
NBER WORKING PAPER SERIES

JUDGING FUND MANAGERS BY
THE COMPANY THEY KEEP

Randolph Cohen
Joshua Coval
Luboš Pástor

Working Paper 9359
http://www.nber.org/papers/w9359

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2002

We thank George Chacko, Aida Charoenrook, Gene Fama, Owen Lamont, Rob Stambaugh, Pietro Veronesi,
Tuomo Vuolteenaho, and seminar participants at Arizona State University, Dartmouth College, Emory
University, Harvard University, Indiana University, Michigan State University, Northwestern University,
University of Chicago, University of Pennsylvania, and Vanderbilt University for helpful comments. Huong
Trieu provided excellent research assistance.  The views expressed herein are those of the authors and not
necessarily those of the National Bureau of Economic Research.

© 2002 by Randolph Cohen, Joshua Coval, and Luboš Pástor.  All rights reserved.  Short sections of text, not
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including ©
notice, is given to the source.



Judging Fund Managers by the Company They Keep
Randolph Cohen, Joshua Coval, and Luboš Pástor
NBER Working Paper No. 9359
November 2002
JEL No. G1              

ABSTRACT

We develop a performance evaluation approach in which a fund manager's skill is judged

by the extent to which his investment decisions resemble the decisions of managers with

distinguished performance records. The proposed performance measures are estimated more

precisely than standard measures, because they use historical returns and holdings of many funds

to evaluate the performance of a single fund. According to one of our measures, funds with

significantly positive ability considerably outnumber funds with significantly negative ability at the

end of our sample. Simulations demonstrate that our measures are particularly useful in ranking

managers. In an application that relies on such ranking, we find only weak persistence in the

performance of U.S. equity funds after accounting for momentum in stock returns.
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Introduction

People are often judged by the company they keep. Various human characteristics that

are di±cult to observe directly are commonly inferred from the characteristics of others

who behave in a similar manner. For example, a bored air traveler eager to chat about

Madonna's life story is more likely to turn to a fellow passenger reading the National

Enquirer than to a passenger reading the Wall Street Journal, because the readership of

the former periodical is generally known to be more interested in celebrity gossip.

When people compete, their success is often predicted by their techniques, and the

quality of a given technique is frequently evaluated based on the track records of the

technique's followers. As an example, suppose a group of basketball players, some of

whom shoot with both hands and some with only one hand, have been taking 10 shots

each at the basket. So far, the average score of the two-handers is 8/10, while the

one-handers' average is only 4/10. Two players, one one-hander and one two-hander,

have completed only half of their shots so far, and both have scored 4/5. Suppose you

are to bet on which of the two players is going to achieve a higher score out of 10.

Although the track records of both players are identical, it seems sensible to bet on

the two-hander, because the track records of the other players show that two-handed

shooters tend to score higher. The one-hander, who is employing what appears to be an

inferior technique, is more likely to have been lucky in his ¯rst ¯ve shots.

Similar to basketball players, active mutual fund managers rely on a variety of tech-

niques when trying to beat their benchmarks, and many of these techniques are common

to groups of managers. For example, managers collect information from di®erent sources

and use di®erent valuation methods, but there are clusters of managers who use simi-

lar sources and similar methods. Managers using similar techniques are likely to make

similar investment decisions and also to have similar performance. This paper focuses

on the aspect of performance that is due to commonality in the managers' techniques.

In this paper, a fund manager's ability to select outperforming stocks is judged by

the extent to which his investment decisions resemble those of other successful managers.

One way to assess the similarity of the managers' investment decisions is to compare

the compositions of their portfolios. For example, consider two managers with equally

impressive past returns, where one manager currently keeps a big chunk of his portfolio
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in the stock of Intel, while the other manager holds mostly Microsoft. Suppose also

that Intel is currently held especially by managers with good past performance, whereas

Microsoft is held mostly by managers with undistinguished records. It seems reasonable

to rule that the ¯rst manager, whose decision to hold Intel is shared by a higher-caliber

set of managers, has superior ability to select stocks, while the second manager, whose

techniques coincide with those of subpar managers, has been merely fortunate.

The performance measure proposed in the paper is de¯ned with respect to some

simpler reference measure, for which we choose the traditional Jensen's alpha. We

show that our measure of a manager's skill is a weighted average of the traditional skill

measures across all managers, where the weights are essentially the covariances between

the manager's portfolio weights and the weights of the other managers. Put di®erently, if

two managers have highly similar portfolio weights, then one manager's skill contributes

substantially to our measure of the other manager's skill.

Another way of comparing the managers' investment decisions is to compare their

trades. A modi¯ed \trade-based" version of our performance measure judges a manager's

skill by the extent to which recent changes in his holdings match those of managers with

outstanding past performance. This measure is also a weighted average of the tradi-

tional skill measures, but now the weights are essentially the covariances between the

concurrent changes in the manager's portfolio weights and those of the other managers.

According to the trade-based measure, the manager is skilled if he tends to buy stocks

that are concurrently purchased by other managers who have performed well, and sell

stocks that are concurrently purchased by managers who have performed poorly.

The extent to which fund managers tend to buy and sell stocks at the same time is

analyzed by Lakonishok, Shleifer, and Vishny (1992), Grinblatt, Titman, and Wermers

(1995), and Wermers (1999), among others. However, this literature on \herding" does

not propose using the degree of similarity in the managers' trading activities to evaluate

their performance. Hong, Kubik, and Stein (2002) show that fund managers from the

same city are more likely to hold, buy, or sell the same stock at the same time than are

managers from di®erent cities. Given this evidence, managers from the same city are

likely to be assigned more similar skill according to our measure than managers from

di®erent cities. This seems appropriate. Hong, Kubik, and Stein attribute their ¯nding

to word-of-mouth information di®usion, and it seems sensible to assign similar skill to
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managers using similar information.

Evaluating mutual fund performance is a topic of enormous relevance for the well-

being of individual investors and for market e±ciency in general. The traditional ap-

proach to performance evaluation relies solely on historical fund returns to construct

measures such as Jensen's alpha (Jensen, 1968) or Sharpe ratio (Sharpe, 1966). Since

return histories of many existing funds are short, these traditional measures are often

imprecise. To cope with the low precision, recent studies propose alternative perfor-

mance measures that rely also on fund holdings.1 Those measures employ the portfolio

holdings of the fund whose performance is being evaluated, but they do not exploit the

information about the fund's performance contained in the holdings and past returns

of other funds. Including that additional information and documenting its bene¯ts is a

contribution of this paper.

Our performance measures o®er substantially higher precision compared to the tra-

ditional return-based measures. Since our measures are weighted averages of the tradi-

tional measures, precision is added by pooling across funds the information contained in

the funds' average returns. That is, instead of using just the historical returns of a given

manager to estimate his performance, our measures use the return series of all managers

whose holdings (or changes in holdings) overlap with those of the given manager. The

dramatic improvement in precision is con¯rmed empirically using the Spectrum mutual

fund database. Among the U.S. equity funds at the end of our sample, our holdings-

based measure is about four to eight times more precise than the traditional measure,

on average, and our trade-based measure is about seven times more precise. The biggest

precision gains are obtained for short-history funds, as expected. Overall, our measures

are more precise for 90 to 98 percent of all funds.

We ¯nd some interesting results regarding the signi¯cance of managerial stock-picking

skill. According to our holdings-based measure, funds with signi¯cantly positive ability

before costs and fees vastly outnumber funds with signi¯cantly negative ability at the

end of our sample. Signi¯cantly positive ability is found for 14 to 359 times as many

funds as signi¯cantly negative ability, depending on the choice of the reference measure.

1See, for example, Grinblatt and Titman (1993), Daniel, Grinblatt, Titman, and Wermers (1997),
Wermers (2000), and Ferson and Khang (2002). With no reliance on holdings data, P¶astor and Stam-
baugh (2002) and Busse and Irvine (2002) show that additional precision in the traditional performance
measures can be achieved by incorporating returns on seemingly unrelated passive assets.
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Under the four benchmarks of Carhart (1997), only three funds exhibit signi¯cantly

negative ability, but 1,076 funds (one out of three) exhibit signi¯cantly positive ability.

This result seems more plausible than inferences based on standard measures as well

as on our trade-based measure, which both imply approximately equal proportions of

managers with positive and negative skill. While some managers might possess the

ability to successfully trade on private information, managers with negative true skill

(i.e. managers less skilled than monkeys) must surely be far more di±cult to ¯nd. A

similar argument is made by Baks, Metrick, and Wachter (2001), who proclaim a prior

belief that managerial skill before costs and fees cannot be negative.

A simulation analysis is conducted to examine the extent to which our skill measures

are able to capture true skill. When managers are ranked by true skill and then sepa-

rately by various performance estimators, our estimators produce higher rank correla-

tions with true skill than standard estimators that do not exploit similarities in holdings

across managers. Our measures are particularly e®ective when the number of managers

is large and when their portfolios di®er substantially from each other, i.e. when there is

more information to pool across funds. Our measures are shown to exhibit some bias in

estimating the traditional measure of skill, Jensen's alpha. Due to the weight-averaging

of skill across managers, our holdings-based measure is biased towards the average level

of skill in the population of managers, similar in spirit to a Bayesian shrinkage estimator.

The nature of the bias does not impair the rank-ordering of managers, though, and our

estimators dominate the usual estimators of alpha even when the objective is to rank

managers by their alphas. In sum, the simulations reveal that our performance measures

are especially useful in applications that involve ranking managers.

One such application is provided in our empirical examination of persistence in the

performance of U.S. equity funds. The literature is ambiguous as to whether past mutual

fund returns predict future returns. Grinblatt and Titman (1992), Hendricks, Patel, and

Zeckhauser (1993), Goetzmann and Ibbotson (1994), Brown and Goetzmann (1995),

Elton, Gruber, and Blake (1996), and Bollen and Busse (2002), among others, all ¯nd

some persistence in mutual fund performance, especially among the funds lagging their

benchmarks. However, much of the persistence has been attributed to momentum in

stock returns and to fund expenses (Carhart, 1997, and Wermers, 1997), and some also

to survivorship bias (Brown, Goetzmann, Ibbotson, and Ross, 1992). The mixed nature

of the evidence (see also Malkiel, 1995) begs for further research.

4



To analyze performance persistence, at the end of each quarter between the years

1977 and 2000, funds are sorted into deciles according to our measures as well as some

traditional measures of performance estimated over the past 12 months. The deciles'

returns are tracked over the subsequent quarter, and the risk-adjusted performance of

the decile portfolios is compared over the full sample. When the traditional estimates

of the CAPM and Fama-French alphas are used to rank managers, fund returns exhibit

signi¯cant persistence: The di®erence between the risk-adjusted returns of the top and

bottom deciles is 8.3% per year for the CAPM alphas and 7.2% for the Fama-French

alphas, with the t-statistics of 3.0 and 3.5, respectively. However, the return di®erence

drops to an insigni¯cant 1.4% when the momentum benchmark is included, con¯rming

the results of Carhart (1997) and Wermers (1997). Persistence is slightly stronger when

measured by our holdings-based measure: The top-bottom decile return di®erence is

signi¯cant at 8.6% per year using the CAPM alpha and 8.3% using the Fama-French

alpha as a reference measure. After accounting for momentum, however, the di®erence

again dips below signi¯cance, to 1.6%. Our trade-based measure produces smaller return

di®erences with higher t-statistics, but even this measure leads to marginally insigni¯cant

persistence after accounting for momentum. The evidence in favor of persistence further

weakens when funds are sorted by past performance estimated over 24 months or longer.

We then extend our investigation of persistence by analyzing whether our perfor-

mance measures are able to predict their own future values. Every year between 1976

and 2000, funds are sorted according to various measures of performance estimated

over the previous year, and persistence is assessed by computing the correlations be-

tween the fund rankings in adjacent years. When funds are sorted on their usual CAPM

alphas, these correlations are signi¯cantly positive on average, indicating signi¯cant per-

sistence in performance, but the correlations turn insigni¯cant after adjusting for the

Fama-French factors and momentum in stock returns. The image of weak persistence

is reinforced when funds are sorted on our performance measures. Using the CAPM

alpha as the reference measure, our holdings-based measure as well as our trade-based

measure exhibit signi¯cant persistence, but the signi¯cance evaporates when the Fama-

French and four-factor alphas are used as reference measures. Persistence in skill is even

weaker (though still positive) when measured at a two-year frequency. In short, per-

sistence in fund performance seems hard to ¯nd, even with our performance measures,

which seem better suited for this investigation than standard measures.
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The paper proceeds as follows. Section I introduces our performance measures. Sec-

tion II discusses a simulation exercise that evaluates the usefulness of these measures

in capturing true skill. Section III implements the measures empirically to assess their

precision and signi¯cance, as well as to investigate persistence in the performance of

U.S. equity funds. Section IV concludes.

I New Performance Measures

This section introduces a performance measure that judges a fund manager's ability

by the extent to which his stock holdings overlap with those of managers whose other

investments have been successful. After discussing the interpretation and the precision

of this measure, the section proposes its modi¯ed version, which focuses on changes in

fund holdings rather than their levels.

I.1 A Measure Based on Levels of Holdings

Assume there are M managers, m = 1; : : : ;M , and N stocks, n = 1; : : : ; N , each of

which is held by at least one manager. Let wm;n denote the current weight on stock n

in manager m's portfolio, and let ±m denote the skill of manager m. For each stock n,

de¯ne its quality measure ¹±n as

¹±n =
MX
m=1

vm;n±m; (1)

where

vm;n =
wm;nPM
m=1wm;n

: (2)

The quality of stock n is de¯ned as the average skill of all managers who hold stock n in

their portfolios, weighted by how much of the stock they hold. Stocks with high quality

are those that are held mostly by highly-skilled managers. Managers who hold stocks

of high quality are likely to be skilled, because their investment decisions are similar to

those of other skilled managers (i.e. such managers are in \good company"). Since a

larger position in a stock of given quality reveals more about the manager's ability, the
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population version of our performance measure is constructed as

±¤m =
NX
n=1

wm;n¹±n: (3)

In words, our measure of a manager's performance is the average quality of all stocks in

the manager's portfolio, where each stock contributes according to its portfolio weight.

The population measure ±¤m relies on true skill ±m. Since true skill is unknown, our

measure must be de¯ned in relation to some reference measure of skill. The reference

measure needs to re°ect the fund's average return in excess of the return on the appro-

priate benchmark, which captures any style e®ects for which the manager should not be

rewarded. One sensible choice would be the characteristic-based benchmark of Daniel,

Grinblatt, Titman, and Wermers (1997), for example. In the interest of simplicity, we

opt for a more conventional reference measure, the traditional Jensen's alpha, de¯ned

as the intercept from the regression of the fund's excess returns on benchmark returns.

To construct our estimator of managerial skill, we replace ±m in equation (1) by ±̂m, the

usual OLS estimator of alpha:

±̂¤m =
NX
n=1

wm;n
¹¹±n; (4)

where

¹¹±n =
MX
m=1

vm;n±̂m: (5)

This estimator can in principle be further iterated, as ±̂¤m can itself be used in place of

±̂m in equation (5). In simulations as well as in the empirical work, we examine not only

the estimator in equation (4), but also its iterated counterpart.2 Also note that in the

unlikely event of no overlap in holdings, when manager m holds only stocks that are

held by no other manager, our measure collapses to the traditional measure, ±̂¤m = ±̂m.

Our performance measure has an interesting alternative interpretation. To obtain it,

¯rst let hn denote the ratio of the dollar value of stock n held by all M managers to the

total dollar value of all stocks held by these managers. Then

hn =

PM
m=1wm;nPN

n=1

PM
m=1wm;n

=

PM
m=1wm;n
M

; (6)

2Note that the gains from repeated iteration are in principle limited, because replacing ±m in equation
(1) by ±¤m results in an unsatisfactory de¯nition of ±

¤
m. Such a circular de¯nition can be shown to imply

that the ±¤m's for all managers are equal to the same arbitrary constant. Hence, we iterate only once.
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a relation that will be useful shortly. Let W denote the N £M matrix whose (n;m)

element is wm;n, let V denote the N £M matrix whose (n;m) element is vm;n, let ±̂

denote the M £ 1 vector of f±̂mgMm=1, let ¹¹± denote the N £ 1 vector of f¹¹±ngNn=1, and let
±̂¤ denote the M £ 1 vector of f±̂¤mgMm=1. Since ±̂¤ = W 0¹¹± and ¹¹± = V ±̂, the vector of our

performance measures from equation (4) can be written as

±̂¤ = Z±̂; (7)

where Z = W 0V . The performance of manager m is thus

±̂¤m =
MX
j=1

zm;j ±̂j; (8)

where zm;j is the (m; j) element of Z. Using equations (2) and (6), we have

zm;j =
NX
n=1

wm;nvj;n =
1

M

NX
n=1

wm;nwj;n
1

hn
: (9)

Our measure of manager m's skill, ±̂¤m, is therefore a weighted average of the usual skill

measures across all managers.3 The weight assigned to the performance of manager j,

zm;j , is a loose measure of covariance between the weights of managers m and j. This is

sensible { if managers m and j own many of the same stocks, they may be using similar

strategies, and we want to pay a lot of attention to the performance of manager j when

evaluating manager m. The scaling factor 1=hn in equation (9) downweights stocks that

receive large weights on average in the portfolios of all managers. For example, if a

certain stock occupied 20% of the market capitalization, many managers would have

large weights in that stock, and its contribution to the performance measures would be

overstated in the absence of the scaling factor. Similarly, if both managers happen to

hold a lot of a stock that few others hold, that is valuable information and the scaling

factor emphasizes it.

Due to the symmetry of Z (zi;j = zj;i), which follows from equation (9), it is easy to

show that the averages of ±̂¤m and ±̂m across managers are equal:

1

M

MX
i=1

±̂¤i =
1

M

MX
i=1

MX
j=1

zi;j ±̂j =
1

M

MX
j=1

±̂j
MX
i=1

zi;j =
1

M

MX
j=1

±̂j : (10)

3The weights sum to one:

MX
j=1

zm;j =

MX
j=1

NX
n=1

wm;nwj;n
1

Mhn
=

NX
n=1

1

Mhn
wm;n

MX
j=1

wj;n =

NX
n=1

wm;n = 1:
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As a result, our skill measure provides only as much information as the usual measure

about the performance of the mutual fund industry as a whole. Nevertheless, our mea-

sure can be useful in evaluating the funds' relative performance, as documented below.

The precision of our estimators can be assessed by their squared standard errors,

which are displayed along the main diagonal of the M £M covariance matrix of ±̂¤.

This matrix can be computed from equation (7) as

Cov(±̂¤; ±̂¤
0
) = Z−Z 0; (11)

where − = Cov(±̂; ±̂0) is the M £M covariance matrix of ±̂. If all funds had return

histories spanning the same time period, − could in principle be calculated from one big

multivariate regression of fund excess returns on benchmark returns. However, funds

have histories of unequal lengths spanning di®erent periods. The appendix describes

how − can be calculated in such an environment.

To assess the gains in precision provided by our measure, write the squared standard

error of our estimator for manager m as

Var(±̂¤m) = zm−z
0
m =

MX
i=1

MX
j=1

zm;izm;j!i;j; (12)

where zm is the m-th row of Z and !i;j is the (i; j) element of −. For simplicity, assume

(with some loss of generality) that all m elements of ±̂ have the same standard error,

so that !i;i = !
2 for all i = 1; : : : ;M . Then !i;j = !

2½i;j , where ½i;j is the correlation

between ±̂i and ±̂j. Also assume that all zm;i > 0, which is likely to hold in practice for

most though not all pairs of funds. Then

Var(±̂¤m) =
MX
i=1

z2m;i!
2 +

MX
i=1

MX
j=1;j6=i

zm;izm;j!
2½i;j (13)

· !2

0@ MX
i=1

z2m;i +
MX
i=1

MX
j=1;j6=i

zm;izm;j

1A = !2 Ã MX
i=1

zm;i

!2
= !2; (14)

because we already showed that the rows of Z sum to one. This means that so long as

the ±̂'s are not perfectly correlated, ±̂¤m has a lower standard error than ±̂m.
4 Our gains

4If all elements of ±̂ do not have the same standard error, this relation holds only on average and
there are likely to be some m's for which it does not hold. The calculation in equation (14) is analogous
to computing the variance of a portfolio of stocks (with no short positions), which is typically smaller
than the variance of any given stock in the portfolio.

9



in precision relative to ±̂ therefore come from the imperfect correlations between the ±̂'s.

These correlations tend to be low when the cross-sectional correlation of the managers'

residual returns is low. Thus, increasing the number of benchmarks that de¯ne ±̂ can

improve the precision of our estimator not only by increasing the precision of ±̂, but

also by reducing the residual correlations among funds. This observation is con¯rmed

empirically in Section III.

I.2 A Measure Based on Changes in Holdings

In the previous subsection, managers are inferred to be making similar investment de-

cisions if they have similar holdings, regardless of the timing of their trades. In this

subsection, we assume that managers make similar decisions if their trades are similar.

Since trading involves transaction costs, decisions to trade are likely to re°ect stronger

views than decisions to passively hold. The performance measure developed here exploits

similarities between changes in the managers' holdings, rather than their levels.

The return on the portfolio of manager m at time t can be written as

Rm;t =
NX
n=1

wm;nrn;t; (15)

where rn;t denotes the return on stock n. De¯ne the change in the weights as

dm;n = wm;n;t ¡ wm;n;t¡1 1 + rn;t
1 +Rm;t

; (16)

which is the di®erence between the current weight and the weight obtained if the manager

neither bought nor sold any of this stock over the past period.5 Let N+
m = fn : dm;n > 0g

denote the set of stocks purchased by manager m between t ¡ 1 and t and N¡
m = fn :

dm;n < 0g denote the set of stocks sold by manager m over the same time period.

Analogously, let M+
n = fm : dm;n > 0g denote the set of managers who made net

purchases of stock n between t¡ 1 and t, and letM¡
n = fm : dm;n < 0g denote the set

of managers with net sales. We normalize the changes in the weights as

x+m;n =
dm;nP

n2N+
m
dm;n

; x¡m;n =
dm;nP

n2N¡
m
dm;n

; (17)

5In our empirical analysis, one period equals one quarter. If the manager did not trade at all over
the past quarter, so that dm;n = 0 for all n, our measure is unde¯ned for this manager. Also note that
the time subscripts on d, w, and some related measures below are suppressed to simplify notation.
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y+m;n =
dm;nP

m2M+
n
dm;n

; y¡m;n =
dm;nP

m2M¡
n
dm;n

; (18)

so that x+m;n (x
¡
m;n) captures the fraction of manager m's purchases (sales) accounted

for by stock n, and y+m;n (y
¡
m;n) captures the fraction of purchases (sales) of stock n

accounted for by manager m.

For each stock n, de¯ne its quality measure ¹±n as

¹±n = ¹±+n ¡ ¹±¡n ; (19)

where

¹±+n =
X

m2M+
n

y+m;n±̂m (20)

¹±¡n =
X

m2M¡
n

y¡m;n±̂m; (21)

and ±̂m is the usual performance measure, acting as a reference measure again. (Using

±m in place of ±̂m yields the population version of our modi¯ed skill measure, ±
¤¤
m .) The

quality of stock n is the di®erence between the average skill of all managers who bought

stock n recently (¹±+n ) and the average skill of all managers who sold stock n recently

(¹±¡n ), where the averages are weighted by how much was bought or sold. Stocks of

high quality are those that were recently bought mostly by high-skill managers and sold

mostly by low-skill managers. Managers who recently bought high-quality stocks and

sold low-quality stocks are likely to be skilled, because their techniques seem similar to

those of other skilled managers. Hence, our modi¯ed skill measure is

±̂¤¤m = ±̂+m ¡ ±̂¡m; (22)

where

±̂+m =
X
n2N+

m

x+m;n
¹±n (23)

±̂¡m =
X
n2N¡

m

x¡m;n¹±n: (24)

This is the di®erence between the average quality of the stocks recently bought by

manager m and the average quality of the stocks recently sold by this manager. Note

that ±̂+m captures to what extent the manager has been buying high-quality stocks and ±̂
¡
m
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captures to what extent the manager has been selling low-quality stocks. Our measure

combines these two aspects of stock-picking skill.

To get more insight into the new measure, we write it out as

±̂¤¤m =
X
n2N+

m

x+m;n(
X
j2M+

n

y+j;n±̂j ¡
X
j2M¡

n

y¡j;n±̂j) ¡
X
n2N¡

m

x¡m;n(
X
j2M+

n

y+j;n±̂j ¡
X
j2M¡

n

y¡j;n±̂j)

=
MX
j=1

cm;j ±̂j ; (25)

where

cm;j =
NX
n=1

h
x+m;ny

+
j;n1fn2N+

mg1fj2M+
n g ¡ x+m;ny

¡
j;n1fn2N+

mg1fj2M¡
n g : : :

¡ x¡m;ny+j;n1fn2N¡
mg1fj2M+

n g + x¡m;ny
¡
j;n1fn2N¡

mg1fj2M¡
n g
i
; (26)

and 1fg denotes an indicator function equal to one or zero depending on whether the

associated condition is true. The new measure is therefore a \weighted average" of the

usual measures across all managers. The quotation marks are appropriate because the

weights sum to zero,
PM
j=1 cm;j = 0, as shown in the appendix. The weight on manager

j essentially re°ects the covariance of the weight changes of managers m and j. This

weight, cm;j , is a sum of N terms, one for each stock, which capture the products of

the managers' weight changes in that stock. If both managers traded that stock in the

same direction (i.e. if both bought or sold it), this product is positive and increasing in

the extent of the joint action. If one manager bought and the other sold, the product

is negative. Hence the loose covariance interpretation. The higher the covariance of the

weight changes of managers m and j, the more attention we want to pay to the skill of

manager j when evaluating the skill of manager m.6

To summarize the modi¯ed measure, let C denote the M £M matrix whose (i; j)

element is ci;j . Also, let X
+ and X¡ denote M £N matrices whose (i; j) elements are

x+i;j and x
¡
i;j , respectively. Similarly, let Y

+ and Y ¡ denote M £N matrices whose (i; j)

elements are y+i;j and y
¡
i;j , respectively. Zeros are substituted for all (i; j) elements of X

+

and Y + such that di;j < 0, as well as for all (i; j) elements of X¡ and Y ¡ such that

di;j > 0. With this notation, C can be expressed as

C = X+(Y +)0 ¡X+(Y ¡)0 ¡X¡(Y +)0 +X¡(Y ¡)0: (27)

6The average of ±̂¤¤m across managers can be shown to equal zero in the special case when managers
trade stocks only with each other. Since managers generally trade also with other entities such as
individuals, the average ±̂¤¤m is likely to be close to zero but not exactly zero.
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Then the M £ 1 vector of our performance measures in equation (22) can be written as

±̂¤¤ = C±̂; (28)

and the precision of the changes measure can be calculated as

Cov(±̂¤¤; ±̂¤¤
0
) = C−C 0; (29)

where − = Cov(±̂; ±̂0) as before. Henceforth, we often refer to the measure ±̂¤ as the

\levels" measure and to the measure ±̂¤¤ as the \changes" measure.

Our changes measure in equation (22) weighs stock qualities by the relative magni-

tudes of the weight changes across stocks. There is an interesting alternative de¯nition,

±̂¤¤Am =
PN
n=1 dm;n

¹±n, which instead relies on the absolute magnitudes of these changes.

We have explored both changes measures, and found that they lead to the same conclu-

sions throughout the paper. (When ±̂¤¤ is replaced by ±̂¤¤Am , the results are very similar

in all tables except for Table 3, in which ±̂¤¤Am has even higher precision than ±̂¤¤). We

chose to focus on ±̂¤¤m mostly due to its appealing interpretation as the di®erence between

the average qualities of stocks bought and sold.

II Simulations

The purpose of the simulation analysis is to assess the usefulness of our estimators in cap-

turing true managerial skill, which is conveniently known in our simulated environment.

When managers are ranked by their true skill and separately by various performance

estimators, useful information about estimator quality is provided by the resulting rank

order correlations. As shown below, our estimators contain important information about

true skill that is not captured by other commonly used metrics. We also rank managers

by the traditional estimator of their skill, ±m, and investigate the extent to which the

resulting ranking is similar to the rankings produced by our measures ±¤m and ±
¤¤
m and

their estimators. Again, our measures are shown to dominate the standard estimators

that make no use of similarities in holdings across managers.
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II.1 Simulation Design

The simulations consider a simple setting in which M managers receive signals about

expected excess returns of N stocks. Each stock's excess return can be written as

rn = ®n + en; n = 1; : : : ;N (30)

where ®n is stock n's expected excess return and en is an error term. We simulate ®n from

N(0; ¾2®) and en from N(0; ¾2e). Both ®n and en are assumed to be uncorrelated across

stocks, which simpli¯es the calculations and substantially speeds up the simulations.

Each manager receives a signal about each stock. With probability °m, this signal is

equal to the stock's true alpha, and otherwise it is equal to a noise term drawn from an

identical distribution. That is, manager m's signal about stock n is

sm;n =

(
®n with probability °m
un with probability 1¡ °m (31)

where un » N(0; ¾2®). Since higher °m means higher signal quality, °m captures the

manager's true skill in this simulated environment. Each manager's °m is drawn as

°m = q¹g + (1¡ q)gm; m = 1; : : : ;M (32)

where ¹g and gm are drawn from the standard uniform distribution. Higher values of q

imply that the managers' gammas are more alike, which ultimately leads to more similar

portfolio holdings. Lower values of q make the managers more di®erent from each other

in terms of their skill. We show below that more heterogeneity across managers increases

the bene¯ts from using our performance estimator.

The managers are assumed to know the signal structure in equation (31) as well as

their own skill °m and the error volatility ¾e. They have no information about ®n other

than the signal, and they learn about ®n from the signal using the Bayes rule. As shown

in the appendix, the expected return on stock n perceived by manager m is

Em;n = °msm;n; (33)

the perceived variance of stock n's returns is

Vm;n = ¾2e + ¾
2
® + °m(s

2
m;n ¡ ¾2®)¡ s2m;n°2m; (34)
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and the perceived return covariance matrix is diagonal. The managers are assumed to

maximize the Sharpe ratios of their portfolios, so that manager m's weight in stock n is

wm;n / V ¡1m;nEm;n: (35)

As mutual funds are typically not allowed to short, we also require no short sales. This

constraint can be imposed simply by putting a zero weight on any stock with a negative

signal, thanks to our assumption of uncorrelated stock returns.

The traditional measure of the true performance of manager m is his expected ab-

normal return:

±m = w
0
m®; (36)

where ® is the N£1 vector of stock alphas.7 Next, we calculate six di®erent performance
estimators. Since returns are simulated in one period only, the traditional estimator of

±, ±̂, is calculated simply as the manager's realized return:

±̂m = w
0
mr; (37)

where r is the N£1 vector of realized excess stock returns rn. Our performance measure
based on the levels of holdings, ±̂¤, is calculated as

±̂¤m = Zm±̂; (38)

where Zm is de¯ned as row m of matrix Z in equation (7).8 Our performance measure

based on the changes in holdings, ±̂¤¤, is calculated as

±̂¤¤m = Cm±̂; (39)

where Cm is de¯ned as row m of matrix C in equation (28). Since the simulation is set

in a one-period world, changes in holdings are calculated assuming that each investor

initially holds an equally-weighted portfolio of all stocks.

Equations (38) and (39) use ±̂ as the simple initial estimator (or reference measure)

that forms an input to our estimator. In principle, ±̂ can be replaced by any sensible

7For simplicity, we use no benchmark in the simulations, so that returns coincide with abnormal
returns. Simulating benchmark returns seems like an unnecessary complication that would unlikely
make much di®erence, other than to make our assumption of uncorrelated en more realistic.

8If there happens to be a stock that is not held by any manager, the corresponding row of the N£M
weight matrix W is deleted in calculating ±̂¤, to prevent division by zero in equation (2).
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performance estimator, including ours. Therefore, we also compute iterated versions of

our estimators, in which ±̂ in equations (38) and (39) is replaced by ±̂¤ and ±̂¤¤:

±̂¤im = Zm±̂
¤ = ZmZ±̂ (40)

and

±̂¤¤im = Cm±̂
¤¤ = CmC±̂: (41)

For comparison purposes, we also construct a simple Bayesian estimator that shrinks

±̂ towards a common mean:

±̂Bm =
1

2
±̂m +

1

2
¹̂
±; (42)

where
¹̂
± is the average of ±̂'s across all managers.

In addition to the above six estimators, which rely only on holdings and return

information, we also calculate the population versions of ±¤ and ±¤¤ for each manager:

±¤m = Zm± (43)

±¤¤m = Cm±; (44)

where ± is the N£1 vector of the true ±m's. Since these measures re°ect information that
is generally unknown outside the world of simulations, they possess an unfair advantage

over the six estimators. These measures are computed to assess the maximum achievable

gains from using our estimators.

We conduct 10,000 simulations for each set of parameter values. The number of

managersM takes on the values of 10, 50, 100, and 300, the number of stocksN = 10; 50;

and 100, and the weight q = 0 and 0.50. Throughout, ¾® = 0:1 and ¾e = 0:2. In each

simulated sample, we calculate ±, ±̂, ±̂B, ±̂¤, ±̂¤i, ±̂¤¤, ±̂¤¤i, ±¤, and ±¤¤ for each manager.

The managers are ranked according to each of these measures as well as according to

their true skill ° for the purpose of computing the rank order correlations.

II.2 Simulation Results

Table 1 judges the ability of various performance measures to imitate the ranking of

managers by their true skill °. The table reports the rank order correlations of each

16



estimator with °, averaged across 10,000 simulations. Importantly, our levels estimator

±̂¤ consistently delivers a higher rank correlation with ° than the traditional estimator

±̂. The only exceptions occur in some cases when the number of managers is very small

(M = 10), i.e. when there is little cross-sectional information to pool. Our measure

is particularly e®ective when the number of managers is large and when their abilities

(and hence also their portfolios) vary signi¯cantly. For example, with 300 managers,

50 stocks, and zero weight on the common signal (q = 0), our measure delivers a rank

correlation of 0.87 whereas ±̂ delivers only 0.67. Iterating generally further improves

the levels estimator { as we go from ±̂¤ to ±̂¤i, the rank correlations increase unless the

number of managers is small. The changes estimator ±̂¤¤ produces even slightly higher

rank correlations with true ability than the levels estimator ±̂¤. The population versions

of all three measures, ±, ±¤ and ±¤¤, produce similar rank correlations, but our measures

(especially ±¤¤) tend to prevail when the number of managers is large. Finally, note that

as the number of stocks N increases, the managers' portfolios become better diversi¯ed

and it becomes easier for all measures to detect skill. Overall, our performance measures

appear to be very e®ective at ranking managers according to their true skill.

Table 2 evaluates the capacity of various skill measures to capture the traditional skill

measure ±. The average rank correlations of each estimator with ±, reported in Panel

A, lead to the same conclusions as Table 1. Our levels estimator ±̂¤ achieves a higher

rank correlation with ± than the traditional estimator ±̂ and the Bayesian estimator ±̂B

(both of which deliver the same rank correlations by construction), despite the fact that,

unlike ±̂¤, those two estimators are designed to capture ±. The only exceptions occur

when the number of managers is small, M = 10, as before. The e®ectiveness of our

measure again increases with M and decreases with q. With M = 300, N = 50, and

q = 0, our measure's rank correlation with ± is 0.95, but it is only 0.75 for the other two

measures. The performance of the changes estimator ±̂¤¤ is similar to that of the levels

estimator and, as before, iterating typically helps both estimators unless M is small.

The population versions of our measures, ±¤ and ±¤¤, which present an upper bound on

how close we can hope to get to ± with our sample estimators, attain very high rank

correlations (sometimes as high as 0.99) under all speci¯cations. This suggests that the

bias in our measures with respect to ± has little e®ect on manager rankings. To sum

up, our estimators seem more successful than the standard estimators in imitating the

rankings produced by the true value of the traditional performance measure.
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Panel B of Table 2 reports the mean squared errors (MSEs) in estimating ± for

all performance measures.9 The MSEs are calculated as averages across managers and

simulations of the squared di®erences between the estimate of ± and the true value. As

expected, the MSE of the Bayesian estimator ±̂B is invariably lower than the MSE of the

traditional estimator ±̂. More interestingly, our levels estimator ±̂¤ has a lower MSE than

the traditional estimator in all cases except N = 100 and q = 0, despite the fact that it

is not designed to capture ± but ±¤. While ±̂¤ has a lower MSE than ±̂B when N = 10,

the Bayesian estimator generally beats our estimator for larger N . The MSE for the

changes estimator ±̂¤¤ is sometimes large, which is not unexpected, since this estimator

fails to capture ± even on average, as explained below. Iterating tends to worsen the

MSE for both of our estimators. The MSEs of our population measures ±¤ and ±¤¤ reveal

the extent to which these measures depart from the true delta. In general, while our

estimators can boast high precision, they also exhibit some bias with respect to ±, so

the overall e®ect on the MSE is unclear.

Figure 1 plots the bias in estimating ± for four performance estimators, ±̂, ±̂B, ±̂¤,

and ±̂¤¤. In each simulated sample, managers are ranked in ascending order by their

±. Let ±m denote the true performance of the m-th ranked manager, and ~±m denote

that manager's estimated performance (i.e. ~±m = ±̂m, ±̂
B
m, ±̂

¤
m, or ±̂

¤¤
m ). For each rank

m (m = 1; : : : ;M), the bias is computed by averaging ~±m ¡ ±m across 10,000 simulated
samples. The ¯gure plots the bias against the rank m.

The ¯gure's four panels, corresponding to di®erent values of M and q, all tell the

same story. The traditional estimator ±̂ is unbiased, whereas both the Bayesian estimator

±̂B and our levels estimator ±̂¤ are biased. For the managers with above-average skill,

both estimators are biased downwards, and for the managers with below-average skill,

both are biased upwards. This bias is entirely expected as a result of the shrinkage of

the individual ±̂'s toward their common mean. This shrinkage is explicit in the Bayesian

estimator and implicit in our estimator, which is a weighted average of the ±̂'s across all

managers (see equation 8). The bias of ±̂¤ is bigger than that of ±̂B, and the (unreported)

bias of the iterated estimator ±̂¤i slightly exceeds the bias of ±̂¤. The changes estimator

±̂¤¤ is also biased, but unlike ±̂¤, it is biased even on average. This follows by design {

while both ±̂¤ and ±̂¤¤ are weighted averages of the ±̂'s, the weights used in ±̂¤ sum to

one, whereas those in ±̂¤¤ sum to zero, as shown earlier.

9Calculating the MSEs in Table 1 would not be sensible, as the units of ° and ± are di®erent.

18



The bias with respect to ± present in our estimators suggests the need for caution

when using these measures to estimate ±. It seems reasonable to use the levels estimator

±̂¤ for such a task, with similar costs and bene¯ts as when using the Bayesian estimator,

but the changes estimator ±̂¤¤ was not designed to capture ± even on average. More

importantly, the bias does not compromise the success of our estimators in ranking

managers by their ± or °, as we saw in Tables 1 and 2. The simulation evidence reveals

that our performance measures should be particularly useful in applications that involve

such ranking, and one such application is presented in the following section.

The simulation results are robust to changes in the variance of stock alphas, ¾2®,

as well as in the variance of unexpected stock returns, ¾2e . We also conducted the

simulations in a setting in which each manager ranks stocks by their signals and invests

equally in the top 25% of all stocks, instead of using a mean-variance criterion. This

alternative setting leads to very similar results. Finally, note that we deliberately choose

relatively small numbers of managers for the tables, M = 10 to 300, to be able to show

some rare examples in which our measures are not clearly preferred to the standard

ones. Since the usefulness of our measures grows with M , our measures are likely to be

even more successful in ranking managers in practice as well as in our empirical analysis,

where managers are counted in thousands.

Our measures have one other useful property that is easy to verify by simulation.

Imagine a world with a large number of managers, all of whom exhibit no skill (± = 0)

and whose holdings overlap su±ciently. The fact that there is no skill in this world

would be hard to detect by ±̂, because the managers' ±̂'s would be dispersed around zero

due to return noise. However, ±̂¤ and ±̂¤¤ should be zero for all managers, because the

manager-speci¯c noise is diversi¯ed away by averaging across many ±̂'s.

III Empirical Analysis

In this section, our skill measures are applied to evaluate the performance of a large

sample of the U.S. equity mutual funds. After describing the data and our empirical

methodology, we compare our measures with the standard measures in terms of their

precision. We then describe the distribution of our measures and their signi¯cance across

funds, and the persistence in mutual fund performance is investigated last.
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III.1 Data and Methodology

Data on returns, prices, and shares outstanding of all NYSE, AMEX, and NASDAQ

stocks are extracted from the monthly stock ¯le provided by the Center for Research in

Security Prices (CRSP). A ¯rm's simple stock return is computed as an annual value-

weighted return on the ¯rm's common stock issues (typically one). Delisting returns

are included when available on CRSP. If a ¯rm is delisted but the delisting return is

missing, we investigate the reason for disappearance. If the delisting is performance-

related, we assume a -30% delisting return, following Shumway (1997); otherwise a zero

delisting return is assumed. Quarterly stock returns are compounded from monthly

returns.10 Market equity, measured as the combined value of all common stock classes

outstanding, is taken from CRSP at the end of each month.

Mutual funds are required to ¯le holdings reports with the SEC twice a year, but most

funds publicly disclose their portfolio holdings on a quarterly basis. Thomson Financial

collects and sells this data, which is currently available for the period from the end of

1975Q1 to the end of 2000Q3. The data is commonly known as the Spectrum data,

since it used to be collected by CDA/Spectrum prior to their purchase by Thomson.11

The Spectrum mutual fund holdings ¯le contains four columns: date, stock identi¯er

CUSIP, fund identi¯er, and the number of shares of the given stock held by the given

fund on the given date. All dates are quarter-ends (3/31, 6/30, 9/30, or 12/31). Firms

with no SPECTRUM data are recorded as having zero mutual fund ownership. We

match each CUSIP to a CRSP PERMNO, the permanent number CRSP assigns to that

security. Holdings associated with CUSIPs for which we found no associated PERMNO

are ignored; these account for a very small fraction of fund holdings. Some companies

have multiple equity securities associated with them. CRSP uniquely identi¯es each ¯rm

with a permanent company number, PERMCO. We value-weight returns and mutual

fund holding percentages of the di®erent share classes (PERMNOs) associated with each

PERMCO, producing one return and one institutional ownership percentage associated

with each ¯rm.

Monthly fund returns are computed from the monthly returns on the stocks held

10If any of the two monthly stock returns following a valid return at the beginning of the quarter is
missing, it is assumed to be zero when computing the cumulative stock return for this quarter.
11See Wermers (1999) for detailed information regarding the construction of the database. This data

is free of survival bias, as noted for example by Daniel, Grinblatt, Titman, and Wermers (1997).
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by the fund at the most recent quarter-end, assuming that the fund follows a buy-

and-hold strategy between the quarter-ends and that the quarterly rebalancing into the

reported holdings is costless.12 The resulting fund returns di®er from the actual net

fund returns in that they do not have expenses, management fees, and transaction costs

subtracted from them, and that they contain only the equity portion of the fund return.

These di®erences make our fund return series particularly well suited for an analysis

of the funds' stock selection ability. This advantage comes at the cost of ignoring any

intraquarter trading by the fund, including any potential window-dressing activity, as

well as any ability of the fund to time the market by cleverly adjusting the fraction of

its cash holdings.

One limitation of our data is that changes in holdings are observed only on a quarterly

basis. If Fund 2 mimics the trades of Fund 1 with a short delay, we are unable to discern

such a pattern unless the delay appears in the funds' quarterly holdings. Both funds

are likely to be assigned similar performance by our measures, which seems appropriate

only if Fund 1 is unable to pro¯t on its trades before those trades are mimicked by Fund

2. Useful evidence on the importance of this issue is provided by Chen, Jegadeesh, and

Wermers (2000), who ¯nd that stocks that experience net purchases by mutual funds

have higher subsequent returns than stocks that experience net sales. The authors ¯nd

that the abnormal performance following the funds' aggregate trades lasts for about

a year. Most of the pro¯ts from fund trades are therefore not short-lived enough to

confuse our performance measures. Also note that we do not separate the identity of

fund managers from the funds they manage. Baks (2002) constructs a unique database

of fund manager returns and characteristics by tracking the managers' career moves from

one fund to another, and uses his database to examine fund manager performance.

At the end of each quarter in our sample, we compute various performance measures

for each fund. First, we compute three versions of the traditional measure alpha, denoted

earlier as ±̂, by regressing fund returns in excess of the risk-free rate on the benchmarks

implied by three di®erent pricing models. The CAPM alpha is calculated with respect

to the market benchmark, as implied by the capital asset pricing model (CAPM), the

Fama-French alpha is calculated with respect to the market, size, and value benchmarks,

following Fama and French (1993), and the four-factor alpha is calculated with respect to

12This approach was ¯rst adopted by Grinblatt and Titman (1989).
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the market, size, value, and momentum benchmarks, following Carhart (1997).13 Using

any of the three ±̂'s as a reference measure, we then calculate the estimators of our

measures, ±̂¤ and ±̂¤¤, from equations (4) and (22), as well as their iterated versions in

equations (40) and (41).

III.2 How Precise Are the Proposed Performance Measures?

For all 3,281 funds that had existed for two or more years at the end of our holdings

sample (September 30, 2000), we estimate all performance measures and their precisions

using the complete return history for each fund. Two years of data are required to

eliminate extremely noisy performance estimates.14 The precision of any estimator is

assessed by the inverse of the estimator's squared standard error. The standard error

of the traditional measure ±̂ is obtained from the usual regression. To compute the

precisions of our measures ±̂¤ and ±̂¤¤ from equations (11) and (29), one needs to know

Z, C, and −. The matrices Z and C are computed from fund holdings data, and −, the

covariance matrix of ±̂, is computed following a procedure described in the appendix. The

standard errors of ±̂¤ and ±̂¤¤ for each fund are given by the square roots of the diagonal

elements of Z−Z 0 and C−C 0. For the iterated measures ±̂¤i and ±̂¤¤i, the matrices Z and

C are simply replaced by the products ZZ and CC.

Table 3 compares the precision of ±̂ with the precision of our estimators. The three

panels correspond to three di®erent de¯nitions of the traditional measure alpha (CAPM,

Fama-French, Carhart), which also serves as the reference measure for our measures. The

¯rst two rows of each panel report the typical ratios of the squared standard errors of

our estimators to the squared standard error of ±̂. Both the ratio of the medians and

the median ratio are reported. First, consider the levels estimator ±̂¤. For the CAPM

alphas, the ratio of the medians is 0.22 and the median ratio is 0.24, which means that

±̂¤ is typically about four to ¯ve times more precise than ±̂. The precision ratio is below

one for 93 percent of all funds. For the Fama-French alphas, the ratio of the medians

13All benchmark returns were obtained from Kenneth French's website.
14While this requirement induces some survival bias, this bias does not appear important. The average

CAPM alpha of the funds eliminated from the sample is in fact slightly higher than the average alpha of
the funds in our sample (-0.037 versus -0.054 percent per month), so excluding the short-history funds
does not arti¯cially increase the average fund performance. Also, the average CAPM alpha of the funds
that died during the last 12 months of our sample is 0.038 percent per month, which suggests that our
focus on the funds that are alive at the end of our sample does not introduce any survival bias either.
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is 0.13 and the median ratio is 0.17, suggesting that ±̂¤ is on average about six times

more precise than ±̂. Our estimator is more precise for 97 percent of all funds. For the

four-factor alphas, ±̂¤ is more precise for 98 percent of all funds, and it is about six to

eight times more precise for the median fund. As we add more benchmarks, the relative

precision of ±̂¤ increases because ±̂'s become less correlated across funds, as discussed

earlier. In all cases, iterating further increases the precision gains. The message from the

table is clear { our holdings-based performance measure is estimated with much higher

precision than the traditional measure.

The impressive precision of our levels estimator is not surprising. A typical fund

holds dozens of stocks, and a typical stock is held by dozens of funds. Each additional

holder improves the precision of the estimate of stock quality, and each additional stock

makes fund performance estimation more precise. Nonetheless, Table 3 shows that, for a

small minority of funds, ±̂¤ is less precise than ±̂. This happens especially for funds with

long return histories that hold some stocks that are not extensively held by many other

managers. If the fund's history spans several decades, its ±̂ is more precise than the ±̂'s of

most other funds. Since ±̂¤ is a weighted average of many ±̂'s, it brings in the substantial

sampling error contained in the ±̂'s of the shorter-lived funds, and this additional error

can sometimes be large enough to make our measure less precise than ±̂. However,

Table 3 makes it clear that this error is generally outweighed by the diversi¯cation e®ect

of the averaging, making our measure more precise for a vast majority of funds. We

also con¯rm that funds with shorter track records score bigger precision gains. The

correlations between the length of the fund's return history and the precision ratios

considered earlier are high, ranging from 0.45 to 0.56 across the three models.

The results for the changes estimator ±̂¤¤ are similar to those for ±̂¤. Our measure

is more precise for 90 to 92 percent of all funds, and the precision increase is about

sevenfold on average. Iterating further increases the average gain in precision, though

the proportion of funds that experience precision gains does not change much. Shorter-

history funds again experience bigger precision gains; the correlations between history

length and the precision ratios range from 0.19 to 0.31 across the three models.

Of course, the standard error of a given estimator re°ects the estimator's precision

in estimating its own population value. While ±̂ estimates ±, ±̂¤ and ±̂¤¤ estimate their

own population values ±¤ and ±¤¤. Since the latter values are averages of ±'s, one might
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expect them to be estimated more precisely. The usefulness of Table 3 consists mainly

in quantifying these anticipated precision gains in mutual fund data.

III.3 How Many Funds Possess Signi¯cant Ability?

While the previous subsection analyzes the precision of our estimates, this subsection

focuses on the estimates themselves, with an emphasis on their signi¯cance. We consider

the performance estimates of the same 3,281 funds as before at the end of our sample.

First, note that all measures are highly correlated with each other. The cross-fund

correlation between ±̂ and ±̂¤ ranges from 0.64 to 0.70 across the three benchmark models,

while the correlation between ±̂ and ±̂¤¤ ranges from 0.48 to 0.57. The correlations

between our measures and their iterated counterparts exceed 0.91 in all cases.

Table 4 reports some summary statistics for ±̂, ±̂¤, ±̂¤¤, ±̂¤i, and ±̂¤¤i across funds. To

begin with the usual measure, about half of all funds have positive ±̂. The proportion of

the positive ±̂'s is 0.50 for the CAPM, 0.46 for Fama-French, and 0.60 for the four-factor

model. The distribution of ±̂ is quite symmetric across funds; while there is mild positive

skewness, the mean exceeds the median in some cases but not in others. Estimates are

considered signi¯cant if they are more than two standard errors from zero, i.e. if the

absolute value of their t-statistic exceeds two. The proportions of funds with positive

and negative t-statistics are similar: 0.03 vs 0.03 for the CAPM, 0.08 vs 0.07 for Fama-

French, and 0.07 vs 0.02 for the four-factor model. We conclude that both the ±̂'s and

their signi¯cance are distributed approximately symmetrically around zero.

In contrast, our levels measure ±̂¤ is much less symmetric. This measure has the

same mean as ±̂, by construction, but less than half of its cross-fund standard deviation,

due to averaging. Unlike ±̂, ±̂¤ is negatively skewed, which is easy to see from Figure

2.15 The distributions of ±̂¤ have fat left tails, revealing the presence of some \loser"

funds with ±̂¤'s as low as minus one percent per month, whose existence is masked in the

symmetric distribution of ±̂. Due to the negative skewness, ±̂¤'s median always exceeds

the mean and ±̂¤ is positive for most funds { the fraction of funds with ±̂¤ > 0 is 0.61 for

the CAPM, 0.56 for Fama-French, and 0.83 for the four-factor model.

15The mildly positive skewness statistic in Panel C is a °uke driven by a small number of tail obser-
vations, because the plot of ±̂¤ in Figure 2 reveals obvious negative skewness. The median exceeds the
mean and 67 percent of all ±̂¤ estimates are above the mean, compared to only 46 percent for ±̂.
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To explain the negative skewness of ±̂¤, we introduce the concept of a \cousin". The

cousin of a given fund A is any fund B whose holdings overlap with those of A. Put

di®erently, B is a cousin of A if there is at least one stock that is held by both A and B.

For the 3,281 funds at the end of our sample, the number of cousins ranges from two to

3,210, with the average of 1,855 and the median of 2,106.

Interestingly, funds with higher ±̂ tend to have more cousins. The rank correlation

between ±̂ and the number of cousins is 0.31 for the CAPM, 0.27 for Fama-French, and

0.16 for the four-factor model. This correlation might in part be due to the herding

behavior of funds trying to mimic the holdings of funds with good track records. Since

funds with fewer cousins are more likely to hold stocks that are held mostly by indi-

viduals, the positive correlation is also consistent with the ¯nding of Cohen, Gompers,

and Vuolteenaho (2002) that institutions as a group outperform individuals, albeit by a

small margin. In any event, recall that a fund's ±̂¤ is a weighted average of the ±̂'s of the

fund's cousins. Since the high-±̂ funds have more cousins, the high ±̂'s are shrunk more

toward the common mean than the low ±̂'s, creating negative skewness in ±̂¤.

The asymmetry in the signi¯cance of ±̂¤ is even more pronounced than the asymmetry

in ±̂¤ itself. This is clear from the histograms of the t-statistics for ±̂¤, plotted in Figure 3,

as well as from Table 4. While funds with signi¯cantly negative ±̂¤ account for less than

one percent of all funds in all three models, the proportion of funds with signi¯cantly

positive ±̂¤ is 0.05 for the CAPM, 0.19 for Fama-French, and 0.33 for the four-factor

model. Under four benchmarks, only three funds exhibit signi¯cantly negative ability,

but 1,076 funds (one out of three) exhibit signi¯cantly positive ability!

The key to understanding the striking asymmetry in the signi¯cance of the funds'

ability is the earlier observation that better-performing funds tend to have more cousins.

Funds with higher ±̂¤'s have more cousins, funds with more cousins have ±̂¤'s that are

better diversi¯ed across ±̂'s, and better diversi¯ed ±̂¤'s are generally more precise. The

result is a strong negative correlation between the ±̂¤'s and their standard errors. This

correlation ranges from -0.51 to -0.25 across the three models, as shown in Table 4. To

construct the t-statistics, high ±̂¤'s are divided by their low standard errors, and low ±̂¤'s

are divided by their high standard errors, which explains the asymmetry. Most of the

left-tail loser funds from Figure 2 have insigni¯cant ±̂¤'s due to their shortage of cousins,

which translates into relatively large standard errors.
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Note that the asymmetry in signi¯cance of ±̂¤ grows as we move from Panel A to

Panel C. Under the CAPM benchmark, the number of funds with signi¯cantly positive

ability is 14 times higher than the number of funds with signi¯cantly negative ability;

this ratio grows to 22 under the Fama-French benchmarks, and to a staggering 359

under the four benchmarks in Panel C. This pattern is due to the rightward shift of the

distribution of ±̂¤ (the average ±̂¤ increases from -0.054 in Panel A to -0.015 in Panel B

to 0.112 in Panel C), and to some extent also due to the decline in the standard errors

resulting from adding benchmarks that capture some common variation in returns.

In contrast to ±̂¤, the changes measure ±̂¤¤ does not exhibit much asymmetry around

zero. Across the three models, 44 to 46 percent of all funds have positive ±̂¤¤. Funds with

signi¯cantly negative ±̂¤¤ in fact slightly outnumber their positive counterparts, mostly

due to the negative mean and median of ±̂¤¤. Also, the correlation between the estimates

and their standard errors is small, unlike before. Iterating the changes measure into ±̂¤¤i

produces results similar to ±̂¤¤. The iterated levels measure ±̂¤i has many features similar

to its ancestor ±̂¤, such as strong asymmetry in signi¯cance (Panels B and C), but an

exception occurs in Panel A, where no funds are inferred to have signi¯cantly positive

skill. Compared to ±̂¤, ±̂¤i's have the same negative mean but much less dispersion,

which makes it harder for the positive ±̂¤i's (which account for almost two thirds of all

±̂¤i's) to be inferred signi¯cant.

In summary, the usual performance measure as well as our changes measure are

distributed approximately symmetrically around zero across funds. According to our

levels measure, though, funds with signi¯cantly positive ability before costs and fees

vastly outnumber funds with signi¯cantly negative ability at the end of our sample.

III.4 Does Performance Persist?

III.4.1 Predicting Future Fund Returns

At the end of each quarter, funds are sorted into decile portfolios by various measures of

past performance: ±̂, ±̂¤, and ±̂¤¤. Each measure is calculated three times, once for each

benchmark model (CAPM, Fama-French, Carhart). The returns on the decile portfolios

are calculated over the three months following the portfolio formation, equal-weighting
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the funds within each decile. Since the deciles are rebalanced each quarter, the three-

month return series is linked across quarters to form a monthly series of returns on each

decile portfolio, covering the period April 1977 through December 2000. The beginning

of the sample period is determined by our requirement that funds have at least two

years of past data and by the fact that the holdings data become available at the end of

1975Q1. One more quarter of data is required upfront to construct changes in holdings,

so the sample period for the changes estimator ±̂¤¤ begins in July 1977.

Table 5 reports the post-ranking alphas of the decile portfolios and of the \10-1"

portfolio, constructed by going long the top decile of the best past performers and short

the bottom decile. The alpha is de¯ned with respect to the same benchmarks as the

reference measure. That is, when the reference measure is say the CAPM alpha, the

table reports the post-ranking CAPM alphas of the portfolios sorted on the past CAPM

±̂'s as well as on our measures that use the CAPM alpha as a reference measure.

Panel A of Table 5 reports results for funds sorted by their performance over the

past 12 months. First, consider sorting funds on the traditional measure ±̂. When funds

are sorted on their CAPM ±̂'s, the top decile earns a CAPM alpha of 3.8% per year

(t = 2:08) and the bottom decile earns -4.5% per year (t = ¡2:48), which yields the 10-1
portfolio's CAPM alpha of 8.3% per year (t = 2:99). Strong persistence is preserved

also when funds are sorted on the Fama-French ±̂'s; the 10-1 CAPM alpha is then 7.2%

(t = 3:52). However, the 10-1 alpha drops to an insigni¯cant 1.4% (t = 0:73) when the

momentum benchmark is included. This result is in line with the evidence of Carhart

(1997) and Wermers (1997), who argue that some apparent persistence in performance

is due simply to momentum in stock returns. The argument is that, due to momentum,

managers who happen to hold mostly stocks that performed well (poorly) over the past

year are likely to do well (poorly) also over the following year, even in the absence of

any rebalancing on their part. It seems hard to argue that sitting on one's laurels and

doing nothing is a managerial skill that should be given credit.

Similar results are obtained when funds are sorted on our performance measures.

Based on ±̂¤, the 10-1 CAPM alpha is 8.6% per year (t = 2:57), and the 10-1 Fama-

French alpha is 8.3% (t = 3:22). After accounting for momentum, however, the di®erence

again dips below signi¯cance, to 1.6% (t = 0:65). For ±̂¤¤, the 10-1 alphas are 4.4%, 3.7%,

and 1.5% across the three models, with t-statistics of 3.78, 4.06, and 1.66, respectively.
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When funds are sorted by performance estimated over the past 24 months (Panel

B) or over their entire past history (Panel C), persistence is even weaker { the 10-1

CAPM and Fama-French alphas are positive for all three measures but never signi¯cant.

Adding insult to injury, the 10-1 four-factor alphas are in fact insigni¯cantly negative.

The results based on the iterated measures ±̂¤i and ±̂¤¤i, not reported to save space, lead

to the same conclusions. (This statement applies to the following subsection as well.)

Signi¯cant persistence seems hard to ¯nd, even with our measures, which seem better

suited for this task than ±̂. It is possible, though, that realized fund returns are too noisy

to make persistence detectable by predicting future returns. Instead, the next subsection

uses our skill measures to predict their own future values.

III.4.2 Predicting Future Skill

Each year between 1976 and 2000, at the end of the third quarter16, funds are sorted by

±̂, ±̂¤, and ±̂¤¤, estimated using return data over the past year. For each measure and each

year, we compute the correlation between the fund ranking in that year and the ranking

one year earlier. The time series of the resulting 24 rank correlations for each measure

and each benchmark model is plotted in Figure 5. The average rank correlations and

their time-series t-statistics are reported in Panel A of Table 6.

First, consider the usual measure ±̂. When funds are sorted on their usual CAPM

alphas, the average rank correlation is signi¯cantly positive at 0.11 (t = 3:00), revealing

signi¯cant persistence in market-adjusted performance. However, when funds are sorted

on their Fama-French alphas, the average rank correlation drops to 0.04 (t = 1:30), and

a sort on four-factor alphas produces further decline to 0.03 (t = 1:68).

Our measures also reveal weak persistence. With the CAPM alpha as the reference

measure, both ±̂¤ and ±̂¤¤ display signi¯cant persistence; the rank correlations are 0.14

(t = 2:58) and 0.04 (t = 2:55), respectively. But the signi¯cance fades away when alter-

native reference measures are used. After accounting for momentum in stock returns,

for example, the rank correlations drop to 0.03 (t = 0:81) and 0.02 (t = 1:79).

16Since our holdings sample ends in 2000Q3 and since the number of funds grows over time, choosing
the third quarter maximizes the number of funds used in the analysis.
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We also evaluate persistence at a two-year frequency. Every two years between 1979

and 2000, funds are sorted by their skill estimated over the previous two years, and

correlations are computed between the rankings in adjacent two-year periods. Panel

B of Table 6 reports these rank correlations, averaged across all 11 pairs of two-year

periods. Persistence is generally weaker than in Panel A. The correlations range from

0.01 to 0.06 across all models and measures, but none of them is statistically signi¯cant.

Given our simulation evidence that ±̂¤ and ±̂¤¤ are more accurate than ±̂ in ranking

managers, the evidence presented in Table 6 reinforces the notion that mutual fund

performance exhibits little persistence.

IV Conclusion

This paper proposes new performance measures that exploit the information contained

in the similarity of a manager's holdings (or changes in holdings) to those of managers

who have performed well, and in their distinctiveness from those of managers who have

performed poorly. These performance measures use historical returns and holdings of

many funds to evaluate the performance of a single fund.17 As a result, these mea-

sures are typically about four to eight times times more precise than the traditional

return-based measures. While the usual measure as well as our trade-based measure are

approximately symmetrically distributed around zero, at the end of our sample, funds

with signi¯cantly positive skill greatly outnumber funds with signi¯cantly negative skill

according to our holdings-based measure. In simulations, our measures are found to be

particularly well suited for empirical applications that involve ranking managers. In one

such application, we ¯nd only weak persistence in the before-cost performance of U.S.

equity mutual funds after accounting for momentum in stock returns.

Our failure to ¯nd signi¯cant persistence does not necessarily mean that there is

no persistent managerial skill. Small di®erences in ability across managers may not be

detectable given the large amount of noise in realized fund returns. For example, Kothari

17Some information pooling across funds takes place also in the Bayesian frameworks developed by
Jones and Shanken (2002) and Stambaugh (2002), in which a fund's alpha is related to the alphas of
other funds through a link in the prior. The techniques as well as the objectives of these papers are very
di®erent from ours. Jones and Shanken compare inferences about alphas with and without imposing
their prior dependence, while Stambaugh focuses on inference about surviving funds. Neither study
considers similarities in fund managers' techniques and their relation to performance evaluation.
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and Warner (2001) ¯nd that ±̂ has little ability to detect economically large magnitudes

of abnormal fund performance. Although our measures seem superior to ±̂ in ranking

managers, they may still not be powerful enough to ¯nd signi¯cant persistence. In fact,

even if we were able to rank managers by their true ±'s, we might not be able to detect

persistence in ex post returns at the conventional signi¯cance levels.

Importantly, fund returns may not be predictable even if some managers have supe-

rior ability. As explained by Berk and Green (2002), there should be no persistence in

fund performance if investors compete for high returns and if managerial ability exhibits

decreasing returns to scale. After good fund performance, rational investors infer that

managerial skill is high, and new money °ows into the fund until there is no abnormal

expected future return. While the Berk-Green model implies no predictability in net

fund returns, their intuition suggests that rational fund °ows should weaken any per-

sistence in gross returns as well. We ¯nd that some managers have superior skill before

costs and fees but this skill exhibits only weak persistence over time, which is exactly

what one should expect if the market for capital provision is competitive.

The basic idea in the paper is that managers who make similar investment decisions

have similar skill. The proposed skill measures are designed to capture this idea in

a simple way, but future research can extend these measures in various dimensions.

For example, the measure of stock quality can be modi¯ed in some ad-hoc manner to

give more weight to the ±̂'s with lower standard errors. As a broader example, useful

information about similarities in investment decisions may also be contained in the funds'

residual return correlations, if one is willing to assume that such similarities are stable

over time. (No such assumption is needed when using holdings data, because similarity

in holdings can be evaluated across stocks at any given point in time.) Finally, our

measures rely on current holdings or recent changes in holdings. The earlier holdings

are relevant only to the extent that they determine the manager's own track record,

which is only one of many track records re°ected in our measures. It seems reasonable

to infer current skill from current rather than past decisions, especially if we intend to

forecast the manager's future performance. Nonetheless, it might be interesting to design

performance measures that incorporate also similarities among the managers' historical

holdings. Future research can also pursue a variety of applications of our measures.
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Table 1
Simulation Evidence on Various Skill Measures Relative to True Skill °

Random samples of returns on N stocks and signals of M managers are simulated as described in Section 2, with q
denoting the weight on the common signal (which makes managers' portfolios more alike). In each sample, we calculate
eight di®erent performance measures for each manager. Three of these measures are population versions of the traditional
measure ± and of our levels and changes estimators, ±¤ and ±¤¤. The remaining ¯ve measures are sample measures: ±̂
denotes the actual return on the manager's portfolio, ±̂¤ denotes our levels estimator, which exploits similarities in holdings
across managers, ±̂¤i denotes the iterated version of our levels estimator, ±̂¤¤ denotes our changes estimator, which exploits
similarities in changes in holdings across managers, and ±̂¤¤i denotes the iterated version of our changes estimator. All
managers are ranked according to their performance estimated using the eight measures, and rank correlations with the
ranking based on true skill ° are reported. All numbers are averaged across 10,000 simulations.

Rank Correlations with True Skill (°)

q=0 q=0.50

M ±̂ ±̂¤ ±̂¤i ±̂¤¤ ±̂¤¤i ± ±¤ ±¤¤ ±̂ ±̂¤ ±̂¤i ±̂¤¤ ±̂¤¤i ± ±¤ ±¤¤

N=10

10 0.30 0.30 0.28 0.30 0.28 0.59 0.55 0.58 0.16 0.15 0.13 0.15 0.13 0.33 0.30 0.32
50 0.33 0.38 0.39 0.39 0.42 0.63 0.63 0.68 0.17 0.18 0.18 0.18 0.18 0.36 0.35 0.39
100 0.32 0.39 0.42 0.40 0.45 0.63 0.64 0.69 0.18 0.19 0.19 0.20 0.20 0.37 0.36 0.40
300 0.33 0.40 0.44 0.42 0.47 0.64 0.64 0.70 0.18 0.20 0.21 0.20 0.21 0.37 0.37 0.41

N=50

10 0.61 0.64 0.62 0.65 0.64 0.83 0.82 0.83 0.37 0.35 0.32 0.36 0.32 0.62 0.59 0.59
50 0.66 0.81 0.84 0.83 0.86 0.87 0.88 0.89 0.40 0.45 0.44 0.46 0.46 0.66 0.64 0.66
100 0.66 0.84 0.87 0.86 0.89 0.88 0.89 0.90 0.40 0.49 0.50 0.50 0.53 0.66 0.65 0.68
300 0.67 0.87 0.89 0.88 0.90 0.88 0.90 0.91 0.40 0.53 0.57 0.54 0.61 0.67 0.67 0.70

N=100

10 0.74 0.78 0.77 0.78 0.78 0.89 0.88 0.89 0.49 0.48 0.45 0.49 0.46 0.73 0.71 0.72
50 0.78 0.91 0.92 0.92 0.93 0.93 0.93 0.94 0.53 0.61 0.62 0.62 0.64 0.78 0.76 0.78
100 0.79 0.93 0.94 0.94 0.94 0.93 0.94 0.95 0.53 0.66 0.68 0.67 0.71 0.78 0.78 0.80
300 0.79 0.94 0.94 0.95 0.95 0.94 0.94 0.95 0.54 0.71 0.75 0.73 0.78 0.79 0.80 0.82
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Table 2
Simulation Evidence on Various Skill Measures Relative to Traditional Skill ±

Random samples of returns on N stocks and signals of M managers are simulated as described in Section 2, with q
denoting the weight on the common signal (which makes managers' portfolios more alike). In each sample, we calculate
eight di®erent performance measures for each manager. Two of these measures are population versions of our levels and
changes estimators, ±¤ and ±¤¤. The remaining six measures are sample measures: ±̂ denotes the actual return on the
manager's portfolio, ±̂B denotes the Bayesian estimator that shrinks ±̂ halfway toward the average of ±̂ across managers,
±̂¤ denotes our levels estimator, which exploits similarities in holdings across managers, ±̂¤i denotes the iterated version of
our levels estimator, ±̂¤¤ denotes our changes estimator, which exploits similarities in changes in holdings across managers,
and ±̂¤¤i denotes the iterated version of our changes estimator. All managers are ranked according to their performance
estimated using the eight measures, and rank correlations with the ranking based on the traditional skill measure ± are
reported in Panel A. Panel B reports averages across managers of the squared di®erences between the estimator and the
true ± (times 100). All numbers are averaged across 10,000 simulations.

Panel A. Rank Correlations with Traditional Skill (±)

q=0 q=0.50

M ±̂ ±̂B ±̂¤ ±̂¤i ±̂¤¤ ±̂¤¤i ±¤ ±¤¤ ±̂ ±̂B ±̂¤ ±̂¤i ±̂¤¤ ±̂¤¤i ±¤ ±¤¤

N=10

10 0.46 0.46 0.46 0.43 0.43 0.40 0.91 0.86 0.42 0.42 0.39 0.35 0.35 0.31 0.89 0.81
50 0.50 0.50 0.57 0.59 0.53 0.56 0.97 0.92 0.45 0.45 0.47 0.45 0.41 0.40 0.96 0.89
100 0.50 0.50 0.58 0.62 0.55 0.59 0.98 0.93 0.46 0.46 0.50 0.51 0.44 0.45 0.98 0.91
300 0.50 0.50 0.61 0.66 0.57 0.63 0.99 0.94 0.46 0.46 0.51 0.54 0.45 0.47 0.99 0.92

N=50

10 0.70 0.70 0.73 0.71 0.73 0.71 0.94 0.94 0.55 0.55 0.53 0.48 0.52 0.47 0.92 0.90
50 0.74 0.74 0.90 0.93 0.90 0.93 0.98 0.97 0.59 0.59 0.65 0.63 0.63 0.63 0.94 0.93
100 0.75 0.75 0.93 0.96 0.92 0.95 0.98 0.97 0.59 0.59 0.70 0.71 0.68 0.71 0.95 0.94
300 0.75 0.75 0.95 0.97 0.95 0.96 0.99 0.98 0.60 0.60 0.76 0.81 0.74 0.80 0.97 0.96

N=100

10 0.80 0.80 0.83 0.82 0.84 0.83 0.96 0.96 0.62 0.62 0.61 0.58 0.61 0.57 0.94 0.93
50 0.84 0.84 0.96 0.97 0.96 0.97 0.98 0.98 0.67 0.67 0.75 0.75 0.75 0.76 0.95 0.95
100 0.84 0.84 0.97 0.98 0.97 0.98 0.99 0.98 0.67 0.67 0.81 0.83 0.80 0.83 0.96 0.95
300 0.85 0.85 0.98 0.99 0.98 0.98 0.99 0.99 0.68 0.68 0.87 0.91 0.86 0.91 0.97 0.96

Panel B. Mean Squared Errors

q=0 q=0.50

M ±̂ ±̂B ±̂¤ ±̂¤i ±̂¤¤ ±̂¤¤i ±¤ ±¤¤ ±̂ ±̂B ±̂¤ ±̂¤i ±̂¤¤ ±̂¤¤i ±¤ ±¤¤

N=10

10 1.27 0.88 0.87 0.86 1.60 4.57 0.08 0.25 1.26 0.87 0.85 0.84 1.39 3.27 0.08 0.20
50 1.27 0.85 0.79 0.83 0.96 1.40 0.11 0.16 1.25 0.82 0.77 0.79 0.80 0.91 0.10 0.18
100 1.27 0.85 0.79 0.83 0.86 1.09 0.12 0.15 1.25 0.82 0.76 0.79 0.73 0.73 0.11 0.17
300 1.27 0.84 0.77 0.82 0.82 0.94 0.12 0.14 1.26 0.83 0.77 0.80 0.68 0.62 0.11 0.16

N=50

10 0.24 0.20 0.21 0.25 0.19 0.27 0.07 0.09 0.24 0.18 0.18 0.19 0.22 0.29 0.04 0.15
50 0.24 0.19 0.22 0.27 0.14 0.23 0.10 0.11 0.24 0.17 0.18 0.19 0.28 0.40 0.05 0.27
100 0.24 0.19 0.23 0.27 0.14 0.24 0.11 0.11 0.24 0.17 0.18 0.19 0.27 0.40 0.06 0.27
300 0.24 0.19 0.23 0.27 0.14 0.25 0.11 0.12 0.24 0.17 0.18 0.19 0.28 0.41 0.06 0.27

N=100

10 0.12 0.11 0.14 0.17 0.13 0.19 0.07 0.09 0.12 0.09 0.10 0.11 0.18 0.27 0.03 0.15
50 0.12 0.11 0.15 0.19 0.13 0.24 0.09 0.12 0.12 0.09 0.11 0.11 0.29 0.40 0.04 0.29
100 0.12 0.11 0.16 0.19 0.13 0.26 0.10 0.12 0.12 0.09 0.10 0.11 0.29 0.40 0.04 0.29
300 0.12 0.11 0.16 0.20 0.14 0.28 0.10 0.13 0.12 0.09 0.11 0.11 0.29 0.41 0.04 0.29
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Table 3
Precision of Various Performance Measures

The table compares the precision of the traditional estimator ±̂ with the precision of our estimators
±̂¤, ±̂¤¤, and their iterated versions. All summary statistics are calculated across the 3,281 funds that
had existed for two or more years at the end of our sample. The ¯rst row of each panel reports the
ratio of the median squared standard error of our estimator to the median squared standard error of
±̂. The second row reports the median ratio of the squared standard error of our estimator to the
squared standard error of ±̂. Row three shows what fraction of these ratios are below one. Rows four,
¯ve, and six report some plain summary statistics for the standard errors across funds, expressed in
percent per month. The reference measure alpha, which coincides with the traditional measure ±̂, is
de¯ned di®erently across the three panels. The CAPM alpha is computed with respect to the market
benchmark, the Fama-French alpha with respect to the market, size, and value benchmarks, following
Fama and French (1993), and the four-factor alpha with respect to the Fama-French and momentum
benchmarks, following Carhart (1997).

±̂ ±̂¤ ±̂¤¤ ±̂¤i ±̂¤¤i

Panel A: CAPM Alpha as a Reference Measure

Median(SE2)/Median(SE(±̂)2) 0.22 0.14 0.13 0.07

Median(SE2/SE(±̂)2) 0.24 0.15 0.16 0.09
Fraction of Ratios < 1 0.93 0.90 0.97 0.91

Mean SE 0.59 0.28 0.26 0.22 0.26
Median SE 0.42 0.20 0.16 0.15 0.11
Std SE 0.51 0.24 0.36 0.19 0.57

Panel B: Fama-French Alpha as a Reference Measure

Median(SE2)/Median(SE(±̂)2) 0.13 0.12 0.09 0.07

Median(SE2/SE(±̂)2) 0.17 0.15 0.13 0.10
Fraction of Ratios < 1 0.97 0.92 0.98 0.91

Mean SE 0.48 0.19 0.22 0.16 0.23
Median SE 0.34 0.12 0.12 0.10 0.09
Std SE 0.45 0.20 0.33 0.16 0.53

Panel C: Four-Factor Alpha as a Reference Measure

Median(SE2)/Median(SE(±̂)2) 0.12 0.12 0.08 0.07

Median(SE2/SE(±̂)2) 0.16 0.14 0.13 0.10
Fraction of Ratios < 1 0.98 0.92 0.98 0.91

Mean SE 0.51 0.19 0.23 0.16 0.24
Median SE 0.35 0.12 0.12 0.10 0.10
Std SE 0.47 0.21 0.35 0.16 0.56
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Table 4
Summary Statistics and Signi¯cance for Various Performance Measures

The table summarizes the distributions of the estimators listed in the column headings. All summary
statistics are calculated across the 3,281 funds that had existed for two or more years at the end of
our sample. Each panel reports the proportions of all performance estimates that are positive (row 1),
more than two standard errors above zero (row 2), and more than two standard errors below zero (row
3). The table also reports the estimates' rank correlations with the number of cousins (row 8) and the
estimates' correlations with their own standard errors (row 9), as well as some plain summary statistics
for the estimates, expressed in percent per month. The reference measure alpha, which coincides with
the traditional measure ±̂, is de¯ned di®erently across the three panels. The CAPM alpha is computed
with respect to the market benchmark, the Fama-French alpha with respect to the market, size, and
value benchmarks, following Fama and French (1993), and the four-factor alpha with respect to the
Fama-French and momentum benchmarks, following Carhart (1997).

±̂ ±̂¤ ±̂¤¤ ±̂¤i ±̂¤¤i

Panel A: CAPM Alpha as a Reference Measure

Fraction of Estimates > 0 0.504 0.614 0.463 0.644 0.462
Fraction of Estimates > 2 SE 0.028 0.047 0.018 0.000 0.024
Fraction of Estimates < ¡2 SE 0.031 0.003 0.032 0.001 0.025

Mean -0.054 -0.054 -0.031 -0.054 -0.024
Median 0.003 0.047 -0.012 0.051 -0.009
Standard deviation 0.827 0.359 0.467 0.281 0.636
Skewness 0.704 -2.067 -1.691 -2.885 -5.740
Correlation with Number of Cousins 0.312 0.541 0.081 0.555 0.036
Correlation with SE 0.068 -0.515 -0.010 -0.670 -0.048

Panel B: Fama-French Alpha as a Reference Measure

Fraction of Estimates > 0 0.465 0.564 0.440 0.676 0.462
Fraction of Estimates > 2 SE 0.084 0.186 0.052 0.077 0.045
Fraction of Estimates < ¡2 SE 0.073 0.009 0.091 0.003 0.066

Mean -0.015 -0.015 -0.036 -0.015 -0.026
Median -0.035 0.033 -0.021 0.054 -0.010
Standard deviation 0.844 0.364 0.477 0.273 0.656
Skewness 0.908 -1.330 -1.826 -2.514 -7.163
Correlation with Number of Cousins 0.274 0.417 0.075 0.411 0.028
Correlation with SE 0.047 -0.508 0.002 -0.666 -0.054

Panel C: Four-Factor Alpha as a Reference Measure

Fraction of Estimates > 0 0.603 0.827 0.447 0.851 0.470
Fraction of Estimates > 2 SE 0.074 0.328 0.033 0.300 0.034
Fraction of Estimates < ¡2 SE 0.015 0.001 0.045 0.001 0.039

Mean 0.112 0.112 -0.013 0.112 -0.012
Median 0.084 0.143 -0.015 0.153 -0.008
Standard deviation 0.760 0.282 0.529 0.213 0.767
Skewness 1.530 0.116 -1.366 -1.026 -8.534
Correlation with Number of Cousins 0.164 0.382 0.020 0.373 -0.014
Correlation with SE 0.185 -0.254 0.080 -0.398 -0.018
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Table 5
Performance Persistence Measured by Alphas of Portfolios of Funds Sorted by

Various Measures of Past Performance

At the end of each quarter, funds are sorted into decile portfolios by various measures of past performance: ±̂, the OLS
estimate of the fund's alpha, ±̂¤, our levels estimator, and ±̂¤¤, our changes estimator. The returns on the decile portfolios
are calculated over the three months after portfolio formation, equal-weighting the funds within each decile. The three-
month return series are linked across quarters to form a monthly series of returns on each decile portfolio. All performance
measures are calculated using the data over the past 12 months (Panel A), 24 months (Panel B), and all available past

data (Panel C). All portfolio return series end in December 2000; they begin in April 1977 for ±̂ and ±̂¤ and in July 1977
for ±̂¤¤. The table reports the OLS estimates of the deciles' full-period alphas (in percent per year), as well as their
t-statistics (in parentheses). These alphas are de¯ned in the same way as the reference measures ±̂, and they di®er across
the three panels. The CAPM alpha is computed with respect to the market benchmark, the Fama-French alpha with
respect to the market, size, and value benchmarks, following Fama and French (1993), and the four-factor alpha with
respect to the Fama-French and momentum benchmarks, following Carhart (1997).

Decile of Funds Sorted by Past Performance
1 2 3 4 5 6 7 8 9 10 10-1

Panel A. Sorting Funds by Past 12-Month Performance

CAPM Alpha as a Reference Measure

±̂ -4.48 -2.40 -1.39 -0.56 -0.25 0.14 0.95 1.70 2.20 3.83 8.31
(-2.48) (-2.24) (-1.67) (-0.88) (-0.50) (0.30) (1.80) (2.29) (1.93) (2.08) (2.99)

±̂¤ -5.07 -2.70 -1.86 -0.85 -0.11 0.71 1.23 1.98 2.84 3.50 8.56
(-2.30) (-2.04) (-2.01) (-1.24) (-0.21) (1.50) (2.04) (2.05) (1.99) (1.66) (2.57)

±̂¤¤ -2.18 -1.33 -0.35 -0.40 0.00 0.20 0.48 1.06 0.97 2.20 4.37
(-1.83) (-1.82) (-0.62) (-0.76) (0.00) (0.39) (0.94) (1.75) (1.19) (1.63) (3.78)

Fama-French Alpha as a Reference Measure

±̂ -3.87 -2.12 -1.51 -0.34 -0.27 0.27 0.59 1.69 2.18 3.32 7.20
(-2.34) (-2.50) (-2.55) (-0.63) (-0.56) (0.59) (1.29) (3.34) (3.58) (2.73) (3.52)

±̂¤ -4.99 -2.63 -1.58 -1.08 -0.49 0.33 1.54 2.38 3.13 3.26 8.26
(-2.48) (-2.56) (-1.92) (-1.69) (-0.91) (0.70) (2.81) (3.67) (3.93) (2.20) (3.22)

±̂¤¤ -2.77 -0.25 -0.07 -0.01 0.13 0.33 0.41 1.15 0.78 0.88 3.65
(-2.73) (-0.42) (-0.14) (-0.02) (0.27) (0.67) (0.84) (2.23) (1.29) (0.89) (4.06)

Four-Factor Alpha as a Reference Measure

±̂ -0.36 -0.56 -0.26 0.39 0.37 0.12 0.68 1.37 1.20 0.99 1.35
(-0.23) (-0.72) (-0.44) (0.70) (0.76) (0.24) (1.44) (2.63) (1.91) (0.82) (0.73)

±̂¤ 0.08 -0.65 -0.58 -0.32 -0.09 0.31 0.32 1.04 2.13 1.67 1.59
(0.04) (-0.65) (-0.69) (-0.46) (-0.17) (0.65) (0.59) (1.64) (2.30) (1.09) (0.65)

±̂¤¤ -0.79 0.43 0.06 0.65 0.85 0.53 0.98 0.74 0.42 0.72 1.50
(-0.82) (0.75) (0.12) (1.24) (1.62) (1.02) (1.90) (1.32) (0.65) (0.67) (1.66)
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Table 5 - cont'd

Decile of Funds Sorted by Past Performance
1 2 3 4 5 6 7 8 9 10 10-1

Panel B. Sorting Funds by Past 24-Month Performance

CAPM Alpha as a Reference Measure

±̂ -1.16 -0.66 -0.55 0.08 0.13 0.63 0.78 1.35 1.17 1.60 2.77
(-0.68) (-0.62) (-0.67) (0.14) (0.25) (1.37) (1.58) (2.14) (1.31) (0.94) (1.10)

±̂¤ -1.06 -1.16 -0.55 -0.08 0.79 0.72 0.91 1.18 1.84 0.72 1.79
(-0.49) (-0.96) (-0.57) (-0.12) (1.55) (1.44) (1.67) (1.68) (1.66) (0.35) (0.56)

±̂¤¤ -0.84 0.01 -0.52 0.09 0.52 0.46 0.74 1.01 1.20 0.60 1.44
(-0.74) (0.02) (-0.87) (0.16) (1.04) (0.98) (1.50) (1.78) (1.63) (0.48) (1.25)

Fama-French Alpha as a Reference Measure

±̂ -1.18 -1.18 -0.54 -0.58 -0.19 0.16 1.27 0.92 2.49 2.70 3.88
(-0.74) (-1.50) (-0.92) (-1.04) (-0.37) (0.34) (2.51) (1.74) (3.97) (2.31) (1.91)

±̂¤ -1.26 -1.24 -1.01 -1.28 -0.40 0.74 0.87 1.52 2.72 3.18 4.44
(-0.66) (-1.28) (-1.22) (-1.78) (-0.72) (1.53) (1.62) (2.32) (3.32) (2.17) (1.74)

±̂¤¤ -1.18 -0.36 0.10 0.08 0.46 0.47 0.82 1.34 1.21 0.75 1.92
(-1.27) (-0.62) (0.19) (0.15) (0.90) (1.01) (1.67) (2.54) (2.20) (0.79) (1.99)

Four-Factor Alpha as a Reference Measure

±̂ 1.65 0.00 0.39 0.51 0.60 0.69 0.80 1.27 1.19 0.25 -1.40
(1.05) (0.00) (0.65) (0.94) (1.21) (1.34) (1.53) (2.38) (1.93) (0.22) (-0.76)

±̂¤ 1.27 0.87 0.42 0.17 0.38 0.68 0.71 1.14 1.32 0.30 -0.97
(0.67) (0.88) (0.53) (0.26) (0.68) (1.28) (1.23) (1.75) (1.66) (0.22) (-0.40)

±̂¤¤ 0.28 0.57 0.61 0.43 0.82 0.79 1.00 1.29 1.27 0.07 -0.20
(0.29) (0.98) (1.23) (0.83) (1.61) (1.55) (1.90) (2.33) (2.17) (0.08) (-0.23)

Panel C. Sorting Funds by Entire Past Performance Record

CAPM Alpha as a Reference Measure

±̂ -1.69 -0.51 -0.09 0.39 0.91 0.91 1.08 1.00 0.99 0.31 2.00
(-1.15) (-0.56) (-0.13) (0.63) (1.71) (1.88) (2.26) (1.66) (1.41) (0.24) (1.11)

±̂¤ -2.18 -0.80 0.05 1.08 1.41 1.35 1.11 1.06 0.55 -0.25 1.94
(-1.09) (-0.67) (0.06) (1.30) (2.23) (2.47) (2.09) (1.67) (0.56) (-0.14) (0.71)

±̂¤¤ -0.32 -0.22 0.16 0.52 0.38 0.67 0.57 0.83 0.65 0.13 0.46
(-0.28) (-0.31) (0.27) (1.04) (0.79) (1.38) (1.16) (1.71) (0.99) (0.11) (0.50)

Fama-French Alpha as a Reference Measure

±̂ -0.99 -0.51 -0.69 -0.01 0.25 0.23 1.18 0.35 1.66 2.27 3.26
(-0.71) (-0.67) (-1.07) (-0.01) (0.46) (0.48) (2.77) (0.73) (3.13) (2.54) (1.99)

±̂¤ -1.72 -0.91 -0.37 -0.27 -0.21 0.30 0.48 1.69 2.38 2.43 4.15
(-0.94) (-0.91) (-0.49) (-0.35) (-0.34) (0.56) (0.93) (2.78) (3.03) (1.83) (1.76)

±̂¤¤ -0.53 0.06 0.41 0.01 -0.01 0.54 1.00 0.89 0.77 0.61 1.14
(-0.55) (0.10) (0.78) (0.02) (-0.02) (1.12) (2.23) (1.77) (1.43) (0.67) (1.43)

Four-Factor Alpha as a Reference Measure

±̂ 0.89 0.37 0.42 0.23 0.27 0.72 1.27 0.71 1.42 0.84 -0.06
(0.68) (0.56) (0.66) (0.41) (0.51) (1.49) (2.46) (1.28) (2.41) (1.04) (-0.04)

±̂¤ 1.00 -0.39 0.35 0.68 0.58 0.81 0.95 1.56 1.54 0.10 -0.90
(0.55) (-0.40) (0.44) (0.88) (0.90) (1.42) (1.69) (2.46) (1.84) (0.08) (-0.40)

±̂¤¤ 0.23 0.30 0.42 0.56 0.82 1.06 1.06 1.08 0.94 0.64 0.42
(0.23) (0.53) (0.86) (1.09) (1.63) (2.10) (2.06) (2.10) (1.54) (0.71) (0.58)
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Table 6
Performance Persistence Measured by Serial Rank Correlations

The table reports the time series averages of the rank correlations across funds between performance
measures estimated at the end of a given year and 12 months (Panel A) or 24 months (Panel B) earlier.
The t-statistics based on the time series (1977 through 2000 in Panel A, 1980 through 2000 in Panel B)

are in parentheses. The reference measure alpha coincides with the traditional measure ±̂. The CAPM
alpha is computed with respect to the market benchmark, the Fama-French alpha with respect to the
market, size, and value benchmarks, following Fama and French (1993), and the four-factor alpha with
respect to the Fama-French and momentum benchmarks, following Carhart (1997).

Reference Measure ±̂ ±̂¤ ±̂¤¤

Panel A: 12-Month Frequency

CAPM Alpha 0.11 0.14 0.04
(3.00) (2.58) (2.55)

Fama-French Alpha 0.04 0.05 0.03
(1.30) (1.18) (1.81)

Four-Factor Alpha 0.03 0.03 0.02
(1.68) (0.81) (1.79)

Panel B: 24-Month Frequency

CAPM Alpha 0.05 0.02 0.02
(0.82) (0.24) (1.33)

Fama-French Alpha 0.06 0.06 0.02
(1.99) (0.91) (1.25)

Four-Factor Alpha 0.04 0.03 0.01
(1.17) (0.53) (0.33)
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Figure 1. Bias of alternative performance estimators with respect to the traditional
performance measure.

The ¯gure plots the biases of four alternative performance estimators for managers ranked by the true value
of the traditional performance measure ±. In each simulated sample with M (10 or 100) managers, N = 50
stocks, and the weight q (0 or 0.5) on the common signal, managers are ranked in ascending order by their
±. Denote the true performance of the m-th ranked manager by ±m. For each estimator ~± and each rank m
(m = 1; : : : ;M), the bias is computed by averaging ~±m¡±m across 10,000 simulated samples. Four estimators
are considered: the usual estimator ±̂, the Bayesian estimator ±̂B , our levels estimator ±̂¤, and our changes
estimator ±̂¤¤.
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Figure 2. Empirical distribution of our performance measures across funds.

The ¯gure plots the histograms of our performance measures for all funds with valid data at the end of
our sample. In the top two plots, the reference measure is the CAPM alpha, in the middle plots, it is the
Fama-French alpha, and in the bottom plots, the four-factor alpha. The left panels plot the levels measures
±̂¤, and the right panels plot the changes measures ±̂¤¤. All measures are expressed in percent per month.
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Figure 3. Empirical distribution of the t-statistics of our performance measures across
funds.

The ¯gure plots the histograms of the t-statistics of our performance measures for all funds with valid data
at the end of our sample. In the top two plots, the reference measure is the CAPM alpha, in the middle
plots, it is the Fama-French alpha, and in the bottom plots, the four-factor alpha. The left panels plot the
t-statistics of the levels measures ±̂¤, and the right panels plot the t-statistics of the changes measures ±̂¤¤.
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Figure 4. Year-by-year performance persistence.

The ¯gure plots the rank correlations across funds between performance measures estimated at the end of
the year given on the horizontal axis and one year earlier. No overlapping return data is used. In each
panel, the solid line corresponds to our levels measure ±̂¤, the dashed line to our changes measure ±̂¤¤, and
the dotted line to the usual measure ±̂. In the top panel, the reference measure is the CAPM alpha, in the
middle panel, it is the Fama-French alpha, and in the bottom panel, the four-factor alpha.
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Appendix

Computing − = Cov(±̂; ±̂0) for funds with misaligned return histories.

Let S = f1; : : : ; Tg denote the set of dates in the whole sample period in which fund
returns may be available. Suppose that returns on fund 1 are available in the subset S1
of the whole sample period, S1 ½ S. These returns are stacked in the vector R1, whose
dimension is N1 £ 1, where N1 is the number of observations for fund 1. Analogously,
suppose that returns on fund 2 are available in S2 ½ S, and they are stacked in the
N2 £ 1 vector R2. Also let RB denote the vector of returns on K benchmark portfolios,

available for the whole period S. All returns are in excess of the risk-free rate. De¯ne
R1;t = ±1 +RB;t¯1 + ²1;t; t 2 S1 (A1)

R2;t = ±2 +RB;t¯2 + ²2;t; t 2 S2 (A2)

The estimated intercepts ±̂1 and ±̂2 are obtained by running separate OLS regressions,

one using the data from S1 and the other using the data from S2.18 The standard errors
of ±̂1 and ±̂2 are computed accordingly. To calculate −, we also need Cov(±̂1; ±̂2) for each

pair of funds. Rewrite equations (A1) and (A2) as

R1 = X1µ1 + ²1 (A3)

R2 = X2µ2 + ²2; (A4)

where µj = (±j ¯
0
j)
0, Xj is the subset of X = [¶T RB] corresponding to Sj (i.e. we take

only the rows that correspond to the dates in Sj), j = 1; 2, and ¶T is a T -vector of ones.
Then

µ̂1 = (X 0
1X1)

¡1X 0
1R1 = (X

0
1X1)

¡1X 0
1(X1µ1 + ²1) = µ1 + (X

0
1X1)

¡1X 0
1²1

µ̂2 = (X 0
2X2)

¡1X 0
2R2 = (X

0
2X2)

¡1X 0
2(X2µ2 + ²2) = µ2 + (X

0
2X2)

¡1X 0
2²2

Hence,

Cov(µ̂1; µ̂2) = E[(µ̂1 ¡ µ1)(µ̂2 ¡ µ2)0] = (X 0
1X1)

¡1X 0
1E(²1²

0
2)X2(X

0
2X2)

¡1 (A5)

18Using the techniques of P¶astor and Stambaugh (2002), the intercepts of short-history funds can be
estimated more precisely by incorporating the returns on longer-history funds. The most e±cient use
of all information involves regressing fund returns on the returns of all longer-history funds and the
benchmarks. To ensure feasibility, we would have to choose a subset of longer-history funds, and the
estimates would depend on that subset, which seems undesirable. (P¶astor and Stambaugh use a small
set of carefully-selected longer-history passive assets instead of longer-history funds.) We opt for the
simplicity of estimating the regression interecepts fund by fund.
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Note that ²1 is N1 £ 1 and ²2 is N2 £ 1, so that E(²1²02) is N1 £ N2. Let ¾12 denote
the contemporaneous covariance between ²1 and ²2. Then E(²1²

0
2) is a matrix whose

(i; j) element is ¾12 if S1(i) = S2(j) and zero otherwise, since the epsilons are assumed
to be uncorrelated over time. Let O denote the overlap of the funds' sample periods,

O = S1 \ S2, let XO denote the row subset of X corresponding to O, let NO denote
the number of elements in O, and let INO denote the identity matrix of dimension NO.
Equation (A5) can be rewritten as

Cov(µ̂1; µ̂2) = (X 0
1X1)

¡1X 0
O(¾12INO)XO(X

0
2X2)

¡1 (A6)

= ¾12(X
0
1X1)

¡1(X 0
OXO)(X

0
2X2)

¡1: (A7)

Our estimate of Cov(±̂1; ±̂2) is given by the (1; 1) element of (A7). (As an example, if the

history of fund 2 is subsumed by the history of fund 1, S2 ½ S1, so that O = S2, then
Cov(µ̂1; µ̂2) = ¾12(X

0
1X1)

¡1.) To estimate ¾12, we run the regressions (A1) and (A2) on

the overlapping data O and take the sample covariance of the resulting residuals.19

Proof of the statement immediately following equation (26).

MX
j=1

cm;j =
MX
j=1

NX
n=1

h
x+m;ny

+
j;n1fn2N+

mg1fj2M+
n g ¡ x+m;ny

¡
j;n1fn2N+

mg1fj2M¡
n g : : :

¡ x¡m;ny+j;n1fn2N¡
mg1fj2M+

n g + x¡m;ny
¡
j;n1fn2N¡

mg1fj2M¡
n g
i

=
NX
n=1

x+m;n1fn2N+
mg

MX
j=1

y+j;n1fj2M+
n g ¡

NX
n=1

x+m;n1fn2N+
mg

MX
j=1

y¡j;n1fj2M¡
n g : : :

¡
NX
n=1

x¡m;n1fn2N¡
mg

MX
j=1

y+j;n1fj2M+
n g +

NX
n=1

x¡m;n1fn2N¡
mg

MX
j=1

y¡j;n1fj2M¡
n g

=
NX
n=1

x+m;n1fn2N+
mg ¡

NX
n=1

x+m;n1fn2N+
mg ¡

NX
n=1

x¡m;n1fn2N¡
mg +

NX
n=1

x¡m;n1fn2N¡
mg

= 0: (A8)

19There is a more sophisticated approach to estimating ¾12 when S2 ½ S1. The results in Stambaugh
(1997) can be used to estimate ¾12 using also the data in S1 that is not in S2. However, since S2 ½ S1 is
unlikely to happen for all pairs of funds and since we want the same procedure for all pairs, we simply
take the estimate of ¾12 from the overlapping data.
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Inference and investment of our simulated investors.

Here we calculate the expected return and the covariance matrix of returns as per-

ceived by the simulated mean-variance investors considered in Section II. The subscript

m, which denotes investor m, is dropped throughout for convenience.

First note that with a di®use prior on ®n, the Bayes rule implies that

®njsn; ° =
(
sn with probability °
un » N(0; ¾2®) with probability 1¡ °; (A9)

so that

E(®njsn; °) = °sn

Var(®njsn; °) = E(®2njsn; °)¡ [E(®njsn; °)]2 = (° ¡ °2)s2n + (1¡ °)¾2®:

Let E(°) denote the investor's perception of his own skill, and let Var(°) denote the

variance associated with this perception. Using the law of iterated expectations, the

expected return on stock n after observing the signals is equal to

E(rnjS) = E[E(®njsn; °)] = E(°)sn: (A10)

Using the variance decomposition rule, the perceived variance of stock n's return is

Var(rnjS) = ¾2e + E[Var(®njsn; °)] + Var[E(®njsn; °)]
= ¾2e + ¾

2
® + E(°)(s

2
n ¡ ¾2®)¡ s2n[E(°)]2: (A11)

The perceived covariance between returns on stocks i and j is

Cov(ri; rjjS) = E[Cov(®i; ®jjS; °)] + Cov[E(®ijS; °);E(®jjS; °)]
= E[E((®i ¡ °si)(®j ¡ °sj)jS; °)] + Cov[°si; °sj]
= E[°2sisj ¡ °2sisj ¡ °2sisj + °2sisj ] + sisjVar(°)
= sisjVar(°): (A12)

For simplicity, we assume that each manager knows his own °, so that E(°) = ° and

Var(°) = 0. The expression for the optimal weights in equation (35) follows immediately.
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