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1 Introduction

How should rational investors measure the risks of stock market investments? What
determines the risk premium that will induce rational investors to hold an individual
stock at its market weight, rather than overweighting or underweighting it? Ac-
cording to the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner
(1965), a stock’s risk is summarized by its beta with the market portfolio of all invested
wealth. Controlling for beta, no other characteristics of a stock should influence the
return required by rational investors.

It is well known that the CAPM fails to describe average realized stock returns
since the early 1960’s. In particular, small stocks and value stocks have delivered
higher average returns than their betas can justify. Adding insult to injury, stocks
with high past betas have had average returns no higher than stocks of the same size
with low past betas.? These findings tempt investors to tilt their stock portfolios
systematically towards small stocks, value stocks, and stocks with low past betas.

We argue that returns on the market portfolio have two components, and that
recognizing the difference between these two components eliminates the incentive to
overweight value, small, and low-beta stocks. The value of the market portfolio
may fall because investors receive bad news about future cash flows; but it may also
fall because investors increase the discount rate or cost of capital that they apply to
these cash flows. In the first case, wealth decreases and investment opportunities
are unchanged, while in the second case, wealth decreases but future investment
opportunities improve.

These two components should have different significance for risk-averse, long-term
investors who hold the market portfolio. They may demand a higher premium to hold
assets that covary with the market’s cash-flow news than to hold assets that covary
with news about the market’s discount rates, for poor returns driven by increases in
discount rates are partially compensated by improved prospects for future returns.
The single beta of the Sharpe-Lintner CAPM should be broken into two different
betas: a cash-flow beta and a discount-rate beta. We expect the former to have a

2Seminal early references include Banz (1981) and Reinganum (1981) for the size effect, and
Graham and Dodd (1934), Basu (1977, 1983), Ball (1978), and Rosenberg, Reid, and Lanstein
(1985) for the value effect. Fama and French (1992) give an influential treatment of both effects
within an integrated framework and show that sorting stocks on past market betas generates little
variation in average returns.



higher price of risk than the latter. In fact, an intertemporal capital asset pricing
model (ICAPM) of the sort proposed by Merton (1973) suggests that the price of risk
for the discount-rate beta should equal the variance of the market return, while the
price of risk for the cash-flow beta should be v times greater, where ~ is the investor’s
coefficient of relative risk aversion. If the investor is conservative in the sense that
~v > 1, the cash-flow beta has a higher price of risk.

An intuitive way to summarize our story is to say that beta, like cholesterol, has
a “bad” variety and a “good” variety. The required return on a stock is determined
not by its overall beta with the market, but by its bad cash-flow beta and its good
discount-rate beta. Of course, the good beta is good not in absolute terms, but in
relation to the other type of beta.

We test these ideas by fitting a two-beta ICAPM to historical monthly returns
on stock portfolios sorted by size, book-to-market ratios, and market betas. We
consider not only a sample period since 1963 that has been the subject of much
recent research, but also an earlier sample period 1929-1963 using the data of Davis,
Fama, and French (2000). In the modern period, 1963:7-2001:12, we find that the
two-beta model greatly improves the poor performance of the standard CAPM. The
main reason for this is that growth stocks, with low average returns, have high betas
with the market portfolio; but their high betas are predominantly good betas, with
low risk prices. Value stocks, with high average returns, have higher bad betas than
growth stocks do. In the early period, 1929:1-1963:6, we find that value stocks have
higher CAPM betas and proportionately higher bad betas than growth stocks, so the
single-beta CAPM adequately explains the data.

The ICAPM also explains the size effect. Over both subperiods, small stocks
outperform large stocks by approximately 3% per annum. In the early period, this
performance differential is justified by the moderately higher cash-flow and discount-
rate betas of small stocks relative to large stocks. In the modern period, small and
large stocks have approximately equal cash-flow betas. However, small stocks have
much higher discount-rate betas than large stocks in the post-1963 sample. FEven
though the premium on discount-rate beta is low, the magnitude of the beta spread
is sufficient to explain most of the size premium.

Our two-beta model casts light on why portfolios sorted on past CAPM betas
show a spread in average returns in the early sample period but not in the modern
period. In the early sample period, a sort on CAPM beta induces a strong post-
ranking spread in cash-flow betas, and this spread carries an economically significant
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premium, as the theory predicts. In the modern period, however, sorting on past
CAPM betas produces a spread only in good discount-rate betas but no spread in
bad cash-flow betas. Since the good beta carries only a low premium, the almost flat
relation between average returns and the CAPM beta estimated from these portfolios
in the modern period is no puzzle to the two-beta model.

All these findings are based on the first-order condition of a long-term investor
who is assumed to hold a value-weighted stock market index. Our results imply that
such an investor should not systematically tilt the composition of her equity portfolio
towards value stocks, small stocks, or stocks with low past betas; the high average
returns on such stocks are appropriate compensation for their risks in relation to
the value-weighted index. We do not, however, show that the index is optimal for
such an investor in relation to an alternative strategy that would time the market by
investing more in equities at times when the equity premium is high. We plan to
explore this issue in future work.

In developing and testing the two-beta ICAPM, we draw on a great deal of re-
lated literature. The idea that the market’s return can be attributed to cash-flow
and discount-rate news is not novel. Campbell and Shiller (1988a) developed a log-
linear approximate framework in which to study the effects of changing cash-flow and
discount-rate forecasts on stock prices. Campbell (1991) used this framework and a
vector autoregressive (VAR) model to decompose market returns into cash-flow news
and discount-rate news. Empirically, he found that discount-rate news was far from
negligible; in postwar US data, for example, his VAR system explained most stock
return volatility as the result of discount-rate news. Campbell and Mei (1993) used
a similar approach to decompose the market betas of industry and size portfolios
into cash-flow betas and discount-rate betas, but they did not estimate separate risk
prices for these betas.

The insight that long-term investors care about shocks to investment opportu-
nities is due to Merton (1973). Campbell (1993) solved a discrete-time empirical
version of Merton’s ICAPM, assuming that a representative investor has the recur-
sive preferences proposed by Epstein and Zin (1989, 1991). The solution is exact in
the limit of continuous time if the representative investor has elasticity of intertempo-
ral substitution equal to one, and is otherwise a loglinear approximation. Campbell
wrote the solution in the form of a K-factor model, where the first factor is the market
return and the other factors are shocks to variables that predict the market return.
Campbell (1996) tested this model on industry portfolios, but found that the innova-



tion to discount rates was highly correlated with the innovation to the market itself;
thus his multi-beta model was hard to distinguish empirically from the CAPM. Li
(1997), Hodrick, Ng, and Sengmueller (1999), Lynch (1999), Chen (2000), Brennan,
Wang, and Xia (2001), Ng (2002), and Guo (2002) have also explored the empirical
implications of Merton’s model.

Brennan, Wang, and Xia (2001)?, in the paper that is closest to ours in its fo-
cus, model the riskless interest rate and the Sharpe ratio on the market portfolio as
continuous-time AR(1) processes. Brennan et al. estimate the parameters of their
model using both bond market and stock market data, and explore the model’s impli-
cations for the value and size effects in US data since 1953. They have some success
in explaining these effects if they estimate risk prices from stock market data rather
than bond market data. They do not consider prewar US data or stock portfolios
sorted by past CAPM betas.

Recently, several authors have found that high returns to growth stocks, particu-
larly small growth stocks, seem to predict low returns on the aggregate stock market.
Eleswarapu and Reinganum (2001) use lagged 3-year returns on an equal-weighted in-
dex of growth stocks, while Brennan, Wang, and Xia (2001) use the difference between
the log book-to-market ratios of small growth stocks and small value stocks to predict
the aggregate market. These findings suggest that growth and value stocks might
have different betas with discount-rate news and thus might have average returns
that are inconsistent with the CAPM even in an efficient market.

It is natural to ask why high returns on small growth stocks should predict low
returns on the stock market as a whole. This is a particularly important question
since time-series regressions of aggregate stock returns on arbitrary predictor variables
can easily produce meaningless data-mined results. Omne possibility is that small
growth stocks generate cash flows in the more distant future and therefore their
prices are more sensitive to changes in discount rates, just as coupon bonds with a
high duration are more sensitive to interest-rate movements than are bonds with a
low duration (Cornell 1999). Another possibility is that small growth companies
are particularly dependent on external financing and thus are sensitive to equity
market and broader financial conditions (Ng, Engle, and Rothschild 1992, Perez-
Quiros and Timmermann 2000). A third possibility is that episodes of irrational
investor optimism (Shiller 2000) have a particularly powerful effect on small growth
stocks.

3In our discussion, we refer to the 7/31/2001 version of Brennan, Wang, and Xia’s (2001) paper.



Our finding that value stocks have higher cash-flow betas than growth stocks is
consistent with the empirical results of Cohen, Polk, and Vuolteenaho (2002a). Cohen
et al. measure cash-flow betas by regressing the multi-year return on equity (ROE) of
value and growth stocks on the market’s multi-year ROE. They find that value stocks
have higher ROE betas than growth stocks. There is also evidence that value stock
returns are correlated with shocks to GDP-growth forecasts (Liew and Vassalou 2000,
Vassalou 2002). These empirical findings are consistent with Brainard, Shapiro, and
Shoven’s (1991) suggestion that “fundamental betas” estimated from cash flows could
improve the empirical performance of the CAPM. The sensitivity of value stocks’
cash-flow fundamentals to economy-wide cash-flow fundamentals plays a key role in
our two-beta model’s ability to explain the value premium.

The changes in the risk characteristics of value and growth stocks that we identify
by comparing the periods before and after 1963 are consistent with recent research by
Franzoni (2002). Franzoni points out that the market betas of value stocks and small
stocks have declined over time relative to the market betas of growth stocks and large
stocks. We extend his research by exploring time changes in the two components of
market beta, the cash-flow beta and the discount-rate beta.

There are numerous competing explanations for the size and value effects. At
the most basic level the Arbitrage Pricing Theory (APT) of Ross (1976) allows any
pervasive source of common variation to be a priced risk factor. Fama and French
(1993) showed that small stocks and value stocks tend to move together as groups, and
introduced an influential three-factor model, including a market factor, size factor,
and value factor, to describe the size and value effects in average returns. As Fama
and French recognize, ultimately this falls short of a satisfactory explanation because
the APT is silent about what determines factor risk prices; in a pure APT model the
size premium and the value premium could just as easily be zero or negative.

Jagannathan and Wang (1996) point out that the CAPM might hold conditionally,
but fail unconditionally. If some stocks have high market betas at times when the
market risk premium is high, then these stocks should have higher average returns
than are explained by their unconditional market betas. Lettau and Ludvigson (2001)
and Zhang and Petkova (2002) argue that value stocks satisfy these conditions.

Adrian and Franzoni (2002) and Lewellen and Shanken (2002) consider the pos-
sibility that investors do not know the risk characteristics of stocks but must learn
about them over time. Adrian and Franzoni, for example, suggest that investors
tended to overestimate the market betas of value and small stocks as these betas



trended downwards during the 20th Century. This led investors to demand higher
average returns for such stocks than are justified by their average market risks.

Roll (1977) emphasized that tests of the CAPM are misspecified if one cannot
measure the market portfolio correctly. While Stambaugh (1982) and Shanken (1987)
found that CAPM tests are insensitive to the inclusion of other financial assets, more
recent research has stressed the importance of human wealth whose return can be
proxied by revisions in expected future labor income (Campbell 1996, Jagannathan
and Wang 1996, Lettau and Ludvigson 2001).

Finally, the value effect has been interpreted in behavioral terms. Lakonishok,
Shleifer, and Vishny (1994), for example, argue that investors irrationally extrapolate
past earnings growth and thus overvalue companies that have performed well in the
past. These companies have low book-to-market ratios and subsequently underper-
form once their earnings growth disappoints investors. Supporting evidence is pro-
vided by La Porta (1996), who shows that high long-term earnings forecasts of stock
market analysts predict low stock returns while low forecasts predict high returns,
and by La Porta et al. (1997), who show that the underperformance of stocks with
low book-to-market ratios is concentrated on earnings announcement dates. Brav,
Lehavy, and Michaely (2002) show that analysts’ price targets imply high subjec-
tive expected returns on growth stocks, consistent with the hypothesis that the value
effect is due to expectational errors.

In this paper we do not consider any of these alternative stories. We assume
that unconditional betas are adequate proxies for conditional betas, we use a value-
weighted index of common stocks as a proxy for the market portfolio, and we test an
orthodox asset pricing model with a rational representative investor who knows the
parameters of the model. Our purpose is to clarify the extent to which deviations
from the CAPM’s cross-sectional predictions can be rationalized by Merton’s (1973)
intertemporal hedging considerations that are relevant for long-term investors. This
exercise should be of interest even if one believes that investor irrationality has an
important effect on stock prices, because even in this case one should want to know
how a rational investor will perceive stock market risks. Our analysis has obvious
relevance to long-term institutional investors such as pension funds, which maintain
stable allocations to equities and wish to assess the risks of tilting their equity port-
folios towards particular types of stocks.

The organization of the paper is as follows. In Section 2, we estimate two com-
ponents of the return on the aggregate stock market, one caused by cash-flow shocks
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and the other by discount-rate shocks. In Section 3, we use these components to
estimate cash-flow and discount-rate betas for portfolios sorted on firm characteristics
and risk loadings. In Section 4, we lay out the intertemporal asset pricing theory
that justifies different risk premia for bad cash-flow beta and good discount-rate beta.
We also show that the returns to small and value stocks can largely be explained by
allowing different risk premia for these two different betas. Section 5 concludes.

2 How cash-flow and discount-rate news move the
market

A simple present-value formula points to two reasons why stock prices may change.
Either expected cash flows change, discount rates change, or both. In this section, we
empirically estimate these two components of unexpected return for a value-weighted
stock market index. Consistent with findings of Campbell (1991), the fitted values
suggest that over our sample period (1929:1-2001:12) discount-rate news causes much
more variation in monthly stock returns than cash-flow news.

2.1 Return-decomposition framework

Campbell and Shiller (1988a) developed a loglinear approximate present-value rela-
tion that allows for time-varying discount rates. They did this by approximating the
definition of log return on a dividend-paying asset, 7,1 = log(Psy1 + Diy1) — log(P),
around the mean log dividend-price ratio, (d; — p;), using a first-order Taylor ex-
pansion. Above, P denotes price, D dividend, and lower-case letters log trans-
forms. The resulting approximation is 7,11 ~ k + ppii1 + (1 — p)dss1 — pr ,where
p and k are parameters of linearization defined by p = 1/(1 + exp(d, — p;)) and

= —log(p) — (1 — p)log(1/p —1). When the dividend-price ratio is constant, then
p = P/(P + D), the ratio of the ex-dividend to the cum-dividend stock price. The
approximation here replaces the log sum of price and dividend with a weighted aver-
age of log price and log dividend, where the weights are determined by the average
relative magnitudes of these two variables.

Solving forward iteratively, imposing the “no-infinite-bubbles” terminal condition
that lim;_ p?(diy; — pr+j) = 0, taking expectations, and subtracting the current



dividend, one gets

pe—dp = 1L + Eq ZpJ[AdH—H-j — Tey14g) (1)
—p fr

where Ad denotes log dividend growth. This equation says that the log price-dividend
ratio is high when dividends are expected to grow rapidly, or when stock returns are
expected to be low. The equation should be thought of as an accounting identity
rather than a behavioral model; it has been obtained merely by approximating an
identity, solving forward subject to a terminal condition, and taking expectations.
Intuitively, if the stock price is high today, then from the definition of the return
and the terminal condition that the dividend-price ratio is non-explosive, there must
either be high dividends or low stock returns in the future. Investors must then expect
some combination of high dividends and low stock returns if their expectations are
to be consistent with the observed price.

While Campbell and Shiller (1988a) constrain the discount coefficient p to values
determined by the average log dividend yield, p has other possible interpretations
as well.  Campbell (1993, 1996) links p to the average consumption-wealth ratio.
In effect, the latter interpretation can be seen as a slightly modified version of the
former. Consider a mutual fund that reinvests dividends and a mutual-fund investor
who finances her consumption by redeeming a fraction of her mutual-fund shares
every year. Effectively, the investor’s consumption is now a dividend paid by the
fund and the investor’s wealth (the value of her remaining mutual fund shares) is
now the ex-dividend price of the fund. Thus, we can use (1) to describe a portfolio
strategy as well as an underlying asset and let the average consumption-wealth ratio
generated by the strategy determine the discount coefficient p, provided that the
consumption-wealth ratio implied by the strategy does not behave explosively.

Campbell (1991) extended the loglinear present-value approach to obtain a de-
composition of returns. Substituting (1) into the approximate return equation gives

Tepr — By = (B — Ey) ijAdt+1+j — (B — Ey) ijrt—i-l-i-j (2)
=0 =1

= Ncri+1 — NpRitt1,

where N¢r denotes news about future cash flows (i.e., dividends or consumption), and
Npr denotes news about future discount rates (i.e., expected returns). This equation



says that unexpected stock returns must be associated with changes in expectations
of future cash flows or discount rates. An increase in expected future cash flows is
associated with a capital gain today, while an increase in discount rates is associated
with a capital loss today. The reason is that with a given dividend stream, higher
future returns can only be generated by future price appreciation from a lower current
price.

These return components can also be interpreted as permanent and transitory
shocks to wealth. Returns generated by cash-flow news are never reversed subse-
quently, whereas returns generated by discount-rate news are offset by lower returns
in the future. From this perspective it should not be surprising that conservative
long-term investors are more averse to cash-flow risk than to discount-rate risk.

2.2 Implementation with a VAR model

We follow Campbell (1991) and estimate the cash-flow-news and discount-rate-news
series using a vector autoregressive (VAR) model. This VAR methodology first esti-
mates the terms E; 7,1 and (E;q —Ey) Z‘;’;l Pri+14; and then uses r,y1 and equation
(2) to back out the cash-flow news. This practice has an important advantage — one
does not necessarily have to understand the short-run dynamics of dividends. Un-
derstanding the dynamics of expected returns is enough.

We assume that the data are generated by a first-order VAR model
ziv1 = a+ Dzp + upya, (3)

where 2,1 is a m-by-1 state vector with 7., as its first element, a and I" are m-by-1
vector and m-by-m matrix of constant parameters, and u;,; an i.i.d. m-by-1 vector
of shocks. Of course, this formulation also allows for higher-order VAR models via a
simple redefinition of the state vector to include lagged values.

Provided that the process in equation (3) generates the data, ¢t + 1 cash-flow and
discount-rate news are linear functions of the ¢ + 1 shock vector:

Nerir = (el +el'N) ugyq (4)
Nprit1 = el'dug.

The VAR shocks are mapped to news by A, defined as A\ = p['(I — pI')~"L. el’A
captures the long-run significance of each individual VAR shock to discount-rate ex-
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pectations. The greater the absolute value of a variable’s coefficient in the return
prediction equation (the top row of I'), the greater the weight the variable receives in
the discount-rate-news formula. More persistent variables should also receive more
weight, which is captured by the term (I — pI')~1.

2.3 VAR data

To operationalize the VAR approach, we need to specify the variables to be included
in the state vector. We opt for a parsimonious model with the following four state
variables. First, the excess log return on the market (r,) is the difference between
the log return on the Center for Research in Securities Prices (CRSP) value-weighted
stock index (r)s) and the log risk-free rate. The risk-free-rate data are constructed
by CRSP from Treasury bills with approximately three month maturity.

Second, the term yield spread (7Y) is provided by Global Financial Data and is
computed as the yield difference between ten-year constant-maturity taxable bonds
and short-term taxable notes, in percentage points.

Third, the price-earnings ratio (PFE) is from Shiller (2000), constructed as the
price of the S&P 500 index divided by a ten-year trailing moving average of aggre-
gate earnings of companies in the S&P 500 index. Following Graham and Dodd
(1934), Campbell and Shiller (1988b, 1998) advocate averaging earnings over several
years to avoid temporary spikes in the price-earnings ratio caused by cyclical declines
in earnings. We avoid any interpolation of earnings in order to ensure that all com-
ponents of the time-¢ price-earnings ratio are contemporaneously observable by time
t. The ratio is log transformed.

Fourth, the small-stock value spread (V.S) is constructed from the data made
available by Professor Kenneth French on his web site.* The portfolios, which are
constructed at the end of each June, are the intersections of two portfolios formed on
size (market equity, M F) and three portfolios formed on the ratio of book equity to
market equity (BE/ME). The size breakpoint for year ¢ is the median NYSE market
equity at the end of June of year t. BE/MFE for June of year t is the book equity for
the last fiscal year end in ¢ — 1 divided by M E for December of t — 1. The BE/MFE
breakpoints are the 30th and 70th NYSE percentiles.

*http:/ /mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html

10



At the end of June of year ¢, we construct the small-stock value spread as the
difference between the log(BE/ME) of the small high-book-to-market portfolio and
the log(BE/ME) of the small low-book-to-market portfolio, where BE and M E are
measured at the end of December of year ¢ — 1. For months from July to May, the
small-stock value spread is constructed by adding the cumulative log return (from
the previous June) on the small low-book-to-market portfolio to, and subtracting the
cumulative log return on the small high-book-to-market portfolio from, the end-of-
June small-stock value spread.

Our small-stock value spread is similar to variables constructed by Asness, Fried-
man, Krail, and Liew (2000), Cohen, Polk, and Vuolteenaho (2002b), and Brennan,
Wang, and Xia (2001). Asness et al. use a number of different scaled-price vari-
ables to construct their measures, and also incorporate analysts’ earnings forecasts
into their model. Cohen et al. use the entire CRSP universe instead of small-stock
portfolios to construct their value-spread variable. Brennan et al.’s small-stock value-
spread variable is equal to ours at the end of June of each year, but the intra-year
values differ because Brennan et al. interpolate the intra-year values of BE using
year t and year t + 1 BE values. We do not follow their procedure because we wish
to avoid using any future variables that might cause spurious forecastability of stock
returns.

These state-variable series span the period 1928:12-2001:12. Table 1 shows de-
scriptive statistics and Figure 1 the time-series evolution of the state-variable series.
The variables in Figure 1 are demeaned and normalized by the sample standard devi-
ation. Monthly excess log returns on the market are marked with solid circles. The
figure shows that returns were especially volatile during the Great Depression — in
fact, some of the Great-Depression data points are not shown since they fall outside
the +/- four standard deviation range shown in the figure.

The black solid line plots the evolution of PE, the log ratio of price to ten-year
moving average of earnings. Our sample period begins only months before the stock
market crash of 1929. This event is clearly visible from the graph in which the log
price-earnings drops by an extraordinary five sample standard deviations from 1929
to 1932. Another striking episode is the 1983-1999 bull market, during which the
price-earnings ratio increases by four sample standard deviations.

While the price-earnings ratio and its historical time-series behavior are well
known, the history of the small-stock value spread is perhaps less so. Recall that our
value-spread variable is the difference between value stocks’ log book-to-market ratio
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Table 1: Descriptive statistics of the VAR state variables
The table shows the descriptive statistics of the VAR state variables estimated from
the full sample period 1928:12-2001:12, 877 monthly data points. 74, is the excess log
return on the CRSP value-weight index. T is the term yield spread in percentage
points, measured as the yield difference between ten-year constant-maturity taxable
bonds and short-term taxable notes. PF is the log ratio of S&P 500’s price to S&P

500’s ten-year moving average of earnings.

V'S is the small-stock value-spread, the

difference in the log book-to-market ratios of small value and small growth stocks.
The small value and small growth portfolios are two of the six elementary portfolios
constructed by Davis, Fama, and French (2000). “Stdev.” denotes standard deviation
and “Autocorr.” the first-order autocorrelation of the series.

Variable Mean Median Stdev. Min Max  Autocorr.
Sy .004 .009 .056 -.344 322 108
TY .629 .550 .643 -1.350 2.720 .906
PE 2.868 2.852 374 1.501  3.891 .992
Vs 2.653 1.522 374 1.192 2.713 .992
Correlations  79,,.; TV PE,y VS

T 1 071 -.006 -.030

TY; 41 071 1 -.253 423

PE, -.006 -.253 1 -.320

V' Si+1 -.030 .423 -320 1

Tt .103 .065 .070 -.031

TY, .070 .906 -.248 420

PE, -.090 -.263 992 -.318

V'S, -.025 425 -.322 .992
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Evolution of the VAR state variables

Standard deviations

4 | | | | | |
1928 1938 1948 1958 1968 1978 1988 1998
Year

Figure 1: Time-series evolution of the VAR state variables.

This figure plots the time-series of four state variables: (1) The excess log re-
turn on the CRSP value-weight portfolio, marked with dots; (2) the log ratio of price
to a ten-year moving average of earnings, marked with a solid line; (3) the small-stock
value spread, marked with line and squares; and (4) the term yield spread, marked
with dashed line and triangles. All variables are demeaned and normalized by their
sample standard deviations. The sample period is 1928:12-2001:12.
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and growth stocks’ log book-to-market ratio. Thus a high value spread is associated
with high prices for growth stocks relative to value stocks. Similar to figures shown
by Cohen, Polk, and Vuolteenaho (2002b) and Brennan, Wang, and Xia (2001), the
post-war variation in V'S appears positively correlated with the price-earnings ra-
tio, high overall stock prices coinciding with especially high prices for growth stocks.
The pre-war data appear quite different from the post-war data, however. For the
first two decades of our sample, the value spread is negatively correlated with the
market’s price-earnings ratio. The correlation between V'S and PFE is -.48 in the
period 1928:12-1963:6, and .57 in the period 1963:7-2001:12. If most value stocks
were highly levered and financially distressed during and after the Great Depression,
it makes sense that their values were especially sensitive to changes in overall eco-
nomic prospects, including the cost of capital. In the post-war period, however, most
value stocks were probably stable businesses with relatively low financial leverage, no
growth options, and thus probably little dependence on external equity-market fi-
nancing. We will return to this changing sensitivity of value and growth stocks to
various economy-wide shocks in Section 3.

The term yield spread (TY) is a variable that is known to track the business cycle,
as discussed by Fama and French (1989). The term yield spread is very volatile during
the Great Depression and again in the 1970’s. It also tracks the value spread closely,
with a correlation of .42 over the full sample as shown in Table 1. This positive
correlation between the term yield spread and the value spread implies that long
bond prices are depressed, relative to short bond prices, at times when growth stock
prices are high. This may seem surprising since both long bonds and growth stocks
are assets with a high duration as emphasized by Cornell (1999). It may be due
to the fact that long bonds are nominal assets that are highly sensitive to changing
expectations of inflation.

2.4 VAR parameter estimates

Table 2 reports parameter estimates for the VAR model. Each row of the table corre-
sponds to a different equation of the model. The first five columns report coefficients
on the five explanatory variables: a constant, and lags of the excess market return,
term yield spread, price-earnings ratio, and small-stock value spread. OLS standard
errors are reported in square brackets below the coefficients. For comparison, we also
report in parentheses standard errors from a bootstrap exercise. Finally, we report
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the R? and F statistics for each regression. The bottom of the table reports the cor-
relation matrix of the equation residuals, with standard deviations of each residual
on the diagonal.

The first row of Table 2 shows that all four of our VAR state variables have some
ability to predict excess returns on the aggregate stock market. Market returns
display a modest degree of momentum; the coefficient on the lagged excess market
return is .094 with a standard error of .034. The term yield spread positively pre-
dicts the market return, consistent with the findings of Keim and Stambaugh (1986),
Campbell (1987), and Fama and French (1989). The smoothed price-earnings ratio
negatively predicts the return, consistent with Campbell and Shiller (1988b, 1998)
and related work using the aggregate dividend-price ratio (Rozeff 1984, Campbell and
Shiller 1988a, and Fama and French 1988, 1989). The small-stock value spread neg-
atively predicts the return, consistent with Eleswarapu and Reinganum (2002) and
Brennan, Wang, and Xia (2001). Overall, the R? of the return forecasting equation
is about 2.6%, which is a reasonable number for a monthly model.

The remaining rows of Table 2 summarize the dynamics of the explanatory vari-
ables. The term spread is approximately an AR(1) process with an autoregressive
coefficient of .88, but the lagged small-stock value spread also has some ability to
predict the term spread. This should not be surprising given the contemporaneous
correlation of these two variables illustrated in Figure 1. The price-earnings ratio
is highly persistent, with a root very close to unity, but it is also predicted by the
lagged market return. This predictability may reflect short-term momentum in stock
returns, but it may also reflect the fact that the recent history of returns is correlated
with earnings news that is not yet reflected in our lagged earnings measure. Finally,
the small-stock value spread is also a highly persistent AR(1) process.

The persistence of the VAR explanatory variables raises some difficult statistical
issues. It is well known that estimates of persistent AR(1) coefficients are biased
downwards in finite samples, and that this causes bias in the estimates of predictive
regressions for returns if return innovations are highly correlated with innovations in
predictor variables (Stambaugh 1999). There is an active debate about the effect of
this on the strength of the evidence for return predictability (Ang and Bekaert 2001,
Campbell and Yogo 2002, Lewellen 2002, Torous, Valkanov, and Yan 2001).

For our sample and VAR specification, the four predictive variables in the return
prediction equation are jointly significant at a better than 5% level. Our unreported
experiments show that the joint significance of the return-prediction equation at 5%
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Table 2: VAR parameter estimates

The table shows the OLS parameter estimates for a first-order VAR model including
a constant, the log excess market return (r§,), term yield spread (TY"), price-earnings
ratio (PFE), and small-stock value spread (V'S). Each set of three rows corresponds
to a different dependent variable. The first five columns report coefficients on the five
explanatory variables, and the remaining columns show R? and F statistics. OLS
standard errors are in square brackets and bootstrap standard errors in parentheses.
Bootstrap standard errors are computed from 2500 simulated realizations. The
table also reports the correlation matrix of the shocks with shock standard deviations
on the diagonal, labeled “corr/std.” Sample period for the dependent variables is
1929:1-2001:12, 876 monthly data points.

constant r$,, TV, PE, VS, R*% F

P 062 094 006 -014 -013 257 534
[020]  [033] [.003] [.005] [.006]
(.026)  (.034) (.003) (.007) (.008)

TY:r: 046 046 879  -.036 082 8241 1.02x:°
[097]  [165] [.016] [.026] [.028]
(012)  (.170) (.017) (.031) (.036)

PE,;  .0I9 519 002 994 -.003 99.06 2.29%:"
[013]  [022] [.002] [.004] [.004]
(017)  (.022) (.002) (.004) (.005)

VS 014 005 .002 .000 .991 9840 I.3dxu"
[017]  [029] [.003] [.005] [.005]

((024)  (.028) (.003) (.006) (.008)
corr/std 74,14 TY;;1 PE.. VS

P 055 018 777  -.052
(.003)  (.048) (.018) (.052)
TY,,,  .018 268 018 -.012
(.048)  (.013) (.039) (.034)
PE., .T77 018 036  -.086
(.018)  (.039) (.002) (.045)
VS -.052 012 -.086 .047

(.052)  (.034) (.045) (.003)

16



level survives bootstrapping excess returns as return shocks and simulating from
a system estimated under the null with various bias adjustments. However, the
statistical significance of the one-period return-prediction equation does not guarantee
that our news terms are not materially affected by the above-mentioned small-sample
bias.

As a simple way to assess the impact of this bias, we have generated 2500 artificial
data series using the estimated VAR coefficients and have reestimated the VAR system
2500 times. The difference between the average coefficient estimates in the artificial
data and the original VAR estimates is a simple measure of finite-sample bias. We find
that there is some bias in the VAR coefficients, but it does not have a large effect on
our estimates of cash-flow and discount-rate news. The reason is that the bias causes
some overstatement of short-term return predictability (the el’pI" component of el’))
but an understatement of the persistence of the VAR, and thus an understatement of
the long-term impact of predictability [the (I — pI')~! component of e1’\]. These two
effects work against each other. The one variable that is moderately affected by bias
is the value spread, whose role in predicting returns is biased downwards. Since this
bias works against us in explaining the average returns on value and growth stocks,
we do not attempt to correct it. Instead we use the estimated VAR as a reasonable
representation of the data and ask what it implies for cross-sectional asset pricing
puzzles.

Table 3 summarizes the behavior of the implied cash-flow news and discount-rate
news components of the market return. The top panel shows that discount-rate
news has a standard deviation of about 5% per month, much larger than the 2.5%
standard deviation of cash-flow news. This is consistent with the finding of Campbell
(1991) that discount-rate news is the dominant component of the market return. The
table also shows that the two components of return are almost uncorrelated with one
another. This finding differs from Campbell (1991) and particularly Campbell (1996);
it results from our use of a richer forecasting model that includes the value spread as
well as the aggregate price-earnings ratio.

Table 3 also reports the correlations of each state variable innovation with the es-
timated news terms, and the coefficients (el’ 4+ e1’\) and el’A that map innovations
to cash-flow and discount-rate news. Innovations to returns and the price-earnings
ratio are highly negatively correlated with discount-rate news, reflecting the mean
reversion in stock prices that is implied by our VAR system. Market return innova-
tions are weakly positively correlated with cash-flow news, indicating that some part
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Table 3: Cash-flow and discount-rate news for the market portfolio

The table shows the properties of cash-flow news (N¢gr) and discount-rate news (Npg)
implied by the VAR model of Table 2. The upper-left section of the table shows the
covariance matrix of the news terms. The upper-right section shows the correlation
matrix of the news terms with standard deviations on the diagonal. The lower-
left section shows the correlation of shocks to individual state variables with the
news terms. The lower right section shows the functions (el” 4+ el’A,el’A) that
map the state-variable shocks to cash-flow and discount-rate news. We define \ =
pl'(I — pI')~1, where T is the estimated VAR transition matrix from Table 2 and p
is set to .95. 7§, is the excess log return on the CRSP value-weight index. TV is
the term yield spread. PFE is the log ratio of S&P 500’s price to S&P 500’s ten-year
moving average of earnings. VS is the small-stock value-spread, the difference in log
book-to-markets of value and growth stocks.

News covariance Ncr Npr News corr/std Necrp  Npr
Ner .00064 .00015 Ner 0252  .114
(.00022) (.00037) (.004) (.232)
Npr .00015 .00267 Npr 114 .0517
(.00037) (.00070) (.232) (.007)
Shock correlations Neopg Npr Functions Ncr Npr
r$, shock .352 -.890 r$, shock 602 -.398
(.224) (.036) (.060) (.060)
TY shock 128 .042 TY shock 011 011
(.134) (.081) (.013) (.013)
PE shock -.204 -.925 PE shock -.883  -.883
(.238) (.039) (.104) (.104)
V'S shock -.493 -.186 V'S shock -.283 -.283
(.243) (.152) (.160) (.160)
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of a market rise is typically justified by underlying improvements in expected future
cash flows. Innovations to the price-earnings ratio, however, are weakly negatively
correlated with cash-flow news, suggesting that price increases relative to earnings
are not usually justified by improvements in future earnings growth.

We set p = .95Y/12 in Table 3 and use the same value throughout the paper. Recall
that p can be related to either the average dividend yield or the average consumption
wealth ratio, as discussed on page 8. An annualized p of .95 corresponds to an average
dividend-price or consumption-wealth ratio of -2.94 (in logs) or 5.2% (in levels), where
wealth is measured after subtracting consumption. We picked the value .95 because
approximately 5% consumption of the total wealth per year seems reasonable for a
long-term investor. To alleviate any possible concerns about this choice, we will
assess the sensitivity of our asset-pricing results to changes in p in a future draft.

As a robustness check, we have estimated the VAR over subsamples before and
after 1963. The coefficients that map state variable innovations to cash-flow and
discount-rate news are fairly stable, with no changes in sign. Also, the value spread
has greater predictive power in the first subsample than in the second. This is
reassuring, since it indicates that the coefficient on this variable is not just fitting the
last few years of the sample during which exceptionally high prices for growth stocks
preceded a market decline. Given the stability of the VAR point estimates in the two
subsamples and the unfortunate statistical fact that the coefficients of our monthly
return-prediction regressions are estimated imprecisely (a problem that is magnified
in shorter subsamples), we proceed to use the full-sample VAR-coefficient estimates
in the remainder of the paper.

3 Measuring cash-flow and discount-rate betas

We have shown that market returns contain two components, both of which display
substantial volatility and which are not highly correlated with one another. This
raises the possibility that different types of stocks may have different betas with the
two components of the market. In this section we measure cash-flow betas and
discount-rate betas separately. We define the cash-flow beta as

Cov (Ti,t; NCF,t)
Var (7“§4’lt — Et_lrj“)

(5)

Bicr
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and the discount-rate beta as

Cov (Ti,t, —NDR,t)
e e .
Var (rM’t - Et_lrMi)

(6)

ﬂi,DR =

Note that the discount-rate beta is defined as the covariance of an asset’s return
with good news about the stock market in form of lower-than-expected discount rates,
and that each beta divides by the total variance of unexpected market returns, not
the variance of cash-flow news or discount-rate news separately. This implies that
the cash-flow beta and the discount-rate beta add up to the total market beta,

Biv = Bicr + Bipr- (7)

Our estimates show that there is interesting variation across assets and across time
in the two components of the market beta.

3.1 Test-asset data

Our main set of test assets is a set of 25 M E and BE/M E portfolios, available from
Professor Kenneth French’s web site. The portfolios, which are constructed at the
end of each June, are the intersections of five portfolios formed on size (M E) and five
portfolios formed on book-to-market equity (BE/MFE). BE/ME for June of year ¢
is the book equity for the last fiscal year end in the calendar year ¢ — 1 divided by
ME for December of t — 1. The size and BE/M E breakpoints are NYSE quintiles.
On a few occasions, no firms are allocated to some of the portfolios. In those cases,
we use the return on the portfolio with the same size and the closest BE/ME.

The 25 M E and BE /M E portfolios were originally constructed by Davis, Fama,
and French (2000) using three databases. The first of these, the CRSP monthly stock
file, contains monthly prices, shares outstanding, dividends, and returns for NYSE,
AMEX, and NASDAQ stocks. The second database, the COMPUSTAT annual
research file, contains the relevant accounting information for most publicly traded
U.S. stocks. The COMPUSTAT accounting information is supplemented by the third
database, Moody’s book equity information hand collected by Davis et al.

We also consider 20 portfolios sorted on past risk loadings with VAR state variables
(excluding the price-smoothed earnings ratio PE, since changes in PE are so highly
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collinear with market returns). These risk-sorted portfolios are constructed as follows.
First, we run a loading-estimation regression for each stock in the CRSP database:

3 3
Z Tit+j = bo + brM Z TMt+j T+ bVS(VSt+3 - VSt) + bTY(TYt+3 - TYt) + €43, (8)

j=1 j=1

where 7;; is the log stock return on stock ¢ for month ¢. The regression (8) is
reestimated from a rolling 36-month window of overlapping observations for each
stock at the end of each month. Since these regressions are estimated from stock-
level instead of portfolio-level data, we use a quarterly data frequency to minimize
the impact of infrequent trading.

Our objective is to create a set of portfolios that have as large a spread as possible
in their betas with the market and with innovations in the VAR state variables. To
accomplish this, each month we perform a two-dimensional sequential sort on market
beta and another state-variable beta, producing a set of ten portfolios for each state
variable. First, we form two groups by sorting stocks on bys. Then, we further sort
stocks in both groups to five portfolios on b,,, and record returns on these ten value-
weight portfolios. To ensure that the average returns on these portfolio strategies are
not influenced by various market-microstructure issues plaguing the smallest stocks,
we exclude the smallest (lowest M E) five percent of stocks of each cross-section and
lag the estimated risk loadings by a month in our sorts. We construct another set of
ten portfolios in a similar fashion by sorting on bTy and b We later refer to these
20 portfolio return series that span the time period 1929:1- 2001:12 as the risk-sorted
portfolios.

3.2 Empirical estimates of cash-flow and discount-rate betas

We estimate the cash-flow and discount-rate betas using the fitted values of the mar-
ket’s cash-flow and discount-rate news. Specifically, we use the following beta esti-
mators:

Cov <7” itr N CF,t) Cov <7”i,t7 N, CF,t—l)
+

Var (NCF,t - NDR,t) Var (NCF,t - NDR,t)

(9)

ﬁz’,CF =
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~ Cov (Ti,t, _NDR,t>

Cov (Ti,t, —NDR,tA)
Bi,DR = +

\//EE" (NCFJ - Np}ﬁ) \//; (NCF,t - NDR,t)

(10)

Above, Cov and Var denote sample covariance and variance. NCF’t and N DRt are
the estimated cash-flow and expected-return news from the VAR model of Tables 2
and 3.

These beta estimators deviate from the usual regression-coefficient estimator in
two respects. First, we include one lag of the market’s news terms in the numerator.
Adding a lag is motivated by the possibility that, especially during the early years of
our sample period, not all stocks in our test-asset portfolios were traded frequently
and synchronously. If some portfolio returns are contaminated by stale prices, market
return and news terms may spuriously appear to lead the portfolio returns, as noted
by Scholes and Williams (1977) and Dimson (1979). In addition, Lo and MacKinlay
(1990) show that the transaction prices of individual stocks tend to react in part to
movements in the overall market with a lag, and the smaller the company, the greater
is the lagged price reaction. McQueen, Pinegar, and Thorley (1996) and Peterson
and Sanger (1995) show that these effects exist even in relatively low-frequency data
(i.e., those sampled monthly). These problems are alleviated by the inclusion of the
lag term.

Second, as in (5) and (6), we normalize the covariances in (9) and (10) by
\//a\r(ﬁcp,t — NDRJ) or, equivalently by the sample variance of the (unexpected)
market return, Var (% — Ei-175;,).  Under the maintained assumptions, Bint =
Bi,cp + Bz pr 1s equal to the portfolio i’s Scholes-Williams (1977) beta on unexpected
market return. It is also equal to the so-called “sum beta” employed by Ibbotson
Associates, which is the sum of multiple regression coefficients of a portfolio’s return
on contemporaneous and lagged unexpected market returns.’

®Scholes and Williams (1977) include an additional lead term, which captures the possibility that
the market return itself is contaminated by stale prices. Under the maintained assumption that our
news terms are unforecastable, the population value of this term is zero.

The Scholes-Williams beta formula also includes a normalization. The sum of the three regression
coefficients is divided by one plus twice the market’s autocorrelation. Since the first-order auto-
correlation of our news series is zero unser the maintained assumptions, this normalization factor is
identically one.

“Sum beta” uses multiple regression coefficients instead of simple regression coefficients. Under
the maintained assumption that the news terms are unforecastable, the explanatory variables in the
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Table 4: Cash-flow and discount-rate betas for the 25 ME and BE/ME portfolios
The table shows the estimates of cash-flow betas (ﬁc ) and discount-rate betas (ﬁ DR
for Davis, Fama, and French’s (2000) 25 size- and book-to-market-sorted portfolios.
The betas are estimated using equations (5) and (6) and the news terms extracted
from the VAR model in Table 2. Bootstrap standard errors, constructed from
2500 simulated samples, are in parentheses. “Growth” denotes the lowest BE/ME,
“value” the highest BE/ME, “small” the lowest M E, and “large” the highest M E
stocks. “Diff.” is the difference between the extreme cells of the particular row or
column. Estimates are for the full 1929:1-2001:12 period, and data are monthly.

Beor Growth 2 3 4 Value Diff.
Small .36 (21) .31 (19) 29 (18) .30 (17) .36 (.19) .00 (.07)
2 20 (16) 25  (16) 26 (.15) .20 (.16) .33  (.19) .13 (.09)
3 20 (16) 22 (15) 24 (15) .27 (15) .35 (.19) .14 (.09)
4 14 (14) 20 (14) 24 (14) 26 (16) .36 (20) .23  (.11)
Large .14 (12) .15 (12) .21  (13) .25 (.16) .30 (.19) .16  (.09)
Diff. -22 (.10) -16 (07) -08 (.06) -05 (.04) -07 (.04)

Bor Growth 2 3 4 Value Diff.
Small 145 (24) 143 (21) 127 (20) 122 (19) 122 (21) -22 (.07)
2 122 (17) 117 (17) 108 (16) 1.08 (.17) 117 (20) -.05 (.09)
3 123 (17) 104 (15) 1.03 (15) .97 (16) 115 (.20) -.08 (.09)
4 1.01 (14) 1.00 (14) .94 (15) .96 (.16) 119 (=21) .17 (.11)
Large .92 (13) .84 (13) .83 (13) .91 (16) 1.00 (.19) .08  (.09)
Diff. -52 (13) -59 (.12) -44 (.09) -31 (07) -21 (.08)

Table 4 shows the estimated cash-flow and discount-rate betas for the 25 size
and book-to-market portfolios over the entire 1929:1-2001:12 sample. The portfolios
are organized in a square matrix with growth stocks at the left, value stocks at the
right, small stocks at the top, and large stocks at the bottom. At the right edge of
the matrix we report the differences between the extreme growth and extreme value
portfolios in each size group; along the bottom of the matrix we report the differences
between the extreme small and extreme large portfolios in each BE/ME category.

Over the full sample period and controlling for size, value stocks generally have

multiple regression are uncorrelated, and thus the multiple regression coefficients are equal to simple
regression coefficients.
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higher cash-flow betas than growth stocks. The exception is the set of five smallest
portfolios at the top of the table. The smallest growth portfolio is particularly
risky and has a cash-flow beta equal to that of the smallest value portfolio. This
small growth portfolio is well known to present a particular challenge to asset pricing
models, for example the three-factor model of Fama and French (1993) which does
not fit this portfolio well. Excluding the smallest growth portfolio, the cash-flow
betas tend to increase as we move to the right even in the top row of the table.

Discount-rate betas show a contrasting pattern. In the three smallest size groups,
discount-rate betas are higher for growth stocks than for value stocks; in the two
largest size groups, they are slightly bigger for value stocks. If we add cash-flow
and discount-rate betas to obtain market beta, we find that a higher fraction of the
market beta is cash-flow beta for value stocks than for growth stocks. This pattern
in the cash-flow-to-CAPM-beta ratio is monotonic as a function of book-to-market
within each size group, except for the extreme small-growth portfolio.

Table 5 shows the cash-flow and discount-rate betas for the risk-sorted portfolios.
Cash-flow betas are high for stocks with low past sensitivity to the value spread, and
also for stocks that have had high market betas in the past. Discount-rate betas
are high for stocks with high past sensitivity to the term spread, and particularly
for stocks that have had high market betas in the past. Thus, over the full sample,
sorting stocks by their value-spread sensitivity induces a spread in cash-flow betas
but not in discount-rate betas; sorting stocks by their term-spread sensitivity induces
a spread in discount-rate betas but not in cash-flow betas; and sorting stocks by their
past market betas induces a modest spread in cash-flow betas and a large spread in
discount-rate betas.

3.3 Value and size aren’t what they used to be

The full-sample results in Tables 4 and 5 conceal quite different beta patterns in the
first subsample and the second subsample. Table 6 shows the estimated betas for
the 25 size- and book-to-market-sorted portfolios for the two subperiods 1929:1-1963:6
and 1963:7-2001:12. 'We choose to split the sample at 1963:7, because that is when
COMPUSTAT data become reliable and because most of the evidence on the book-
to-market anomaly is obtained from the post-1963:7 period. Unlike the thoroughly
mined second subsample, the first subsample is relatively untouched and presents an
opportunity for an out-of-sample test.
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Table 5: Cash-flow and discount-rate betas for the risk-sorted portfolios

The table shows the estimates of cash-flow betas (0r) and discount-rate betas (5pp)
for the 20 risk-sorted portfolios. The betas are estimated using equations (5) and
(6) and the news terms extracted from the VAR model in Table 2. The risk-sorted
portfolios are constructed as follows. First, we run a loading-estimation regression
(8) for each stock in the CRSP database. The regression is reestimated from a
rolling 36-month window of overlapping observations for each stock at the end of each
month. Each month we perform a two-dimensional sequential sort on market beta
and a state variable beta, producing a set of ten portfolios for each state variable.
First, we form two groups by sorting stocks on past sensitivity to changes in the
small-stock value spread (byg). Then, we further sort stocks in both groups to five
portfolios on past sensitivity to market return (/b\TM) and record returns on these ten
value-weight portfolios. We exclude the smallest (lowest M E) five percent of stocks
of each cross-section and lag the estimated risk loadings by a month in our sorts.
We construct another set of ten portfolios in a similar fashion by sorting on past
sensitivity to changes in term yield spread (bry) and b,,,. Bootstrap standard errors
are in parentheses. Estimates are for the full 1929:1-2001:12 period, and data are
monthly.

Bor Lo b,,, 2 3 4 Hi b,,, Diff.

Lobys .16 (.11) .19 (13) .23 (15) 27 (18) .34 (22) .17 (.11)
Hibyg .12 (.09) .14 (11) .19 (14) .20 (16) .26 (.19) .14 (.10)
Lobry .13 (.10) .15 (12) .20 (.15) 23 (17) .28 (20) .15 (.10)
Hibry .14 (10) .16 (11) .20 (.13) .24 (16) .29 (.29) .15 (.10)
Bpr Lo b,,, 2 3 4 Hi b,.,, Diff.

Lobys .68 (.11) .84 (13) .98 (.16) 1.17 (.18) 1.44 (22) .76 (.12)
Hibys .65 (10) .79 (12) 1.00 (.14) 1.16 (.16) 1.40 (.20) .74 (.11)
Lobry .73 (11) .85 (12) 1.02 (.15) 1.19 (.18) 1.46 (21) .72 (.11)
Hibry .63 (10) .77 (12) .89 (14) 110 (.16) 1.36 (.20) .72 (.11)
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The table shows the estimates of cash-flow betas ((,r) and discount-rate betas (5pp)
for Davis, Fama, and French’s (2000) 25 size- and book-to-market-sorted portfolios

for the two subperiods (1929:1-1963:6 and 1963:7-2001:12).

apply.

Dift.

Footnotes of Table 4

Value

~

Table 6: Subperiod betas for the 25 ME and BE/ME portfolios
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In the first subsample, value stocks have both higher cash-flow and higher discount-
rate betas. With the exception of the smallest growth portfolio, value stocks are the
riskiest assets in both dimensions in this period. An equal-weighted average of the
extreme value stocks across size quintiles has a cash-flow beta .16 higher than an
equal-weighted average of the extreme growth stocks. The difference in estimated
discount-rate betas is .22 in the same direction. Similar to value stocks, small stocks
have higher cash-flow betas and discount-rate betas than large stocks in this sam-
ple (by .18 and .36 respectively, for an equal-weighted average of the smallest stocks
across value quintiles relative to an equal-weighted average of the largest stocks). In
summary, value and small stocks were unambiguously riskier than growth and large
stocks over the 1929:1-1963:6 period.

The patterns are completely different in the post-1963 period. In this subsample,
value stocks have slightly higher cash-flow betas than growth stocks, but much lower
discount-rate betas. The difference in cash-flow betas between the average across
extreme value portfolios and the average across extreme growth portfolios is a modest
and statistically insignificant .09. What is remarkable is that the pattern of discount-
rate betas reverses in the modern period, so that growth stocks have significantly
higher discount-rate betas than value stocks. The difference is economically large
(.45) and statistically significant. Recall that cash-flow and discount-rate betas sum
up to the CAPM beta; thus growth stocks have higher market betas in the modern
subperiod, but their betas are disproportionately of the “good” discount-rate variety
rather than the “bad” cash-flow variety.

Figure 2 shows the time-series evolution of the cash-flow and discount-rate risk in
more detail. We first estimate a time-series of cash-flow and discount-rate betas for
the 25 M E and BE /M E portfolios using a 120-month window. The series in Figure
2 are constructed from the estimated betas as follows: The value-minus-growth series,
denoted by a solid line and triangles in the figure, is the equal-weight average of the
five extreme value (high BE/ME) portfolios’ betas less the equal-weight average of
the five extreme growth (low BE /M E) portfolios’ betas. The small-minus-big series,
denoted by a solid line, is constructed as the equal-weight average of the five extreme
small (low ME) portfolios’ betas less the equal-weight average of the five extreme
large (high M E) portfolios’ betas. The top panel shows the cash-flow betas and the
bottom panel discount-rate betas. The dates on the horizontal axes are centered
with respect to the estimation window.

Two trends stand out in the top panel of Figure 2. First, for the majority of our
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Cash-flow beta

1934 1944 1954 1964 1974 1984 1994
Year

Discount-rate beta

1934 1944 1954 1964 1974 1984 1994
Year

Figure 2: Time-series evolution of cash-flow and discount-rate betas of value-minus-
growth and small-minus-big.

First, we estimate the cash-flow betas [Bc 7, defined in equation (9)] and discount-rate
betas [3¢p, defined in equation (10)] for the 25 ME and BE/ME portfolios using a
120-month moving window. The value-minus-growth series, denoted by a solid line
and triangles, is then constructed as the equal-weight average of the five extreme
value (high BE/ME) portfolios’ betas less that of the five extreme growth (low
BE/ME) portfolios’ betas. The small-minus-big series, denoted by a solid line,
is constructed as the equal-weight average of the five extreme small (low ME)
portfolios” betas less that of the five extreme large (high MFE) portfolios’ betas.
The top panel shows the estimated cash-flow and the bottom panel estimated
discount-rate betas.  Dates on the horizontal axis denote the midpoint of the

estimation window.
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sample period, the higher-frequency movements in cash-flow betas of value-minus-
growth and small-minus-big appear correlated, the small stocks’ cash-flow betas pos-
sibly leading the value stocks’ cash-flow betas. This pattern is strongly reversed
in the 1990’s, during which the cash-flow betas of small stocks clearly diverge from
those of the value stocks. Second, over the entire period, the cash-flow betas of small
stocks have drifted down relative to those of large stocks, while the cash-flow betas
of value stocks remain considerably higher than the growth stocks (.15 higher at the
beginning of the sample and .17 higher at the end).

The bottom panel of Figure 2 shows the time-series evolution of discount-rate
betas. The first obvious trend in the figure is the steady and large decline in the
discount-rate betas of value stocks relative to those of growth stocks. Over the full
sample, the value-minus-growth beta declines from .31 to -.86. There is no similar
trend for the discount-rate beta of small-minus-big, for which the time series begins
at .37 and ends at .62. As for cash-flow betas, the discount-rate betas of value-minus-
growth and small-minus-big strongly diverge during the nineties.

What economic forces have caused these trends in betas? We suspect that the
changing characteristics of value and growth stocks and small and large stocks are
related to these patterns in sensitivities. The early part of our sample is dominated
by the Great Depression and its aftermath. Perhaps in the 1930’s value stocks were
fallen angels with a large debt load accumulated during the Great Depression. The
higher leverage of value stocks relative to that of growth stocks could explain both
the higher cash-flow and expected-return betas of value stocks from 1930-1950. In
general, low leverage and strong overall position of a company may lead to a low
cash-flow beta, and high leverage and weak position to a high cash-flow beta.

We also hypothesize that future investment opportunities, long duration of cash
flows, and dependence on external equity finance lead to a high discount-rate beta.
For example, if a distressed firm needed new equity financing simply to survive after
the Great Depression, and if the availability and cost of such financing is related to
the overall cost of capital, then such a firm’s value is likely to have been very sensitive
to discount-rate news. Similarly, new small firms with a negative current cash flow
but valuable investment opportunities are likely to be very sensitive to discount-rate
news. This higher sensitivity of young firms would explain why the discount-rate
betas of small stocks increased sharply around the intial-public-offering (IPO) wave
of 1960’s, remained high as NASDAQ firms are included in our sample during the late
1970’s, and sharply increased again with the flood of technology IPOs in the 1990’s.
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Since these newly listed firms were sold to the public at extremely high multiples in
the 1990’s, this story is also consistent with the contemporaneous dramatic increase
of growth stocks’ discount-rate betas relative to value stocks’ betas.

The overall trend in growth stocks’ discount-rate betas may also be partially
explained by changes in stock market listing requirements. During the early period,
only firms with significant internal cash flow made it to the Big Board and thus our
sample. This is because, in the past, the New York Stock Exchange had very strict
profitability requirements for a firm to be listed on the exchange. The low-BE/ME
stocks in the first half of the sample are thus likely be consistently profitable and
independent of external financing. In contrast, our post-1963 sample also contains
NASDAQ stocks and less-profitable new lists on the NYSE. These firms are listed
precisely to improve their access to equity financing, and many of them will not
even survive — let alone achieve their growth expectations — without a continuing
availability of inexpensive equity financing.

Finally, it is possible that our discount-rate news is simply news about investor
sentiment. If growth investing has become more popular among irrational investors
during our sample period, growth stocks may have become more sensitive to shifts in
the sentiment of these investors.

Our risk-sorted portfolios also have different betas over the two subsamples, as
shown in Table 7. Sorting on market risk while controlling for other state variables
results in a spread in both betas during the first subsample but induces a spread
in only the discount-rate beta in the second subsample. Sorts on value-spread and
term-spread sensitivities do not induce strong patterns in betas in either subsample.

4 Pricing cash-flow and discount-rate betas

So far, we have shown that in the period since 1963, there is a striking difference in
the beta composition of value and growth stocks. The market betas of growth stocks
are disproportionately composed of discount-rate betas rather than cash-flow betas.
The opposite is true for value stocks.

Motivated by this finding, we next examine the validity of a long-horizon investor’s
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Table 7: Subperiod betas for the risk-sorted portfolios R
The table shows the estimates of cash-flow betas (5,r) and discount-rate betas (5 )
for the 20 risk-sorted portfolios for the two subperiods (1929:1-1963:6 and 1963:7-
2001:12). Footnotes of Table 5 apply.

1929:1-1963:6
Ber Lo by, 2 3 4 Hi b,,, Diff.

Lobyg .21 (13) .25 (15) .31 (.19) .37 (22) .45 (27) .25 (.14)
Hibyg .15 (.10) .19 (12) .25 (.16) .28 (18) .37 (21) .22 (.12)
Lo bry .18 (.12) .21 (14) .26 (17) 31 (20) .41 (23) .23 (.12)
Hibry .16 (11) 21 (13) .27 (16) .32  (.19) .40 (23) .24 (.13)
Bpr Lo by,, 2 3 4 Hi b,.,, Diff.

Lobys .73 (14) .87 (.16) 1.04 (.19) 1.20 (.23) 146 (.28) .73 (.15)
Hibyg .64 (11) 75 (13) .96 (17) 1.09 (.19) 1.30 (.22) .66 (.13)
Lobry .73 (13) .85 (.15) 1.00 (.18) 1.17 (21) 1.38 (.25) .64 (.13)
Hibry .65 (12) .76 (14) .88 (.16) 1.09 (.20) 1.34 (24) .69 (.14)

1963:7-2001:12

Bep Lo b,,, 2 3 4 Hi b,,, Diff.

Lobys .09 (.09) .08 (11) .10 (.12) .10 (.15) .12 (20) .04 (.12)
Hibyg .06 (.10) .06 (.13) .07 (15) .05 (.19) .06 (.24) -01 (.14)
Lobry .06 (11) .04 (.12) .08 (.14) .08 (.17) .06 (.23) .00 (.14)
Hibry .09 (.09) .07 (12) .09 (13) .08 (.16) .10 (200 .00 (.12)
Bpr Lo b,,, 2 3 4 Hi b,,, Diff.

Lobyg .57 (10) .77 (.12) .88 (.13) 1.12 (.16) 140 (21) .82 (.14)
Hibysg .67 (11) .85 (14) 1.06 (.16) 1.30 (.20) 158 (.25) .91 (.17)
Lobpy .73 (12) .86 (.13) 1.05 (.15) 1.23 (.18) 1.60 (.25) .87 (.16)
Hibry .61 (10) .79 (12) .91 (14) L11 (17) 1.39 (21) .78 (.14)
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first-order condition, assuming that the investor holds a 100% allocation to the market
portfolio of stocks at all times. We ask whether the investor would be better off
adding a margin-financed position in some of our test assets (such as value or small
stocks), as a short-horizon investor’s first-order condition would suggest.

Our main finding is that the long-horizon investor’s first-order condition is not
violated by our test assets and that the difference in beta composition can largely
explain the high returns on value and low returns on growth stocks relative to the
predictions of the static CAPM. The extreme small-growth portfolio remains an
exception that our model cannot explain.

4.1 An intertemporal asset pricing model

Campbell (1993) derived an approximate discrete-time version of Merton’s (1973)
intertemporal CAPM. The model’s central pricing statement is based on the first-
order condition for an agent who holds a portfolio p of tradable assets that contains all
of her wealth. Campbell then assumes that this condition holds for a representative
agent who holds the market portfolio of all wealth to derive observable asset-pricing
implications from the first-order condition.

In Campbell’s (1993) model, the (representative) agent is infinitely lived and has
the recursive preferences proposed by Epstein and Zin (1989, 1991):

U(Ce W) = [(L=0) G748 (B (UL)) ] (1)

where C; is consumption at time ¢, v > 0 is the relative risk aversion coefficient, ¢ > 0
is the elasticity of intertemporal substitution, 0 < § < 1 is the time discount factor,
and @ = (1—+)/(1—1""). These preferences are a generalization of power utility, for-
malized with an objective function (U) that retains the desirable scale-independence
of the power utility function. Deviating from the power-utility model, however, the
Epstein-Zin preferences relax the restriction that the elasticity of intertemporal sub-
stitution must equal the reciprocal of the coefficient of relative risk aversion. In the
Epstein-Zin model, the elasticity of intertemporal substitution, ¥, and the coefficient
of relative risk aversion, v, are both free parameters.

Campbell’s (1993) model also assumes that all asset returns are conditionally
lognormal, and that the investor’s portfolio returns and its two components are ho-
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moskedastic. Campbell derives an approximate solution in which risk premia depend
only on the coefficient of relative risk aversion v and the discount coefficient p, and
not directly on the elasticity of intertemporal substitution . The approximation
is accurate if the elasticity of intertemporal substitution is close to one, and it holds
exactly in the limit of continuous time if the elasticity equals one. In the 1) =1 case,
p = 6 and the optimal consumption-wealth ratio is conveniently constant and equal
to 1 — p. Thus our choice of p = .95'/12 implies that at the end of each month, the
investor chooses to consume .43% of her wealth if ¢ = 1.5

Under these assumptions, the optimality of portfolio strategy p requires that the
risk premium on any asset ¢ satisfies
Tie _

Ei[rie1] — mpen + 5 = YCoVi(Titt1, Tpit1 — Eirpis1) (12)

+(1 —v)Covi(rits1, —NppDRt+1),

where p is the optimal portfolio that the agent chooses to hold and N, pri+1 =
(B —Ee) 3272, 11144 is discount-rate or expected-return news on this portfolio.

The left hand side of (12) is the expected excess log return on asset 7 over the
riskless interest rate, plus one-half the variance of the excess return to adjust for
Jensen’s Inequality. This is the appropriate measure of the risk premium in a log-
normal model. The right hand side of (12) is a weighted average of two covariances:
the covariance of return ¢ with the return on portfolio p, which gets a weight of -,
and the covariance of return ¢ with negative of news about future expected returns
on portfolio p, which gets a weight of (1 — ). These two covariances represent the
myopic and intertemporal hedging components of asset demand, respectively. When
~v = 1, it is well known that portfolio choice is myopic and the first-order condition
collapses to the familiar one used to derive the pricing implications of the CAPM.

We can rewrite equation (12) to relate the risk premium to covariance with cash-
flow news and discount-rate news.  Since 711 — Eyrpir1 = Npcrir1 — Np.DRt+15
we have

2

ok
Eirite1] — Tpee1 + %t = yCovi(rit+1, Nporit1) + Cov(ritir, —Nppri+1).  (13)

2

Multiplying and dividing by the conditional variance of portfolio p’s return, o ,,

we

6Schroder and Skiadas (1999) examine this case in a continuous-time framework which eliminates
the need for approximations if ¢ = 1.
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obtain
2
bt _
2
This equation delivers our prediction that “bad beta” with cash-flow news should
have a risk price v times greater than the risk price of “good beta” with discount-rate

news, which should equal the variance of the return on portfolio p.

2 2
Ey [Ti,t+1] —Tft+1 T ’YUp,tﬁi,CFp,t + O-p,tﬁi,DRp,t' (14)

4.2 Empirical estimates of premia for an all-stock investor

Would an all-stock investor be better off holding stocks at market weights or over-
weighting value and small stocks? We examine the validity of an unconditional
version of the first-order condition (14) relative to the market portfolio of stocks. We
modify (14) in three ways. First, we use simple expected returns, E;[R; 111 — Ry f.441],
on the left-hand side, instead of log returns, Eq[r; ;41] — 71 + U?yt /2. In the log-
normal model, both expectations are the same, and by using simple returns we make
our results easier to compare with previous empirical studies. Second, we condition
down equation (13) to derive an unconditional version of (14) to avoid estimation
of all required conditional moments. Finally, we change the subscript p to M and
use all-stock investment in the market portfolio of stocks as the reference portfolio,
reflecting the fact that we test the optimality of the market portfolio of stocks for the
long-horizon investor. These modifications yield:

E[R; — Rf| = Vo-?\lﬁi,CFM + U?\/lﬂi,DRM (15)

We assume that the log real risk-free rate is approximately constant. We make
this assumption mainly because monthly inflation data are unreliable, especially over
our long 1928:12-2001:12 sample period. This assumption is unlikely to have a major
impact on our tests, since we focus on stock portfolios. The main practical impli-
cation of the constant-real-rate assumption is that cash-flow and discount-rate news
computed from excess CRSP value-weight index returns are identically equivalent to
news terms computed from real CRSP value-weight index returns.

We use 24 of the 25 size- and book-to-market sorted portfolios and the 20 risk-
sorted portfolios as test assets on the left hand side of the unconditional first-order
condition (15). We exclude the extreme small-growth portfolio from our tests because
even unrestricted factor models such as the Fama and French (1993) model are unable
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to explain the low returns on this portfolio. In fact, recent evidence on small growth
stocks by Lamont and Thaler (2001), Mitchell, Pulvino, and Stafford (2002), D’Avolio
(2002) and others suggests that the pricing of some small growth stocks is materially
affected by short-sale constraints and other limits to arbitrage. Our traditional
approach that builds on the frictionless rational expectations model is thus unlikely to
ever yield a satisfactory explanation for the very low returns on the smallest growth
stocks.  Although we exclude the extreme small-growth portfolio from the premia
estimation regressions, we later briefly discuss the pricing error of this portfolio given
our estimated premia.

Tables 8 and 9 show the average returns to be explained by the cash-flow and
discount-rate betas. Table 8 replicates the known results that value stocks and small
stocks have outperformed growth stocks and large stocks in both subsamples. Only
in the extreme growth quintile have small stocks have underperformed large stocks;
in this case the book-to-market effect within the growth quintile overwhelms the size
effect. The risk-sorted portfolios in Table 9 show distinct subperiod behavior. Over
both subsamples, there is modest but consistent variation in average returns across
different rows that are sorted on past value-spread loadings. Interestingly, sorts on
past market-return loadings induce a strong spread in average returns over the first
subperiod, but no spread at all over the second subperiod.

Table 10 evaluates the performance of the two-beta intertemporal asset pricing
model in relation to an unrestricted two-beta model and the traditional CAPM with
a single market beta. Each model is estimated in two different forms: one with a
restricted zero-beta rate equal to the Treasury bill rate, and one with an unrestricted
zero-beta rate (see Black 1972). Thus the table includes six columns in all, two for
each of the three models. The first panel of Table 10 uses 24 of Davis, Fama, and
French’s (2000) 25 portfolios sorted on size and book-to-market ratio. The second
panel adds our 20 risk-sorted portfolios to the set of test assets.

The first nine rows of Table 10 are divided into three sets of three rows. The first
set of three rows corresponds to the zero-beta rate, the second set to the premium
on cash-flow beta, and the third set to the premium on discount-rate beta. With
each set, the first row reports the premium point estimate in fractions per month, the
second row the standard error of the estimate, and third row an annualized version of
the estimate (produced by multiplying the first row by 1200 and presented to make
the interpretation of the estimate more convenient). The premia are estimated with
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(2000) 25 size- and book-to-market-sorted portfolios.
in percentage points (monthly fractions multiplied by 1200).
in square brackets.
BE/ME, “Small” the lowest M E, and “Large” the highest M E stocks.

is the difference between the extreme cells of the particular row or column.

Table 8: Average returns on the 25 ME and BE/ME portfolios
The table shows the sample average simple returns for Davis, Fama, and French’s

Returns are annualized and
Standard errors are

“Growth” denotes the lowest BE/ME, “Value” the highest

L(Diﬁ'.ﬂ
The

first panel shows the estimates for the full 1929:1-2001:12 period, the second panel
for the first subperiod (1929:1-1963:6), and the third panel for the second subperiod
(1963:7-2001:12).

1929:1-2001:12

E(R) Growth 2 3 4 Value Diff.
Small  9.17 [5.20] 13.37 [4.45] 15.91 [3.80] 18.24 [3.70] 10.72 [4.05] 10.55 [3.28]
2 10.07 [3.37] 14.59 [3.25] 16.06 [3.13] 16.40 [3.14] 17.69 [3.59]  7.62 [2.04]
3 11.35 [3.21] 13.69 [2.75] 14.62 [2.82] 15.55 [2.82] 16.64 [3.53]  5.28 [1.99]
4 11.38 [2.50] 11.92 [2.61] 13.89 [2.61] 14.90 [2.93] 16.54 [3.77]  5.16 [2.49]
Large 10.54 [2.29] 10.41 [2.19] 11.78 [2.38] 12.76 [2.85] 15.84 [3.50]  5.30 [2.44]
Diff.  1.37 [4.17] -2.96 [3.34] -4.14 [2.68] -5.48 [2.21] -3.88 [2.56]
1929:1-1963:6
E(R) Growth 2 3 4 Value Diff.
Small  9.14 [9.85] 11.20 [8.29] 15.74 [7.27] 18.21 [6.89] 20.29 [7.68] 11.14 [6.37]
2 0.30 [5.28] 15.53 [5.68] 15.47 [5.63] 15.34 [5.78] 17.31 [6.69]  8.01 [3.39]
3 11.80 [5.12] 12.86 [4.69] 14.83 [5.07] 14.80 [5.19] 15.35 [6.73]  3.54 [3.18]
4 10.12 [3.89] 12.23 [4.47] 13.48 [4.64] 13.65 [5.50] 16.09 [7.25]  5.96 [4.52]
Large  9.50 [3.74]  9.05 [3.59] 11.38 [4.23] 12.08 [5.41] 18.36 [6.82]  8.86 [4.52]
Diff.  0.35 [7.07] -2.15 [6.22] -4.37 [4.79] -6.13 [3.66] -1.93 [4.57]
1963:7-2001:12

E(R) Growth 2 3 4 Value Diff.
Small  9.19 [4.69] 1532 [4.02] 16.07 [3.49] 18.26 [3.29] 19.21 [3.41] 10.02 [2.38]
2 10.75 [4.21] 13.76 [3.44] 16.58 [3.04] 17.36 [2.92] 18.03 [3.22]  7.28 [2.38]
3 10.95 [3.89] 14.43 [3.10] 14.44 [2.78] 16.22 [2.64] 17.80 [2.99]  6.84 [2.52]
4 12.50 [3.48] 11.65 [2.91] 14.25 [2.72] 16.02 [2.61] 16.94 [2.95]  4.43 [2.54]
Large 11.46 [2.76] 11.63 [2.58] 12.14 [2.44] 13.37 [2.39] 13.50 [2.62]  4.43 [2.39]
Diff.  2.27 [3.46] 3.6 [3.14] -3.93 [2.72] -4.90 [2.63] -5.63 [2.63]
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Table 9: Average returns on the risk-sorted portfolios
The table shows the sample average simple returns for the 20 risk-sorted portfolios.
Returns are annualized and in percentage points (monthly fractions multiplied by
1200). Standard errors are in square brackets. The first panel shows the estimates for
the full 1929:1-2001:12 period, the second panel for the first subperiod (1929:1-1963:6),
and the third panel for the second subperiod (1963:7-2001:12). The construction of
the risk-sorted portfolios is explained in the text and in the notes for Table 5.

1929:1-2001:12

E(R) Lo by, 2 3 4 Hi b,,, Diff.

Lo bys 11.27 [2.02] 12.98 [2.39] 12.59 [2.75] 12.92 [3.20] 13.92 [3.93] 2.64 [2.58]
Hibys 10.11 [1.77] 10.64 [2.07] 11.50 [2.50] 11.59 [2.88] 12.70 [3.56] 2.59 [2.47]
Lo bry 10.03 [1.96] 11.85[2.20] 12.04 [2.63] 12.88 [3.04] 12.54 [3.74] 2.51 [2.49]
Hibry 1023 [1.83] 11.81 [2.14] 11.88 [2.42] 12.69 [2.88] 13.04 [3.55] 2.81 [2.45]

1929:1-1963:6
E(R) Lo by, 2 3 4 Hi by, Diff.

Lo bys 9.78 [3.51] 12,58 [4.41] 11.70 [5.09] 11.97 [5.92] 14.58 [7.26] 4.79 [4.56]
Hibys 8.69 [2.77]  9.81 [3.41] 12.58 [4.27] 12.50 [4.91] 13.89 [6.00] 5.20 [3.90]
Lo bry 7.92[3.20] 11.80 [3.82] 11.47 [4.67] 13.53 [5.40] 12.14 [6.43] 4.22 [3.96]
Hibry 8.03[2.98] 10.81 [3.68] 11.75 [4.28] 13.32 [5.13] 14.10 [6.41] 6.07 [4.23]

1963:7-2001:12

E(R) Lo by, 2 3 4 Hi b,,, Diff.

Lo bys 12.60 [2.18] 13.34 [2.28] 13.39 [2.56] 13.77 [3.07] 13.32 [3.79] .72 [2.89]
Hibys 11.37 [2.24] 11.38 [2.49] 10.53 [2.86] 10.77 [3.37] 11.63 [4.19] .25 [3.20]
Lo bry 11.92 [2.36] 11.90 [2.43] 12.56 [2.80] 12.31 [3.28] 12.91 [4.22] .98 [3.18]
Hi byy 12.20 [2.23] 12.70 [2.34] 11.99 [2.56] 12.13 [3.02] 12.09 [3.72] -.11 [2.85]
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Table 10: Asset pricing tests for the full sample (1929:1-2001:12)
The table shows estimated premia for an unrestricted factor model, the two-beta
ICAPM, and the CAPM. For each model, the second column constrains the zero-
beta rate (R.;) to equal the risk-free rate (R,;). Estimates are from a cross-sectional
regression of average simple excess test-asset returns (monthly in fractions) on an
intercept and estimated cash-flow (BCF) and discount-rate betas (BD r)- The test
rejects if the pricing error is higher than the listed 5% critical value.

24 ME and BE/ME portfolios

Parameter Factor model = Two-beta ICAPM CAPM

R less Ryr (g0) .0026 0 -.0013 0 -.0006 O

Std. err. (.0050) N/A (.0049) N/A (.0040) N/A
% per annum 3.16% 0% -1.52% 0% -67% 0%
Bep premium (gp) 0324 .0322  .0258  .0212 .0068  .0064
Std. err. (.0342) (.0294) (.0314) (.0443) (.0047) (.0021)
% per annum 38.85% 38.66% 30.99% 25.39%  821% 7.712%
Bpgr premium (g) -.0022  .0003 .0030 .0030 .0068 .0064
Std. err. (.0079) (.0067) (.0003) (.0003) (.0047) (.0021)
% per annum -2.58%  .34% 3.62%  3.62% 821% 7.72%
R? 78.52% 76.01% 70.64% 68.72% = 38.04% 37.92%
Pricing error 5.15 5.75 7.04 7.50 14.86 14.89
5% critic. val. 17.08 23.86 21.86 227.35 20.88 34.56

24 ME and BE/ME portfolios and 20 risk-sorted portfolios

Parameter Factor model Two-beta ICAPM CAPM

R, less Ry (go) .0036 0 .0003 0 .0022 0

Std. err. (.0020) N/A (.0025) N/A (.0019) N/A
% per annum 433% 0% .33% 0% 261% 0%
Beop premium (g1) 0335 .0328 .0182 .0193 .0043 .0059
Std. err. (.0303) (.0295) (.0217) (.0407) (.0029) (.0020)
% per annum 40.16% 39.37% 21.8™% 23.18%  5.15% 7.12%
Bpgr premium (g) -.0036  -.0001  .0030 .0030 .0043 .0059
Std. err. (.0072) (.0066) (.0003) (.0003) (.0029) (.0020)
% per annum -4.27% -13%  3.62%  3.62% 5.15%  7.12%
R? 78.67% 66.14% 56.67% 56.52% = 34.04% 29.25%
Pricing error 9.39 14.90 19.07 19.13 29.02 31.13
5% critic. val. 35.16 31.73 39.92 218.46 41.79 39.78
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a cross-sectional regression
—sz = go + 918:cr + 928: pr + € (16)

. . € DY DY
where bar denotes time-series mean and R; = R; — R,y denotes the sample average
simple excess return on asset ¢. The implied risk-aversion coefficient can be recovered

as g1/gs.

The first panel of Table 10 shows that the unrestricted factor model attaches
a relatively high premium, 39% per annum, to the cash-flow beta. The premium
on discount-rate beta is much lower, -2.6% per annum when the intercept is a free
parameter and .34% when the intercept is constrained to zero. These premia obtained
from an unrestricted factor model are remarkably similar to the premia estimated
under the ICAPM restriction on the discount-rate-beta premium. The estimated
cash-flow-beta premium for the constrained model in the first panel of Table 10 is
31% per annum with a free intercept and 25% with a constrained intercept. Discount-
rate beta carries a premium of 3.6%, which is comfortably close to the unrestricted
estimates, considering the sampling uncertainty in these estimates. The implied risk-
aversion coefficient of the representative investor is 8.6 with a free intercept and 7.0
with a restricted intercept. This is well within the range considered reasonable in
the recent literature on the equity premium puzzle.

Contrary to the ICAPM premia, the premia estimated from the static CAPM are
far from those of the unrestricted factor model. The static CAPM is forced to pick
the same premium for cash-flow and discount rate betas, and the estimated value
around 8% per annum does not really fit either cash-flow or discount-rate betas.

Below the premia estimates, we report the R? statistic for a cross-sectional regres-
sion of average returns on our test assets onto the fitted values from the model. The
regression R? is computed as

ee
(R, -, F) (R - R))

which allows for negative R? for poorly fitting models estimated under the constraint
that the zero-beta rate equals the risk-free rate.

~,

RP=1-

(17)

Although the regression R? is intuitive and transparent, it gives equal weight to
each asset included in the set of test assets even though some assets may be much more
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highly correlated than others. To address this concern we also report a composite
pricing error and its 5% critical value. The composite pricing error is computed as
€Q'e, where € is the vector of estimated residuals from regression (16) and ( is
the sample covariance matrix of test asset returns. The weighting matrix, Q_l, in
the composite pricing error formula places less weight on noisy observations yet it is
independent of the specific pricing model. Hodrick and Zhang (2001) discuss related

alternative methods for assessing the performance of asset pricing models.

Standard errors and 5% critical values are produced with bootstrap from 2500 sim-
ulated realizations. Our bootstrap experiment samples test-asset returns and VAR
errors, and uses the OLS VAR estimates in Table 2 to generate the state-variable
data. We partition the VAR errors and test-asset returns into two groups, one for
1929:1-1963:6 and another for 1963:7-2001:12, which enables us to use the same sim-
ulated realizations in subperiod analyses. The VAR and the news terms, cash-flow
and discount-rate betas, and the premia are then all estimated for each simulated
realization. Our standard errors thus incorporate the considerable additional sam-
pling uncertainty due to the fact that the news terms as well as betas are generated
regressors. The 5% critical values are produced with a similar bootstrap method,
except that the test-asset returns are adjusted to be consistent with the pricing model
before the random samples are generated.

Over the full 1929:1-2001:12 sample and using the 24 size and book-to-market
portfolios as test assets, the traditional CAPM can explain about 38% of the cross-
sectional variation in average returns on our test assets. Although the traditional
CAPM does a respectable job in explaining the average test-asset returns and is not
rejected by our composite-pricing-error test, the intertemporal CAPM does consider-
ably better, explaining 69% of the variation when we impose the Treasury bill rate as
the zero-beta rate, and 71% when we allow a free zero-beta rate. In the latter case
the model sets the zero-beta rate slightly lower than the average Treasury bill rate.
An unrestricted two-beta model does even better. This model allows free risk prices
for cash-flow beta and discount-rate beta rather than imposing that discount-rate
beta have a risk price equal to the variance of the market return. It assigns a slightly
negative risk price for discount-rate beta, treating it as “good” in absolute terms
rather than only good relative to cash-flow beta. The unrestricted model explains
76-79% of the cross-sectional variation in average returns on the test assets.

Daniel and Titman (1997) emphasize the importance of testing asset pricing mod-
els also on risk-sorted portfolios, not only on portfolios sorted on characteristics known
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to be strongly related to average returns. Characteristics-sorted portfolios are likely
to show some spread in betas identified as risk by almost any model, at least in sam-
ple. Then the cross-sectional regression (16) might attach a high premium per unit
of beta to fit the large variation in average returns. Thus, at least when premia are
not constrained by theory, an asset pricing model may spuriously look successful in
explaining the average returns to characteristics-sorted portfolios.

To alleviate this concern, the second panel of Table 10 includes 20 risk-sorted
portfolios in the set of test assets. If the success in the first panel was a spurious
result due to an unrestricted premium on cash-flow beta, these additional 20 test
assets should expose the model. Our two-beta ICAPM survives this challenge. For
the model that constrains the zero-beta rate to equal the risk-free rate, for example,
the addition of risk-sorted portfolios reduces the premium on cash-flow beta only
slightly (from 25% to 23% per annum). In general, the conclusions drawn from the
first panel are basically unchanged by the addition of the risk-sorted portfolios in the
second panel, which is good news for our two-beta ICAPM specification.

In unreported tests, we also compare the two-beta model to the influential three-
factor APT specification by Fama and French (1993). The Fama-French model
includes three risk factors, one each for the market, small stocks, and value stocks.
We estimate the betas for each test asset from simple returns using Ibbotson’s sum-
beta methodology with one lag and then regress the average excess test-asset returns
on the estimated betas. Over the full sample period and using the 24 size and book-
to-market portfolios as test assets, the Fama-French three-factor model obtains an
estimated R? of 86% with an unconstrained zero-beta rate and 69% with a zero-beta
rate constrained to the risk-free rate. The Fama-French model’s R? is 15 percentage
points higher than our two-beta model’s in the first case, and exactly equal to the
two-beta model’s in the second case. When we add the risk-sorted portfolios to the
set of test assets, the Fama-French model explains 84% and 62% of the variation in
average returns, depending on whether the intercept is constrained. While the former
Fama-French specification again outperforms the two-beta model by 27 percentage
points, the latter specification outperforms the corresponding two-beta specification
by only 4 percentage points. Given that the Fama-French model has three freely
estimated betas and thus two additional degrees of freedom (since the premium on
discount-rate beta is restricted to equal the variance of the market’s return in our
model), we consider the relative performance of the two-beta ICAPM to be a striking
success.
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Since the beta patterns vary across subsamples, we also estimate the cross-sectional
pricing regressions in both subsamples. Table 11 and Figure 3 show results for the
first subsample (1929:1-1963:6), and Table 12 and Figure 4 show results for the second
subsample (1963:7-2001:12). Both figures plot the predicted average excess return on
the horizontal axis and the actual sample average excess return on the vertical axis.
For a model with a 100% estimated R?, all the points would fall on the 45-degree
line displayed in each graph. The triangles in the figures denote the 24 Fama-French
portfolios and asterisks the 20 risk-sorted portfolios.

It is evident from Table 12 and Figure 4 that the superior performance of the
intertemporal CAPM relative to the static CAPM is concentrated in the second sub-
sample. In this period the static CAPM fails disastrously to explain the returns on
the test assets. When the zero-beta rate is left a free parameter, the cross-sectional
regression picks a negative premium for the CAPM beta and implies a near-zero es-
timated R?. When the zero-beta rate is constrained to the risk-free rate, the CAPM
R? falls to -40%, i.e., the model has larger pricing error than the null hypothesis that
all portfolios have equal expected returns. The static CAPM is also rejected at the
5% level for both sets of test assets.

In the first subsample, the static CAPM performs about as well as either of the
two-beta models. The R2?s of the CAPM and ICAPM in Table 11 are close to
each other at approximately 50% and the pricing scatter plots in Figure 3 are nearly
identical. The good performance of the CAPM in this period can be traced back
to the fact that the bad cash-flow beta is roughly a constant fraction of the CAPM
beta across test assets. Thus, our tests cannot discriminate between the static and
intertemporal CAPM models in the first subperiod.

Although the two-beta model is generally quite successful in explaining the cross-
section of average returns, the model cannot price the extreme small-growth portfolio
omitted from our main tests. In the first subsample, the extreme small-growth
portfolio has an annualized average return that is 8.9 percentage points lower than
the model’s prediction. In the second subsample, this return on this portfolio is 4.6
percentage points lower than the model’s prediction. These pricing-error calculations
use premia estimated from the larger test-asset set for the model specification with
the zero-beta rate constrained to the risk-free rate. In both subsamples, the pricing
errors are economically large and not meaningfully smaller than the Sharpe-Lintner
CAPM’s pricing errors (7.5 percentage points in the first and 7.9 percentage points
in the second subsample).
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Table 11: Asset pricing tests for the first subsample (1929:1-1963:6)
The table shows premia estimated from the 1929:1-1963:6 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The second column per model
constrains the zero-beta rate (R.;) to equal the risk-free rate (R,f). Estimates are
from a cross-sectional regression of average simple excess test-asset returns (monthly
in fractions) on an intercept and estimated cash-flow (BC ) and discount-rate betas
(B pr)- The test rejects if the pricing error is higher than the listed 5% critical value.

24 ME and BE/MFE portfolios

Parameter Factor model Two-beta ICAPM CAPM

Ry less Ry¢ (go) .0067 0 .0005 0 .0000 0

Std. err. (.0052) N/A (.0044) N/A (.0046) N/A
% per annum 8.07% 0% .63% 0% 01% 0%
Bep premium (g1) 0353 .0213 .0150 .0164 .0071 .0071
Std. err. (.0271) (.0260) (.0266) (.0482) (.0058) (.0035)
% per annum 42.35% 25.56% 17.97% 19.68%  8.48%  8.48%
Bpr premium (go) -.0078  .0025  .0041  .0041 0071 .0071
Std. err. (.0105) (.0073) (.0005) (.0005) (.0058) (.0035)
% per annum -9.39%  3.06%  4.95%  4.95% 8.48%  8.48%
R? 64.48% 56.22% 55.71% 55.45%  49.87% 49.87%
Pricing error 8.53 10.50 10.63 10.69 12.03 12.03
5% critic. val. 20.28 26.60 24.53 118.76 22.41 33.78

24 ME and BE/ME portfolios and 20 risk-sorted portfolios

Parameter Factor model Two-beta ICAPM CAPM

Ry less R,¢ (o) .0050 0 .0014 0 .0015 0

Std. err. (.0028) N/A  (.0029) N/A (.0027) N/A
% per annum 6.04% 0% 1.69% 0% 1.83% 0%
Beop premium (gq) .0313 .0175 .0115 .0156 .0057 .0068
Std. err. (.0253) (.0235) (.0223) (.0452) (.0044) (.0034)
% per annum 37.54% 21.06% 13.83% 18.75%  6.89%  8.16%
Bpr premium (g2) -.0052 .0035  .0041  .0041 0057  .0068
Std. err. (.0088) (.0070) (.0006) (.0006) (.0044) (.0034)
% per annum -6.25% 4.24%  4.95%  4.95% 6.89%  8.16%
R? 68.40% 56.66% 59.37% 56.55%  55.11% 53.23%
Pricing error 13.90 19.07 17.88 19.12 19.75 20.58
5% critic. val. 38.46 43.50 47.67 128.55 41.74 49.61
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Predicted vs. realized returns, 192901-196306
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Figure 3: Performance of the CAPM and ICAPM, 1929:1-1963:6.

The four diagrams correspond to (clockwise from the top left) the ICAPM
with a free zero-beta rate, the ICAPM with the zero-beta rate constrained to the
risk-free rate, the CAPM with a constrained zero-beta rate, and the CAPM with
an unconstrained zero-beta rate. The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess
returns. The predicted values are from regressions presented in the bottom panel of
Table 11. Triangles denote the 24 ME and BE/ME portfolios and asterisks the 20
risk-sorted portfolios. A4



Table 12: Asset pricing tests for the second subsample (1963:7-2001:12)
The table shows premia estimated from the 1963:7-2001:12 sample for an unrestricted
factor model, the two-beta ICAPM, and the CAPM. The second column per model
constrains the zero-beta rate (R.;) to equal the risk-free rate (R,f). Estimates are
from a cross-sectional regression of average simple excess test-asset returns (monthly
in fractions) on an intercept and estimated cash-flow (BC ) and discount-rate betas
(B pr)- The test rejects if the pricing error is higher than the listed 5% critical value.

24 ME and BE/MFE portfolios

Parameter Factor model =~ Two-beta ICAPM CAPM

R, less R.¢ (go) -.0039 O -.0002 O 0079 0

Std. err. (.0083) N/A (.0056) N/A (.0043) N/A
% per annum -4.69% 0% -25% 0% 9.49% 0%
Beop premium (g;) .0689 .0533 .0571 .0550 -.0007  .0061
Std. err. (.0518) (.0559) (.0417) (.0528) (.0049) (.0024)
% per annum 82.63% 63.93% 68.47% 67.00% -.86%  7.35%
Bpr premium (go) .0046 ~ .0022  .0020  .0020 -.0007  .0061
Std. err. (.0139) (.0123) (.0002) (.0002) (.0049) (.0024)
% per annum 5.49%  2.65% 243%  2.43% -.86%  7.35%
R? 66.52% 62.32% 66.24% 62.14% 05% -40.98%
Pricing error 8.03 9.04 9.06 9.08 22.88  33.83
5% critic. val. 21.33 56.60 30.14 275.42 22.85 43.87

24 ME and BE/ME portfolios and 20 risk-sorted portfolios

Parameter Factor model =~ Two-beta ICAPM CAPM

Ry less R¢ (o) .0005 0 -.0006 O .0062 0

Std. err. (.0035) N/A (.0030) N/A (.0034) N/A
% per annum .56% 0% -66% 0% 7.44% 0%
Beop premium (g;) .0522  .0545  .0547  .0488 -.0000  .0053
Std. err. (.0331) (.0430) (.0255) (.0423)  (.0034) (.0024)
% per annum 62.68% 65.36% 65.66% 58.59%  -.03%  6.33%
Bpgr premium (go) .0012  .0015  .0020  .0020 -.0000  .0053
Std. err. (.0090) (.0094) (.0002) (.0002)  (.0034) (.0024)
% per annum 1.48% 1.79%  2.43%  2.43% -03%  6.33%
R? 52.68% 52.52% 51.63% 50.84% 02% -49.89%
Pricing error 20.82 20.89 21.28 21.63 43.00 65.95
5% critic. val. 41.23 66.99 55.44 360.11 42.89 60.85
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Predicted vs. realized returns, 196307-200112
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Figure 4: Performance of the CAPM and ICAPM, 1963:7-2001:12.

The four diagrams correspond to (clockwise from the top left) the ICAPM
with a free zero-beta rate, the ICAPM with the zero-beta rate constrained to the
risk-free rate, the CAPM with a constrained zero-beta rate, and te CAPM with
an unconstrained zero-beta rate. The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess
returns. The predicted values are from regressions presented in the bottom panel of
Table 12. Triangles denote the 24 ME and BE/ME portfolios and asterisks the 20
risk-sorted portfolios. 46



4.3 Loose ends and future directions

A number of unresolved issues remain. First, we have used a model that assumes a
constant variance for the market return and its two components. We can extend the
model to allow for changing volatility of the market return, as suggested by Campbell
(1993), but in this case we must measure news about volatility-adjusted discount
rates rather than simply news about discount rates themselves.” We suspect that
the properties of market discount-rate news will be fairly insensitive to any volatility
adjustment, since movements in market volatility appear to be relatively short-lived.

Second, we have assumed that the rational long-term investor always holds 100%
of her assets in the market portfolio of stocks and invests nothing in the risk-free asset.
But if expected returns on stocks vary over time while the risk-free interest rate and
the volatility of the stock market are approximately constant, the long-term investor
has an obvious incentive to strategically time the market. In a separate paper we
plan to extend the model to examine whether a long-term investor who strategically
allocates wealth into stocks and bonds would be better off overweighting small and
value stocks than holding the stock portion of her portfolio at market weights. With
this extension it will be important to handle changing volatility correctly, since a
strategic market-timing portfolio will be heteroskedastic even if the stock market
portfolio is homoskedastic.

Third, our model is silent on what is the ultimate source of variation in the
market’s discount rate. The mechanism that causes the market’s overall valuation
level to fluctuate would have to meet at least two criteria to be compatible with our
simple intertemporal asset-pricing model. The shock to discount rates cannot be
perfectly correlated with the shock to cash flows. Also, states of the world in which
discount rates increase while expected cash flows remain constant should not be states
in which marginal utility is unusually high for other reasons. If marginal utility is
very high in those states, the discount-rate risk factor will have a high premium
instead of the low premium we detect in the data.

Fourth, we have estimated the cash-flow and discount-rate betas of value and
growth stocks from the behavior of their returns, without showing how these betas

"Campbell (1993) discusses how to handle changing volatility in the special case where the elas-
ticity of intertemporal substitution equals one, but he incorrectly asserts that the form of the asset
pricing model is the same as in the homoskedastic case. Fortunately it is straightforward to derive
a volatility adjustment for this case.

47



are linked to the underlying cash flows of value and growth companies. Similar to our
decomposition of the market return, an individual firm’s stock return can be split into
cash-flow and discount-rate news. Through this decomposition, a stock’s cash-flow
and discount-rate betas can be further decomposed into two parts each, along the
lines of Campbell and Mei (1993) and Vuolteenaho (2002), and this decomposition
might yield interesting additional insights. For example, the hypothesis that growth
stocks are equity-dependent companies predicts that at least some of the high covari-
ance between growth stocks’ returns and the market’s discount-rate news is due to
covariance between growth stocks’ cash flows and the market’s discount-rate news.
A pure investor-sentiment hypothesis would probably predict that all of the higher
discount-rate beta is due to covariance between growth stocks’ expected returns and
the market’s discount-rate news.

Fifth, we have nothing to say about the profitability of momentum strategies.
Although we have not examined this issue in detail, we are pessimistic about the two-
beta model’s ability to explain average returns on portfolios formed on past one-year
stock returns, or on recent earnings surprises. Stocks with positive past news and
high short-term expected returns are likely to have a higher fraction of their betas
due to discount-rate betas, and thus are likely to have even lower return predictions
in the ICAPM than the already-too-low predictions of the static CAPM.

5 Conclusions

In his discussion of empirical evidence on market efficiency, Fama (1991) writes: “In
the end, I think we can hope for a coherent story that (1) relates the cross-section
properties of expected returns to the variation of expected returns through time, and
(2) relates the behavior of expected returns to the real economy in a rather detailed
way.” In this paper, we have presented a model that meets the first of Fama’s
objectives and shows empirically that Merton’s (1973) intertemporal capital asset

pricing model (ICAPM) helps to explain the cross-section of average stock returns.

We propose a simple and intuitive two-beta model that captures a stock’s risk in
two risk loadings, cash-flow beta and discount-rate beta. The return on the market
portfolio can be split into two components, one reflecting news about the market’s
future cash flows and another reflecting news about the market’s discount rates. A
stock’s cash-flow beta measures the stock’s return covariance with the former com-
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ponent and its discount-rate beta its return covariance with the latter component.
Intertemporal asset pricing theory suggests that the “bad” cash-flow beta should have
a higher price of risk than the “good” discount-rate beta. Specifically, the ratio of the
two risk prices should equal the risk aversion coefficient of a representative investor,
and the “good” risk price should equal the variance of the return on the market.

Empirically, we find that value stocks and small stocks have considerably higher
cash-flow betas than growth stocks and large stocks, and this can explain their higher
average returns. The post-1963 negative CAPM alphas of growth stocks are explained
by the fact that their betas are predominantly of the good variety. The model also
explains why the sort on past CAPM betas induces a strong spread in average returns
during the pre-1963 sample but little spread during the post-1963 sample. The post-
1963 CAPM beta sort induces a post-ranking spread only in the good discount-rate
beta, which carries a low premium. Finally, the model achieves these successes with
the discount-rate premium constrained to the prediction of the intertemporal model.

Our model has important implications for rational investors. While we do not
show that such investors should hold the market portfolio in preference to strategi-
cally timing the equity market, we do show that equity-only investors with a long
investment horizon should view the high average returns on value stocks and small
stocks as appropriate compensation for risk rather than a justification for systematic
tilts towards these types of stocks.

Our two-beta model is, of course, not the first attempt to operationalize Mer-
ton’s (1973) ICAPM. However, we hope that our model is an improvement over the
specifications by Campbell (1996), Li (1997), Hodrick, Ng, and Sengmueller (1999),
Lynch (1999), Chen (2000), Brennan, Wang, and Xia (2001), Ng (2002), Guo (2002),
and others in two respects. First, our specification “works” in the sense that it has
respectable explanatory power in explaining the cross-section of average asset returns
with premia restricted to values predicted by the theory. Second, by restating the
model in the simple two-beta form, with a close link to the static CAPM, we hope
to facilitate the empirical implementation of the ICAPM in both academic research
and practical industry applications.
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