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ABSTRACT

We investigate a consumption-based present value relation that is a function of future dividend

growth. Using data on aggregate consumption and measures of the dividend payments from

aggregate wealth, we show that changing forecasts of dividend growth make an important

contribution to fluctuations in the U.S. stock market, despite the failure of the dividend-price ratio

to uncover such variation. In addition, these dividend forecasts are found to covary with changing

forecasts of excess stock returns. The variation in expected dividend growth we uncover is positively

correlated with changing forecasts of excess returns and occurs at business cycle frequencies, those

ranging from one to six years. Because positively correlated fluctuations in expected dividend

growth and expected returns have offsetting affects on the log dividend-price ratio, the results imply

that both the market risk-premium and expected dividend growth vary considerably more than what

can be revealed using the log dividend-price ratio alone as a predictive variable.
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1 Introduction

One does not have to delve far into recent surveys of the asset pricing literature to uncover

a few key empirical results that have come to represent stylized facts, part of the “standard

viewÔ of U.S. aggregate stock market behavior.

1. Large predictable movements in dividends are not apparent in U.S. stock market data.

In particular, the log dividend-price ratio does not have important long horizon fore-

casting power for the growth in dividend payments.1

2. Returns on aggregate stock market indexes in excess of a short term interest rate

are highly forecastable over long horizons. The log dividend-price ratio is extremely

persistent and forecasts excess returns over horizons of many years.2

3. Variance decompositions of dividend-price ratios show that changing forecasts of future

excess returns comprise almost all of the variation in dividend-price ratios. These find-

ings form the basis for the conclusion that expected dividend growth is approximately

constant.3

Empirical evidence on the behavior of the dividend-price ratio has transformed the way

financial economists perceive asset markets. It has replaced the age-old view that expected

returns are approximately constant, with the modern-day view that time-variation in ex-

pected returns constitutes an important part of aggregate stock market variability. Even the

extraordinary behavior of stock prices during the late 1990s has not unraveled this trans-

formation. Academic researchers have responded to this episode by emphasizing that—in

contrast to stock market dividends—movements in aggregate stock prices have always played

an important role historically in restoring the dividend-price ratio to its mean, even though

the persistence of the dividend-price ratio implies that such restorations can sometimes

take many years to materialize (Heaton and Lucas (1999); Campbell and Shiller (2001);

Cochrane (2001), Ch. 20; Lewellen (2001); Campbell (2002); Fama and French (2002)).

These researchers maintain that, despite the market’s unusual behavior recently, changing

forecasts of excess returns make important contributions to fluctuations in the aggregate

stock market.

1A large literature documents the poor predictability of dividend growth by the dividend-price ratio over

long horizons, for example, Campbell (1991); Cochrane (1991); Cochrane (1994); Cochrane (1997); Cochrane

(2001); Campbell (2002). Ang and Bekaert (2001) find somewhat stronger predictability; we discuss their

results further below.
2See Fama and French (1988), Campbell and Shiller (1988); Hodrick (1992); Campbell, Lo, and MacKinlay

(1997); Cochrane (1997); Cochrane (2001), Ch. 20; Campbell (2002).
3See Campbell (1991); Cochrane (1991); Hodrick (1992); Campbell, Lo, and MacKinlay (1997), Ch. 7;

Cochrane (2001), Ch. 20; Campbell (2002).
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Yet there are noticeable cracks in the standard academic paradigm of predictability based

on the dividend-price ratio. On the one hand, several researchers, focusing primarily on fore-

casting horizons less than a few years, have argued that careful statistical analysis provides

little evidence that the log dividend-price ratio forecasts returns (for example, Nelson and

Kim (1993); Stambaugh (1999); Ang and Bekaert (2001); Valkanov (2001)). These find-

ings have led some to conclude that changing forecasts of excess returns make a negligible

contribution to fluctuations in the aggregate stock market.

On the other hand, other researchers have found that excess returns on the aggregate

stock market are strongly forecastable at horizons far shorter than those over which the

persistent dividend-price ratio predominantly varies. Lettau and Ludvigson (2001a) find

that excess stock returns are forecastable at horizons over which the dividend-price ratio has

comparably weak forecasting power, namely at “business cycleÔ frequencies, those ranging

from a few quarters to several years. Such predictable variation in returns is revealed not

by the slow moving dividend-price ratio, but instead by an empirical proxy for the log

consumption-wealth ratio, denoted cayt, a variable that captures deviations from the common

trend in consumption, asset (nonhuman) wealth and labor income. The consumption-wealth

variable cayt is less persistent than the dividend-price ratio, consistent with the finding that

the former forecasts returns over shorter horizons than latter.

Taken together, these empirical findings raise a series of puzzling questions. Do the

intermediate horizon statistical analyses using the dividend-price ratio imply that expected

excess returns are approximately constant? If so, then why does cayt have predictive power

for excess returns at horizons ranging from a few quarters to several years? Moreover, if

business cycle variation in expected returns is present, why does the dividend-price ratio

have difficulty capturing this variation?

This paper argues that it is possible to make sense of these seemingly contradictory

findings and in the process provide empirical answers to the questions posed above. We study

a consumption-based present value relation that is a function of future dividend growth. The

evidence we present has two key elements. First, using data on aggregate consumption and

dividend payments from aggregate (human and nonhuman) wealth, we show that changing

forecasts of stock market dividend growth do make an important contribution to fluctuations

in the U.S. stock market, despite the failure of the dividend-price ratio to uncover such

variation. Although U.S. dividend growth is known to have some short-run forecastability

arising from the seasonality of dividend payments, to our knowledge this study is one of the

few to find important predictability in direct long-horizon regressions, and in particular at

horizons over which excess stock returns have been found to be forecastable. Second, these

dividend forecasts are found to positively covary with changing forecasts of excess stock

returns.

These findings help resolve the puzzles discussed above, for two reasons. First, the results

help explain why the log dividend-price ratio has been found to be a relatively weak predictor
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of US dividend growth, despite the evidence presented here that dividend growth is highly

forecastable. Movements in expected dividend growth that are positively correlated with

movements in expected returns have offsetting effects on the log dividend-price ratio. Second,

they can explain why business cycle variation in expected excess returns is captured by cayt,

but not well captured by the dividend-price ratio. Movements in expected returns that are

positively correlated with movements in expected dividend growth will have offsetting affects

on the log dividend-price ratio, but not necessarily on the log consumption-wealth ratio.

We emphasize two implications of our findings. First, expected dividend growth is not

constant, but instead varies over horizons ranging from one to six years. Thus, the variation

in expected dividend growth that we uncover occurs at business cycle frequencies, not the

ultra low frequencies that dominate the sampling variability of the log dividend-price ratio.

Second, common variation in expected returns and expected dividend growth will make it

more difficult for the log dividend-price ratio to display significant predictive power for future

returns as well as future dividend growth, consistent with evidence reported in Nelson and

Kim (1993), Stambaugh (1999), Ang and Bekaert (2001) and Valkanov (2001)). Such a

failure is not an indication that expected returns are constant, however. On the contrary,

the log dividend-price ratio will have difficulty revealing business cycle variation in the equity

risk-premium precisely because expected returns fluctuate at those frequencies, and covary

with changing forecasts of dividend growth. These findings therefore suggest not only that

expected returns vary, but that they vary by far more (over shorter horizons) than what can

be revealed using the log dividend-price ratio alone as a predictive variable.

The rest of this paper is organized as follows. In the next section, we present an expres-

sion linking aggregate consumption and dividend payments from aggregate wealth, to the

expected future growth rates of income flows from aggregate wealth. This delivers a present

value relation for future dividend growth in terms of observable variables. We then move

on in Section 3 to discuss the data, and present results from estimating the common trend

in log consumption and measures of the dividend payments from aggregate wealth. For the

main part of our analysis, we focus on findings using the growth in dividends paid from the

CRSP value-weighted stock market index, in order to make our results directly comparable

with those from the existing asset pricing literature. Nevertheless, in Section 5.3 we show

that our main conclusions are not altered by including aggregate share repurchases in the

measure of dividends. In section 4 we present the outcome of long-horizon forecasting re-

gressions for dividend growth and excess returns on the US stock market. Section 5 discusses

one possible explanation for why expected dividend growth might vary over time, and be

positively correlated with expected returns, despite the fact that firms may have an incentive

to smooth dividend payments if shareholders desire smooth consumption paths. Section 6

concludes.
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2 A Consumption-Based Present Value Relation for

Dividend Growth

This section presents a consumption-based present value relation for future dividend growth.

We consider a representative agent economy in which all wealth, including human capital,

is tradable. Let Wt be beginning of period aggregate wealth (defined as the sum of human

capital, Ht, and nonhuman, or asset wealth, At) in period t; Rw,t+1 is the net return on

aggregate wealth. For expositional convenience, we consider a simple accumulation equation

for aggregate wealth, written

Wt+1 = (1 +Rw,t+1)(Wt − Ct). (1)

Labor income Yt does not appear explicitly in this equation because of the assumption that

the market value of tradable human capital is included in aggregate wealth.4 Throughout

this paper we use lower case letters to denote log variables, e.g., ct ≡ log(Ct).

Defining r ≡ log(1 + R), Campbell and Mankiw (1989) derive an expression for the log

consumption-aggregate wealth ratio by taking a first-order Taylor expansion of (1), solv-

ing the resulting difference equation for log wealth forward, and imposing a transversality

condition.5 The resulting expression holds to a first-order approximation:6

ct − wt = Et

∞
∑

i=1

ρiw(rw,t+i −∆ct+i), (2)

where ρw ≡ 1 − exp(c− w). This expression says that the log consumption-wealth ratio

embodies rational forecasts of returns and consumption growth.

Equation(2) is of little use in empirical work because aggregate wealth includes human

capital, which is not observable. Lettau and Ludvigson (2001a) address this problem by

reformulating the bivariate cointegrating relation between ct and wt as a trivariate cointe-

grating relation involving three observable variables, namely ct, at, and yt,where at is the log

of nonhuman, or asset, wealth, and yt is log labor income. The resulting empirical “proxyÔ

for the log consumption-aggregate wealth ratio is a consumption-based present value relation

4None of the derivations below are dependent on this assumption. In particular, equation (3), below,

can be derived from the analogous budget constraint in which human capital is nontradeable: At+1 =

(1 +Ra,t+1)(At + Yt − Ct), where, Ht = Et

∑∞
j=0

∏j
i=0(1 +Ra,t+i)

−iYt+j .
5This transversality condition rules out rational bubbles.
6We omit unimportant linearization constants in the equations throughout the paper.
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involving future returns to asset wealth7

cayt ≡ ct − ωat − (1− ω) yt = Et

∞
∑

i=1

ρiw (ωra,t+i −∆ct+i + (1− ω)∆yt+1+i) , (3)

where ω is the average share of asset wealth, At, in aggregate wealth, Wt, ra,t is the log return

to asset wealth, At. Under the maintained hypothesis that asset returns, consumption growth

and labor income growth are covariance stationary, (3) says that consumption, asset wealth

and labor income are cointegrated, and that deviations from the common trend in ct, at, and

yt summarize expectations of returns to asset wealth, consumption growth, labor income

growth, or some combination of all three. The wealth shares ω and (1− ω) are cointegrating

coefficients. We discuss their estimation further below. The cointegrating residual on the

left-hand-side of (3) is denoted cayt for short. The cointegration framework says that, if risk

premia vary over time (for any reason), cayt is a likely candidate for predicting future excess

returns. Both (2) and (3) are consumption-based present-value relations involving future

returns to wealth.

In this paper we employ the same accounting framework to construct a consumption-

based present value relation involving future dividend growth from aggregate wealth. We

can move from the consumption-based present value relation involving future returns, (3),

to one involving future dividend growth by expressing the market value of assets in terms of

expected future returns and expected future income flows. The general derivation is given

in Campbell and Mankiw (1989), and the application to our setting is given in Appendix A.

This derivation delivers a present-value relation involving the log of consumption and the

logs of dividends from asset wealth, dt, and human wealth, yt, which takes the form

cdyt ≡ ct − νdt − (1− ν) yt = Et

∞
∑

i=1

ρiw(ν∆dt+i + (1− ν)∆yt+i −∆ct+i). (4)

Equation (4) is a consumption-based present value relation involving future dividend

growth. Under the maintained hypothesis that ∆dt, ∆yt, and ∆ct are covariance stationary,

equation (4) says that consumption, dividends from asset wealth, and dividends from hu-

man capital (labor income) are cointegrated, and that deviations from their common trend

(given by the left-hand-side of (4)) provide a rational forecast of dividend growth, labor

income growth, consumption growth, or some combination of all three. The income shares

ν and (1− ν) are cointegrating coefficients. We discuss their estimation further below. The

cointegrating residual on the left-hand-side of (4) is denoted cdyt, for short.

7We will often refer loosely to cayt as a proxy for the log consumption-aggregate wealth ratio, ct−wt. More

precisely, Lettau and Ludvigson (2001a) find that cayt is a proxy for the important predictive components

of ct − wt for future returns to asset wealth. Nevertheless, the left-hand-side of (3) will be proportional to

ct − wt under the following conditions: first, expected labor income growth and consumption growth are

constant and, second, the conditional expected return to human capital is proportional to the return to

nonhuman capital.

7



It is instructive to compare equation (4) with the proxy for the consumption-aggregate

wealth ratio, (3), studied in Lettau and Ludvigson (2001a). Equation (3) says that if investors

want to maintain flat consumption paths (i.e., expected consumption growth is approxi-

mately constant), fluctuations in cayt reveal expectations of future returns to asset wealth,

provided that expected labor income growth is not too volatile. This implication was studied

in Lettau and Ludvigson (2001a). Analogously, equation (4) says that if investors want to

maintain flat consumption paths, fluctuations in cdyt summarize expectations of the growth

in future dividends to aggregate wealth. This implication of the framework is studied here.

Investors with flat consumption paths will appear to smooth out transitory fluctuations in

dividend income stemming from time-variation in expected dividend growth. Consumption

should be high relative to its long-run trend relation with dt and yt when dividend growth is

expected to be higher in the future, and low relative to its long-run trend with dt and yt when

dividend growth is expected to fall. Moreover, if expected consumption growth and expected

labor income growth do not vary much, cdyt should display relatively little predictive power

for future consumption and labor income growth, but may forecast stock market dividend

growth, if in fact expected dividend growth varies over time. In this case, (4) says that cdyt

is a state variable that summarizes changing forecasts of dividend growth to asset wealth.

It is also instructive to compare (4) and (3) with the linearized expression for the log

dividend-price ratio. Following Campbell and Shiller (1988) the log dividend-price ratio may

be written (up to a first-order approximation) as

dt − pt = Et

∞
∑

i=0

ρi(rt+1+i −∆dt+1+i), (5)

where pt be the log price of stock market wealth, which pays the dividend, dt, ρ ≡ 1
1+exp(d−p)

,

and rt is the log return to stock market wealth.8 This equation says that if the log dividend-

price ratio is high, agents must be expecting high future returns on stock market wealth, or

low dividend growth rates. Many studies, cited in the introduction, have documented that

dt−pt explains little of the variability in future dividend growth; as a consequence, expected

dividend growth is often modelled as constant.

Equation (5) can be simplified if we assume that expected stock returns follow a first-

order autoregressive process, Etrt+1 ≡ xt = φxt−1 + ξt. With this specification for expected

stock returns, and if expected dividend growth is constant, the log dividend-price ratio takes

the form

dt − pt = Et

∞
∑

i=0

ρi(rt+1+i −∆dt+1+i) =
xt

1− ρφ
. (6)

When expected dividend growth is constant, the log dividend-price ratio does not forecast

dividend growth at any horizon but instead forecasts long-horizon stock returns, because it

8Like those above for cayt and cdyt, this expression ignores inconsequential linearization constants.
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captures time-varying expected returns, xt. Equation (6) shows that, under the standard

view that expected dividend growth is approximately constant, any and all variation in

expected returns must be revealed by variation in the dividend-price ratio.

It is useful to consider the behavior of the log dividend-price ratio in a simple example

for which expected dividend growth is not constant. Suppose that expected dividend growth

varies according to a first-order autoregressive process,

Et∆dt+1 ≡ gt = ψgt−1 + ζt. (7)

As is evident from (5), the effect of such variation on the log dividend-price ratio depends on

the correlation between expected dividend growth and expected returns. For example, if the

two are positively correlated, expected returns may be modeled as having two components,

one component common to expected dividend growth, and another component independent

of expected dividend growth. In this case we may write Etrt+1 = βgt+xt, where β > 0 is the

loading on expected dividend growth that generates a positive correlation between Etrt+1

and Et∆dt+1, and xt is a component of expected returns that is independent of expected

dividend growth.9 Note that when β = 1, all of the variation in expected dividend growth

is common to variation in expected returns.

Combining Etrt+1 = βgt + xt with (5), the log dividend-price ratio becomes

dt − pt = Et

∞
∑

j=0

ρ(rt+1+i −∆dt+1+i) (8)

=
1

1− ρφ
xt −

1− β

1− ρψ
gt. (9)

Equation 9 shows that, when β is greater than zero, the relationship between dt− pt and

both expected dividend growth and expected returns will be obfuscated. When all of the

variation in expected dividend growth is common to variation in expected returns, β = 1

and the expression is precisely the same as (6) for the case in which expected dividend

growth is constant. In this instance, the log dividend-price ratio will have no forecasting

power for future dividend growth even though, by construction, expected dividend growth

varies over time. This is because positively correlated fluctuations in expected dividend

growth and expected returns have offsetting affects on the log dividend-price ratio. The

log dividend-price ratio will also have no forecasting power for one component of expected

returns, namely gt, because that component is completely offset by variation in expected

dividend growth. When 0 < β < 1, dt − pt will still have difficulty revealing changing

forecasts of stock market dividend growth, because it only captures a portion, (1− β), of

time-variation n expected dividend growth; the remaining portion is not revealed because

it is common to time-varying expected returns. It will also only capture a portion, xt, of

9The loading on xt is normalized to unity. This normalization is without loss of generality, since the

specification above can always be redefined as Etrt+1 = βgt + γx̃t as Etrt+1 = βgt + xt where xt = γx̃t.

9



time-varying expected returns, because the remaining portion, βgt, is more than offset by

variation in expected dividend growth, −gt. Notice that these problems do not affect the

two consumption-based ratios discussed above, because they are not simultaneous functions

of expected returns and expected dividend growth. These considerations motivate the use of

the consumption-based ratios developed above to uncover possible time-variation in expected

returns and expected dividend growth.

The framework developed above, with its approximate consumption identities, serves

merely to motivate and interpret an investigation of whether consumption-based present

value relations might be informative about the future path of dividend growth, asset returns,

labor income growth or consumption growth. The empirical investigation itself, discussed

in the next section, is not dependent on these approximations. Nevertheless, we may assess

the implications of framework presented above by investigating whether such present-value

relations are informative about the future path of consumption growth, labor income growth

or dividend growth from the aggregate stock market. We do so next.

3 The Common Trend in Consumption, Dividends and

Labor Income

3.1 Data and Preliminary Analysis

Before we can estimate a common trend between consumption and measures of aggregate

dividends, we need to address two data issues that arise from the use of aggregate consump-

tion and dividend/income data. First, we use nondurables and services expenditure as a

measure of aggregate consumption. This measure is a subset of total consumption, which is

unobservable because we don’t have a measure of the service flow from the stock of durable

goods. Note that it would be inappropriate to use total personal consumption expenditures

as a measure of consumption in this framework. This series includes expenditures on durable

goods, which represent replacements and additions to the capital stock (investment), rather

than the service flow from the existing stock. Durables expenditures are properly accounted

for as part of nonhuman wealth, At, a component of aggregate wealth, Wt.
10

10Treating durables purchases purely as an expenditure removing them from At and including them in Ct

is also improper because doing so ignores the evolution of the asset over time, which must be accounted for

by multiplying the stock by a gross return. (In the case of many durable goods, this gross return would be

less than one and consist primarily of depreciation.) What should be used in this budget constraint for Ct is

not total expenditures but total consumption, of which the service flow from the durables stock is one part.

But the service flow is unobservable, and is not the same as the investment expenditures on consumption

goods. An assumption of some sort is necessary, and we follow Lettau and Ludvigson (2001a) by assuming

that the log of unobservable real total consumption, cTt , is a multiple, λ > 1 of the log of real nondurables

and services expenditure, ct, plus a stationary random component, εt. Under this assumption, the observable
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Second, we have experimented with constructing various empirical measures of nonstock

dividends by adding forms of non-equity income from private capital, the largest component

of which is interest income, to stock market dividends. In our sample, however, we find the

strongest evidence of a common trend between log consumption, log stock market dividends,

and log labor income. A likely explanation is that the inflationary component of nominal

interest income, along with the explicit inflation tax on interest income inherent in the

U.S. tax code, makes real interest income difficult to measure, and creates peculiar trends

in interest income that have nothing in particular to do with the evolution of permanent

real interest income. These problems are especially evident in our sample during the 1970s

and 1980s when nominal interest income grew rapidly because of inflation.11,12 In addition,

we do not directly observe dividend payments from some forms of nonhuman, nonfinancial

household net worth, primarily physical capital.13

Fortunately, it is not necessary to include every dividend component from aggregate

wealth in the expression (4) to obtain a consumption-based present value relation that is a

function of future stock market dividend growth, the object of interest in this study. As long

as the excluded forms of dividend payments are cointegrated with the included forms (as

models with balanced growth would suggest), the framework above implies that the included

dividend measures may be combined with consumption to obtain a valid cointegrating re-

lation. In this study, we use stock market dividends as a measure of dividend payments

from nonhuman (asset) wealth, and use dt to denote stock market dividends from now on. If

nonstock/nonlabor forms of dividend income are cointegrated with the dividend payments

log of real nondurables and services expenditures, ct, appears in the cointegrating relation (3).
11The real component of nominal interest income is not directly observable. Nominal interest income can

be put in real terms by deflating by a price level to get the component which should be associated with

real consumption, but one would still need to subtract the product of some inflation rate and the stock of

financial assets from this amount. Measurement is complicated because the stock data are in the flow of

funds while the nominal interest data are in the National Income and Product Accounts, and the components

do not match precisely.
12Some researchers have documented a significant decline in the percentage of firms paying tax-inefficient

dividends in data since 1978 (e.g., Fama and French (2001)). It might seem that such a phenomenon

would create problem with trends in stock market dividend income similar to those for interest income.

An inspection of the dividend data from the CRSP value-weighted index, however, reveals that—with the

exception of the unusually large one-year decline in dividends in 2000, discussed below—the total dollar

value of CRSP value-weighted dividends (in real, per capita terms) has not declined precipitously over the

period since 1978, or over the full sample. The average annual growth rate of real, per capita dividends is

5.6% from 1978 through 1999, greater than the growth rate for the period 1948 to 1978. The annual growth

rate for the whole sample (1948-2001) is 4.2%.
13One response to this point is to use the product side of the national income accounts to estimate income

flows of such components of wealth as the residual from GDP less reported dividend and labor income. This

approach creates its own problems, however, because it requires the income and product sides of the national

accounts to be combined, and there is no way to know how much of the statistical discrepancy between the

two is attributable to underestimates of income versus overestimates of output.
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from stock market wealth, dt, and/or human capital, yt, the framework above implies a

cointegrating relation among ct, stock market dividends, dt, and labor income yt, and the

resulting cointegrating residual should reveal expectations over long-horizons of either future

∆dt, ∆yt or ∆ct, or some combination of all three.

These data considerations have two implications. First, imply that the cointegrating

coefficients in (3) and (4) should not sum to one. As discussed in Lettau and Ludvigson

(2001a), the cointegrating parameters in (3) and (4) are likely to sum to a number less than

one because only a fraction of total consumption based on nondurables and services expen-

diture is observable (see Lettau and Ludvigson (2001a)). Second, they have implications for

the sums of the cointegrating coefficients in (3) and (4). Denote the shares wealth shares

ω and (1− ω) generically as cointegrating coefficients αa and αy, respectively. Likewise,

denote the shares ν and (1− ν) generically as cointegrating coefficients βd and βy, respec-

tively. Since some components of aggregate dividends are omitted in (4), the sums α̂a + α̂y

and ̂βd + ̂βy, (where “hatsÔ denote estimated values), are unlikely to be identical in finite

samples.14 The parameters α̂a, α̂y, ̂βd, and ̂βy may be estimated using either single equation

or system methods. The estimated values of the cointegrating residuals cayt and cdyt are

denoted ĉayt and ̂cdyt, respectively.

The data used in this study are annual, per capita variables, measured in 1996 dollars,

and span the period 1948 to 2001. We use annual data in order to insure that any fore-

castability of dividend growth we uncover is not attributable to the seasonality of dividend

payments. Annual data is also used because the outcome of both tests for, and estimation of,

cointegrating relations can be highly sensitive to seasonal adjustments. Stock market divi-

dends are measured as dividends on the CRSP value-weighted index and are scaled to match

the units of consumption and labor income. Appendix B provides a detailed description of

the sources and definitions of all the data used in this study.

Table 1 first presents summary statistics for log of real, per capita consumption growth,

labor income growth, dividend growth, the change in the log of the CRSP price index, ∆pt,

and the change in the log of household net worth, ∆at, all in annual data. Real dividend

growth is considerably more volatile than consumption and labor income, having a standard

deviation of 12 percent compared to 1.1 and 1.8 for consumption and labor income growth,

respectively. It is somewhat less volatile than the log difference in the CRSP value weighted

price index, which has a standard deviation of 16 percent, but still more volatile than the log

difference in networth, which has a standard deviation of 4 percent. Consumption growth

and labor income growth are strongly positively correlated, as are ∆pt and ∆at. Annual real

consumption growth and real dividend growth have a weak correlation of -0.16.

We begin by testing for both the presence and number of cointegrating relations in the

system of variables x′
t ≡ [ct, dt, yt]

′. Such tests have already been performed for the system

14These conclusions are based on our own Monte Carlo analysis.
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v′
t = [ct, at, yt]

′ in Lettau and Ludvigson (2001a) and Lettau and Ludvigson (2002). The

results are contained in Appendix C of this paper. We assume all of the variables contained

in xt and vt are first order integrated, or I(1), an assumption verified by unit root tests. Test

results presented in the Appendix C suggest the presence of a single cointegrating relation

for both vector time series. We denote the single cointegrating relation for v′
t = [ct, at, yt]

′

as α′ = (1,−αd,−αy)
′, and for x′

t = [ct, dt, yt]
′ as β′ = (1,−βd,−βy)

′.

The cointegrating parameters αd, αy and βd, βy must be estimated. We use a dynamic

least squares procedure which generates asymptotically optimal estimates (Stock and Watson

(1993)).15 This procedure estimates ̂β
′
= (1,−0.13,−0.68)′. The Newey-West corrected t-

statistics (Newey and West (1987)) for these estimates are -10.49 and -34.82, respectively.

We denote the estimated cointegrating residual ̂β
′
xt as ̂cdyt. The estimated cointegrating

vector for v′
t = [ct, at, yt]

′ is α̂′ = (1,−0.29,−0.60)′, very similar to that obtained in Lettau

and Ludvigson (2001a) using quarterly data. The Newey-West corrected t-statistics for these

estimates are -14.32 and -30.48, respectively.

Table 2 displays autocorrelation coefficients for dt − pt, ĉayt and ̂cdyt. It is well-known

that the dividend-price ratio is very persistent. In annual data from 1948 to 2000 it has

a first order autocorrelation 0.88, a second order autocorrelation of 0.72 and a third order

autocorrelation of 0.60. The autocorrelations of ̂cdyt and ĉayt are much lower and die out

more quickly. Their first order autocorrelation coefficients are 0.48 and 0.55, respectively;

their second order autocorrelation coefficients are 0.13 and 0.22 respectively.

In Figure 1 we plot the demeaned values of ̂cdyt and ĉayt over the period 1948 to

2001. The sample correlation between ̂cdyt and ĉayt is 0.41. The figure shows that the

two consumption-based present-value relations tend to move together over time, although

there are some notable episodes in which they diverge. One such episode is the year 2000,

when an extraordinary 30% decline in recorded dividends (an extreme outlier in our sample)

pushed ̂cdyt well above its historical mean.

To better understand the time-series properties of dt − pt, ĉayt, and ̂cdyt, it is useful to

examine estimates of error-correction representations for (dt, pt)
′, (ct, at, yt)

′ and (ct, dt, yt)
′.

Table 3 presents the results of estimating first-order cointegrated vector autoregressions

(VARs) for dt and pt, for ct, at and yt, and for ct, dt, and yt.
16 For dividends and prices,

the theoretical cointegrating vector (1,−1)′ is imposed; for the other two systems, the coin-

tegrating vectors are estimated as discussed above. The table reveals several noteworthy

properties of the data on consumption, household wealth, stock market dividends, and labor

income.

First, Panel A shows that the log dividend-price ratio has little ability to forecast future

dividend growth or price growth in the cointegrated VAR. Variation in the log dividend-price

15Two leads and lags of the first differences of ∆yt and ∆dt are used in the dynamic least squares regression.
16The VAR lag lengths were chosen in accordance with findings from Akaike and Schwartz tests. The

second system is also studied in Ludvigson and Steindel (1999).
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ratio is too persistent to display statistical evidence of cointegration in this sample, a result

made apparent by the absence of a statistically significant error-correction representation in

Panel A (although see the discussion below of the findings in Lewellen (2001) and Campbell

and Yogo (2002)). Second, Panel B shows that estimation of the cointegrating residual ĉayt−1

is a strong predictor of wealth growth. Both consumption and labor income growth are

somewhat predictable by lags of either consumption growth and/or wealth growth, as noted

elsewhere (Flavin (1981); Campbell and Mankiw (1989)), but the adjusted R2 statistics

(especially for the labor income equation) are lower than those for the asset regression. More

importantly, the cointegrating residual ĉayt−1 is an economically and statistically significant

determinant of next period’s asset growth, but not next period’s consumption or labor income

growth. This finding implies that asset wealth is mean-reverting, and adjusts over long-

horizons to match the smoothness of consumption and labor income. These results are

consistent with those in Lettau and Ludvigson (2001a) using quarterly data.

Panel C displays estimates from a cointegrated VAR for ct, dt, and yt. The results are

analogous to those for the cointegrated VAR involving ct, at, and yt. Consumption and

labor income are predictable by lagged consumption and wealth growth, but not by the

cointegrating residual ̂cdyt−1. What is strongly predictable by the cointegrating residual is

stock market dividend growth: ̂cdyt−1 is both a statistically significant and economically

important predictor of next year’s dividend growth, ∆dt. These findings imply that when

log dividends deviate from their habitual ratio with log labor income and log consumption, it

is dividends, rather than consumption or labor income, that is forecast to slowly adjust until

the cointegrating equilibrium is restored. As for asset wealth, dividends are mean reverting

and adapt over long-horizons to match the smoothness in consumption and labor income.

4 Long-Horizon Forecasting Regressions

A more direct way to understand mean reversion is to investigate regressions of long-horizon

returns and dividend growth onto the consumption ratios ̂cdyt−1 and ĉayt−1. The theory

behind (3) and (4) makes clear that both ratios should track longer-term tendencies in

asset markets, rather than provide accurate short-term forecasts of booms or crashes. We

focus in this paper on explaining the historical behavior of forecastable components of stock

market dividend growth, and their relation to forecastable components of excess stock market

returns. Table 4 presents the results of univariate regressions of the return on the CRSP

value-weighted stock market index in excess of the three-month Treasury bill rate, at horizons

ranging from one to 6 years. In each regression, the dependent variable is the H-period log

excess return, rt+1 − rf,t+1 + ... + rt+H − rf,t+H , where rf,t is used to denote the Treasury

bill rate, or “risk-freeÔ rate. The independent variable is either dt − pt, ĉayt, or ̂cdyt. The

table reports the estimated regression coefficient, the adjusted R2 statistic in square brackets,
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and a heteroskedasticity and autocorrelation-consistent t-statistic for the hypothesis that the

regression coefficient is zero in parentheses. The table also reports, in curly brackets, the

rescaled t-statistic recommended by Valkanov (2001) for the hypothesis that the regression

coefficient is zero. We discuss this rescaled t-statistic below. Table 5 presents the same

output for predicting long-horizon CRSP dividend growth, ∆dt+1 + ... +∆dt+H . As hinted

at by the results reported in Table 3, neither ĉayt, or ̂cdyt has any important long-horizon

forecasting power for consumption or labor income growth; to conserve space, we do not

report those results here.

The first row of Table 4 shows that the log dividend-price ratio has little power for

forecast aggregate stock market returns from one to 6 years in this sample. Again, these

results differ from those reported elsewhere, primarily because we have included the last few

years of stock market data in the sample. The extraordinary increase in stock prices in the

late 1990s substantially weakens the statistical evidence for predictability by dt−pt that had

been a feature of previous samples. If we end the sample in 1998, the log dividend price ratio

displays forecasting power for excess returns, but its strongest forecasting power is exhibited

over horizons that are far longer than that exhibited by the consumption-wealth ratio proxy,

ĉayt (see Lettau and Ludvigson (2001a)).17 By contrast, the second row of Table 4 shows

that ĉayt has statistically significant forecasting power for future excess returns at horizons

ranging from one to six years. This evidence is consistent with that reported in Lettau and

Ludvigson (2001a) using quarterly data. Using this single variable alone achieves an R
2
of

0.27 for excess returns at a one-year horizon, 0.49 for excess returns over a two year horizon,

and 0.52 for excess returns over a six year horizon.

The remaining row of Table 4 gives an indication of the forecasting power of ̂cdyt for

long-horizon excess returns. At a one year horizon, ̂cdyt, displays little statistical forecasting

power for future returns in this sample. For returns over all longer horizons, however, this

present-value relation for dividend growth displays forecasting power for future returns. In

addition, the coefficients from these predictive regressions are positive, indicating that a

high ̂cdyt forecasts high excess returns just as a high ĉayt forecasts high excess returns. The

t-statistics are above four for all horizons in excess of one year, and the R
2
statistic rises

from .20 at a three year horizon to .32 at a six year horizon. Because both ĉayt and ̂cdyt
are positively related to future excess returns, the results imply that both capture some

component of time-varying expected returns.

We now turn to forecasts of long-horizon dividend growth. Table 5 displays results from

17Other statistical approaches find that the dividend-price ratio remains a strong predictor of excess stock

returns even in samples that include recent data. Lewellen (2001) notes that when the dividend-price ratio

is very persistent but nonetheless stationary, episodes in which the dividend yield remains deviated from its

long-run mean for an extended period of time will not necessarily constitute evidence against predictability.

Similar results are reported in recent work by Campbell and Yogo (2002), who find evidence of return

predictability by financial ratios if one is willing to rule out an explosive root in the ratios.
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the same forecasting exercise for long horizon dividend growth as presented above for long-

horizon excess returns. In this sample, which includes data in the last half of the 1990s, the

log dividend-price ratio displays some forecasting power for future dividend growth (row 1),

but has the wrong sign (positive), consistent with evidence in Campbell (2002) who also uses

data that include the second half of the 1990s. Rows 2 and 3 present the results of predictive

regressions using ĉayt and ̂cdyt. The consumption-based present value relation for future

dividend growth, ̂cdyt, has strong forecasting power for future dividend growth at horizons

ranging from one to six years. The individual coefficients are highly statistically significant,

and the regression results suggest that the variable explains between 20 and 40 percent of

future dividend growth, depending on the horizon.

Lettau and Ludvigson (2001a) found that ĉayt had predictive power for future returns;

Row 2 shows that it also has statistically significant predictive power for dividend growth

rates in our sample, with high values of ĉayt predicting high dividend growth rates. The

forecasting power of ĉayt is, however, weaker than that displayed by ̂cdyt at every horizon

in excess of one year (row 3). For example, at a four year horizon, ̂cdyt explains about

20 percent of the variation in dividend growth, while ĉayt explains 9 percent. At a five

year horizon, ̂cdyt explains about 28 percent of the variation in dividend growth, while ĉayt
explains 10 percent. Still, just as for excess returns, the results suggest that both ĉayt and
̂cdyt capture some component of time-varying expected dividend growth.

The results in Tables 5 and 6 suggest that there is common variation in expected returns

and expected dividend growth. The consumption-wealth ratio proxy, ĉayt, which is a strong

predictor of excess stock market returns, is also a predictor of stock market dividend growth.

Conversely, ̂cdyt, a strong predictor of stock market dividend growth, is also a predictor of

excess stock market returns. A natural question is whether either variable has independent

predictive power for excess returns and dividend growth. To address this question, Table 6

presents the results of multivariate regressions of long-horizon excess returns (upper panel)

and dividend growth (lower panel) using ĉayt and ̂cdyt as regressors. The table shows

that, in forecasting long horizon excess returns, ̂cdyt contains no information about future

returns that is independent of that contained in ĉayt: at all forecasting horizons, ĉayt drives

out ̂cdyt. Even though both variables convey information about future returns and future

dividend growth, ĉayt contains some information about future returns that is independent of

that contained in ̂cdyt. This suggests the presence of an independent component in expected

excess returns, corresponding to the component xt in the discussion above.

The second panel of Table 6 shows that much the opposite pattern is borne out in long-

horizon forecasting regressions for dividend growth: ̂cdyt drives out ĉayt in forecasting future

dividend growth at all forecasting horizons greater than three years. But for forecasting

horizons between 2 and 3 years, the information contained in ĉayt and ̂cdyt is apparently

sufficiently similar that the regression has difficulty distinguishing their independent effects

(although ̂cdyt is statistically significant at the 6 percent level). Accordingly, ĉayt and ̂cdyt
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are not marginally significant predictors of dividend growth over 2 and 3 year horizons, but

they are strongly jointly significant (the p-value for the F -test is less than 0.000001).

This latter finding suggests that much of the variation in expected dividend growth

may be common to variation in expected returns, at least for two and three year horizons.

The findings also suggest that there may be a component of expected returns that moves

independently of expected dividend growth. Note that if much of the variation in expected

dividend growth is common to variation in expected returns, we would not expect innovations

in expected dividend growth to have an important effect on the log dividend-price ratio, for

the reasons discussed in Section 2. By contrast, if there were a component of expected

returns that is independent of expected dividend growth, we would expect innovations in

expected returns to have a positive effect on the log dividend-price ratio.

One way to evaluate these possibilities is to estimate elasticities of the dividend-price

ratio with respect to innovations in expected dividend growth and expected returns. Such

estimates can be accomplished by running regressions of dt − pt on innovations in ̂cdyt and

ĉayt. The output below is generated by regressing dt − pt on the residuals, εcdy,t and εcay,t,

from first-order autoregressions for ̂cdyt and ĉayt, respectively. The lagged log dividend-

ratio is also included as a regressor to control for the substantial persistence in dt − pt. The

estimation output from these regressions using data from 1948 to 2001, with t-statistics in

parentheses, is

dt − pt = −0.06
(−1.45)

+ 0.96
(18.89)

(dt−1 − pt−1)− 1.31
(−1.0)

εcdy,t

dt − pt = −0.05
(−1.41)

+ 0.97
(22.02)

(dt−1 − pt−1) + 4.24
(2.73)

εcay,t.

These results confirm the intuition suggested by the long-horizon forecasting regressions

presented above. Innovations in expected dividend growth, as proxied by εcdy,t, have no sta-

tistically significant effect on dt − pt, consistent with the finding that much of the variation

in expected dividend growth is common to variation in expected returns. By contrast, inno-

vations in expected returns, as proxied by εcay,t, are statistically significant at conventional

significance levels. These findings reinforce the conclusion that persistent variation in the

log dividend-price ratio is better described as capturing some low frequency component of

expected excess returns than variation in expected dividend growth, consistent with the ar-

guments in Heaton and Lucas (1999), Campbell and Shiller (2001), Cochrane (2001), Fama

and French (2002), and Lewellen (2001); Campbell (2002).

4.1 Related Empirical Findings

In summary, the evidence presented above suggests that there is important predictability

of dividend growth over long horizons, and that predictable variation in dividend growth is

correlated with that in excess returns. To our knowledge, such evidence of important pre-

dictability in dividend growth, correlated with important forecastable movements in excess
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returns, is largely new. Other researchers, cited in the introduction, have found that divi-

dend growth predictability–if evident at all in long-horizon regressions–occurs at relatively

short horizons and is not highly correlated with predictable variation in excess returns. More

recently, Ang (2002) investigates the forecastability of long-horizon dividend growth for the

aggregate stock market using annual data from 1927-2000. Although Ang concludes that

there may be some long-horizon forecastability of dividend growth based on results from

rolling forward a first-order vector autoregression for dividend yields, dividend growth rates

and returns, he finds little evidence of predictability in long-horizon dividend growth from

direct long-horizon regressions. These findings are consistent with those of the earlier papers

cited in the introduction which use the log dividend-price ratio as a predictive variable, and

our own results using dt − pt, reported above.

One recent study that does find predictability of dividend growth in direct long-horizon

regressions is Ang and Bekaert (2001), who report results based on observations from 1952:Q4

to 1999:Q4 on the S&P 500 stock market index. Like Ang (2002), they also confirm the

earlier findings of Campbell (1991) and Cochrane (1991), that dividend growth is largely

unpredictable by the dividend-price ratio in univariate long-horizon forecasting regressions.

As Campbell (1991) and Cochrane (1991) emphasize, such findings imply that changing

forecasts of future dividend growth must comprise little of the variation in the dividend-

price ratio. But, Ang and Bekaert (2001) do find that the dividend-price ratio has marginal

predictive power for future dividend growth in a multivariate regression once the earnings

yield is also included as a regressor. (The earnings yield also has marginal predictive power.)

There are two main differences between our predictability results and those in Ang and

Bekaert (2001). First, the joint forecasting power of the dividend yield and the earnings yield

for dividend growth is concentrated at shorter horizons than in regressions using ̂cdyt and

ĉayt. Second, the R-squares for the regressions using the former variables are substantially

lower than those using the latter. For example, in the sample used in Ang and Bekaert (2001),

the dividend yield and the earnings yield jointly explain about 21 percent of dividend growth

one year ahead, and about 13 percent a five year horizon. The comparable numbers using
̂cdyt alone as a predictive variable are 31 percent and 34 percent.18

4.2 Additional Statistical Tests

4.2.1 Multivariate Long-Horizon Forecasting Regressions19

The cointegrating coefficients in ĉayt and ̂cdyt are estimated using the full sample. This

estimation strategy is appropriate for testing the theoretical framework above, because suf-

18These numbers are higher than those reported in Table 4 because we use the slightly shorter sample

employed by Ang and Bekaert (2001) in order to make the results directly comparable.
19We are grateful to Jushan Bai for pointing out the possibility of using the methodology used in this

subsection.
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ficiently large samples of data are necessary to recover the true cointegrating coefficients,

and there is no implication (either from the theoretical framework or from statistical theory)

that ĉayt and ̂cdyt should forecast the right-hand-side variables in (3) and (4) unless the

cointegrating coefficients have converged to their true values. Fortunately, cointegrating co-

efficients are “superconsistent,Ô converging to their true values at a rate proportional to the

sample size T , and can therefore be treated as known in subsequent estimation. It follows

that a valid test of the theoretical cointegration framework in (3) and (4) requires the use of

the full sample to estimate the cointegrating coefficients.20

A separate issue concerns not whether the theoretical framework is correct, but whether

a practitioner, operating in early part of our sample and without access to the whole sample

to estimate cointegrating coefficients, could have exploited the forecasting power of ĉayt
and ̂cdyt. Out-of-sample or subsample analysis is often used to assess questions of this

nature. A difficulty with these procedures, however, is that the subsample analysis inherent

in out-of-sample forecasting tests entails a loss of information, and can lead such tests to be

substantially less powerful than in-sample forecasting tests (Inoue and Kilian (2002)). This

means that out-of-sample (and subsample) tests can fail to reveal true forecasting power that

even a practitioner could have had in real time. This pattern that would be exacerbated in

any investigation of long-horizon forecasting power.

With these considerations in mind, we now provide an alternative approach to assessing

the forecasting power of ĉayt and ̂cdyt. The approach we propose eliminates the need to

estimate cointegrating parameters using the full sample in a first stage regression, but at the

same time avoids the power problems inherent in out-of-sample and subsample analyses. To

do so, we consider single equation, multivariate regressions taking the form

zt+h = a+ b1ct + b2at + b3yt + ut, (10)

where the dependent variable zt+h is either the h period excess return on the CRSP value-

weighted index, or the h period dividend growth rate on the CRSP value-weighted index.

Rather than estimating the cointegrating relation among ct, at, and yt in a first stage re-

gression and then using the cointegrating residual as the single right-hand-side variable, the

regression (10) uses the multiple variables involved in the cointegrating relation as regressors

directly. If there is a relation between the left-hand-side variable to be forecast, and some

stationary linear combination of the regressors ct, at, and yt, the regression can freely esti-

mate the non-zero coefficients b1, b2, and b3 which generate such a relation. For this excercise,

we maintain the hypothesis that the left-side-variable is stationary, while the right-hand-side

variables are I (1). Then, under the null hypothesis that (ct, at, yt)
′ has a single cointegrat-

ing relation, it is straightforward to show that the limiting distributions for b1, b2, and b3

will be standard, implying that the forecasting regression (10) will produce valid adjusted

20This issue is discussed in more detail in Lettau and Ludvigson (2001b).
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R2 and t-statistics. Because this procedure does not require any first-stage estimation of

cointegrating parameters, it is clear that the forecasting regression (10), its coefficients and

R2 statistics, cannot be influenced by such a prior analysis.

Table 6 reports long-horizon regression results for excess returns and dividend growth,

from an estimation of (10) and a directly analogous multivariate regression in which ct, dt,

and yt are the regressors. The table reports the coefficient estimates at the top of each cell,

heteroskedasticity and serial correlation robust t-statistics in parentheses, and adjusted R2

statistics in square brackets.21 The results are broadly consistent with those obtained using

ĉayt and ̂cdyt as forecasting variables. In almost every case, the individual coefficients on each

regressor are strongly statistically significant as predictive variables for excess returns and

dividend growth, and the R2 statistics indicate that the regressors jointly explain about the

same fraction of variation in future returns and future dividend growth as do the individual

regressors ĉayt and ̂cdyt. For example, the multivariate regression with ct, at, and yt as

regressors explains about 26 percent of one year ahead excess returns, whereas ĉayt explains

27 percent. Similarly, the multivariate regression with ct, dt, and yt explains about 24 percent

of the variation in one-year-ahead dividend growth, whereas ̂cdyt explains 20 percent. These

results do not support the conclusion that ĉayt and ̂cdyt have forecasting power merely

because they are estimated in a first stage, using data from the whole sample period.

4.2.2 Small Sample Robustness

There are at least two potential econometric hazards with interpreting the long-horizon

regression results using ̂cdyt and ĉay, presented above. One is that the use of overlapping

data in long-horizon regressions can skew statistical inference in finite samples. Valkanov

(2001) shows that, in finite samples where the forecasting horizon is a nontrivial fraction of

the sample size, (i) the t-statistics of long-horizon regression coefficients do not converge to

21Inference on b1, b2, and b3 can be accomplished by re-writing (10) so that the hypotheses to be tested are

written as a restrictions on I (0) variables (Sims, Stock, and Watson (1990)). For example, the hypothesis

b1 = 0 can be tested by rewriting (10) as

zt+h = a+ b1 [ct − ωat − (1− ω) yt] + [b2 + b1ω] at + [b3 + b1 (1− ω)] yt + ut

= a+ b1 [cayt] + [b2 + b1ω] at + [b3 + b1 (1− ω)] yt + ut.

It follows that the ordinary least squares estimate of b1 has a limiting distribution given by

√
T
(

̂b1 − b1

)

−→ N

(

0,
σ2
u

T
∑T

t=1 (cayt − cay)2

)

,

where σ2
u denotes the variance of ut, and cay is the sample mean of cayt. These may be evaluated by using

the full sample estimates, ĉayt. A similar rearrangement can be used to test hypotheses about b2 and b3.

Note that the full sample estimates of the cointegrating coefficients are only required to do inference about

the forecasting excercise–they do not affect the forecasting excercise itself.
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a well defined distribution, and (ii) the finite-sample distributions of R2 statistics in long-

horizon regressions do not converge to their population values. A second possible econometric

hazard with interpreting the long-horizon regression results presented in the previous section

occurs because (like most long-horizon forecasting variables) ̂cdyt and ĉay are persistent

variables, which, although predetermined, are not exogenous. This lack of exogeneity can

create a small sample bias in the regression coefficient that works in the direction of indicating

predictability even where none is present (Nelson and Kim (1993) and Stambaugh (1999)).

To address these potential inference problems, we perform three robustness checks. The

first is to compute the rescaled t/
√
T statistic (where T is the sample size), recommended by

Valkanov (2001). Second, we use vector autoregessions to impute long-horizon R2 statistics,

rather than estimating them directly from long-horizon regressions. Third, we perform

both bootstrapped and Monte Carlo estimates of the empirical distribution of the predictive

regression coefficients and adjusted R2 statistics under the null of no predictability.

We begin by discussing the rescaled t/
√
T statistic. Valkanov (2001) shows that, when

there is nontrivial overlap in the residuals of long-horizon regressions, the t-statistic for

whether the predictive variable is statistically different from zero diverges at rate T 1/2. Thus,

Valkanov proposes testing for statistical significance by using a rescaled t/
√
T statistic,

which has a well defined limiting distribution. The distribution of this rescaled statistic is

nonstandard, however, and depends on two nuisance parameters, δ and c. The parameter δ

measures the covariance between innovations in the variable to be forecast, and innovations

some forecasting variable, call it Xt. The parameter c measures deviations from unity in the

highest autoregressive root for Xt, in a decreasing (at rate T ) neighborhood of 1. Both of

these parameters may be consistently estimated using the methodology described in Valkanov

(2001). With these estimates in hand, the rescaled t-statistic, t/
√
T , may be compared

against critical values provided in Valkanov (2001).

The rescaled t-statistics for our application are reported in curly brackets in Table 4,

for univariate predictive regressions of excess returns on ĉayt and ̂cdyt, and in Table 5, for

univariate predictive regressions of dividend growth on ĉayt and ̂cdyt. The table reports

both the statistic itself, and whether its value implies that the predictive coefficient in each

regression is statistically significant at the 5, 2.5 and 1 percent levels. According to this

rescaled t-statistic, ĉayt is a powerful forecaster of excess returns (statistically significant at

the 1% level) at every horizon ranging from one to six years, as is ̂cdyt at all but the one-year

horizon (Table 4). For future dividend growth (Table 5), the rescaled t-statistic implies that
̂cdyt is a statistically significant predictor at the 1% percent level at every horizon from one

to six years, whereas ĉayt is a statistically significant predictor of dividend growth at the

1% level at every horizon ranging from one to four years. These results do not support the

conclusion that the forecasting power of ĉayt and ̂cdyt for long-horizon excess stock market

returns and stock market dividend growth can be attributed to biases arising from the use

of overlapping data in finite samples.
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Finite sample problems with overlapping data in long-horizon regressions may also be

avoided by using vector autoregression to impute implied long-horizon R2 statistics for uni-

variate forecasting regressions, rather than estimating them directly from long-horizon re-

turns. The methodology for measuring long-horizon statistics by estimating a VAR has been

covered by Campbell (1991), Hodrick (1992), and Kandel and Stambaugh (1989), and we

refer the reader to those articles for further details. We present the results from using this

methodology in Table 8, which investigates the long-horizon predictive power of ĉayt and
̂cdyt for future returns and future dividend growth using bivariate, first-order VARs. For

each forecasting horizon we consider, we calculate an implied R2 statistic using the coefficient

estimates of the VAR and the estimated covariance matrix of the VAR residuals.

Table 8 shows that the pattern of the implied R2 statistics from the vector autoregressions

is very similar to those from the produced from the single equation long-horizon regressions.

The implied adjusted R2 statistics for forecasting dividend growth with ̂cdyt (row 3) peaks

at 0.2 for a three year horizon. This forecasting power is consistently greater than that

obtained from a simple autoregression for dividend growth (row 1). A similar pattern holds

for the implied R2 statistics for forecasting with ĉayt: the implied R2 statistic for forecasting

excess returns with ĉayt is as high as 49% at a three year horizon; for forecasting dividend

growth with ĉayt, it reaches 24% at a three year horizon. Thus, the evidence favoring

predictability of dividend growth and excess stock returns using ̂cdyt and ĉayt is robust to

the VAR methodology, implying that the size of the long-horizon R2 statistics cannot be

readily attributed to inference problems with the use of overlapping data in finite samples.

An alternate method for addressing potential finite sample biases is to estimate the

empirical distribution of regression coefficients and adjusted R2 statistics from predictive

regressions in which ĉayt and ̂cdyt are used as forecasting variables. Table 9 presents results

based on two methodologies which yield very similar results: a bootstrap and a Monte Carlo

simulation, both conducted under the null hypothesis of no predictability (i.e., residuals for

the dependent variable are generated by regressions on a constant). For both simulations,

we use first-order autoregressive specifications our reduced form models for ĉayt and ̂cdyt.
22

For the bootstrap, artificial sequences of excess returns and dividend growth are generated

by drawing randomly (with replacement) from the sample residuals, under the null of no pre-

dictability.23 The simulations were repeated 10,000 times. For the Monte Carlo simulation,

10,000 artificial time-series equal to the size of our data set were generated under the null

of no predictability by taking random draws from a normal distribution; the notes to Table

22It is known that the standard bootstrap is not consistent if the data series have a near-unit root.

However, ĉayt and ̂cdyt do not appear well-characterized as near-unit root processes, since—unlike the log

dividend-price ratio—standard cointegration tests strongly reject the hypothesis that they are I (1) random

variables.
23Nelson and Kim (1993) also perform randomization, which differs from bootstrapping only in that

sampling is without replacement. We also performed the simulations using randomization and found that

the results were not affected by this change.
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9 provides details. To avoid difficulties caused by the use of overlapping data, we focus here

on the one-year ahead regressions presented in Tables 5 and 6.

Table 9 summarizes the estimated sampling distribution for the slope coefficient and the

R2 statistic in univariate forecasting regressions of annual excess returns and annual dividend

growth. Panel A presents the bootstrap results; Panel B, the Monte Carlo results. The results

of each simulation are nearly identical. In almost every case, the estimated predictability

coefficient and R2 statistic lies outside of the 95 percent confidence interval based on the

empirical distribution under the null of no predictability. In most cases they lie outside of the

99 percent confidence interval. The one exception is for the case in which excess returns are

regressed on the one-year lagged value of ̂cdy; in this case, we cannot reject the hypothesis

that one-step ahead forecasting power of ̂cdyt is not statistically indistinguishable from zero.

This is not surprising, since even the standard asymptotic statistics suggest that ̂cdyt only has

significant predictive power for returns at horizons longer than one year. For all of the other

regressions and forecasting horizons, we find that our estimated slope coefficients and R2

statistics are large relative to their sampling distributions under the null of no predictability.

In summary, these results, like those discussed above using the rescaled t-statistic and VAR-

imputed R2 statistics, do not support the conclusion that the predictability of excess returns

and dividend growth documented here is can be attributed to small sample biases in the

regression coefficients or R2 statistics.

4.3 Including Share Repurchases

So far we have focused on measuring dividends as the actual cash paid to shareholders of the

CRSP value-weighted index. We do this in order to make our results directly comparable

with the existing literature which has focused on forecasting the growth rate in this particular

measure of dividends. This measure is of interest because it represents the predominant form

of payout to shareholders over much of the post-war period. Moreover, as noted by Campbell

and Shiller (2001), traditional dividends are an appealing indicator of fundamental value for

long-term shareholders, because the end-of-period share price becomes trivially small when

discounted from the end to the beginning of a long holding period.

Nonetheless, there is a growing view that changing corporate finance policy has led

many firms, in recent years, to compensate shareholders through repurchase programs rather

than through dividends (Fama and French (2001); Grullon and Michaely (2002)), even if

large firms with high earnings have continued to increase traditional dividend payouts over

time (DeAngelo, DeAngelo, and Skinner (2002)). In this section we show that our main

conclusions are not altered by adjusting dividends to account for share repurchase activity.

One way to adjust dividends for such shifts in corporate financial policy is to add dollars

spent on repurchases to dividends. We do so here by adding aggregate share repurchase

expenditures for the Industrial Compustat firms reported in Grullon and Michaely (2002)
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to our measure of dividends.24 These data cover the period 1972 to 2000 and are added to

the CRSP dividends after being scaled to match the units of our original dividend series.

As Grullon and Michaely (2002) note, repurchases activity prior to 1972 represented a tiny

fraction of shareholder compensation for U.S. corporations; thus the traditional dividend

series should provide an accurate measure of actual payouts in data prior to 1972.

Table 10 presents the results of univariate long horizon forecasting regressions for the

growth in dividends plus repurchase activity, using ĉayt and ̂cdyt as forecasting variables in

separate regressions. The results should be compared with those in Table 5, which presents

the analogous findings using CRSP value-weighted dividends. Comparing the output from

the two tables, it is immediately evident that the inclusion of share repurchases does not

alter the main conclusions obtained from using traditional dividends: ĉayt and ̂cdy are both

strong predictors of the long-horizon growth rates in this series, with t-statistics that begin

above 4 for horizons at one year and increase, and R-squared statistics that are in line

with those in Table 4. We conclude that adjusting dividends for repurchases does not alter

the main finding in this paper, namely that the growth in compensation to shareholders

is forecastable in post-war data, and over horizons previously associated exclusively with

return forecastability.

5 Why Might Expected Dividend Growth Covary with

Expected Returns?

If investors themselves desire smooth consumption paths, why don’t managers perfectly

smooth dividend payments? Some authors have noted that dividends are smoother than

earnings, consistent with the hypothesis that managers do some dividend smoothing (Cochrane

(1994); Lamont (1998)). One possibility is that although dividend-smoothing may be possi-

ble over long horizons (as revealed by the dividend-price ratio), it may be more difficult over

horizons corresponding more closely to the business cycle. Several researchers have presented

evidence that is suggestive of this hypothesis. Gertler and Hubbard (1993) study firm-level

data from Compustat and find that firm dividend payouts are lower during a slow-down in

economic growth and higher during periods of economic expansion. Bernanke and Gertler

(1989) and Bernanke, Gertler, and Gilchrist (1996) present theoretical and empirical evidence

of countercyclical variation in the external finance premium, suggesting that managers who

need to finance long-term projects have a greater need to retain earnings in recessions than

in expansions.. The equity risk-premium also appears counter-cyclical: it rises during an

24We add gross repurchases to our measure of dividends, since those data are readily available from the

published work of Grullon and Michaely (2002). This procedure is conservative for our purpose, since the

sum of share repurchases and traditional dividend payments would only be closer to our original series if we

instead added net repurchases (net of new issues).
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economic slow-down and falls during periods of economic growth (Fama and French (1989);

Ferson and Harvey (1991); Lettau and Ludvigson (2001a)). Taken together, these findings

suggest that high risk-premia occur in periods of economic recession and coincide with a

temporarily low stock price, temporarily low earnings, and temporarily low dividends. This

suggests that consumers may be better able to smooth transitory fluctuations in their div-

idend income than managers are able to smooth fluctuations in earnings. If this is true,

earnings growth should be predictably higher when, according to ̂cdyt, dividend growth and

excess stock returns are predictably higher.

Table 11 presents some evidence that is supportive of this hypothesis using earnings data

for NYSE firms. The earnings data are from Lewellen (2001) and are operating earnings

before depreciation to market value. Unfortunately, only a short sample is available that is

limited by when Compustat data are available: 1964-2000.25 Table 11 reports that earnings

growth is predictably higher when predictable dividend growth, as captured by ̂cdyt, is

higher. The regressor ̂cdyt, is strongly statistically significant as a predictor of earnings

growth at business cycle frequencies, with t-statistics in excess of four for one to three year

forecasting horizons, and in excess of three for a four year horizon. The univariate forecasting

regression explains about 14 percent of the variation in earnings growth 4 years hence. Thus,

when consumption is high relative to its common trend with dt and yt, both dividends and

earnings are temporarily low, and forecast to grow more quickly in the future. These results

are consistent with the hypothesis manager’s dividend smoothing ability is imperfect over

business cycles.

6 Conclusion

This paper presents evidence that changing forecasts of dividend growth make an important

contribution to fluctuations in the U.S. stock market, despite the failure of the dividend-price

ratio to uncover such variation. Although these findings contradict the common conclusion

that expected dividend growth is roughly constant, they reinforce the textbook conclusion

that expected returns are time-varying and make an important contribution to aggregate

stock market fluctuations. Dividend forecasts covary with changing forecasts of excess stock

returns, and are positively correlated with business cycle variation in expected returns. Such

fluctuations in expected returns and expected dividend growth have offsetting affects on

the dividend-price ratio. The findings provide at least a partial explanation for why the

consumption-wealth ratio has been found superior to the log dividend-price ratio as a pre-

dictor of excess stock market returns over medium-term horizons.

The findings suggest that an important component of time-varying expected returns and

25We use Lewellen’s data and not earnings per share since that measure is contaminated by variability in

share issuance.
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time-varying expected dividend growth is not captured by the log dividend-price ratio, or

likely by other aggregate financial ratios. This stacks the deck against such financial ratios in

statistical tests of return or dividend growth predictability. The results also imply that time-

varying investment opportunities will be poorly captured by variation in the log dividend-

price ratio, because it fails to reveal significant movements in the investment opportunity set

that occur over business cycle horizons. This implication should be of special relevance to

the growing body of literature on strategic asset allocation, in which the log dividend-price

ratio is often used a proxy for time-variation in the investment opportunity set, and as an

input into the optimal asset allocation decision of a long-horizon investor.26

We caution that the findings presented here provide but one piece of a larger puzzle

concerning the behavior of the dividend-price ratio, especially that more recently. There is

a growing view that shifts in corporate financial policy may have created persistent changes

in dividend growth rates. For example, firms have been distributing an increasing frac-

tion of total cash paid to shareholders in the form of stock repurchases (e.g., Fama and

French (2001)). It is too soon to tell whether such shifts in corporate financial policy will

be sustained. At the same time, stock prices relative to earnings and other measures of

economic fundamentals have followed patterns similar to that of the dividend-price ratio

(Campbell and Shiller (2001)), while the consumption-based valuation ratio for dividend

growth studied here has been less affected. These observations suggest that factors other

than changes in corporate payout policy may be partly responsible for the behavior of ag-

gregate financial ratios in recent data. Whatever the reason for these changes, the results

presented here suggest that some of the differences between the log dividend-price ratio and

the log consumption-wealth ratio have been attributable historically to changing forecasts

of long-horizon dividend growth.

26For a lucid summary of this literature, see Campbell and Viceira (2001).
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Appendix A: Derivation of cdyt

Equation (4) is based on the derivation in Campbell and Mankiw (1989) for the relation between

log consumption and the log of total income flows from aggregate wealth. Campbell and Mankiw

move from the consumption-based present value relation involving future returns, (the consumption-

wealth ratio), to one involving future income flows. A derivation is given in Campbell and Mankiw

(1989) and here.

Wt is total wealth, which consists of Nt shares at time t, each of which have an ex-dividend

price, Pt, and dividend payment, It:

Wt = Nt(Pt + It). (11)

The return on aggregate wealth is defined

Rt+1 =
Pt+1 + It+1

Pt

. (12)

Combining (11) and (12),
Wt+1

Nt+1
= Rt+1(

Wt

Nt

− It). (13)

Equation (13) can be written

Wt+1 = Rt+1 (Nt +∆Nt+1)

(

Wt

Nt

− It

)

==>

Wt+1 = Rt+1

(

Wt − ItNt + (Wt − ItNt)
∆Nt+1

Nt

)

Note that from (11), (Wt − ItNt) = NtPt. Thus,

Wt+1 = Rt+1(Wt − ItNt + Pt∆Nt+1).

The term Pt∆Nt+1 is net-new investment, i.e. the net issuance of new shares, ∆Nt+1, valued at

the ex-dividend price Pt. Investors save by reinvesting a portion of their dividend income in the

asset markets.

Equation (13) is of the same form as the accumulation equation for total wealth, Wt+1 =

Rt+1 (Wt − Ct), and can be linearized in the same way. Campbell and Mankiw do so and derive

it − wt = −nt + Et

∞
∑

i=1

ρi(rt+i −∆it+i) + constant, (14)

where lower case letters denote log variables. Note that it in (14) is the log per share dividend. To

obtain total dividends, It must be multiplied by the number of shares Nt; or in logs we need it+nt.

Adding nt on both sides of (14) delivers a present value relation relating log total dividends to log

total wealth:

iTt − wt = +Et

∞
∑

i=1

ρi(rt+i −∆iTt+i +∆nt+i) + constant,



where iTt denotes total (rather than per share) income from aggregate wealth, iTt ≡ it + nt.

Combining (14) with the log-linearized expression for the log consumption wealth ratio

ct − wt = Et

∞
∑

i=1

ρi(rt+i −∆ct+i), (15)

yields

ct − iTt = Et

∞
∑

i=1

ρi(∆iTt+i −∆nt+i −∆ct+i) + constant. (16)

This equation is a more general version of (3.7) in Campbell and Mankiw:

ct − iTt = Et

∞
∑

i=1

ρi(∆iTt+i −∆ct+i) + constant. (17)

Campbell and Mankiw arrive at (17) by normalizing (in the last step), Nt, the number of shares

in each period, to equal one. Although equation (16) implies that ct − iTt may related to future

changes in the log of the number of shares of asset wealth, this implication is not interesting because

the pure number of shares is continuously renormalized by stock splits and reverse splits. Note also

that the notation in Campbell and Mankiw (1989) is unfortunate, because in their text (and in

their equation (3.7)), yt is used to denote log total income (what we denote iT here), whereas in

their appendix (where they derive equation (17)), yt denotes the log of income per share, it.

Equation (4) is based Campbell and Mankiw’s (16), but differs in two respects. First, Camp-

bell and Mankiw assume a particular functional form for investor preferences, and therefore set

Et∆ct+i = µ+ σEtrt+i. Second, equation (16) is expressed in terms of the total income flow from

aggregate wealth, iTt , whereas as in (4), this total is decomposed into its asset wealth and human

wealth components using the relation iTt ≈ νdt + (1− ν) yt, where ν is the steady state share of

income from asset wealth in total income. Together these assumptions yield the expression

cdyt ≡ ct − νdt − (1− ν) yt = Et

∞
∑

i=1

ρiw(ν∆dt+i + (1− ν)∆yt+i −∆ct+i − ν∆nt+i). (18)

For this simple framework, we have assumed that the number of “shares” of human capital are

constant, since human wealth is not traded on a stock market. This assumption is inconsequential

for the substance of the derivation, since it merely determines whether ∆nt+i in (18) is multiplied

by the constant ν. Finally, we follow Campbell and Mankiw (1989) and avoid carrying the term

ν∆nt+i around by making an arbitrary normalization that the number shares is always unity. This

delivers equation (4) in the text.

The steady state income shares ν and (1− ν) can be related to the steady state wealth shares ω

and (1− ω). To see this, assume that the steady state of the economy is characterized by balanced

growth at some gross rate 1 + g, and a constant return on aggregate wealth, Rw,t ≡ R. These

assumptions are standard features of equilibrium growth models. Equation (15) implies the steady



state value of beginning-of-period aggregate wealth is given by

Wt =
∞
∑

i=0

(1 +R)−iCt+i

=
∞
∑

i=0

(1 +R)−i (It+iNt+i + Pt∆Nt+1+i)

=
∞
∑

i=0

(1 +R)−i (Dt+i + Pt∆NA
t+1+i + Yt+i

)

,

where NA
t+1 denotes the change in the number of shares of asset wealth at time t + 1. Using the

expression above, and noting that the steady state ratio of aggregate wealth to consumption is

given by (1 +R) / (R− g), it is straightforward to show that the steady share of asset wealth in

aggregate wealth, ω, is given by

ω =
Dt + (π − 1)PtN

A
t

Dt + (π − 1)PtNA
t + Yt

,

where, Dt, PtN
A
t , and Yt all grow deterministically at rate 1+g, π ≡ (1 + g) / (1 + r − kr + kg),

and where k ≡ ITt /Ct ≥ 1, is the steady state ratio of total income to total consumption. Notice

that when k = 1 (there is no saving in steady state), we have π = 1 and

ω =
Dt

Dt + Yt

= ν,

and income shares equal wealth shares.



Appendix B: Data Description

The sources and description of each data series we use are listed below.

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expenditure on

nondurables and services, excluding shoes and clothing. The quarterly data are seasonally adjusted

at annual rates, in billions of chain- weighted 1996 dollars. The components are chain-weighted

together, and this series is scaled up so that the sample mean matches the sample mean of total

personal consumption expenditures. Our source is the U.S. Department of Commerce, Bureau of

Economic Analysis.

AFTER-TAX LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + other labor income -

personal contributions for social insurance - taxes. Taxes are defined as [wages and salaries/(wages

and salaries + proprietors’ income with IVA and Ccadj + rental income + personal dividends

+ personal interest income)] times personal tax and nontax payments, where IVA is inventory

valuation and Ccadj is capital consumption adjustments. The annual data are in current dollars.

Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net wealth in billions of current dollars, measured at the end of the

period. Stock market wealth includes direct household holdings, mutual fund holdings, holdings

of private and public pension plans, personal trusts, and insurance companies. Nonstock wealth is

the residual of total wealth minus stock market wealth, and includes ownership of privately traded

companies in noncorporate equity. Our source is the Board of Governors of the Federal Reserve

System.

DIVIDENDS

Dividends are constructed from the CRSP index returns. The CRSP dividends, Dc,t, are scaled

by the average ratio of stock market wealth, St to the price of the value-weighted CRSP index, Pc,t

to reflect dollar values, i.e., Dt ≡ E(St/Pc,t)Dc,t.

POPULATION

A measure of population is created by dividing real total disposable income by real per capita

disposable income. Consumption, wealth, labor income, and dividends are in per capita terms.

Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

The nominal after-tax labor income, stock market dividend and wealth data are deflated by the

personal consumption expenditure chain-type deflator (1996=100), seasonally adjusted. (Source:

Bureau of Economic Analysis.)



Appendix C: Cointegration Tests

This appendix presents the results of cointegration tests. Dickey-Fuller tests for the presence

of a unit root in c, y, a, d, and p (not reported) are consistent with the hypothesis of a unit root

in those series.

Table C-I reports test statistics corresponding to two cointegration tests. Reported in the far

right column are Phillips and Ouliaris (1990) residual based cointegration test statistics. The table

shows both the Dickey-Fuller t-statistic and the relevant five and 10 percent critical values. The test

is carried out without a deterministic trend in the static regression. We applied the data dependent

procedure suggested in Campbell and Perron (1991) for choosing the appropriate lag length in an

augmented Dickey-Fuller test. This procedure suggested that the appropriate lag length was one

for both the (c, a, y)′ system and the (c, d, y)′ system. The tests reject the null of no cointegration

both systems at the five percent level. The persistent dividend-price ratio displays no evidence

favoring cointegration in this sample.

Table C-I also reports the outcome of testing procedures suggested by Johansen (1988) and Jo-

hansen (1991) that allow the researcher to estimate the number of cointegrating relationships. This

procedure presumes a p-dimensional vector autoregressive model with k lags, where p corresponds

to the number of stochastic variables among which the investigator wishes to test for cointegration.

For our application, p = 3. The Johansen procedure provides two tests for cointegration: under the

null hypothesis, H0, that there are exactly r cointegrating relations, the ‘Trace’ statistic supplies

a likelihood ratio test of H0 against the alternative, HA, that there are p cointegrating relations,

where p is the total number of variables in the model. A second approach uses the ‘L-max’ statistic

to test the null hypothesis of r cointegrating relations against the alternative of r+1 cointegrating

relations.

The critical values obtained using the Johansen approach also depend on the trend character-

istics of the data. We present results allowing for linear trends in data, but assuming that the

cointegrating relation has only a constant. See the articles by Johansen for a more detailed dis-

cussion of these trend assumptions. In choosing the appropriate trend model for our data, we are

guided by both theoretical considerations and statistical criteria. Theoretical considerations imply

that the long-run equilibrium relationship between consumption, labor income and wealth do not

have deterministic trends, although each individual data series may have deterministic trends. The

Table also reports the 90 percent critical values for these statistics.

Both the L-max and Trace test results establish evidence of a cointegrating relation among

log consumption, log labor income, and the log of household wealth, and among log consumption,

log dividends and the log of labor income. Table C-I shows that we may reject the null of no

cointegration against the alternative of one cointegrating vector. In addition, we cannot reject the

null hypothesis of one cointegrating relationship against the alternative of two or three.
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Table 1: Summary Statistics

∆ct ∆yt ∆dt ∆pt ∆at

Univariate Summary Statistics

Mean (in %) 2.01 2.30 4.01 6.88 2.45

Standard Deviation (in %) 1.14 1.83 12.24 16.13 4.05

Correlation Matrix

∆ct 1.00 0.78 -0.13 -0.00 0.32

∆yt 1.00 -0.10 -0.10 0.18

∆dt 1.00 0.64 0.52

∆pt 1.00 0.83

∆at 1.00

Notes: This table reports summary statistics for annual growth of real per capita consumption

∆ct, labor income ∆yt, CRSP-VW dividends ∆dt, CRSP-VW price ∆pt and asset wealth ∆at.

The sample spans the period 1948 to 2001.



Table 2: Autocorrelations of Ratios

Ratio ρ1 ρ2 ρ3 ρ4

d− p 0.875 0.724 0.596 0.473

c− 0.29 a− 0.60 y 0.551 0.130 0.085 0.051

c− 0.13 d− 0.68 y 0.475 0.217 0.258 0.171

Notes: This table reports autocorrelations of ratios involving consumption ct, labor income yt,

CRSP-VW dividends dt, CRSP-VW price pt and asset wealth at. ρi denotes the autocorrelation of

order i (in years). The cointegrating coefficients in the last two rows are estimates using dynamic

least squares with 2 leads and lags. The sample is annual and spans the period 1948 to 2001.



Table 3: Estimates From Cointegrated VARs

Panel A: (d, p)

Equation

Dependent Variable ∆dt ∆pt

∆dt−1 -0.194 0.364
(t-stat) (-1.059) (1.352)

∆pt−1 -0.192 -0.210
(t-stat) (-1.441) (-1.079)

dt−1 − pt−1 0.103 0.070
(t-stat) (2.205) (1.021)

R̄2 0.183 0.046

Panel B: (c, a, y)

Equation

Dependent variable ∆ct ∆yt ∆at

∆ct−1 0.267 0.449 -0.523
(t-stat) (1.279) (1.220) (-0.696)

∆yt−1 -0.039 -0.148 0.433
(t-stat) (-0.294) (-0.641) (0.916)

∆at−1 0.112 0.128 0.392
(t-stat) (2.777) (1.794) (2.702)

ĉayt−1 -0.007 0.102 1.726
(t-stat) (-0.053) (0.457) (3.803)

R̄2 0.199 0.050 0.207

Panel C: (c, d, y)

Equation

Dependent variable ∆ct ∆yt ∆dt

∆ct−1 0.469 0.652 -0.136
(t-stat) (2.284) (1.869) (-0.060)

∆yt−1 -0.074 -0.156 -0.252
(t-stat) (-0.572) (-0.709) (-0.176)

∆dt−1 0.029 0.052 -0.129
(t-stat) (2.311) (2.389) (-0.917)
̂cdyt−1 -0.038 0.219 2.400
(t-stat) (-0.408) (1.377) (2.314)

R̄2 0.179 0.098 0.104

Notes: The table reports estimated coefficients from cointegrated first-order vector autoregres-

sions of the column variable on the row variable; ct is log consumption, yt is log labor income, at is

log asset wealth (net worth), dt is log stock market dividends, and pt is the log CRSP value-weighted

price index. t-statistics are reported in parentheses. Estimated coefficients that are significant at

the 5% level are highlighted in bold face. The sample is annual and spans the period 1948 to 2001.



Table 4: Univariate Long-horizon Regressions – Excess Stock Returns

h-period regression:
∑h

i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in years)

zt = 1 2 3 4 5 6

dt − pt 0.14 0.24 0.27 0.34 0.52 0.73

(1.90) (1.40) (1.21) (0.73) (0.84) (1.12)

[0.08] [0.10] [0.10] [0.10] [0.16] [0.23]

ĉayt 6.48 11.78 13.23 13.62 16.81 21.94
(4.19) (5.42) (5.42) (5.27) (7.07) (5.46)

{0.57∗∗∗} {0.74∗∗∗} {0.74∗∗∗} {0.72∗∗∗} {0.96∗∗∗} {0.74∗∗∗}

[0.27] [0.49] [0.46] [0.37] [0.39] [0.52]

̂cdyt 1.32 5.21 6.11 6.77 18.09 11.40
(1.47) (7.38) (4.13) (4.28) (4.92) (4.45)

{0.20} {1.00∗∗∗} {0.56∗∗∗} {0.58∗∗∗} {0.67∗∗∗} {0.61∗∗∗}

[0.01] [0.16] [0.20] [0.20] [0.20] [0.32]

Notes: This tables reports the results of h-period regressions of CRSP-VW returns in excess of a

3-month Treasury-bill rate, rr,t, on the variable listed in the first column:
∑h

i=1(rt+i−rf,t+i) = k+

γ zt+εt,t+h, where zt are the cointegration residuals listed in the first column. ct is log consumption,

yt is log labor income, at is log asset wealth (net worth), dt is log stock market dividends, and pt

is the log CRSP value-weighted price index. ĉayt and ̂cdyt are estimated cointegrating residuals

for the systems (ct, at, yt)
′ and (ct, dt, yt)

′, respectively. For each regression, the table reports OLS

estimates of the regressors, Newey and West (1987) corrected t-statistics (in parentheses), the

t/
√
T test suggested in Valkanov (2001) in curly brackets and adjusted R2 statistics in square

brackets. Significant coefficients using the standard t-test at the 5% level are highlighted in bold

face. Significance at the 5%, 2.5% and 1% level of the t/
√
T test using Valkanov’s (2001) critical

values is indicated by ∗, ∗∗ and ∗ ∗ ∗, respectively. The sample is annual and spans the period 1948

to 2001.



Table 5: Univariate Long-horizon Regressions – Dividend Growth

h-period regression: dt+h − dt = k + γ zt + εt,t+h

Horizon h (in years)

zt = 1 2 3 4 5 6

dt − pt 0.09 0.18 0.19 0.23 0.29 0.34
(2.94) (2.11) (2.70) (2.27) (2.70) (2.41)

[0.07] [0.15] [0.13] [0.14] [0.15] [0.19]

ĉayt 4.74 5.89 4.90 4.30 5.13 5.72
(6.26) (4.86) (3.33) (2.80) (2.17) (1.50)

{0.85∗∗∗} {0.66∗∗∗} {0.45∗∗∗} {0.38∗∗∗} {0.30∗} {0.20}

[0.29] [0.30] [0.16] [0.09] [0.10] [0.12]

̂cdyt 2.74 3.95 3.65 3.99 5.24 6.13
(4.06) (5.84) (4.13) (3.60) (5.38) (3.65)

{0.55∗∗∗} {0.79∗∗∗} {0.56∗∗∗} {0.49∗∗∗} {0.73∗∗∗} {0.50∗∗∗}

[0.20] [0.24] [0.20] [0.20] [0.28] [0.37]

Notes: This tables reports results from h-period regression of CRSP-VW dividend growth: dt+h −

dt = k + γ zt + εt,t+h, where zt are the cointegration residuals listed in the first column. ct

is log consumption, yt is log labor income, at is log asset wealth (net worth), dt is log stock

market dividends, and pt is the log CRSP value-weighted price index. ĉayt and
̂cdyt are estimated

cointegrating residuals for the systems (ct, at, yt)
′ and (ct, dt, yt)

′, respectively. For each regression,

the table reports OLS estimates of the regressors, Newey and West (1987) corrected t-statistics

(in parentheses), the t/
√
T test suggested in Valkanov (2001) in curly brackets and adjusted R2

statistics in square brackets. Significant coefficients using the standard t-test at the 5% level are

highlighted in bold face. Significance at the 5%, 2.5% and 1% level of the t/
√
T test using Valkanov’s

(2001) critical values is indicated by ∗, ∗∗ and ∗ ∗ ∗, respectively. The sample is annual and spans

the period 1948 to 2001.



Table 6: Multivariate Long-horizon Regressions

Horizon h (in years)

Variables 1 2 3 4 5 6

h-period regression: excess stock returns

ĉayt 6.94 11.15 12.22 11.95 15.33 18.47
(3.27) (3.73) (3.82) (3.43) (3.86) (4.12)

̂cdyt -0.74 0.89 1.14 1.70 1.46 3.44
(-0.81) (0.69) (0.80) (1.02) (0.76) (1.81)

[0.27] [0.48] [0.45] [0.36] [0.38] [0.53]

h-period regression: dividend growth

ĉayt 3.71 4.27 2.62 0.62 -0.30 -0.82
(3.08) (1.95) (1.09) (0.31) (-0.14) (-0.24)

̂cdyt 1.64 2.29 2.58 3.72 5.37 6.48
(2.57) (1.86) (1.87) (2.74) (4.78) (3.32)

[0.34] [0.35] [0.21] [0.18] [0.26] [0.36]

Notes: This tables reports results from h-period regression of CRSP-VW returns in excess of a 3-

month Treasury-bill rate (top panel), and dividend growth (bottom panel). ct is log consumption,

yt is log labor income, at is log asset wealth (net worth), dt is log stock market dividends, and pt

is the log CRSP value-weighted price index. ĉayt and ̂cdyt are estimated cointegrating residuals

for the systems (ct, at, yt)
′ and (ct, dt, yt)

′, respectively. For each regression, the table reports OLS

estimates of the regressors, Newey and West (1987) corrected t-statistics (in parentheses) and

adjusted R2 statistics in square brackets. Significant coefficients at the 5% level are highlighted in

bold face. The sample is annual and spans the period 1948 to 2001.



Table 7: Multivariate Long-horizon Regressions

Horizon h (in years)

Variables 1 2 3 4 5 6

h-period regression: excess stock returns on c, a and y

ct 6.50 11.96 13.48 13.92 17.34 22.53
(4.76) (6.18) (6.37) (6.48) (6.91) (6.92)

at -1.83 -3.29 -3.60 -3.67 -5.06 -6.76
(-4.57) (-5.82) (-5.83) (-5.85) (-6.90) (-7.11)

yt -4.01 -7.43 -8.50 -8.85 -10.56 -13.52
(-4.91) (-6.43) (-6.73) (-6.89) (-7.05) (-6.96)

[0.26] [0.49] [0.48] [0.40] [0.41] [0.55]

h-period regression: excess stock returns on c, d and y

ct 1.53 5.44 7.12 8.38 10.36 14.70
(1.59) (6.56) (4.97) (5.52) (5.69) (5.62)

dt -0.07 -0.54 -0.55 -0.58 -0.74 -1.16
(-0.60) (-5.10) (-3.00) (-3.03) (-3.20) (-3.49)

yt -1.30 -4.03 -5.48 -6.50 -7.96 -11.05
(-1.98) (-7.09) (-5.58) (-6.26) (-6.39) (-6.18)

[0.00] [0.15] [0.23] [0.25] [0.24] [0.37]

h-period regression: dividend growth on c, a and y

ct 4.31 5.04 4.52 4.70 6.18 6.61
(6.26) (6.60) (4.64) (4.16) (4.16) (3.34)

at -1.44 -1.91 -2.05 -2.49 -3.46 -3.70
(-7.16) (-8.56) (-7.22) (-7.56) (-7.99) (-6.41)

yt -2.44 -2.67 -2.10 -1.88 -12.31 -22.50
(-5.93) (-5.86) (-3.60) (-2.78) (-2.61) (-2.12)

[0.29] [0.37] [0.29] [0.29] [0.38] [0.40]

h-period regression: dividend growth on c, d and y

ct 2.14 2.88 2.41 2.39 3.28 4.08
(3.92) (4.77) (3.59) (2.74) (3.86) (2.99)

dt -0.45 -0.64 -0.62 -0.69 -0.88 -0.98
(-6.49) (-8.28) (-7.23) (-6.20) (-8.15) (-5.66)

yt -1.22 -1.60 -1.21 -1.09 -1.57 -2.13
(-3.28) (-3.86) (-2.64) (-1.82) (-2.70) (-2.28)

[0.24] [0.33] [0.29] [0.31] [0.40] [0.48]

Notes: See next page.



Notes: This tables reports results from h-period regression of CRSP-VW returns in excess of

a 3-month Treasury-bill rate, and dividend growth. ct is log consumption, yt is log labor income,

at is log asset wealth (net worth), and dt is log stock market dividends. For each regression,

the table reports OLS estimates of the regressors, Newey and West (1987) corrected t-statistics (in

parentheses), and adjusted R2 statistics (in square brackets). Significant coefficients at the 5% level

are highlighted in bold face. The distribution of the coefficient estimates is as follows. Consider

a regression zt = µ + β1x1t + β2x2t + β3x3t + εt, where x1, x2 and x3 are cointegrated and the

cointegrating vector is (1,−θ2,−θ3). Let ηt = x1t − θ2x2t − θ3x3t. Then the OLS estimate of β1

has a limiting distribution of
√
T (̂β1−β1) → N(0, σ2(1/T

∑T
t=1(ηt− η̄t)

2)−1) where η̄t is the mean

of ηt and σ2 is the variance of ε. Note that ηt depends on the cointegrating vector. The standard

error is Newey-West corrected. The sample is annual and spans the period 1948 to 2001.



Table 8: Implied Long-Horizon R2 from VARs

row Variables Implied R2 for Forecast Horizon H

1 2 3 4 5 6

1 ∆dt 0.12 0.09 0.05 0.05 0.04 0.03

2 ∆dt, ĉayt 0.34 0.31 0.24 0.20 0.17 0.14

3 ∆dt, ̂cdyt 0.17 0.19 0.20 0.19 0.19 0.19

4 rt 0.08 0.09 0.05 0.03 0.03 0.03

5 rt, ĉayt 0.36 0.52 0.49 0.42 0.39 0.36

6 rt, ̂cdyt 0.20 0.26 0.26 0.28 0.31 0.32

Note: The table reports implied R2 statistics for H-year dividend growth and excess

returns obtained from second-order vector autoregressions. The column denoted “Vari-

ables” lists the variables included in the VAR. The implied (unadjusted) R2 statistics

for dividend growth in rows 1, 2 and 3 and excess returns in rows 4, 5 and 6 for horizon

H are calculated from the estimated parameters of the VAR and the estimated co-

variance matrix of VAR residuals. Row 1 gives the implied R2 statistic for forecasting

dividend growth with lagged dividend growth, row 2 with lagged ĉayt and row 3 with

lagged ̂cdyt. Row 4 gives the implied R2 statistic for forecasting excess stock market

returns with lagged returns, row 5 with lagged ĉayt, and row 6 with lagged ̂cdyt. The

sample is annual and spans the period 1948 to 2001.



Table 9: Small Sample Inference of Slope and R2

xt ̂β 95% CI 99% CI R2 95% CI 99% CI

Panel A: Bootstrap

excess returns

ĉayt 6.48 (-2.78, 3.86) (-4.13, 5.44) 0.27 (-0.01, 0.06) (-0.02, 0.11)

̂cdyt 1.32 (-2.09, 2.96) (-3.10, 4.15) 0.01 (-0.01, 0.07) (-0.02, 0.10)

dividend growth

ĉayt 4.74 (-2.12, 2.61) (-3.10, 3.78) 0.29 (-0.02, 0.06) (-0.02, 0.11)

̂cdyt 2.74 (-1.32, 2.19) (-1.94, 3.09) 0.20 (-0.02, 0.06) (-0.02, 0.11)

Panel B: Monte Carlo

excess returns

ĉayt 6.48 (-3.31, 3.17) (-4.73, 4.60) 0.27 (-0.02, 0.05) (-0.02, 0.10)

̂cdyt 1.32 (-2.45, 2.44) (-3.54, 3.52) 0.01 (-0.02, 0.06) (-0.02, 0.11)

dividend growth

ĉayt 4.74 (-1.96, 1.98) (-2.97, 2.96) 0.29 (-0.02, 0.06) (-0.02, 0.11)

̂cdyt 2.74 (-1.58, 1.57) (-2.13, 2.29) 0.20 (-0.02, 0.06) (-0.02, 0.11)

Notes: This tables reports confidence intervals from a bootstrap procedure (Panel A) and a Monte

Carlo simulation (Panel B). 10,000 artificial time series of the size of our data set are generated under

the null hypothesis of no predictability. The data generating process is zt+1 = α + et+1, xt+1 =

µ+φxt−1+vt+1 where zt is either excess returns or dividends growth and xt is either cay or cdy. The

parameters in the data generating process are set to sample estimates for both the bootstrap and

the Monte Carlo. We then run OLS regressions zt+1 = α+ βxt + ut+1 and study the distributions

of ̂β and the R2. In the bootstrap we draw (with replacement) from the residuals of the system

estimated under the null hypothesis. For the Monte Carlo analysis the residuals e and v are drawn

from a normal distribution. The columns denoted ̂β and R2 report our empirical estimates using

annual data from 1948 to 2001.



Table 10: Univariate Long-horizon Regressions – Including Share Repurchases

h-period regression: dt+h − dt = k + γ zt + εt,t+h

Horizon h (in years)

zt = 1 2 3 4 5 6

dt − pt 0.09 0.10 0.10 0.11 0.15 0.19

(1.76) (1.12) (0.81) (0.70) (0.81) (0.88)

[0.01] [0.01] [0.00] [0.00] [0.01] [0.02]

ĉayt 4.66 6.36 6.52 6.51 7.97 9.24
(4.58) (4.52) (3.44) (2.97) (4.15) (3.95)

[0.24] [0.25] [0.19] [0.15] [0.18] [0.22]

̂cdyt 4.28 5.10 4.59 4.77 6.47 8.29
(5.67) (5.05) (2.91) (2.32) (3.23) (3.98)

[0.20] [0.19] [0.12] [0.10] [0.16] [0.24]

Notes: This tables reports results from h-period regression of CRSP-VW dividend growth: dt+h −

dt = k + γ zt + εt,t+h, where dividends d are adjusted to include share repurchases using the

estimates in Grullon and Michaely (2002). For each regression, the table reports OLS estimates

of the regressors, Newey and West (1987) corrected t-statistics (in parentheses) and adjusted R2

statistics in square brackets. Significant coefficients using the standard t-test at the 5% level are

highlighted in bold face. The sample is annual and spans the period 1948 to 2000, since the

repurchases data from Grullon and Michaely are only available through 2000.



Table 11: Long-horizon Regression – Earnings Growth

Horizon h (in years)

Variables 1 2 3 4 5 6

̂cdyt 2.16 3.46 4.73 6.68 6.75 7.05
(4.88) (6.50) (4.51) (3.56) (2.20) (2.01)

[0.07] [0.06] [0.07] [0.14] [0.13] [0.13]

Notes: This tables reports results from h-period regression of earnings growth: et+h − et = k +

β ̂cdyt + εt,t+h. The earnings data are from Lewellen (2001). For each regression, the table reports

OLS estimates of the regressors, Newey and West (1987) corrected t-statistics (in parentheses) and

adjusted R2 statistics in square brackets. Significant coefficients at the 5% level are highlighted in

bold face. The sample is annual and spans the period 1964 to 2000.



Table C-I: Cointegration Tests

L-max Test Trace Test t-Test

Variables H0 : r = 0 1 2 H0 : r = 0 1 2 H0 : no cointegration

10% Critical Values 12.10 2.82 13.31 2.71 -2.60

5% Critical Values 14.04 3.96 15.41 3.76 -2.93

d, p 6.06 4.56 10.62 4.56 -0.47

10% Critical Values 18.70 12.10 2.82 26.70 13.31 2.71 -3.52

5% Critical Values 20.78 14.04 3.96 29.68 15.41 3.76 -3.80

c, a, y 25.34 6.57 0.07 31.98 6.64 0.07 -4.13

c, d, y 27.58 5.36 1.08 34.01 6.43 1.08 -3.77

Notes: The first two columns report the L-max and Trace test statistics described in Johansen

(1988) and Johansen (1991). The former tests the null hypothesis that there are r cointegrating

relations against the alternative of r+1; the latter tests the null of r cointegrating relations against

the alternative of p, where p is the number of variables in the cointegrated system. The last

column reports the Dickey-Fuller test for dt− pt and the Phillips-Ouliaris (1990) cointegration test

for (c, a, y) and (c, d, y). The critical values for the Phillips-Ouliaris tests allow for trends in the

data while the Dickey-Fuller regression does not include a trend, since according to the theory,

there should be no trend in d-p. One lag was used for all tests. The variables are consumption

ct, labor income yt, CRSP-VW dividends dt, CRSP-VW price pt and asset wealth at. The null

hypothesis is no cointegration; significant statistics at the 10% level are highlighted in bold face.

The sample is annual and spans the period 1948 to 2001.
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