chen and Roberts (2000). Tybout (2000) surveys this type of study for developing countries; 
Mairesse and Sassenou (1991) survey firm level studies that relate R&D to productivity measures. 
3 On the input side, the typical data set reports the value of intermediate goods purchased, the historical cost 
of capital stocks, energy usage (sometimes in kilowatt hours, sometimes in value terms), and the number of 
workers or total hours worked, perhaps broken down by broad skill categories or gender. On the output side 
it describes sales revenuesometimes distinguishing exportsand product classification according to 
standard industrial codes. 
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expenditures. It also allows us to construct product-specific measures of consumer and 

producer surplus, and to relate these measures to policies, events, or managerial 

decisions. 

Our last objective is to demonstrate our methodology on plant-level panel data 

from the Colombian manufacturing sector, and to compare our performance measures 

with standard measures (Section IV). We find, first, that standard performance measures 

are positively correlated with producer surplus because they depend positively upon 

mark-ups. (This is probably the reason that they are correlated with producers’ survival 

rates and growth rates.) Second, these standard measures are not closely related to 

product quality measures and they are nearly orthogonal to consumer surplus measures, 

so from a social welfare standpoint, they are poor characterizations of producer 

performance. Third, firms with high marginal costs also tend to produce high quality 

products, so studies that presume homogenous products and view marginal production 

costs as an inverse index of performance tend to under-appreciate the producers of these 

goods. Finally, relating firms’ performances to whether they engage in international 

trade, we find that standard measures imply trading firms tend to do worse, while our 

welfare-based measures suggest they do not. 

 

II. The Problem with standard performance measures 

To be specific about the features of jtφ
~ -type indices, let us assume that the 

production function may be written as:  

( )jtjt FheQ jt ⋅= φ ,      (1) 
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where Q is the output of the jjt
th plant in period t, jtφ  is its “true” productivity level, )(⋅h  

is a differentiable function, and is a scalar index of factor usage. Also, let be a 

constant returns function of the vector of inputs employed by the plant, , 

where V and factors that differ in quality enter V

jtF

}

jtF

(f= )jtjt VF
v

{ ′I
jtjtjt VVV ,,, 21 K=jt

v
jt
r

 as distinct inputs.  

(V jt
r

 collapses to a scalar in the case of labor productivity studies.) 

When  and are observable and the function jtQ jtF )(⋅h is known, the productivity 

index is retrievable as ( )jtjt FhQ lnlnjt −=φ . But these conditions rarely prevail, so 

analysts usually proceed with imperfect information. Specifically, when data on physical 

output volumes are unavailable, they typically replace  with jtQ tjtjt PR /~
=Q , 

where is the jjtR th plant’s nominal sales revenue and tP  is an industry-wide output price 

index. Similarly, if input quantities are unobservable, the convention is to replace them 

with a deflated measure of expenditure on inputs, jtjt FF~

t

jt

B

B














= , where tB  is a sector-

wide input price deflator and  is the price of a unit bundle of inputs for the jjtB th plant.4 

Thus performance is commonly measured by indices of the general form:   

( ) ( )jttjtjt FhPR ~ˆlnlnln~
−−=φ ,     (2) 

                                                 
4That is,  where W








== ∑

=

I

i

ii
jtVjt VfVWB

1
)(1|min
v },,,{ 2 I

jtjt
i
jtjt WWW K

v
=  is the plant-specific vector of unit 

factor prices associated with the input vector Vjt
v

.  If some elements of the input vector are measured in 

physical terms and others are measured in expenditure terms, the expression for jtF~ is more complicated. 

We will treat this case in detail below. 
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where is an approximation to the function )(ˆ ⋅h )(⋅h . 

Sales revenues depend upon demand conditions and the nature of competition, so 

we cannot describe the properties of jtφ
~ without introducing additional assumptions 

about consumer and producer behavior. Suppose firms compete in the industry of 

interest during period t and let demand for the j

tN

th firm’s product be given by the 

differentiable function: 

 ( )ttt
j

jt YPmQ ,,ω= vv
,  { }tNj ,,1L∈    (3) 

where  is a vector of product quality/appeal measures for all N{ ′= tNttt t
ωωωω ,,, 21 K

v

{ ′= tNttt t
PPPP ,,, 21 K

v

ωv

}

}

t 

firms,  is the corresponding vector of product prices, and Y  is an 

index of total market size.

t

5 Further, assume that current prices and product quality indices 

are common knowledge,  and φ
v

 do not respond to the current or past output decisions 

of any producer, firms are price takers in factor markets, and they are pure Bertrand-Nash 

price setters in the product market.  

                                                 
5 Define )m  to be the inverse demand function for the j th firm, given the vector of prices for 

all other products, 

( YPP j
j

j ,,|
1

ω−− vv

jP−v , the complete vector of product qualities, and market size. Caplin and Nalebuff 
(1991) show that a pure Bertrand-Nash equilibrium exists if this function is convex and diminishing in , 

so long as cost functions are convex. They also describe sufficient conditions on individual utility functions 
and the distribution of these utility functions across individuals for this property to obtain, and they 
demonstrate conditions for uniqueness. In particular, they show that the individual utility functions that 
underlie logit demand systems satisfy existence and uniqueness conditions. This type of demand system 
underlies our empirical work in the following sections. 

jP
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Under these assumptions, producer j considers its marginal revenue product at input 

level  to be jtF
jt

jt
jt

jt F
R

γ










η
−

11 , where 
( )

jt

ttt
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jt P
YPm

ln
,,ln

∂
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 is this firm’s elasticity 

of demand and 
( )

jt

jt
jt Fd

Fhd
ln

ln
=γ  is its returns to scale. Thus, equating the marginal 

revenue product of input bundles to their unit prices, producer by producer, we obtain a set 

of first-order conditions for equilibrium:  

jt
jt

jt

jt

jt
jt F

B
R 











γ










−η

η
=

1
,   { }tNj ,,1L∈ .   (4) 

Finally, substituting (4) into (2), jtφ
~ may be written as:  

( ) jt
t

jt

jt

jt
jtjtjt P

B
FhF γ−








+







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

−η

η
+−=φ lnln

1
ln~ˆlnln~ .   (5) 

 

 How well does jtφ
~ capture performance? Changes in product quality or productive 

efficiency generally cause firms to adjust their size, so all of the terms on the right-hand 

side of (5) except 




t

jt

P


 B
ln  depend upon jtω and jtφ . But as we shall argue below, jtφ

~  

need not respond to variation in jtω and jtφ  in the way that is commonly presumed; that 

is, by taking on relatively high values when jtω and/or jtφ are relatively large. 

A simple case 

To simplify our discussion of jtφ
~ , we shall assume that analysts are somehow 

able to correctly estimate the production function h(·) and the input aggregating function 
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)(⋅f . 6 
 
 Further, in order to begin with a simple case, we shall momentarily suppose that 

factor usage can be precisely measured in physical terms )~( jtjt FF = , all firms face the 

same demand elasticity ( tjjt ,∀η=η ), and all firms enjoy constant returns to scale  

( tj,1 ∀=jtγ  and ).  jtjt FdF ln)( =

ln jtF

hd ln







−1jt

jtη





ln

η jtφ~

jtω jtR jtF

jtφ
~

 

Under these assumptions,  drops out of equation 5 and )(ˆln jtFh−

 becomes a constant. So  becomes proportional to real factor costs, and 

completely unrelated to productive efficiency or product quality. The former property 

obtains because firms burdened with high factor costs pass a fraction of them on to 

consumers as higher output prices, and therefore generate more revenue per unit input. 

The latter property obtains because, with η  and γ  parametrically fixed, shocks to φ and 

 move  and  in equal proportion, leaving revenue per unit input unaffected 

(equation 4).

jt

7 (Klette and Raknerud, 2001, and Bernard et al, 2000, make similar 

observations in slightly different contexts.) 

This dependence of on factor prices may subvert productivity analysis in a 

number of ways. For example, the common finding that small and new firms are 

relatively unproductive may partly reflect the fact that they pay relatively low wages and 

                                                
6 Estimation errors introduce another type of problem with φ

~
-type measures, but they do not undo the ones 

we will focus upon here.  Klette and Griliches (1996) provide discuss the estimation issues that arise when 
revenue-based output measures are used in place of volume indices. 

7 Shocks to efficiency and/or product quality can, however, affect the general level of φ
~

 values if they 

affect the output price index, tP . 
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provide few fringe benefits (Baily, et al 1992; Griliches and Ragev, 1996; Aw, Chen and 

Roberts, 2001). Similarly, productivity among exporters may tend to be understated if 

they enjoy duty drawback schemes that reduce the costs of their intermediate inputs. On 

the other hand, the finding that geographically clustered firms are relatively productive 

(Henderson, 2001), which is typically attributed to agglomeration economies, may simply 

reflect high wages and rental costs in urban areas. Likewise, the common tendency to 

find high φ~  indices among R&D-intensive firms (Mairesse and Sassenou, 1991) and 

among multinational firms (Blomstrom and Kokko, 1997; Aitken and Harrison, 1999) 

may trace partly to their high unit labor costs.8   

Similar problems arise in time series. For example, in open economies, real 

exchange rate appreciation tends to drive up real wages in the tradeable goods industries. 

But it also tends to increase import penetration rates, so φ~ -type indices may falsely create 

the impression that import competition improves productivity among tradeable goods 

producers. Further, given that multinationals and exporters rely more intensively on 

imported intermediate goods (Kraay, et al, 2001), φ~ -type indices may falsely imply that 

they are relatively efficient during periods of real appreciation and heightened import 

competition. (We will return to this effect in section IV.D below.) 

Unobserved heterogeneity in factor stocks 

Thus far we have been assuming that each factor is homogeneous across plants, 

and we have been treating inputs with different characteristicsfor example, different 

                                                 
8 Here we are assuming that their productivity measure is constructed using an index of physical labor 
rather than a measure of expenditures on labor. We will consider the case of expenditure-based labor 
measures shortly. 
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types of workersas distinct elements of the V vector. Data are never actually available 

in sufficient detail to do this, so it is natural to ask how the properties of φ~  are affected 

by unobserved factor heterogeneity. The answer is that cross-plant and inter-temporal 

variation in factor prices will no longer be orthogonal to jtφ and jtω . Rather, assuming 

that factors are paid the value of their marginal product, one would expect to find positive 

correlation between jtφ
~  and φ or jt jtω .9 But this source of variation in jtφ

~  would 

simply reflect the fact that firms using high quality inputs get more and/or better output. 

It would reveal nothing about which firms are doing well in an economic sense, or 

whether firms are getting better over time.  

Endogenous demand elasticities 

Although the assumption of common demand elasticities is often invoked, it is 

unrealistic in many contexts. When some firms enjoy non-trivial market shares, formal 

characterizations of market equilibrium often imply that the larger firms face relatively 

low demand elasticities. 10  Further, it is reasonable to expect that firms with high 

efficiency (φ ) and/or high quality products (jt jtω ) will use relatively large bundles of 

                                                 
9 This dependence of measured productivity on unobservable aspects of factor quality is well known (e.g., 
Griliches and Jorgenson, 1967). 

10 An inverse relationship between or jtω jtφ  and the perceived elasticity of demand arises in a variety of 

contexts. For example, in a Dixit-Stiglitz (CES) system, one can induce such a relationship by assuming N 
is small. The nested logit demand system we adopt in sections III and IV also exhibits this property. 
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factor inputs.11  Thus “good” (highφ  and high ω) firms may well enjoy relatively low 

demand elasticities and, accordingly, have relatively large φ~ ’s.  To the extent that this 

linkage matters, φ~  variation will not be entirely unrelated to performance. 

φ

However, elasticity effects are also likely to induce spurious variation in φ~ . For 

example, producers of close substitutes may look relatively inefficient because their 

demand is relatively elastic. Also, reductions in institutional barriers to entry may reduce 

the market power of incumbent firms (e.g., Pakes and McGuire, 1994), making them 

appear less productive. Similarly, when trade liberalization and exchange rate 

appreciation reduce the equilibrium prices of the largest domestic firmswhich compete 

most directly with importsthese shocks will tend to reduce both the average value 

and dispersion in ~ , even if true productivity remains unaffected.

jtφ
~

jt

φ
~

12 This pro-

competitive effect of appreciation works against the real factor price effect mentioned 

earlier, which may help explain why the literature relating trade liberalization and import 

penetration rates to -type measures reports mixed results (Tybout, 2001). jt

                                                 
11 For the case of a nested logit demand system, see Berry (1994).  For a CES utility function, 
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, Melitz (2000) shows that with fixed γ  and a large number of products, 

market clearing implies:
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t
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  .  (Here is 

industry-wide revenues.)  Substituting this expression into the first-order condition (4), one obtains a 
reduced-form expression for factor demand: 
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.   

12 This dispersion effect is one interpretation for the findings of Caves and Barton (1990). 
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Non-constant returns to scale 

Relaxing the assumption of constant returns introduces another possible source of 

co-variation between φ~  and  ( , φ ω).  However, its sign is uncertain. Suppose returns to 

scale are above unity for the smallest firms but fall with size, as one would expect in most 

industries. Then positive shocks to jtφ or jtω  increase factor usage and reduce 

 until constant returns are reached. This negative effect of  or  on )(lnln jtjt FhF −

φ

φ ω

~  will be somewhat moderated by the negative relationship between jtγln  and . So 

the scale effect is ambiguous unless returns to scale are the same at all firms sizes.

jtF

13 

Measuring some factor in expenditure terms 

Thus far we have assumed that all factors are accurately measured in physical 

terms. But this is hardly realistic. With the possible exception of primary metals and 

some food processing sectors (e.g., dairy and grain mills), data on intermediate inputs for 

manufacturing plants are almost always expressed in expenditure terms. It is even more 

rare to find physical capital measured in terms of numbers of machines of each type and 

vintage. Therefore we now explore the properties of φ~  when input expenditures are used 

as proxies for input usage.  

Let some subset E { I,,1K⊆ }of the inputs be measured in deflated expenditure 

terms, so that the measured input vectorV jt
~v

 has components i
jti

t

i
jti

jt V
W

W













=~V  for  Ei∈

                                                 
13 If there are decreasing returns to scale, expression (5) can be used to describe the limiting case of  
perfectly competitive product markets by letting ηapproach infinity. (A unique pure Bertrand-Nash 
equilibrium does not exist in the limit if returns to scale are constant or increasing.)  For the CES case 
described in footnote 11, it is easy to demonstrate that as ∞→η , jtjtjt ω+φ→φ

~ . 

 11



and V i
jt

i
jt V=~ for i .  Further, let the input aggregator function be 

, ∑ , and assume that returns to scale are  for all firms. 

Then 
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           (6) 

All of the properties of (5) are still present in (6). But now the role of factor prices 

is more nuanced. In particular, when some factors are measured in expenditure terms, 

cross-plant variation in their prices no longer affects jtφ
~ because these factor prices are 

excluded from the sum . On the other hand, by measuring some factors in 

expenditure terms, we introduce a new role for their deflators through the expression 

. Thus exchange rate fluctuations and other industry-wide factor price shocks 

still work their mischief temporally on performance measures, even if the price deflators 

are precisely constructed.  Notice also that the cross-sectional effect of factor price 

variation is ambiguous under non-constant returns. It depends upon whether the factor in 

question is measured in expenditure terms, whether there are increasing or decreasing 

returns, and the strength of the negative effect of factor prices on input usage (see 

footnote 11). 
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But don’t we get sensible stories from φ~ ? 

To all of the above, one might object that φ~ -type performance measures 

nonetheless seem to “work.” That is, many studies have found that firms with high 

jtφ
~ values are more likely to be large or grow, and they are less likely to fail (Baily, 

Hulten and Campell, 1992; Olley and Pakes, 1996; Aw, Chen and Roberts, 2001; 

Baldwin and Gorecki, 1991; Lu and Tybout, 1996; Pavcnik, 2002). Does not this finding 

imply, as the authors of these studies suggest, that high- jtφ
~ firms are more efficient 

and/or produce a relatively desirable product? It need not. Success ultimately depends 

upon profits rather than efficiency or product quality, and firms with low demand 

elasticities (i.e., large values of 
1−η

η ) tend both to be profitable and to have high 

jtφ
~ values, even if their productive efficiency and product quality are unexceptional.  

To summarize, when analyzing differentiated product industries, it is a mistake to 

pretend that sales revenues and input expenditures measure physical outputs and inputs, 

respectively. This convention leads to spurious measures of productivity that may have 

little to do with efficiency or product quality yet tend to be correlated with policy shocks 

and managerial choices. Furthermore, even when efficiency and product quality are 

captured in some way, these performance measures do not tell us anything about firms’ 

contributions to welfare.  
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III. An Alternative Approach to Measuring Performance 

How, then, is one to infer something about plants’ performances when neither 

their physical output volumes (Q ) nor their prices (  are available? If the input 

vector (V ) is observable and demand elasticities are the same for all firms, Melitz 

(2000) suggests using the residuals from a revenue function to make inferences about 

jt ),jtP

jt
v

jtjt ωφ +  (see footnote 11). But in most applications, important elements of the input 

vector are measured in expenditure terms, and/or it unrealistic to assume that the 

elasticity of demand is the same for large and small firms. Under these circumstances we 

propose using an alternative approach to inference. 

Specifically, suppose total variable costs and total revenues, ( ) =tt RCT
vv

,  

′










tN

tN

t

t

t

t

t

t

R
TC

R
TC

R
TC

L
2

2

1

1 , are observable for all plants and they reflect equilibrium in a 

differentiated product industry. Then, using the demand functions (3) and the first-order 

conditions for profit maximization (4), it may be possible to induce a unique mapping 

from ( )tt RCT
vv

,  to ( )ttt CQtP
vvvv

,,ω, , where  denotes the jjtC th  plant’s marginal cost 

schedule in period t. Once such a mapping is established, one can use it to impute plant-

specific consumer and producer welfare measures, to study the evolution of these welfare 

measures over time, and to relate them to policy shocks and managerial choices.14 

 

 

                                                 
14 Without data on factor prices it is impossible to impute productivity measures, { }Ntttt φφφφ ,,, 21 K= ,  
from observable variables. But these are relevant for welfare only inasmuch as they influence marginal 
costs, which are identified. 
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A. The demand system, producer behavior, and market equilibrium 

Several conditions must be satisfied in order to implement this strategy. First, 

one’s assumptions concerning consumer and producer behavior must imply a unique set 

of equilibrium prices and quantities ( )tt QP
vv

,  at each ( )tt C
vv .ω , given observable control 

variables. (Sufficient conditions are described in Caplin and Nalebuff, 1991.)  Second, 

given equilibrium output and marginal cost values, it must be possible to infer the 

associated total variable costs, TC for each firm. Thus it is generally necessary to impose 

some structure on the marginal cost function.  

These requirements rule out non-parametric approaches and some flexible 

functional forms, but it is not difficult to find a reasonable set of assumptions that suits 

our purposes. In the remainder of this paper we describe one approach to inference that 

seems to work well.  First, we assume that marginal costs at the jth plant in year t are 

given by the scalar C , regardless of that plant’s output level. (We do, however, 

allow to evolve through time with plant-specific productivity and factor price shocks.)  

Second, we adopt Berry’s (1994) representation of market equilibrium with nested logit 

demand functions.

jt

jtC

15  

A brief review of Berry’s (1994) model will serve to introduce parameters and 

their interpretation in the present context. At time t let },1,0{ tNj K∈  index the Nt +1 

available varieties, with j = 0 corresponding to the “outside” variety. Further, assume that 

the product varieties can be grouped into G+1 < Nt +1 nests. In our application the 

outside product will be a composite imported variety, and the remaining varieties will 

                                                 
15 A simple logit demand system would also work; we use the nested logit for added generality. 
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map one-to-one onto the set of active domestic plants. We will also define product nests 

according to the geographic region where the plants are located. For example, nest 1 

includes the varieties of pulp and paper products manufactured in Bogota, nest 2 includes 

the varieties manufactured in Medellin or Cali, and so on. 

Next, let the consumers active in period t be indexed by l ],0( tY∈ . Each period, 

each consumer in the market chooses a single unit of the variety that yields her the largest 

net indirect utility, where variety j yields consumerl  net utility: 

.)1( jttgjtjt j
uu lll εσς −++=     (7) 

Here denotes the index for the group (nest) that contains the j},1{ Gg j L∈ th variety, and 

jtu  is the cross-consumer mean utility delivered by good j. The last two terms on the 

right hand side of (5) are unobserved error components that capture individual taste 

differences among consumers. The first component, tg jlς , varies across nests but not 

within them, while jtlε  exhibits within-nest variation. Thus the parameter 10 <≤σ  

indexes the degree of substitutability among, versus within, the nests.16  Finally, ε is 

distributed type-1 extreme value across consumers, given j and t, and [ ])1( εσς −+  is 

distributed type-1 extreme value across consumers, given t. This implicitly defines the 

distributionς , which is itself a function of σ  (Cardell, 1997). 

The mean utility delivered by domestic good j in period t depends on both its 

quality and price: 

                                                 
16 As σ goes to zero, within-group correlation of utilities goes to zero, and asσ  goes to unity, within-group 
correlation goes to unity. A more general specification lets σ  vary across groups, allowing richer 
substitution patterns (Berry, 1994; Berry, Levinsohn and Pakes, 1995). This specification has  important 
advantages, but it requires that we observe information about the distinctive features of each group, which 
makes it infeasible for the present application.  
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  ,,...,1, NjPu jtdjtjt =∀α−ξ=     (8) 

where ξjt measures product quality, Pjt is the price, and dα  measures the price effect on 

the mean indirect utility of a given domestic good.  Similarly, the mean indirect utility 

delivered by a unit of the composite imported good is:  

 tftt Pu 000 ⋅α−ξ= ,     (9) 

where  is the domestic currency price of a unit of imports, calculated as the product of 

the tariff-inclusive real price of imports in U.S. dollars and the real effective peso-dollar 

exchange rate.  Since the imported good is a composite, we allow 

tP0

dα  and  to differ. fα

Integrating over consumers yields a logit-based functional form for the  

demand functions (3), with arguments Y , 

tN

t ),( 0
d

ttt PPP
vv

= ,  and ),0( d
tt ω=ω vv , 

where { }tNtt
d

t t
PPPP ,,, 21 K

v
=  and { }ottt

ξ−Nt
d
t ξω = ,Kottot ξξξ −− ,, 2ξ1
v  (see appendix 1). 

Note that all domestic product qualities are measured relative to the quality of the 

imported good. Also, as Berry (1994) demonstrates, under the assumption of pure 

Bertrand-Nash pricing and flat marginal cost schedules, these demand functions imply a 

specific functional form for the  profit maximizing conditions (4) (see appendix 1). 

Finally, the expressions:  

tN

 
jtjtjt QPR ⋅=   { }tNj ,,1L∈     (10) 

jtjtjt CQTC ⋅=  { }tNj ,,1L∈     (11)  
 

provide additional restrictions.tN2 17  

                                                 
17 More generally, one might assume that the cost function is common across plants up to a single unknown 
parameter that captures idiosyncratic efficiency and/or factor price effects. 
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Suppose the demand parameters ( )σαα ,, fd  are known and the data ( ,Y , tP0 t

tR
v

,T tC
v

) are available. Then the demand functions (3), the profit maximization 

conditions (4), the revenue expression (10) and the total variable cost expression (11) 

provide   equations with which to identify the tN⋅4 tN⋅4  unknowns, ( )tt
d
t PQ d

t Cd vvvv
,,ω, . 

Similarly, if total market size (Y  =  ) is unobserved but the quantity of imports 

( ) is available, ( ,Q , 

t

tR

∑
=

tN

j 0
jtQ

tQ0 tP0 t0
v

,T tC
v

) can used to solve for ( )t
d
t Cd

t
d
t PQ

vvvv
,ω,, . Appendix 

1 proves that a unique solution exists for the case of a nested logit and sketches an 

algorithm for finding it. 

 

B. The evolution of product quality and marginal costs  

It remains to link product quality and market costs to the business environment 

and managerial decisions. To this end we assume that product quality and the log of 

marginal costs evolve over time according to a vector autoregressive (VAR) process, 

conditioned on a vector  of weakly exogenous variables, including things like R&D 

expenditures, participation in foreign markets, and the extent of multinational ownership: 

jtX

ω

+=
−+

=
− ε+λ+λ+ωλ+ω=ω ∑∑ jtjt

xL

Ls
sLjts

L

s
stjsjt C X

2

11
,0 ln ,   (12a) 

c
jtjt

xL

Ls
sLtjs

L

s
stjsjt CcC ε+ϕ+ωϕ+ϕ+= ∑∑

+=
−+

=
− X

2

1
,

1
,0 lnln ,  (12b) 

    Nj ,,1L= , TLt ,,1L+= . 
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Accordingly, once the complete vector of parameters has been estimated, it will be 

possible to trace the welfare effects of any deviation from observed  trajectories. We 

shall assume that the errors 

jtX

( )cεεω ,  are jointly normal and serially uncorrelated after 

controlling for plant effects. 

 

C. Estimation 

Without the VAR system described above, the demand parameters 

are not identified. A different mapping from ),,( σαα fd ( )tt RCT
vv

,  to ( )tttt CQP
vvvv

,,, ω  

exists for each feasible set of ),,( σαα fd

tt C

 values, and without more structure, each is 

equally likely. Equations (12a) and (12b) help with identification by constraining the 

shapes of the cross-sectional (
vv ,ω ) distributions and the way that individual ( ) 

pairs evolve through time. However, these constraints bear only obliquely on the demand 

parameters, and they introduce some new unknowns to be estimated. Prospects for 

successful maximum likelihood estimation are further dimmed by the irregular shape of 

the likelihood function for the nested logit (Lahiri andf Gao, 2001). Therefore we impose 

further structure by specifying priors on the unknown parameters and estimating the 

system (3), (4), (10), (11), (12) using Bayesian techniques. 

jtCjt ,ω

 To summarize this estimation strategy, let us collect all of the parameters we have 

introduced in the vector ],,,,,[ Σϕλσαα= fdθ , where Σ , and define 

the joint density 

















ε
ε









ε
ε

=
ωω

'ccE

)(θp to describe our priors, which we will discuss shortly. Also, let us 

collect all of the observable data on revenues, costs, imports, the exchange rate, and 
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weakly exogenous firm characteristics in the matrix D. Then the posterior distribution for 

 is: θ
∫
θ

θθ⋅θ
θ⋅θ

=θ
dDLp

DLpD
)|()(
)|()()|(π )|()( θ⋅θ∝ DLp , where )|( θDL  is the likelihood 

function based on (3), (4), (10), (11), and (12).   

( ) ( ) ( ) ( )Σ⋅⋅γα⋅σ=θ σpp Σpϕγα pp , ,,

)(θp

]1,

( ) ( )LLN 22 ,0,p , =λϕλϕ

                                                

 Excepting elements of the covariance matrix, Σ , we have no reason to expect that 

the parameters of our model are correlated. Thus we write the joint prior distribution as a 

product of our prior marginal densities for the individual parameters:  

 
( )λϕλ , .    

 
Let us describe each component of in turn. First, the demand system priors we 

impose are similar to those used by Poirier (1996) and Lahiri and Gao (2001).18 The 

underlying utility maximization problem implies that 0[∈σ , so we specify uniform 

priors on this region of support. 19 Second, we believe the price coefficients and dα fα  

should be positive but we do not know much about their magnitudes, so we specify 

uniform priors with support [0, 10] for each of these parameters. The remaining 

parameters describe the VAR (equations 12a and 12b). For the autoregressive parameters 

we assume joint normality, LI2100 × , where L is one plus the 

number of right-hand side variables appearing in each VAR equation. Finally, as is 

 
18 These studies also estimate nested logit models using Bayesian techniques. However,  unlike ours, they 
are concerned with the problem of ill-defined nesting structures. 
19 Restricting σ to be greater or equal to zero reflects our prior knowledge that the products within each 
nest are at least as good substitutes for each other as those products outside the nest.  Values ofσ greater 
than one are not consistent with the underlying assumption of the extreme value distribution of consumer 
tastes.  As σ goes to unity, consumers would purchase only the goods with the highest mean indirect utility 
in each nest.  Restricting σ to be less than or equal to one ensures that all products get consumed.   
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standard in the literature, for the covariance matrix we assume an inverted-Wishart 

distribution, ( 2100,6)( IInvWishp )×=ΣΣ . Overall then, with the exception of , we are 

doing little to constrain the range of plausible realizations on 

σ

θ . 

θ

[ ]3θ ),,(1 σαα= fd =

θ

)ln,( Cω

3

2

Closed-form representations of the posterior )|( Dθπ are not available; nor is it 

feasible to make i.i.d. draws directly from )|( Dθπ . We therefore use a Markov chain 

Monte Carlo (MCMC) algorithm to generate correlated draws from )|( Dθπ  and we 

analyze the moments of the resulting empirical distributions (Gilks, et al, 1996).  

The vector  is relatively large, so we exploit Gibbs sampling techniques to 

generate our Markov chain. That is, we partition θ  into three sub-vectors: 

, where 21 ,, θθ=θ θ , )2 ,( ϕλ=θ and Σθ3 . Then we update the 

sub-vectors sequentially by drawing from the full conditional distributions of each in 

turn. The full conditional distribution of ( 2 | 1θ , 3θ , D) is multivariate normal because D 

and θ  imply the  trajectories, which contain all of the available information on 

. For the same reason, the full conditional distribution of (

1

2θ θ | 1θ , 2θ , D) is inverted-

Wishart. Thus closed-form expressions for the full conditional distributions of θ  and 3θ  

are easy to construct, and sampling from these distributions is straightforward (Zellner, 

1971). However, no simple expression for the full conditional distribution of ( | θ , 1θ 2 3θ , 

D) is available, so we use a Metropolis-Hastings sampling algorithm. Appendix 2 

provides further details. 

E. Constructing Performance Measures 

Once we have estimated our posterior distribution, )|( Dθπ , we solve for the 

marginal cost and product quality trajectories of each producer in the sample using the 
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expected value of .θ 20   The remaining task is then to translate these trajectories into 

meaningful performance measures, and to examine the relationship between those 

measures and the traditional Tornqvist indices described in Part I above.  






[

For the ith producer, we calculate the increment to consumer surplus that it 

generates each period by evaluating consumer surplus with, versus without the ith good:21 

 






σ−−σ−⋅=∆ σ−

≠

σ− ∑∑ }]))1/(exp([}]))1/(exp( )1()1(

ij
jt

j
jtt

i
t uuyCS   (13) 

 

Prices and market shares are allowed to adjust to re-establish equilibrium when good m is 

removed. Similarly, we calculate the ith producer’s own surplus as ( ) ititit QCP −

)

, and 

from this we subtract the negative externality this producer imposes on the surplus of 

other firms. The latter is imputed by evaluating with, versus without, 

the i

(∑
≠

−
ij

jtjtjt QCP

th producer present, letting prices and market shares adjust to re-establish 

equilibrium.   

To evaluate these firm-specific welfare contributions, we express them as ratios to 

firms’ reported capital stock to obtain a crude social rate of return on investment. (All 

other costs of operation are captured by variable costs and will already be netted out of 

producer surplus.) Obviously we miss pre- and post-sample costs and benefits and our 

                                                 
20 It would, of course, be possible to also study the distributions for these trajectories that are induced by 

; we have not pursued this yet. )|( Dθπ

21 Ackerberg and Rysman (2001) argue that the nested logit demand system overstates the contribution to 
consumer surplus provided by each product because it implies very high marginal utility from the first units 
consumed of each good. Thus our results may over-emphasize consumer surplus relative to producer 
surplus. 
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measure of firms’ assets will be very crude, but we feel we will come closer to a 

comprehensive basis for assessment than the standard methodologies. For the sake of 

comparison, we also calculate the usual Tornqvist measures of total factor productivity 

under the standard assumptions that deflated revenues measure real output, and deflated 

expenditures on intermediate goods measure physical intermediate good usage:  

)~ln(ˆ)/ln(~
1

i
jt

I

i

i
jttjtjt VPR ∑

=

−= µφ ,     (14)  

where  is the share of the ii
jtµ̂ th factor in total costs at firm j during period t.  

 

IV. An Application to the Colombian Pulp and Paper Mill Industry 

A.   The Data 

We base our empirical example on panel data describing the Colombian pulp and 

paper mill industry over the period 1981-1991. These data were originally collected by 

Colombia’s official statistical agency (Departmento Administrativo Nacional de 

Estadistica) and have been cleaned as described in Roberts (1996). To keep the analysis 

simple we exclude plants that entered or exited during the sample period, leaving a total 

of 13 plants over an 11 year period.22 This naturally creates some selection bias, although 

the entering and exiting plants were quite small and thus had a minor influence on market 

shares. 

We construct total domestic sales, , as total sales revenue less the value of 

exports divided by a general wholesale price deflator. To construct total variable costs, 

, we first sum payments to labor, intermediate input purchases net of inventory 

jtR

jtTC
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accumulation, and energy purchases. Then we scale this aggregate by the ratio of total 

domestic sales to total sales and we divide the result by the same wholesale price deflator 

we used for output. This definition of total variable cost implies, of course, that 

expenditures on physical capital are fixed costs. 23  

Our real exchange rate series, e , is taken from Ocampo and Villar (1995), who 

include an adjustment for tariffs. To impute imports we assume that all imported goods in 

the relevant industrial classification maintain their same exogenous dollar price during 

the sample period. Further, we assume that the imported varieties are consumed in fixed 

proportion to one another, so that they can be treated as a single bundle whose domestic  

price fluctuates only with the exchange rate. Then, calling the period t dollar value of 

imports , we construct our index of the quantity of imports as 

t

tR0
t

t
t P

R
Q

0

0
0 = . The units in 

which Q  is measured determine the units in which all domestic varieties are measured 

and effectively fix the size of the market.

t0

24 

Finally, the vector of weakly exogenous variables ( ) includes the book value 

of each plant’s initial (1981) capital stock, a trend term, and two dummy variables that 

jtX

                                                                                                                                                 
22 Entry and exit would complicate the VAR portion of the likelihood function by creating an unbalanced 
panel. 

23 An equally simple approach would be to assume that capital stocks are perfectly flexible, and to include a 
rental cost of capitalsay 10 percent of the book valuein our total cost measure. The intermediate case 
in which capital stocks (and perhaps other inputs) are subject to finite adjustment costs is difficult to deal 
with because it means introducing dynamic optimization into the analysis. 
24Unfortunately, the choice of the units of Q  also has implications concerning import volume shares. If we 
were to halve the imputed quantity of imports, the imputed volume share of imports would also be smaller. 
This reflects the fact that domestic quantities are not linear in Q . An increase in Q does imply bigger 
domestic quantities but the increase is less than proportional. In practice, we normalize the series of real 
exchange rate so that in the base year revenue share of imports equals its volume share. 

0

0 0
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summarize plants’ participation in foreign markets. The first takes a value of one if the 

plant was importing some or all of its intermediate inputs in year t-1, but not exporting 

any of its output. The second dummy takes a value of one if the plant was both importing 

some intermediates and exporting some output in year t-1. No plant in our sample 

exported output without importing intermediate inputs, so the omitted category is simply 

plants that did not buy inputs or sell outputs in international markets in year t-1.25  

 

B. Posterior Parameter Distributions  

Means, standard errors and other summary statistics for our estimated  posterior 

distribution  are reported in Table 1 below. The estimates are constructed using 

Wooldrich’s (2001) correction for persistent unobserved heterogeneity in the disturbance 

term.

)|( Dθπ

26 

Overall, the results appear quite well behaved, although the posterior distribution 

for the price coefficient α  is rather diffuse.d
27 Given the small sample size we are 

working with, this is perhaps unsurprising. The mixing parameter σ tends to be close to 

unity, suggesting that most of the variation in tastes across consumers has to do with 

region of origin. The VARs for product quality and marginal cost both show a plausible 

                                                 
25 It would have been desirable to also include R&D spending, and to distinguish firms according to 
whether they were partly owned by foreigners. Unfortunately, this information was not available. 

26 Wooldrich’s (2001)  correction takes care of initial conditions problem. It amounts to including the initial 
value of the lagged dependent variables as explanatory variables in all years, and using a standard error 
components specification for the disturbance. Kraay et al (2001) provide further discussion in the context 
of a similar VAR. Our results indicate that the variance of the random effect is sufficiently small to ignore, 
so we simply include initial values of the lagged dependent variables. 
27 The standard errors can be misleading because these are not symmetrically distributed random variables. 
For example, although a standard t-test would not reject the null hypothesis that α =0, with 90 percent 
confidence, the 90 percent confidence intervals for σ lie entirely in the positive domain. 
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amount of persistence. On the other hand, there is less dynamic interaction among these 

variables than we expected. (That is, we thought high marginal cost in one year might 

lead to higher product quality in the next year.) Nonetheless, as we will see shortly, these 

variables do exhibit contemporaneous covariance across plants because of persistent plant 

effects. Finally, our coefficients for trends, international transactions, and capital stocks 

are not estimated with much accuracy. However, the impact of importing intermediate 

goods on marginal costs and product quality is large and negative, on average. We will 

return to explore the implications of these international transactions coefficients in 

section D below. 

 

C. Plant performance measures 

 Using the posterior means of our demand parameters, we impute relative product 

qualities ( ), marginal costs (Cjω j), contributions to consumer surplus over total 

production costs, 
j

j

TC
U∆

, producer surplus over value of the fixed capital stock, 
j

j

K
Π

, 

external effects on the producer surplus of other plants over value of the fixed capital 

stock , 
j

jk

K

∑
≠
Πk∆

, and net total surplus created over fixed capital stocks, 

j

jk
k

j

j

KK
U

∑
≠
Π∆

Π+∆ j +  . Then pooling all 11 years of observations on the 13 plants in 

continuous operation, we obtain the descriptive statistics in table 2. The results imply that 

the ratio of operating profits to fixed capital is roughly 7 percent, so the average rate of 

return on fixed capital investment is quite sensible. Domestic products are, on average, 
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somewhat more attractive than the imported goods, but the cross-product standard 

deviation in relative appeal is substantial. (Robustness tests, not reported, show that it 

also depends on our  specification.) Most social surplus comes from the consumer 

side rather than the producer side (but see footnote 21). Indeed, the only reason that 

plants make a positive contribution to welfare is that this consumer surplus effect 

dominates the negative externality each plant imposes on the others by shrinking their 

market. (Some plants actually reduce net total welfarethis is a well known possibility 

in the case of monopolistic competition.)  

)(⋅σp

=

 We next calculated the cross-plant correlations in these variables reported in 

tables 3.28 The implications are intriguing. First, relative product quality, ω , and the log 

of marginal production costs, , are weakly correlated (

j

jCln =ρ 0.201). Thus on average, 

it costs relatively more to produce a relatively desirable good, and it is probably 

inappropriate to equate low production costs with superior performance.   

 Second, the standard total factor productivity measure ( jtφ
~

) is weakly associated 

with product quality (ρ  0.238) because of the elasticity effect mentioned in sections II 

and III. So jtφ
~  does partly capture an aspect of performance that is directly related to 

welfare (ρ  0.435).  On the other hand,= jtφ
~  is orthogonal to marginal costs (ρ 0.022), 

which in turn reflects factor prices and technical efficiency. We cannot unbundled these 

two cost components without plant-specific information on factor prices, but if the 

=

                                                 
28 We also looked at correlations of firms’ rankings in terms of each of these variables. The results are 
nearly identical to those reported in Table 3, so we do not report them here. 
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dominant source of variation is technical efficiency, it follows that jtφ
~  does a poor job of 

capturing φ . jt

 Fourth, jtφ
~ is fairly strongly associated with own-producer surplus, 

jt

jt

K
Π

 

( 0.600). This association with own surplus appears to reflect underlying variation in 

plant size. Specifically, low product quality not only reduces 

=ρ

jtφ
~ , it dampens output and 

scales back ( )jtjtjt CP −jt Q=Π . 

 Finally, although producer surplus is positively associated with jtφ
~ , the opposite 

is true of consumer surplus (ρ -0.153). Thus total surplus created over own fixed 

capital is only weakly related to φ

=

jt
~  ( =ρ 0.220). This correlation is the only one that 

matters if we are exclusively concerned with contributions to social welfare. Taken at 

face value, it implies that traditional Tornqvist indicesand, we suspect, the entire class 

of indices discussed in section IItell us little about which firms are do well from a 

social perspective.  

 

D.  Linking performance to policy 

 It is popular to regress performance measures like jtφ
~  on policy variables or plant 

characteristics that are considered to respond to policy. For example, variants of jtφ
~  have 

often been regressed on measures of exposure to foreign technology, including foreign 

direct investment in the firm or its industry, and indicators for whether the firm is an 
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exporter. As a final exercise, we demonstrate an alternative exercise using the welfare-

based performance measures described in the previous section.  

 Specifically, we use the estimates in table 1 to quantify the effects of prohibiting 

firms from becoming exporters and/or importing intermediate goods. It would be 

straightforward to also prohibit consumers from importing foreign substitutes, but we will 

not do so in order to focus on these two production-side trade restrictions.  Also, for the 

same reason, we will assume that total domestic demand evolves exactly as it would have 

in the absence of our policy shock, and that each producer draws the same VAR shocks 

 that were actually observed. ),( ωεε jt
c
jt

 Under these assumptions we can use our VAR parameters to calculate the paths 

for (  that would have emerged if, beginning in 1982, all international 

producer trade had been shut down. The cross-plant temporal averages for these variables 

are graphed in Figure 1. As one could have predicted, since the use of imported 

intermediate imports reduces marginal costs (Table 1), our hypothetical policy regime 

results in marginal cost increases. It also results in slight quality increases as firms 

substitute toward domestic sources. The latter seems counter-intuitive, but it follows from 

our finding that high quality is weakly associated with high cost. 

)ln, jtjt Cω

 Substituting our parameter estimates and these counterfactual trajectories for 

 into equations (8), (9) and (12), we next re-solve for equilibrium each 

period and calculate the new trajectories for producer and consumer surplus. These are 

graphed in figure 2. On net, not much happens to producer surplus because prices and 

costs move in the same direction. (This helps explain why some producers use imported 

inputs and others do not.) More surprisingly, not much happens to consumer surplus 

)ln,( jtjt Cω
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either. The reason is that the higher prices of domestic varieties due to higher marginal 

costs are accompanied by slight increases in quality, and our demand system estimates 

imply that consumers care a great deal about quality. We caution that this result appears 

to depend upon our priors. Other priors led to posterior parameter distributions (not 

reported) that implied a 10 percent loss in consumer surplus when producers were 

prohibited from foreign trade. 

 A very different story would have emerged if we had relied on jtφ
~ -type measures 

for policy analysis. Fitting an AR(1) like those in table 1 to the Tornqvist index discussed 

earlier, we find that firms that imported their intermediate goods had significantly lower 

measured productivity. 29 Thus cutting firms off from foreign trade would appear to 

significantly improve performance. This may reflect the fact that our sample period 

includes a major devaluation, which presumably encouraged exporting and the use of 

imported intermediate goods at the same time that it depressed jtφ
~  through relative price 

effects (refer to equation 6). The top panel of figure 3 presents average trajectories of the 

performance measure jtφ
~ with, versus without, producer trade. 

 It is noteworthy that the time series average value of this φ~ -type index tracks our 

welfare based index in figure 2 rather closely. Thus, in sense, the cross-producer variation 

in φ~ -type measures is much more problematic than temporal variation that is typical of 

the population of plants. However, the reason for the high temporal correlation between 

                                                 
29 We regressed  jtφ

~
on 1

~
−φ jt and the same weakly exogenous variables that appear in the VAR 

specifications of table 1, making the same correction for unobserved heterogeneity. We obtained a 
coefficient of –0.163 (standard error 0.068) on our dummy for use of imported intermediates without 
exporting, and a coefficient of  -0.220 (standard error 0.071) on our dummy for use of imported 
intermediates while simultaneously exporting. 
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mean jtφ~  values and social welfare is that the market for pulp and paper products 

expands during the sample period, not that firms improved in terms of their marginal 

costs or product qualities (refer to Figure 1). 

 

V. Concluding Remarks 

The analysis we have presented here is crude in many ways. We have used a very 

simple demand system, we have assumed that marginal costs are flat with respect to 

output, we have ignored producers that were not present for the entire sample period, and 

we have ruled out any form of forward looking behaviordue either to dynamic pricing 

games or to capital accumulation. Finally, we have paid no attention to the institutional 

and technological features of the Colombian pulp and paper industry.   

For all of these reasons, we do not wish to argue that the numbers we have 

presented here are the best that one can do. Rather, our objectives have been to argue that 

much of the literature on plant-level performance is fundamentally flawed, and to sketch 

an alternative approach to inference that we feel holds more promise. Significant 

refinements in most of the dimensions mentioned above are possible; we are optimistic 

that they will enhance the usefulness of our methodology.  
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Appendix 1: Inferring Qualities and Quantities from Revenues and Costs 

This appendix demonstrates that a unique mapping exists from ( )tttt RCTQP
vv

,,, 00  

to ( )tttt CQP
vvvv

,,, ω  and sketches an algorithm for finding it. The mapping is done period 

by period, so we shall hereafter drop t subscripts to reduce clutter.  

First, let us replicate some well-known expressions for nested logit demand 

systems. Under the assumptions reviewed in section IIa, demand for the jth domestic 

variety, expressed as share of total demand for varieties in the jth product’s nest (region), 

is:  

∑
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Also, expressed as a share of total demand for the industry’s product, demand for the 

products in the jth product’s nest as is: 
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Therefore our functional form for the jth producer’s demand function (equation 3) is 

YssYPm ggj
j ⋅⋅=θω |)|,,( vv

, and profits for the jth  producer may be written as: 

.  Further, given pure Bertrand-Nash pricing strategies, 

the standard first order conditions for profit maximization imply that equation (4) may be 

written as (Berry,1994): 

Y⋅SSCP
jj ggjjjj ⋅⋅−=Π |)(

 36



      ,
)1(1

/)1(

|| jjj ggjgj

d
jtj

SSS
CP

⋅⋅σ−−⋅σ−

ασ−
+=   Nj K,1=      (A1.3) 

 

Our objective is to show that, given ( )RCTQP
vv

,,, 00 , the N⋅4  unknowns ( )CQP
vvrv

,,, ω  are 

uniquely determined by (A1.1) through (A1.3) and (10) and (11) of the text.  

First, by equation (11), total variable costs at the jth plant are TC , so the 

within-group market share of the j

jjj CQ=

th firm is: tot
g
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j
gj jj
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S =|  where total output from 

the jth plant’s group is ∑
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Q  and total domestic output is 

.  Also, by equation (10), total revenues at the j∑
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th plant are , 

so the j
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th plant’s price-cost markup may be expressed in terms of observable variables as 
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j
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R
m

jjj CmP )1( +=

, and once its marginal cost is known, its price can be calculated as 

.    

Substituting these market share and price expressions into the pricing rule (A1.3) 

and solving for marginal cost, we obtain: 
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This expression defines the unobservable C  as a monotonic decreasing function of 

, given data on TC , Q

j

0
tot
g j

Q ,j jm tot and Q .  Thus, once the nest quantity subtotals are 
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known, each firm’s marginal costs are implied by (A1.1). With these marginal costs, 

prices can be retrieved from jjj CmP )1( += . In turn, these imply quantities 

, and market shares follow trivially. Finally, once prices and market shares 

are known, the vector of product qualities can be found by substituting into: 
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which follows from (A1.1) and (A1.2). 30  (Here is the market share of 

the imported variety.) 
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To solve for the nest quantity subtotals, note that ∑
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Substituting the marginal cost expression (A1.5) into this sum, and dividing both sides by  

, one obtains: 
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Gg K,1= .     

The right-hand side of (A1.6) is a monotonic negative function of  with value 

 at  and limit 0 as Q , where  is the number of producers 

tot
gQ

0=tot
gQ ∞ gn

                  
30 Berry, Levinsohn and Pakes (1995) use a similar inversion to study the quality of automobile models. 
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in nest g. Thus, for all , , and , equation (A1.7) has a unique, 

positive root: , which can be found using a bisection algorithm at 

any Q .  
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Finally, we will show that Q  has a unique positive 

root for any given Q . The existence of at least one root follows from the fact that 

 is continuous in Q  ,   and 
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 is a continuous decreasing function of  Q . This can be seen by restating (A1.2) as: 
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1 , Gg K,1= , which implies 

that s  falls with , . Again, a bracketing and bisection algorithm suffices 

to generate numerical solutions. 
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Appendix 2: The Gibbs Sampler 

 Because it is not feasible to sample independent draws from the density  

, we use Markov chain Monte Carlo (MCMC) techniques. The idea is to 

draw a sequence of realizations on 

)|( Dθπ

)|()( θ⋅θ∝ DLp

θ  from some Markov process, { })(, iθ)2()1( ,,θθ L

)D

, 

with elements whose unconditional distributions converge to |(θπ  as i → .  After 

discarding the early draws to eliminate the effects of the starting values, one can 

approximate the posterior moments of 

∞

θby constructing their sample counterparts from 

the chain. 

  The mostly commonly used MCMC algorithm is the Gibbs sampler. It generates  

a Markov chain by breaking the parameter vector into sub-vectors with full conditional 

distributions that can be sampled from, then using these conditional distributions to 

update the sub-vectors sequentially (Gilks, et al, 1996). We exploit Gibbs sampling 

techniques by breaking θ into 3 sub-vectors: ( )σαα=θ ,,1 fd , ( )φλ=θ ,2 , and 

. These we update according to the following algorithm:  )(3 Σ=θ vec

Step 0: Set the initial values ( ))0(
3

)0(
2

)0(
1

)0( ,, θθθ=θ , and i = 0. 

Step 1: Draw θ  as follows: )1( +i

a) Draw ( )Diii ,,|~ )(
3

)(
211

)1(
1 θθθπ+θ  

b) Draw ( )Diii ,,|~ )(
3

)1(
122

)1(
2 θθθπθ ++       

c) Draw ( )Diii ,,|~ )1(
2

)1(
133

)1(
3

+++ θθθπθ         

Step 2:  Set i = i + 1, and go to step 1. 
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The distribution ( D,,| 3211 )θθθ

( )

π  is the most difficult to construct. It is 

proportional to ( )1321 1
,,| θθθ θpθDL  where ( )321 ,,| θθθDL  is the likelihood function 

based on (10)-(12) and (A1.1)-(A1.3); and ( )11
θθp  is the prior distribution defined in the 

text. But  does not have a closed form expression, so we draw ( 21 ,, θθθ ) ( )13 1
θθf|DL 1θ  

using the random-walk Metropolis algorithm with a normal proposal density. The 

performance of the random-walk Metropolis algorithm depends crucially on the variance 

–covariance matrix of the proposal density. If the variance-covariance matrix is too big, 

then nearly all proposed moves will be accepted (high acceptance) but the random walk 

will move around the parameter space very slowly (slow mixing). On the other hand, if 

the variance-covariance matrix is too small, then an excessively large fraction of 

proposed moves will be rejected (low acceptance), although those draws that are accepted 

will move the chain by large increments.  To balance these two effects, the convention is 

to choose the variance-covariance matrix in such a way that the empirical overall 

acceptance rate is around between 0.15 and 0.5. For more details, see Gilks, et al, (1996, 

chapter 7). We experimented until this condition was satisfied. 

To describe  and ( )D,,| 3122 θθθπ ( )D,,| 2133 θθθπ , let us rewrite (13a) and (13b)  

as  Y  where  jtjtjt Z ε+β′= ( )′ω= jtjtjt c, ,Y  ( )′′ω= −− jtjtjtjt XcZ ,,,1 11 , 

( )c
jtjt εε ω ,=jtε ,  andβ . Also, stacking observations, let us 

define: 
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Then, we can write the VAR system asY UZ +β= . Further, conditional on , our one-

to-one mapping from (

1θ

tt RCT
vv

, | t tt Ct P00 ,Q ) to (
vv ,ω ) allows us to infer (Y, Z) from 

. Thus the construction of ( D,1θ ) ( )D,,| 3122 θθθπ  and ( )D,,| 2133 θθθπ  is a standard 

exercise (Zellner, 1971).  

 Specifically, the likelihood-based full conditional distribution of , given 

, is normal with mean 

2θ

( D,, 31 θθ ) ( )( ) )'('' 2
1 YvecIZZZ ⋅⊗−

2

and variance ( ) . 

The full conditional posterior distribution for 

Σ⊗−1'ZZ

θ  efficiently blends this information with 

our priors. We have assumed that 2θ  has prior distribution ( )00 ,VuN , so 

 is multivariate normal with mean ( ,| 122 θθπ )D,3θ ( )[ ]0u1
0) V −+′1Zn

−Σ⊗′ (YvecVn =

)[ ] 11
0

u  

and variance ( )( 1 −−+V−Σ⊗′ZZ=nV .   

Similarly, using the mapping ( )D,, 21 θθ ( )ZY ,,β→ , we may write the likelihood-

based full conditional estimator of Σ , given ( )D,, 21 θθ ,  as 

( )(∑ ∑
= =

−β−
−

N

i

T
)β

t
itititit ZYZY

TN 1 2)1(
1

Σ

' . When multiplied by N(T-1), this estimator has a 

Wishart distribution with N(T-1) degrees of freedom. Thus, given that we have assumed 

 has prior distribution ( ) G 1
00 , −mInvWish , the full conditional posterior distribution for 
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)(3 Σ=θ vec ,  i.e., , is the vector version of a  

distribution, where 

( D,,| 2133 θθθπ

(0

) ),( 1−
nn GmWish Inv

)1−+= TNmnm  and ( ) ( )β−′β ZYZ−+= −− YGn
1

0
1G .  
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TABLE 1: POSTERIOR PARAMETER DISTRIBUTIONS 
 

Mean 
Std. 

Error Median Skewness 5% 95% 
 Demand System 
αd (prior: ) ]10,0[~ Uα 4.194 2.845 3.696 0.375 0.437 9.198 
αf (prior: ) ]10,0[~ Uγ 1.086 0.779 0.997 0.463 0.070 2.423 
σ  (prior: σ ) ]1,0[~ U 0.970 0.023 0.975 -1.029 0.927 0.997 

 
 Product Quality VAR 

1λ  (constant) -0.436 3.186 -0.229 -0.199 -5.876 4.608 
2λ  ( ) 1−ωit 0.469 0.376 0.468 0.008 -0.152 1.086 

3λ  ( ) 1ln −itC 0.053 0.237 0.056 -0.032 -0.343 0.437 
4λ  (trend) -0.021 0.046 -0.020 -0.219 -0.098 0.052 
5λ  (initial capital stock) -0.009 0.101 -0.007 -0.133 -0.179 0.153 
6λ  (exported, t-1) 0.029 0.374 0.022 0.059 -0.578 0.648 
7λ  (imported intermediates, t-1) -0.040 0.385 -0.041 0.030 -0.679 0.595 
ωϑ1 (ω ) 1i 0.788 1.373 0.781 0.051 -1.467 3.051 
ωϑ2 ( ln ) 1iC -0.192 0.382 -0.157 -0.511 -0.897 0.353 

 Log Marginal Cost VAR 

1φ  (constant) 0.291 3.211 0.069 0.286 -4.684 5.896 

2φ  ( ) 1ln −itC 0.551 0.244 0.554 -0.060 0.152 0.946 
3φ  ( ) 1−ωit 0.314 0.383 0.311 0.020 -0.306 0.942 
4φ  (trend) 0.001 0.045 0.001 0.080 -0.071 0.076 
5φ  (initial capital stock) -0.003 0.105 -0.004 0.062 -0.170 0.169 
6φ  (exported, t-1) -0.146 0.387 -0.145 -0.042 -0.788 0.490 
7φ  (imported intermediates, t-1) -0.098 0.403 -0.104 0.029 -0.764 0.557 
C
1ϑ ( ) 1ln iC -0.799 1.382 0.255 0.435 -0.267 0.954 
c
1ϑ (ω ) 1i 0.286 0.384 -0.788 -0.064 -3.129 1.433 

 Covariance Matrix 

11Σ  0.943 0.127 0.931 0.532 0.755 1.168 

12Σ  0.010 0.093 0.010 0.009 -0.143 0.164 
22Σ  1.004 0.137 0.992 0.535 0.802 1.245 
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TABLE 2:  

DESCRIPTIVE STATISTICS ON PERFORMANCE MEASURES (Colombian Pulp Mills) 

 

j

j

K
U∆

 
j

j

K
Π

 
j

jk
k

K

∑
≠
Π∆

 
j

jk
k

j

jj

KK
U

∑
≠
Π∆

+
Π+∆

 

jCln  jω  

 Mean 0.065 0.071 -0.221 -0.085 -3.198 1.868 
 Median 0.004 0.067 -0.156 -0.057 -3.252 1.886 
 Std. Dev. 0.134 0.041 0.222 0.147 0.496 0.279 
 Skewness 12.516 2.082 4.752 7.266 -0.208 -0.026 
 

TABLE  3:  

CORRELATIONS OF PERFORMANCE MEASURES (Colombian Pulp Mills)* 

 
j

j

K
U∆

 
j

j

K
Π

 
j

jk
k

K

∑
≠
Π∆

 
j

jk
k

j

jj

KK
U

∑
≠
Π∆

+
Π+∆ jCln  jω  jφ

~
 

j

j

K
U∆

 1.000 0.322 -0.488 -0.002 -0.314 0.536 -0.153 

j

j

K

Π   1.000 -0.413 0.003 -0.441 0.152 0.600 

j
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k

K

∑
≠
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   1.000 0.699 0.466 0.194 0.073 

j

jk
k

j

jj

K

K
U

∑
≠
Π∆

+

Π+∆

   1.000 0.186 0.435 0.220 

jCln      1.000 0.201 0.022 

jω       1.000 0.238 

jφ
~        1.000 

 

* All variables are purged of annual time effects. Productivity normalizations are based 
on Caves et al (1982). 
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 FIGURE 1: 
EFFECTS OF PRODUCER TRADE ON QUALITY AND MARGINAL COST TRAJECTORIES 
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Marginal Cost Indices: Base Case vs No Trade
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FIGURE 2: EFFECTS OF PRODUCER TRADE ON WELFARE MEASURES 
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Total Surplus: Base Case vs No Trade
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FIGURE  3:  
EFFECTS OF PRODUCER TRADE ON TRADITIONAL PERFORMANCE MEASURES 
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