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This paper provides a unified equilibrium approach to valuing a wide variety of commercial real
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simply represents the purchase of the use of the asset over a specified time frame, I use a contingent-

claims approach to value many of the most common real estate leasing arrangements. In particular,
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1 Introduction
Commercial real estate, which includes o¢ce, retail, industrial, apartment and hotel
properties, represents a signi…cant fraction of the investment universe.1 The ultimate
value of commercial real estate emanates from its rental ‡ow, which re‡ects the
price the market is willing to pay for the use of space.2 While real estate leasing
contracts come in an almost endless variety, the terms can almost always be reduced
to the fundamental building blocks of …nancial economics. Examples of analogies
to traditional …nancial contracts abound. Just as there exists a term structure of
interest rates, so to is there a term structure of lease rates. Debt contracts with
call and put options are paralleled in lease contracts with extension and cancellation
options. Fixed and ‡oating notes are analogous to ‡at and indexed leases. Forward
contracts have their leasing counterpart in the pre-leasing of space.

A real estate lease is simply the sale of the use of space for a speci…ed period of
time. The tenant receives the bene…ts of using the space and the landlord receives
the value of lease payments. While the contractual speci…cations of leases can be
quite complex, in equilibrium the value of the lease payments must equal the value
of the use of space. Valuing the use of space is made simple by using the following
option pricing analogy: the value of leasing an asset for T years is economically
equivalent to a portfolio consisting of buying the building and simultaneously writing
a European call option on the building with expiration date T and a zero exercise
price. This characterization of leasing is explicitly derived by Smith (1979) using
an option-pricing approach to valuing corporate liabilities. Thus, in equilibrium, the
value of the stream of lease payments must equal the value of this portfolio of assets.
Leases are simply contingent claims on building values.

This paper provides a uni…ed equilibrium approach to valuing leasing contracts.
By the term uni…ed equilibrium I refer to the fact that there must be simultaneous
equilibrium in the leasing market and the underlying asset market. From the preced-
ing paragraph, the equilibrium value of a lease must equal the equilibrium value of
a portfolio whose value is contingent on the underlying building value. At the same
time, the value of a building is driven by the equilibrium obtained in the underlying
asset market, where developers choose optimal construction strategies in the face of
competition and uncertainty. In essence, this paper values leases as a contingent claim
on building values, where building values themselves are determined in an industry
equilibrium. Simpler models that take building values (or lease rates) as exogenous
are unlikely to be consistent with equilibrium in the underlying asset market, and
ignore many of the most fundamental drivers of real estate economics. In this pa-

1Miles and Tolleson (1997) provide a conservative estimate of the value of U.S. commercial real
estate of $4 trillion, as of 1997. As of 1997, the value of commercial real estate was greater than the
combined value of publicly traded Treasury securities and corporate bonds.

2While about one third of commercial real estate is owner-occupied, the market rent still repre-
sents an opportunity cost of using the space.
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per, lease rates will re‡ect critical real estate market variables such as the degree of
concentration of developers, uncertainty over the future demand for space, and the
current level of construction activity.

While the literature on leasing is an extensive one, the vast majority of work is
concerned with the tax implications of leasing versus borrowing.3 While taxes play
an important role in the lease versus buy decision, this paper instead focuses on
the economic bene…ts accruing to the user of the asset. The underlying approach
of this paper is in the tradition of Miller and Upton (1976), with the focus on the
economic aspects of leasing. Leasing is simply a mechanism for selling the use of the
asset for a speci…ed period of time, without necessitating a transfer of ownership.4
Miller and Upton (1976), in a classic article on the economics of leasing, provide
an equilibrium determination of rental rates in a discrete time model. McConnell
and Schallheim (1983) use the short-term equilibrium model of Miller and Upton,
and apply it towards the pricing of an impressive assortment of options embedded in
leases. The model in this article is most similar to Grenadier (1995), that connects an
explicit equilibrium in the underlying asset market with the valuation of leases of a
variety of forms. However, the present paper di¤ers in several important respects from
Grenadier (1995). First, the underlying equilibrium in the present model captures
the game-theoretic strategic aspects of the real estate market, while Grenadier (1995)
assumes that agents are price takers in a perfectly competitive market. Second, while
Grenadier (1995) focuses on general asset leasing contracts, the present paper focuses
on real estate leasing, and provides numerous applications that are not present in
Grenadier (1995).

The equilibrium in the underlying asset market is modeled using the method of
real options. However, unlike the typical real option approach that ignores strategic
interactions, this model uses an explicit game-theoretic equilibrium model in order
to realistically model the strategic behavior of rational developers.5 Using a spe-

3See Schall (1974), Myers, Dill, and Bautista (1976), Brealey and Young (1980), and Lewis and
Schallheim (1992) for a discussion of the importance of the tax implications of leasing.

4As Smith and Wakeman (1985) point out, if the right to use the asset is unbundled from the
right to the ownership of the residual asset value, then the incentives for the use and maintenance
of the asset can change. For assets whose values are sensitive to these decisions, this assumption
becomes less realistic.

5There have been relatively few real options applications concerned with strategic equilibrium
in exercise policies. This is partially a result of the fact that such issues are typically ignored in
the …nancial options literature, as most …nancial options are widely held side-bets between agents
external to the underlying …rm, with the notable exception of warrants and convertible securities
[Emanuel (1983), Constantinides (1984), Spatt and Sterbenz (1988)]. Grenadier (1996) uses option
exercise games to understand real estate development. Smets (1993) uses an option exercise game
for an application in international …nance. An application to investment in strategic settings is
Kulatilaka and Perotti (1998). Grenadier (1999) analyzes the case of a strategic equilibrium in
exercise strategies under asymmetric information over the underlying option parameters. Leahy
(1993) analyzes the special case of investment strategies in a perfectly competitive industry. Williams
(1993) provides the …rst rigorous derivation of a Nash equilibrium in a real options framework.
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cial case of the option exercise game framework developed by Grenadier (2002), a
continuous-time Nash equilibrium is derived for an oligopolistic real estate market.
Recent empirical work by Bulan, Mayer and Somerville (2001) shows that this strate-
gic real options framework does a decidedly better job of characterizing real estate
markets than traditional real options models. Bulan (2000) also …nds empirical sup-
port for the strategic real options framework by analyzing the investment behavior of
a panel of 2,470 U.S. …rms. The model is one of a local real estate market consisting
of n developers choosing optimal construction strategies. The developers must formu-
late their construction/exercise strategies in a world in which the demand for space
is stochastic, and where the construction strategies of their competitors impact the
payo¤ from their own strategies. Thus, the inputs of the equilibrium are the degree
of competition in the market (n), the impact of competitive development (via the
downward-sloping demand curve for space), and the stochastic process driving the
demand for space. The outputs of the equilibrium are the processes for construction
starts, short-term rents, building values and land values. Most importantly, the equi-
librium building values serve as the underlying instrument for using the contingent
claims approach for valuing long-term leasing contracts.

Given the underlying equilibrium model, the equilibrium rent on leases of any
variety can be explicitly derived. The …rst lease analyzed is the basic …xed payment
lease: a T -year lease with constant payment ‡ow R(T). The equilibrium level of
R(T) is presented and analyzed. Most notably, by varying the term of the lease T ,
the entire term structure of lease rates is derived. Of particular interest is the impact
of competition on the slope of the term structure of lease rates. For any given initial
short-term lease rate, the terms structure may be upward-sloping, downward-sloping,
or single-humped. The upward-sloping term structure is most likely in markets with
only a few competitors, while the downward-sloping term structure is most likely in
markets with many competitors.

Given the basic lease valuation model, I then apply the model to the analysis of
many of the most common real world leasing structures. The …rst extension of the
basic real estate leasing contract I analyze is a lease with an option to purchase the
building at the end of the lease. Such embedded options are most common in free-
standing single tenant buildings. The option to purchase may be included in a lease
to align the incentives of the tenant and landlord. The purchase option provides an

Importantly, Williams (1993) derives the equilibrium exercise strategies in a strategic setting, and
…nds that increasing competition leads to earlier exercise of options. The structure of the industry
in Williams (1993) di¤ers from that of the present model, and the resulting Nash equilibria di¤er.
Lambrecht and Perraudin (1999) provide an example of an exercise game in which …rms compete
over the exercise of a real option. Their model uses a di¤erent solution approach than the present
model, and deals with …rms competing over a single investment opportunity. In contrast, the present
model describes an industry equilibrium with multiple active …rms. The equilibrium framework of
Baldursson (1997) is very similar to the present model. However, the solution approach o¤ered
by Baldursson (1997) is only applicable to a very speci…c setting in which demand is linear; his
methodology will not work for more general speci…cations.
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incentive to the tenant to maintain the building as well as to refrain from defaulting
on the contractual lease payments.

The second application is pre-leasing. This is essentially a forward lease contract,
where a rent is established today for a lease that begins at a speci…c time in the
future. Pre-leasing is sometimes required by lenders in order to ensure that a building
is readily marketable in the event of default. Pre-leasing is also common in shopping
centers, where the developer initially signs an anchor tenant in order to facilitate
marketing the space to smaller tenants. Pre-leasing may also be a means by which
prospective tenants lock in their future rent obligations.

The third leasing contract I examine are leases where some or all of the property’s
operating expenses are paid by the landlord. While the basic lease in the model is a
net lease, where the tenant pays the operating expenses associated with the space, it
is also common to …nd gross leases, where the landlord is responsible for paying some
or all of the operating expenses. It is clear that there is an incentive component to the
expense provisions of a lease. When a landlord pays operating expenses, the tenant
has little incentive to economize on usage. When the tenant pays operating expenses,
the tenant will internalize such costs. It is likely that in leases where the tenant
has the most discretion over expense usage, the net lease form will be most likely
to prevail. A particularly interesting leasing arrangement involves expense stops,
where the tenant pays all expenses above a given threshold. The model is applied
to determining equilibrium lease rates on leases under a variety of expense-sharing
clauses.

The fourth application is the analysis of leases with cancellation clauses. In many
real world leases, the expiration of the lease is stochastic, where leases contain clauses
that permit the tenant (and sometimes the landlord) to change the length of the lease
during the term of the lease. A cancellation option (also known as a “kick-out” clause)
allows the lease to be terminated prior to expiration of the lease term, while a renewal
option allows the lease to be extended beyond the initial term. Cancellation options
and renewal options can be valued in the same manner, since a long-term lease with
an option to cancel is economically identical to a short-term lease with an option to
renew.

While the basic model focuses on the leasing of developed space, undeveloped
land may also be leased under a ground lease. The …fth application of the model
is an equilibrium valuation of ground leases. Under a ground lease, the landowner
leases the land to a developer. Upon termination of a ground lease, the land and
all improvements revert to the landowner. Typically ground leases have long terms
(usually more than thirty years) with multiple renewal options. It is noteworthy that
unless the ground lease is properly structured, such leasing arrangements result in
ine¢cient development.

The sixth application is the study of lease escalation clauses. The basic lease in
this article calls for a constant rent ‡ow over the entire lease term. Such ‡at rent
structures are particularly common on short-term leases. However, on longer-term
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leases, it is more common to …nd leases with rents varying over the term. Escalation
clauses in leases specify a rule for determining the rent level at varying points in time
during the term. I explicitly model three examples of escalation clauses: rents that
move with the market, rents that move deterministically, and rents that move with
an exogenous index.

The seventh application is the analysis of lease concessions. It is quite common
for leases (particularly during market downturns) to contain one or more concessions
for the tenant, such as free rent periods, subsidized moving costs and above-normal
tenant improvement allowances. In any rational equilibrium, it is clear that leases
o¤ering concessions will result in a higher rent. Empirically, this contributes to the
well-observed phenomenon of “sticky” quoted rents. During real estate downturns,
quoted rents fall quite slowly, even when building values (and true market rents) fall
precipitously.

The eighth and …nal application is the analysis of sale-leaseback agreements. Un-
der a sale-leaseback agreement, the owner of a building (usually the sole user of the
building) sells the building and simultaneously signs a lease on the building. Such
transactions are typically justi…ed as a form of …nancing; the seller/tenant uses the
sales proceeds for business expansion and the lease payments represent …nancing pay-
ments. The contracted sales price and leaseback price are connected in equilibrium,
with the model capable of explicitly characterizing this link.

This paper is organized as follows. Section 2 develops the strategic equilibrium
in the underlying real estate asset market. Section 3 characterizes the term structure
of lease rates. Sections 4 through 11 extend the basic model of lease valuation to
many of the most common leasing variations: purchase options, pre-leasing, gross
leases, cancellation options, ground leases, escalation clauses, lease concessions and
sale-leaseback contracts. Section 12 concludes.

2 A Model of Equilibrium in the Underlying Real
Estate Asset Market

The equilibrium value of any real estate leasing contract will be dependent on the
equilibrium obtained in the underlying real estate asset market. In this section I
present a model of equilibrium in which the equilibrium values of buildings, spot rents,
construction starts and land values are endogenously determined. The model will
represent a special case of the strategic industry equilibrium developed in Grenadier
(2002). This asset market equilibrium will form the fundamental basis for the lease
valuation framework used in all future sections of this article.

The general framework of the model is the real options approach to investment un-
der uncertainty.6 Each developer/landlord can be envisioned as holding a sequence of

6The application of the real option approach to investment is increasingly broad. Brennan and
Schwartz (1985) use an option pricing approach to analyze investment in natural resources. Mc-
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development opportunities that are analogous to call options on future construction.
In the vast majority of option pricing models (both real and …nancial), the starting
point is an exogenous process for the underlying asset value (e.g., the stock price in
the Black-Scholes framework) or cash ‡ows [e.g., Brennan and Schwartz (1985) or
McDonald and Siegel (1986)]. However, in this case, the value of the payo¤ from
investment (exercise) is endogenous as it depends on the exercise strategies of all
developers operating in the market. In such a strategic environment, optimal exer-
cise strategies cannot be derived in isolation, but must be calculated as part of a
game-theoretic equilibrium.

2.1 Assumptions and Setup
Consider an oligopolistic local real estate market comprised of n identical …rms that
lease identical buildings. New supply of space enters the market when these …rms
choose to develop additional space. At time t, …rm i owns qi(t) units of completed,
rentable space. For simplicity, assume that space is in…nitely divisible. The process
qi(t) will thus be non-decreasing and continuous in both time and state space.

The essential determinant of value from owning or leasing a building is its un-
derlying service ‡ow: the provision of usable space. The economic bene…ts from the
service ‡ow are realized by the user of the space, while the owner of the building
retains the right to sell this service ‡ow to potential tenants. At each point in time,
the price of the ‡ow of services from the asset (net of expenses), or the instantaneous
lease rate P (t), evolves in order to clear the market.7 Assume that the market inverse
demand function is of a constant-elasticity form:

P (t) = X(t) ¢Q(t)¡ 1
° ; (1)

where ° > 1=n and Q(t) = Pn
j=1 qj(t) is the industry supply process.8 Such a market

is characterized by evolving uncertainty in the state of demand for space. At each
point in time, even demand at the next instant is uncertain. X(t) represents a
multiplicative demand shock, and evolves as a geometric Brownian motion:

dX = ®Xdt+ ¾Xdz; (2)

Donald and Siegel (1986) provided the standard continuous-time framework for analysis of a …rm’s
investment in a single project. Majd and Pindyck (1987) enrich the analysis with a time-to-build
feature. Dixit (1989) uses the real option approach to examining entry and exit from a productive
activity. Triantis and Hodder (1990) analyze manufacturing ‡exibility as an option. Titman (1985)
uses the real options approach to analyze real estate development.

7Since this service ‡ow is net of expenses, these spot lease rates represent “net” lease rates. Under
a fully net lease, the tenant pays the expenses. In a later section a model of “gross” lease rates is
determined in which the landlord pays some or all of the expenses.

8The restriction on ° is necessary to ensure a well-de…ned equilibrium. See Grenadier (2002) for
a discussion.
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where ® is the instantaneous conditional expected percentage change in X per unit
time, ¾ is the instantaneous conditional standard deviation per unit time, and dz is
the increment of a standard Wiener process. I assume that cash ‡ows are valued in
a risk-neutral framework, where r is the (constant) risk-free rate.

Consider potential examples of representations for the shock term, X(t). For
o¢ce space the demand might be driven by job growth. For industrial space demand
might be driven by changes in industrial production. For hotel space demand might
be driven by changes in disposable income.

At any point in time, each …rm can develop new rentable units at a cost of K
per unit of space. New development represents an increase in space denoted by the
in…nitesimal increment dqi ´ dQ

n . Thus, the path of output is continuous, and if all
…rms increase capacity simultaneously, Q(t) increases by the increment dQ. Denote
the supply process of all …rms except …rm i by Q¡i(t) = Pn

j=1;j 6=i qj(t). Thus, the
rental ‡ow for …rm i can be expressed as a function of both its own supply and the
supply of its competitors by X(t) ¢ qi(t) ¢ [qi(t) + Q¡i(t)]¡

1
° .

The optimal development decision must be part of an endogenous, Nash equi-
librium. Each …rm chooses its supply process strategy qi(t) so as to maximize its
value, conditional on the assumed supply processes of its competitors. The n-tuple
of strategies [q¤1(t); :::; q¤n(t)] constitutes a Nash equilibrium if q¤i (t) is the optimal
strategy for each …rm i when it takes the strategies of its competitors, Q¤¡i(t), as
given. Mathematically, let V̂ i [X; qi; Q¡i; qi(t); Q¡i(t)] denote the value of …rm i, for
given strategies qi(t) and Q¡i(t), where (X; qi; Q¡i) are the initial values of the state
variables. V̂ i can then be written as the discounted expectation of future cash ‡ows:

V̂ i [X; qi; Q¡i; qi(t); Q¡i(t)] = E
½Z 1

0
e¡rtqi(t) ¢X(t) ¢ [qi(t) + Q¡i(t)]¡

1
° dt

¾
(3)

¡E
·Z 1

0
e¡rtKdqi(t)

¸
;

where the expectation operator is conditional on the current state [X; qi; Q¡i]. Thus,
the strategies [q¤1(t); :::; q¤n(t)] constitute a Nash equilibrium if

V̂ i
h
X; qi; Q¡i; q¤i (t); Q

¤
¡i(t)

i
= sup
fqi(t):t>0g

V̂ i
h
X; qi; Q¡i; qi(t); Q¤¡i(t)

i
, 8i. (4)

I will focus on the case of a symmetric Nash equilibrium. For the case of a symmetric
equilibrium, q¤i (t) = q¤j (t) for all i,j , and thus q¤i (t) = Q¤(t)=n, 8i.

2.2 Derivation of Equilibrium Development Strategies
I now use the real options approach to solve for the equilibrium exercise (development)
strategies. I will provide a mostly heuristic derivation of the Nash equilibrium. For
a more rigorous derivation, see Grenadier (2002). I begin by considering …rm i’s
optimal development strategy, where …rm i takes all competitors’ strategies as given.
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Suppose that …rm i’s competitors are assumed to incrementally increase supply at
each moment when X(t) rises to the given trigger function X¡i(qi; Q¡i), which for
ease of notation I write as X¡i. Let F i [X; qi; Q¡i;X¡i] denote the value of …rm i,
contingent on this assumed development strategy of its competitors. Using standard
arguments [i.e., Dixit and Pindyck (1994), Grenadier (1995)], over a region in which
no new development occurs F i [X; qi; Q¡i;X¡i] must solve the following equilibrium
di¤erential equation:

0 =
1
2
¾2X2F iXX +®XF iX ¡ rF i +X ¢ qi ¢ (qi + Q¡i)¡

1
° : (5)

The solution F i [X; qi; Q¡i;X¡i] to di¤erential equation (5) must then satisfy appro-
priate boundary conditions.

The …rst boundary condition that F i must satisfy is a “value-matching” condi-
tion. Suppose …rm i exercises its development option at the trigger Xi(qi; Q¡i).9
At the moment of exercise, qi increases by the in…nitesimal increment dq, and the
…rm pays the construction cost K ¢ dq. Thus, at the moment of development,
F i [Xi(qi; Q¡i); qi; Q¡i;X¡i] = F i [Xi(qi; Q¡i); qi + dq;Q¡i;X¡i]¡K ¢ dq, or in deriv-
ative form:

@F i

@qi

h
Xi(qi; Q¡i); qi; Q¡i;X¡ii =K: (6)

The second boundary condition that F i must satisfy is a condition that ensures
that the triggerXi(qi; Q¡i) is determined optimally. This “smooth-pasting” condition
is that F iX [X i(qi; Q¡i); qi; Q¡i;X¡i] = F iX [Xi(qi; Q¡i); qi + dq;Q¡i;X¡i]. Writing
this in derivative form:

@2F i

@qi@X

h
Xi(qi; Q¡i); qi; Q¡i;X¡i

i
= 0: (7)

The third boundary condition that F i must satisfy is a value-matching condition
at the competitors’ trigger function,X¡i(qi; Q¡i). At the moment …rm i’s competitors
exercise, Q¡i increases by the in…nitesimal increment dQ¡i. Thus, at the moment of
competitive exercise, F i [X¡i(qi; Q¡i); qi; Q¡i;X¡i] = F i [X¡i(qi; Q¡i); qi; Q¡i + dQ¡i;X¡i],
or in derivative form:

@F i

@Q¡i

h
X¡i(qi; Q¡i); qi; Q¡i;X¡i

i
= 0: (8)

Finally, F i must satisfy the regularity condition:

F i
h
0; qi; Q¡i;X¡i

i
= 0; (9)

9See Grenadier (2001) for a discussion of the conditions that ensure that such a trigger strategy
is indeed optimal.
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since zero is an absorbing barrier for X(t).10

I can now fully characterize a symmetric Nash equilibrium in exercise strategies.
Since the equilibrium is symmetric, Xi(qi;Q¡i) = X¡i(qi;Q¡i) for all i, and denote this
common equilibrium trigger by ¹X(qi;Q¡i). Therefore, for ¹X(qi;Q¡i) to be the symmet-
ric equilibrium trigger, F i

h
X; qi; Q¡i; ¹X

i
must satisfy di¤erential equation (5), sub-

ject to boundary conditions (6) - (9), where Xi(qi;Q¡i) = X¡i(qi;Q¡i) = ¹X(qi;Q¡i).
Write the equilibrium value of …rm i as V i (X; qi; Q¡i) ´ F i

h
X; qi; Q¡i; ¹X

i
. Such an

equilibrium is then represented by the following system:

0 =
1
2
¾2X 2V iXX +®XV iX ¡ rV i +X ¢ qi ¢ (qi + Q¡i)¡

1
° ; (10)

subject to:

@V i

@qi

h
¹X(qi;Q¡i); qi; Q¡i

i
= K; (11)

@2V i

@qi@X

h
¹X(qi;Q¡i); qi; Q¡i

i
= 0;

@V i

@Q¡i

h
¹X(qi;Q¡i); qi; Q¡i

i
= 0;

V i(0; qi; Q¡i) = 0:

The solution to di¤erential equation (10), subject to boundary conditions (11),
can be written as:

V i (X; qi; Q¡i) = A(qi; Q¡i) ¢X¯ + X ¢ qi ¢ (qi + Q¡i)¡
1
°

r ¡ ® ; (12)

where A(qi; Q¡i) and ¹X (qi;Q¡i) satisfy:

Aqi(qi; Q¡i) ¢ ¹X(qi;Q¡i)¯ +
¹X(qi;Q¡i)
r ¡ ® (qi +Q¡i)

¡ 1
°

"
1¡ qi
° (qi + Q¡i)

#
= K;(13)

¯Aqi(qi; Q¡i) ¢ ¹X(qi;Q¡i)¯¡1 +
1
r ¡ ® (qi +Q¡i)¡

1
°

"
1¡ qi
° (qi + Q¡i)

#
= 0;

AQ¡i(qi; Q¡i) ¢ ¹X (qi;Q¡i)¯ ¡
¹X(qi;Q¡i)
r ¡ ®

qi
°
(qi + Q¡i)¡

°+1
° = 0;

with ¯ =
¡(®¡1

2 ¾
2)+

q
(®¡1

2¾
2)2+2r¾2

¾2 > 1, and r > ® to ensure convergence.
Because I focus on a symmetric equilibrium, the state space can be reduced.

In equilibrium, qi = 1
nQ, and Q¡i = n¡1

n Q. Thus, using the change of variables
10F i must also satisfy regularity conditions that ensure that the value of the option to build

approaches zero as the industry capacity approaches in…nity. This is needed to ensure …nite market
values.
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G(X;Q) = V i
³
X; 1nQ;

n¡1
n Q

´
and X¤(Q) = ¹X( 1nQ;

n¡1
n Q), I obtain the equilibrium

solution in closed-form:

G(X;Q) = B(Q) ¢X¯ + X ¢Q °¡1°
n(r ¡ ®) ; (14)

where:

B(Q) =
Ã
v¡¯n
n

! Ã
°
° ¡ ¯

! "
K ¡

µ vn
r ¡ ®

¶ Ã
° ¡ 1
°

!#
¢Q °¡¯° ; (15)

X ¤(Q) = vnQ
1
° ;

and where vn =
³
¯
¯¡1

´ ³
n°
n°¡1

´
(r ¡ ®) ¢K .

Therefore, the equilibrium development strategy is for each …rm to develop an
incremental unit whenever the state variable X (t) rises to the trigger X¤[Q(t)]. The
trigger function is an increasing function of Q. The explicit dependence of the equi-
librium on the degree of competition is through the function vn. The equilibrium
trigger is a decreasing and convex function of n:

@X¤(Q)
@n

= ¡ X ¤(Q)
n (n° ¡ 1)

< 0; (16)

@2X¤(Q)
@n2

=
2°X¤(Q)
n (n° ¡ 1)2

> 0:

Increasing competition leads …rms to develop sooner, as the fear of preemption di-
minishes the value of their “options to wait.”

The Nash equilibrium exercise strategies coincide with the standard, non-strategic
solutions that appear in the real options literature for two special cases: the case of
monopoly (n = 1) and the case of perfect competition (n! 1). For a monopolist,
exercise is triggered at v1Q

1
° =

³
¯
¯¡1

´ ³
°
°¡1

´
(r ¡ ®) ¢K . For a perfectly competitive

…rm, exercise is triggered at lim
n!1 vnQ

1
° =

³
¯
¯¡1

´
(r ¡ ®) ¢ K. For 1 < n < 1; the

Nash equilibrium solution lies somewhere in between these non-strategic cases.

2.3 The Equilibrium Instantaneous Lease Rate

The equilibrium instantaneous lease rate, P (t) = X(t) ¢Q¡ 1
° , takes on a particularly

simple form. Since Q(t) increases incrementally only when X(t) = vn ¢Q 1
° , P (t) will

follow a geometric Brownian motion with an upper re‡ecting barrier at vn. That is,
when P (t) < vn, dP (t) = dX(t), but whenever P (t) rises to vn, Q(t) increases just
enough so as to re‡ect P (t) o¤ the barrier vn.

The distribution function for the equilibrium instantaneous lease rate at time t,
conditional on P (0) = P , can be written as:

Lt(p;P ) ´ Pr [P (t) · p] (17)
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= Pr
"
ln

"
vn
P (t)

#
¸ ln

"
vn
p

##

= ©
"
ln(p=P )¡ (® ¡ ¾2=2) ¢ t

¾
p
t

#

+(p=vn)
2(®¡¾2=2)
¾2 ¢ ©

"
ln(p=vn) + ln(P=vn) + (®¡ ¾2=2) ¢ t

¾
p
t

#
;

for 0 · p · vn, and where “Pr” represents probabilities conditional on P (0) =
P . Note that ln

h
vn
P (t)

i
is a Brownian motion with a lower re‡ecting barrier at zero,

with a drift parameter (1=2¾2 ¡ ®) and a variance parameter ¾2. Thus, I can use
the distribution function provided in Harrison (1985, Chapter 3, Equation 6.1) to
calculate the result in the third equation of the derivation.

Provided ® > ¾2=2, P (t) has a long-run stationary distribution. That is,

lim
t!1
Lt(p;P ) = (p=vn)

2(®¡¾2=2)
¾2 , for ® > ¾2=2: (18)

The mean and variance of this stationary distribution are:

lim
t!1
E[p(t)] = ®¡ ¾2=2

®
vn; (19)

lim
t!1 V ar[p(t)] =

¾4v2n
4®2

Ã
® ¡ ¾2=2
® + ¾2=2

!
:

Since @vn@n < 0; markets with more competition will have instantaneous rent distribu-
tions with lower long-run means and variances.

2.4 Equilibrium Building Values
Given the equilibrium rent process, P (t), I can express the value of an existing build-
ing (providing a single unit of space) by the function H(P ). Analogous to the equilib-
rium di¤erential equation derived above, H(P ) must solve the following di¤erential
equation:

0 = 1
2
¾2P 2H 00 + ®PH 0 ¡ rH + P; (20)

subject to:

H 0(vn) = 0; (21)
H (0) = 0:

The …rst boundary condition conveys the impact of the re‡ecting barrier at P = vn
and is known as a boundary condition of the Neumann type.11 The second boundary

11See Farnsworth and Bass (1998) for a discussion of the Neumann condition for processes with
re‡ecting barriers.
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condition conveys the impact of the absorbing barrier at P = 0. A closed-form
solution for H(P ) can be written as:

H(P ) = ¡ v1¡¯n
¯ ¢ (r ¡ ®) ¢ P¯ + P

r ¡ ®: (22)

In order to understand the impact of competition on the equilibrium building
values, consider the net present value of development at the moment of construction
(when P = vn):

H(vn) ¡K =
K

n ¢ ° ¡ 1
: (23)

Because n ¢ ° > 1, the net present value is positive (for …nite n). This positive net
present value is a familiar result in real options analysis resulting from the value of
the “option to wait.” However, for industries with greater competition (increasing
n), this net present value falls. In the limit of perfect competition (n! 1), the net
present value of development is precisely zero, just as one would expect.

2.5 Equilibrium Land Values
Finally, I can express the equilibrium value of a unit of undeveloped land (upon
which one building can be constructed) by the function L(P ).12 L(P ) must solve the
following di¤erential equation:

0 = 1
2
¾2P 2L00 + ®PL0 ¡ rL; (24)

subject to:

L(vn) = H(vn) ¡K; (25)
L(0) = 0:

The …rst boundary condition re‡ects the fact that construction begins at the trigger
P = vn, and thus the value of land equals the value of a building minus the cost of
construction.13 Again, the second boundary condition re‡ects the absorbing barrier

12Note that this represents the value of the option to produce an incremental unit of rentable
space. One can also value the total land holdings of a …rm (assumed to be in…nite, although a …nite
supply can also be accomplished in a slightly di¤erent setting.) Suppose the …rm currently has q
completed buildings, the current demand level is X , and the industry supply equals Q = n ¢ q . Let
l(X; ") denote the value of the option to produce the "’th unit of rentable space, for " ¸ q. The
value of the land holdings of a …rm is equal to the integral of all of these options,

R 1
q l(X; ")d".

This integral can be shown to equal q °
¯¡°L(P ), where L(P ) equals the incremental land value in

equation (26).
13Note that the Neumann condition for a re‡ecting barrier, L0(vn) = 0, is automatically satis…ed

by combining the …rst line in (25) with the …rst line in (21).
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at zero. A closed-form solution for L(P ) can be written as:

L(P ) =

8
<
:

K
n°¡1

³
P
vn

´¯
; for P < vn;

H (P )¡K; otherwise.
(26)

3 Equilibrium Term Structure of Lease Rates
While the study of the term structure of interest rates is a cornerstone of both …nance
theory and practice, an analogous, but much less studied term structure exists in
lease contracts.14 A term structure of lease rates speci…es the equilibrium lease rate
on a T -year lease for all choices of T . While the underlying structure of the leasing
model in this article di¤ers from the standard term structure of interest rates models,
many similarities exist. First, just as standard term structure models express the
equilibrium yield on a T -year zero coupon bond as a function of the instantaneous
interest rate, maturity, and the parameters of the instantaneous interest rate process,
the equilibrium rent on a T -year lease will be a function of the instantaneous lease
rate, maturity, and the parameters of the instantaneous rent process. Second, while
long term bond yields embody information concerning the expected path of future
short term interest rates, long term lease rates re‡ect expectations of future short
term lease rates. In particular, since the present model is based on an underlying
industry equilibrium model, one can use the term structure of lease rates to infer
expectations of the level of future supply and demand in the local real estate market.
Third, just as the term structure of interest rates provides the foundation for pricing
a seemingly endless variety of debt contracts (e.g., coupon bonds, interest rate swaps,
bond futures contracts, etc.), the term structure of lease rates provides the basis for
pricing the assorted lease contract variations that appear in future sections of this
article.

Having established the equilibrium in the underlying real estate asset market, the
equilibrium rent on leases of any term is derived. For all T > 0, de…ne a T -year
…xed lease as a contract in which the tenant obtains the use of the asset for T years
beginning at time zero and in return, the landlord receives the ‡ow of rental payments
of R until time T , with the …rst payment made immediately upon the signing of the
lease. The goal is to derive the equilibrium characterization of R as a function of T .

The simplest means of deriving the term structure is through the following eco-
nomic characterization of the leasing process. A lease of term T gives the tenant the
use of the asset for T years and nothing thereafter. The same service ‡ow can be
achieved by forming a portfolio which involves purchasing the underlying building
and simultaneously writing a call option on the underlying building with expiration
date T and an exercise price of zero. This portfolio provides the same economic ben-
e…ts as leasing the building over the term of the lease. To avoid dominance, the value

14Brennan and Kraus (1982) also develop a term structure of lease rates, but in a framework with
an exogenous, log-normal short-term rent process.

13



of the lease must equal the value of the portfolio. Thus, the value of a T -year lease
must be equal to H (P ) less the value of a European call option on H(P ) with an
exercise price of zero and expiration T .

The value of H (P ) was obtained in the previous section in equation (22). What
remains is the valuation of the call option. Let C(P; t;T) denote the value of a call
option on H (P ), where t is the current date, P = P (t), and T is the expiration date.
The call option, C(P; t;T ), must solve the following equilibrium partial di¤erential
equation:

0 =
1
2
¾2P 2CPP +®PCP +Ct ¡ rC; (27)

subject to:

C(0; t;T ) = 0; (28)
C(P; T ;T ) = H (P );
CP (vn; t;T ) = 0:

The …rst boundary condition accounts for P (t) having an absorbing barrier at zero.
The second boundary condition represents the option’s payo¤ at expiration (recall
that this option has a zero exercise price). The third boundary condition is the
Neumann condition that accounts for P (t) having a re‡ecting barrier at vn.

The solution for C(P; t;T ) is obtained in closed-form, albeit quite messy. Since
the initial value of the option is all that is relevant for contracting purposes, I will
focus on the value of the option at the initiation of the lease, C(P; 0;T). This option
value can be written as:

C(P; 0;T) =
vne¡rT

r ¡ ® [f (P; T;¡1) ¡ f(P; T;¡¯)=¯] (29)

where:

f (P; T; w) = g1(P; T; w)g3(P; T; w) + [1¡ h(w)]g2(P; T; w)g4(P; T; w) (30)
¡h(w)g2(P; T;¡2¹=¾2);

g1(P; T; w) = N
"
(w¾2+ ¹)T + ln(vn=P )

¾
p
T

#
;

g2(P; T; w) = 1 ¡ g1(P; T;¡w ¡ 2¹=¾2);

g3(P; T; w) =
µ P
vn

¶¡w
exp

h³
w2¾2=2 + w¹

´
T

i
;

g4(P; T; w) = g3(P; T;¡w ¡ 2¹=¾2);

h(w) =
¡2¹

w¾2 +2¹
;

¹ = ¾2=2¡ ®;
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and where N (¢) denotes the cumulative standard normal distribution function. Since
a T -year lease is equivalent to a portfolio which is long one building and short one
call on the building, the value for a T -year lease is H (P ) ¡ C(P; 0;T).

Finally, it is simple to solve for the equilibrium T -year lease payment, R(T ),
that provides an annuity value equal to the equilibrium lease value. The risk of
default for the stream of lease payments is ignored in this case; for tenants with poor
creditworthiness this simpli…cation may be unrealistic, but such a complication would
not alter the basic structure of the model. Thus, the equilibrium term structure of
lease rates can be expressed as:

R (P; T) =
"

r
1¡ exp (¡r ¢ T)

#
¢ [H(P ) ¡ C(P; 0;T ))] : (31)

Just as with the Cox, Ingersoll and Ross (1985) or Vasicek (1977) models of the
term structure of interest rates, the term structure of lease rates converges to a well-
de…ned perpetual lease rate. Note that a perpetual lease is economically equivalent
to ownership of the building. Thus, the equilibrium value of the underlying build-
ing, H(P ); must equal the discounted value of the equilibrium perpetual lease rate,
R(P;1):

R(P;1) = r ¢H(P ): (32)

Grenadier (1995) provides a detailed analysis of the term structure of lease rates.
Here, I shall con…ne myself to examining the impact of competition on the shape of the
term structure of lease rates. Just as with the Cox, Ingersoll, and Ross or the Vasicek
models of the term structure of interest rates, the yield curve for rents may take on
three possible shapes: downward-sloping, upward-sloping, and single-humped. Figure
1 demonstrates that the degree of competition in a real estate market can determine
the shape of the term structure of rents. Figure 1 displays three term structures, each
with the same parameters with the exception of the number of …rms competing in
the market. The top curve, which is upward-sloping, corresponds to a market with
only four competitors. The middle curve, which is initially upward-sloping and then
downward-sloping, corresponds to a market with six competitors. The bottom curve,
which is downward-sloping, corresponds to a market with ten competitors.

Figure 1 demonstrates a result that holds across a wide range of parameter as-
sumptions. For a given instantaneous rent rate P (0), the term structure for markets
with many competitors will be more likely to be downward-sloping, while the term
structure for markets with few competitors will be more likely to be upward-sloping.
For markets with intermediate levels of competition, the term structure will be single-
humped. The intuition for this result is fairly simple. First, consider an industry
with a large number of competitors. Given the high degree of competition, short-
term lease rates cannot rise much in the future, as any signi…cant rent increases will
be met by increases in construction. If the term structure is not downward-sloping,
tenants would prefer to roll over a series of short-term leases rather than accept a
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long-term lease. However, in equilibrium tenants and landlords must be indi¤erent
to the form of …nancing of the use of the building. Thus, the term structure ad-
justs to allow long-term rents to fall. Second, consider an industry with only a few
competitors. With less competition, the supply response to increasing rents will be
muted, permitting future short-term rents to grow with demand. In this case, if the
term structure were not upward-sloping, landlords would prefer rolling over a series
of short-term leases to accepting a single long-term lease. Once again, to ensure
indi¤erence in equilibrium, the term structure adjusts to an upward-sloping shape.
Finally, for intermediate levels of competition, short-term rents may increase for a
period, with moderate competitive pressure leading to increased supply in the future.
Thus, short-term rents are expected to increase for a period and then moderate when
new construction ensues. As a result, the term structure takes on an upward slope
for short and intermediate-term leases, and a downward slope for long-term leases.

4 Leases with an Option to Purchase the Building
A common clause that appears in commercial real estate leases is the option for the
tenant to purchase the asset at the end of the lease term. Such clauses are most
common in free-standing single tenant buildings. The option to purchase is valued by
McConnell and Schallheim (1983), Grenadier (1996), and Buetow and Albert (1998),
all in the context of an exogenous market rent. Here, of course, the lease option is
valued as part of a uni…ed equilibrium.

The option to purchase may be included in a lease to align the incentives of the
tenant and landlord. In a lease without a purchase option, the tenant may have little
incentive to maintain the premises beyond the provisions speci…ed in the lease. Since
the building reverts to the landlord at the end of the lease, the tenant will typically
deviate from policies that maximize the value of the building. However, when the
purchase option is included in a lease, the tenant has a potential stake in the value of
the underlying building, and may choose policies that are closer to value maximizing.
A similar instance of incentive alignment deals with credit risk. A tenant will be less
willing to default on a lease with a purchase option, since a purchase option is only
viable if the tenant pays the contracted rent throughout the lease term.

First, I consider a purchase option with a …xed exercise price. The terms of a lease
with such a purchase option are as follows. Consider a T -year lease, with contractual
rental payment ‡ow of Rop, where at the end of the term the tenant may purchase
the building for an exercise price of E .15 I now determine the equilibrium rent on
such a lease, Rop(P ;T;E).

I begin by valuing the embedded purchase option. The payo¤ on this option is
15A common manner of setting the exercise price is to set it at the expected time T building value.

The expected value of a building at T , E fH [P (T )]g, can be written as erT C [P (0); 0; T ], where the
function C appears in (29).
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max fH [P (T)] ¡ E; 0g. In order for the option to have value it must be the case that
E < H(vn), as vn is an upper re‡ecting barrier for P (T) and hence H [P (T)] is the
maximum attainable value of H . Let ©(P; t;T;E) denote the value of the purchase
option at time t, where P (t) = P . © must satisfy the following partial di¤erential
equation:

0 =
1
2
¾2P 2©PP +®P©P + ©t ¡ r©; (33)

subject to:

©(0; t;T;E) = 0; (34)
©(P; T ;T;E) = max[H(P ) ¡ E; 0];

©P(vn; t;T;E) = 0:

The …rst boundary condition accounts for P (t) having an absorbing barrier at zero.
The second boundary condition represents the option’s payo¤ at expiration. The
third boundary condition is the Neumann condition that accounts for P (t) having a
re‡ecting barrier at vn.

The solution for ©(P; t;T;E) is obtained in closed-form. For our purposes, I will
focus on the value of the option at the initiation of the lease, ©(P; 0;T;E). This
option value can be written as:

©(P; 0;T;E) = vne
¡rT

r ¡ ® [f1(P; T;¡1; E) ¡ f1(P; T;¡¯;E)=¯] ¡ Ee¡rTf2(P; T;E)
(35)

where:

f1(P; T; w;E) = g3(P; T; w)
"
g1(P; T; w) ¡ g1(P ¢ vn

q(E)
; T ; w)

#
+ (36)

[1¡ h(w)]g4(P; T; w)
"
g2(P; T; w)¡ g2(P ¢ q(E)

vn
; T ; w)

#
¡

h(w)

2
4g2(P; T;¡2¹=¾2) ¡ g2(P ¢ q(E)

vn
; T ;¡2¹=¾2)

Ã
q(E)
vn

!¡(w+2¹)=¾23
5 ;

f2(P; T;E) = N
"
ln(P=q(E)) ¡ ¹T

¾
p
T

#
¡N

"
ln(P=vn) + ln(q(E=vn) ¡ ¹T

¾
p
T

# Ã
q(E)
vn

!¡2¹=¾2

;

where g1, g2, g3, g4, h, ¹ are presented in (30), and q(E) 2 (0; vn) is the unique root
of the expression H[q(E)] ¡ E = 0.16

16 It is simple to demonstrate the properties of q(E). From (22), H(0) ¡ E = ¡E < 0, and by
assumption (in order for the option to have value) H(vn ) ¡ E > 0. By continuity, we know at least
one root to H(q)¡ E = 0 exists in the interval (0;vn). Uniqueness is demonstrated by the fact that
H 0 > 0 over this interval.
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Given the value of the purchase option, I can present the equilibrium lease payment
on a lease with an option to purchase, Rop(P ;T;E). Under such a lease, the tenant
receives the use of the space for T years, plus the value of the option. In return, the
landlord receives the rent ‡ow of Rop(P ;T;E). In equilibrium, these two values must
be equal:

1 ¡ e¡rT
r

R(P; T) + ©(P; 0;T;E) =
1¡ e¡rT
r

Rop(P ;T;E); (37)

where (31) demonstrates that 1¡e¡rT
r R(P; T) equals the value of using the space for

T years and 1¡e¡rT
r Rop(P ;T;E) equals the present value of the rental ‡ow under this

lease. Solving for Rop(P ;T;E) gives the equilibrium rent:

Rop(P ;T;E) = R(P; T) + r
1¡ e¡rT©(P; 0;T;E): (38)

Figure 2 plots the equilibrium rent on a three-year lease with a purchase option
as a function of the exercise price. First, consider the two extremes of the graph. At
a zero exercise price, the lease becomes equivalent to full ownership of the building,
since the lease will always be exercised. Therefore, Rop(P ;T; 0) = r

1¡e¡rT H(P ), as
the present value of the payment ‡ow Rop(P ;T; 0) over T -years must equal the value
of the building. At an exercise price of H(vn) or above, the value of the purchase
option equals zero, since vn is a re‡ecting barrier and thus P (T) < vn. Thus, the rent
on a lease with a purchase option with an exercise price in this range must equal the
rent on a lease without a purchase option: Rop(P ;T;E) = R(P; T ) for E ¸ H (vn).
Finally, since the option value is decreasing in the exercise price, @R

op(P ;T;E)
@E < 0 for

E < H (vn).
I now brie‡y consider another form of lease purchase option clause in which the

exercise price, rather than being a …xed constant, is instead a …xed fraction of the
property’s market value at the end of the lease term. While this “bargain purchase”
structure is rare for traditional …nancial option contracts, it is not uncommon for
real estate purchase option contracts. For example, a lease could specify that at the
end of the term the tenant can purchase the property for 95% of its market value
(typically determined through a professional appraisal).17 By de…nition, such options
are always in-the-money. In return, the contracted rent must be higher to re‡ect the
value of the option granted to the tenant.

In order to value a purchase option with proportional exercise price, consider a
T -year lease, with contractual rental payment ‡ow of R̂op, where at the end of the
term the tenant may purchase the building for an exercise price of Â ¢H[P (T)], with
Â 2 [0; 1]. The value of this purchase option is simply (1 ¡ Â) ¢ C(P; 0;T), where
C(P; 0;T) is from (29) and represents the value of a call option on the building with

17 In a world with transactions costs, the landlord would prefer selling the property to the tenant
for 95% of the market value if a sale to a third party would entail transactions costs greater than
5% (e.g., sales commissions, legal fees, etc.).
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a zero exercise price. The equilibrium rent on such a lease, R̂op(P ;T; Â), must satisfy:

R̂op(P ;T; Â) = R(P; T) +
r

1¡ e¡rT (1¡ Â) ¢ C(P; 0;T ); (39)

=
"

r
1 ¡ exp (¡r ¢ T)

#
¢ [H(P )¡ Â ¢ C(P; 0;T ))] ;

where the second equation follows from (31). Note that for Â = 0, the value to the
tenant is equivalent to ownership of the building, and thus the value of the lease
payments must equal H (P ). In addition, for Â = 1 the option has no value and the
lease payment is equal to that on a standard T¡year lease.

5 Pre-Leasing
It is not uncommon for space to be pre-leased. This practice is called pre-leasing,
and is essentially a forward lease contract. Under pre-leasing, a rent is established
today for a lease term that begins at a speci…c time in the future.

There are several reasons why such pre-leasing contracts exist. First, either the
construction lender or the take-out lender (the lender who pays o¤ the construction
lender upon completion of construction) may insist upon pre-leasing some portion of
a building prior to lending. This is generally done in order to make sure that the
collateral (the building) is or will be in marketable condition. Second, pre-leasing
space to a quality tenant can be a useful marketing tool for attracting other tenants.
This is most common in shopping malls where pre-signing a reputable anchor tenant
can make future leasing to other mall tenants much easier. Third, just as in the case
of traditional forward contracts, tenants who foresee the need to lease space in the
future may wish to lock in rents and hedge against future market rent increases (just
as developers may wish to hedge against future rent decreases).

The equilibrium valuation of pre-leasing contracts is very simple in this setting.
Suppose a lease is signed at time zero that permits the tenant to lease space from
time T1 to T2, where T1 < T2. The lease speci…es a rent ‡ow of RF (P ;T1; T2) to be
paid over this leasing period.

Consider the following two economically equivalent means of purchasing the use
of the space over the period [T1; T2]. The …rst is through pre-leasing at the rate
RF(P ;T1; T2). The present value of this stream of payments is e¡rT1¡e¡rT2r RF(P ;T1; T2).
The second is to form the following portfolio of call options: long one call option on
the building with a zero exercise price and expiration T1 and short one call option
on the building with a zero exercise price and expiration T2. From (29), the value of
this portfolio equals C(P; 0;T1) ¡C(P; 0;T2): In equilibrium the forward rent ‡ow of
RF(P ;T1; T2) must be such that these alternative means of purchasing the use of the
space are equal:

RF(P ;T1; T2) =
r

e¡rT1 ¡ e¡rT2 [C(P; 0;T1)¡ C(P; 0;T2)] : (40)
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Using the forward rent ‡ow function RF(P ;T1; T2), I can derive the instantaneous
forward rate, analogous to the forward interest rate. Let f(P ;T) ´lim

±!0
RF (P ;T; T +

±), the forward lease rate over the in…nitesimal period [T; T + ±]. Taking this limit
yields:

f(P ;T) = ¡erT ¢ @C(P; 0;T)
@T

: (41)

Note that @C(P;0;T )@T = ¡e¡rTE [P (T )].18 Thus, f(P ;T) = E [P (T )], and thus (unlike
with term structure of interest rate models) the forward rent is an unbiased estimator
of the future spot rent.

Figure 3 plots the instantaneous forward rent curve, for three levels of industry
competition: n = 4; 6; and 10. Several features are worth discussing. First, by de-
…nition, f(P ; 0) equals the current spot lease rate P (0), which is 5:0 in this graph.
Second, at the other extreme of the forward rent curve, f(P ;1) represents the ex-
pected spot rent in the in…nite future. As derived in (19), provided ® > ¾2=2, P (t) has
a long-run stationary distribution with mean ®¡¾2=2

® vn. Thus, the long-run forward
rent converges to a level determined by the degree of industry competitiveness. Third,
the forward rent curve may take on three shapes: upward-sloping, downward-sloping
and single-humped. For industries with large numbers of competitors, the future
rents are expected to decrease (due to new supply increases outstripping demand
growth) leading to a downward-sloping forward rent curve. Conversely, for industries
with small numbers of competitors, the future rents are expected to increase (due to
demand growth outstripping supply growth) leading to an upward-sloping forward
rent curve. For industries with intermediate levels of competitors, the forward rent
curve will have a single hump. Notably, the forward rent curve takes on the same
shape as the underlying term structure of lease rates curve. This result is also shared
by the Cox, Ingersoll and Ross model of the term structure of interest rates.

6 Gross Leases and Expense Stops
The leases I have considered thus far are net leases. Under a fully net lease the tenant
pays all (or virtually all) of the operating expenses associated with the space. For
example, a very common leasing arrangement is known as a triple net lease, where the
tenant is responsible for maintenance, insurance, and property taxes. In this section
I consider gross leases, where the landlord is responsible for paying some or all of
the operating expenses associated with the property. Most leases fall somewhere in
between the extreme cases of the landlord or the tenant paying all of the operating

18Consider the intuition for this mathematical result. C(P; 0; T) equals the present value of the
building’s rent ‡ow from time T onwards. Thus, using the de…nition of a partial derivative, @C

@ T
equals the value of the rent ‡ow from T + " onwards, minus the value of the rent ‡ow from T
onwards, divided by ", where " ! 0. This is simply equal to the negative of the present value of the
rent ‡ow at time T , or ¡e¡rT E [P (T )].
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expenses. Such leases, termed hybrid leases, involve both the landlord and tenant
paying a portion of the operating expenses. A particularly interesting case of a hybrid
lease is a lease with expense stops, where the tenant pays all expenses above a given
threshold.

It is clear that there is an incentive element to the expense provisions of a lease.
When a landlord pays operating expenses, the tenant has little incentive to economize
on usage. When the tenant pays operating expenses, the tenant will internalize such
costs. It is likely that in leases where the tenant has the most discretion over expense
usage, the net lease form will be the most likely to prevail.

In this section, I begin by considering the general framework for determining the
equilibrium gross lease payment. I then move on to two speci…c examples: a full
service lease and a lease with expense stops.

The general framework for determining the equilibrium gross lease payment is
simple. Since the landlord must be indi¤erent between two methods of leasing the
space over a period of time, the present value of the rent ‡ow on a net lease must
equal the present value of the rent ‡ow on a gross lease minus the present value of
the expenses over the period. Consider a T -year gross lease where the present value
of expenses over the next T -years is denoted by Z(T ). Thus, the equilibrium gross
lease payment ‡ow, RG[P; T; Z(T )], can be written as:

1¡ e¡rT
r

RG[P; T; Z(T )] =
1 ¡ e¡rT
r

R(P; T) + Z(T); (42)
or;

RG[P; T; Z(T )] = R(P; T ) + r
1¡ e¡rT Z(T):

For purposes of the following examples, assume that the ‡ow of expenses, c(t),
follows a geometric Brownian motion:

dc = ®ccdt+ ¾ccdzc; (43)

where ®c is the instantaneous conditional expected percentage change in c per unit
time, ¾c is the instantaneous conditional standard deviation per unit time, and dzc
is the increment of a standard Wiener process.

Consider the example of a full service lease, where all operating expenses are paid
for by the landlord. The present value of expenses, Z(T), is simply:

Z(T) = E
"Z T

0
e¡rtc(t)dt

#
(44)

=
c

r ¡ ®c
h
1 ¡ e¡(r¡®c)T

i
;

where c = c(0). Thus, under a full service lease, the equilibrium gross lease payment
is obtained by substituting the expression for Z(T) in (44) into (42).
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Now, consider the more interesting example of a lease with expense stops. Under
a lease with expense stops, the tenant and landlord share expenses by having the
tenant pay all expenses above a speci…ed level known as the “stop.” Often, but not
always, the stop is set at the level of actual expenses at the time the lease is signed.
Thus, under a lease with expense stops the landlord is protected against in‡ation in
expenses while the tenant has an incentive to keep expenses under control.

Consider a T -year lease with an expense stop at ¹c. The expense reimbursement
payment of the tenant at time t 2 [0; T ] is max[c(t)¡¹c; 0]. This is precisely the payo¤
of a call option on c with expiration t and exercise price ¹c. Denote the value of this
call option by ¨[c; t; ¹c]. Given the log-normality of c(t), this call value is simply the
Black-Scholes value (with proportional dividend parameter r ¡ ®c):

¨[c; t; ¹c] = ce¡(r¡®c)tN(d1) ¡ ¹ce¡rtN (d2); (45)

where:
d1 =

[ln(c=¹c) + (®c + ¾2c=2)t]
¾c

p
t

; d2 = d1 ¡ ¾c
p
t: (46)

Therefore, the present value of the ‡ow of expense reimbursements is equal to a
time-integral of Black-Scholes values:

Z(T) =
Z T

0
¨[c; t; ¹c]dt: (47)

A solution to this integral, albeit a complicated one, can be written as:

Z(T) = ¹c
µ c
¹c

¶±1 "µc
¹c

¶±2
±3N(b1) +

µc
¹c

¶¡±2
±4N(b2)

#
(48)

¡ c
r ¡ ®c

e¡(r¡®c)TN(b3) +
¹c
r
e¡rTN(b4)

+1c>¹c

(
c

r ¡ ®c
¡ ¹c
r

¡ ¹c
µ c
¹c

¶±1 "µc
¹c

¶±2
±3 +

µ c
¹c

¶¡±2
±4

#)
;

with:
±1 = 1=2¾2c¡®c

¾2c
; ±2 =

r
r+1=2¾2c±

2
1

1=2¾2c
;

±3 = r¡®c(±1¡±2)
2r(r¡®c)±2 ; ±4 = ®c (±1+±2)¡r

2r(r¡®c )±2 ;
b1 = ln(c=¹c)

¾c
p
T

+ ¾c±2
p
T ; b2 = ln(c=¹c)

¾c
p
T

¡ ¾c±2
p
T;

b3 =
[ln(c=¹c)+(®c+¾2c=2)T]

¾c
p
T

b4 = b3 ¡ ¾c
p
T;

(49)

and 1c>¹c is an indicator function taking the value 1 if c > ¹c, and 0 otherwise.19

Thus, under a lease with expense stops, the equilibrium lease payment is obtained by
substituting the expression for Z(T) in (48) into (42).

19The solution is continuous and continuously di¤erentiable at c = ¹c.
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7 Leases with Cancellation Options
Many leases contain clauses that permit the tenant (and sometimes the landlord)
to alter the length of the lease during the term of the lease. A cancellation option
(also known as a “kick-out” clause) allows the tenant to terminate the lease prior
to expiration. Typically the exercise of the cancellation option results in a pre-
determined penalty fee being paid to the landlord. A renewal option allows the
tenant to extend the length of the lease at a speci…ed renewal rent, after paying a
pre-determined renewal fee. Cancellation options and renewal options can be valued
in the same manner. A long-term lease with an option to cancel is economically
equivalent to a short-term lease with an option to renew. Thus, in this section I focus
on leases with cancellation options. An excellent analysis of cancellation and renewal
options appears in McConnell and Schallheim (1983). This section extends their
analysis in two ways: embedding the valuation in an industry equilibrium framework
and by using a continuous-time American option methodology.

Cancellation options are clearly valuable to the tenant, as they permit the tenant
to respond to changing market conditions. Suppose a tenant signs a ten-year lease
with a …xed rent of $20 per square foot. The lease contains a cancellation clause
that permits the tenant to cancel the lease at any time after paying a penalty fee.
If after three years the prevailing market rent on a seven-year lease is signi…cantly
less than $20 per square foot, the tenant may …nd it optimal to pay the penalty fee
and sign a new lease. A cancellation option thus provides insurance against declining
market rents, so that if rents fall over the course of the lease term, the tenant has
the option of signing a new lease at the lower market rent. Some tenants may be
particularly concerned about hedging against being stuck at an above-market rent if
its competitors may be signing new leases in the future and could therefore achieve a
cost advantage. As in all cases of option valuation, the underlying volatility is a key
determinant of value. Insuring against rental downturns is likely to be more desirable
(and hence more costly) in markets with volatile rents.

Consider the equilibrium valuation of a lease with a cancellation option. The lease
term is T -years, with a rental payment ‡ow of Rc. The tenant may choose to cancel
at any time by paying a penalty fee of F c. Let (P; t;Rc; T; F c) denote the value of
the payment ‡ow the landlord receives over the period from t to T .  must solve the
following partial di¤erential equation:

0 = 1
2
¾2P 2PP + ®PP +t ¡ r + Rc; (50)

subject to:

(PL(t); t;Rc; T; F c) =
1¡ e¡r(T¡t)

r
R(PL(t); T ¡ t) +F c; (51)

P (PL(t); t;Rc; T; F c) =
1¡ e¡r(T¡t)

r
RP (PL(t); T ¡ t);
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(P; T ;Rc; T; F c) = 0;
P (vn; t;Rc; T; F c) = 0:

The function PL(t) is a trigger function such that whenever P (t) falls to PL(t) the
cancellation option is exercised. The …rst boundary condition ensures that when the
cancellation option is exercised the landlord receives the current market value of a
lease from t to T (see Section 3), plus the penalty fee. The second boundary condition
is a smooth-pasting condition that ensures that the trigger function PL(t) is chosen
by the tenant so as to minimize . The third boundary condition represents the
termination of the lease at T , and the fourth boundary condition is the Neumann
condition that accounts for the re‡ecting barrier at vn.

In equilibrium, two means of selling the use of the asset for T years must have
the same value. Thus, the equilibrium rent on a lease with a cancellation clause,
Rc(P ;T; F c), must solve:

 [P; 0;Rc(P ;T; F c); T ; F c] =
1 ¡ e¡rT
r

R(P; T): (52)

That is, when the lease is signed at time zero, the value of the cash ‡ow to the
landlord under the lease with cancellation option (the left side of the equality) must
equal the value the rental payment ‡ow under a standard T -year lease (the right side
of the equality).

Since the solution to (50) subject to (51) would be numerically quite intensive, I
will focus on the more tractable problem of an in…nitely-lived lease where T ! 1.
Let the value of the payment ‡ow the landlord receives over the in…nite horizon under
the cancelable lease be denoted by 1(P ;Rc;1; F c) = lim

T!1
(P; 0;Rc;1; T ; F c), where

Rc;1 is the rent on an in…nitely-lived cancelable lease. For a given rent Rc;1, the
solution can be shown to be:

1(P ;Rc;1; F c) = A1(PL)P¡¯1 +A2(PL)P¯2 +
Rc;1

r
; (53)

where:

A1(PL) = ¡
Rc;1
r ¡ F c + v1¡¯2n

¯2(r¡®)P
¯2
L ¡ PL

r¡®

P¡¯1L + ¯1
¯2
v¡(¯1+¯2)n P¯2L

; (54)

A2(PL) = ¯1
¯2
v¡(¯1+¯2)n A1(PL);

PL = arg min
0<!<vn

A1(!);

and ¯1 =
(®¡ 1

2¾
2)+

q
(®¡ 1

2¾
2)2+2r¾2

¾2 , ¯2 =
¡(®¡1

2¾
2)+

q
(®¡ 1

2¾
2)2+2r¾2

¾2 , and where PL is
the exercise trigger value for this in…nite lease.
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In equilibrium the value of this in…nite stream of lease payments must equal
the value of the underlying building. Thus, the equilibrium lease payment on the
in…nitely-lived cancelable lease, Rc;1(P ;F c), must satisfy:

1(P ;Rc;1(P ;F c); F c) = H(P ); (55)

which can easily be solved numerically. At this equilibrium rent, Rc;1(P ;F c), land-
lords and tenants are indi¤erent between a lease with a cancellation option and a
lease without a cancellation option. Note that by substituting the equilibrium rent
Rc;1(P ;F c) into (54), the equilibrium cancellation option exercise trigger, PL, can
be determined.

Since the cancellation clause represents a form of tenant insurance against falling
market rents, tenants should be willing to pay more for cancellation options in more
volatile markets. Figure 4 con…rms this intuition. Figure 4 plots the percentage
rent premium that must be paid on an in…nite-lived cancelable lease for a range of
demand volatilities. For example, for a market with a demand volatility of 0:05,
the equilibrium rent on a cancelable lease is only 0:5% greater than that on a lease
without a cancellation clause. The value of the insurance feature of the cancellation
clause is thus quite low. However, for a market with a demand volatility of 0:40, the
equilibrium rent on a cancelable lease is 131% greater than that on a lease without a
cancellation clause. In volatile markets, the cancellation option is much more likely
to be exercised, and is thus much more costly to purchase.

8 Ground Leases
While the basic leasing arrangement in this paper deals with the leasing of a developed
building, another leasing arrangement pertains to the leasing of undeveloped land.
Under a ground lease, the landowner leases the land to a developer. Upon termination
of a ground lease, the land and all improvements (if any) revert to the landowner.
Typically ground leases have long terms (usuallymore than thirty years) with multiple
renewal options. Ground leases also typically dictate the details of the construction
that can take place on the leased land.

Ground leases introduce a form of ine¢ciency that is di¢cult to deal with in
the context of the present model.20 The Nash equilibrium in the underlying property
market is based on the premise of agents maximizing the value of the underlying assets
(land values). However, under a ground lease with a …nite term, the developer will
under-build since any building developed during the term will revert to the landlord
at the end of the lease. Economically, while a developer that owns the land obtains
an in…nite stream of rent upon construction (e.g., a building), a ground lessee obtains

20Articles that address the incentive compatibility problem regarding the redevelopment options
(rather than initial development option) of long-term leases are Capozza and Sick (1991) and Dale-
Johnson (2001).

25



a …nite stream of rent upon construction (e.g., the cash ‡ows during the term of the
…nite lease).

It is reasonable to wonder why ground leases exist, when it is more e¢cient to
simply sell the land to a developer, assuming the current landowner does not have
development expertise. One explanation is that developers are liquidity constrained,
and ground leases may be the most e¢cient means of …nancing the land. A second
explanation could be tax-based, where the sale might trigger an immediate recognition
of a large gain. A third explanation is simply

However, there are various features of ground leases that mitigate much of the
ine¢ciency introduced by the …nite term of the ground lease. First, ground leases
are commonly long term and contain multiple extension options, thus approximating
in…nite leases. In addition, ground leases are often signed at or near the point at
which development begins. Thus, in terms of the value received upon development,
the value of a very long term lease will closely approximate the value of the under-
lying building. Second, ground leases are frequently renegotiated. Since the overall
surplus is maximized by developing at the equilibrium trigger point, the parties may
…nd it mutually bene…cial to make side payments to provide an incentive for optimal
development. Third, ground leases often contain strict provisions concerning devel-
opment, including the timing of development.21 All of these factors serve to diminish
(although not eliminate) the under-development problem of ground leases.

The simplest ground lease speci…cation, and most consistent with the underlying
equilibrium model, is one of an in…nite term. Under an in…nite ground lease, the
ground lessor is essentially selling the land in exchange for a ‡ow of lease payments.
Recall that the value of the land, L(P ), was derived in (26), where it is assumed that
P < vn, as no development has yet occurred. The ground rent, RG(P ), must be such
that its perpetuity value equals L(P ), and therefore:

RG(P ) =
rK
n° ¡ 1

µ P
vn

¶¯
: (56)

The di¤erence between a perpetual ground lease and a perpetual lease of a building
is twofold. First, the ground lessee does not receive the service ‡ow from a building
until the …rst passage time of P (t) to the trigger vn. Second, the ground lessee
must make the cash out‡ow of K upon construction, at the aforementioned …rst
passage time. The di¤erence in the rent between a perpetual lease of a building and
a perpetual ground lease is thus:

R(P;1) ¡RG(P ) = r

2
64
P ¡ vn

³
P
vn

´¯

r ¡ a +K
µ P
vn

¶¯
3
75 : (57)

21While it would seem that the ground lessor would be indi¤erent to the timing of development
during the lease term, in a richer model that included credit risk, the lessor would indeed care.
Should the lessee default on the ground rent, the lessor would like to ensure that the land value is
maximized.
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The …rst term in brackets equals the value of the service ‡ow of the building from
the initiation of the lease until the …rst passage time of P (t) to the trigger vn. The
second term in brackets equals the cost of construction at the …rst passage time of
P (t) to the trigger vn. These two terms are multiplied by r in order to obtain the
rent ‡ow di¤erence between the two perpetual leases.

9 Escalation Clauses
The basic lease structure in this article calls for a constant rent ‡ow over the entire
lease term. Such ‡at rent structures are particularly common on short-term leases.
However, on longer-term leases, it is common to …nd rents that vary over the term.
Escalation clauses may provide the landlord with a hedge against such factors as
unexpected in‡ation or cost ‡uctuations. Escalation clauses in leases specify a rule
for determining the rent level at varying points in time. Examples considered in
this section include rents that move with overall real estate market rents, rents that
move deterministically, and rents that move with an exogenous index. Clearly, the
relationship between leases with …xed rent and leases with variable rents is analogous
to the relationship between …xed rate mortgages and adjustable rate mortgages.

Escalation clauses specify an initial rent, various points during the lease where
the rent is re-set, and the rules by which the rent is re-set. To simplify the modeling,
I will assume that the lease is re-set at only one point during the lease. Let the lease
be signed at time zero with a base rent of R0, re-set at time T1, and end at time T2.

9.1 Revaluated Rent
One payment structure calls for future lease levels to be marked-to-market. Under
such a lease (termed a revaluated lease), the rent at speci…ed points in time is re-set
to market rent levels. Some leases specify that the rent is re-set only if the market
rent has increases, while others allow the rent to both rise and fall with the market.22

I will consider both speci…cations.
First, suppose that the rent is re-set with the market at time T1, whether the

market rent has increased or decreased. This case is obviously very simple. The
rent at time T1 will be re-set to R[P (T1); T2 ¡ T1], the equilibrium market rent on a
(T2 ¡ T1)-year lease prevailing at time T1. In equilibrium, the initial rent R0 must
equal the market rent on a T1-year lease, R[P; T1]. In the more general case of rents
being reset at various points of time throughout the lease, the initial rent will remain
equal to the market rent on a lease with term equal to the …rst re-setting point. In
the limit, as the resetting points occur every instant, the initial lease rate will simply
equal the instantaneous rate P (0).

22For a detailed treatment of the former speci…cation, sometimes known as upward-only adjusting
leases, see Ambrose, Hendershott and Klosek (2001).
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Second, suppose that the rent is re-set to the market rent at time T1 if rents have
increased, but kept constant otherwise. Thus, the rent will be re-set at time T1 to
equal max fR[P (T1); T2 ¡ T1]; R0g. The value of the rental payments under such a
lease can be expressed in terms of various leasing structures previously analyzed in
this article, notably cancellation options and pre-leasing contracts. Since

max fR[P (T1); T2 ¡ T1]; R0g = R0+R[P (T1); T2 ¡T1]¡minfR[P (T1); T2 ¡ T1]; R0g ;
(58)

the value of the payment stream on this lease over the period [T1; T2] equals the
value of the three right-hand side cash ‡ows. The value of the constant payment
‡ow of R0 is simply R0

r (e
¡rT1 ¡ e¡rT2 ). The value of the market rental stream of

R[P (T1); T2 ¡ T1] must equal the value of the pre-leasing rent of RF (P ;T1; T2), or
e¡rT1¡e¡rT2

r RF(P ;T1; T2), since these are two equivalent ways of leasing space over
this period. The value of the rental stream of minfR[P (T1); T2 ¡ T1]; R0g is equal to
the value of a lease cancellation option (of the European variety), with initial rent
R0 and with a zero penalty fee. Denote the value of this particular lease cancellation
option by ¤(P;R0; T1; T2).

LetM (P; T1; T2; R0) equal the value of the cash ‡ows under this revaluation lease.
This must equal the value of the constant payment ‡ow of R0 over the …rst T1 years,
plus the sum of the three values in the previous paragraph. Simplifying, this yields:

M(P; T1; T2; R0) =
R0

r (1¡ e¡rT2) + e
¡rT1 ¡ e¡rT2

r RF (P ;T1;T2) ¡ ¤(P;R0; T1; T2):
(59)

In equilibrium, the equilibrium initial rent value, R¤0, must be set so that the value
of the rent ‡ows equals that on a standard T2-year lease:

M (P; T1; T2; R¤0) =
R(P; T2)
r

(1¡ e¡rT2 ): (60)

9.2 Graduated Rent
A second payment structure calls for simple, pre-determined rent increases. Under
such a lease (termed a graduated lease), the lease speci…es non-stochastic rent changes
(step-ups) at various points in time. Valuing such leases is a trivial matter.

Consider the example of a lease with initial rent R0, stepped up at T1 by the
growth rate of g, and ending at T2. Thus, the stepped-up rent at T1 is egT1R0. The
present value of these lease payments is:

R0

r

h
1¡ e¡rT1 + egT1(e¡rT1 ¡ e¡rT2)

i
: (61)

In equilibrium, the equilibrium initial rent value, R¤0, must be set so that the value
of the rent ‡ows equals that on a standard T2-year lease:

R¤0
r

h
1¡ e¡rT1 + egT1(e¡rT1 ¡ e¡rT2)

i
=
R(P; T2)
r

(1 ¡ e¡rT2) (62)
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or;

R¤0 =
R(P; T2)(1¡ e¡rT2 )

[1¡ e¡rT1 + egT1 (e¡rT1 ¡ e¡rT2)]:

9.3 Indexed Rent
A third payment structure calls for the rent to move with an exogenous, publicly
observable index. Common indices include the CPI and PPI. The rent may increase
one-for-one with the index, or move with a fraction of the index.

Consider the example of a lease that is adjusted to ½% of the growth of the index
I(t), where the index follows the geometric Brownian motion:

dI = ®IIdt+ ¾IIdzI : (63)

Speci…cally, let the initial rent equal R0, and let the rent be changed to ½ ¢ I(T1)I(0) R0 at
T1. The present value of these lease payments is:

R0

"
1 ¡ e¡rT1
r

+ ½ ¢ e
¡(r¡®I)T1 ¡ e¡(r¡®I)T2

r ¡ ®I

#
: (64)

In equilibrium, the equilibrium initial rent value, R¤0, must be set so that the value
of the rent ‡ows equals that on a standard T2-year lease:

R¤0

"
1 ¡ e¡rT1
r

+ ½ ¢ e
¡(r¡®I)T1 ¡ e¡(r¡®I)T2

r ¡ ®I

#
=
R(P; T2)
r

(1¡ e¡rT2) (65)

or;

R¤0 =
R(P; T2)(1¡ e¡rT2 )·

1¡ e¡rT1 + ½r ¢ e¡(r¡®I)T1¡e¡(r¡®I )T2r¡®I

¸:

10 Leases with Concessions
It is not unusual for leases to contain one or more inducements to attract tenants.
Such inducements are known as concessions and are most common during real estate
market downturns. Lease concessions may include allowing free rent periods, paying
moving costs and providing above-normal tenant improvement allowances. A free
rent provision allows the tenant to use the space for an initial period without paying
rent. The free rent period can be anywhere from one month to over a year on a
long-term lease. Tenant improvement allowances are cash allowances provided by the
landlord to pay for the costs of interior improvements in the leased space. While some
base level of tenant improvement allowances is typically granted in a lease, anything
beyond this base level is considered a concession.

In any rational equilibrium, it is clear that leases o¤ering concessions will result
in higher rental rates. Empirically, this contributes to the well-observed phenomenon
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of “sticky” quoted rents. Quoted rents are much less volatile than e¤ective rents
that take into account the impact of concessions during the lease term. There are
several potential reasons why leases provide concessions in return for higher rents.
The …rst explanation is that tenants are more likely to be liquidity constrained than
landlords. Thus, concessions are a means of providing …nancing to tenants, especially
during a period of high moving and start-up costs. A second explanation is that using
concessions may assist landlords in negotiating with multiple tenants. While quoted
rents are reported to the public, concessions are typically more private and the result
of negotiations between landlords and tenants. Landlords may …nd that keeping
their reservation rent private may improve their multilateral bargaining position with
current and future tenants. A third explanation could be that there exists some
friction or regulatory feature that makes it in the landlord’s interest to report high
recurring rentals (even at the expense of concessions granted). For example, a landlord
may be able to achieve better re…nancing terms if appraisals do not fully take into
account concessions, but instead use some multiple of rents for valuation purposes.

Finding the equilibrium rent on a lease with concessions is quite simple in the
current context. Consider two types of concessions: lump sum concessions such as
moving allowances and free rental periods. Let ¹C denote the dollar value of the lump
sum concessions, and ¿ the period of the T -year lease under which no rent is paid
(where ¿ < T). The rent paid on this lease is denoted by Rcon(P; T ; ¹C; ¿ ).

In equilibrium, the landlord must be indi¤erent between a lease with concessions
and a lease without concessions. In a lease with concessions, the landlord receives
the rent ‡ow of Rcon(P; T ; ¹C; ¿ ) from ¿ to T , minus the lump sum cost ¹C. Under a
lease without concessions, the landlord receives a lease ‡ow of R(P; T) from 0 to T .
Equating these two lease values and solving for Rcon(P; T ; ¹C; ¿ ) results in:

Rcon(P; T ; ¹C; ¿) =
1¡ e¡rT
e¡r¿ ¡ e¡rTR(P; T) +

r
e¡r¿ ¡ e¡rT

¹C: (66)

As an illustration, suppose that for various reasons the landlord would like to re-
port a quoted rent that is the highest possible rent on a lease without concessions. The
maximum rent would be achieved if the instantaneous rent equals its upper re‡ecting
barrier,R(vn; T ). Suppose, however, the current instantaneous rent is less than its up-
per bound, P < vn. Thus, in order to set a quoted rent of Rcon(P; T ; ¹C; ¿) = R(vn; T ),
the package of concessions ( ¹C; ¿) would have to solve:

R(vn; T) =
1¡ e¡rT
e¡r¿ ¡ e¡rTR(P; T) +

r
e¡r¿ ¡ e¡rT

¹C: (67)

Obviously there are an in…nite number of combinations of ¹C and ¿ that can solve
this equality. However, …rst suppose this is accomplished solely through a free rent
period. Then, ¹C = 0 and ¿ must equal:

¿ = ln

2
4

Ã
e¡rT +

³
1 ¡ e¡rT

´ R(P; T)
R(vn; T )

!¡r3
5 : (68)
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Note that @¿@P < 0, and thus the greater the distance of the current rent P from its
maximum vn, the greater the free rent period. Consider the two extremes. If the
current rent is at its maximum (P = vn), then no free rent is necessary and ¿ = 0.
If the current rent is at is minimum (P = 0), then the free rent period must be the
entire lease term (¿ = T).

Conversely, suppose equality (67) is accomplished solely through lump-sum con-
cessions. Then, ¿ = 0 and ¹C must equal:

¹C =
1 ¡ e¡rT
r

[R(vn;T )¡R(P; T)] : (69)

Note that @ ¹C@P < 0, and thus the greater the distance of the current rent P from
its maximum vn, the greater the required lump-sum concession. Consider the two
extremes. If the current rent is at its maximum (P = vn), then no concessions are
necessary and ¹C = 0. If the current rent is at is minimum (P = 0), then the required
lump-sum concession is 1¡e¡rT

r R(vn; T ).

11 Sale-Leaseback Transactions
Under a sale-leaseback agreement, the owner of a building (usually the sole occupant)
sells the building and simultaneously signs a lease on the building. Such transactions
are typically justi…ed as a form of …nancing; the seller/tenant uses the sales proceeds
for business expansion and the lease payments represent …nancing payments. This
justi…cation makes most sense for small …rms that have di¢culty obtaining …nancing,
however it may be less compelling for the many large corporations that engage in
sale-leasebacks of their corporate headquarters.

Clearly, modeling the sale-leaseback transaction is quite simple. There are two
components of the transaction: setting the sales price and setting the lease terms.
If the sales price equals the true market value of the building, then the lease rate
must equal the equilibrium lease rate on a standard lease. However, if the sales price
di¤ers from the market value of the asset, then the lease terms will also di¤er from
the equilibrium lease rate on a standard lease.

Consider the following sale-leaseback arrangement. The building is sold for S ,
and simultaneously leased back for T -years at a rental rate of Y . The market value of
the building is H(P ), and the equilibrium rent on a standard T -year lease is R(P; T ).
In equilibrium, the di¤erence between the market value of the building and the sales
price must equal the di¤erence between the market value of the equilibrium lease
payments and the agreed upon lease payments:

H(P ) ¡ S =
1¡ e¡rT
r

[R(P; T)¡ Y ] : (70)

Therefore, for a given sales price, S, the equilibrium sale-leaseback rental rate, Y (P; S; T),
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equals:
Y (P; S; T) = R(P; T) + r

1¡ e¡rT [S ¡H(P )] : (71)

There are two degrees of freedom in setting the contract terms: S and Y . Consider
a few examples of possible contract terms. First, suppose that the seller would like to
record a sales price that represents the maximum obtainable from a direct sale,H (vn).
Then, using (71), the equilibrium lease rate must beR(P; T)+ r

1¡e¡rT [H(vn) ¡H(P )].
Second, suppose the seller wishes to sell the property at the same price at which the
property was purchased, where the purchase price was H(P̂ ) and where P̂ was the
market rent prevailing at the time of purchase. Then, using (71), the equilibrium
lease rate must be R(P; T ) + r

1¡e¡rT
h
H(P̂ )¡H(P )

i
. Finally, consider the case in

which seller is willing to pay the maximum standard rent of R(vn; T ) in order to
achieve a high selling price. Then, the equilibrium sales price must be H(P ) +
1¡e¡rT
r [R(vn; T )¡R(P; T)].

12 Conclusion
I derive a model that provides a uni…ed equilibrium approach to valuing real es-
tate lease contracts. The underlying real estate asset market equilibrium is modeled
as a continuous-time Nash equilibrium in which …rms choose optimal development
strategies in the face of evolving demand uncertainty. Using an option pricing ap-
proach, the real estate leasing market is then modeled as a contingent claim on the
equilibrium building value. Given the underlying structure of the real estate mar-
ket (number of developers, the demand curve for space and the properties of the
stochastic process underlying demand), endogenous processes for rent, construction
starts, building values and land values are derived. This equilibrium framework is
‡exible enough to value a wide variety of realistic leasing contracts. Examples of leas-
ing contracts valued in this article are purchase options, pre-leasing, net and gross
leases, cancellation options, ground leases, escalation clauses, lease concessions and
sale-leaseback contracts.

Several extensions of the model would prove interesting. First, the model could
be empirically tested using actual lease contracts. The availability of large and reli-
able samples of individual lease contracts is currently di¢cult to obtain. The model
suggests that equilibrium lease rates will be sensitive to the degree of competition in
the local real estate market, the shape of the demand curve for space, the parameters
underlying the shock term for demand, and the speci…c terms of the contract (e.g.,
maturity, embedded options, operating expense provisions, etc.). Second, the under-
lying assumption of identical …rms could be weakened. It is likely to be the case that
in any given real estate markets developers di¤er in their skill levels, experience, and
…nancial strength. While providing greater realism to the model, the concomitant
loss of the simplifying feature of a symmetric equilibrium would greatly diminish the
tractability of the model.
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Figure 1.  Term Structure of Lease Rates.  Each graph in the figure shows the 
equilibrium rental rate as a function of the lease term, T, for different levels of industry 
competition, n.  The term structure can take on three possible shapes:  upward-sloping, 
downward-sloping and single-humped.  Intuition for the slope of the term structure of 
lease rates in a given market can be developed using a form of the expectations 
hypothesis:  long-term lease rates must leave landlords and tenants indifferent between 
signing long term leases and the expected outcome of rolling over a series of short-term 
leases. The top graph is for a real estate market with only four firms, and is upward-
sloping. With few competitors, the supply response to increasing rents will be muted, 
permitting expected future short-term rents to grow with demand. The middle graph is for 
a real estate market with six firms, and is single-humped.  For intermediate levels of 
competition, expected short-term rents may increase for a period, with moderate 
competitive pressure leading to increased supply in the future. The bottom graph is for a 
real estate market with ten firms, and is downward-sloping.  Given the high degree of 
competition, expected short-term lease rates cannot rise much in the future, as any 
significant rent increases will be met by increases in construction.  The default parameter 
values are �=0.02, �=0.10, r=0.04, K=100, �=0.75 and P(0)=5. 
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Figure 2.  Equilibrium Rent on a Lease With an Option to Purchase.  This graph 
shows the equilibrium rent on a lease with the option to purchase the building as a 
function of the option exercise price, E.  A lease with a purchase option provides the 
tenant with a European call option on the building with an exercise price of E and an 
expiration date equal to the term of the lease.  Consider the equilibrium rent at two 
extremes of the range of E.  At an exercise price of zero, the lease becomes economically 
equivalent to outright ownership of the building.  At any exercise price greater than or 
equal to H(vn), the option will never be exercised, as H(vn) represents an upper reflecting 
barrier on the building’s value.  In this figure, H(vn)=128.57.  Thus, for leases with E> 
H(vn), the rent must be the same as that on leases without purchase options.  For all 0<E< 
H(vn), the equilibrium rent is decreasing in E.  The default parameter values are �=0.02, 
�=0.10, r=0.04, K=100, �=0.75, T=3 and P(0)=5. 
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Figure 3.  Equilibrium Instantaneous Forward Rents.  A forward lease is an 
agreement to lease the building for a given term �, but where the lease does not begin 
until the date T.  An instantaneous forward lease rate, f(P;T), is a forward lease rate 
where ��0.  The instantaneous forward rent is an unbiased estimator of the future spot 
rent: f(P;T)=E[P(T)]. Each graph in the figure shows the equilibrium instantaneous 
forward lease rate as a function of the lease term, T, for different levels of industry 
competition, n.  Each instantaneous forward rent curve takes on the same shape as the 
corresponding term structure of lease rates depicted in Figure 1.  The top graph is for a 
real estate market with only four firms, and is upward-sloping. With few competitors, the 
supply response to increasing rents will be muted, permitting expected future short-term 
rents to grow with demand. The middle graph is for a real estate market with six firms, 
and is single-humped.  For intermediate levels of competition, expected short-term rents 
may increase for a period, with moderate competitive pressure leading to increased 
supply in the future. The bottom graph is for a real estate market with ten firms, and is 
downward-sloping.  Given the high degree of competition, expected short-term lease 
rates cannot rise much in the future, as any significant rent increases will be met by 
increases in construction.  The default parameter values are �=0.02, �=0.10, r=0.04, 
K=100, �=0.75 and P(0)=5. 
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Figure 4.  Equilibrium Rent Premium on a Cancelable Lease.  A lease with a 
cancellation option allows the tenant to cancel making the remaining payments on a lease 
after paying an exercise price of Fc.  The rent premium on a cancelable lease equals the 
percentage difference between lease payments on a cancelable lease and a non-cancelable 
lease with all other terms being identical.  This graph displays the rent premium on a 
cancelable lease (with infinite term) as a function of demand volatility, �.  Since the 
cancellation clause represents a form of tenant insurance against falling market rents, 
tenants should be willing to pay more for cancellation options in more volatile markets.  
For example, for a market with a demand volatility of 0.05, the equilibrium rent on a 
cancelable lease is only 0.5% greater than that on a lease without a cancellation clause. 
However, for a market with a demand volatility of 0.40, the equilibrium rent on a 
cancelable lease is 131% greater than that on a lease without a cancellation clause.  The 
default parameter values are �=0.02, �=0.10, r=0.04, K=100, �=0.75, Fc=2, T=∞ and 
P(0)=5. 
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