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1 Introduction

The recent literature on evaluating social programs finds that persons (or firms or institutions) respond to the same policy

differently (Heckman, 2001). The distribution of responses is usually summarized by some mean. A variety of means can be

defined depending on the conditioning variables used. Different means answer different policy questions. There is no uniquely

defined “effect” of a policy.

The research reported here moves beyond means as descriptions of policy outcomes and determines joint counterfactual

distributions of outcomes for alternative interventions. From knowledge of the joint distributions of counterfactual outcomes

it is possible to determine the proportion of people who benefit or lose from making a particular policy choice (taking or not

taking particular treatments), the origin and destination outcomes of those who change states because of policy interventions

and the amount of gain (or loss) from various policy choices by persons at different deciles of an initial prepolicy distribution.

Our work builds on previous research by Heckman and Smith (1993, 1998) and Heckman, Smith and Clements (1997) that

uses experimental data to bound or point-identify joint counterfactual distributions. We extend the analysis of Aakvik,

Heckman and Vytlacil (1999, 2003) who use factor models to identify counterfactual distributions to consider indicators for

unobservables, implications from choice theory and to exploit the benefits of panel data.

From the joint distribution of counterfactuals, it is possible to generate all mean, median or other quantile gains, to identify

all pairwise treatment effects in a multi-outcome setting, and to determine how much of the variability in returns across persons

comes from variability in the distributions of the outcome selected and how much comes from variability in opportunity

distributions. Using the joint distribution of counterfactuals, it is possible to develop a more nuanced understanding of

the distributional impacts of public policies, and to move beyond comparisons of aggregate overall distributions induced by

different policies to consider how people in different portions of an initial distribution are affected by public policy. We

extend the analysis of DiNardo, Fortin and Lemieux (1996) to consider self-selection as a determinant of aggregate wage and

earnings distributions.

Using our methods, we reanalyze the model of Willis and Rosen (1979), who apply the Roy model (1951) to the economics

of education. We extend their model to account for uncertainty in the returns to education. We also distinguish between

present value income maximizing and utility maximizing evaluations of schooling choices and we estimate the net non-

pecuniary benefit of attending college. We use information on the choices of agents to determine how much of the ex post

heterogeneity in the return to schooling is forecastable at the time agents make their schooling choices. This procedure

extends the analysis of Flavin (1981) to a discrete choice setting. This allows us to identify the effect of uncertainty on

schooling choices. Ex ante, there is a great deal of uncertainty regarding the returns to schooling (in utils or dollars). Ex

post, 8% of college graduates regret going to college.

The plan of this paper is as follows. Section 2 presents the essential idea underlying the identification strategy used in

this paper and how our approach is related to previous work. Section 3 presents a general policy evaluation framework for

counterfactual distributions with multiple treatments followed over time. The strategy pursued in this paper is based on

using low dimensional factors to generate distributions of potential outcomes. We show how our methods generalize the

method of matching by allowing some or all of the variables that generate the conditional independence assumed in matching
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to be unobserved by the analyst. Section 4 introduces the factor models used in this paper. Section 5 presents proofs of

semiparametric identification. Section 6 applies the analysis to extend the Rosen-Willis model of college choice to account

for uncertainty and to estimate the information about future earnings available to agents at the time schooling decisions are

made. Section 7 reports estimates of the distributions of returns to schooling, the components unforecastable by the agent

at the time schooling decisions are made, and the nonpecuniary net benefits from attending college. Section 8 applies our

estimates to evaluate a reform of the U.S. educational system. It illustrates the power of our method to lift the commonly

invoked Veil of Ignorance and move beyond aggregate distributions of outcomes to understand the consequences of public

policies on persons in various parts of the overall distribution. Section 9 concludes. We first provide a brief introduction to

the literature to put this paper in context.

2 Estimating Distributions of Counterfactual Outcomes

In order to place the approach used in this paper in the context of an emerging literature on heterogeneous treatment effects,

it is helpful to motivate our work by a two outcome, two-treatment cross section model. For simplicity, in this section it is

assumed that the outcomes are continuous random variables. The analysis in the rest of this paper is for multiple treatments

and multiple outcomes followed over time and the outcomes may be discrete, continuous or mixed discrete-continuous.

The agent can experience one of two possible counterfactual states with associated outcomes (Y0, Y1). The states are

schooling levels in our empirical analysis. X is a determinant of the counterfactual outcomes (Y0, Y1); S = 1 if the agent is in

state 1; S = 0 otherwise. The observed outcome is Y = SY1+(1−S)Y0. There may be an instrument (or set of instruments)
Z such that (Y0, Y1) ⊥⊥ Z | X and Pr(S = 1 | Z ,X ) depends on Z for all X (i.e., it is a nontrivial function of Z), i.e., Z is

in the choice probability but not the outcome equation. (A ⊥⊥ B | C means A is independent of B given C). We show below

that such a Z is not strictly required in our approach. The standard treatment effect model assumes policies (Z ) that affect

choices of treatment but not potential outcomes (Y0, Y1). General equilibrium effects are ignored.5

The goal of our analysis is to recover F (Y0, Y1 | X). As noted in Heckman (1992), Heckman and Smith (1993, 1998)
and Heckman, Smith, and Clements (1997), from this joint distribution it is possible to estimate the proportion of people

who benefit (in terms of gross gains) from participation in the program (Pr(Y1 > Y0 | X)), gains to participants at selected
levels of the no treatment (F (Y1 − Y0 | Y0 = y0,X)) or treatment distribution (F (Y1 − Y0 | Y1 = y1,X)), the option value of

social programs, and a variety of other questions that can be answered using distributions of potential outcomes including

conventional mean treatment effects and quantiles of the gains (Y1 − Y0) for those who receive treatment.

The problem of recovering joint distributions arises because we observe Y0 if S = 0 and Y1 if S = 1. Thus we know

F (Y0 | S = 0,X), F (Y1 | S = 1,X) but not F (Y0 | X) or F (Y1 | X). In addition, we do not observe the pair (Y0, Y1) for
anyone. Thus we cannot directly obtain F (Y1, Y0 | S,X) from the data. Additional information is required to identify the

joint distribution.

There are, then, two separate problems. The first is a selection problem. From F (Y1 | S = 1, X) and F (Y0 | S = 0, X),
under what conditions can one recover F (Y1 | X) and F (Y0 | X), respectively? The second problem is how to construct the

joint distribution F (Y0, Y1 | X) from the two marginals.

Assuming that the selection problem can be surmounted, classical probability results due to Fréchet (1951) and Hoeffding
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(1940) show how to bound F (Y1, Y0 | S, X) using the marginal distributions. In practice these bounds are very wide, and
the inferences based on the bounding distributions are often not useful.6

The traditional (pre-1985) approach to program evaluation in economics assumed that F (Y0, Y1 | X) is degenerate because
conditional on X, Y1 and Y0 are deterministically related:

(1) Y1 ≡ Y0 +∆(X) .

This is the “common effect” assumption that postulates that conditional on X, treatment has the same effect on everyone.

From the means of F (Y0 | S = 0, X) and F (Y1 | S = 1, X) corrected for selection, one can identify E(∆( X)) = E(Y1 |
X)−E(Y0 |X). ( See Heckman and Robb, 1985; 1986 (reprinted 2000) for a variety of estimators for this case and for discussion
of more general cases.) Heckman and Smith (1993, 1998) and Heckman, Smith, and Clements (1997) relax this assumption

by assuming perfect ranking across different counterfactual outcome distributions. Assuming absolutely continuous and

strictly increasing marginal distributions, they postulate that quantiles are perfectly ranked so Y1 = F−11,X(F0,X(Y0)) where

F1,X = F1(y1 | X) and F0,X = F0(y0 | X). This assumption generates a deterministic relationship which turns out to be
the tight upper bound of the Fréchet bounds. An alternative assumption is that people are perfectly inversely ranked so the

best in one distribution is the worst in the other: Y1 = F−11,X (1− F0,X(Y0)) . This is the tight Fréchet lower bound. More

generally, one could associate quantiles across distributions more freely. Heckman, Smith and Clements (1997) use Markov

transition kernels which stochastically map quantiles of one distribution into quantiles of another. They define a pair of

Markov kernels M(y1, y0 | X) and M̃(y0, y1 | X) such that

F1(y1 | X) =
Z

M(y1, y0 | X)dF0(y0 | X)

F0(y0 | X) =
Z

M̃(y0, y1 | X)dF1(y1 | X).

Allowing these operators to be degenerate produces a variety of deterministic transformations, including the two previously

presented, as special cases of a general mapping. Different (M, M̃) pairs produce different joint distributions.7 These

stochastic or deterministic transformations supply the missing information needed to construct the joint distributions.

A perfect ranking (or perfect inverse ranking) assumption is convenient. It generalizes the perfect-ranking, constant-

shift assumptions implicit in the conventional literature. It allows us to apply conditional quantile methods to estimate the

distributions of gains.8 However, it imposes a strong and arbitrary dependence across distributions. Our empirical analysis

shows that this assumption is at odds with data on the returns to education.

An alternative approach to constructing joint distributions due to Heckman and Honoré (1990), Heckman (1990) and

Heckman and Smith (1998) uses the economics of the model by assuming that

(2) S = 1(µs(Z) ≥ es)

where µs(Z) is a mean net utility, Z ⊥⊥ es, and “1” is a logical indicator (= 1 if the argument is valid; = 0 otherwise). In
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addition they assume that

Y1 = µ1(X) + U1, E(U1) = 0

Y0 = µ0(X) + U0, E(U0) = 0

where (U1, U0) ⊥⊥ (X,Z).9 In the special case where S = 1( Y1 ≥ Y0) (the Roy model), Heckman and Honoré (1990) present

conditions on µ1, µ0 and X such that F (U1,U0) and µ1(X), µ0(X) and hence F (Y0,Y1|X) are identified from data on choices

(S), characteristics (X) and observed outcomes Y = SY1 + (1− S)Y0. Buera (2002) extends their approach to non-separable

models with weaker exclusion restrictions.

Heckman (1990) and Heckman and Smith (1998) consider more general decision rules of the form (2) under the assumption

that (Z,X) ⊥⊥ (U0, U1, es) and the further conditions (i) µs(Z) is a nontrivial function of Z conditional on X and (ii) full

support assumptions on µ1( X), µ0(X) and µs(Z). They establish nonparametric identification of F (U0, es), F (U1, es) up to

a scale for es and µ1 (X) , µ0 (X) and µs(Z).
10 Hence, under their assumptions, they can identify F ( Y0, S | X,Z) and F

( Y1, S | X,Z) but not the joint distributions F ( Y0, Y1| X) or F ( Y0, Y1, S | X, Z) unless the U0, U1, es dependence is

restricted.

Aakvik, Heckman and Vytlacil (1999, 2003) build on Heckman (1990) and Heckman and Smith (1998) by postulating a

factor structure connecting (U0, U1, es). Our work builds on their analysis so we describe its essential idea. Suppose that the

unobservables follow a factor structure:

U0 = α0θ + ε0, U1 = α1θ + ε1, es = αsθ + εs

where θ ⊥⊥ (ε0, ε1, εs) and the ε’s are mutually independent. In their setup, θ is a scalar. θ can be an unobservable trait

like ability or motivation that affects all outcomes. Because the factor loadings, α0, α1, αs, may be different, the factors may

affect outcomes and choices differently. Recall that one can identify F (U0, es) and F (U1, es) under the conditions specified

in Heckman and Smith (1998) and generalized in Theorems 1-3 below. Thus, one can identify COV (U0, es) = α0αs σ
2
θ and

COV (U1, es) = α1αsσ
2
θ assuming finite variances and assuming E(θ) = 0, E(θ2) = σ2θ. With some normalizations (e.g.,

σ2θ = 1, αs = 1), under conditions specified in Section 5, we can nonparametrically identify the distribution of θ and the

distributions of ε0, ε1, εs (the last up to scale). With the α1, α0, αs, and the distributions of θ, ε0, ε1, εs in hand, we can

construct the joint distribution F (Y0, Y1 | X).11
This paper builds on this basic idea and extends it to a more general setting. We consider a model with multiple factors,

multiple treatments and multiple time periods. Outcome measures may be discrete or continuous. We follow the psychometric

literature by adjoining measurement equations to outcome equations to pin down the distribution of θ. With this framework

we can estimate all pairwise treatment effects in a multiple outcome setting. We also consider the benefits for identification

of having access to imperfect measurements on vector θ which are observed for all persons independent of their treatment

status. This model integrates the LISREL framework of Jöreskog (1977) into a model of discrete choice and a model of

multiple treatment effects. We develop this model in Section 4 after presenting a more general framework for counterfactuals

and treatment effects in a multi-outcome, possibly dynamic setting.
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3 Policy Counterfactuals for the Multiple Outcome Case

This section defines policy counterfactuals for the multiple treatment case. For specificity, think of states as schooling levels

and different ages as periods in the life cycle. Associated with each state s (schooling level) is a vector of outcomes at age a

for person ω ∈ Ω (a set of indices) with elements:

(3) Ys,a(ω) s = 1, ..., S̄, a = 1, ..., Ā

where there are S̄ states and Ā ages. Associated with each person ω is a vector X(ω) of explanatory variables.

The ceteris paribus effect (or individual treatment effect) of a move from state s0 at age a00 to state s at age a is

(4) ∆((s, a), (s0, a00), ω) = Ys,a(ω)− Ys0,a00(ω).

Since it is usually not possible to observe the same person in both s and s0, analysts often focus on estimating various

population level versions of these parameters for different conditioning sets.12 In this paper, we estimate distributions of

potential outcomes and parameters derived from these distributions, including the Average Treatment Effect :

ATE ((s, a) , (s0, a00), x) = E(Ys,a − Ys0,a00 | X = x)

and the Marginal Treatment Effect, the average gain from moving from s0 to s for those on the margin of indifference between

s and s0. We are interested in determining the joint distributions of the counterfactual distributions of ∆((s, a), (s0, a00), x)

for different conditioning sets.

Associated with each treatment or state (schooling choice) is a choice equation associated with a level of lifetime utility:

Vs(ω), s = 1, ..., S̄. Utilities are assumed to be absolutely continuous. Agents select treatment states (schooling levels) s̃ to

maximize utility:

(5) s̃ = argmax
s

{Vs(ω)}S̄s=1 .

Associated with choices are explanatory variables Z(ω). A distinctive feature of the econometric approach to program eval-

uation is that it evaluates policies both in terms of objective outcomes (the Ys,a(ω)) and in terms of subjective outcomes

(the utilities of the agents making the choices). Both subjective and objective evaluations are useful in evaluating policy.

Choice theory is also used to guide and rationalize specific choices of estimators. It enables us to separate out variability

from intrinsic uncertainty, as we demonstrate below.

This framework is sufficiently general to encompass a variety of choice processes including sequential dynamic programming

models13 and ordered choice models,14 as well as more general unordered choice models. We let Ds = 1 if treatment s is

selected. Since there are
_
S mutually exclusive states,

S̄P
s=1

Ds = 1.
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In this notation, the marginal treatment effect for choices s and s0 is

(6) MTE
Vs→Vs0

(a, V s,s0) = E(Ys,a − Ys0 ,a | Vs = Vs0 = V s,s0 ≥ Vj , j 6= s, s0).

It is the average gain of going from s0 to s at age a for persons indifferent between s and s0 given that s and s0 are the best

two choices in the choice set, and that their level of utility is V s,s0 .

Aggregating over choices s0 = 1, ..., S̄; s0 6= s, we may define the marginal treatment effect over all origin states as

(7) MTEs(a, {V s,s0}Ss0=1,s0 6=s) =
S̄X

s0=1
s0 6=s

MTE
Vs→Vs0

(a, V s,s0)
³
f(Vs, Vs0 | Vs = Vs0 = V s,s0 ≥ Vj , j 6= s, s0)/ψ(a, {V s,s0}Ss0=1,s0 6=s)

´

the weighted average of the pairwise marginal treatment effects from all source states to s (at a given level of utility V s,s0)

with the weights being the density of persons at each relevant margin for specified values of utility where

ψ
³
a, {V s,s0}Ss0=1,s0 6=s

´
=

SX
s0=1
s0 6=s

f(Vs, Vs0 | Vs = Vs0 = V s,s0 ≥ Vj , j 6= s, s0)

is a normalizing constant (the population density of people at all margins given a and {V s,s0}Ss0=1,s0 6=s), assumed to be
positive.

We next present a framework for estimating the distributions of the treatment effects and the parameters derived from

them, which allows us to estimate the parameters defined in this section as well as other parameters. To simplify notation,

we suppress the ω argument in the rest of the paper.

4 Factor Structure Models

The strategy adopted in this paper identifies the distribution of counterfactuals by postulating a low dimensional set of

factors θ so that, conditional on them, and the covariates X and Z, the Ys,a and Vs0 are jointly independent for all s, s0 and

a. The distributions of the components of θ are nonparametrically identified under conditions specified below. With these

distributions in hand, it is possible to construct the distribution of counterfactuals. Under the conditions specified in Section

5, it is possible with low dimensional factors to nonparametrically identify the counterfactual distributions and to estimate

all of the treatment effects in the literature suitably extended to multidimensional versions.

Throughout this paper we analyze a separable-in-the-errors system. Thus preferences can be described by

(8) Vs = µs(Z)− es s = 1, .., S.

It is conventional to assume that µs(Z) = Z0βs with s = 1, .., S. Linear approximations to value functions are advocated

6



by Heckman (1981) and Eckstein and Wolpin (1989) and are developed systematically in Geweke, Houser and Keane (2001).

Our approach does not require linearity but critically relies on separability between the deterministic portion of the model

and the errors es. Following Heckman (1981), Cameron and Heckman (1987, 1998), and McFadden (1984), write

(9) es = α0sθ + εs

where θ is a K × 1 vector of mutually independent factors (θc ⊥⊥θc0 , c 6= c0) and define εs = (ε1, ..., εS)

(10) θ⊥⊥εs εs⊥⊥εs0 ∀s, s0 = 1, ..., S̄ and s 6= s0

E(θ) = 0; E(εs) = 0; Dk = 1 if Vk is maximal in {Vs(Z)}Ss=1 .15
Potential outcomes at age a, Y ∗s,a, are stochastically dependent among each other and the choices only through their

dependence on the observables X,Z and the factors θ :

(11) Y ∗s,a = µs,a(X) +α0s,aθ + εs,a

where E(εs,a) = 0.

Potential outcomes are separable in observables and unobservables. A linear-in-parameters version writes µs,a(X) =

X 0βs,a. Define εY=(ε1,1, ..., ε1,A, ..., εs,1, ..., εs,A, ..., εS,A)

(12) θ⊥⊥εY

(13) εs,a⊥⊥εs0,a00 ; ∀ s 6= s0; ∀ a, a00

and

(14) εs,a⊥⊥εs0 ; ∀ s0, s = 1, ..., S̄; a = 1, ..., Ā.

(15) (Z,X)⊥⊥(θ, εY , εs)

The Y ∗s,a may be vector valued.

When the outcome is continuous, the observed value corresponds to the latent variable (Ys,a = Y ∗s,a). When the outcome

is discrete (e.g., employment status), we interpret Y ∗s,a in (11) as a latent variable. In that case, Ys,a is an indicator function

Ys,a = 1(Y ∗s,a ≥ 0). Tobit and other censored cases can be accommodated. Other mixed discrete-continuous cases can be
handled in a conventional fashion.16

One motivation for the factor representation is that agents may observe components of θ (or variables that span those
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components) and act on them (e.g., choose schooling levels), while the econometrician does not observe θ. Below, we present

methods for testing whether agents observe some or all components of θ. Conditional on θ and X, the potential outcomes

are independent. If (12)-(15) accurately describe the data generating process, we obtain the conditional independence

assumptions used in matching (see, e.g., Cochrane and Rubin, 1973; Rosenbaum and Rubin, 1983).

In matching it is assumed that Ys,a ⊥⊥Ds | X,Z,θ for all s.17 From this assumption, we can identify ATE from the right

hand side of the following expression for continuous observed outcomes, which can be constructed if θ is observable:

E(Ys,a − Ys0,a | X,Z,θ) = E(Ys,a | X,Z,θ,Ds = 1)−E(Ys0,a | X,Z,θ,Ds0 = 1).

In this case treatment on the treated, ATE and MTE are the same parameter conditional on θ, X and Z (Heckman, 2001;

Aakvik, Heckman and Vytlacil, 2003). Our framework differs from matching by allowing the factors that generate the

conditional independence that underlies matching to be unobserved by the analyst. In this sense, our approach is more

robust than matching. The price for this robustness is the assumed independence between θ and (X,Z).

Factor structure models are notorious for being identified by arbitrary normalization and exclusion restrictions. To

reduce this arbitrariness and render greater interpretability to estimates obtained from our model, we adjoin a measurement

system to choice equations (8) and outcome system (11). Various measurements can be interpreted as indicators of specific

factors (e.g., test scores may proxy ability). Having measurements on the factors also facilitates identifiability under weaker

assumptions as we demonstrate in Section 5. However, measurements are not strictly required for identification in our model.

Outcome, measurement, and choice equations are interchangeable sources of identification in a sense that we make precise in

Section 5.

Consider a system of L measurements on the K factors, initially assumed to be for continuous outcome measures:

M1 = µ1(X ) + β11θ1 + ....+ β1KθK + εM1(16)
...

ML = µL(X ) + βL1θ1 + ....+ βLKθK + εML

εM = (εM1 , ..., εML ), E(ε
M ) = 0 and where we assume θ ⊥⊥εM , θ ⊥⊥εs, εs ⊥⊥(εM , εY ), εMi ⊥⊥εMj ∀i 6= j, and i, j = 1, . . . , L.

For interpretability, we assume θi ⊥⊥θj , ∀i 6= j, i, j = 1, ...,K. We develop the case with discrete measurements on latent

continuous variables in Section 5. One can think of the outcome measures as an s-dependent measurement system. The

measures (16) are the same across all s.

Measurement system (16) allows for fallible measures of outcomes. Thus in our schooling choice analysis we are not com-

mitted to the infallibility of test scores as measurements of ability. Measurement system (16) allows us to proxy unobservables

accounting for measurement error and hence enables us to improve on the proxy procedure of Olley and Pakes (1996) which

assumes no measurement error.

Choice Equations

Our analysis applies to both ordered discrete choice models and unordered choice models as analyzed by Cameron and
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Heckman (1998) and Hansen, Heckman and Mullen (2001). In this paper, we focus attention on a new ordered choice model.

Other choice models can easily be accommodated in our framework and richer models are a source of additional identifying

information.18

For an ordered discrete choice model, let utility index I be written as

(17) I = ϕ(Z) + εW , εW = γ0θ + εI , σ
2
W = γ0

X
θ
γ + σ2I

where E(ε2I) = σ2I , and
P

θ is the covariance matrix of θ. A linear-in-parameters version which is the one developed in this

paper writes ϕ(Z) = Zη. Choices are generated by index ϕ (Z) falling in various intervals.

D1 = 1 if −∞ < I ≤ c1(18)

Ds = 1⇔ cs−1 < I ≤ cs s = 2, ..., S̄ − 1
DS = 1 if cS−1 < I <∞

where c0 = −∞. It is required that cs ≥ cs−1 for all s ≥ 2. This is a special case of random utility model (8) in which states

are ordered and pairwise contrasts possess a special structure.19

We can parameterize the cs to be functions of state-specific regressors, e.g., cs = Qsρs where we restrict cs ≥ cs−1. We

could also follow a suggestion in Heckman, LaLonde and Smith (1999) and incorporate one sided shocks νs and work with

stochastic thresholds c̃s in place of cs : c̃s = cs + νs, s = 1, ..., S − 1 where νs ≥ νs−1 and νs ≥ 0.20
Conditioning on Qs = qs, s = 1, ..., S̄, and assuming that the Support(Z | Qs = qs, s = 1, ..., S̄) = Support(εW ), we

can apply the conditions presented in Cameron and Heckman (1998) to identify the distribution of FεW , η, c1, ...., cS−1 up

to scale. We can nonparametrically identify cs(Qs) over the support of Qs under conditions specified in Theorem 2 below.

Unlike the case of the more general unordered discrete choice model (see Elrod and Keane, 1995; Ben Akiva et al., 2001),

without further restrictions on the distribution of εW , we cannot identify the factors generating εW using only choice data.

Hansen, Heckman and Mullen (2003) present an analysis parallel to the one given here for a multinomial probit model. In

that model, the distributions of factors can be identified from choice data.

4.1 Models for Factors

Factor models are notorious for being identified through arbitrary assumptions about how factors enter in different equations.

This led to their disuse after their introduction into economics by Jöreskog and Goldberger (1975), Goldberger (1972),

Chamberlain and Griliches (1975) and Chamberlain (1977a, b).

The essential identification problem in factor analysis is clearly stated by Anderson and Rubin (1956). If there are L

measurements on K mutually independent factors arrayed in a vector θ, we may write outcomes G in terms of latent variables

θ as

(19) G = µ+ Λθ + ε
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where G is L × 1, θ ⊥⊥ ε, µ is an L× 1 vector of means, which may depend on X, θ is K × 1, ε is L × 1 and Λ is L ×K.

εi ⊥⊥ εj , i, j = 1, ., L, i 6= j. At this point, ε is a general notation which will be linked to specific ε’s in Section 5. Even if

θi ⊥⊥ θj , i 6= j, i, j = 1..,K, the model is underidentified. As we shall see, the G in this paper is a more general system than

the system based solely on measurements invariant across states M so we distinguish (16) and (19). It will include M as well

as state dependent outcomes (Y ∗s,a) and the indices generating choice equations.

Using only the information in the covariance matrices, as is common in factor analysis,

(20) COV (G) = ΛΣθΛ
0 +Dε

where Σθ is a diagonal matrix of the variances of the factors, and Dε is a diagonal matrix of the “uniqueness” variances. We

observe G but not θ or ε, and we seek to identify Λ, Σθ and Dε . Without some restrictions, this is clearly an impossible task.

Conventional factor-analytic models make assumptions to identify parameters. The restriction that the components of θ are

independent is one restriction that we have already made, but it is not enough. The diagonals of COV (G) combine elements

of Dε with parameters from the rest of the model. Once those other parameters are determined, the diagonals identify Dε.

Accordingly, we can only rely on the L(L−1)
2 non-diagonal elements to identify the K variances (assuming θi ⊥⊥ θj , ∀i 6= j),

and the L×K factor loadings. Since the scale of each θi is arbitrary, one factor loading devoted to each factor is normalized

to unity to set the scale. Accordingly, we require that

L (L− 1)
2| {z }

Number of off-diagonal covariance elements

≥ (L×K −K)| {z }
Number of unrestricted Λ

+ K|{z}
Variances of θ

so

L ≥ 2K + 1

is a necessary condition for identification.

The strategy pursued in this paper is transparent and assumes that there are two or more elements of G devoted exclusively

to factor θ1, and at least three elements of G that are generated by factor θ1, two or more other elements of G devoted only

to factors θ1 and θ2, with at least three elements of G that depend on θ1 and θ2, and so forth. This strategy is motivated by

our access to psychometric and longitudinal data. Test scores may only proxy ability (θ1). Other measurements may proxy

only (θ1, θ2). Measurements on earnings from panel data may proxy (θ1, θ2, θ3), etc.

Order G under this assumption so that we get the following pattern for Λ (we assume that the displayed λij are not zero):

10



(21) Λ =



1 0 0 0
... ... ... 0

λ21 0 0 0
... ... ... 0

λ31 1 0 0
... ... ... 0

λ41 λ42 0 0
... ... ... 0

λ51 λ52 1 0
... ... ... 0

λ61 λ62 λ63 0
... ... ... 0

λ71 λ72 λ73 1
... 0 ... 0

λ81 λ82 λ83 λ84
... 0 ... 0

... ... ... ...
... ... ... ...

λL,1 λL,2 λL,3 ...
... ... ... λL,K



.

Assuming nonzero covariances

COV (gj , gl) = λj1λl1σ
2
θ1 , l = 1, 2; j = 1, ..., L; j 6= l.

In particular

COV (g1, gc) = λc1σ
2
θ1

COV (g2, gc) = λc1λ21σ
2
θ1 .

Assuming λc1 6= 0, we obtain
COV (g2, gc)

COV (g1, gc)
= λ21.

Hence, from COV (g1, g2) = λ21σ
2
θ1
, we obtain σ2θ1 , and hence λc1, c = 1, . . . , L. We can proceed to the next set of two

measurements and identify

COV (gl, gj) = λl1λj1σ
2
θ1 + λl2λj2σ

2
θ2 , l = 3, 4; j ≥ 3; j 6= l.

Since we know the first term on the right hand side by the previous argument, we can proceed using COV (gl, gj)−λl1λj1σ2θ1
and identify the λj2, j = 1, ..., L using the previous line of reasoning (some of these elements are fixed to zero). Proceeding

in this fashion, we can identify Λ and Σθ subject to diagonal normalizations. This argument works for all but the system for

the Kth and final factor. Observe that for all of the preceding factors there are at least three measurements that depend on

θj , j = 1, . . . ,K − 1, although only two of the measurements need to depend solely on θ1,...,θK−1. To obtain the necessary

three measurements for the Kth and final factor, we require that there be at least three outcomes with measurements that

depend on θ1, . . . , θK .

11



Knowing Λ and Σθ , we can identify Dε . Use of dedicated measurement systems for specific factors and panel data helps

to eliminate much of the arbitrariness that plagued factor analysis in its 1970’s introduction in economics. While many

other restrictions on the model are possible, the one we adopt has the advantage of simplicity and interpretability in many

contexts.21

Our analysis uses a version of (19), coupled with the exclusion restrictions exemplified in (21), to identify the joint

distributions of counterfactuals. We extend conventional factor analysis in three ways. First, following Heckman (1981) and

Muthen (1984), we allow the G to include latent index functions like I (associated with the choice equations) or like Y ∗s,a

as well as their manifestations (the random variables they generate). Thus the G may include discrete or censored random

variables generated by latent random variables. We can identify components associated solely with the discrete case only

up to unknown scale factors — the familiar indeterminacy in discrete choice analysis. Choice indices, measurements and state

contingent outcomes are all informative on θ. The factor analysis in this paper is conducted on the latent continuous variables

that generate the manifest outcomes. Second, we extend factor analysis to a case with counterfactuals where certain variables

are only observed if state s is observed. This extension enables us to identify the full joint distribution of counterfactuals.

Third, we prove nonparametric identification of the distributions of θ and ε, and do not rely on any normality assumptions.

5 Identification of Semiparametric Factor Models with Discrete Choices and

Discrete and Continuous Outcomes

In order to establish identification, we need to be clear about the raw data with which we are working. For each set of s-

contingent potential outcomes, there is a system like (19): eGs = (M,Ys,Ds) where Ys is a vector of state contingent outcomes.

Outcome variables in eGs are of two types: (a) continuous variables and (b) discrete or censored random variables, including

binary strings associated with durations (e.g., unemployment). When the random variables are discrete or censored, we work

with the latent variables generating them. We array the continuous portions of eGs and the index functions generating the

discrete portions into Gs.

Let M c denote the continuous measurements, and let Y c
s be the continuous counterfactual outcomes. Let M

d be the

discrete components of M , while Y d
s are the discrete components of Ys. Table 1 defines the variables used in our analysis.

Under separability the continuous variables can be written as

M c = µcm (X) + U c
m

Y c
s = µcs (X) + U c

s .

Associated with the discrete variables are latent continuous variables

M∗d = µdm (X) + Ud
m

Y ∗ds = µds (X) + Ud
s

12



where Ud
m, U

d
s are assumed to be continuous.

22 The indicator variable is generated by latent variable I as defined in (17).

The data used for the factor analysis are Gs = (Mc, M∗d, Y c
s , Y

∗d
s , I). For simplicity, in this paper we assume

that the “discrete” variables are in fact binary valued. Extensions to censored random variables and to binary strings are

straightforward and are developed in a later paper. We observe eGs when Ds = 1. For each s, we have a system of outcome

variables. While the outcomes are s-dependent, the measurements are observed independently of the value assumed by Ds.

The distinction between measurements (M) whose values do not depend on the value assumed by Ds, and the state

contingent outcomes Ys that depend on the state s that is observed, is essential. There is no selection bias in observing M

but in general there is selection bias in observing Y =
SP
s=1

DsYs.

M, Y, and Ds, s = 1, .., S all contain information on θ. The information from M is easier to access, and traditional factor

analysis is based on such measurements. Nonetheless, the identification of counterfactual states does not require M . If M is

available, however, the interpretation of θ is more transparent.

Before turning to our factor analysis, we first establish conditions under which we can identify the joint distribution of

Mc,M∗d, Y c
s , Y

∗d
s , I, which constitute the data for the factor analysis. To understand the basic ideas, we break this task into

three parts: (a) identification of the joint distribution of
¡
M c,M∗d

¢
; (b) identification of the parameters in choice system (17)

and (18) and (c) identification of the full joint distribution of
¡
M c,M∗d, Y c

s , Y
∗d
s , I

¢
. This full distribution is subsequently

factor analyzed.

We assume that

(A-1)
¡
U c
m, U

d
m, U

c
s , U

d
s , εW

¢
have distribution functions that are absolutely continuous with respect to Lebesgue measure with

means zero23 with support Ucm × Udm × Ucs × Uds × EW with upper and lower limits being Ūc
m, Ū

d
m, Ū

c
s , Ū

d
s , εW and

Uc
m, U

d
m, U

c
s, U

d
s , εW , respectively, which may be bounded or infinite. Thus the joint system is measurably separable

(variation free).24 We assume finite variances.25 The cumulative distribution function of εW is assumed to be strictly

increasing over its full support (εW , εW ).

(A-2) (X,Z,Q) ⊥⊥ (U, εW ) where U = (Uc
m, U

d
m, U

c
s , U

d
s ), where Q is a vector of state-specific regressors Q=(Q1, . . . , QS) .

We denote by “~” normalized values where the normalizations in our context are usually standard deviations of latent

index errors. We first consider identification of the joint distribution of M . Our results are contained in Theorem 1.

Theorem 1 From data on F (M | X), one can identify the joint distribution of ¡U c
m, U

d
m

¢
(the latter component only up

to scale), the function µdm (X) is identified and µ
c
m (X) is identified over the support of X (up to scale) provided that the

following assumptions, in addition to the relevant components of (A-1) and (A-2), are invoked.

(A-3) Order the discrete measurement components to be first. Suppose that there are Nm,d discrete components, followed by

Nm,c continuous components. Assume Support
³
µd1,m (X) , . . . , µ

d
Nm,d,m

(X)
´
⊇ Support ¡Ud

1,m, ..., U
d
Nm,m

¢
.

Conditions (A-1) and (A-3) imply that
³
µd1,m (X) , . . . , µ

d
Nm,d,m

(X)
´
is measurably separable (variation free) in all of its

coordinates when “⊇” is replaced by “= .”

(A-4) For each l = 1, ..., Nm,d µdl,m (X) = Xβdl,m.

13



(A-5) The X lives in a subset of RNX . There exists no linear proper subspace of RNX having probability 1 under FX , the

distribution function of X.

Proof: See Appendix A.

Condition (A-4) is conventional (See Cosslett, 1983, or Manski, 1988). Weaker conditions are available using the analysis of

Matzkin (1992,1993). Support condition (A-3) appears in Cameron and Heckman (1998) and Aakvik, Heckman and Vytlacil

(1999). The easiest way to satisfy it is to have exclusions: one continuous component in µdl,m(X) that is not an argument in

the others. But that is only a sufficient condition. Even without exclusion, this condition can be satisfied if there are enough

continuous regressors in X and the µdl,m(X) have a full rank Jacobian - with respect to the derivatives of the continuous (X)

variables. Intuitively, if the rank condition is satisfied, we can hold µdl,m(X) at µ̄
d
l,m and vary the other arguments. Formally,

this rank condition requires that if we array the coefficients of the continuous variables coefficients of βdl,m, eβdl,m, into a Nm,d

by NX matrix, where NX is the number of continuous components of X, that Rank
neβdl,moNm,d

l=1
≥ Nm,d. This requires Nm,d

continuous variables. It also requires that the coefficients are linearly independent. If the number of continuous components

is NX < Nm,d, we can only identify NX components of the distribution of Ud
m. We can trace out the distribution of the

latent variables even if the X are not of full rank, so (A-5) is not strictly required. Observe that we can identify the joint

distribution of the Um even if all components of β are not identified because of a failure of a rank condition. See Cameron

and Heckman (1998), Aakvik, Heckman and Vytlacil (1999) or Hansen, Heckman and Mullen (2003) for more discussion of

this case of identification without conventional exclusion restrictions.

We next turn to identification of the generalized ordered discrete choice model (17). This extends the proof in Cameron

and Heckman (1998) by parameterizing the cut points. A more general version of this model appears in Hansen, Heckman

and Mullen (2001).

Theorem 2 For the relevant subsets of the conditions (A-1), and (A-2) (specifically, assuming absolute continuity of the

distribution of εW with respect to Lebesgue measure and εW ⊥⊥ (Z,Q)), and the additional assumptions:

(A-6) cs(Qs) = Qsηs, s = 1, ..., S, ϕ(Z) = Z0β

(A-7) (Q1, Z) is full rank (there is no proper subspace of the support (Q1, Z) with probability 1). The Z contains no intercept.

(A-8) Qs for s = 2, . . . , S is full rank (there is no proper subspace of
¡
RQs

¢
with probability 1).

(A-9) Support (c(Q1)− ϕ(Z)) ⊇ Support (εW )

Then the distribution function FεW is known up to a scale normalization on εW and cs(Qs), s = 1, ...s̄, and ϕ(Z) are

identified up to a scale normalization.

Proof: See Appendix A.

Our choice system can be made nonparametric using the type of restrictions introduced in Matzkin, although we eschew

that generality here. Matzkin and Lewbel (2002) weaken (A-6) generalizing the analysis of Matzkin (1992) assuming that

the cs are constants.
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We next turn to the identification of the joint system (Mc,M∗d, Y c
s , Y

∗d
s , I). The data for each choice system (including

the data on choice probabilities) generate the left hand side

(22) Pr
¡
Mc ≤ mc,M∗d ≤ 0, Y c

s ≤ ycs, Y
∗d
s ≤ 0|Ds = 1,X, Z,Qs, Qs−1

¢
Pr(Ds = 1|Z,Qs,Qs−1)

=

Z mc−µcm(X)

Uc

Z −eµdm(X)
eUd

m

Z ycs−µcs(X)

Uc
s

Z −eµd(X)
eUd

Z cs(Qs)−ϕ(Z)
σW

cs−1(Qs−1)−ϕ(Z)
σW

f
³
Uc
m,
eUd
m,U

c
s,
eUd
s, eεW´ dUc

mdeUd
mdU

c
sdeUd

s deεW .

From Theorem 1 we know µcm(X) (= Xβcm) and eµdm(X) (= Xeβdm) and the joint distribution of (Uc
m,
eUd
m). From Theorem

2, we know cs(Qs)−ϕ(Z)
σW

= Qsηs−Z0β
σW

, s = 1, ..., S and the coefficients ηs, β and the distribution FeεW . Notice that cs(Qs) ≥
cs−1(Qs−1) is a requirement of the ordered choice model. We maintain the following assumptions:

(A-10) Support
³
−eµdm(X),−eµds(X),³ cs(Qs)−ϕ(Z)

σW
− cs−1(Qs−1)−ϕ(Z)

σW

´´
⊇Support(Ud

m, U
d
s ,eεW ) = (Udm ×Uds × eEW ).

(A-11) There is no proper linear subspace of (X,Z,Qs, Qs−1) with probability one so the model is full rank.

As a consequence of (A-6) and (A-10) we can find values of Qs, Qs−1, Q̄s,Qs−1 respectively so that

lim
Qs→Q̄s

Qs−1→Q
s−1

Pr (Ds= 1|Z,Qs, Qs−1) = 1.

In these limit sets (which may depend on Z), under the stated conditions (A-1) — (A-11), we can identify the joint

distribution of (Mc,M∗d, Y c
s , Y

∗d
s ), s = 1, . . . , S using an argument parallel to the one used to prove Theorem 1. These limit

sets produce S different joint distributions (corresponding to each value of s) but do not generate joint distributions across

the s (i.e., the joint distribution of Mc,M∗d, Y c
s , Y

∗d
s across s values). However, M is common across these systems. Using

the dependence of M and Ys, s = 1, . . . , S on a common θ we can sometimes identify the joint distribution. See Carneiro,

Hansen and Heckman (2001) for an example. Thus with a measurement system M we do not strictly require information on

the choice index I to identify the model.

Following an argument of Heckman (1990), Heckman and Honoré (1990) and Heckman and Smith (1998), we can identify

µcs(X) up to an additive constant without passing to the limit set where Pr(Ds = 1|Z,Qs,Qs−1) = 1. This is not possible

for the identification of µ̃ds(X) because there is no counterpart to the variation in ycs for the discrete component. This is the

content of the following theorem which combines the key ideas of Theorems 1 and 2 to produce an identification theorem for

the general case.

Theorem 3 Under assumptions (A-1), (A-2), (A-4), (A-6), (A-7),(A-8),(A-9),(A-10) and (A-11), µcm(X),µ
c
s(X), eµdm(X),eµds(X), eϕ(Z), cs(Qs) s = 1, ..., S − 1 are identified as is the joint distribution F (Uc

m, Ũ
d
m, U

c
s , Ũ

d
s ,eεW ).

Proof: See Appendix A.

As noted in the discussion following Theorem 1, without standard exclusion restrictions we may only be able to identify

subcomponents of the joint distribution if NX < Nm,d where NX is the number of continuous regressors. Note that the

µcs,l, eµds,l may only be defined over their supports. Under an additional rank or variation-free condition on the regressors we
recover these functions everywhere over the support of X.
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5.1 Factor Analysis

The thrust of Theorems 1-3 is that under the stated conditions we know the joint distributions of (Us, Um, ε̃W ) s = 1, ..., S

where Us =
¡
Ud
s , U

c
s

¢
. We factor analyze them under assumptions like those invoked in matrix (21) with two or more of these

elements dependent solely on θ1, an additional two or more elements dependent solely on (θ1, θ2) and so forth but at least

three final elements dependent on θK . There are a total of A×R outcomes in each state where R is the number of outcome

measures in each state at each age (e.g., wages, employment, occupation), there are M non-state-contingent measurements

and ε̃W is a scalar. Thus L in (21) is (A×R) +M + 1 in dimension for each system s, s = 1, ..., S.

We write the unobservables in factor structure form

Us,a = α0s,aθ + εs,a with s = 1, ..., S a = 1, ..., A

Um = α0mθ + εm with m = 1, ...,Nm

ε̃W = γ0θ + εI .

The αs,a may be different across s-states so that each s system may depend on different elements of θ. The αm are not,

nor is the γ. There may be multiple measurements of outcomes so in principle αs,a may be a matrix and εs,a a vector of

mutually independent components. Our empirical analysis is for the vector case.

The choice of how to select the blocks of (21) may appear to be arbitrary, but in many applications there are natural

orderings. Thus in the empirical work reported below we estimate a two factor model. We have a vector of five test scores

that proxy latent ability (θ1). The state contingent outcomes (earnings) equations and choice equations plausibly depend on

both θ1 and θ2. In many applications there are often natural allocations of factors to various measurements. However, to

avoid arbitrariness a carefully reasoned defense of any allocation is required. We now formalize identification in this system.

Theorem 4 Under the normalizations on the factor loadings of the type in (21) for one system s under the conditions

of Theorems 1-3, given the normalizations for the unobservables for the discrete components and given at least 2K + 1

measurements (Y,M, I), the unrestricted factor loadings and the variances of the factors (σ2θi , i = 1, ...,K) are identified for

all systems.

Proof: The proof is implicit in the discussion surrounding equation (21). ¥
Observe that since the σ2θi , i = 1, ...,K are identified in one system, normalizations of specific factor loadings to unity are

only required in that system since we can apply the knowledge of these variances to the other systems.26 Thus for the other

systems (values of the state other than s) we do not need to normalize any factor loading to unity.

We can also nonparametrically identify the densities of the uniquenesses and the factors. This follows from mutual

independence of the θi, i = 1, ...,K and an application of Kotlarski’s Theorem (1967). We first state Kotlarski’s Theorem

and then we apply it to our problem.

Write ({Um}Nm
m=1, {Us,a}Aa=1,eεW ) in vector form as T s. Order the vectors so that the first B1 (≥ 2) elements depend only

on θ1, the next B2−B1 (≥ 2) elements depend on (θ1, θ2) and so forth. Let T s
1 and T

s
2 be the first two elements of T

s. (This

is purely a notational convenience). We order the elements of T s so that the first block depends solely on θ1, (assuming that
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there are B1 such measurements) the second block depends solely on θ1, θ2 (there are B2 − B1 such measurements) and so

forth, following the convention established in equation (21). We require B1 ≥ 2, B2 −B1 ≥ 2, and BK −BK−1 ≥ 3.

Theorem 5 If

T s
1 = θ1 + v1

and

T s
2 = θ1 + v2

and θ1 ⊥⊥v1 ⊥⊥v2, the means of all three generating random variables are finite, E(v1) = E(v2) = 0, and the conditions of

Fubini’s theorem are satisfied for each random variable, and the random variables possess nonvanishing ( a.e.) characteristic

functions, then the densities of (θ1, v1, v2) , g(θ1), g1(v1), g2(v2), respectively, are identified.

Proof : Kotlarski (1967). See also Rao (1992). ¥
Applied to our context, consider the first two equations of T and suppose that the components depend only on θ1. We

use our notation for the factor loadings to write

T s
1 = λs11θ1 + εs1 where λ

s
11 = 1

T s
2 = λs21θ1 + εs2 where λ

s
21 6= 0.

Here we use a notation associating the subscript of εsi with its position in the T
s vector. Applying Theorem 4, we can identify

λs21 (subject to the normalization λs11 = 1).
27 Thus we can rewrite these equations as

T s
1 = θ1 + εs1

T s
2

λs21
= θ1 + ε∗,s2 ,

where ε∗,s2 = εs2/λ
s
21. Applying Kotlarski’s Theorem, we can nonparametrically identify the densities g(θ1), g1(ε

s
1) and g2(ε

∗,s
2 ).

Since we know λs21 we can identify g(εs2). Let B1 denote the number of measurements (elements of T
s) which depend only

on θ1. Proceeding through the first B1 measurements, we can identify g(εsi ), i = 1, ..., B1.

Proceeding to equations B1+1 and B1+2 (corresponding to the first two measurements in the next set of equations that

depend on θ1 and θ2), we may use the normalization adopted in Theorem 4 to write

T s
B1+1 = λsB1+1,1θ1 + θ2 + εsB1+1

T s
B1+2 = λsB1+2,1θ1 + λsB1+2,2θ2 + εsB1+2.

Rearranging, we may write these equations as
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T s
B+1 − λsB1+1,1θ1 = θ2 + εsB1+1

T s
B+2 − λsB1+2,1θ1

λsB1+2,2

= θ2 + ε∗,sB1+2

where ε∗,sB1+2
=

εsB1+2
λsB1+2,2

, and the εsB1+1
and ε∗,sB1+2

are mutually independent. Hence by Theorem 5, we can identify densities

g(θ2), g(ε
s
B1+1

), g(εsB1+2
). Exploiting the structure (21), we can proceed sequentially to identify the densities of θ, g(θi), i =

1, ...,K and the uniqueness, g(εsi ) for all the components of vector T
s. For the components of εsi corresponding to discrete

measurements, we do not identify the scale. Armed with knowledge of the densities of the θi and the factor loadings for

other values of s, we can apply standard deconvolution methods to nonparametrically identify the uniqueness of the εi’s for

the other systems. Thus we can nonparametrically identify the error terms for the model. Notice that in principle we can

estimate separate distributions of the θi for each s system and thus can test the hypothesis of equality of these distributions

across systems.

The essential idea in this paper is to obtain identification of the joint counterfactual distributions through the dependence

across s of Ys = (Y d
s , Y

c
s ) on the common factors that also generate M or I. In this sense measurements and choices are

both sources of identifying information, and can be traded off in terms of identification. We next apply our framework to a

well-posed economic model.

6 Generalizing The Willis-Rosen Model

We revisit Willis and Rosen’s application of the Roy model (1979) to the economics of education, adding uncertainty,

nonpecuniary net returns to schooling and identifying counterfactual distributions of gross and net returns. In this paper the

outcomes are utility outcomes, present value outcomes and rates of return.

Suppose that agents cannot lend or borrow and possess log preferences (utility = lnC, where C is consumption). Suppose

that agents are choosing between high school and college so S = 2. The utility of attending college is

V (1) =
AX
a=0

lnY 1
a

(1 + ρ)
a − lnP

where lnP is the “cost” of going to school. These include tuition costs and the psychic benefits from working in sector 1

(relative to sector 0). Thus costs may be negative. ρ is a subjective rate of time preference. The utility of completing only

high school is

V (0) =
AX
a=0

lnY o
a

(1 + ρ)a

where Y 1
a and Y 0

a are earnings from high school and college, respectively, at age a. The psychic costs or benefits in logs for

high school are normalized to zero. We can only identify relative psychic “costs” or benefits.
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Latent variables and costs are generated by a factor structure. The equations are:

lnY j
a = µj(X) +

¡
αj
a

¢0
θ + εja j = 0, 1, a = 1, ..., A.

lnP = µP (Z) +
¡
αP
¢0
θ + εP .

In addition we have measurements on test scores M = µM (x ) + α0Mθ + εM , where θ ⊥⊥
·³

εji,a

´I
i=1

,1j=0 ,
A
a=0 , ε

P

¸
.

The agent makes decisions about schooling under uncertainty about different components of the model. Iθ is the infor-
mation set. The expected value V of going to college is :

V = E (V (1)− V (0) | Iθ) = EIθ


AP
a=0

µ1a(X)−µ0a(X)+(α1
a−α0

a)
0
θ+ε1a−ε0a

(1+ρ)a

− £µP (Z) +α0Pθ + εP
¤

 .
If future innovations in earnings

¡
ε1a, ε

0
a

¢
, a = 0, .., A are not known at the time schooling decisions are made but innova-

tions in costs are known, we may write the agent’s preference function as

V =

Ã
AX
a=0

µla (X)− µoa (X)

(1 + ρ)
a − µP (Z)

!
+

"
AX
a=0

¡
α1a −α0a

¢0
(1 + ρ)

a −α0P
#
EIθ (θ)− εP .

As we shall see, this assumption about agent knowledge of future innovations in earnings is testable. Assume that σP =¡
V ar

¡
εP
¢¢ 1

2 <∞. Then

V

σP
=

1

σP

Ã
AX
a=0

µ1a (X)− µ0a (X)

(1 + ρ)a
− µP (Z)

!
+

Ã
AX
a=0

¡
α1a −α0a

¢0
(1 + ρ)a

−α0P
!
1

σP
EIθ (θ)−

εP

σP

Ds = 1 if V
σP

> 0 ; Ds = 0 otherwise.

Specifying alternative information sets (Iθ) and examining the resulting fit of the model to data, we can determine which
information sets agents act on. Exact econometric specifications are presented in Section 7. We test whether agents act

on components of θ that also appear in outcome equations realized after the choices are made. The estimated dependence

between schooling choices and subsequent realizations of earnings enables us to identify the components in the agent’s

information set at the time schooling decisions are being made. This extends the method of Flavin (1981) and Hansen,

Roberds and Sargent (1991) to a discrete choice setting. If agents do not act on these components, then those components

are intrinsically uncertain at the time agents make their schooling decisions unless nongeneric cancellations occur.28 Because

we can identify the joint distributions of unobservables, we can answer questions Willis and Rosen could not such as: (1)

How highly correlated are latent skills (utilities) across sectoral choices? (2) How much intrinsic uncertainty do agents face?

(3) How important is uncertainty for explaining schooling choices? (4) What fraction of the population regrets its ex ante

schooling choice ex post? We can also separate out net psychic components of the returns to schooling (the lnP ) from

monetary components.

Observe that as a consequence of the log specification of preferences (including the additive separability of the θ and ε),

mean preserving spreads in εja,θ and εP produce no change in mean utility. The probability of selection Ds = 1 is also
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invariant to mean preserving spreads in εja but not for θ and εP since their variance enters the choice probability if these

components are known to the agent.

In addition, a mean preserving spread in lnY is not the same as a mean preserving spread in Y . Mean preserving spreads

in Y have an effect on utility since E (Y ) = eµE (eε). Define the residual from the mean as H, H = eµeε − eµE (eε) so

V ar (H) = e2µ
³
E
¡
e2ε
¢− [E (eε)]2´ . A mean preserving spread keeps the mean of Y fixed at constant k = E (Y ) = eµE (eε).

For a perturbation in the variance of ε that changes ε to ∆ε, and defining f (ε) as the density of ε, locally 0 = dµ +

[
R
εeεf(ε)dε]
E(eε) d∆ so dµ = − [

R
εeεf(ε)dε]
E(eε) d∆. Moreover, because E (ε) = 0 and εeε is convex increasing in ε, the derivative

is positive. In a log normal example, E (eε) = e
σ2

2 , E
¡
e2ε
¢
= e2σ

2

, V ar (H) = e2µ
³
e2σ

2 − eσ
2
´
, k = eµe

σ2

2 , ln k = µ +

σ2

2 , (−dµ) =
d(σ2)
2 so an increase in the variance is equivalent to a decrease in the mean utility. We consider the effects of

mean preserving spreads on both mean log utility and on the probability that V is positive (college is selected). We now

turn to the empirical analysis of this paper.

7 Empirical Results

We use the NLSY data for white males described in Appendix B and augmented with the PSID data to estimate the Willis-

Rosen Model. Main features of the data are presented in Table 2. We focus on two schooling decisions; graduating from a

four year college or graduating from high school. We thus abstract from the full multiplicity of choices of schooling. This is

clearly a bold simplification but it allows us to focus on the main points of this paper.

As a measurement system (M) for cognitive ability we use five components of the ASVAB test battery (arithmetic

reasoning, word knowledge, paragraph composition, math knowledge and coding speed). We dedicate the first factor (θ1) to

the ability measurement system and exclude the other factors from that system (recall the normalizations in equation (21)).

We include family background variables as additional covariates in the ASVAB test equations (the µM (X)).

To simplify the empirical analysis, we divide the lifetimes of individuals into two periods. The first period covers ages 19

to 29, and the second covers ages 30 to 65. We compute annual earnings by multiplying the hourly wage by hours worked

each year for each individual.29 We impute missing wages and project earnings for the ages not observed in the NLSY data

using the procedure described in Appendix B. The NLSY data do not contain information on the full life cycle of earnings.

We project the missing NLSY earnings using estimates of lifetime earnings from the PSID data.

Tables 2a-b present the sample statistics. They show that while college graduates have higher earnings than high school

graduates, all of the gain to attending college comes after age 30. College graduates also have much higher test scores and

come from better family backgrounds than high school graduates. They are more likely to live in locations where a college

is present and where college tuition is lower.

In the notation of Section 5, S̄ = 2 (two choices), R̄ = 1 (there is one outcome per person, earnings), M̄ = 5 (there are five

test scores that are generated solely by θ1) and Ā = 2 (there are two periods in the life cycle). In addition, there is utility index

I. The test scores depend solely on θ1. The outcomes and index are allowed to depend on (θ1, θ2). Since K = 2, assuming

non-zero factor loadings, we satisfy the conditions for identification presented in Theorem 4. We have five measurements

generated solely by θ1. There are three measurements generated by θ1 and θ2 for each schooling level. (Outcomes and
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choices are defined for each choice system). Exclusion restrictions are given in Table 2c along with specification of each of the

equations. Tuition and family background identify the parameters of the schooling equations. Local labor market variables

identify the parameters of utility equations. Assuming that test scores are continuous outcomes, no exclusions are needed for

identification of the test score equations and their distribution.

In this section, to facilitate the exposition we denote the college state (choice 1) by c, while high school (choice 0) is

denoted by h. We model log earnings (utility of earnings) at each age as:

(23) lnYa,s = δa,s +X 0βa,s + η1,s ∗ experiencea + η2,s ∗ experience2a +α0a,sθ + εa,s

where Ya,s is earnings in period (age) a if the schooling level is s, X is a vector of covariates, θ is a vector of factors and η1,s

and η2,s are calculated by the procedure described in Appendix B. We compute the present value of log earnings (lifetime

utility) in the first period (ages 19 to 29) and in the second period (ages 30 to 65). Let V1,s be the period 1 gross utility

of achieving schooling level s, and V2,s be the period 2 gross utility of obtaining schooling level s. Using (23), we write the

gross utilities as

V1,s = δ̄1,s +X 0β̄1,s + ᾱ01,sθ + ε̄1,s

V2,s = δ̄2,s +X 0β̄2,s + ᾱ02,sθ + ε̄2,s.

These are the outcome equations for the model that we estimate. To see this, notice that

V1,s =

A1X
a=19

lnYa,s
(1 + ρ)a

=

A1X
a=19

δa,s +X 0βa,s +α0a,sθ + εa,s + η1,s ∗ experiencea + η2,s ∗ experience2a
(1 + ρ)

a

=

A1X
a=19

δa,s +X 0βa,s + η1,s ∗ experiencea + η2,s ∗ experience2a
(1 + ρ)a

+

"
A1X
a=19

α0a,s
(1 + ρ)a

#
θ +

A1X
a=19

εa,s
(1 + ρ)a

= δ̄1,s +X 0β̄1,s + ᾱ01,sθ + ε̄1,s
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where

A1 = 29

ρ = 0.03 (the prespecified discount rate)

δ̄1,s =

A1X
a=19

δa,s + η1,s ∗ experiencea + η2,s ∗ experience2a
(1 + ρ)

a

β̄1,s =

A1X
a=19

βa,s
(1 + ρ)a

ᾱ01,s =

A1X
a=19

α0a,s
(1 + ρ)a

ε̄1,s =

A1X
a=19

εa,s
(1 + ρ)

a

and terms for the second period of data (30-65) are defined analogously. The “cost” or psychic net return of going to college

is written as:

lnP = δP + Z0γ +α0Pθ + εP .

These “costs” can be negative as they entail both psychic and tuition components. Assuming that the agents know X, Z, θ

and εP , the criterion for the choice of schooling is:

V = E (V1,c + V2,c − V1,h − V2,h|X,θ)−E(lnP |Z,X,θ,εP )

= δ̄1,c +X 0β̄1,c + ᾱ01,cθ + δ̄2,c +X 0β̄2,c + ᾱ02,cθ − δ̄1,h −X 0β̄1,h − ᾱ01,hθ − δ̄2,h −X 0β̄2,h − ᾱ02,hθ
−δP − Z0γ −α0Pθ − εP

=
¡
δ̄1,c + δ̄2,c − δ̄1,h − δ̄2,h − δP

¢
+X 0 ¡β̄1,c + β̄2,c − β̄1,h − β̄2,h

¢− Z0γ

+
¡
ᾱ01,c + ᾱ02,c − ᾱ01,h − ᾱ02,h −α0P

¢
θ − εP .

Individuals go to college if V > 0. We test (and do not reject) the hypothesis that at the time they make their college decision

agents know their cost function and both factors θ, but not the uniquenesses in the outcome equations. These expressions

can be modified in an obvious way to accommodate other information sets.

The test score equations have a similar structure. Let Tj be test score j:

Tj = X 0ωj +α0testjθ + εtestj

where X is the vector of covariates in the test score equation, and ωj is the covariate vector. The distributions of the θ and ε

are nonparametrically identified under the assumptions supporting Theorems 1-5. In this paper, we assume that each factor
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is generated by a mixture of normals distribution,

(24) θk ∼
JkX
j=1

pk,jφ
¡
fk|µj,k, τ j,k

¢
, k = 1, . . . ,K.

Mixtures of normals with a large enough number of components approximate any distribution of θk and the ε arbitrarily

well (Ferguson, 1983). We assume that the ε’s are normal although in principle they are nonparametrically identified from

the analysis of Theorem 5.

We estimate the model using Markov Chain Monte Carlo methods as described in Appendix C for 55,000 iterations,

discarding the first 5,000 iterations to allow the chain to converge to its stationary distribution. We retain every 10th of the

remaining 50,000 iterations for a total of 5,000 iterations.30 The Markov Chain mixes well with most autocorrelations dying

out at around lag 25 to 50.

We estimate models with one factor and with two factors. The estimated coefficients are presented as Tables A1 through

A5 in the supplementary tables on the website (http://lily.src.uchicago.edu/CHH_estimating.html). The two factor model

specifies that the first factor only appears in test scores and choice equations while the second factor appears in all equations.

No additional factors are necessary to fit our data. Thus we conclude that the innovations in the earnings process
¡
εja
¢
are

not in the agent’s information set at the time schooling decisions are made. If they were, they would be an additional source

of covariance (i.e., they would generate additional factors) between the choice equation and future earnings. If we use only

one factor that enters in all equations, the quality of the fit is much poorer (results available on request). From this testing

procedure we infer that agents know both components of θ at the time they enroll in college. Figure 1 shows the fit of the

density of the present value of log earnings (or lifetime utility of earnings excluding psychic costs and benefits) for everyone in

the population. It graphs the actual and predicted densities of gross utility. The fit is very good. Results for each schooling

group are available in the supplement on the website and are equally good (χ2 goodness of fit tests are passed overall as

well as for the distribution of utility for each schooling group; see Table A6). In order to achieve this good fit it is necessary

to allow for non-normal factors. Figure 2 shows the density of each of the estimated factors and compares them with a

benchmark normal with the same mean and standard deviation. Neither factor is normal.31 There is evidence of selection

on ability (factor 1), with the less able less likely to attend college. There is weaker evidence of selection on factor 2 (see

graphs A-1 and A-2 posted at the website).

Tables 3a-b presents the factor loadings in the outcome, choice and measurement equations.32 Both factors have a positive

effect on gross utility for both schooling levels in each period and on schooling attainment (the I). Factor 1 explains most

of the variance in the test score system (see Table 3b) while factor 2 explains most of the variance in the utility outcome

system (see Table 3a). The return to college in terms of gross utility (gross utility differences) is given by:

V1,c + V2,c − V1,h − V2,h =
¡
δ̄1,c + δ̄2,c − δ̄1,h − δ̄2,h

¢
+X 0 ¡β̄1,c + β̄2,c − β̄1,h − β̄2,h

¢
+
¡
ᾱ01,c + ᾱ02,c − ᾱ01,h − ᾱ02,h

¢
θ + (ε̄1,c + ε̄2,c − ε̄1,h − ε̄2,h) .

Both factors raise returns (see the base of Table 3a). While the second factor explains much more of the variance in utility
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than the first factor, the first factor explains more of the variance in returns than the second factor although it only explains

30% of the variance in returns. We infer that agents know θ (the factors) based on the superior fit of a model that includes

nonzero factor loadings on both factors in the choice equation but not the innovations in outcomes (the ε’s in the outcome

equations) at the time they make their schooling decisions.

Our results indicate that the unpredictability in gross utility gains (i.e. differences) of going to college is much larger

than the unpredictability in utility levels. Both factors have a negative impact on “costs” (the factor loadings are positive

in the “cost” or psychic return function). Therefore, both factors positively influence the likelihood of going to college since

both contribute positively to returns and negatively to costs.

Figure 3 plots the estimated factual and counterfactual gross college utility densities for college graduates and high school

graduates, respectively (see Figure A3 on the website for the corresponding figure for high school utility). College graduates

have the highest level of gross utility both as high school graduates and as college graduates. They also have the highest

gross gains of going to college as demonstrated in Figure 4.33,34 Figure 5 presents the marginal treatment effect as defined

in equation (6) using utils as the outcome. This is the gross gain in utils of going to college as a function of εW , which is an

index of variables that increase the likelihood of enrollment in college. It shows that individuals who are likely to enroll in

college have higher returns to college than those who are unlikely to enroll in college who have lower values of εW . Figure 5

also shows the distribution of εW in the population. Most of the mass of this distribution is at values of εW around 0. Many

individuals have negative gross utility returns (excluding psychic benefits of going to college). Even among those deciding

to go to college, 39.53% would have higher utility (ignoring psychic components) had they not gone to college. There is a

definite falloff in utility gains as college enrollment is expanded to the less college prone. Table 4 confirms Figure 3 and

shows that college graduates have higher potential high school and college utility than high school graduates in high school

and in college (these are gross utilities). Table 5 shows that the gross returns of going to college are higher for those who

choose to go to college. These results are expected given the pattern shown in Figure 4. The returns for attending college

for the average high school graduate are negative. The returns to college for the individual at the margin (V = 0) are about

0.59% of total high school utility. Since these individuals are exactly at the margin, these gains correspond exactly to the

cost they are facing. Once we account for the nonmonetary costs and benefits of going to college (net returns reported in the

bottom two rows of Table 5) the relative returns of going to college become more negative for high school graduates and more

positive for college graduates. Since lnP can be allocated as either a cost or a return, there are two ways to compute returns

depending on whether lnP is treated as a cost (row 2) or a return (row 3). We present two sets of net return estimates

depending on how “costs” or “gains” (lnP ) are allocated. These are bounds since the actual allocation between cost and

benefit is indeterminate.

The patterns of Figures 3-5 are essentially reproduced for present value of earnings in Figures 6-8. Table 6 shows that

college graduates have earnings 57.6% higher than they would have had (or $608,372 higher, on average) if they did not go

to college. High school graduates have a gross gain of 43% (or $362,987) if they go to college. Notice that even though the

utility gains of going to college are negative for high school graduates, the money returns are positive and large. Table 7

shows that even though 39.66% of the persons going to college would have had a higher utility in high school than in college

(ignoring psychic gains), only 6.9% of this population had higher earnings in high school than in college. Once we account
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for psychic benefits, the proportion of college students regretting their decisions is roughly the same whether we measure

regret in present value or utils. This shows the importance of accounting for psychic returns in analyzing schooling choices.

Among high school graduates, 95.90% do not regret not going to college (measured in utils), but 85.26% regret the decision

financially. The marginal treatment effect has the same general shape when present values of earnings are used instead of

gross utility (see Figure 8).

Table 8 shows the probability of being in decile i of the college potential discounted earnings distribution conditional

on being in decile j of the high school potential earnings distribution. (These are gross earnings.) It shows that neither

an independence assumption across counterfactual outcomes, which is the Veil of Ignorance assumption used in applied

welfare theory, (see, e.g., Sen, 1973) or in aggregate income inequality decompositions (DiNardo, Fortin, and Lemieux, 1996)

nor a perfect ranking assumption, which are sometimes used to construct counterfactual joint distributions of outcomes,

(see e.g. Heckman, Smith, and Clements, 1997 or Athey and Imbens, 2002) are satisfied in the data. There is a strong

positive dependence between potential outcomes in each counterfactual state, but there is not perfect dependence. There are

substantial nonzero elements outside the diagonal. We get similar results for utils (discounted log earnings). See Table A-13

at our website.

We have already shown that there is a large dispersion in the distribution of utilities, utility returns, earnings, and

earnings returns to college. However, this dispersion can be due to heterogeneity that is known at the time the agent makes

schooling decisions, or it can be due to heterogeneity that is not predictable by the agent at that time. Figure 9 plots the

densities of the unforecastable component of college gross utilities at the time college decisions are made for fixed X values,

under three different information sets. (The X are fixed at their means.) The solid line corresponds to the case where the

agent does not know his factor (θ) nor his innovations (the ε’s in the outcome equations). The other two lines correspond

respectively to the cases where the agent knows θ2 only, or both θ1 and θ2.
35 Knowledge of θ2 dramatically decreases the

uncertainty faced, but knowledge of factor 1 (associated with cognitive ability) has only a small effect on the amount of

uncertainty faced by the agent. We obtain a similar figure in terms of gross utility in high school.36 However, even though

knowledge of θ2 reduces dramatically the amount of uncertainty faced in terms of levels of gross utility in each counterfactual

state, it has only a small effect on the uncertainty faced in terms of returns (see Figure 10). Table 9 reports the variances

of gross and net utility and gross and net present value of earnings under different information sets of agents. Giving agents

more information (knowledge of factors) reduces the variance in utilities or present values as perceived by agents. However,

reducing uncertainty barely budges the forecast returns to schooling measured in dollars or utils—the message of Figure 10.

Analogous results are obtained for present value of earnings. See Figures A-15 and A-16 posted at our website.

The fact that a two factor model is adequate to fit the data implies that the agents cannot forecast future shocks of log

earnings (ε̄1,c, ε̄2,c, ε̄1,h, ε̄2,h) at the time they make their schooling decision. (If they did, they would enter as additional

factors in the estimated model.) Even though the factors (θ) explain most of the variance in levels of utilities, they explain

less than half of the variance in returns, which may lead the reader to conclude that the reason so many college graduates

would have higher gross utility in high school than in college (39%) is because they cannot accurately forecast their returns

of going to college. However this is not the case. As shown in Table 7 once we account for psychic benefits or costs of

attending college (P ) relative to attending high school, only 8% of college graduates regret going to college. This suggests a
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substantial part of the gain to college is due to non-pecuniary components. Furthermore, Table 10 shows that if individuals

had knowledge of (ε̄1,c, ε̄2,c, ε̄1,h, ε̄2,h), keeping their average expected earnings the same, very few of them would change their

schooling decision. Uncertainty in gains to schooling is substantial but knowledge of this uncertainty has a very small effect

on the choice of schooling because the variance of gains is so much smaller than the variance of psychic costs or benefits, and

it is the latter that drives most of the heterogeneity in schooling decisions. In addition, there is uncertainty about the level

of both college and high school earnings. See the variances reported for each in Table 9. The uncertainty in the return comes

from both sources although the literature emphasizes the uncertainty in college earnings. When conducting this experiment,

we make sure that the average expected earnings are the same because a mean preserving reduction in the uncertainty faced

by the agents in terms of utility is not the same as a mean preserving change in uncertainty in terms of levels of earnings (see

Appendix D).37 In particular a change in the variance of (ε̄1,c, ε̄2,c, ε̄1,h, ε̄2,h) would not change the expected utility in each

schooling level but would change expected earnings in each schooling level. The numbers reported in Table 10 take this into

account. When agents know their (ε̄1,c, ε̄2,c, ε̄1,h, ε̄2,h) , they face less uncertainty. Knowing these components is equivalent

to setting ∆ = 0 in the expression at the end of Section 6, a special case of mean preserving shrinkage where variances are

set to zero. The expected utility at each schooling level increases.38

8 Some Evidence on an Educational Reform

Using the estimated model, we evaluate the effect of a full subsidy to college tuition. We move beyond the Veil of Ignorance

which is based on an anonymity assumption and evaluates reforms considering only their overall impact on inequality, to

consider which individuals are benefited by the reform. We consider only partial equilibrium treatment effects and do not

consider the full cost of financing the reforms. Table 4 shows the average lifetime gross utility of participants before the

policy change and Table 5 shows their pre-policy average return to college. These tables compare these levels and returns

with what the marginal participant attracted into schooling by the policy would earn. The marginal person has lower utility

in college and lower returns to college than the average person in college (also see Figure 5). Since the policy affects the

schooling decisions of the individuals at the margin, the policy will produce a decline in the quality of college graduates after

the policy is implemented, since the new entrants are of lower average quality than the incumbents.

Despite the substantial size of the policy changes we consider, the induced effects on participation are small. The full

tuition subsidy only increases graduation from four-year college by 4%.39 The policies operate unevenly over the deciles

of the initial outcome distribution. Figure 11 shows the proportion of high school people in each decile of the high school

present value of earnings distribution induced to graduate from four-year college by the tuition subsidy. The figure shows

that providing a free college education mostly affects people at the top end of the high school earnings distribution.40 The

policy does not benefit the poor. A calculation based on the Veil of Ignorance using the Gini coefficient would show no effect

of the policy up to two decimal points. Our analysis relaxes the Veil of Ignorance, and lets us study the impact of policies on

persons at different positions of the income distribution. It goes beyond the counterfactual simulations used in the inequality

literature (see, e.g. DiNardo, Fortin and Lemieux, 1996) to account for self selection by agents into sectors in response to

policy changes.

26



9 Summary and Conclusions

This paper uses low dimensional factor models to generate counterfactual distributions of potential outcomes. It ex-

tends matching by allowing some of the variables that determine the conditional independence assumed in matching to be

unobserved by the analyst. Semiparametric identification is established.

We apply our methods to a problem in the economics of education. We extend the Willis-Rosen model to explicitly

account for dependence in potential outcomes across potential schooling states, to account for psychic benefits in the return

to schooling and to measure the effect of uncertainty on schooling choices. We extend the framework of Flavin (1981) and

Hansen, Roberds and Sargent (1991), who estimate the impact of uncertainty on consumption choices to a discrete choice

setting to estimate agent information sets. Our framework extends the inequality decomposition analysis of DiNardo, Fortin,

and Lemieux (1996) to account for self selection in the choice of sectors.

Our analysis reveals substantial heterogeneity in the returns to schooling, much of which is unpredictable at the time

schooling decisions are made. We also find a substantial non-pecuniary return to college. Although there is substantial

uncertainty in forecasting returns at the time schooling decisions are made, eliminating it has modest effects on schooling

choices. Uncertainty is inherent in both college and high school outcomes at the time schooling decisions are made. In

addition, nonpecuniary factors play a dominant role in schooling choices. The assumption of perfect ranking of potential

outcome across alternative choices is soundly rejected, although potential outcomes are strongly positively correlated.

We simulate a tuition reduction policy to determine who benefits and loses from it. We go beyond the Veil of Ignorance

to see which persons are affected by the policy. The policy favors those at the top of the income distribution. This simulation

illustrates the power of our method to lift the Veil of Ignorance, and to count the losers and gainers from any policy initiative.
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Appendix A : Proofs of Theorems

Proof of Theorem 1: The case where M consists of purely continuous components is trivial. We observe Mc for each X

and can recover the marginal distribution for each component. Recall that M is not state dependent.

For the purely discrete case, we encounter the usual problem that there is no direct observable counterpart for µdm (X).

Under (A-1)-(A-5), we can use the analysis of Manski (1988) to identify the slope coefficients βdl,m up to scale, and the marginal

distribution of Ud
l,m. From the assumption that the mean (or median) of Ud

l,m is zero, we can identify the intercept in βdl,m.

We can repeat this for all discrete components. Thus coordinate by coordinate we can identify the marginal distributions of

Uc
m, eUd

m, µ
c
m (X) and eµdm (X) , the latter up to scale (“~” means identified up to scale).

To recover the joint distribution write:

Pr (Mc ≤ mc,Md = (0, ..., 0) | X) = FUc
m,eUd

m

³
mc − µcm (X) ,−eµdm (X)´

by assumption (A-2). To identify FUc
m,eUd

m
(t1, t2) for any given evaluation points in the support of (Uc

m, eUd
m), we know the

function eµdm (X) and using (A-3) we can find an X where eµdm (X) = t2. Let bx denote this value, so eµdm (bx) = t2. In this proof,

t1, t2 may be vectors. Thus

Pr (Mc ≤ mc,Md = (0, ..., 0) | X = bx) = FUc
m,eUd

m
(mc − µcm (bx) , t2)

Let bmc = t1 − µcm (bx) to obtain
Pr (Mc ≤ bmc,Md = (0, ..., 0) | X = bx) = FUc

m,eUd
m
(t1, t2)

We know the left hand side and thus identify FUc
m,eUd

m
at the evaluation point t1, t2. Since (t1, t2) is any arbitrary evaluation

point in the support of Uc
m, eUd

m we can thus identify the full joint distribution.¥41

Proof of Theorem 2:

Pr (D1 = 1 | Z,Q1) = Pr
µ
c1 (Q1)− ϕ (Z)

σW
>

εW
σW

¶
Under (A-1), (A-2), (A-6), (A-7) and (A-9), it follows that c1(Q1)−ϕ(Z)

σW
and Fε̃W (where eεW = εW

σW
) are identified (see Manski,

1988 or Matzkin 1992, 1993). Under rank condition (A-7), identification of c1(Q1)−ϕ(Z)
σW

implies identification of c1(Q1)
σW

and
ϕ(Z)
σW

separately. Write

Pr (D2 = 1 | Z,Q1,Q2) = FeεW
µ
c2 (Q2)− ϕ (Z)

σW

¶
− FeεW

µ
c1 (Q1)− ϕ (Z)

σW

¶
.

From the absolute continuity of eεW and the assumption that the distribution function of eεW is strictly increasing, we can

write
c2 (Q2)

σW
= F−1eεW

·
Pr (D2 = 1 | Z,Q1, Q2) + FeεW

µ
c1 (Q1)− ϕ (Z)

σW

¶¸
+

ϕ (Z)

σW
.

Thus we can identify c2(Q2)
σW

over its support and, proceeding sequentially, we can identify cs(Qs)
σW

, s = 3, .., S. Under (A-8) we
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can identify ηs, s = 2, .., S.¥ Observe that we could use the final choice (Pr(s = S)) rather than the initial choice to start off

the proof of identification using an obvious change in the assumptions.

Proof of Theorem 3: From (A-2), the unobservables are jointly independent of (X,Z,Q). For fixed values of (Z,Qs, Qs−1),

we may vary the points of evaluation for the continuous coordinates (ycs) and pick alternative values of X = bx to trace out
the vector µc(X) up to intercept terms. Thus we can identify µcs,l(X) up to a constant for all l = 1, ..., Nc,s.(Heckman and

Honoré, 1990). Under (A-2), we recover the same functions for whatever values of Z,Qs, Qs−1 are prespecified as long as

cs (Qs) > cs−1 (Qs−1), so that there is interval of εW bounded above and below with positive probability. This identification

result does not require any passage to a limit argument.

For values of (Z,Qs, Qs−1) such that

lim
Qs→Q̄s(Z)

Qs−1→Q
s−1(Z)

Pr (Ds= 1|Z,Qs, Qs−1) = 1.

where Q̄s (Z) is an upper limit and Qs−1 (Z) is a lower limit, and we allow the limits to depend on Z, we essentially integrate

out eεW and obtain

Pr(Mc ≤ mc, eµdm ≤ −Ud
m, U

c
s ≤ ycs − µc(X), eUd

s ≤ −eµds(X))
We know that this probability can be achieved by virtue of the support condition of assumption (A-10).

Then proceeding as in the proof of Theorem 1, we can identify eµds(X) coordinate by coordinate and we obtain the
constants in µcs,l(X), l = 1, ..., Nc,s as well as the constants in eµd(X). From the assumption of mean or median zero of the

unobservables. In this exercise, we use the full rank condition on X which is part of assumption (A-11).

With these functions in hand, under the full conditions of assumption (A-10) we can fix ycs, y
c
m, eµds , eµdm, cs(Qs)−ϕ(Z)

σW
,

cs−1(Qs−1)−ϕ(Z)
σW

at different values to trace out the joint distribution F (Uc
m, Ũ

d
m, U

c
s , Ũ

d
s ,eεW ).¥42
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Appendix B: Description of the Data
We use white males from NLSY79. In the original sample there are 2439 individuals. We consider the information on

these individuals from age 19 to age 35. We discard 663 individuals because they have observations missing for at least one

of the covariate variables we use in the analysis. Tables 2a-b contain a description of the number of missing observations

per variable. For example, we discard 50 individuals because we do not observe whether they were living in the South when

they were 14 years old or not. Then we discard another 6 for not having information on whether they lived in urban area

at age 14, other 5 for not reporting the number of siblings, 221 for not indicating parental education and so on, as described

in Table 2a. We then restrict the NLSY sample to white males with a high school or college degree. We define high school

graduates as individuals having a high school degree or having completed 12 grades and never reporting college attendance.

We define participation in college as having a college degree or having completed more than 16 years in school. We exclude

the oversample of poor whites. Experience is Mincer experience (age-12 if high-school graduate, age-16 for college graduate).

The variables that we include in the outcome and choice equations are number of siblings, parental years of schooling, AFQT,

year of birth dummies, average tuition of the colleges in the county the individual lives in at 17 (we simulate the policy change

by decreasing this variable by $1000 for each individual), distance to the nearest college at 17, average local blue collar wage

in state of residence at 17 (or in 1979, for individuals entering the sample at ages older than 17) and local unemployment

rate in county of residence in 1979. For the construction of the tuition variable see Cameron and Heckman (2001). Distance

to college is constructed by matching college location data in HEGIS (Higher Education General Information Survey) with

county of residence in NLSY. State average blue collar wages are constructed using data from the BLS. For a description of

the NLSY sample see BLS (2001).

In 1980, NLSY respondents were administered a battery of ten achievement tests referred to as the Armed Forces Vo-

cational Aptitude Battery (ASVAB) (See Cawley, Conneely, Heckman and Vytlacil (1997) for a complete description). The

math and verbal components of the ASVAB can be aggregated into the Armed Forces Qualification Test (AFQT) scores.43

Many studies have used the overall AFQT score as a control variable, arguing that this is a measure of scholastic ability. We

argue that AFQT is an imperfect proxy for scholastic ability and use the factor structure to capture this. We also avoid a

potential aggregation bias by using each of the components of the ASVAB as a separate measure.

For our analysis, we use the random sample of the NLSY and restrict the sample to 1161 white males for whom we have

information on schooling, several parental background variables, test scores and behavior. Distance to nearest college at each

date is constructed in the following way: Take the county of residence of each individual and all other counties within the

same state. The distance between two counties is defined as the distance between the center of each county. If there exists a

college (2 year or 4 year) in the county of residence where a person lives then the distance to the nearest college (2 year or 4

year) variable takes the value of zero. Otherwise we compute distance (in miles) to the nearest county with a college. Then

we construct distance to nearest college at 17 by using the county of residence at 17. However for people who were older

than 17 in 1979 we use the county of residence in 1979 for the construction of this variable.

Tuition at age 17 is average tuition in colleges in the county of residence at 17. If there is no college in the county then

average tuition in the state is taken instead. For details on the construction of this variable see Cameron and Heckman

(2001).
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Local labor market variables for the county of residence are computed using information in the 5% sample of the 1980

Census. For each county group in the census we compute the local unemployment rate and average wage for high school

dropouts, high school graduates, individuals with some college and four year college graduates. We do not have this variable

for years other than 1980 so, for each county, we assume that it is a good proxy for local labor market conditions in all the

other years where NLSY respondents are assumed to be making the schooling decisions we consider in this paper.

We also use the variable log annual labor earnings. We extract this variable from the NLSY79 reported annual earnings

from wages and salary. Earnings (in thousands of dollars) are discounted to 1993 using the Consumer Price Index reported

by the Bureau of Labor Statistics. Missing values for this variable may occur here for two reasons: First, because respondents

do not report earnings for wages/salary, and second, because the NLSY becomes biannual after 1994 and this prevents us

from observing respondents when they reach certain ages. For example, because the NLSY79 was not conducted in 1995, we

do not observe individuals born in 1964 when they are 31 year-old. In this case we input missing values.

To predict missing log earnings between ages 19 and 35 and extrapolate from age 36 to age 65 we pool NLSY and PSID

data. From the latter, we use the sample of white males that are household heads and that are either high-school or college

graduates according to the definition given above. This produces a sample of 3,043 individuals from PSID. To get annual

earnings, we multiply the reported CPI-adjusted (1993 =100) hourly wage rate by the annual hours worked and divide the

outcome by 1000. Then we take logs to have an NLSY-comparable variable. Similarly to NLSY, we generate the Mincerian

Experience according to the rule given above. We also generate dummy variables for cohorts. The first (omitted) cohort

consists of individuals born between 1896 and 1905, the second consists of individuals born between 1906 and 1915, and so

on up to the last cohort which is made up of PSID respondents born between 1976 and 1985. We pool NLSY and PSID by

merging the NLSY respondents in the PSID cohort born between 1956 and 1965.

Let Yia denote log earnings of agent i at age a. For each schooling choice s, we model the earnings-experience profile as

(25) Yia(s) = α+ β0Xia + β1X
2
ia +Dγ + εia

(26) εia = ηi + via

(27) via = ρvia−1 + κia

where X is Mincer Experience, D is a set of dummy variables that indicate cohort, ηi is the individual effect, and κia is

white noise. In Table A-14 posted at http://lily.src.uchicago.edu/CHH_estimating.html we report the OLS estimates for

α, β0, β1, γ, ρ based on the pooled data set.
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Now, let ε̂ia be the estimated residual of the earnings-experience profile. An estimator of the individual effect ηi is

η̂i =
1

65P
a=19

φia

65X
a=19

φiaε̂ia,

where φia = 1(if individual i is observed at age a)

Then, we can obtain an estimator of via by computing

v̂ia = ε̂ia − η̂i

Now, given bvia we can run equation (27) and then compute ρ. From this we obtain an estimator of κia according to

κ̂ia = v̂ia − ρ̂v̂ia−1

We can then predict earnings for missing observations for ages 19 to 35 and perform the extrapolation from 36 to 65 by

computing for each individual

Ŷia(s) = α̂+ β̂0Xia + β̂1X
2
ia +Dγ̂ + ε̂ia

= α̂+ β̂0Xia + β̂1X
2
ia +Dγ̂ + η̂i + ρ̂v̂ia−1 + κ̂ia

Note that to get ε̂ia we do not set κ̂ia equal to zero. Instead, we sample ten draws from its distribution and average them

for each individual, for each time period.

The next step is to get the present value of log earnings at age 19 for each agent. In order to do it we discount log earnings

at each period using a discount rate of 3%. For identification purposes we then break each individual’s working-life in two

periods. The first one goes from age 19 to age 29. The second period goes from age 30 all the way to age 65. This produces

a panel in which the first observation for each agent is the present value of log earnings from age 19 to 29 and the second

is the present value of log earnings from 30 to 65. This means that lifetime present value of log earnings is just the sum of

these two components. Table 2b contains descriptive statistics for the present value of log earnings for the entire working-life

period and also for the two subperiods used in the analysis.
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Appendix C: Markov Chain Monte Carlo Simulation Methods
Due to the complex nature of the likelihood function we will rely on Markov Chain Monte Carlo techniques to estimate

the model. These are computer-intensive algorithms based on designing an ergodic discrete time continuous state Markov

chain with a transition kernel having invariant measure equal to the posterior distribution of the parameter vector ψ, see

Robert and Casella (1999) for details. In particular, we will be using the Gibbs sampling algorithm.44

We first describe how the Gibbs sampler can be used to estimate models in the general set-up laid out in section 4. Let

ψs,a be parameters specific to the distribution of outcomes with schooling level s at age a, let ψm be parameters specific

to the distribution of measurements, let ψc be parameters specific to the distribution of schooling choice and let ψθ be

parameters specific to the factor distributions. Let n be the number of observations. Let the outcome matrix over all ages

with schooling level s be Ys,i = (Y c
s,i, Y

∗d
s,i ) and the vector of measurements is M .

The complete data likelihood for completed schooling level S = s is

f
¡
M,Ys, I,θ|ψ

¢
=

Y
i:Di,s=1

f
¡
Mi, Ys,i, Ii,θi|ψ

¢

where ψ =
£
ψs,a,ψm,ψc,ψθ

¤
, “i” denotes a subscript for individual i and

f(Mi, Ys,i, Ii,θi|ψ) = f(Mi|ψm, θi)×
ĀY
a=1

f(Ys,a,i|ψs,a,θi)f(Ii|θi,ψc)f(θi|ψ).

The complete data posterior is

f(M,Y, I, θ,ψ|data) ∝
S̄Y
s=1

f(θ,M, Y ∗s , I|ψ)f(ψ)

where Y = (Y1, ..., YS̄).

In what follows the conditional posteriors that constitute the transition kernel of the Gibbs sampler will be derived.

Choice equations

Conditional on the factors we have

f(η,γ,ρ
¯̄̄
ψ−(η,γ,ρ),θ ) ∝

(
nY
i=1

f(Ii |Z0iη + γ0θi, 1)

)


s̄X
j=1

1(ci,j−1 < Ii < ci,j)Di,j}1(ci1 < · · · < cis̄)f(η,γ)f(ρ)

 .(28)

This marginal can be factored into two conditionals. Conditional on ρ we

f(η,γ|ρ,ψ−(η,γ,ρ),θ) ∝
nY
i=1

f(Ii|Z0iη + γ0θi, 1)f(η,γ).
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This is the posterior for a normal regression model with covariates Zi,θi and precision fixed at one. With f(η, γ)

multivariate normal this is a multivariate normal distribution.

The second conditional (for ρ) is

f(ρ|η,γ,ψ−(η,γ,ρ),θ) ∝
nY
i=1

s̄X
j=1

1(ci,j−1 < Ii < ci,j)Di,j1(ci1 < · · · < cis̄)f(ρ)

We sample ρs one at a time conditional on the ρ1, . . . , ρs−1, ρs+1, . . . , ρs̄. The conditional for ρs is

f(ρs

¯̄̄
ρ−s,η,γ,ψ−(η ,γ ,ρ),θ) ∝

Y
i:si=s

1(ci,s−1 < Ii < Qisρs)

×
Y

i:si=s+1

1(Qi,sρs < Ii < cis+1)
nY
i=1

1(cis−1 < Qisρs < cis+1)f(ρ).(29)

As a prior for ρ we choose f(ρ) =
Q

sU(−B,B) where B = 1000, i.e., a uniform distribution with very large support.

Let Ks be the number of elements in Qs. We sample ρhs, h = 1, . . . ,Ks one at a time. The conditional for ρhs is a uniform

distribution with boundary points which can be derived from a series of inequalities. Without loss we can assume that Qihs

is positive. From (29) it follows that

ρhs > max
n
maxi:si=s

Ii − c̃is
Qihs

,maxi
cis−1 − c̃is

Qihs
,−K

o
≡ g

hs

ρhs < min
n
mini:si=s+1

Ii − c̃is
Qihs

,mini
cis+1 − c̃is

Qihs
,K
o
≡ ḡhs,

where c̃is =
PKs

j=1,j 6=hQijsρjs. Hence ρhs is uniform with boundaries (g
hs
, ḡhs).

Conditional on the factors we have

f(I|ψ−(η,γ,ρ),θ) ∝
n nY
i=1

f(Ii|Z0iη + γ0θi, 1)
© s̄X
j=1

1
¡
ci,j−1 < Ii < ci,j

¢
Di,j

ª
.

This factors into n independent truncated normals,

f(I|ψ−(η,γ,ρ),θ) =
nY
i=1

TN(ci,j−1,cij)(Ii|Z0iη + γ0θi, 1).

So we sample Ii, i = 1, . . . , N , one at a time from truncated normals.

Measurement equations

The continuous measurement equations are of the form

(30) Mi,j = X 0
m,i,jβ

c
m,j +αc

m,j
0θi + εcm,i,j .

Given Xm,i,j ,θi this is a linear regression model. With multivariate normal priors on (β
c
m,j , α

c
m,j) and a gamma prior on the
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precision of εcm,i,j this is in the form of the standard conjugate Bayesian linear regression model, with a conditional normal

distribution for βcm,j given the precision of ε
c
m,i,j and a gamma distribution for the precision conditional on βcm,j .

Let the last m−m1 elements of the measurement vector M be binary indices generated as

Md
j = 1(M

∗d
j ≥ 0), j = m1 + 1, . . . ,m.

The parameters in the binary measurements are samples as above with two exceptions. First, a separate step samples the

latent measurements, M∗dj , as

M∗di,j ∼

TN(0,∞)
¡
M∗di,j |X 0

m,i,jβ
d
m,j +αd

m,j
0
θi, 1

¢
if Md

i,j = 1,

TN(−∞,0)

¡
M∗di,j |X 0

m,i,jβ
d
m,j +αd

m,j
0
θi, 1

¢
if Md

i,j = 0.

Second, the precision is not sampled but fixed at one.

Outcome equations

Let Ys,a be the outcome vector at age a with schooling level s. Suppose both employment and wage outcomes are modeled.

Let Y c
s,a be the wage outcome and Y d

s,a the employment outcome. Also let Y
∗,d
s,a be the latent employment index. By the

factor structure assumption we have

f(Y c
s,a, Y

∗,d
s,a |θ) = f(Y c

s,a|θ)f(Y ∗,ds,a |θ),

for a person working.

The model for wages is

Y c
s,a,i = X 0

1,a,iβ
c
s,a +αc

s,a
0θi + εca,s,i,

where εca,s,i ∼ N(0, τ cs,a). This is in the form of a standard linear regression model under normality and (βcs,a, α
c
s,a, τ

c
s,a) is

sampled as above (using multivariate normal and gamma priors).

We can allow for general state dependence by modeling the latent employment transition indices as

Y d,∗
s,a,i =

X 0
2,a,s,iβ

d
a,s,0 +αd

a,s,0
0
θi + εda,s,i,0, if Y d

s,a−1,i = 0,

X 0
2,a,s,iβ

d
a,s,1 +αd

a,s,1
0
θi + εda,s,i,1, if Y d

s,a−1,i = 1,

where εda,s,i,0 and εda,s,i,1 are both standard normal.

The conditional of (β2,a,s,0,α2,a,s,0) and (β2,a,s,1,α2,a,s,1) is

f
¡
βda,s,0,α

d
a,s,0|ψ−βda,s,0,αda,s,0) ∝ f(βda,s,0,α

d
a,s,0)

Y
i:Y d

s,a−1,i=0

f
¡
Y d,∗
s,a,i|X 0

2,a,s,iβ
d
a,s,0 +αd

a,s,0

0
θi, 1

¢

f
¡
βda,s,1,α

d
a,s,1|ψ−βda,s,1,αda,s,1) ∝ f(βda,s,1,α

d
a,s,1)

Y
i:Y d

s,a−1,i=1

f
¡
Y d,∗
s,a,i|X 0

2,a,s,iβ
d
a,s,1 ++α

d
a,s,1

0
θi, 1

¢
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Both of these are normal regression models with the precision fixed at one. The latent employment indices are sampled as in

the usual binary choice framework (see Albert and Chib (1993)).

Factors

The conditional for θ factors into n conditionals for θ1, . . . , θn. To see what the conditional for θi is note that all

contributions of θi originate from linear regression models,

Ii − Z 0iη = γ0θi + εI,i, (choice model)

Mj −X 0
m,i,jβm,j = α0m,jθi + εm,j , (measurements)

Y c
s,a,i −X 0

1,a,iβ
c
s,a = αc0s,aθi + εca,s,i, (wages)

Y d,∗
2,s,a,i −X 0

2,a,s,iβ
d
a,s,l = αd

0
a,s,lθi + εda,s,i,l, (employment).

This equation system is of the form

Ŷi = Aiθi + ui,

where ui ∼ N(0,Σi), where Σi is a diagonal precision matrix. The conditional posterior for θi is then

f(θi|ψ) ∝ exp
n
− 1
2
(Ŷi −Aiθi)

0Σi(Ŷi −Aiθi)
o
f(θi),

where

f(θi) =
KY
k=1

JKX
j=1

pk,jN
¡
θik|µk,j , τk,j

¢
.

We sample θik|{θij}j 6=k one at a time from their respective conditionals which can be shown to be a mixture of normals with

updated (data dependent) mixture weights and parameters.

Conditional on the factor vector θ, we have

θik ∼
JkX
j=1

pc,jN
¡
θic|µc,j , τ c,j

¢
, i = 1, . . . , n.

Conditional on θ we can treat the factors as known and update the mixture parameters (pk, µk, τk). We follow the “group

indicator” approach in Diebolt and Robert (1994) and augment the parameter vector by a sequence of latent group indicators

defined as gi = j if a θi,j originates from mixture component j. Conditional on the mixture group indicators the mixture

parameters are easily sampled and conditional on the mixture parameters the group indicators are simple multinomials. To

preserve identification of intercepts we constrain the mixture to have mean zero using the method proposed in Richardson et

al., (2000).

The estimation of the structural models in section 7 are done as above with a few modifications. The choice model is a

probit so the cut point is c = 0, and no ρ parameters are estimated. The cross equation restrictions are imposed as follows.

Let Ỹi = (V1,h,i, V2,h,i, V1,c,i, V2,c,i, Vi), i.e., the stacked outcomes under high school and college and the choice index. We
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can then write the model as

Ỹi =Wiψ + Γθi + εi,

i = Xiω + αtestθi + εtest,

where ψ =
©{δ̄1,s, δ̄2,s, β̄1,s, β̄2,s}s, δP , γª, and Wi and the loading matrix Γ = Γ({ᾱ1,s, ᾱ2,s}s, αP ) are defined appropriately.

This model is now in the form of the system described above and the required conditionals are derived as above.
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Appendix D: Mean Preserving Spread
For the model described in Section 7, assume that εa,s are independent and identically normally distributed within each

period:

εa,s ∼ N(0, σ2s,1) for ages 19-29

εa,s ∼ N(0, σ2s,2) for ages 30-65.

Then:

ε1,s ∼ N(0,
29X

a=19

σ2s,1
(1 + ρ)a

)

ε2,s ∼ N(0,
65X

a=30

σ2s,2
(1 + ρ)a

).

At each age:

lnYa,s = δa,s +X 0βa,s +α0a,sθ + εa,s + η1,s ∗ experiencea + η2,s ∗ experience2a = µa,s + εa,s

where

µa,s = δa,s +X 0βa,s +α0a,sθ + η1,s ∗ experiencea + η2,s ∗ experience2a

then

E(Ya,s|X,θ) = exp(µa,s)E[exp(εa,s)].

We do a mean preserving spread at each age a by giving the individual knowledge of εa,s:

E (Ya,s|X, θ, εa,s) = exp
¡
µa,s + εa,s

¢
= exp

¡
µ0a,s

¢
Then,

exp
¡
µ0a,s

¢
= exp(µa,s)E[exp(εa,s)]

Since the εa,s are iid we can drop the age subscript on the ε:

exp
¡
µ0a,s

¢
= exp

¡
µa,s

¢
E (exp (εs))

The mean preserving spread is actually a combination of a age by age mean preserving spreads. Finally, compute:

µ1,s =
29X

a=19

µa,s
(1 + ρ)a

µ2,s =
65X

a=30

µa,s
(1 + ρ)a
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µ01,s =
29X

a=19

µ0a,s
(1 + ρ)a

µ02,s =
65X

a=30

µ0a,s
(1 + ρ)a

.

Define

V = µ1,C + µ2,C − µ1,a − µ2,a − Zγ −α0pθ − εp

V 0 = µ01,C + µ02,C − µ01,a − µ02,a + Zγ −α0pθ − εp + ε̄1,C + ε̄2,C − ε̄1,a − ε̄2,a

The probability of going to college is simply given by

Pr (V > 0)

for the first case and for the second case

Pr (V 0 > 0) .

The experiment for the case where we remove θ1 from the information set of the agent, keeping age by age mean earnings

constant, is analogous to the one just described.
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NICHD-40-4043-000-85-261. Heckman’s work was also supported by the American Bar Foundation and the Donner Founda-

tion.
4Previous versions of this paper were given at the Midwest Econometrics Group, Chicago, October 2000, Washington

University St. Louis, May, 2001, the Nordic Econometrics Meetings, May, 2001 and workshops at Chicago August, 2002 and

Stanford, January, 2003. A simple version of this paper is presented in Carneiro, Hansen and Heckman (2001). A version of

this paper was presented by Heckman as the Klein Lecture at the University of Pennsylvania, September, 28, 2001 and also

at the IFAU conference in Stockholm Sweden, October 2001. We are grateful to all workshop participants. We especially

thank Mark Duggan, Orazio Attanasio and Michael Keane for comments on the first draft of this paper. We have benefited

from discussions with Ricardo Barros, Richard Blundell, Francisco Buera, Flavio Cunha, Mark Duggan, Lars Hansen, Steven

Levitt, Bin Li, Luigi Pistaferri and Sergio Urzua on subsequent drafts. We single out Salvador Navarro and Edward Vytlacil

for especially helpful comments. We are grateful to Flavio Cunha and Salvador Navarro for exceptional research assistance

and hard work.
5See Heckman, Lochner and Taber (1998a, 1998b, 1998c; 2000) for a treatment of general equilibrium policy evaluation.
6See Heckman and Smith (1993, 1998) and Heckman, Smith and Clements (1997).
7Conditions under which (M, M̃) determine the joint distribution are presented in Rozanov (1982).
8See e.g, Heckman, Smith, and Clements (1997), or Athey and Imbens, (2002).
9Mean or median zero assumptions on (U0, U1) are also used.
10See their papers for exact conditions. Heckman and Smith (1998) present the most general set of conditions.
11Aakvik, Heckman and Vytlacil (1999) present other sets of identifying assumptions.
12Heckman and Smith (1998) and Heckman, LaLonde and Smith (1999) discuss conditions under which it is possible to

estimate (4).
13See Eckstein and Wolpin (1999) and Keane and Wolpin (1997).
14See Cameron and Heckman (1998), and Hansen, Heckman and Mullen (2001).
15In the case of ties, use the choice with the lowest index.
16See Hansen, Heckman, and Navarro (2003) for duration models with general forms of dependence functions generated by

this type of model.
17Strictly speaking, matching models do not distinguish X and Z. See Heckman and Navarro (2003).
18See Hansen, Heckman and Mullen (2001) for a comparison among alternative models of completed schooling. Hansen,

Heckman and Mullen (2003) develop a parallel analysis for a one factor-multinomial choice model.
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19Specifically, it is assumed for (8) that µs(Z) is concave in s for each Z (Cameron and Heckman, 1998), that

es − es−1 = τ all s = 2, .., S

with e1 as an initial condition, that

(∗) µs(Z)− µs−1(Z) = ϕ(Z) + cs−1

with µ1(Z) as an initial condition and that cs ≥ cs−1 for all s = 1, . . . , s̄. Changes in utilities across states are independent

of s, except for an intercept. Then in (17) εW = τ + e1. If we set all of the iid components of (9) to zero (the uniquenesses

εs) we get the ordered probit model. As noted in the text, and developed in Hansen, Heckman and Mullen (2003), we can

generalize this model to allow es − es−1 = τ + χs where χs ≥ 0 is a one sided random variable and still secure identification.

The requirement (∗) precludes a strict random utility model because preferences are state specific. ( The strict random utility
model requires that µs(Z) not depend on s but Z can vary across s. See, e.g., Matzkin, 1993).
20Write νs =

sP
j=2

ρj , where ρj ⊥⊥ ρj0(j 6= j0), ρj ⊥⊥ εW , ρj ⊥⊥ (Z,Q), ρj ≥ 0, ϕ(Z) = Z0η. This model is identified

under the assumptions in Cameron and Heckman (1998) even without any exclusion restrictions, so Qs can just include an

intercept. The proof is trivial. Normalize ρ1 = 0. From the first choice we compute,

Pr(D1 = 1 |Z ) = Pr(Z0η + εW ≤ c1)

so we can identify f(εW ), and η up to scale σW , assuming εW and the ρj have densities with respect to Lebesgue measure

and nonvanishing characteristic function in addition to other standard regularity conditions. We suppress the intercept in Z.

One cannot distinguish the intercept from c1. Proceeding to further choices we obtain

Pr(D1 +D2 = 1|Z) = Pr(Z0η + εW ≤ c2 + ν2)

= Pr(εW − ν2 ≤ c2 − Z 0η).

Therefore we can identify f(εW−ν2) and c2 up to scale σεW−ν2 . The scale is determined by the first normalization (relative to
σεW ). We can estimate

σεW−ν2
σεW

=
µ
σ2εW

+σ2ν2
σ2εW

¶1/2
by taking the ratio of the normalized η from the second choice probability

to the normalized ratio of η from the first choice probability for any coordinate of η. Define ψ(X) as the characteristic

function of X. From the assumed independence of εW and ν2, ψ(εW − ν2) = ψ(εW )ψ(−ν2). Therefore we can identify
ψ(εW − ν2)

ψ(εW )
= ψ(−ν2), and we can determine f(−ν2) from the convolution theorem adopting a normalization for σW .

Proceeding sequentially, we obtain Pr(D1 +D2 +D3 + ...+Dk = 1 |Z ) = Pr(Z 0η + εW ≤ ck + νk), and can identify ck and

f(νk) up to the normalization given in the first step. From f(νk), we can use deconvolution to identify f(ρj), j = 2, .., S. See

Hansen, Heckman and Mullen (2001) for further details and extensions to factor models. Nowhere in this analysis do we use

the assumption that Qs contains regressors.
21Other normalizations are possible. All require that there be at least three measurements on each factor, although we can

get by with only one dedicated measurement. Consider the following example (due to Salvador Navarro):
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Let L = 5,K = 2.

g1 = θ1 + ε1, g2 = λ21θ1 + θ2 + ε2

g3 = λ31θ1 + λ32θ2 + ε3, g4 = λ41θ1 + λ42θ2 + ε4

g5 = λ51θ1 + λ52θ2 + ε5.

Assuming nonvanishing covariances and factor loadings,

λ32 =
COV (g1, g5)COV (g3, g4)− COV (g3, g5)COV (g1, g4)

COV (g2, g4)COV (g1, g5)− COV (g1, g4)COV (g2, g5)

if λ22λ42λ51 − λ41λ52 6= 0.
Then

λ41 =
COV (g3, g4)− COV (g2, g4)λ32
COV (g1, g3)− COV (g1, g2)λ32

if λ31 6= λ32λ21.

λ21 =
COV (g1, g2)λ41
COV (g1, g4)

, λ31 =
COV (g1, g3)λ41
COV (g1, g4)

, λ51 =
COV (g1, g5)λ41
COV (g1, g4)

σ2θ1 =
COV (g1, g4)

λ41
, σ2θ2 =

COV (g2g3)− λ21λ31σ
2
θ1

λ32

λ42 =
COV (g2, g4)− λ21λ41σ

2
θ1

σ2θ2
, λ52 =

COV (g2, g5)− λ21λ51σ
2
θ1

σ2θ2
.

22In particular, Ud
m, U

d
s are assumed to have a distribution that is absolutely continuous with respect to Lebesgue measure.

23Alternatively, we could normalize the medians to be zero.
24For a definition of measurable separability, see Florens, Mouchart and Rolin (1990), section 5.2. The key idea is that we

can vary each of the coordinates of the vector freely.
25This assumption can be relaxed. It only affects certain normalizations.
26In the discussion of equation (21) we could have normalized the variances of the σ2θi , i = 1, ...,K to one rather than

certain factor loadings, although this is less straightforward and requires the imposition of certain sign restrictions.
27To be able to identify λs21 we need a third measurement on this factor, which we can get from equation B1 + 1. Since

there is no equation BK+1, we require that BK −BK−1 ≥ 3 in order to be able to identify the loadings on θK .
28In principle, the future

¡
α1a,α

0
a

¢
can be uncertain at the date decisions are made. Assuming that these factor loadings

are independent of θ, we can replace these expressions by EIθ
¡
α1a
¢
, EIθ

¡
α0a
¢
without affecting the identifiability of the¡

α1a,α
0
a

¢
, provided the conditions of Theorem 4 are met, but it affects the identifiability and interpretation of αP . A more

general version of this model would postulate two random variables θ and θ∗. Agents act on θ∗ while θ is the true value.

It would be interesting to identify the joint distributions of θ and θ∗ under (e.g.) a rational expectations assumption. We

leave this for a later occasion.
29We set zero earnings to 1 in this paper.
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30The run time was about 122 minutes on a 1.2Ghz AMD Athlon PC.
31The distributions of the factors by schooling level are shown in Figures A1 and A2 on the website.
32The coefficient estimates for the model are posted on the website.
33If we consider net gains by subtracting costs the difference between college graduates and high school graduates will be

even higher because costs are lower for college graduates.
34We can also compute gross utility gains as a percentage of the gross utility in high school as:

R =
V1,c + V2,c
V1,h + V2,h

− 1.

See Figure A4 on the website.
35If the agent knows θ1, θ2, εcollege and εhighschool then he faces no uncertainty.
36These results are available on request from the authors, and are posted on the website.
37See the numbers posted at the website.
38We compute the compensation (which can be negative or positive) required by each individual to keep average earnings

the same after the uncertainty is reduced. Then we provide the individual with this compensation together with knowledge

of (ε̄1,c, ε̄2,c, ε̄1,h, ε̄2,h) and finally we compute the percentage of individuals who would change their schooling decision if

they had knowledge of (ε̄1,c, ε̄2,c, ε̄1,h, ε̄2,h) but had the same present value of earnings in each schooling level. We use the

procedure described at the end of Section 4 applied to each period to adjust utility for the effects of mean preserving spreads

in earnings (see Appendix D).
39This comes from a simulation available on request from the authors.
40The same result holds when we consider distributions of utilities instead of distributions of lifetime earnings. See Figure

A-15 on the website.
41We thank Edward Vytlacil for simplifying and clarifying the statements and proofs of all three theorems in this section.
42Using a standard definition of identification, a model (FU , β) is identified iff for any alternative parameters (F ∗U , β

∗) 6=
(FU , β), there exists some ε > 0 such that

Pr (|FU (β)− F ∗U (β
∗) | > ε) > 0,

where the probability is computed with respect to the density of the data generating process. Our use of limit set arguments

may appear to contradict the standard definition because of zero probability at the limit sets. However, this intuition is false.

See the argument in Aakvik, Heckman and Vytlacil (1999), Theorem 1, which justifies the appeal to limit arguments used in

this paper in terms of standard definitions of identification.
43Implemented in 1950, the AFQT score is used by the army to screen draftees.
44For other uses of Markov Chain Monte Carlo techniques in models and applications related to ours, see Chib and Hamilton

(2000) who implements MCMC methods for a panel version of a generalized Roy model and Chib and Hamilton (2002) who

consider various cross sectional treatment models.
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Figure 1
Density of Gross Utility
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Density of College Gross Utility
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Figure 4
Density of Gross Utility Differences (College-High School)

Utility Differences

D
en

si
ty

(U
ti

lit
y

D
iff

er
en

ce
s)

High School*
College**

* E(Vc-Vh|Choice=High School)
** E(Vc-Vh|Choice=College)

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

All densities are estimated using a 100 point grid over the domain and a Gaussian kernel with bandwidth of 0.12.

Utility= a(1+0.03)a
log(Y      )a,s

1



-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

0

1

Figure 5
Density of εW and Marginal Treatment Effect: (E(Vc-Vh|ε

W
) )*

M
ar

g
in

al
 T

re
at

m
en

t 
Ef

fe
ct

εW

MTE
Density(εW)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.02

0.04

D
en

si
ty

(ε
W

)

All dens ities  are estimated us ing a 100 point grid over the domain and a G auss ian kernel with bandwidth of 0.12.

*εW =(α' 1,c + α' 2,c - α' 1,h - α' 2,h - α''p)θ - p

Figure 6
Density of Gross Lifetime Earnings Differences (College-High School)
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Figure 7
Density of Relative Gross Earnings Differences (College-High School)
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Figure 9
Density of Gross College Utility Under Different Information Sets
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Figure 10
Density of Gross Utility Difference (College-High School) Under Different Information Sets
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Figure 11
Proportion of People

Induced Into College by Full Subsidy to College T
uition 
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Table 3a
Factor Loadings

Post-School Utility
Factor Loading Standard Error

Potential First Period 1 0.1419 0.0324
Utility in High School 2 1 0

Total Variance Proportion of Total Variance Explained by
0.3460 1 2

0.0351 0.8717

Potential Second Period 1 0.2277 0.0519
Utility in High School 2 1.6432 0.0262

Total Variance Proportion of Total Variance Explained by
0.8951 1 2

0.0349 0.8717

Potential First Period 1 0.1888 0.0559
Utility in College 2 0.9402 0.0676

Total Variance Proportion of Total Variance Explained by
0.3455 1 2

0.0634 0.7718

Potential Second Period 1 0.3908 0.0979
Utility in College 2 1.7217 0.1203

Total Variance Proportion of Total Variance Explained by
1.0860 1 1

0.0848 0.8241
Total variance for schooling in period is 2

1
2
1
+ 2

2
2
2
+ 2

Proportion of total variance explained by factor , in schooling in period is
2 2

Total Variance
Gross Returns

Factor Loading Standard Error
1 0.2099 0.1553
2 0.0188 0.1786

Total Variance Proportion of Total Variance Explained by
0.1031 1 1

0.3027 0.0889
Total variance = ( 2 1+ 1 1 2 1 1 1)

2 2
1
+( 2 2+ 1 2 2 2 1 2)

2 2
2
+ 2

2
+ 2

1

2
2

2
1

Proportion of total variance explained by factor =
( 2 + 1 2 1 )2 2

Total Variance

Table 3b
Factor Loadings

AFQT
Factor Loading Standard Error

Arithmetic Reasoning 1 1 0
Total Variance Proportion of Total Variance Explained by 1

0.7764 0.7391

Coding Speed 1 0.9672 0.0275
Total Variance Proportion of Total Variance Explained by 1

0.7340 0.7308

Math Knowledge 1 0.6313 0.0350
Total Variance Proportion of Total Variance Explained by 1

0.8049 0.2843

Word Knowledge 1 0.7508 0.0317
Total Variance Proportion of Total Variance Explained by 1

0.6193 0.5219

Paragraph Composition 1 0.8080 0.0345
Total Variance Proportion of Total Variance Explained by 1

0.7061 0.5301
Total variance for test is 2

1
2
1
+ 2

2
2
2
+ 2

Proportion of total variance explained by factor is
2 2

Total Variance
Choice

Factor Loading Standard Error
Cost Function* 1 -2.1250 0.5042

2 -1.0278 0.3799
Total Variance Proportion of Total Variance Explained by

0.8951 1 1

0.0349 0.9096

Choice** 1 2.3349 0.4904
2 1.0466 0.4277

Total Variance Proportion of Total Variance Explained by
6.1544 1 1

0.5297 0.0604
* Cost = + 1 1+ 2 2+
** Choice = 2+ 1 2 1+( 2 1+ 1 1 2 1 1 1 1) 1+( 2 2+ 1 2 2 2 1 2 2) 2

Total variance of cost = 2
1
2
1
+ 2

2
2
2
+ 2

Proportion of total variance of cost explained by factor =
2 2

Total Variance of Cost
Total variance of choice = ( 2 1+ 1 1 2 1 1 1 1)

2 2
1
+( 2 2+ 1 2 2 2 1 2 2)

2 2
2
+ 2

Proportion of total variance explained by factor is
( 2 + 1 2 1 )2 2

Total Variance of Choice



Table 4
Average Gross Utility In Di erent States (Factual or

Counterfactual) For Persons Who Go To High School
or Who Go to College and for People At The Margin

(Does Not Include Utility “Cost” or Pyschic Returns to College)
Factual or Counterfactual High School1 College2 Utility for People

Schooling Level at Margin3

High School+ 7.8580 8.6125 8.2991
Std. Error 0.0604 0.0737 0.1363

College++ 7.7262 8.6885 8.3118
Std. Error 0.0638 0.0763 0.1413
1+ E(V | choice=high school) and 1++ E(V )|choice=high school)
2+ E(V | choice=college) and 2++ E(V |choice=college)
3+ E(V | V=0) and 3++ E(V |V=0)

Table 5
Factual and Counterfactual Returns for Persons

Who Go To High School, College, or Are At The Margin
(Does Not Include Utility Cost In College)

High School1 College2 Utility for People
Gross Return: at Margin3

College Vs. High School (Relative)+ -0.0180 0.0126 0.0059
Std. Error 0.1590 0.0178 0.0227

Net Returns:
College Vs. High School (Relative)++ -0.2398 0.3161 -0.0402
Std. Error 0.2502 0.3178 0.0077

College Vs. High School (Relative)+++ -0.4227 0.1892 -0.0416
Std. Error 0.5770 0.0144 0.0229
1+ E((V /V )-1|choice=high school)
2+ E((V /V )-1|choice=college)
3+ E((V /V )-1|V=0)
1++ E((V -V -p)/(V +p)|choice=high school)
2++ E((V -V -p)/(V +p)|choice=college)
3++ E((V -V -p)/(V +p)|V=0)
1+++ E((V -V -p)/(V )|choice=high school)
2+++ E((V -V -p)/(V )|choice=college)
3+++ E((V -V -p)/(V )|V=0)
We make the distinction between the second and third line in this table because in our
framework we cannot separate nonmonetary costs from nonmonetary benefits of going to
college, so we allocate ln P both ways.



Table 6
Returns to College In Terms of

Lifetime Earnings Excluding Tuition For People
Who Go To H.S., College, or Are At The Margin

High School1 College2 Earnings for People
at Margin3

College vs. High School+ 0.4379 0.5764 0.5274
Std. Error 0.0228 0.0365 0.0634

Net Returns:
College vs. High School++ 0.4162 0.5607 0.5092
Std. Error 0.0213 0.0366 0.0605
1+ E((PV /PV )-1|choice=high school)
2+ E((PV /PV )-1|choice=college)
3+ E((PV /PV )-1|V=0)
1++ E((PV /(PV +PV ))-1|choice=high school)
2++ E((PV /(PV +PV ))-1|choice=college)
3++ E((PV /(PV +PV ))-1|V=0)
PV =

P
(1/(1+0.03)) Y , that is, the interest rate is 3%

Earnings are measured in $1000s

Gross Returns:

Table 7
Percentage of People with Negative
Returns to College (Net and Gross)

Gross Net
Utility Earnings Utility Earnings

High School Graduates 56.22% 13.62% 95.91% 14.74%
College Graduates 39.66% 6.90% 8.32% 7.28%
* Net means net of total cost for utility and net of tuition costs for earnings.
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V c

≤
V h

≤

Variance(Vc-Vh) Variance(Vc) Variance(Vh) Correlation(Vc,Vh)
I = 0.5134 2.6462 2.3714 0.8990
I = { 2} 0.5036 0.5068 0.2632 0.3648
I = { 1, 2} 0.4824 0.3020 0.1804 0

Variance(Vc-Pc-Vh) Variance(Vc-Pc) Variance(Vh) Correlation(Vc-Pc,Vh)
I = 7.9354 12.7911 2.3714 0.6561
I = { 2} 7.5549 8.6418 0.2632 0.4476
I = { 1, 2} 4.4763 4.2959 0.1804 0

Variance(Yc-Yh) Variance(Yc) Variance(Yh) Correlation(Yc,Yh)
I = 2.68x105 7.69x105 2.70x105 0.8458
I = { 2} 1.18x105 1.30x105 2.36x105 0.3234
I = { 1, 2} 9.74x105 8.21x104 1.53x104 0

Variance(Yc-Tuition-Yh) Variance(Yc-Tuition) Variance(Yh) Correlation(Yc-Tuition,Yh)
I = 2.68x105 7.69x105 2.70x105 0.8458
I = { 2} 1.18x105 1.30x105 2.36x104 0.3232
I = { 1, 2} 9.73x104 8.20x104 1.53x104 0

Net Utility

Gross Present Value of Earnings

Net Present Value of Earnings

Table 9
Agent's Forecast Variance of High-School-College Returns Under Different 

Information Sets for the Agents
Gross Utility
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