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restriction) significantly outperform the less efficient instrumental variables and principal
components procedures that have been proposed in the literature. Third, a variant of the usual Fama-
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formation procedure, outperformed the Fama-MacBeth procedure and proved equal to or better than
more expensive quadratic programming procedures.
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One of the basic tenets of investment management is that diversification pays: risk can be 

reduced by spreading investments across a large number of imperfectly correlated assets. The 

merits of diversification are particularly clear in linear factor models for equity returns. These 

models assume returns are generated by a small number of common factors plus an additional 

random component that can be diversified away in large portfolios. Linear factor models form 

the basis of the arbitrage pricing theory (APT) of Ross (1976, 1977). They are also widely used 

in quantitative investment management for a variety of purposes including risk management, 

alpha detection, and performance evaluation.  

One agnostic and prevalent approach to implementing factor models is to treat the 

underlying common factors as unobserved random variables, and to infer them from the 

covariance structure of returns. In this approach, the factor model parameters of individual 

securities are estimated and then used to form basis or reference portfolios to mimic the common 

factors. Cross-sectional regression based on factor sensitivity and idiosyncratic risk estimates 

remains the most widely used portfolio formation procedure. In theory, these basis portfolio 

returns will be both highly correlated with the common factors and relatively free of 

unsystematic risk. In practice, there is no guarantee that a basis portfolio formation procedure 

based on a finite sample will mimic the factors sufficiently well. Performance differences might 

be expected across portfolio construction and factor model estimation procedures and might well 

vary with the number of securities included and/or the number of factors being considered. It is 

clearly important to know which methods do a good job of mimicking the common factors and 

which do not. 

Which strategy is best? This is an empirical question that has not been previously 

addressed. In this paper, we remedy this omission by providing a comprehensive examination of 
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different basis portfolio formation strategies. In particular, we provide a detailed analysis of the 

performance of variants of all of the portfolio formation procedures and estimation methods that 

have been proposed in the literature, as well as an examination of the performance gains in cross-

sections of up to 750 securities.  

The paper is organized as follows. The next section briefly reviews multifactor models of 

asset returns and their implications for the behavior of diversified portfolios. The third section 

delineates the different portfolio formation methods considered while the fourth describes the 

estimation methods used to generate the inputs to these procedures. The fifth section analyzes the 

problem of basis portfolio performance evaluation. The penultimate section empirically 

compares and contrasts different estimation methods, different portfolio formation procedures, 

and different numbers of securities. The final section provides some concluding remarks. 

1.  Diversification in Multifactor Models of Asset Returns 

A return generating process within which it is easy to characterize diversifiable risk is 

given by the following linear factor structure: 

 ;  [ ] [ ] 0;  [ ] ;  [ ]δ ε δ ε δ δ δ ε ε′ ′′= + + = = = = Ω% % % % %% % % % %t t t t t t t t K t tR E B E E E I E  (1) 

where %
tR and E are N-vectors of returns and expected returns, respectively, B is an NxK matrix of 

factor loadings,δ%t  is a K-vector of mean zero common factors normalized to have a KxK identity 

covariance matrix IK, andε%t is an N-vector of mean zero disturbances with positive definite 

covariance matrix Ω. The assumption that Ω is positive definite implies that no asset contains 

only factor risk. No substantive assumptions are made in (1) except for the existence of the 

relevant first and second moments.1 In particular, no assumption has yet been made regarding the 

potential to diversify away idiosyncratic risk. 
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Additional structure can be placed on (1) by assuming that the common factors are the 

dominant source of covariation among returns or, equivalently, that the residuals represent 

diversifiable risk. The residuals will be diversifiable if a weak law of large numbers applies to 

them. Chamberlain and Rothschild (1983) provide a particularly convenient sufficient condition 

for such a weak law of large numbers to hold: that the largest eigenvalue of Ω remains finite as 

N→∞.2 Chamberlain and Rothschild (1983) termed (1) coupled with this constraint on Ω an 

approximate factor structure.  

What diversification opportunities arise in a world with an approximate factor structure? 

An arbitrary portfolio with weights wp has first and second moments of returns given by: 

 
2

2

;  [ ]

;  
p

p

pt p t p p t p t pt p p

p p t pt p p

R w R w E w B w Var R b b

E b w w

ε

ε

δ ε σ

δ ε σ

′ ′ ′ ′ ′= = + + = +

′ ′= + + = Ω

%

%

%% % %%

% %
 (2) 

where Ep is the portfolio’s expected return, bp is a Kx1 vector of the portfolio’s factor loadings, 

and ε%pt is the portfolio’s residual return at time t. Portfolio p is a well-diversified portfolio if its 

weights are of the order 1/N and the sum of squared weights converges to zero (i.e., wp′wp → 0). 

The idiosyncratic risk of a well-diversified portfolio vanishes in the limit when returns have an 

approximate factor structure because 2
max ( ) 0εσ ξ′ ′= Ω ≤ Ω →

p p p p pw w w w where ξmax(Ω) is the 

largest eigenvalue of Ω.  

 A well-diversified portfolio with no exposure to factor risk (i.e., bp = 0) generally exists 

unless a vector of ones approximately lies in the column span of B. Such a factor-neutral 

portfolio cannot be formed from a finite asset menu if the factors can be normalized so that Bι=ι , 

where ι  is a suitably conformable vector of ones. A convenient sufficient condition for the 

                                                                                                                                                             
1 At this stage, these moments can be either conditional or unconditional. 
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existence of such a portfolio in the infinite dimensional case is that the covariance matrix of the 

rows of B is nonsingular in the limit.3 That is: 1
N 1

[ ] ( )( )β β β β
=

′= − −∑N
j jj

Var B is positive 

definite where 1
N 1

β β
=

= ∑N
jj
and βj is the jth row of B. Note that the return of such a portfolio (if 

it exists) must converge to the riskfree rate as N → ∞ or else there is an arbitrage opportunity. 

The possibility of creating a riskless portfolio from a set of risky assets is one of the main 

differences between mean-variance analysis in finite and infinite-dimensional asset markets. 

The main restriction on the limiting behavior of well-diversified portfolios involves their 

expected returns. Since the returns of any K+1 well-diversified portfolios are perfectly correlated 

in the limit under these assumptions, their limiting expected returns must be linearly dependent 

as well.  Accordingly, there exists a K-vector λ and a constant λ0 such that Ep → λ0 + bp′λ for all 

well-diversified portfolios p. Note that this mean restriction is not the APT, a theory that converts 

this exact expression for well-diversified portfolio expected returns into an approximate 

expression for individual asset expected returns. Hence, this analysis is free of the controversy 

surrounding the APT. 

2.  Basis Portfolio Formation 

A statistician seeking to estimateδ%t  in (2), given a priori knowledge of ,%tR B, E, and Ω, 

would naturally use generalized least squares.  This is the minimum variance linear unbiased 

estimator: 

                                                                                                                                                             
2 In what follows, all limits will be taken as N→∞, with N left implicit to avoid notational 
clutter. 
3 Set Bι  = ι  + η and consider a unit cost portfolio wp. The sum of its betas is given 
by .p p p pw B b w wι ι ι η′ ′ ′ ′≡ = +  Hence, this sum will generically be one if p is well diversified and η 
can be eliminated via diversification. A column vector of ones will approximately lie in the span 
of B if, for example, one of the common factors is unanticipated inflation and all but a finite 
number of securities returns are equally affected by this factor. 



 5

 1 1 1 1 1 1 1 1ˆ( ) [ ] ( ) ;  [ ] ( )ˆ GLS
t t t t t

GLS
t B B B R E B B B Var B Bδ ε δ δδ − − − − − − − −′ ′ ′ ′ ′= Ω Ω − = + Ω Ω − = Ω%% %  (3) 

where 1 1 1( ) ε− − −′ ′Ω Ω %tB B B  is the error in tracking δt. The estimatorδ̂GLS
t is consistent if the 

smallest eigenvalue of B′B grows without bound as N→∞, the usual OLS consistency condition. 

The rate at which δ̂GLS
t converges hinges on two factors:  (a) the structure of Ω and (b) the 

dispersion across the rows of B.  Ceteris paribus, convergence is faster when the securities used 

in estimation have smaller idiosyncratic variances, lower correlations among their idiosyncratic 

risks, and greater differences among their risk exposures. The last factor is well understood in a 

regression setting: precise estimates of the covariance between the dependent and independent 

variables are hard to obtain in small samples if the independent variables vary little across 

observations. Similarly, large cross-sections are needed to obtain precise factor estimates if 

securities typically possess similar risk exposures. For example, suppose two of the factors are 

unexpected changes in expected inflation and unanticipated inflation but only a small fraction of 

the assets respond differently to them (i.e., inflation has a neutral impact on most security 

returns). In this case, accurate estimation of both common factors would require a much larger 

cross-section than would typically be needed to merely eliminate idiosyncratic risk. 

In practice, the choice among basis portfolio construction methods is further complicated 

by the need to estimate B and Ω. The estimation of Ω requires the placement of constraints on its 

functional form. Popular choices are the statistical factor analysis model, in which Ω is diagonal, 

and the principal components model, in which Ω is a diagonal matrix with equal variances. 

Measurement error in the estimates of B and Ω can impair the small sample properties of basis 

portfolio estimators and, as a consequence, large cross-sections may be needed to produce 

reliable basis portfolio estimates. 
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In what follows, we consider four procedures for constructing basis portfolios. Two of 

the methods involve biased and unbiased versions of the generalized least squares estimator 

discussed above. Unbiasedness is not a particular virtue, particularly in the presence of 

measurement error and in the absence of a natural scale for the latent factors. Hence, it may be 

desirable to seek a biased estimator with potentially lower variance. The other two methods use 

mathematical programming procedures that constrain the reference portfolios to be well-

diversified, which might mitigate some of the harmful effects of both sampling error in and the 

imposition of constraints on Ω. 

Before considering alternative portfolio formation procedures, it is useful to translate this 

statistical formulation into the language of optimal portfolio formation after the fashion of 

Litzenberger and Ramaswamy (1979) and Rosenberg and Marathe (1979). The generalized least 

squares estimator provides what we usually refer to as Fama-MacBeth portfolios, after rescaling 

the portfolios to cost a dollar.4 In particular, we choose the N portfolio weights wj to mimic the 

jth factor so that they: 

 min    1;  0  
j

j j j j j kw
w Dw subject to w b w b j k′ ′ ′= = ∀ ≠  (4) 

where bk is the kth column of the sample factor loading matrix B and D is the diagonal matrix 

consisting of the sample idiosyncratic variances.5 The solution is the unbiased minimum 

idiosyncratic risk portfolio that mimics the jth unobservable common factor. We rescale the 

weights wj so that the portfolio costs a dollar (i.e., 1jw ι′ = ) to maintain comparability with other 

basis portfolio formation procedures. 

                                                 
4 Of course, Fama and MacBeth (1973) used the ordinary least squares estimator. Our usage is, 
however, common. 
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An alternative method that produces what we term minimum idiosyncratic risk portfolios 

involves choosing portfolio weights wj so that: 

 min    1;  0  ι′ ′ ′= = ∀ ≠
j

j j j j kw
w Dw subject to w w b j k  (5) 

In principle, this procedure should produce minimum idiosyncratic risk portfolios whose 

fluctuations are proportional to the common factor. In contrast to the unbiased OLS estimator, 

the proportionality factor need not equal one.6 This is easily seen by comparing (4) and (5). 

It is easy to distinguish these minimum idiosyncratic risk portfolios from the more 

familiar Fama-MacBeth portfolios in the one factor case. Assume for simplicity that the 

idiosyncratic variances are identical (i.e., D = 2
εσ IN). In this case, the Fama-MacBeth portfolio 

solves the programming problem: 

 min    1′ ′ =
w

w w subject to w b  (6) 

with solution 1( )−′=w b b b prior to rescaling so that the portfolio weights sum to one where b is 

the vector of sample factor loadings. Similarly, the minimum idiosyncratic risk portfolio satisfies:  

 min    1ι′ ′ =
w

w w subject to w  (7) 

which is solved by the equally weighted portfolio 1 .ι= Nw  Thus Fama-MacBeth portfolio weights 

are proportional to the individual security sample factor loadings (i.e., the betas) and, thus, take 

advantage of the differing information content of individual securities regarding the fluctuations 

in the common factor. Minimum idiosyncratic risk portfolios, however, are merely well-

                                                                                                                                                             
5 Note that we are now ignoring off-diagonal elements of Ω such as industry effects. As a 
consequence, our procedures actually are better characterized as weighted least squares or 
diagonal generalized least squares. 
6 Let B = (b1b2…bK) and suppose we are interested in mimicking the jth factor. The minimum 
idiosyncratic risk estimator is D-1B*[B*′D-1B*]-1 where B* = (b1b2…ι…bK) and ι  is a vector of 
ones in the jth column. 
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diversified and do not exploit such information. Note that the factor loading of the minimum 

idiosyncratic portfolio is the average beta of the securities (i.e., 1 ι′= Nb b ) while that of the Fama-

MacBeth portfolio is unity prior to rescaling.  

The diversification properties of Fama-MacBeth portfolios depend on the normalization 

of the common factors. If the factors are normalized so that factor loadings are typically close to 

one,7 both procedures yield portfolio weights of order 1/N. However, Fama-MacBeth portfolios 

have very large weights in finite cross-sections when average factor loading estimates are on the 

order of 0.001 to 0.0001 as is typical in daily data under the normalization ( ) .δ =%
t KVar I  This is 

not a problem when the factor model parameters are measured without error but it is a potentially 

serious source of difficulty when large factor loadings can reflect measurement error as well as 

responsiveness to common factors.  

The comparative merits of minimum idiosyncratic risk and Fama-MacBeth portfolios in 

the presence of measurement error can be investigated more fully by again considering the one 

factor model: 

 2 2;  [ ] ; 0ε ββδ ε ε ε σ σ′= + + = >%% % % %t t t t t NR E E I  (8) 

where β βι≠  is the N x 1 vector of the (not identical) population factor loadings and the 

idiosyncratic disturbances are assumed, for simplicity, to have zero means, common (known) 

variances 2 ,εσ  and to be distributed independently of one another. Suppose that we measure the 

factor loadings β with error: 

 ;  E[ ] 0;  [ ] υβ υ υ υυ ′= + = = Σb E  (9) 

                                                 
7 We are not aware of any study in which the factors are normalized to ensure that the typical 
loading is unity. The following transformation yields typical loadings of one. Transform B so 
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where υ is an N vector of the deviations of the sample factor loadings from their population 

counterparts with υ assumed to be independent ofδ%t and   .ε ∀%t t 8  We also normalize the factor 

loading estimates such that b′b = b′ι .  This normalization implies that 0<b <1 to ensure that the 

sample variance of the bi’s is positive. The Fama-MacBeth procedure yields a basis portfolio 

with a sample loading of unity and with weights that sum to one. Finally, we assume that the 

cross-section is large enough to ensure that 1
N 1

β β
=

≈ = ∑N
jj

b  [i.e., 1
N 1

0υ
=

≈∑N
jj

] to simplify 

the arithmetic. 

In this setting it is easy to characterize the behavior of the Fama-MacBeth portfolio and 

the relations between its returns and the common factor. The portfolio returns are: 

 

1 1( ) [ ] ( ) [ ]
1 [ ]

βδ ε β β βδ β ε υ υ βδ υ ε

β β βδ β ε υ υ βδ υ ε
β

− −′ ′ ′ ′ ′ ′ ′ ′ ′= + + = + + + + +

′ ′ ′ ′ ′ ′≈ + + + + +

% % %% % % %

% %% %

FM
t t t t t t t

t t t t

R b b b E b b E E

E E
N

 (10) 

where the approximation β≈b implies that .β ′≈N b b The variance of Fama-MacBeth portfolio 

returns as well as their squared correlation with the common factor are (approximately) given by: 

 

2 2 2 2
2 2

2 2
2

2 2 2 2

1[ ] [( ) ( )]

[ , ]
( ) ( )

υ δ ε υ ε υ

δ

υ δ ε υ ε υ

β β β β σ β βσ σ
β

β β σδ
β β β β σ β βσ σ

′ ′ ′ ′≈ + Σ + + Σ + Σ

′
≈

′ ′ ′ ′+ Σ + + Σ + Σ

%

%%

FM
t

FM
t t

Var R E E tr
N

Corr R
E E tr

 (11) 

                                                                                                                                                             
that B′D-1B is diagonal and denote the jth diagonal element as γj. Then B*=BA where A is a 
diagonal matrix with ζj/γj along the diagonal where ζ=B′D-1ι  has a typical loading of one. 
8 We assume that our estimates are unbiased for simplicity. The assumption that υ is independent 
of tδ% and tε% is less innocuous since we typically estimate factor loadings and form basis portfolios 
on the same sample. Accounting for such problems would complicate the analysis considerably 
without altering the basic point. For example, if b were estimated from an ordinary least squares 
regression, then

2 2

2 22
1

[ ]
cov[ , ] T

tt
i t T

ε ε

δ

δσ δσ
σ δδ

υ ε
=

+
= =
∑ %

% would typically be quite small in moderately large 

samples.  
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where 2
δσ is the variance of the common factor.  

It is easier to evaluate the corresponding quantities for the minimum idiosyncratic risk 

portfolio because it ignores the information in the betas. Hence, its returns and their 

corresponding moments are: 

 

2
2 2

2 2
2

2 2 2

1 [ ] ;  [ ]

[ , ]
/

ε
δ

δ

δ ε

σι βδ ε βδ ε β σ

β σδ
β σ σ

′= + + = + + ≈ +

≈
+

% %% %%

%%

MIRP MIRP
t t t t t t

MIRP
t t

R E E Var R
N N

Corr R
N

 (12) 

What are we to make of this tedious arithmetic? The latent nature of the factors makes 

their scale arbitrary, making high correlation the appropriate objective as opposed to low 

tracking error. When β is measured without error [i.e., υ = 0], the Fama-MacBeth portfolio 

return is more highly correlated with the common factor than that of the minimum idiosyncratic 

risk portfolio since: 

 
2 2 22 2 2

2 2
2 2 2 2 2 2 2 2 2

( )
[ , ] [ , ]

( ) / /
β δδ δ

δ ε β δ ε δ ε

σ β σβ βσ β σδ δ
β βσ σ σ β σ σ β σ σ

+′
≈ = ≥ ≈

′ + + + +
% %% %FM MIRP

t t t tCorr R Corr R
N N

(13) 

where 2 21
N 1

( ) 0βσ β β
=

= − >∑N
jj

is the sample cross-sectional variance of the population betas. 

The same cannot be said when there is sampling error in the betas: the squared correlation of 

minimum idiosyncratic risk portfolio returns with the common factor is unaffected by 

measurement error in b while that of the Fama-MacBeth portfolio falls in the presence of 

sampling error. 

For example, consider the special case in which b is estimated by ordinary least squares 

regression of −%tR E on ,δ%t in which case the error covariance matrix is (approximately): 

 
2

2
ε

υ
δ

σ
σ

Σ ≈ NI
T

 (14) 
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where T is the sample size and the approximation arises because we replaced the sample mean 

and variance ofδ%t with their population values for ease of exposition. The squared correlation of 

the Fama-MacBeth portfolio with the common factor is then: 

 

2 2
2

2 2 2 2 2

2 2

2 2 2 2
1

2 2 2 2 2 2 4

[ , ]
( )

1 1;  ( )
( )11

( ) ( )

δ

δ υ δ ε υ ε υ

ε ε

β δ β δ

β β σδ
β β σ β βσ β βσ σ

σ
σ σ σ

σ β σ σ β σ
=

′
≈

′ ′ ′ ′+ Σ + + Σ + Σ

≈ = −
 + +++ + + +  

∑

%% FM
t t

N

E j
jE

Corr R
E E tr

E E
NET

N T T

 (15) 

which will be smaller than that of the minimum idiosyncratic risk portfolio when: 

 2 2 2 2 2 2 2 2 2 2 2 2( ) ( 1) ( ) ( )β δ β δ εσ β σ β σ β σ β σ σ+ < + + + + +ET T E  (16) 

which can easily obtain when the sampling variation in the betas is small or, equivalently (given 

the normalization 1
N ′ =b b b and the approximation ),β≈b when β is close to one. Note that the 

variances of sample betas computed with respect to the usual market proxies are often quite 

small. 

While both of these procedures produce well-diversified basis portfolios in the limit, they 

may not do so in finite asset menus. This possibility led Chen (1983) to employ (proprietary) 

mathematical programming methods to produce well-diversified basis portfolios with a finite 

number of securities. Such portfolios might suffer only marginally from errors in estimating the 

factor loadings and idiosyncratic variances due to the diversification constraint. Accordingly, our 

other two portfolio formation procedures involve quadratic programming subject to fixed upper 

and lower bounds as in:  

 jmin    1;  0  ;  
j

j j j j k j jw
w Dw subject to w w b j k wι′ ′ ′= = ∀ ≠ ≤ ≤l u  (17) 

where ℓj and uj are the fixed lower and upper lower bounds. We examined two choices for these 

bounds. Following Chen (1983), we produced portfolios with non-negative weights (i.e., ℓj = 0) 



 12

that could take on maximum values of one to two per cent. We also examined portfolios that 

were merely constrained to be well-diversified with weights taking on maximum and minimum 

values of plus and minus one or two per cent. We experimented with constraints as large as five 

per cent in absolute value and the results did not differ materially from the ones presented below 

and, hence, are not reported.  

Finally, we formed sample factor neutral portfolios for each portfolio formation method. 

These portfolios are used to construct the excess return basis portfolios analyzed below. The 

differences among excess return portfolios are also best illustrated in the one factor case with 

identical and uncorrelated idiosyncratic risks. In this case, the required orthogonal portfolio 

solves the programming problem: 

 
2 2

2 2

1min    1;  0
f

f f f f f
R

R R R R Rw
w w subject to w w w

N
β

β β

σ β βι β ι β
σ σ

 +
′ ′ ′= = ⇒ = − 

  
 (18) 

The corresponding excess return portfolio weights are obtained by subtracting these weights 

from 1 ι= Nw , the minimum idiosyncratic risk portfolio in this case as noted in (7) above. This 

yields: 

 
2 2

2 2 2

1 1 ( )β

β β β

σ β β βι ι β β ιβ
σ σ σ

 +
− = − − = − 

  
fMIRP Rw w

N N N
 (19) 

The Fama-MacBeth excess return portfolio solves the programming problem: 

 2

1min    0;  1 ( )
β

ι β β ιβ
σ

′ ′ ′= = ⇒ = −
ex
FM

ex ex ex ex ex
FM FM FM FM FM

w
w w subject to w w w

N
 (20) 

These manipulations yield one nontrivial insight — the minimum idiosyncratic risk 

procedure produces weights for excess return portfolios that are proportional to the Fama-

MacBeth excess return portfolios. Not surprisingly, the factor of proportionality is the average 

factor loading .β  Once again, when the average factor loading is much less than one, the Fama-
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MacBeth procedure will produce very large positive and negative portfolio weights. In contrast, 

the minimum idiosyncratic procedure yields a well-diversified excess return portfolio. A similar 

result arises in the multiple factor case. 

The choice of basis portfolio formation procedure should be a second order consideration 

since well-diversified portfolios possess no idiosyncratic risk in the limit and so any K 

imperfectly correlated well-diversified portfolios should suffice. In this section, we have argued 

that the construction of reliable basis portfolios in practice requires a large enough asset menu so 

as to virtually eliminate idiosyncratic risk and an asset menu with sufficiently different factor 

sensitivities so as to allow statistical discrimination among the factors. Further, we have shown 

that asymptotically efficient basis portfolio formation procedures that make use of sample 

differences in factor sensitivities may have inferior small sample properties to those methods that 

simply emphasize diversification and orthogonality.  

3. Estimation Methods 

The choice among estimation methods involves different tradeoffs than the choice among 

basis portfolio formation procedures. The tradeoff here is between statistically efficient but 

computationally costly methods such as factor analysis, and less efficient but less costly methods 

such as instrumental variables or principal components. The question is whether comparatively 

inefficient methods provide performance comparable to that of computationally burdensome 

efficient estimation methods. 

When the factors are not observed, estimates of B and Ω may be obtained from the 

covariance structure of returns, Σ = BB′ + Ω. When returns are normally and independently 

distributed — that is, whenδ%t andε%t are jointly normal and serially independent — the higher 

moments of returns contain no information about these parameters.  In these circumstances, the 
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log likelihood function is given by: 

 

1

1

1

1( | ) ln 2 ln ( ) ( )
2 2 2

              ln 2 ln ( )
2 2 2

T

t t
t

NT TS R R R R

NT T T tr S

π

π

−

=

−

′Σ = − − Σ − − Σ −

= − − Σ − Σ

∑ % %L
 (21) 

since the sample covariance matrix 1
1
( )( )

=
′= − −∑ % %T

t tT t
S R R R R follows a Wishart distribution. 

Unfortunately, the estimation of B and Ω when security returns possess an approximate 

factor structure requires the imposition of further constraints on Ω. The two main alternatives 

are factor analysis and principal components: Ω is a diagonal matrix D in the former while 

2
εσΩ = NI in the latter. This observation highlights the intuitive distinction between factor 

analysis and principal components — factor analysis implicitly involves weighted least squares 

estimates of the factors and factor loadings (where the weights are the estimated idiosyncratic 

variances) while principal components provides the corresponding ordinary least squares 

estimates. Hence, factor analysis should tend to perform better than principal components when 

there is nontrivial cross-sectional variation in idiosyncratic variances.   

We used two relatively inexpensive techniques for estimating the statistical factor 

analysis model. The first is a modified version of the EM algorithm as applied to factor analysis 

in Lehmann and Modest (1988), which used an iterative multivariate regression procedure. The 

first two steps of the EM algorithm in this paper are unchanged but the third step is new: 

1. Given B and D, compute the minimum variance biased estimator of the factors 

via -1 -1 -1ˆ ( ) [ - ];BGLS
t tI B B B R Eδ ′ ′= + Ω Ω % 9 

                                                 
9 BGLS

t̂δ has lower mean squared error than (3) since it uses the information in the 

normalization ( ) .t KVar Iδ =%  
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2. Estimate B and D via multivariate regression of %tR on ˆBGLS
tδ and 

3. Compute the MLE of B given D from step 2 via B = D½Γ(D,S*)Λ-½ (D,S*) where 

Λ(D,S*) is a diagonal matrix comprised of the K largest eigenvalues of S* = D-½SD-½ 

and Γ(D,S*) are the associated eigenvectors.  Return to step 1 if the algorithm has not 

converged. 

This revised EM algorithm usually converges much more rapidly than the conventional EM 

algorithm.10 We refer to this below as unrestricted maximum likelihood.   

The second technique, which we refer to as restricted maximum likelihood, makes use of 

the information on B implicit in the vector of sample mean security returns when the APT is true. 

In this case, expected security returns are linear combinations of the product of their factor 

loadings and a set of factor risk premiums. In order to exploit this information, we also 

performed maximum likelihood factor analysis subject to this constraint by maximizing: 

 1 1
0 0 0( , , , | ) ln 2 ln ( ) ( ) ( )

2 2 2 2
NT T T TB D S tr S R B R Bλ λ π ιλ λ ιλ λ− −′= − − Σ − Σ − − − Σ − −L (22) 

where λ is the vector of factor risk premiums and λ0 = 0 if a column of ones lies in the column 

span of B. We used the unrestricted estimates of B and D from maximum likelihood factor 

analysis as starting values and then obtained these restricted maximum likelihood estimates using 

a variant of the EM algorithm.  

Principal components has been advocated by Chamberlain and Rothschild (1983) and 

                                                 
10 We found it necessary to create this modification because the conventional EM algorithm 
spent a great deal of time slightly refining the factor loading estimates in the neighborhood of the 
maximum of the likelihood function. Jones (2001) uses a very similar iterative principal 
components procedure that differs in how the D estimate is updated. He shows that the resulting 
factor estimates are consistent as N→∞ when B is time invariant if the factors are serially 
correlated and the residuals are heteroskedastic and provides a method for dealing with missing-
at-random data along the lines of Connor, Korajczyk, and Uhlaner (2002).  See Lehmann (1992) 
for related results. 
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Connor and Korajczyk (1986,1988) as an inexpensive alternative to maximum likelihood factor 

analysis. This method requires the extraction of the K largest eigenvalues of S and their 

associated eigenvectors or, equivalently, the K largest singular values of the matrix of returns 

and their corresponding singular vectors. We extracted all of the eigenvalues and eigenvectors of 

S and scaled each eigenvector by the square root of the corresponding eigenvalue to set 

( ) .δ =%
t KVar I  We then estimated D by substituting the transformed eigenvectors associated with 

the K largest eigenvalues for B into the model Σ = BB′ + D.11 

Finally, instrumental variables is another inexpensive alternative to maximum likelihood 

factor analysis, a variant of which was employed in Chen (1983). The basic idea is quite simple: 

substitute consistent estimates of the factors for the factors themselves in (1) and estimate the 

factor loadings and idiosyncratic variances by ordinary least squares regression. Following 

Madansky (1964) and Hagglund (1982), we normalize the factors so that IK is the factor loading 

matrix of the first K securities, making are the corresponding factors correlated, and decompose 

the vector of returns into three components: 

 
1 1 1 1

2 2 2 2 2

3 3 3 3 3

δ ε

γ δ ε

δ ε

= − = +

′= − = +

′= − = Γ +

%% %%

%% %%

%% %%

t t t t

t t t t

t t t t

r R E

r R E

r R E

 (23) 

where    1 2 3, ,% % %t t tr r and r are the demeaned returns on the first K, the K+1st, and the last N–K–1 assets, 

respectively, and   2 3γ Γand are the corresponding factor loading vector and factor loading matrix 

of the K+1st and the last N–K–1 assets, respectively. Consider the regression of 2% tr on 1% tr : 

                                                 
11 Connor, Korajczyk, and Uhlaner (2002) avoid the comparatively expensive 
eigenvalue/eigenvector decomposition by using a two-pass cross-sectional regression method 
that is a close cousin of the EM algorithm.  They also consider methods for dealing with data that 
is missing-at-random. 
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 2 2 1 2 2 1 2 2 1γ γ ε γ ε′ ′ ′= + = + −% %% % % %t t t t t tr r u r  (24) 

Clearly application of ordinary least squares will lead to biased and inconsistent estimates of γ2 

since 1% tr is correlated with its own idiosyncratic disturbance term. If instead we first 

regress 1% tr on 3% tr : 

 1 3 3= Π +% % %t t tr r u  (25) 

and then replace 1% tr in equation (24) with the fitted values from this regression, ordinary least 

squares can then be used to estimate γ2 consistently. This estimate is consistent because the fitted 

values from (25) are purged of 1ε% t  and the idiosyncratic disturbances 3ε% t  are uncorrelated or 

sufficiently weakly correlated with 2ε% t by assumption. Repeated application of this procedure 

after swapping 2% tr  with each element of 3% tr  yields consistent estimates of the corresponding rows 

of Γ3. Finally, solution of the matrix equations: 

 
( ) 0

( ) 0
′ ′Γ − ΓΦΓ − Γ =

′− ΓΦΓ − =
S D

Diag S D
 (26) 

yields estimates of the factor covariance matrix Φ and the idiosyncratic variances D. The Φ 

estimate can be used to transform Γ into B by implicitly rescaling the factors to be uncorrelated 

with unit variances. 

4. Basis Portfolio Comparison 

It would be a simple matter to determine which combination of basis portfolio formation 

procedure and estimation method works best if the factors were observed. Of course, we would 

not need to construct basis portfolios if we observed the common factors. One heuristic approach 

to comparing basis portfolios is to examine the behavior of their weights and the sample means 

and variances of their returns in order to check whether the results appear to be reasonable. For 
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example, basis portfolios ought to be well-diversified in order to diminish idiosyncratic risk. The 

quadratic programming portfolios are well-diversified by construction but the same need not be 

true of Fama-MacBeth or minimum idiosyncratic risk portfolios in finite samples. Similarly, the 

sample moments of basis portfolio returns can reveal peculiarities in their performance. For 

example, we have examined basis portfolios with mean returns and standard deviations as high 

as 120 percent and 450 percent per month, respectively. Good basis portfolios probably do not 

exhibit such behavior. Unfortunately, searching for reasonable reference portfolios in this 

fashion is not likely to eliminate many candidates.  

Fortunately, some plausible large sample approximations facilitate the comparison of 

well-diversified basis portfolios. The sample mean vector and covariance matrix of % ptR are given 

by: 

 

0
1 1 1

1

1 1 1

1 1 1;  ;  ( );  

1 ( )( )

1 1 1( )( ) ;  ( ) ;  

δ δε δε ε

δ δε ε

ιλ λ ε δ δ λ λ δ ε ε

δ δ δ δ δ δ ε ε ε
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t t t
T

p pt p pt p p p p p
t

T T T

t t t pt pt pt
t t t

R R B
T T T

S R R R R B S B B S S B S
T

S S S
T T T

 (27) 

where λ0 is zero if a vector of ones (approximately) lies in the column span of B and is the 

riskless rate otherwise. ,δεp
S the matrix comprised of the sample covariances between the actual 

factor realizations and the idiosyncratic returns of the basis portfolios, should be close to its 

probability limit of zero in large samples (i.e., ).δ ε
′≈ +

pp p pS B S B S  Similarly, the sample mean 

vectorε p will be close to zero as well if the basis portfolios are large, well-diversified, and 

constructed so that their weights are not systematically related to theε%pt realizations (i.e., 

0 ).ιλ λ≈ +p pR B We do not assume that ε p
S is close to zero since ε p will converge to zero faster 
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than ε p
S for well-diversified portfolios of large numbers of securities. 

Now consider the usual χ2 statistic for testing the hypothesis that the K mean excess 

returns of the basis portfolios over λ0 are all zero: 

 
1 1 1 1 1 1 1 1 1

0 0

1 1 1 1 1 1 1

( ) ( ) ;  ( )

[( ) ] ;  [( ) ]
p p p p

p p

p p p p p p p p p p p

p p p p p p p

T R S R T B S B S S S B S B S B B S

T B S B S B S B B S B S
ε ε δ ε ε

ε δ ε δ

ιλ ιλ λ λ

λ λ

− − − − − − − − −

− − − − − − −

′′ ′ ′ ′− − ≈ = − +

′ ′ ′ ′≈ + = +
 (28) 

The structure of Sp simplifies matters considerably and the χ2 statistic is (approximately) 

bounded by the maximum attainable value of 1 .T Sδλ λ−′  When 1
pp pB S Bε

−′ is large (i.e., when 

1
min ( )

pp pB S Bεξ −′ is large), 1 1 1[( ) ]
pp pB S B Sε δ

− − −′ + is small and the χ2 statistic will be large as well. 

Ceteris paribus, reductions in the idiosyncratic variances and increases in the factor loadings of 

the basis portfolios will increase the percentage of basis portfolio return variance explained by δ%t  

and, thus, the χ2 statistic. Hence, the usual χ2 statistic for testing the joint significance of mean 

excess basis portfolio returns can rank different combinations of portfolio formation procedures 

and factor loading estimation methods. 

For example, in the one factor case discussed earlier, the χ2 statistics for the Fama-

MacBeth and minimum idiosyncratic risk portfolios with no measurement error in β are 

(approximately): 
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2

2 22 2 2
2

2 2 2

2 2 2
2

2 2
2 2 2

2

( )
εδ ε

δ
β

ε ε
δ δ

β β λ λχ
σ ββ β σ β βσ σ
β σ β

β λ λχ
σ σβ σ σ

β

′
≈ =

′ ′+ +
+

≈ =
+ +

FM

MIRP

T T

N

T T

N N

 (29) 

That is, the Fama-MacBeth portfolio performs better as long as 2 0.βσ >  However, the inequality 
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can be reversed when there is measurement error in b since: 
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 (30) 

This statistic will be smaller than 2χMIRP  if 2 2 2 2 2
2

1 [1 ( )] ,β β
δ

σ β λ σ β
σ

 
< + + + 

 

N
T T

 which will 

generically occur for N sufficiently large. Sampling error can indeed cause minimum 

idiosyncratic risk portfolios to outperform their Fama-MacBeth counterparts.  

This reasoning points to a problem with testing the APT after using the χ2 statistic to 

assess basis portfolio performance. Consider the fitted multivariate regression 

of 0ιλ−%tR on 0ιλ−%
ptR and a constant: 

 0 0
ˆ ˆˆ ( )t pt tR B Rιλ α ιλ ε− = + − +% %  (31) 

whereα̂ is the vector of estimated intercepts, B̂is the estimated factor loading matrix, and ε̂ t is the 

fitted residual vector. The population value of α will be zero if the APT is true and the basis 

portfolios measure the common factors with negligible error. The usual χ2 for testing this 

hypothesis is: 
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 (32) 

where ˆ
εΣ is the sample residual covariance matrix of ˆ .εt  The last equality follows directly from 

three observations: (1) -1ˆˆ ;S Rεα = Σ (2) 1ˆ ( ) ;p p pB S Sω ω ω −′= and (3) 1ˆ ( )p p p pS S S Sε ω ω ω ω−′ ′Σ = −  
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where ωp is the NxK matrix of portfolio weights of the true basis portfolios. This representation 

makes economic sense:  the difference in squared Sharpe ratios measures the performance 

improvement in mean-variance space arising from the addition of the individual securities to the 

basis portfolios, which will be zero, apart from sampling error, if α = 0.12  

Thus the χ2 statistic for testing the null hypothesis α = 0 is the difference between the χ2 

statistics for testing the joint significance of two sets of mean excess returns, those of individual 

securities and those of the basis portfolios. Choosing the basis portfolios with the largest χ2 

statistic minimizes the test statistic for α = 0 and thus reduces its power, although the magnitude 

of the bias when the APT is false cannot be analyzed without further assumptions. Fortunately, 

this problem can be mitigated to a considerable extent by using known empirical anomalies such 

as those associated with market to book, firm size and dividend yield to increase the power of 

tests of the APT since basis portfolios tend to be well-diversified while the anomalies are not. 

That is, characteristics such as small market to book or firm size, zero dividend yield, or high 

dividend yield are clearly not distributed uniformly over securities. 

 Finally, it is worth emphasizing a major limitation of the analysis.  It is not possible to 

test analytically whether the differences in χ2 statistics are significant at conventional levels 

because they are dependent across portfolio formation and estimation procedures.13 Hence, the 

results that follow should be thought of as suggestive ones to be weighed along with other 

evidence such as the sensitivity of absolute and relative mutual fund performance measures to 

alternative basis portfolio construction methods as documented in Lehmann and Modest (1987). 

5. Empirical Results 

Evaluation of basis portfolio performance requires consideration of the frequency of 

                                                 
12 This was first noted in Jobson and Korkie (1982). 
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observation, the sample period, the asset menu, and the number of postulated factors. The main 

virtue of daily data is the increased precision of second moment estimates while the biases in 

mean returns associated with bid-ask spreads and the biases in second moments arising from 

non-trading and thin trading constitute their principal defects.  As in most investigations of the 

APT, we opted for the putative virtues of a large sample and used daily data to estimate the 

factor loadings and idiosyncratic variances.  

We estimated factor models for four subperiods covered by the CRSP daily returns file: 

1963 through 1967, 1968 through 1972, 1973 through 1977, and 1978 through 1982. In each 

period, we confined our attention to continuously listed firms in order to have the same number 

of observations for each security and ignored any potential selection bias associated with this 

choice. This yielded samples of 1001, 1350, 1350, and 1346 securities and 1259, 1234, 1263, and 

1264 daily observations in these four subperiods, respectively. To guard against any biases 

induced by the natural progression of letters (General Dynamics, General Electric, etc.), we 

randomly reordered the securities in each subperiod. 

We also made choices as to the number of securities and the number of factors included 

in the analysis. In order to study the impact of the size of the asset menu on reference portfolio 

performance, we estimated factor models for the first 30, 250, and 750 securities in our randomly 

sampled data files for each period after seeing little improvement in experiments with larger 

cross-sections. We chose to remain agnostic about the true number of factors and examined 

models containing five, ten, and fifteen factors, although for obvious reasons we did not estimate 

a fifteen factor model with only thirty securities. We also normalized the models so that the 

factors were uncorrelated with unit variances and that B'D-1B was diagonal. This is the standard 

                                                                                                                                                             
13 The bootstrap could be employed here under suitable regularity conditions. 
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normalization in the literature, although it is worth noting that Fama-MacBeth portfolios are not 

invariant with respect to normalization. 

We first provide evidence on the diversification properties of alternative combinations of 

Fama-MacBeth and minimum idiosyncratic risk portfolios and estimation methods, omitting the 

quadratic programming portfolios since they are well-diversified by construction. There are 

several ways to quantify the diversification properties of reference portfolio weights. We confine 

our attention to one simple summary measure: the sum of squared portfolio weights, which 

converges to zero as the number of assets grows without bound when a portfolio is well-

diversified. The minimum sum that can be attained with portfolio weights that sum to one is the 

inverse of the number of securities: 0.03333 for thirty securities, 0.004 for 250 securities, 

and 0.001333 for 750 securities. 

Table 1 summarizes the diversification properties of Fama-MacBeth and minimum 

idiosyncratic risk portfolios across estimation methods, numbers of assets, and factors. For each 

combination, we report two numbers: the average sum of squared portfolio weights across both 

factors and sample periods and the sample standard deviation of the sum of squared portfolio 

weights. These quantities are given by: 

 2 2

1 1 1 1 1 1 1

1 1 1 1;  ( ) ( )
T K T K N T K

k k kt kt ikt k k kt kt k k
t k t k i t k

w w w w w Var w w w w w w
T K TK TK= = = = = = =

′ ′ ′ ′ ′= = = −∑ ∑ ∑∑∑ ∑∑  (33) 

where k indexes factors, t refers to time periods (where T=4), and i indexes firms. Obviously, 

these measures are descriptive and are not appropriate for inference without further assumptions. 

The overwhelming message of Table I is that Fama-MacBeth portfolios formed under the 

usual factor model normalization are extremely poorly diversified. In contrast, minimum 

idiosyncratic risk portfolios proved to be quite well-diversified with mean sums of squared 

weights only ten to twenty times the minimum attainable ones. The contrast is striking — Fama-
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MacBeth portfolios yielded values of ′k kw w between 40 and 50,000 times those of minimum 

idiosyncratic risk portfolios. Examination of the results for individual basis portfolios (not 

reported here) reveals that similar differences occur in the disaggregated data as well. In fact, 

every minimum idiosyncratic risk portfolio was better diversified than its Fama-MacBeth 

counterpart. The evidence is less clear on the comparative performance of different estimation 

methods. Minimum idiosyncratic risk portfolios formed from principal components estimates 

appear to be slightly better diversified than those computed from the other three estimation 

methods but the difference is slight and is reversed often when individual basis portfolios are 

compared. 

What accounts for the sharp contrast in the diversification behavior of these two portfolio 

formation methods? As noted earlier, the answer is scaling: Fama-MacBeth portfolios are the 

minimum idiosyncratic risk portfolios with a loading of one on one factor and loadings of zero 

on the other factors prior to rescaling to cost a dollar. Factor loading estimates as usually 

normalized are typically much smaller than one (on the order of 0.001 to 0.0001 in daily data) 

and, hence, some weights must be very large and positive to insure a portfolio loading of one on 

the factor being mimicked while others must be large and negative in order to have loadings of 

zero on the other factors. This problem does not arise in the CAPM context since the natural beta 

on a market proxy is one. By contrast, minimum idiosyncratic risk portfolios need not have any 

particular loading on the factor being mimicked and they need only have small positive and 

negative weights to insure orthogonality to the other factors. 

The remainder of this section is devoted to the evaluation of alternative methods using 

the χ2 statistic (28). Tables 2 through 4 contain aggregate χ2 statistics summed over the four 

subperiods, a valid procedure since sums of independent χ2 statistics are distributed χ2 as well 
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and the subperiod statistics are independent by assumption. Few nontrivial differences in 

performance are obscured by aggregation and we summarize any relevant ones in the text. Table 

2 provides the fitted χ2 statistics based on daily data and five, ten, and fifteen factor models for 

various combinations of portfolio formation procedures, estimation methods, and number of 

securities in the asset universe. Table 3 presents the same statistics based on daily returns from 

the subsequent five-year period to guard against any overfitting caused by using the same sample 

to estimate the factor models and to compute the χ2 statistics.14 These statistics are based on a 

smaller number of securities since not all securities were continuously listed during both five 

year periods. Table 4 contains the same statistics computed from weekly returns in order to 

mitigate any bid-ask spread bias that might inflate mean basis portfolio returns.  

Each table contains a plenitude of information. Panels A, B, and C report on 5, 10, and 15 

factor models, respectively. The four columns listed at the top of each table correspond to the 

four portfolio formation methods under consideration: minimum idiosyncratic risk, Fama-

MacBeth, positive weight quadratic programming, and well-diversified quadratic programming. 

Eight combinations of estimation methods and numbers of securities comprise the rows of each 

table: maximum likelihood and restricted maximum likelihood factor analysis with 30, 250, and 

750 securities and principal components and instrumental variables with 750 securities. The χ2 

statistic for the null hypothesis that the raw and excess mean returns of the K basis portfolios are 

all zero along with the associated marginal significance level (in parentheses underneath it) is 

reported for each portfolio formation method, estimation method, and number of securities. The 

excess returns are the difference between raw reference portfolio returns and minimum 

idiosyncratic risk orthogonal portfolio returns. Note that the χ2 statistics for the excess returns of 

                                                 
14 Hence, there are no results for the first five year period. 
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the minimum idiosyncratic risk and Fama-MacBeth portfolios are identical as noted earlier.15 

The results strongly suggest the importance of using large cross-sections to construct 

basis portfolios. The 750 security basis portfolios always outperformed their 250 security 

counterparts which, in turn, always dominated 30 security portfolios. The typical χ2 statistics for 

250 and 750 securities were roughly twice and three times as large, respectively, as those for 30 

securities. These rankings hold across estimation and portfolio formation procedures, time 

periods, and observation intervals for both raw return and excess return portfolios (not all of 

which are reported here). These differences increase with the number of factors in sample in the 

daily data, although this finding does not persist in the weekly data or out of sample. Note that 

this need not have occurred — we have found randomly selected 250 security portfolios with 

larger χ2 statistics than those of 750 securities. 

For example, the χ2 statistics for the minimum idiosyncratic risk basis portfolio mean 

excess returns based on unrestricted maximum likelihood factor analysis were 35.20, 81.14, and 

116.88 using 30, 250, and 750 securities, respectively. The mean returns of the 30 security raw 

return basis portfolios were insignificant at the ten per cent level for two out of four subperiods 

in daily data while the corresponding mean excess returns were insignificant in three out of four 

periods. In contrast, the 250 and 750 security raw return portfolios were highly significant at 

conventional levels in all subperiods while the excess return portfolios were highly significant in 

daily data for all but the five factor model in the third period. 

The four estimation methods exhibited similarly striking contrasts. Restricted maximum 

                                                 
15 Recall that the Fama-MacBeth and minimum idiosyncratic risk excess return portfolio weights 
are proportional where the factor of proportionality is the inverse of the average factor loading in 
the one factor model. Fama-MacBeth portfolio weights tend to be much larger since the average 
loading is typically much smaller than one. However, the proportionality factor cancels out in the 
construction of the χ2 statistic. 
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likelihood factor analysis systematically outperformed its unconstrained counterpart in daily and 

weekly data but this dominance did not persist out of sample, where they achieved almost 

identical performance. Both maximum likelihood procedures consistently outperformed the less 

efficient instrumental variables and principal components methods. Consider, for example, ten 

factor minimum idiosyncratic risk excess return portfolio results in daily data in sample: the χ2 

statistics based on restricted and unrestricted maximum likelihood factor analysis, principal 

components, and instrumental variables were 143.92, 116.88, 97.88, and 82.94, respectively. 

Perusal of the tables indicates that the differences in χ2 statistics across estimation methods were 

typically much larger for ten and fifteen factor models than for five factor models. The 

superiority of the relatively efficient maximum likelihood procedures also persisted out of 

sample and in weekly data. The four estimation methods generated χ2 statistics of 53.82, 53.50, 

37.13 and 39.07 out of sample and 90.33, 73.83, 53.08, and 62.48 in weekly data, respectively. 

An examination of the subperiod results mostly supports this conclusion, albeit with 

some interesting intertemporal variation in performance. Principal components performed well 

in-sample only in the first five year period while achieving performance comparable to the 250 

security basis portfolios in the subsequent three periods. Instrumental variables provided more 

consistent performance than principal components in-sample but was consistently inferior to the 

more efficient estimation procedures. The out-of-sample results were broadly consistent with 

these findings with some idiosyncrasies in the individual subperiods. In five factor models, the 

efficient methods proved superior in the second subperiod while all methods yielded similar 

performance in the first and third subperiods. In ten factor models, all methods provided similar 

performance in the first and second subperiods except for the superior performance of 

instrumental variables in the first and its inferior performance in the second. The efficient 
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methods outperformed the inefficient methods by a wide margin in the final out-of-sample 

period. Similar inconsistencies emerged in the fifteen factor runs. The methods provided similar 

performance in the first out-of-sample period except for the inferior results provided by principal 

components. In the second subperiod, only instrumental variables provided inferior results to the 

similar performance of the other three methods. Again, the efficient methods outperformed the 

inefficient methods in the final subperiod. 

The final comparisons are among the four portfolio formation methods. Minimum 

idiosyncratic risk portfolios provided almost identical performance to well-diversified quadratic 

programming portfolios using 750 securities and provided consistently superior performance 

with 250 securities. Other observations depend on the estimation method and choice of raw or 

excess returns.16 For the efficient estimation methods and raw returns, minimum idiosyncratic 

risk portfolios consistently dominated Fama-MacBeth portfolios in-sample in both daily and 

weekly data which, in turn, typically outperformed the positive weight quadratic programming 

portfolios. For instance, the daily in-sample χ2 statistics for five factor minimum idiosyncratic 

risk and Fama-MacBeth raw return portfolios based on maximum likelihood factor analysis were 

131.96 and 92.28, respectively. The corresponding numbers for ten factors were 201.21 and 

144.94, respectively, and for fifteen factors were 227.77 and 168.24, respectively. However, 

Fama-MacBeth portfolios slightly outperformed minimum idiosyncratic risk portfolios out-of-

sample while both continued to dominate the positive weight quadratic programming portfolios. 

The picture regarding the relative merits of the minimum idiosyncratic risk, Fama-MacBeth, and 

quadratic programming excess return basis portfolios was virtually identical for the efficient 

                                                 
16 As noted above, the minimum idiosyncratic risk and Fama-MacBeth portfolio formation 
procedures yield identical χ2 statistics for excess return basis portfolios. However, the χ2 statistics 
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estimation methods. The only difference is that the positive weight quadratic programming 

portfolios provided superior performance for five factor models in-sample, an improvement 

which did not persist out-of-sample. 

The final question considered here is whether less efficient estimation methods or smaller 

cross-sections coupled with quadratic programming provides a good substitute for more 

computationally costly alternatives. With two exceptions, no such combination outperformed 

minimum idiosyncratic risk portfolios of 750 securities based on efficient estimates. Both 

exceptions involve five factor excess return portfolios in-sample in daily data. First, positive 

weight quadratic programming portfolios based on instrumental variables estimates yielded a χ2 

statistic of 77.64 compared to 64.40 obtained from minimum idiosyncratic risk portfolios based 

on unrestricted maximum likelihood estimates. Second, 250 security quadratic programming 

portfolios based on efficient estimates outperformed 750 security minimum idiosyncratic risk 

basis portfolios in-sample. Neither result obtained out-of-sample. 

6. Conclusion 

This paper has provided a comprehensive examination of the merits of different basis 

portfolio formation strategies. The analysis involved the main factor model estimation and 

portfolio formation methods proposed in the literature as well as some that have not been 

considered previously. In addition, this study provided a detailed evaluation of the impact of 

increases in the number of securities underlying the analysis. The result is a detailed set of data 

measuring the performance of excess and raw return basis portfolios both in and out of sample 

over a variety of time periods and observation frequencies. 

Three conclusions emerge from the examination of the more than 2300 statistics reported 

                                                                                                                                                             
of the raw return basis portfolios are relevant if excess returns are computed with respect to a 
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on in this document. First, increasing the number of securities included in the analysis 

dramatically improves basis portfolio performance with 750 security factor models proving 

markedly superior to those involving 30 or 250 securities. Second, comparatively efficient 

estimation procedures such as unrestricted and restricted maximum likelihood factor analysis 

significantly outperform the less efficient instrumental variables and principal components 

procedures. In particular, less efficient estimation methods typically performed as well as 

maximum likelihood factor analysis with 250 securities. Third, the minimum idiosyncratic risk 

portfolio formation procedure proposed in the second section outperformed both the Fama-

MacBeth and positive weight quadratic programming portfolios and proved equal to or better 

than the more expensive well-diversified quadratic programming procedure. The Fama-MacBeth 

procedure, the dominant method in the literature, yielded poorly diversified portfolios that 

provided inferior performance in this context, albeit performance that can be improved upon with 

more appropriate factor model normalizations. In sum, if an investigator had to choose one basis 

portfolio formation strategy from the formidable list considered here, the clear winner is 

minimum idiosyncratic risk portfolios coupled with maximum likelihood factor analysis of 750 

securities. 

                                                                                                                                                             
given riskless rate such as the Treasury bill rate. 



 31

TABLE 1: Average Sum of Squared Portfolio Weights 
 [Standard deviation of sums in parentheses] 

 Five Factors Ten Factors Fifteen Factors 
 

Number of 
Securities 

 
 

Estimation Method 

Minimum 
Idiosyncratic 

Risk 

 
Fama-

MacBeth 

Minimum 
Idiosyncratic 

Risk 

 
Fama-

MacBeth 

Minimum 
Idiosyncratic 

Risk 

 
Fama-

MacBeth 
 

Maximum 
Likelihood 

0.397 
(0.494) 

75.011 
(459.206) 

1.276 
(6.063) 

98.150 
(846.203) 

 
N/A 

 
N/A 

 
30 

Restricted Maximum 
Likelihood 

0.399 
(0.496) 

2178.232 
(16057.81) 

1.257 
(5.941) 

273.641 
(2781.711) 

 
N/A 

 
N/A 

Maximum 
Likelihood 

0.048 
(0.049) 

4.491 
(28.928) 

0.063 
(0.045) 

51.643 
(551.863) 

0.071 
(0.041) 

502.614 
(4253.059) 

 
250 

Restricted Maximum 
Likelihood 

0.048 
(0.049) 

5.209 
(34.645) 

0.063 
(0.045) 

195.268 
(2277.061) 

0.071 
(0.041) 

81.613 
(492.380) 

Maximum 
Likelihood 

0.016 
(0.016) 

0.659 
(4.297) 

0.022 
(0.015) 

72.689 
(798.788) 

0.025 
(0.014) 

255.234 
(3267.704) 

Restricted Maximum 
Likelihood 

0.016 
(0.016) 

0.659 
(4.310) 

0.022 
(0.015) 

22.570 
(189.855) 

0.025 
(0.014) 

46.992 
(469.129) 

Principal 
Components 

0.013 
(0.019) 

1.391 
(5.784) 

0.017 
(0.035) 

26.992 
(251.929) 

0.019 
(0.043) 

244.917 
(2912.448) 

 
 
 

750 

Instrumental 
Variables 

0.015 
(0.018) 

77.021 
(605.504) 

0.019 
(0.013) 

1087.395 
(9194.892) 

0.022 
(0.012) 

93.953 
(1310.661) 
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 TABLE 2: Basis Portfolio Comparisons:  Aggregate Daily In-Sample �2 Statistics 
[p-values in parentheses] 

Portfolio Formation Procedure 
Quadratic Programming 

 
Minimum 

Idiosyncratic Risk
 

Fama-MacBeth Positive Weights Well-Diversified 
Number of 
Securities 

 
Estimation Method 

Raw 
Returns 

Excess 
Returns

Raw 
Returns 

Excess 
Returns 

Raw 
Returns

Excess 
Returns 

Raw 
Returns 

Excess 
Returns

Panel A:  Five Factors 
Maximum 
Likelihood 

47.37 
(0.001) 

26.30 
(0.160) 

41.96 
(0.003) 

26.30 
(0.160) 

42.83 
(0.002) 

33.11 
(0.033) 

 
N/A 

 
N/A 

 
30 

Restricted Maximum 
Likelihood 

50.22 
(0.000) 

29.68 
(0.075) 

44.44 
(0.001) 

29.68 
(0.075) 

42.06 
(0.003) 

32.81 
(0.035) 

 
N/A 

 
N/A 

Maximum 
Likelihood 

102.10 
(0.000)  

61.53 
(0.000)   

83.76 
(0.000)   

61.53 
(0.000)  

81.38 
(0.000)   

75.61 
(0.000)   

86.40 
(0.000)   

50.89 
(0.000) 

 
250 

Restricted Maximum 
Likelihood 

108.26 
(0.000)  

70.09 
(0.000)   

91.08 
(0.000)   

70.09 
(0.000)  

83.32 
(0.000)   

80.03 
(0.000)   

91.18 
(0.000)   

58.29 
(0.000)   

Maximum 
Likelihood 

131.96 
(0.000)  

64.49 
(0.000)   

92.28 
(0.000)   

64.49 
(0.000)  

106.85 
(0.000)   

76.32 
(0.000)   

131.93 
(0.000)   

64.32 
(0.000)   

Restricted Maximum 
Likelihood 

138.26 
(0.000)  

73.89 
(0.000)   

99.66 
(0.000)   

73.89 
(0.000)  

118.77 
(0.000)   

78.42 
(0.000)   

138.13 
(0.000)   

73.77 
(0.000)   

Principal 
Components 

109.00 
(0.000)  

57.34 
(0.000)   

84.18 
(0.000)   

57.34 
(0.000)  

92.93 
(0.000)   

37.57 
(0.000)   

108.17 
(0.000)   

57.08 
(0.000)   

 
 
 
 

750 

Instrumental 
Variables 

122.81 
(0.000)  

54.53 
(0.000)   

70.49 
(0.000)   

54.53 
(0.000)  

126.04 
(0.000)   

77.64 
(0.000)   

125.66 
(0.000)   

55.39 
(0.000)   

Panel B:  Ten Factors  
Maximum 
Likelihood 

54.59 
(0.062)  

35.20 
(0.690)   

50.17 
(0.130)   

35.20 
(0.690)  

53.63 
(0.073)   

46.85 
(0.210)   

 
N/A 

 
N/A 

 
30 

Restricted Maximum 
Likelihood 

57.77 
(0.034)  

37.70 
(0.570)   

52.41 
(0.090)   

37.70 
(0.570)  

25.79 
(0.690)   

19.66 
(0.930)   

 
N/A 

 
N/A 

Maximum 
Likelihood 

129.94 
(0.000)  

81.14 
(0.000)   

102.78 
(0.000)   

81.14 
(0.000)  

103.64 
(0.000)   

87.96 
(0.000)   

105.96 
(0.000)   

63.49 
(0.010)   

 
250 

Restricted Maximum 
Likelihood 

154.72 
(0.000)  

105.57 
(0.000)   

124.81 
(0.000)   

105.57 
(0.000)  

113.10 
(0.000)   

95.79 
(0.000)   

124.08 
(0.000)   

81.28 
(0.000)   

Maximum 
Likelihood 

201.21 
(0.000)  

116.88 
(0.000)   

144.94 
(0.000)   

116.88 
(0.000)  

133.84 
(0.000)   

101.76 
(0.000)   

201.68 
(0.000)   

115.83 
(0.000)   

Restricted Maximum 
Likelihood 

225.06 
(0.000)  

143.92 
(0.000)   

171.22 
(0.000)   

143.92 
(0.000)  

140.36 
(0.000)   

112.74 
(0.000)   

225.40 
(0.000)   

142.58 
(0.000)   

Principal 
Components 

143.62 
(0.000)  

97.88 
(0.000)   

124.14 
(0.000)   

97.88 
(0.000)  

123.07 
(0.000)   

74.52 
(0.000)   

143.64 
(0.000)   

97.73 
(0.000)   

 
 
 
 

750 

Instrumental 
Variables 

160.28 
(0.000)  

82.94 
(0.000)   

102.36 
(0.000)   

82.94 
(0.000)  

139.14 
(0.000)   

97.84 
(0.000)   

162.13 
(0.000)   

85.61 
(0.000)   

Panel C:  Fifteen Factors   
Maximum 
Likelihood 

136.61 
(0.000)  

90.57 
(0.007)   

114.23 
(0.000)   

90.57 
(0.007)  

95.41 
(0.003)   

78.08 
(0.058)   

115.33 
(0.000)   

73.55 
(0.110)   

 
250 

Restricted Maximum 
Likelihood 

162.99 
(0.000)  

116.21 
(0.000)   

138.54 
(0.000)   

116.21 
(0.000)  

97.66 
(0.002)   

78.55 
(0.054)   

134.88 
(0.000)   

93.32 
(0.004)   

Maximum 
Likelihood 

227.77 
(0.000)  

137.59 
(0.000)   

168.24 
(0.000)   

137.59 
(0.000)  

142.48 
(0.000)   

112.92 
(0.000)   

228.59 
(0.000)   

136.25 
(0.000)   

Restricted Maximum 
Likelihood 

261.81 
(0.000)  

174.62 
(0.000)   

204.05 
(0.000)   

174.62 
(0.000)  

144.82 
(0.000)   

116.15 
(0.000)   

261.14 
(0.000)   

172.99 
(0.000)   

Principal 
Components 

169.59 
(0.000)  

112.50 
(0.000)   

139.73 
(0.000)   

112.50 
(0.000)  

139.94 
(0.000)   

92.04 
(0.000)   

168.96 
(0.000)   

112.36 
(0.000)   

 
 
 
 

750 

Instrumental 
Variables 

168.29 
(0.000)  

106.75 
(0.000)   

135.14 
(0.000)   

106.75 
(0.000)  

149.52 
(0.000)   

109.47 
(0.000)   

174.90 
(0.000)   

109.25 
(0.000)   
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TABLE 3: Basis Portfolio Comparisons:  Aggregate Daily Out-of-Sample χ2 Statistics 
[p-values in parentheses] 

Portfolio Formation Procedure 
Quadratic Programming 

 
Minimum 

Idiosyncratic Risk 
 

Fama-MacBeth Positive Weights Well-Diversified 
Number of 
Securities 

 
Estimation Method 

Raw 
Returns 

Excess 
Returns 

Raw 
Returns 

Excess 
Returns 

Raw 
Returns 

Excess 
Returns 

Raw 
Returns 

Excess 
Returns 

Panel A:  Five Factors  
Maximum 
Likelihood 

40.98 
(0.000)  

17.95 
(0.270)   

44.24 
(0.000)   

17.95 
(0.270)  

32.86 
(0.005)   

19.04 
(0.210)   

37.60 
(0.001)   

14.11 
(0.520)   

 
250 

Restricted Maximum 
Likelihood 

41.52 
(0.000)  

18.37 
(0.240)   

44.61 
(0.000)   

18.37 
(0.240)  

31.82 
(0.007)   

18.45 
(0.240)   

37.81 
(0.001)   

14.18 
(0.510)   

Maximum 
Likelihood 

60.29 
(0.000)  

33.03 
(0.005)   

63.32 
(0.000)   

33.03 
(0.005)  

35.66 
(0.002)   

27.03 
(0.028)   

61.55 
(0.000)   

33.13 
(0.005)   

Restricted Maximum 
Likelihood 

60.79 
(0.000)  

33.27 
(0.004)   

63.61 
(0.000)   

33.27 
(0.004)  

35.83 
(0.002)   

27.14 
(0.028)   

62.02 
(0.000)   

33.36 
(0.004)   

Principal 
Components 

57.70 
(0.000)  

24.96 
(0.050)   

41.82 
(0.000)   

24.96 
(0.050)  

36.24 
(0.002)   

16.31 
(0.360)   

57.69 
(0.000)   

24.68 
(0.054)   

 
 
 
 

750 

Instrumental 
Variables 

49.62 
(0.000)  

20.90 
(0.140)   

50.26 
(0.000)   

20.90 
(0.140)  

34.93 
(0.003)   

15.86 
(0.390)   

49.77 
(0.000)   

20.76 
(0.140)   

Panel B:  Ten Factors 
Maximum 
Likelihood 

56.83 
(0.002)  

31.11 
(0.410)   

58.57 
(0.001)   

31.11 
(0.410)  

34.61 
(0.260)   

33.23 
(0.310)   

46.04 
(0.031)   

21.24 
(0.880)   

 
250 

Restricted Maximum 
Likelihood 

58.27 
(0.002)  

31.83 
(0.380)   

59.07 
(0.001)   

31.83 
(0.380)  

34.23 
(0.270)   

29.15 
(0.510)   

46.08 
(0.031)   

23.07 
(0.810)   

Maximum 
Likelihood 

80.67 
(0.000)  

53.50 
(0.005)   

85.09 
(0.000)   

53.50 
(0.005)  

45.83 
(0.032)   

38.83 
(0.130)   

81.49 
(0.000)   

53.82 
(0.005)   

Restricted Maximum 
Likelihood 

80.90 
(0.000)  

53.82 
(0.005)   

85.41 
(0.000)   

53.82 
(0.005)  

44.73 
(0.041)   

37.90 
(0.150)   

81.69 
(0.000)   

54.14 
(0.004)   

Principal 
Components 

70.36 
(0.000)  

37.13 
(0.170)   

60.88 
(0.001)   

37.13 
(0.170)  

43.33 
(0.055)   

28.18 
(0.560)   

71.22 
(0.000)   

37.29 
(0.170)   

 
 
 
 

750 

Instrumental 
Variables 

65.83 
(0.000)  

39.07 
(0.120)   

69.75 
(0.000)   

39.07 
(0.120)  

45.44 
(0.035)   

37.13 
(0.170)   

72.15 
(0.000)   

40.07 
(0.100)   

Panel C:  Fifteen Factors  
Maximum 
Likelihood 

65.45 
(0.025)  

40.44 
(0.670)   

66.93 
(0.019)   

40.44 
(0.670)  

42.61 
(0.570)   

38.51 
(0.740)   

57.51 
(0.100)   

31.25 
(0.940)   

 
250 

Restricted Maximum 
Likelihood 

64.59 
(0.029)  

40.58 
(0.660)   

67.18 
(0.018)   

40.58 
(0.660)  

40.95 
(0.640)   

39.15 
(0.720)   

56.84 
(0.110)   

30.87 
(0.950)   

Maximum 
Likelihood 

101.63 
(0.000)  

66.13 
(0.022)   

99.86 
(0.000)   

66.13 
(0.022)  

57.96 
(0.093)   

53.17 
(0.190)   

99.26 
(0.000)   

64.77 
(0.028)   

Restricted Maximum 
Likelihood 

101.42 
(0.000)  

66.62 
(0.020)   

100.36 
(0.000)   

66.62 
(0.020)  

57.82 
(0.095)   

54.54 
(0.160)   

101.22 
(0.000)   

65.29 
(0.026)   

Principal 
Components 

79.33 
(0.001)  

46.25 
(0.420)   

73.68 
(0.005)   

46.25 
(0.420)  

47.08 
(0.390)   

34.31 
(0.880)   

80.49 
(0.001)   

46.44 
(0.410)   

 
 
 
 

750 

Instrumental 
Variables 

91.62 
(0.000)  

53.26 
(0.190)   

88.85 
(0.000)   

53.26 
(0.190)  

40.06 
(0.680)   

26.46 
(0.990)   

90.45 
(0.000)   

53.11 
(0.190)   
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TABLE 4: Basis Portfolio Comparisons:  Aggregate Weekly In-Sample �2 Statistics 
[p-values in parentheses] 

Portfolio Formation Procedure 
Quadratic Programming 

 
Minimum 

Idiosyncratic Risk 
 

Fama-MacBeth Positive Weights Well-Diversified 
Number of 
Securities 

 
Estimation Method 

Raw 
Returns 

Excess 
Returns

Raw 
Returns 

Excess 
Returns 

Raw 
Returns 

Excess 
Returns 

Raw 
Returns 

Excess 
Returns

Panel A:  Five Factors  
Maximum 
Likelihood 

34.95 
(0.020)   

26.51 
(0.150)  

31.47 
(0.049)  

26.51 
(0.150)   

31.55 
(0.049)   

26.61 
(0.015)   

 
N/A 

 
N/A 

 
30 

Restricted Maximum 
Likelihood 

37.24 
(0.011)   

29.62 
(0.076)  

33.89 
(0.027)  

29.62 
(0.076)   

30.77 
(0.058)   

26.35 
(0.150)   

 
N/A 

 
N/A 

Maximum 
Likelihood 

65.69 
(0.000)   

42.12 
(0.003)  

53.50 
(0.000)  

42.12 
(0.003)   

44.71 
(0.001)   

37.02 
(0.012)   

55.08 
(0.000)   

36.01 
(0.015)   

 
250 

Restricted Maximum 
Likelihood 

69.89 
(0.000)   

47.45 
(0.001)  

58.02 
(0.000)  

47.45 
(0.001)   

47.85 
(0.000)   

40.58 
(0.004)   

58.73 
(0.000)   

41.02 
(0.004)   

Maximum 
Likelihood 

77.69 
(0.000)   

42.20 
(0.003)  

55.48 
(0.000)  

42.20 
(0.0030)  

56.83 
(0.000)   

55.80 
(0.000)   

78.09 
(0.000)   

42.31 
(0.003)   

Restricted Maximum 
Likelihood 

82.27 
(0.000)   

47.76 
(0.000)  

59.97 
(0.005)  

47.76 
(0.000)   

57.64 
(0.000)   

56.00 
(0.000)   

82.79 
(0.000)   

47.98 
(0.000)   

Principal 
Components 

49.69 
(0.000)   

28.09 
(0.110)  

40.95 
(0.000)  

28.09 
(0.110)   

37.43 
(0.100)   

20.03 
(0.460)   

49.56 
(0.000)   

28.00 
(0.110)   

 
 
 
 

750 

Instrumental 
Variables 

71.49 
(0.000)   

37.87 
(0.009)  

42.56 
(0.009)  

37.87 
(0.009)   

51.41 
(0.000)   

45.35 
(0.001)   

71.94 
(0.000)   

37.93 
(0.009)   

Panel B:  Ten Factors 
Maximum 
Likelihood 

43.59 
(0.32)  

34.94 
(0.700)  

39.72 
(0.480)  

34.94 
(0.700)   

43.65 
(0.320)   

40.91 
(0.430)   

 
N/A 

 
N/A 

 
30 

Restricted Maximum 
Likelihood 

45.81 
(0.240)   

37.32 
(0.590)  

41.69 
(0.400)  

37.32 
(0.590)   

23.41 
(0.800)   

19.84 
(0.920)   

 
N/A 

 
N/A 

Maximum 
Likelihood 

87.22 
(0.000)   

58.69 
(0.028)  

71.11 
(0.002)  

58.69 
(0.028)   

67.18 
(0.005)   

61.19 
(0.017)   

71.87 
(0.002)   

50.68 
(0.120)   

 
250 

Restricted Maximum 
Likelihood 

105.24 
(0.000)   

75.51 
(0.001)  

87.32 
(0.000)  

75.51 
(0.001)   

70.63 
(0.002)   

65.57 
(0.007)   

84.44 
(0.000)   

63.90 
(0.010)   

Maximum 
Likelihood 

121.29 
(0.000)   

73.83 
(0.001)  

88.69 
(0.000)  

73.83 
(0.001)   

84.07 
(0.000)   

73.72 
(0.001)   

122.63 
(0.000)   

74.01 
(0.001)   

Restricted Maximum 
Likelihood 

137.12 
(0.000)   

90.33 
(0.000)  

105.22 
(0.000)  

90.33 
(0.000)   

92.54 
(0.000)   

84.43 
(0.000)   

138.51 
(0.000)   

90.39 
(0.000)   

Principal 
Components 

76.37 
(0.000)   

53.08 
(0.081)  

66.00 
(0.006)  

53.08 
(0.081)   

61.55 
(0.016)   

49.45 
(0.150)   

76.40 
(0.000)   

52.98 
(0.082)   

 
 
 
 

750 

Instrumental 
Variables 

104.51 
(0.000)   

62.48 
(0.013)  

72.03 
(0.001)  

62.48 
(0.013)   

85.23 
(0.000)   

78.25 
(0.000)   

104.88 
(0.000)   

65.63 
(0.007)   

Panel C:  Fifteen Factors  
Maximum 
Likelihood 

94.95 
(0.003)   

68.77 
(0.200)  

82.18 
(0.000)  

68.77 
(0.200)   

64.04 
(0.340)   

54.28 
(0.680)   

82.97 
(0.026)   

59.71 
(0.490)   

 
250 

Restricted Maximum 
Likelihood 

114.98 
(0.000)   

87.19 
(0.012)  

100.20 
(0.001)  

87.19 
(0.012)   

62.89 
(0.370)   

52.51 
(0.740)   

101.14 
(0.001)   

77.10 
(0.068)   

Maximum 
Likelihood 

149.60 
(0.000)   

94.10 
(0.003)  

109.57 
(0.000)  

94.10 
(0.003)   

94.55 
(0.003)   

90.94 
(0.006)   

151.71 
(0.000)   

93.91 
(0.003)   

Restricted Maximum 
Likelihood 

174.71 
(0.000)   

119.72 
(0.000)  

134.83 
(0.000)  

119.72 
(0.000)   

100.82 
(0.001)   

98.09 
(0.001)   

175.89 
(0.000)   

119.34 
(0.000)   

Principal 
Components 

94.73 
(0.003)   

63.84 
(0.340)  

79.67 
(0.046)  

63.84 
(0.340)   

80.73 
(0.038)   

67.64 
(0.230)   

94.68 
(0.003)   

63.93 
(0.340)   

 
 
 
 

750 

Instrumental 
Variables 

112.48 
(0.000)   

81.06 
(0.036)  

97.52 
(0.002)  

81.06 
(0.036)   

98.26 
(0.001)   

96.63 
(0.002)   

119.52 
(0.000)   

84.65 
(0.020)   
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