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ABSTRACT

This paper is based on the premise that knowledge about the alphas of one set of funds will

influence an investor’s beliefs about other funds. This will be true insofar as an investor’s

expectation about the performance of a fund is partly a belief about the abilities of mutual fund

managers as a group and, more generally, a belief about the degree to which financial markets are

efficient. We develop a simple framework for incorporating this “prior dependence” and find that

it can have a substantial impact on the cross-section of posterior beliefs about fund performance as

well as asset allocation. Under independence, the maximum posterior mean alpha increases without

bound as the number of funds increases and “extremely large” estimates are randomly observed.

This is true even when fund managers have no skill. In contrast, with prior dependence, investors

aggregate information across funds to form a general belief about the potential for abnormal

performance. Each fund’s alpha estimate is shrunk toward the aggregate estimate, mitigating

extreme views. An additional implication is that restricting the estimation to surviving funds, a

common practice in this literature, imparts an upward bias to the average fund alpha.
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Mutual Fund Performance with Learning Across Funds 

 

1.  Introduction 

With trillions of dollars invested in actively managed equity mutual funds, it is of 

great importance to investors to determine the optimal asset allocation to funds.  Many 

studies, starting with Jensen (1968), have concluded that fund managers are unable to 

“beat the market,” suggesting that investors might want to restrict their portfolios to 

passive index funds.  Others have argued that, while the average manager may have no 

particular skill, ex ante variables like past performance and manager characteristics can 

be used to identify investment skill.1  It is well known among academics that the standard 

measure of fund performance, “alpha,” is typically not estimated with much precision.  In 

this context, an investor’s prior beliefs about market efficiency and the possibility of 

superior investment performance can play an important role in the asset allocation 

decision. 

Recent papers by Baks, Metrick, and Wachter (2001) and Pastor and Stambaugh 

(2002) analyze these issues in a Bayesian statistical framework.2  The BMW paper 

focuses on the question of whether any investment in actively managed funds can be 

justified.  They conclude that, even when investors are initially quite skeptical about the 

possibility of management skill, some active investment is appropriate.  The PS paper 

evaluates the optimal portfolio of funds for an investor with given beliefs about 

investment skill as well as the ability of asset pricing models to correctly “price” passive 

investment assets.   

In this project, we build on these important studies by developing a richer 

representation of investor prior beliefs about management skill.  While this might initially 

sound like a minor mechanical extension, we believe it is more fundamental than that.  

Although prior beliefs are by their nature subjective, it is important to ask whether the 

properties of a given prior or family of priors are indeed consistent in essential respects 

                                                 
1 See Chevalier and Ellison (1999) and Carhart (1997), for instance. 
2 Perhaps the first important application of the Bayesian perspective in investment research was Merton’s 
(1980) estimation of the market expected return.  Bayesian methods were first used in testing asset pricing 
relations in Shanken (1987).  Kandel and Stambaugh (1996) examine aggregate return predictability in a 
Bayesian framework.  Their paper has stimulated much recent research.  See Shanken and Tamayo (2001) 
for additional references. 
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with the actual learning process of investors or researchers.  At issue here is the manner 

in which fund returns data are processed in deriving conclusions about performance.  

Should the alpha estimates of other funds influence our belief about the likely 

performance of a given fund or not?  Technical issues aside, that is the basic question 

addressed here.3   

As with any joint distribution, one can talk about the prior for one set of (true) 

fund alphas conditional on the alphas for other funds.  Though BMW and PS model 

priors in different ways, a common feature is that the prior belief about a given fund’s 

alpha is taken to be independent of the prior for all other fund alphas.  In conjunction 

with the assumption that fund residual returns are independent, this greatly simplifies the 

analyses.  While such simplification is natural in papers breaking new ground, we would 

argue that it is important to consider dependence across funds in these priors. 

To develop some intuition about this issue, consider the following hypothetical 

scenario.  Assume that a marginal prior distribution has been formulated for a typical 

fund.  In the BMW model, this would include a prior probability that a random manager 

is skilled, as well as a standard deviation that relates to the possible range of alphas for a 

skilled manager.  Now, suppose an investor is considering a particular fund and is given 

the (prior) information that the true alphas of all other funds in the market are identically 

zero, i.e., none of those fund managers is able to beat the market.  Alternatively, the 

information might be that half of all funds have positive alphas in excess of 5% per 

annum.  In this context, the prior independence assumption across funds implies that 

none of this information would affect the investor’s belief about the given fund’s alpha.  

More formally, the conditional prior for the fund, given other fund alphas, equals the 

marginal prior. 

It seems more plausible, to us, that a typical investor’s beliefs would be affected 

by such information about other funds.  The underlying premise is that an investor, or a 

researcher, comes to the situation with a basic uncertainty about the possibility and extent 

of management skill in general.  Such a belief would be tied to a perception about the 

degree to which financial markets are efficient.  Information about the universe of funds 

                                                 
3 Readers who are interested in fund performance, but are uncomfortable with thinking in terms of prior 
distributions, may want to simply focus on our results for “diffuse” priors, which let the data completely 
dominate the analysis. 
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will affect this general belief which, in turn, will inform one’s a priori perception of any 

given fund.   

To formalize this idea, it is convenient to think of the true fund alphas as random 

draws from a common distribution with unknown mean µα and variance σα
2 – the 

hyperparameters of our model.  All of our key results follow from this simple 

assumption.  A large positive value of µα, for example, indicates the presence of 

considerable skill in the general population of managers, while the variance reflects 

heterogeneity across managers.  In particular, a strictly positive variance means that there 

is additional uncertainty about the alpha for a given manager, no matter how many other 

alphas have been “observed” in the sense of the thought experiment above.  Knowledge 

of the other alphas is relevant, however, insofar as it affects our belief about µα, the true 

mean of the population from which the given fund’s alpha is drawn.  Thus, there is an 

important role for prior dependence in this framework. 

To get some idea of the manner in which prior dependence will affect the 

interpretation of empirical evidence, it is helpful to consider an extreme case.  Suppose 

that σα is zero, so that all managers have the same alpha, µα.  This parameter would be 

estimated, roughly speaking, by pooling the regression evidence for all funds4.  The 

posterior belief about any fund’s alpha would then be based on this pooled estimate and 

the initial prior belief.  At the other end of the spectrum, with prior independence, as in 

BMW and PS, the posterior belief about alpha depends only on the given fund’s data and 

the returns on the benchmark assets in the factor model.5  Our general model with 

positive σα incorporates pooling to estimate µα, but reflects a degree of independence as 

well in that the draws from the underlying alpha population are independent across funds.   

The dependent priors in our model are sometimes referred to as “learning priors,” 

since an investor considering a given fund learns something of relevance by examining 

the properties of other funds.  We explore the impact of this alternative modeling of 

priors on posterior beliefs about mutual fund performance.  In one striking example, the 

pooling of fund returns implicit in the learning approach reduces the posterior mean of 

alpha from 42.1% to 2.8%.  Beyond such important normative issues, studying the 
                                                 
4 Cohen, Coval, and Pastor (2002) independently develop a pooled estimator of performance, though not in 
a Bayesian setting.  
5 More precisely, PS decompose alphas into separate components related to managerial skill and model 
misspecification, and only the skill component is independent across managers. 
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hyperparameters, µα and σα, is of interest in itself, in that these parameters can be viewed 

as convenient summary measures of the overall evidence on fund performance and 

indications of the degree of semi-strong form efficiency of financial markets.   

Our approach also has important implications concerning survivor bias.  When 

considering asset allocation issues, one is necessarily restricted to investing in existing or 

surviving funds.  Previous Bayesian analyses have computed posterior beliefs for 

restricted samples of this sort, appealing to assumptions under which there is no bias.  

While the mathematical justification is undoubtedly clever, it has always seemed to us to 

be counterintuitive.  We show that with prior dependence, there is indeed a bias, 

estimated to be 40-50 basis points per annum.  A more detailed discussion is given in the 

next section.  Recent independent work by Stambaugh (2002) also explores survival 

issues in the context of prior dependence. 

 

2.  Survivorship issues 

  Before going on to describe the details of our model and associated 

methodology, we discuss another important general implication of allowing for prior 

dependence.  When considering asset allocation issues, one necessarily is restricted to 

existing or surviving funds.  BMW address the question of whether this imparts some sort 

of survivorship bias on the Bayesian analysis.  They make the following simple, but 

significant observation.  Suppose that the probability of survival is a function solely of 

past fund returns, with no separate dependence on the fund parameters - a seemingly 

reasonable assumption.  In this case, posterior beliefs for the surviving funds will not be 

altered by conditioning on the ex post information about survival.  Together with the 

assumptions of prior and residual independence, this implies that the posterior 

distribution for a surviving fund’s parameters depends only on its own returns.   

The situation is subtler when prior dependence is introduced.  Let θj be the vector 

of regression parameters (alpha, beta, and residual variance) and rj the vector of returns 

for fund j.  Let  θ ≡ (θ1, θ2, …, θN) the parameters and r ≡ (r1, r2, … rN) returns  for all N 

funds, surviving as well as disappearing ones.  Finally, let F denote the vector of factor or 

benchmark asset returns.  BMW assume that  

p(survivalj | r, F, θj) = p(survivalj | r, F),               (1) 
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where survivalj is a 0-1 indicator variable.  It then follows directly from Bayes law that 

the posterior beliefs satisfy 

  p(θj | r, F, survivalj) = p(θj | r, F).            (2) 

With prior and residual independence, it also follows that  

p(θj | r, F) = p(θj | rj, F),                    (3) 

so that other funds can be ignored in forming a belief about the skill of fund j. 

With prior dependence, (2) continues to hold, but (3) is no longer valid.  Thus, (2) 

says that knowing whether a fund survived or not provides no additional information, 

given that we observe the return histories.  However, our belief about fund j’s parameters 

will, in general, depend on the returns of other funds, including the disappearing funds.  

The dependence arises because these other returns convey information about the average 

level of skill in the population, as measured by µα.  Ignoring these returns can be likened 

to throwing out one tail of the sample distribution when estimating a population mean.6  

To summarize, the implication of our discussion of survivorship issues is that the returns 

of all funds, surviving and disappearing, will impact our beliefs about any given set of 

funds and, ultimately, will influence asset allocation decisions too when prior dependence 

is entertained.    

 

3.  The model with continuous learning priors for alpha 

 In our initial exploration of prior dependence, we adopt the simplest features of 

both BMW and PS.  Like PS, we posit a model in which beliefs about fund alphas are 

represented by continuous densities.  In contrast, BMW truncate the distribution and 

place positive mass at a negative value of alpha that reflects the average loss of an 

unskilled manager to superior managers.  In our empirical application, skill is defined 

relative to the CAPM, the Fama-French (1993) three-factor model, an expanded model 

that includes the Carhart (1997) momentum factor, and a seven-factor model that 

                                                 
6 One could, in principle, still compute the conditional posterior density p(θj | r j, F) based on a censored 
sample, if that were the only information available.  However, the computation would be complicated 
considerably by the fact that the density (likelihood) function describing the data-generating process must 
now reflect the censoring procedure.   
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includes, in addition to the previous four factors, three factors constructed to explain 

industry return covariation orthogonal to the other four factors.7  PS go further by 

identifying a subset of the passive assets as pricing model benchmarks and incorporating 

prior beliefs about model mispricing as well as skill.  Like BMW, we only consider 

beliefs about skill.    

 

3.1 Model and prior specification 

 We assume that excess returns have a linear factor structure,  

rj,t = αj + βj' Ft + εj,t ,              (4) 

where εj,t ~ N(0, σj
2).  As noted previously, these residuals are assumed to be 

uncorrelated across funds.  The vector of factors Ft is assumed to be observable.  In our 

applications, it is taken as some vector of excess returns on benchmark portfolios. 

 The investor views true alphas as random draws from a normal distribution with 

unknown mean µα and unknown standard deviation σα.  Therefore, prior beliefs about µα 

and σα, imply priors for the alphas and, because all alphas depend on these same two 

parameters, the alphas are not independent of one another in the prior.  In addition, the 

marginal prior of each alpha is non-Gaussian since it is a mixture of normals.  Priors for 

µα and σα are assumed independent and are represented by a normal distribution for µα 

and an inverted gamma distribution for σα.  The numerical values used in these priors are 

given in the next section. 

In contrast, the priors for betas and residual variances are diffuse (proportional to 

1/σj), independent of the alphas, and independent across managers.8  While informative 

priors could be introduced for these parameters as well, the greater precision with which 

these parameters are estimated makes such an extension less interesting. 

 

 
                                                 
7 The three industry factors are constructed in a manner similar to those in Pastor and Stambaugh (2002).  
First, excess returns on 30 industry-sorted portfolios are regressed on a constant, the three Fama-French 
factors, and the momentum factor.  The unexplained part of the industry return is then defined as the 
residual of each regression plus that regression’s intercept.  A principal components analysis is then 
performed on these 30 time series, and the first three principal components, once normalized, are taken as 
portfolio weights for the three industry portfolios.  
8 PS and BMW condition the prior for alpha on a fund’s residual variance.  Our independence assumption 
simplifies the analysis, but could be generalized. 
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3.2  Overview of the estimation procedure 

 In this section, we briefly discuss the main features of our estimation procedure.  

Further details will be given in an appendix.  To simplify the computation, we use a 

hierarchical approach in which parameters are divided into sets, some global and some 

fund-specific.  The global parameters, which affect all funds, consist of µα and σα.  Fund-

specific parameters include all the αj, βj, and σj.  Using the Gibbs sampler, we can 

characterize the joint posterior of all these parameters by analyzing only one set at a time.  

By cycling repeatedly through draws of each parameter conditional on the remaining 

parameters, the Gibbs sampler produces a Markov Chain of parameter draws whose joint 

distribution converges to the posterior.9 

 The Gibbs sampling approach that we use divides the parameters into four blocks, 

each of which consists of a draw from a known conditional distribution. 
 

1. σα conditional on αj (j=1,…,M) and µα  

2. µα conditional on αj (j=1,…,M) and σα   

3. σj and βj conditional on F, rj, and αj for all j=1,…,M  

4. αj conditional on µα, σα, F, rj, βj and σj for all j=1,…,M  
 
While the appendix describes each draw in detail, we outline each step briefly here.  As 

shown in the appendix, any parameters not conditioned on are irrelevant for that draw. 

 In step 1, given µα and all the αj, the conditional distribution of σα combines the 

normal likelihood of the αj with the inverted gamma prior for σα.  It is well known in this 

case that the conditional distribution of σα is also an inverted gamma.  Step 2 then 

combines the normal likelihood of the αj with the normal prior for µα.  The draw of µα is 

therefore normal as well.10 

 Step 3 replicates traditional linear regression analysis using conjugate priors.  

Since priors on βj and σj are flat and independent of αj, we may simply subtract off αj 

from fund j’s excess returns and proceed with the draws of σj from its inverted gamma 

distribution and βj from its student-t distribution. 

                                                 
9 See Casella and George (1992) for an introduction to the Gibbs sampler. 
10 Note that in many similar Bayesian settings the draw of σα would not condition on µα.  Our setting differs 
in that the prior on µα has a fixed standard deviation rather than one that is proportional to σα.  Since this 
prior is not fully conjugate, our setting requires the additional conditioning argument. 
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 Standard conjugate analysis is also used in step 4, where a normal likelihood for 

each αj (conditional on βj and σj) is combined with a normal prior with mean µα and 

standard deviation σα.  In this case the conditional distribution of αj is normal as well. 

 

3.3  Frequentist properties of Bayesian procedures 

 A distinctive feature of Bayesian inference is that the probabilistic analysis is 

conditioned entirely on the given data.  This differs from the classical or frequentist 

approach, which considers the average behavior of statistics under hypothetical 

repetitions of the experiment on new data sets – data that is not actually observed.  

Frequentist properties can still be of interest to a Bayesian from a pre-experimental 

perspective, however.  As Berger (1985) explains, before looking at the data one can only 

measure how well a statistical procedure “is likely to perform through a frequentist 

measure, but after seeing the data one can give a more precise final measure of 

performance.”11   

In Section 4, we conduct a frequentist analysis by repeatedly applying our 

Bayesian methodology to panels of randomly simulated mutual fund data and tracking 

the average behavior of various characteristics of the posterior distribution of the alphas.  

We examine sensitivity to the number of funds in the panel as well as different levels of 

prior skepticism about the magnitude of managerial skill.  In Section 5, we make 

comparisons that highlight the role of prior dependence in forming posterior beliefs about 

alphas.12  .  Besides enhancing our insight into the potential performance of various 

procedures on actual data, an analysis of this sort can play an important role in the 

process of eliciting a satisfactory prior.  If repeated application of a given prior to 

hypothetical data reveals properties that are inconsistent with one’s intuition about how a 

properly-specified procedure should behave, then it may be time to go back and modify 

the prior specification so as to better reflect one’s actual belief.  Of course, all of this 

exploration and refining of priors should, in principle, occur before making any inference 

or decision with the actual data. 

                                                 
11 Savage (1962) makes this distinction between initial precision and final precision. 
12 Stambaugh (1997) and Jones (2002) also explore the frequentist properties of Bayesian procedures in 
financial contexts.  
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The priors on µα and σα that we use reflect different views on the level of skill in 

the population of fund managers.  Three versions of our learning-prior are considered: 

high skepticism, some skepticism, and no skepticism.  The no-skepticism prior is taken to 

be diffuse for both µα and σα (proportional to 1/σα).  In this case, the data will dominate 

our beliefs.  The other priors for µα and σα are informative.  The µα priors are normally 

distributed with mean zero and standard deviation 0.25% (high skepticism) or 1% (some 

skepticism).  All numbers given are annualized monthly figures.  With high skepticism, 

σα has an inverted gamma prior centered around 0.75%, with 100 degrees of freedom.  

With some skepticism, the values are 3% and 10, respectively.  Thus, greater skepticism, 

as modeled here, implies a stronger belief that µα is close to zero, as well as greater 

confidence that the true alphas will be close to µα.    

 

4.  Simulation results with learning priors 

Now, we study the distribution of beliefs that investors with the priors above 

would arrive at on different data sets.  First, we consider a world in which managers have 

no skill at all, and then we consider one in which the average fund manager is skilled.  

1,000 Monte Carlo simulations are performed for each experiment.  Let M equal the 

number of funds in our hypothetical panel of returns.  We consider values of M ranging 

from 10 to 10,000 in order to get a sense of the rate at which investors learn about the 

true parameter values.  All funds are assumed to exist over the same 77-month sample 

period.  The actual number of funds in the empirical sample analyzed later in the paper is 

5136, with an average life of 77.3 months.   

Fund returns are generated under the factor model in equation (4) assuming a 

single factor with a monthly mean of 0.005 and a standard deviation of 0.045.  The β  and 

σ parameters for each fund are drawn randomly and independently of each other and of 

other funds.  β is drawn from a normal distribution with mean 1 and standard deviation 

0.29, while ln(σ) is normal with mean –3.7 and standard deviation 0.5, a distribution that 

implies a mean σ of 2.8% with a standard deviation of 1.5% (also expressed on a monthly 

basis).  Both distributions conform closely with the OLS estimates of these parameters 

obtained from the empirical sample used later in the paper.  When linear factor pricing 

does not hold and managers may be skilled (α ≠ 0), the alphas are also drawn 



 12

independently from a normal distribution with annualized values specified for the mean 

µα and standard deviation σα. 

 

4.1  Simulations when managers have no skill (αj = 0) 

Results are presented in histograms that display the sampling distributions of 

various posterior means or functions of posterior means.  In order to distinguish between 

plots that appear similar and may have different scales, we also include the mean and 

standard deviation of each distribution.  The mean is in the top left corner of each plot, 

while the standard deviation is in the top right.  Figure 1 shows that the initial prior can 

have a significant effect on beliefs about µα, the mean of the population from which the 

true alphas are drawn.  The qualitative patterns observed in the figure follow from a few 

basic principles.  Since the (true) expected value of each alpha estimator is zero in our 

no-skill population, with residual independence, the average of the alpha estimates must 

converge to zero as M → ∞.  For large M, the influence of the prior becomes negligible 

as well.  Consequently, for each of our priors, the frequency distribution (across 1,000 

simulations) of posterior means of µα becomes more concentrated around zero when M is 

sufficiently large.  Thus, investors become increasingly convinced that their prior belief 

was correct, that managers have no skill on average. 

In general, we can think of the posterior mean as roughly a weighted combination 

of a cross-sectional average of the alpha estimates and zero, the prior mean of µα.  In 

other words, the average estimate is shrunk toward zero in forming the posterior mean of 

µα.  Shrinkage is greatest when M is low (little data) and when the prior is very precise.  

In the extreme, when M = 0, the mean of µα is just the prior mean of zero and there is no 

variability at all.  Thus, there are two offsetting effects of increasing M: higher M 

increases data precision, which reduces dispersion across simulations; but increasing M 

also reduces shrinkage, which tends to increase dispersion.  Initially, the shrinkage effect 

is dominant, but eventually the data precision effect takes over.  Since shrinkage is 

greatest for the high-skepticism prior, it takes longer for the data precision effect to 

dominate and, as a result, dispersion in the posterior means increases in going from M = 

10 to M = 100.   
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By similar reasoning, since the informativeness of the data is held constant when 

M is fixed, we would expect dispersion to increase as we go from left to right in Figure 1, 

with prior precision and shrinkage toward zero declining.  This effect should be greatest 

when M is small and shrinkage is substantial.  The patterns in Figure 1 confirm these 

ideas.   

 Figure 2 presents results for the posterior means of σα under the same scenarios as 

in Figure 1.  When M = 10, the locations of the first two distributions largely reflect the 

assumptions about σα in the informative priors.  Increasing M does not have much impact 

in the high-skepticism case, as the data are apparently not given much weight.  With 

some skepticism, the means for σα decline from around 3% with M = 10 to about 1% 

with M = 10,000.  Investors learn very gradually that, not only is there no skill on 

average (µα = 0), but there is no skill at all (µα = 0 and σα = 0) in this population.  The 

learning is more pronounced with the no-skepticism diffuse prior, which is not anchored 

toward any particular value.  The large posterior mean σα of about 6% in this case, with 

M = 10, may in part reflect the considerable uncertainty about the location of the mean.   

  

4.2  Simulations when managers have some skill (αj ≠ 0) 

We now summarize a similar simulation experiment in which µα = 0.6% and σα = 

1.5%.  In this case the true alpha of each fund is drawn randomly from a normal 

distribution with these moments, a draw that is independent of the draws of βj and σj and 

of the draws for other funds.  The dotted lines in Figures 3 and 4 identify the location of 

the true population values.  In Figure 3, we see again that the average simulated posterior 

mean for µα converges toward the true value, with considerable learning occurring by the 

time M equals 1,000, especially for the less skeptical priors.  Similarly, Figure 4 shows 

that by M = 10,000, investors are likely to conclude that σα is close to the true value 

1.5%.  In the case of high-skepticism, though, the prior largely dominates the belief about 

σα for M as large as 1,000.  The more diffuse investor beliefs naturally adjust more 

quickly. 
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5.  The impact of learning across funds: simulation results 

 Having explored the basic properties of our model with learning priors, we now 

compare simulation results based on our model with those based on a model with prior 

independence across funds.  To highlight the impact of learning, the marginal priors are 

taken to be the same whether we incorporate dependence or not.  These marginal priors 

for alpha are the unconditional “mixtures” implied by the three joint priors for µα and σα 

considered above, given the assumption that alphas are drawn from the normal 

distribution N(µα,σα
2).  Our objectives are to determine whether incorporating 

dependence has much of an effect on posterior beliefs and to evaluate the extent to which 

the different beliefs approximate the true underlying population.  As with power 

calculations in classical statistics, this is done separately for each hypothesis – here, our 

no-skill and some-skill worlds. 

  The marginal priors are obtained by simulation.  Many values of µα and σα are 

drawn from their prior distributions, and the densities implied by each pair are averaged 

to obtain the implied prior for the alphas.  These priors are plotted in Figure 5 along with 

a normal density with the same mean and variance.  It is apparent that the “somewhat 

skeptical” prior is not Gaussian.  The fatter tails of its leptokurtic distribution imply a 

higher probability of very large and small alphas than would a normal.  Deviations from 

normality are more difficult to detect for the highly skeptical prior. 

For each simulated data sample, we form posterior means of the alphas using both 

the “learning” prior considered previously and the “no-learning” prior that imposes 

independence across fund alphas.  Inference under the latter prior is simplified by the fact 

that each fund can be treated separately.  The non-Gaussian nature of this prior requires, 

however, that these posterior means must be computed numerically.  We make use of the 

fact that the no-learning posterior density for each alpha can be written (up to a constant 

of proportionality) as the product of the marginal prior on alpha and the posterior density 

of alpha that would have been obtained under flat priors, or 
 
 pno-learning(αj | r j, F) ∝ pflat(αj | r j, F) × pno-learning(αj).          (5) 
 

Since it is well known that the flat prior implies a student-t distribution for the posterior 

of αj, both terms on the right-hand side are known.  We numerically integrate once to 
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obtain the normalizing constant, then integrate again to calculate the posterior mean of 

the αj under the no-learning prior. 

 We focus on three aspects of the cross-sectional (across M funds) distribution of 

posterior means of the alphas − their average, standard deviation, and maximum.  Again, 

it is the sampling distributions of these quantities, based on 1,000 simulations, that we 

examine, first in a world without skill and then in one with.  The cross-sectional average 

and standard deviation will give us a general feel for the differences between posterior 

beliefs with and without learning.  The maximum is of interest in addressing the question 

of whether any active investment in mutual funds is warranted, as in BMW.  A maximum 

in excess of transaction costs is sufficient to warrant some active investment in an 

optimal portfolio when the investment universe consists of a market index (and other 

benchmark assets, if any), the mutual funds, and a riskless asset. 

To gain some intuition for the effect of prior dependence, consider the posterior 

distribution of the Mth fund’s alpha, given the entire data set of returns.  By a standard 

Bayesian result, the posterior for that fund’s alpha can be decomposed as 
 
 p(αM | F, r) ∝ p(rM | F, α M) p(αM | F, r1, r2, …, rM-1),          (6) 

where the second term may be regarded as a “conditional prior” on αM.13  This term 

represents the investor’s belief about αM before observing the returns on fund M, but after 

combining the initial prior with all other fund data.  Under learning priors, this 

conditional prior evolves as M → ∞, eventually converging to the true cross-sectional 

distribution of the alphas  (as long as the assumed distributional forms are correct).  

Under the no-learning prior, however, the other M-1 funds are irrelevant, and the 

conditional prior on the Mth fund’s alpha is simply that fund’s marginal prior.  For a 

given fund, the learning prior therefore leads to a more “data-based” conclusion, since the 

data affect the second term in the posterior as well as the first. 

More formally, since each alpha is a random draw from a N(µα,σα
2) distribution 

under the learning prior, the mean of the conditional prior in (6) equals the posterior 

mean of µα and its variance is the posterior variance of µα plus the posterior mean of σα
2, 

                                                 
13 Earlier we spoke of priors conditioned on the true values of some alphas.  Here, we are conditioning on 
some of the data. 
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both based on the M-1 fund returns.14  Without learning, it is the marginal prior moments 

that matter.  Thus, with no-learning priors, a fund’s alpha estimate is shrunk toward zero 

while, under learning priors, there is shrinkage toward the (M-1 fund) posterior mean of 

µα.  The latter incorporates some shrinkage toward zero as well.  Because the conditional 

prior will eventually converge to the true distribution of the alphas, the learning prior 

must eventually (as M → ∞) lead to more accurate inferences, on average, than any no-

learning prior that is not exactly equal to the true cross-sectional distribution.  In finite 

samples, however, the relative performance of the two priors depends on how “right” the 

marginal prior happens to be – a prior with a mean equal to the true value and with a 

small enough standard deviation will naturally imply posteriors that are closer to the 

truth.  Put differently, from a frequentist perspective there are two sources of error in the 

conditional prior, conventional estimation errors and the error of choosing a prior that 

does not conform to the truth.  The no-learning prior mitigates the first error by giving 

less weight to the data, but it is utterly vulnerable to the second.  In the simulations 

summarized in the next section, the marginal priors are all centered around the true value 

of zero.  In the most skeptical case, the prior is extremely tight around that value, and 

hence is expected to perform relatively well. 

 

5.1  Simulations when managers have no skill 

Figures 6-8 present sampling distributions for the three functions of the posterior 

means of the alphas when the true alphas are all zero.  For each of our three priors, results 

are given first without, and then with learning (prior dependence).  Figure 6 presents the 

sampling distribution of the average posterior mean alpha, one dimension of the 

performance of learning and no-learning priors.  For the learning prior, the behavior of 

these averages mirrors the behavior of µα plotted in Figure 1, and the intuition provided 

for that figure is helpful for understanding how dispersion changes as M increases.  There 

is less dispersion in the distribution of posterior means for µα, however, because µα is a 

population mean rather than a “sample” mean, which is what Figure 6 displays estimates 

                                                 
14 The former follows from the law of iterated expectations while the latter is based on the variance 
decomposition formula. 
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of.15  For M ≥ 100, the distinction becomes minor.  It is also irrelevant with unskeptical 

(diffuse) priors, for which the posterior mean of µα is almost exactly equal to the average 

of the posterior means of the alphas. 

 Now, comparing the learning with the no-learning results, we see that the latter 

often performs better in Figure 6, sometimes even with cross sections as large as 10,000 

funds.  As we will see later, the fact that the no-learning distributions are centered around 

the true value is mostly a matter of the marginal prior fortuitously being “right”.  To gain 

further insight into the effect of learning across funds, let’s think about the prior on the 

average alpha for each approach.   

Arguing as earlier, with independent priors the prior variance of the average alpha 

(1/M times the marginal variance of alpha) approaches zero as M increases.  Although 

the prior variance still declines with M under learning priors, it does not approach zero 

since prior uncertainty about the common µα component is unaffected.16  Consequently, 

there will be more shrinkage toward the prior mean in the no-learning case, resulting in 

less dispersion for the posterior means of the average alpha.  If the prior correctly 

“guesses” the true population mean, as in Figure 6, this is a benefit.  Of course, the 

situation will be quite different when we simulate a world with skill.   

The shrinkage argument just made is not relevant when the priors are diffuse.  In 

fact, we see in Figure 6 that dispersion is now lower with learning in the unskeptical prior 

case.  We suspect that this is related to the fact that, with residual heteroskedasticity 

across funds, the aggregate alpha estimate implicit in the posterior means of the alphas 

(and µα) is akin to a weighted-least-squares average.  The improved efficiency of this 

average, as compared to the simple average taken across funds with the no-learning 

approach, may be the source of the lower dispersion.   

 Next, we consider results for the standard deviation of mean alphas, shown in 

Figure 7.  In general, when there is no learning, the standard deviations become much 

more concentrated around a fairly stable central value as M increases.  This makes sense 

                                                 
15We show below that the prior variance of the average alpha exceeds the prior variance of µα suggesting 
more shrinkage toward zero for the posterior mean µα  
 
16 Conditional (on µα and σα) independence under learning priors implies that the prior variance of the 
average alpha is the prior variance of µα plus 1/M times the prior mean of σα

2.  When M=1, this is just the 
marginal variance of alpha. 
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in that the posterior mean for each fund is an i.i.d. draw with no learning, so we’re getting 

more precise estimates of the same underlying standard deviation of the posterior mean, a 

typical sampling result.  As in Figure 2, there’s not much effect of learning with the high-

skepticism prior.  With the less skeptical learning priors, the standard deviations decline 

sharply and are much lower than the no-learning standard deviations.  This is consistent 

with the earlier observations about σα.  In short, the investor with a learning prior 

becomes increasingly convinced that the alphas are all zero, while her no-learning 

counterpart seems capable only of confirming that the average alpha is zero.  Thus, the 

overall belief about the set of fund alphas is quite sensitive to the learning/dependence 

assumption. 

The key is that with learning, the data is pooled, permitting a conclusion to be 

drawn about the nature of the latent population from which alphas are drawn.  Upon 

seeing that all of the alpha estimates are statistically “close” to zero, for a large set of 

funds, the investor with a learning prior perceives the world as one in which skill is 

unlikely to exist and markets are efficient, informing his belief about the next fund’s 

alpha.  The investor with a no-learning prior does not recognize such a link and views the 

evidence for each fund in isolation.  As a result, the maximum posterior mean, examined 

in Figure 8, increases with M under no learning.  This is to be expected in light of the 

well-known properties of order statistics under independent sampling.  Given enough 

funds, there will virtually always be some fund with an extremely large alpha estimate 

and associated posterior mean, even when the true alphas are all zero.    

 The situation is quite different with our less skeptical learning priors.  Rather than 

shift to the right, as in the no-learning case, the distribution of the maximum mean alpha 

actually shifts a bit to the left in Figure 8 and becomes much more concentrated as M 

increases.  Under the no-skepticism (diffuse) prior with M=10,000, a maximum as large 

as 50% is often observed with no learning, whereas the values with learning cluster 

around 1.5%.  This is another manifestation of the fundamentally different perspective 

attained by incorporating prior dependence.  Under learning, each fund’s alpha is shrunk 

toward the posterior mean of µα, which converges to zero with M when managers have 

no skill (see Figure 1).  This keeps the posterior alphas from getting too large.  Shrinkage 

increases with M as σα, and hence the variance of the conditional prior in equation (6), 

approaches zero (see Figure 2).  Intuitively, if the returns of all other funds have 
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convinced us that mutual fund alphas are generally close to zero, then the given fund’s 

alpha estimate will have relatively less impact on its posterior mean.    

5.2  Simulations when managers have some skill 

Figures 9-11 present simulation results paralleling those in Figures 6-8, for a 

world in which µα = 0.6% and σα = 1.5%.  Since the true alphas are no longer zero, they 

are subtracted from the posterior means before computing the average, standard 

deviation, or maximum “alpha error.”  This facilitates the evaluation of how closely the 

posterior means approximate reality.   

 The beliefs about alphas based on the informative no-learning priors are anchored 

toward the prior mean zero.  This would be true even with an infinite sample of funds, 

since shrinkage is not affected by adding funds under prior independence.  As a result, 

the average error in Figure 9 is consistently negative for these priors, whereas it 

approaches zero under the diffuse no-learning prior.     

In contrast, with the learning priors, the average error is always centered much 

closer to zero, at least for M > 10, with dispersion narrowing substantially for higher 

values of M and less skepticism (less shrinkage).  As discussed earlier, this is because the 

learning prior aggregates the information about all funds in arriving at a belief about any 

given fund.  The standard deviations in Figure 10 are also smaller under the less skeptical 

learning priors, about 1-2% versus 4-5% with no learning in the no-skepticism case.  

From a mean-square error (squared mean error plus variance) perspective, therefore, the 

posterior mean alphas based on the learning priors are clearly superior in this world with 

skill.  Results for the maximum in Figure 11 under the no-skepticism prior are even more 

striking, especially for M=10,000, with distributions centered around 36% and 5% for no 

learning and learning, respectively.  Again, these differences reflect shrinkage toward an 

aggregate alpha estimate under learning.   

 

6.  Empirical application 

Given our understanding of the behavior of learning and no-learning priors under 

simulated data, we now turn to an application on actual US equity mutual fund data. 
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6.1 Data 

 Our source for all mutual fund data is the 2001 CRSP Mutual Funds data file, 

which contains mutual fund returns from January 1961 to June 2001.  To focus solely on 

the sample of domestic equity funds, we follow the selection procedure of BMW to 

eliminate funds that are likely to have made substantial allocations to other asset 

classes.17  In addition, we require that the fund have at least 12 months of returns data 

available.  This results in a sample of 5,136 funds with an average of 77.3 months of 

monthly return observations. 

 As in BMW, we focus on returns before fees and expenses, with the justification 

that it is the returns on the underlying stocks themselves that are most likely to conform 

with the linear pricing model.  Since the mutual fund returns reported by CRSP are net of 

both these costs, we add them back to the reported returns.  As BMW note, however, only 

the management fees are reported by CRSP – the transactions costs incurred by each fund 

are unknown.  Following BMW, we assume these costs amount to six basis points per 

month.  Unlike BMW, we include all equity mutual funds in our sample rather than just 

those that still existed at the end of our sample.  In some cases, however, we compare 

these results with inferences based solely on the 3,844 funds that survived to the end of 

the sample.  

 We employ four sets of benchmark returns in our empirical work: the excess 

market return factor (RMRF) motivated by the CAPM, the three-factor model of Fama 

and French (1993) (adding SMB and HML), a four-factor model that augments the Fama-

French factors with the momentum spread portfolio (MOM) of Carhart (1997), and a 

seven-factor model that also includes three industry factors whose construction was 

described previously.  Our primary motivation for including the industry factors is to 

better approximate the assumption of residual independence. 

 

6.2 Results with learning priors 

Table 1 contains posterior means and standard deviations for µα and σα computed 

under various learning priors for samples of all funds and surviving funds only.  It is 

immediately apparent that there is strong evidence of skill in the population of equity 

mutual funds.  Posterior means of µα from the sample of all funds are generally between 
                                                 
17 We are grateful to Klaas Baks for providing the code used to construct this data set. 
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1.3% and 2.2% per year and are somewhat sensitive to the choice of benchmark 

portfolios, with posterior standard deviations that are extremely small.  Thus, the typical 

fund outperforms all benchmarks considered by a fairly substantial amount, at least 

before fees and costs. 

It is also clear that including only those funds that survived to the end of the 

sample results in a posterior mean for µα that is higher by about 40 to 60 basis points per 

year.  Therefore, survival bias, while irrelevant under no-learning priors, can substantially 

inflate alphas computed under learning priors.  The survival sample also tends to generate 

posteriors for σα that are a little closer to zero.  Both of these effects are to be expected, 

as the survival sample is likely to exclude those funds whose alphas are in the left tail of 

the cross-sectional distribution.  Eliminating these funds increases the mean and slightly 

reduces the dispersion in the sample. 

Less intuitive are the patterns related to the use of different asset pricing models.  

Posteriors of µα are fairly similar across the one, three, and four-factor models, though 

adding industry factors substantially increases the posterior mean of µα.  The various 

models produce much more diversity in their estimates of σα, with posterior means 

ranging from 1% to 2.3% for surviving funds.  The multifactor models sometimes yield 

posterior means twice those of the CAPM.  Thus, under the Fama-French model, for 

instance, there are a significant number of funds with very high or very low alphas, even 

if the average alpha is not much different from a CAPM world.   

Finally, the effects of differing degrees of prior skepticism are relatively small.  

Posterior means of µα under highly skeptical and unskeptical priors never differ by more 

than 13 basis points for all funds and 19 basis points for surviving funds only.  Although 

inferences about σα are somewhat more sensitive, the degree of prior skepticism is still 

not as relevant as the choice of asset pricing model. 

 

6.3 Results for individual fund alphas 

The same calculations also produce posteriors for each fund’s alpha.  In Table 2, 

we compare summary statistics for the alpha posterior means under learning priors to 

those computed under comparable no-learning priors.  The sample contains all funds, 

including those funds that did not survive to the end of the sample. 
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 In general, learning and no-learning priors result in very different inferences.  All 

versions of the learning prior yield average alpha posterior means of 1.3% to 2.25% per 

year, consistent with the posterior means of µα, while average alphas for the no-learning 

prior may be much higher or much lower depending on the degree of skepticism 

imposed.  Highly skeptical no-learning priors produce average alphas no greater than 20 

basis points per year, while unskeptical priors imply average alphas of over three percent 

for the seven-factor model.  The lower values for the highly skeptical no-learning priors 

are consistent with the greater shrinkage toward the prior mean of zero.   

Dispersion in alpha posterior means also varies greatly across learning and no-

learning priors, particularly for the extreme cases of high and no skepticism.  With the 

Fama-French model, for example, under the unskeptical prior the standard deviation of 

the alpha posterior means is just 1.3% for the learning prior, but over 8% for the no-

learning prior.  Under highly skeptical priors, the ordering is reversed, with the learning 

prior implying a standard deviation nearly four times that of the no-learning prior (1.13% 

versus 0.33%).  The unskeptical comparison is driven by the shrinkage of alpha estimates 

toward a “grand mean” with the learning prior, while the highly skeptical comparison 

reflects the greater shrinkage toward zero with no learning.18  As in Table 1, dispersion is 

heavily dependent on the asset pricing model as well. 

 Given the results in Table 1, these findings are not particularly surprising.  Recall 

from the earlier discussion of (6) that the posterior for a given fund under the learning 

prior can be viewed as the result of combining that fund’s data with a “conditional prior” 

that approximates the true alpha distribution when M is large.  Thus, posteriors of the 

alphas are centered near µα, with dispersion determined by σα.  From Table 1, we can see 

that the values of σα supported by the data are somewhat smaller than 3%, which is 

approximately the mean of σα under the somewhat skeptical learning prior, but often 

much larger than .75%, the mean of σα under the highly skeptical prior.  Therefore, 

loosely speaking, learning results in an effective marginal prior with a positive mean and 

dispersion that lies between that of the two skeptical no-learning priors. 

                                                 
18 Although not reported in section 5.2, these results are similar to those obtained in the simulations in 
which managers were assumed to be skilled on average.  In these simulations, as in the empirical results, 
highly skeptical priors shrink alpha posterior means very close to zero, with the no-learning prior 
effectively applying greater shrinkage.  This results in very little dispersion in no-learning posterior means. 
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 One notable result from Table 2 is that for unskeptical priors, there remains a 

large difference between average alpha means computed under no learning and learning.  

With the CAPM benchmark, for example, the average posterior mean is 2.84% under no-

learning priors but only 1.48% under learning priors.  It appears that the higher average 

of the no-learning alphas is due to the presence of a number of recently-introduced funds 

that happened to perform well in the late 1990s.  Since these funds have fairly short track 

records and tend to have large residual standard deviations, they contribute relatively 

little to the posterior mean of µα which, as noted earlier, incorporates a sort of weighted-

least-squares estimate.  The result is a downward shift in the distribution of µα, which in 

turn leads to substantially lower alpha estimates for these high-performing funds under 

the learning prior. 

 Figures 12 and 13 plot some of the relationships between the alpha posterior 

means, for all funds, computed under different priors.  For brevity, we plot results only 

for the seven-factor model and we omit results for the unskeptical priors.  Figure 12 

shows the relation between learning and no-learning alpha posterior means computed 

under highly skeptical priors.  While the higher mean and higher dispersion reported in 

Table 2 for the learning prior is clearly evident, the figure further reveals that posterior 

means under the two priors are highly correlated.  High correlation makes sense, even 

with large differences in the two sets of mean alphas, insofar as the differences are driven 

by differing degrees of shrinkage toward the fixed prior mean.  Interestingly, the 

correlation seems stronger for funds with low alphas.  Figure 13, computed under 

somewhat skeptical priors, displays the higher dispersion with the no-learning prior.  The 

figure shows that without learning or very skeptical beliefs, some funds are likely to have 

extremely large alphas, with one no-learning alpha in excess of 25% per year.    

The effects of different priors on posterior precision are investigated in Figures 14 

and 15, again for all funds.  The posterior standard deviation of each fund’s alpha is 

compared across learning and no-learning priors.  In Figure 14, we see that a highly 

skeptical no-learning prior effectively puts a cap on the standard deviation of each fund’s 

alpha.  In effect, the precision of this no-learning prior is so strong that, for many funds, 

the data offer little in terms of added precision.  The posterior standard deviations are 

therefore not much less than that of the prior, which in this case was roughly 1%.  Figure 

15 shows that a lower degree of prior skepticism leads to a much different result.  When 
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priors are not too skeptical, the effect of learning is to make the “conditional prior” in (6) 

more precise for each fund.  This results in more data-based shrinkage and brings 

posterior standard deviations into a much narrower range for the learning prior. 

Figures 16 and 17 focus on the alpha posterior means of the funds that survived to 

the end of the sample.  These posterior means are computed under learning priors using 

either the surviving funds only or the entire sample, but only displaying results for the 

survivors.  In the latter case, though we focus on a select group of funds, our inferences 

about those funds should not be biased.  Again, only results for high and some skepticism 

are displayed.  (“No-skepticism” results are similar to “some skepticism.”)  Figure 16 

shows that under high skepticism, survival bias impacts the worst performers most 

significantly, with better-performing funds approximately unaffected.  In Figure 17, 

however, which is computed under less skeptical priors, survival bias affects funds more 

homogeneously.  The results appear consistent with the 40-60 basis point effects on the 

corresponding estimates of µα in Table 1. 

 

6.4 Alphas after fees and costs 

 The central question addressed by BMW is whether any investment in actively 

managed mutual fund can be justified.  They demonstrate that a necessary and sufficient 

condition for this to be the case is that the posterior mean of the alpha for some fund be 

greater than the fees and transactions costs required to invest in that fund.  In this section, 

we therefore examine mutual fund alphas computed after fees and costs. 

 The results reported in Table 3 differ from those of Table 2 in several ways.  First, 

alphas are calculated net of end-of-period trading costs and management fees, i.e., these 

two components are just subtracted off from the posterior means computed previously.  

As noted before, trading costs are unknown, so we follow BMW and specify costs of six 

basis points per month.  Management fees are known, and like BMW, we assume that 

future fees are equal to the last fee observed for each fund.  

 Table 3 also differs from Table 2 in that it reports statistics only on the alphas of 

those funds that survived to the end of the sample.  This is done for comparability with 

BMW and is motivated by the fact that these are the only funds that an investor could 
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potentially allocate assets to.19  Note that although only survivors’ alphas are 

summarized, all funds are used to compute posteriors under the learning prior.  As 

discussed earlier, this is necessary in order to avoid survivor bias when priors are 

dependent across funds. 

 The numbers in the table again indicate large differences between learning and 

no-learning priors.  Under learning priors, alphas net of fees and costs are on average 

around −60 to −70 basis points per annum for the one- to four-factor models and between 

20 and 35 basis points per annum for the seven-factor model.  In all cases, this is roughly 

2% below the corresponding levels before fees and costs.  Without learning, average 

alphas are sometimes below –2% or above +2%, depending mostly on the degree of prior 

skepticism but also on the benchmark portfolios used.  Standard deviations are also 

sensitive to the choice of priors, as in Table 2. 

 In addition, Table 3 shows the maximum posterior mean for every combination of 

prior and set of benchmark portfolios.  In each case, this maximum posterior mean is 

positive, indicating that there is always at least one fund whose alpha, net of fees and 

costs, is greater than zero.  Our results therefore support BMWs conclusion that some 

allocation to actively managed funds is likely warranted.20 

 While the maximum alpha mean, net of fees and costs, is always positive, its size 

is frequently far different under the two priors.  Using the Fama-French factors, for 

example, the highest no-learning mean alpha is just 63 basis points for highly skeptical 

priors, but an enormous 88.13% with no skepticism.  Mean alphas under learning priors 

in the same two cases are 4.12% and 4.58%, respectively.  While investment in these 

funds is positive in all of these cases, the extent of this investment would vary widely.  

 

6.5  Examples 

Looking at some specific examples should be helpful in synthesizing what we 

have learned in this research.  We focus on before-cost alphas from the 1-factor model.  

One of the top-performing funds under the no-learning unskeptical prior was Schroder 

Capital's Ultra Fund, a “micro cap” fund with (annualized) posterior mean alpha of 

                                                 
19 In fact, some of these mutual funds may not have survived past the end of the sample, making them 
uninvestable, too. 
20 Recall that BMW also model a probability q that a manager is skilled and explore the impact of different 
values for this additional parameter. 
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65%.21  There are only 44 monthly returns for this fund and residual risk is 5.6%.  Our 

second example is the well-known Fidelity Magellan Fund, with 457 monthly returns and 

lower residual risk, at 3.4%.  The annualized alpha means and standard deviations (in %) 

under various priors are: 

 

Table 3 
 
Alpha posterior means and standard deviations 
for two mutual funds under the 1-factor model 
  

Schroder High Some None 
    
No-learning 0.2   8.1 65.0 
 (0.8) (11.1) (10.4) 
    
Learning 1.7 2.1 2.2 
 (1.0) (1.4) (1.6) 
    
Fidelity High Some None 
    
No-learning 1.5 8.5 10.4 
 (0.8) (1.9)   (1.9) 
    
Learning 3.3 4.6 4.8 
 (1.0) (1.1) (1.3) 

 

As in our other figures, the degree of skepticism about the magnitude of skill declines 

from left to right.   

 First, consider the results for no-learning priors.  Under the unskeptical (diffuse) 

prior, the posterior mean is just the OLS regression estimate.  The enormous estimate of 

65% for the Ultra fund is shrunk very close to the prior mean of zero under the high-

skepticism prior.  On the other hand, the Magellan fund, with a much lower OLS estimate 

of 10.4%, has a higher posterior mean under high skepticism.  The reason is that, with a 

much longer time series and lower residual risk, the Magellan estimate is much more 

precise, resulting in less shrinkage toward the prior mean.  The greater precision also 

accounts for the lower posterior standard deviations of the Magellan fund alphas. 

                                                 
21 Schroder was the top performer out of all funds with at least three years of returns data, and was seventh 
overall.  The posterior mean of Schroder’s alpha after fees and costs, 62.1%, was also seventh best. 
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 Now, consider the learning prior results.  All alpha posterior means reflect 

shrinkage toward the posterior means for µα, which range from 1.4% to 1.5% for the 1-

factor model in Table 2.  For the reason just discussed, shrinkage is again much greater 

for the Ultra fund, resulting in alphas that are uniformly lower than those for Magellan.   

For each fund, learning results in larger alphas under high skepticism but smaller 

alphas otherwise.  With tight (skeptical) priors, this is the result of shrinkage toward zero 

(prior mean) under no-learning, but toward 1.4% (mean µα) under learning.  The ordering 

of alphas reverses as the prior becomes more diffuse (less skeptical) since shrinkage 

under no-learning declines, while the data-based shrinkage under learning remains 

substantial.22  Differences in posterior standard deviations of alpha under learning and 

no-learning priors can be understood in a similar manner.  Under high skepticism, greater 

shrinkage toward zero reduces the standard deviation under no-learning.  With less 

skepticism, the data play a greater role and shrinkage toward the pooled estimate of µα 

lowers posterior variability under learning priors.  The non-monotonic behavior of the 

Schroder fund’s standard deviations as we vary the degree of skepticism under no-

learning is surprising and reflects the bi-modal nature of the posterior distribution for 

alpha in this case.  

 

6.6  Optimal asset allocation 

While a complete analysis of optimal investment in equity mutual funds is beyond 

the scope of this paper, we continue the previous examples and ask how variations in 

prior beliefs affect the allocations to a particular mutual fund.  Specifically, we consider 

an investor who is able to allocate assets to the value-weighted market index, a risk-free 

asset yielding 6% interest, and either the Schroder Capital Ultra Fund or the Fidelity 

Magellan Fund. 

Following Kandel and Stambaugh (1996), the investor is assumed to maximize 

the expectation of a power utility function of the form  

                                                 
22 To keep things relatively simple, we have not incorporated the link between residual variance and the 
prior standard deviation of skill used by BMW and PS.  Such a link would make the Ultra prior less precise 
and reduce shrinkage to the prior mean somewhat, as compared to Magellan. 
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where A=1, 2, or 5.  Given a $1 investment at time T, the end of the sample, the 

investor’s end-of-period wealth is given by WT+1 = 1 + rf,T+1 + wj rj,T+1 + wm rm,T+1.  Here, rf 

is the riskless return, while rj (wj) and rm (wm) are excess returns on (allocations to) the 

fund and the market index, respectively. 

The expectation of U(WT+1) is taken with respect to the investor’s predictive 

distribution for rj,T+1 and rm,T+1, which incorporates posterior parameter uncertainty.  This 

is given by 
 
 p(rj,T+1, rm,T+1 | r, rm) = ∫ p(rj,T+1, rm,T+1 | θj, θm) p(θj, θm | r, rm) dθj dθm,        (8) 
 

where θm and θj denote, respectively, the parameters of the distributions of rm and of rj 

given rm.  As is often the case in regression models, with independent priors for θm and θj, 

the posterior distribution can be factored as  
 

  p(θj, θm | r, rm) ∝ p(θj | r, rm) p(θm | rm),           (9) 
 

where p(θj | r, rm) has been the object of our study thus far.  Yet to be examined is       

p(θm | rm), which, despite its irrelevance for inferences about θj, is important for 

determining allocations to the market portfolio. 

 Our approach to computing p(θm | rm) is standard.  We assume that θm = {µm, σm} 

and that rm ~ i.i.d. N(µm, σm
2).  Given the diffuse prior p(µm, σm) ∝ 1/σm, the posterior 

distribution of σm is inverted gamma and the posterior of µm is Student-t.  Using monthly 

excess value-weighted market returns from January 1961 to June 2001, we find the 

posterior distribution of µm to have a mean of .47% and a standard deviation of .21%.  

The posterior of σm has a mean of 4.48% and a standard deviation of 0.15%. 

 Ten thousand draws from the predictive distribution (8) are simulated by first 

drawing θj and θm at random from their respective posteriors and then simulating from  
 

p(rj,T+1, rm,T+1 | θj, θm) = p(rj,T+1 | rm,T+1, θj) p(rm,T+1 | θm).        (10) 
 

Optimal portfolio weights are solved numerically by maximizing the sample average of 

U(WT+1), taken across the 10,000 draws.  As Kandel and Stambaugh (1996) note, 
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expected power utility may equal –∞ when the total allocation to risky assets is 100% or 

when short sales are allowed.  We therefore impose the constraints that wj + wm ≤ .99, wj 

≥ 0, and wm ≥ 0.  For brevity, we report here only the optimal allocation to the mutual 

fund. 

 

Table 4 
 
Optimal portfolio allocations to two mutual funds under 
the 1-factor model 
  

Schroder  High Some None 
     
No-learning A=1 0.000 0.518 0.990 
 A=2 0.000 0.390 0.990 
 A=5 0.000 0.220 0.990 
     
Learning A=1 0.002 0.098 0.070 
 A=2 0.064 0.099 0.091 
 A=5 0.030 0.043 0.040 
     
Fidelity  High Some None 
     
No-learning A=1 0.000 0.990 0.990 
 A=2 0.186 0.990 0.990 
 A=5 0.238 0.818 0.919 
     
Learning A=1 0.990 0.990 0.990 
 A=2 0.950 0.990 0.990 
 A=5 0.381 0.435 0.442 

 

 The differences between allocations under no-learning and learning are extreme in 

some cases.  With log utility (A=1), for example, a highly skeptical investor with no-

learning priors would invest nothing in the Fidelity fund, while a similar investor with 

learning priors would allocate 99% of his portfolio, the maximum.  In the case of the 

Schroder fund, an investor with unskeptical no-learning priors would allocate the 

maximum of 99%, while a comparable investor with learning priors would allocate less 

than 10%. 

Broadly speaking, fund allocations tend to track the alphas reported above.  The 

alphas of these funds tend to be higher with less skeptical priors, particularly in the no-

learning case, and the allocations generally reflect this finding.  The exception is found in 
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the allocations to the Schroder fund under learning priors.  While Schroder’s mean alphas 

are highest for the least skeptical priors, allocations to the Schroder fund are largest under 

the “somewhat” skeptical prior.  It appears, in this case, that the appeal of a higher mean 

alpha is more than offset by the “estimation risk” associated with the unskeptical 

investor’s greater uncertainty about alpha (see Table 3).  In general, the important 

message to take away from these examples is that learning can have a huge impact on 

asset allocation. 

 

7. Summary and conclusions 

 This paper is based on a simple intuitive premise.  If the true measures of 

performance (alphas) for a large set of mutual funds were magically revealed to an 

investor, it would affect her belief about the likely degree of abnormal performance for a 

given fund not in that set.  Mathematically, this is a statement that prior beliefs for 

different funds are dependent.  They are dependent insofar as an investor’s expectation 

about the performance of a fund is partly a belief about mutual fund managers as a group 

and, more generally, a belief about the degree to which financial markets are efficient. 

 We introduce prior dependence by assuming that the true alphas are random 

draws from a distribution with hyperparameters µα and σα, the average level of skill and 

standard deviation of skill, respectively.  Numerical techniques are developed for 

evaluating posterior moments in this context.  Simulations are then used to explore the 

beliefs an investor might arrive at under different assumptions about actual management 

skill, an investor’s initial level of skepticism about abnormal performance, and the 

number of funds observed.  

Of central interest are the differences in beliefs that arise as a result of 

incorporating dependence or “learning” in the priors for alpha.  To evaluate this effect, 

beliefs about the cross-section of alphas are calculated for independent “no-learning” 

priors and compared to those based on our learning model.  Two sorts of shrinkage 

factors emerge as relevant for understanding the differences observed.  First, whereas 

beliefs about a given fund’s alpha are based solely on that fund’s returns under prior 

independence, with learning, an aggregate estimate across funds determines the belief 

about µα.  This, in turn, affects beliefs about the individual fund alphas.  In other words, 

learning gives rise to a data-based shrinkage factor, with each fund’s estimate tilted 
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toward the average, to a degree also determined by the data.  Second, when the priors are 

informative, there is also shrinkage toward the prior mean of zero.  This attenuation is 

stronger without learning since the data are perceived as less informative about a given 

fund’s alpha in this case.  

With a learning prior, an investor’s posterior belief about the hyperparameters 

gradually converges to the true distribution as M, the number of funds, increases.  The 

convergence tends to be slower for σα than for µα in the examples we explore.  Ideally, 

deviations between the posterior means and the true fund alphas would be tightly 

centered about zero.  With the learning prior, data-based shrinkage does result in an 

average error that approaches zero, with very good results when M is 1,000 or higher.  In 

contrast, the “bias” induced by shrinkage of each fund’s alpha toward the prior mean is 

fixed under a no-learning prior, as there is no data-based effect to offset it.  Hence, the 

average error does not decline with M and is zero only if the prior mean happens to 

coincide with the actual value of µα (a zero probability event for continuous priors).  This 

is a fundamental difference between the two approaches.  In addition to this bias, the 

cross-sectional standard deviation of the alpha errors and the maximum error are both 

much higher under the no-learning prior.  In fact, the expected maximum under no 

learning is unbounded in M, while it is fairly stable with the learning prior. 

Our empirical application with actual monthly fund returns is based on a set of 

over five thousand funds with an average history of about 77 months of data.  Under 

learning priors, all funds must be considered in forming posterior beliefs, not just the 

surviving funds.  Using all funds, the posterior means for µα and the average fund alpha 

are usually around 1.3 to 1.4% per annum (before expenses), but are 70 basis points 

higher when industry factors are included.  This suggests that managers do indeed 

possess some skill in selecting stocks, though not enough to offset the typical expenses of 

about 2%.  Results based on the subsample of surviving funds suggest a survival bias of 

40-60 basis points.  Posterior means for σα mostly range between 1.5% and 2.3%, 

depending on the prior and benchmark model.  Both µα and σα are estimated fairly 

precisely, at least under the residual independence assumption. 

Under no-learning priors, average alphas can be much lower (around 10 basis 

points) with highly skeptical priors or much higher (over 2.5%) with diffuse priors.  The 

former results from strong shrinkage toward the prior mean, while the latter reflects the 
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absence of data-based shrinkage with no-learning.  Standard deviations of alpha posterior 

means exhibit similar behavior.  The effect of incorporating dependence is most evident 

in the maximum posterior mean alphas across funds.  Using returns net of expenses, the 

maximum is typically between 2% and 7.3% with learning.  Under no-learning priors, the 

maximum can be as high as 44% with some skepticism or 92% with no skepticism  

(diffuse priors).   

While we have documented substantial effects on the cross-sectional distribution 

of posterior beliefs about alphas, the implications of prior dependence for asset allocation 

remain largely unknown.  Although two examples demonstrated the substantial effects of 

learning on the allocation to a particular fund, the implications of prior dependence for 

asset allocation across funds remain unexplored.  We believe that the additional layer of 

cross-sectional dependence introduced by learning priors makes this an interesting and 

challenging issue for future work.  In addition, our simple model of prior dependence 

might be extended to reflect conditional dependence related to fund characteristics.23  

Alternatively, dependence could be related to fund holdings data in a Bayesian version of 

the recent Cohen, Coval, and Pastor (2002) approach.   

Dependence will likely play a significant role in other cross-sectional contexts as 

well, such as the testing and evaluation of asset pricing models.  For example, one might 

doubt the adequacy of the CAPM, a priori, because the theory fails to incorporate 

hedging demands, taxes, or behavioral biases, to name just a few of the many 

possibilities.  Analogous to our argument for mutual fund alphas, knowing the true 

deviations from the CAPM for a large set of stocks would affect our belief about the 

adequacy of the model in general.  This would inform our prior belief about the 

deviations for other stocks, though perhaps through a more complicated specification that 

ultimately incorporates the covariances between securities and other stock characteristics.  

While these natural extensions of our basic framework are beyond the scope of this 

paper, we look forward to exploring them in future work.   

 

                                                 
23 For example, Baks (2002) considers the common effect of a given manager or fund organization on fund 
alphas. 
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Table 1 

Posterior means and standard deviations of µα and σα under learning priors 

 Highly skeptical priors Somewhat skeptical priors Unskeptical priors 
    
        K = 1 (RMRF) 
       
µα – all funds 1.40 (0.04) 1.47 (0.05) 1.48 (0.05) 
µα – surviving funds only 1.92 (0.05) 2.08 (0.06) 2.11 (0.06) 
       
σα – all funds 1.00 (0.07) 1.40 (0.06) 1.50 (0.06) 
σα – surviving funds only 0.82 (0.05) 1.24 (0.06) 1.36 (0.06) 
    
       K = 3 (RMRF, SMB, and HML) 
       
µα – all funds 1.30 (0.05) 1.38 (0.05) 1.38 (0.05) 
µα – surviving funds only 1.77 (0.06) 1.92 (0.06) 1.95 (0.07) 
       
σα – all funds 1.99 (0.07) 2.21 (0.07) 2.26 (0.07) 
σα – surviving funds only 1.92 (0.08) 2.24 (0.08) 2.30 (0.08) 
    
    K = 4 (RMRF, SMB, HML, and MOM) 
       
µα – all funds 1.33 (0.04) 1.37 (0.05) 1.39 (0.05) 
µα – surviving funds only 1.73 (0.05) 1.85 (0.05) 1.87 (0.06) 
       
σα – all funds 1.52 (0.06) 1.77 (0.06) 1.84 (0.06) 
σα – surviving funds only 1.38 (0.07) 1.74 (0.07) 1.81 (0.07) 
    
    K = 7 (RMRF, SMB, HML, MOM, and Industry Factors) 
    
µα – all funds 2.11 (0.05) 2.23 (0.05) 2.24 (0.05) 
µα – surviving funds only 2.63 (0.06) 2.83 (0.06) 2.86 (0.06) 
       
σα – all funds 2.15 (0.07) 2.37 (0.06) 2.42 (0.06) 
σα – surviving funds only 2.00 (0.08) 2.29 (0.07) 2.34 (0.08) 
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Table 2 

Summary statistics on posterior means of individual fund alphas (all funds) 

 Highly skeptical 
priors 

Somewhat skeptical 
priors 

Unskeptical 
priors 

     
   K = 1 (RMRF)  
     
average α posterior mean no learning 0.10 0.65 2.84 
 learning 1.41 1.47 1.48 
     
standard deviation of mean α no learning 0.25 1.72 9.17 
 learning 0.32 0.53 0.59 
     
          K = 3 (RMRF, SMB, and HML) 
     
average α posterior mean no learning 0.12 0.78 2.48 
 learning 1.32 1.38 1.38 
     
standard deviation of mean α no learning 0.33 2.22 8.31 
 learning 1.13 1.28 1.31 
     
           K = 4 (RMRF, SMB, HML, and MOM) 
     
average α posterior mean no learning 0.13 0.80 2.55 
 learning 1.34 1.37 1.39 
     
standard deviation of mean α no learning 0.34 2.11 7.87 
 learning 0.76 0.93 0.97 
     
      K =7 (RMRF, SMB, HML, MOM, and Industry Factors) 
     
average α posterior mean no learning 0.20 1.25 3.39 
 learning 2.14 2.23 2.24 
     
standard deviation of mean α no learning 0.37 2.25 8.51 
 learning 1.30 1.47 1.50 
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Table 3 

Summary statistics on posterior means of surviving fund alphas after fees and costs 

 Highly skeptical 
priors 

Somewhat skeptical 
priors 

Unskeptical 
priors 

     
   K = 1 (RMRF)  

   
average α posterior mean no learning -2.03 -1.17 2.32 
 learning -0.69 -0.59 -0.57 
     
standard deviation of mean α no learning 0.76 1.71 8.87 
 learning 0.75 0.84 0.87 

   
maximum α posterior mean no learning 0.74 6.87 86.19 

learning 1.72 2.96 3.23 
   

K = 3 (RMRF, SMB, and HML) 
   

average α posterior mean no learning -2.00 -1.06 1.34 
 learning -0.68 -0.60 -0.58 
     
standard deviation of mean α no learning 0.81 2.33 8.62 
 learning 1.31 1.44 1.46 

   
maximum α posterior mean no learning 0.63 44.54 88.13 

learning 4.12 4.51 4.58 
   

K = 4 (RMRF, SMB, HML, and MOM) 
   

average α posterior mean no learning -1.99 -1.05 1.40 
 learning -0.71 -0.65 -0.62 
     
standard deviation of mean α no learning 0.82 2.22 8.06 
 learning 1.03 1.15 1.19 

   
maximum α posterior mean no learning 1.21 39.36 81.26 

learning 2.96 3.26 3.28 
   

K = 7 (RMRF, SMB, HML, MOM, and Industry Factors) 
   

average α posterior mean no learning -1.91 -0.55 2.18 
 learning 0.20 0.31 0.34 
     
standard deviation of mean α no learning 0.85 2.34 8.54 
 learning 1.43 1.57 1.59 

   
maximum α posterior mean no learning 

learning 
1.69 
6.47 

24.67 
7.59 

92.27 
7.31 



 37

−0.4 0 0.4
0

100

200
.00 .06

M = 10

Highly skeptical prior

−1 0 1
0

50

100
.01 .33

Figure 1
Posterior means of µα −− no skill

Somewhat skeptical prior

−4 0 4
0

50

100
.02 1.08

Unskeptical prior

−0.4 0 0.4
0

50

100
.01 .12

M = 100

−1 0 1
0

50

100
.01 .26

−4 0 4
0

100

200
.01 .31

−0.4 0 0.4
0

50

100
.00 .08

M = 1000

−1 0 1
0

100

200
.00 .09

−4 0 4
0

500

1000
.00 .09

−0.4 0 0.4
0

200

400
.00 .03

M = 10000

−1 0 1
0

500

1000
.00 .03

−4 0 4
0

500

1000
.00 .03

 

0 0.5 1
0

500

1000
.76 .00

M = 10

Highly skeptical prior

0 2 4
0

200

400
2.91 .13

Figure 2
Posterior means of σα −− no skill

Somewhat skeptical prior

0 4 8
0

100

200
5.73 .47

Unskeptical prior

0 0.5 1
0

500

1000
.75 .00

M = 100

0 2 4
0

200

400
2.08 .10

0 4 8
0

500
2.71 .13

0 0.5 1
0

500
.73 .01

M = 1000

0 2 4
0

500
1.32 .04

0 4 8
0

500

1000
1.53 .05

0 0.5 1
0

500

1000
.64 .01

M = 10000

0 2 4
0

500

1000
.86 .02

0 4 8
0

500

1000
.95 .02

 



 38

−1 0 1
0

100

200
.04 .08

M = 10

Highly skeptical prior

−2 0 2
0

50

100
.21 .38

Figure 3
Posterior means of µα −− true value = .6%

Somewhat skeptical prior

−4 0 4
0

50

100
.60 1.20

Unskeptical prior

−1 0 1
0

100

200
.26 .15

M = 100

−2 0 2
0

100

200
.53 .30

−4 0 4
0

100

200
.61 .36

−1 0 1
0

100

200
.53 .10

M = 1000

−2 0 2
0

200

400
.59 .11

−4 0 4
0

500

1000
.60 .11

−1 0 1
0

500
.59 .03

M = 10000

−2 0 2
0

500

1000
.60 .03

−4 0 4
0

500

1000
.60 .03

0 1 2
0

500

1000
.76 .00

M = 10

Highly skeptical prior

0 2 4
0

200

400
2.97 .16

Figure 4
Posterior means of σα −− true value = 1.5%

Somewhat skeptical prior

0 4 8
0

100

200
5.85 .51

Unskeptical prior

0 1 2
0

500

1000
.77 .01

M = 100

0 2 4
0

200

400
2.29 .14

0 4 8
0

200

400
2.94 .17

0 1 2
0

200

400
.90 .05

M = 1000

0 2 4
0

200

400
1.75 .09

0 4 8
0

500

1000
1.92 .08

0 1 2
0

200

400
1.45 .04

M = 10000

0 2 4
0

500

1000
1.57 .04

0 4 8
0

500

1000
1.60 .04

 



 39

−4 −2 0 2 4
0

0.2

0.4

0.6
Density with high skepticism

Marginal priors for α (solid) and a normal density with the same mean and variance (dotted)
Figure 5

−4 −2 0 2 4
−9

−6

−3

0
Log density with high skepticism

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15
Density with some skepticism

−15 −10 −5 0 5 10 15
−12

−8

−4

0
Log density with some skepticism

 



 40

 

−0.5 0 0.5
0

100

200
.00 .06

M = 10

Highly skeptical priors
No learning

−0.5 0 0.5
0

50

100
.01 .12

With learning

−2 0 2
0

50

100
.02 .49

Figure 6
Average mean α −− no skill

Somewhat skeptical priors
No learning

−2 0 2
0

50

100
.02 .60

With learning

−5 0 5
0

50

100
.00 1.39

Unskeptical priors
No learning

−5 0 5
0

50

100
.02 1.08

With learning

−0.5 0 0.5
0

200

400
.00 .02

M = 100

−0.5 0 0.5
0

50

100
.01 .13

−2 0 2
0

100

200
.01 .16

−2 0 2
0

100

200
.01 .27

−5 0 5
0

100

200
.01 .45

−5 0 5
0

200

400
.01 .31

−0.5 0 0.5
0

500

1000
.00 .01

M = 1000

−0.5 0 0.5
0

100

200
.00 .08

−2 0 2
0

500

1000
.00 .05

−2 0 2
0

200

400
.00 .09

−5 0 5
0

500

1000
.00 .14

−5 0 5
0

500

1000
.00 .09

−0.5 0 0.5
0

500

1000
.00 .00

M = 10000

−0.5 0 0.5
0

200

400
.00 .03

−2 0 2
0

500

1000
.00 .02

−2 0 2
0

500

1000
.00 .03

−5 0 5
0

500

1000
.00 .04

−5 0 5
0

500

1000
.00 .03

 
 
 
 

0 0.25 0.5
0

50

100
.20 .06

M = 10

Highly skeptical priors
No learning

0 0.25 0.5
0

50

100
.18 .05

With learning

0 1.5 3
0

50

100
1.50 .40

Figure 7
Standard deviation of mean α −− no skill

Somewhat skeptical priors
No learning

0 1.5 3
0

50

100
1.27 .37

With learning

0 6 12
0

50

100
4.13 1.70

Unskeptical priors
No learning

0 6 12
0

100

200
2.31 .73

With learning

0 0.25 0.5
0

100

200
.21 .02

M = 100

0 0.25 0.5
0

100

200
.19 .02

0 1.5 3
0

100

200
1.56 .13

0 1.5 3
0

200

400
.89 .12

0 6 12
0

100

200
4.35 .54

0 6 12
0

500

1000
1.23 .15

0 0.25 0.5
0

500
.21 .01

M = 1000

0 0.25 0.5
0

200

400
.18 .01

0 1.5 3
0

500

1000
1.56 .04

0 1.5 3
0

500

1000
.47 .03

0 6 12
0

500
4.39 .20

0 6 12
0

500

1000
.59 .04

0 0.25 0.5
0

500

1000
.21 .00

M = 10000

0 0.25 0.5
0

500

1000
.14 .01

0 1.5 3
0

500

1000
1.56 .01

0 1.5 3
0

500

1000
.23 .01

0 6 12
0

500

1000
4.39 .09

0 6 12
0

500

1000
.28 .01

 



 41

0 1 2
0

100

200
.33 .17

M = 10

Highly skeptical priors
No learning

0 1 2
0

50

100
.31 .19

With learning

0 10 20
0

100

200
2.42 1.04

Figure 8
Maximum mean α −− no skill

Somewhat skeptical priors
No learning

0 10 20
0

100

200
2.05 .99

With learning

0 50 100
0

200

400
6.81 4.11

Unskeptical priors
No learning

0 50 100
0

200

400
3.70 1.89

With learning

0 1 2
0

100

200
.62 .16

M = 100

0 1 2
0

50

100
.57 .20

0 10 20
0

200

400
4.25 .95

0 10 20
0

200

400
2.38 .57

0 50 100
0

200

400
14.43 4.85

0 50 100
0

500

1000
3.21 .73

0 1 2
0

100

200
.91 .15

M = 1000

0 1 2
0

100

200
.80 .16

0 10 20
0

100

200
5.84 .92

0 10 20
0

500
1.82 .29

0 50 100
0

100

200
24.72 7.40

0 50 100
0

500

1000
2.18 .33

0 1 2
0

100

200
1.17 .13

M = 10000

0 1 2
0

100

200
.85 .12

0 10 20
0

200

400
7.46 .99

0 10 20
0

500

1000
1.28 .15

0 50 100
0

100

200
36.32 7.92

0 50 100
0

500

1000
1.47 .16

 
 
 



 42

−2 0 2
0

50

100
−.54 .45

M = 10

Highly skeptical priors
No learning

−2 0 2
0

50

100
−.51 .43

With learning

−3 0 3
0

50

100
−.29 .56

Figure 9
Average mean α error (mean α − true α) −− µα = .6%, σα = 1.5%
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Standard deviation of mean α error (mean α − true α) −− µα = .6%, σα = 1.5%
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Figure 11
Maximum mean α error (mean α − true α) −− µα = .6%, σα = 1.5%

Somewhat skeptical priors
No learning

0 6 12
0

100

200
2.29 1.06

With learning

0 40 80
0

200

400
6.81 4.11

Unskeptical priors
No learning

0 40 80
0

200

400
3.86 1.92

With learning

0 4 8
0

100

200
2.99 .61

M = 100

0 4 8
0

100

200
3.24 .62

0 6 12
0

100

200
4.37 .95

0 6 12
0

100

200
3.64 .71

0 40 80
0

100

200
14.43 4.85

0 40 80
0

500

1000
4.15 .82

0 4 8
0

100

200
4.05 .52

M = 1000

0 4 8
0

100

200
4.51 .52

0 6 12
0

100

200
5.94 .91

0 6 12
0

200

400
4.48 .53

0 40 80
0

100

200
24.72 7.40

0 40 80
0

500

1000
4.54 .54

0 4 8
0

100

200
4.95 .45

M = 10000

0 4 8
0

100

200
5.36 .45

0 6 12
0

100

200
7.57 .95

0 6 12
0

200

400
5.37 .45

0 40 80
0

100

200
36.32 7.93

0 40 80
0

500

1000
5.37 .45

 
 
 
 
 
 
 
 
 
 
 



 44

−4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Learning priors

N
o−

le
ar

ni
ng

 p
rio

rs

Posterior means of individual fund alphas with high skepticism (K = 7)
Figure 12
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Posterior means of individual fund alphas with some skepticism (K = 7)
Figure 13
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Posterior standard deviations of individual fund alphas with high skepticism (K = 7)
Figure 14
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Posterior means of individual fund alphas with high skepticism under learning priors (K = 7)
Figure 16
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Posterior means of individual fund alphas with some skepticism under learning priors (K = 7)
Figure 17

 
 




