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costs of moderate deviations are relatively small, suggesting that a policy of adjusting leverage only when

it deviates substantially from a target debt/equity ratio is likely to be reasonable for most firms.
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Horses and Rabbits?  Optimal Dynamic Capital Structure 
from Shareholder and Manager Perspectives 

 

1.  Introduction 

 A central issue in corporate finance research is the question of why, despite the large tax 

advantage enjoyed by debt, actual firms have fairly low leverage ratios.  This question motivated much of 

the early research on agency theory (Jensen and Meckling, 1976; Myers, 1977), important work on 

information asymmetries (Myers and Majluf, 1984), three American Finance Association presidential 

addresses (Miller, 1977; Myers, 1984; and Leland, 1998), and some well-regarded recent research 

(Graham, 2000).  The consensus view underlying this vast literature is that bankruptcy costs alone are too 

small to offset the value of tax shields, and that other factors, such as agency costs, must be introduced 

into the cost-benefit analysis to explain actual capital structures.  Miller (1977, p. 264) memorably 

characterizes the discrepancy by comparing the trade-off between tax gains and bankruptcy costs as “like 

the recipe for the fabled horse-and-rabbit stew – one horse and one rabbit”.  

 The underlying logic of this widespread view is that, while tax shields are large (about 9.7 percent 

of firm value according to Graham, 2000), expected bankruptcy costs are small because they are incurred 

infrequently and represent only a small fraction of firm value when they are incurred.  Yet, the tradeoff 

theory does not contain any predictions about the relative level of tax shields and bankruptcy costs; rather, 

it states that at the margin, adding a small amount of debt will not change firm value.  Evaluating the 

extent to which Miller’s intuition captures the essence of the capital structure problem requires a formal 

model, calibrated to reflect actual data. 

This paper estimates optimal capital structure from a calibrated continuous-time contingent claim 

model.  The model is based on the dynamic framework of Ju (2001), which corresponds to a traditional 

tradeoff approach insofar as the only explicitly modeled factors affecting capital structure are tax shields 

and bankruptcy costs.  In our model, the manager of an unlevered firm undertakes a fairly priced 

debt/equity swap, in which the manager selects the fraction of equity to be exchanged for debt with the 
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objective of maximizing either the per-share value of the firm’s equity or his own utility.  The swap that 

maximizes the per-share value of equity is optimal from the shareholders’ perspective, and the swap that 

maximizes the manager’s utility is optimal from his perspective. 

 We find that the optimal debt to total capital ratio is 14.42 percent when we maximize share value 

for a firm that is calibrated to be similar to the median firm on the Standard and Poors’ Computstat 

database.  In comparison, the median firm in Compustat had a debt to total capital ratio of 22.6 percent in 

2000.  The fact that our estimate of the optimal predicted debt to total capital ratio is below the median 

value of 22.6 percent implies that, contrary to the dominant view in the literature, the typical firm is over-

leveraged.  For, example, a number of recent papers (e.g., Leland, 1994; Leland and Toft, 1996; 

Goldstein, Ju, and Leland, 2001), that calibrate continuous-time contingent claim models and characterize 

optimal leverage as the capital structure at which adding a small amount of debt does not change firm 

value, predict leverage ratios that are substantially higher than those observed in practice. 

Several features of our approach cause our model to predict lower levels of debt in the optimal 

capital structure than the previous continuous-time contingent claim models.  First, the model is dynamic 

in the sense that finite maturity debt is repeatedly issued and re-financed upon maturity at a pre-specified 

target debt to total capital ratio.  The opportunity to increase debt in the future, if firm value increases, 

lowers the optimal initial leverage ratio because firms issue debt less aggressively than they would if the 

debt level could not be adjusted with changes in firm value (e.g., Leland, 1994 and Leland and Toft, 

1996).  Second, in some previous models (e.g., Leland, 1994), debt is perpetual so firms only make tax-

deductible interest payments.  In contrast, issuers of debt in our model make both tax-deductible interest 

payments and non-deductible principal payments.  An implication of this difference is that interest 

deductions are relatively less valuable in our model, leading firms to use less leverage ex ante.  Finally, 

like the other continuous-time contingent claim models, we specify the value of the unlevered assets as an 



 3 

exogenous process.1  The volatility of changes in this process has often been calibrated to 0.20 (Leland, 

1994 and Leland and Toft, 1996).  In contrast, we calibrate the volatility of changes in the unlevered 

value of the firm to about 0.38, which produces lower optimal leverage ratios.  We calibrate the volatility 

to this higher number, because it results in our model producing credit spreads and bankruptcy recovery 

rates that match levels observed in practice.2 

 The costs associated with deviations from the optimal capital structure are as important as the 

optimal debt/value ratio itself.  We also calculate firm value as a function of capital structure, and our 

estimates indicate that the impact on firm value of moderate deviations from optimal capital structure is 

small.  For example, for any debt to total capital ratio between 10.3 percent and 19.4 percent, an 

adjustment to the optimal level of 14.42 percent would increase firm value by less than 0.5 percent for the 

typical firm.  Insofar as the transaction costs for adjusting capital structure to its target level exceed the 

potential increase in firm value, the optimal policy may be to allow the firm’s capital structure to deviate 

substantially from its target debt/total capital ratio.  Our estimates suggest that it probably makes sense to 

allow the capital structure to deviate by at least ten percentage points before recapitalizing the firm.  Such 

a policy is consistent with the recent evidence reported by Welch (2002), who documents that firms do 

not regularly recapitalize following shocks to their equity values.  Our model thus suggests that when 

similar firms receive differing shocks to their equity values, they will not find it optimal to adjust their 

capital structures back to the target level.  Our model is therefore consistent with the well-documented 

empirical regularity of otherwise similar firms having very different capital structures from one another. 

                                                           
1 The early capital structure models of Kane, Marcus, and McDonald (1984, 1985) and Fischer, Heinkel, and 
Zechner (1989) specify the optimally levered value of the firm as an exogenous process.  While this modeling 
choice yields some important insights, it is not a convenient approach in the present context.  Specifying the 
optimally levered value of the firm as an exogenous process makes it difficult to directly analyze the impact of tax 
shields and bankruptcy costs on capital structure decisions. 
2 We also independently compute this asset volatility directly using data for firms in the Compustat database and get 
a median value of about 0.28.  As explained below, this estimate is downwardly biased, so the value computed using 
the Compustat data appears to be consistent with our baseline estimate of 0.38.  It should also be noted that while 
the 0.30 equity volatility that is used to guide others’ choice of unlevered asset volatility (e.g., Leland and Toft, 
1996) may be sensible for an equity index, it is too low for the equity of a typical individual firm.  For example, our 
estimate of the median individual firm equity volatility over the time period when we preformed our calibration is 
0.685. 
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 We next introduce agency conflicts into this framework by calculating the value of the swap that, 

instead of maximizing the value of a share of stock, maximizes the utility of a potential manager.  We 

assume the manager has a constant relative risk aversion utility function with a risk-aversion parameter of 

2, owns 0.32 percent of the company’s stock, has at-the-money options on 0.38 percent of the company’s 

stock, and has non-firm wealth equal to the value of his shares.  When the swap is chosen to maximize 

this utility function, the optimal leverage drops to 11.25 percent of firm value. 

 We perform numerical comparative statics to evaluate the sensitivity of the results on optimal 

capital structure to the major parameters of the model.  Not surprisingly, corporate tax rates, bankruptcy 

costs, and the ability of debtholders to force the firm into bankruptcy all impact optimal capital structure 

ratios. 

 We also calibrate the model to estimate the optimal capital structure for 15 actual firms.  For 10 

of these 15 firms, the predicted stock-price maximizing leverage ratio is less than the firm’s actual 

leverage ratio, and for all of the 15 firms the predicted utility-maximizing leverage ratio is less than actual 

leverage ratio.  In general, the model is able to predict, within a reasonable degree of error, the leverage 

observed at firms that have relatively small to typical levels of debt, but substantially underestimates the 

level of debt observed at highly levered firms. 

 Overall, the results in this paper suggest that the tradeoff model performs reasonably well in 

predicting capital structures for firms with typical levels of debt.  Certainly, the “horse and rabbit stew” 

analogy seems inappropriate – actual capital structures appear to be somewhat higher than those predicted 

by this model.  Our model implies that important determinants of capital structure include the underlying 

risk of the firm’s assets, the ability of debtholders to force default for a given level of firm value, the debt 

maturity, as well as the incremental costs conditional on default.  Our ability to measure these variables is 

quite limited using current econometric methods; a better understanding of their relative importance can 

advance our understanding of capital structure choices, and potentially improve the financing choices of 

actual firms. 
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 The rest of this paper is organized as follows:  Section 2 describes the model in detail.  Section 3 

explains how we calibrate the model to reflect current market data.  Section 4 discusses the implications 

of the calibrated model, and Section 5 concludes.  Technical details are discussed in the Appendix. 

2.   A Dynamic Model of Capital Structure 

The models that we use are based on Ju (1998, 2001).  In these models, the firm issues debt with 

a maturity of T, which pays a continuous, constant (tax-deductible) coupon.  The manager’s wealth at 

time zero is divided between non-firm wealth and his stake in the firm, which consists of equity shares 

and standard European call options on the firm’s shares, which expire at time Tu.  The manager cannot 

sell or hedge his shares or options.  For simplicity, it is assumed that the manager’s non-firm wealth 

grows at the risk-free rate, r, and is therefore uncorrelated with the value of the manager’s stake in the 

firm.  The manager’s utility is given by a CRRA utility function defined over his entire wealth.  The value 

process of the firm’s assets (i.e., the value of the cash flows from operations) follows geometric Brownian 

motion. 

 The model is in continuous time with 0 .uT T< <  At time zero the value of the firm’s assets is 

( )0 .V   Before the swap, the firm’s capital consists of NSN  shares of stock with a total market value of 

( ) ( )0 0 .NSE V= 3  The value of the firm’s assets, ( ) ,V t  follows geometric Brownian motion described 

by: 

 
( )

( ) ( ) ( ) ,
dV t

dt dZ t
V t

µ δ σ= − +  (1) 

where µ  and 0σ >  are constants and ( )Z t  is a standard Wiener process.  The firm liquidates assets at 

a rate of δ  of the total value of the firm’s assets, so that ( )V t dtδ  is equal to a time varying dividend 

                                                           
3 The subscript NS  refers to quantities before the swap (i.e., no swap) and the subscript S  will refer to quantities 
after the swap is completed.   
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( )div t dt  paid to equity holders over the time interval :dt   

 ( ) ( ) .V t dt div t dtδ =  (2) 
 
The value of δ  is specified exogenously as a model parameter. 

We consider a fair equity for debt swap at time zero that either (1) maximizes the value of a share 

of equity or (2) maximizes the manager’s expected utility at time .uT   The swap is fair in the sense that 

the debt is issued at its correct market value.  The debt has a face value of SF  and has a market value 

when it is issued at time zero of ( )0 .SD   The debt pays a coupon at a constant annualized rate SC  which 

is set so that the debt is priced at par, that is, ( )0 .S SF D=   The firm deducts its coupon payments from 

its taxes at an effective rate ,τ  and the tax benefit of the debt at time zero has a value of ( )0 .STB   The 

debt has a protective covenant which specifies that if the firm value, at anytime during the life of the debt 

[ ]0,T , decreases to an exponential boundary, the firm is forced into bankruptcy.4  When this occurs, the 

stock becomes worthless and the debtholders recover 1 BCα−  of the levered value of the assets.  The 

fraction of the value of the assets not recovered by the debtholders is assumed to be consumed in the 

bankruptcy process.  The bankruptcy boundary is an exponential curve that increases at a rate g  and is 

equal to the face value of debt at time .T  Consequently, the bankruptcy boundary is described by 

( ).g t T
SF e −   The bankruptcy costs for the firm are the present value of the expected losses in bankruptcy, 

and are denoted by ( )0 .SBC   After the swap the firm still liquidates assets at a rate of δ  of the total 

value of the firm’s assets, so that ( )V t dtδ  equals the sum of the after-tax coupon paid to debt holders 

[ ( )1 SC dtτ− ] and a time varying dividend ( )div t dt  paid to equity holders over the time interval :dt   

                                                           
4 Following Black and Cox (1976), we are implicitly assuming that this covenant acts somewhat like the actual 
covenants seen in bond indentures.  The idea is that actual bond covenants are set up to give bondholders the right to 
seize assets when they are in danger of being lost – this assumption models this right explicitly.  
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 ( ) ( ) ( )1 .SV t dt div t C dtδ τ= + −    (3) 

Note that (3) can require a cash infusion for low ( ).V t 5 

 We assume that the swap is fully transparent so that the post-swap values of the debt and equity 

exchanged are equal in magnitude and opposite in sign: 

 ( ) ( )0 0 .S NS
S S

S

N ND E
N

 −
= − 

 
 (4) 

 
At time zero there is an infinite number of fair equity for debt swaps available to the firm.  We will 

analyze two of these.  The first swap we consider maximizes the value of a share of equity.  That is, it 

maximizes the quantity, ( )0 .S SE N   The second swap we consider maximizes the manager’s expected 

utility at time .uT   That is, it maximizes the expected value of the manager’s CRRA utility function 

(which is defined over his total wealth) at time .uT  

At time zero the manager’s stake in the firm consists of ( )Man NSN N<  shares and CallsN  

European call options with strike price K  that expire at time .uT   For purposes of computational 

tractability, we assume that the firm buys the manager’s calls from a third party.  Hence, if the manager 

exercises the calls at time ,uT  he buys CallsN  shares from the third party at a price of CallsN K  dollars.   

We assume that the manager cannot sell or hedge either his shares or his options.  In addition, at time zero 

the manager has ( )0NFW  dollars of non-firm wealth.  For simplicity, this wealth is assumed to grow at 

the risk-free rate.  When the swap is performed in order to maximize the manager’s expected utility at 

time uT , this utility is described by 

 ( ) ( )1
1

,
1

u

u

T
T

Wealth
U Wealth

γ

γ

−
−

=
−

 (5) 

                                                           
5 Though our bankruptcy boundary is exogenous, cash infusion is not uncommon for models with an endogenous 
boundary (e.g., Leland, 1994).  
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where γ  is a risk-aversion parameter and 
uTWealth  is the manager’s total wealth at time .uT  

 The value of the debt, the bankruptcy costs, and the tax benefit of debt are computed from the 

probability density function for first hitting the exponential bankruptcy boundary.  Let 

( )( )*; 0 , , , , ,f t V A g r δ σ  be the probability density for first hitting a boundary described by gtAe  at a 

time *t , where A  is a constant, if the variable V initially has a value ( )0V A>  and follows geometric 

Brownian motion with drift r δ−  and volatility .σ   In our model, A  is the value of the bankruptcy 

boundary at time zero, so that A  is equal to .gT
SF e−   An explicit expression for 

( )( )*; 0 , , , , ,f t V A g r δ σ  is provided in the Appendix.  Next define: 

 ( )( ) ( )( )* *

0

, 0 , , , , , ; 0 , , , , , ,
T

G T V A g r f t V A g r dtδ σ δ σ≡ ∫  (6) 

 

 ( )( ) ( )( )*

0

, 0 , , , , , *; 0 , , , , , *,
T

rtH T V A g r e f t V A g r dtδ σ δ σ−≡ ∫  (7) 

and 

 ( )( ) ( ) ( )( )* * *

0

, 0 , , , , , ; 0 , , , , , .
T

r g tI T V A g r e f t V A g r dtδ σ δ σ− −≡ ∫  (8) 

 
Closed form solutions for these expressions are derived in the Appendix. 

 Following Leland and Toft (1996), the value of the debt at time zero is the sum of a contribution 

from the coupon, a contribution from the payment to debtholders if bankruptcy occurs, and the repayment 

of the face value at time T  if bankruptcy does not occur: 

 

( ) ( )( )( )

( ) ( )
( )

( ) ( )( )

( )( )( )

*

**

* *

0

* *

0

0 1 , 0 , , , , ,

0
1 , 0 , , , , ,

0

1 , 0 , , , , , ,

T
rt gT

S S S

T
g T tSrt gT

BC S S

gT rT
S S

D C e G t V F e g r dt

TV
e F e f t V F e g r dt

V

F G T V F e g r e

δ σ

α δ σ

δ σ

− −

− −− −

− −

= −

+ −

+ −

∫

∫  (9) 

or 
 



 9 

 

( ) ( )( )( ) ( )( )( )
( ) ( )

( ) ( )( )

( )( )( )

0 1 1 , 0 , , , , , , 0 , , , , ,

0
1 , 0 , , , , ,

0

1 , 0 , , , , , ,

gT rT gTS
S S S

S gT gT
BC S S

gT rT
S S

CD G T V F e g r e H T V F e g r
r

TV
F e I T V F e g r

V

F G T V F e g r e

δ σ δ σ

α δ σ

δ σ

− − −

− −

− −

= − − −

+ −

+ −

 (10)

  
where 
 
 ( ) ( ) ( ) ( )0 0 0 0S S STV V TB BC= + −  (11) 
 
is the total levered value of the firm at time zero after the swap.  If the ( ) ( )0 0STV V  factor were 

omitted from equation (9), then the debtholders would receive ( )1 BCα−  of the unlevered value of the 

assets of the firm upon bankruptcy.  The inclusion of this factor implements the modeling decision that 

upon bankruptcy the debtholders receive ( )1 BCα−  of the levered value to a healthy firm of the 

remaining assets.  Explicit expressions for ( )0STB  and ( )0SBC  are provided below. 

 Another modeling decision involves the question of whether the firm should refinance the debt 

obtained in the swap when it matures.  We consider two alternative models:  The first is a “static” model, 

in which the firm does not replace the debt from the swap when it matures, and is therefore financed 

entirely with equity after time T.  The second is a “dynamic” model, in which new debt is reissued when 

old debt matures.  Since the dynamic framework seems a priori more appealing, and in fact Ju (1998, 

2001) shows that the refinancing assumption can affect corporate financing decisions ex ante, we analyze 

the dynamic model.  Nonetheless, it is convenient to present the solution of the dynamic model in terms 

of that for the static model that we develop now. 

2.1.  The Static Model 

 In the static model, when the firm is forced into bankruptcy at time *t , the bankruptcy costs are 

( )*
BCV tα .  Hence, at time zero the value of the bankruptcy costs are 
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 ( ) ( ) ( )( )
* * * *

0

0 ; 0 , , , , ,
T

g t T rt gT
S BC S SBC F e e f t V F e g r dtα δ σ− − −= ∫  (12) 

or 

 ( ) ( )( )0 , 0 , , , , , .gT gT
S BC S SBC F e I T V F e g rα δ σ− −=  (13) 

The tax benefits of debt accrue to the firm as long as it has not gone bankrupt.  Consequently, the tax 

benefits of debt in the static model can be computed by 

 ( ) ( )( )( )* * *

0

0 1 , 0 , , , , ,
T

rt gT
S S STB C e G t V F e g r dtτ δ σ− −= −∫  (14) 

 
or 

( ) ( )( )( ) ( )( )( )0 1 1 , 0 , , , , , , 0 , , , , , .gT rT gTS
S S S

CTB G T V F e g r e H T V F e g r
r

τ
δ σ δ σ− − −= − − −  (15) 

 
The value of the equity is equal to the unlevered value of the assets plus the tax benefits of debt minus the 

bankruptcy costs minus the value of the debt: 

 ( ) ( ) ( ) ( ) ( )0 0 0 0 0 .S S S SE V TB BC D= + − −  (16) 
 
 

In order to compute the manager’s time zero expectation of his utility at time ,uT  let ( )K
uV T  be 

the value of the firm’s assets at time uT  that makes a share of stock worth K  at time .uT  Then the 

manager’s time zero expectation of his utility at time uT  is the sum of three components.  The first 

component is a function of the density for the value of the firm’s assets being at various levels above 

( )K
uV T  at time uT  without having touched the bankruptcy boundary between time zero and time uT .  

The second component is a function of the density for the value of the firm’s assets being at various levels 

below ( )K
uV T  at time uT  without having touched the bankruptcy boundary between time zero and time 

uT .  The third component is the utility derived from his non-firm wealth if the bankruptcy boundary is hit.  

Let ( ) ( )( ); 0 , , , , , ,V T V T A gρ µ δ σ  be the density function for starting at a value ( )0V A>  and being 
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at ( ) gTV T Ae>  at time 0T > without ever hitting the boundary gtAe  in the interval [ ]0,t T∈  when the 

V  process follows geometric Brownian motion with drift µ δ−  and volatility .σ  An explicit expression 

for ( ) ( )( ); 0 , , , , , ,V T V T A gρ µ δ σ  is presented in the Appendix.  Then at time zero, the manager’s 

expectation of his utility at time uT  after the swap is given by 

 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( )( ) ( )

0

; 0 , , , , , ,

; 0 , , , , , ,

K
u

K
u

g T Tu
S

Calls
S u u S u S u S u Calls

T

gT
u u S u

T

u u S u S u S u

e

gT
u u S u

Man

SV

V
Man

SF

NT V T TB T BC T D T N K

V T V T F e g dV T

T V T TB T BC T D T

V T V T F e g dV T

NUtility U NFW
N

NU NFW
N

ρ µ δ σ

ρ µ δ σ

− −

−

−

∞  + + − − −     

×

  + − −   
  

×

= +

+ +

∫

∫

( )( ) ( )( )
0

; 0 , , , , , ,
uT

gT
u SU NFW T f t V F e g dtµ δ σ−+ ∫

 (17) 

where ( )K
uV T  satisfies the following equation: 

 
( ) ( ) ( ) ( ) .

K
u S u S u S u

S

V T TB T BC T D T
K

N
+ − −

=  (18) 

 
Note that all terms on the right hand side of equation (18) are a function of ( ).K

uV T  

2.2. The Dynamic Model 

Next we extend the model to a more realistic dynamic setting.  As in the static case, after the 

swap at time zero the firm has debt outstanding with T  years to maturity.  Now, however, if the firm has 

not gone bankrupt at the end of T  years, the firm issues new T − year debt at time .T  The new debt has a 

coupon of ( ) ( )0 .SC V T V  Similarly, as shown in the Appendix, all other securities will be scaled by a 

factor of ( ) ( )0 ,V T V  because at time T  the firm is identical to itself at time zero except that it is 

( ) ( )0V T V  as large.  The process of issuing new T − year debt when the old debt matures continues 

indefinitely unless the firm goes bankrupt. 
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In this dynamic setting, the price of the debt is still given by equation (10).  The firm value, 

however, will reflect the costs and benefits of the debt issued in the future.  In order to determine the total 

tax benefit and total bankruptcy cost of the current and potential future issues of debt, the following 

quantity will be useful: 

 [ ]{ }
( )
( )Firm does not go bankrupt over 0,T .
0

rT Q V T
e E

V
φ −  

≡  
 
1  (19) 

 
The indicator function [ ]{ }Firm does not go bankrupt over 0,T1  is equal to one if the firm does not go bankrupt over the 

interval [ ]0,T  and zero otherwise.  The expectation is taken over the risk-neutral Q  measure.  In the 

Appendix, we show that φ  is given by the following expression: 

 ( ) ( )

( )( )
( )

2 22 1 2

1 2 ,
0

r ggT
T SF ee N d N d

V

δ σ σ

δφ
+ − − −

−
−

   = −       

 (20) 

where 
 

 
( )( ) ( )2

1

log 0 2
,

gT
SF e V r g T

d
T

δ σ

σ

−− + − − +
=  (21) 

and 
 

 
( )( ) ( )2

2

log 0 2
.

gT
SF e V r g T

d
T

δ σ

σ

− + − − +
=  (22) 

 

We also show in the Appendix that the total tax benefit of debt and the total bankruptcy costs are given by 

 ( ) ( )0
0

1
SDynamic

S

TB
TB

φ
=

−
 (23) 

and 
 

 ( ) ( )0
0 .

1
SDynamic

S
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φ
=

−
 (24) 

 
Similar to equation (16), the value of the equity is equal to the unlevered value of the assets plus the tax 

benefits of debt minus the bankruptcy costs minus the value of the debt: 
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 Finally, the manager’s utility after the swap in the dynamic model is given by 
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 (26) 

The details for computing the manager’s utility in this dynamic model are provided in the Appendix.  

3.  Calibrating the Model 

In choosing the amount of debt that will be swapped for outstanding equity, a face value, ,SF  of 

10-year debt (i.e., 10T =  years) is chosen to maximize either the value of a share of equity or the 

manager’s expected utility one year in the future (i.e., 1uT = ).  The total value of the firm’s assets 

before the swap, ( )0V , is normalized to $100, which is divided among 100 shares, each worth $1.  We 

assume that the manager of the firm owns 0.32 of a share of stock and a 1-year exchange traded European 

call option on an additional 0.38 share.6  The strike price for the call option is set equal to the time zero 

value of a share of equity of the firm before the swap, $1.  For the base-case, the manager’s non-firm 

wealth is assumed to equal the time-zero value of the shares that the manager owns, $0.32.  Consistent 

with the literature, we assume the manager’s risk aversion parameter γ equals 2.7   

Given these assumptions, calibration of the model requires estimates of (1) the risk-free rate, r,  

(2) the effective tax rate, ,τ  (3) the volatility of the total value of the firm, σ , (4) the debtholder 

                                                           
6 The manager’s stock and option holdings represent the median values for managers at 1,405 firms for which 
sufficient data to estimate these figures are available for 1999 in the ExecuComp database. 
7 See pages 258-260 of Ljungqvist and Sargent (2000) for a discussion of the interpretation of this value. 
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bankruptcy recovery rate, ( )1 BCα− , (5) the bankruptcy boundary’s exponential growth rate, g, (6) the 

level of dividends, DivRate, paid by the firm, and (7) the drift parameter for the total value of the firm, 

µ .  We estimate these parameters using data from the end of January 2001. 

As our estimate of the risk-free rate, we use the rate on 10-year Treasury bonds as of January 30, 

2001, as reported in the February 7, 2001 edition of Standard & Poor’s The Outlook.  This rate equals 

5.22 percent. 

To estimate the tax rate used to calculate the tax shields from the debt, we use data on estimated 

marginal tax rates (before interest expense) provided by John Graham, who constructed these estimates 

using the approach described in Graham (1996).  In particular, for the base case, we assume that the tax 

rate equals the median marginal tax rate of 34 percent for the 5,519 firms for which 1999 estimates are 

available. 

 The volatility of the total value of the firm’s assets, σ , the debtholder bankruptcy recovery rate, 

( )1 BCα− , and the exponential growth rate for the bankruptcy boundary, g, are selected to yield an 

expected recovery rate of 45 percent and a spread over the 10-year Treasury bond rate for the firm’s debt 

that equals 1.90 percent for a firm with the median debt to total capital ratio of 22.62 percent that we 

observe in Compustat for 2000.  The 45 percent recovery rate is broadly consistent with recovery rates 

published by Hamilton, Gupton, and Berhault (2001).  For the 1981 to 2000 period, Hamilton, Gupton, 

and Berhault estimate the mean default recovery rates for senior secured bonds, senior unsecured bonds, 

and subordinated bonds of all ratings to equal 53.9 percent, 47.4 percent, and 32.3 percent, respectively.  

The 1.90 percent spread over the Treasury bond rate equals the spread for 10-year A-rated corporate debt 

as of January 30, 2001, as reported in the February 7, 2001 edition of Standard & Poor’s The Outlook.  

The volatility of the total value of the firm’s assets, σ , is estimated this way to be 0.3802.  This value 

implies a volatility of the value of the typical firm’s equity of 0.4809.  The bankruptcy recovery and 

bankruptcy boundary growth rates for our base case equal 0.5090 ( 0.4910BCα = ) and 3.69 percent 

( 0.0369g = ), respectively. 
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We set the dividend rate, DivRate, equal to 1.5 percent in the base case.  Because this rate is 

stated as a percentage of the unlevered value of the firm, we use a number that is on the lower end of the 

1.5 to 2.0 percent dividend yield paid by public firms at the beginning of 2001. 

 We select a value for the drift parameter of the firm, µ, by implementing an argument similar to 

one provided in Merton (1974).  We begin by formally writing the dynamics of the equity’s value as 

 ( ) .E E E EdE E dt E dZµ δ σ= − +  (27) 

By Ito’s lemma and the dynamics of the firm under the physical measure given in equation (1), we can 

also write the dynamics for E  as 

 ( )
2

2 2
2

1 .
2

E E E EdE V V dt V dZ
V V t V

σ µ δ σ
 ∂ ∂ ∂ ∂

= + − + + ∂ ∂ ∂ ∂ 
 (28) 

Matching the coefficients on the drift components of equations (27) and (28) yields 
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∂
∂

 (29) 

 
We set Eµ  equal to 0.1122 by assuming an equity risk premium of 6 percent over our risk free rate of 

5.22 percent.  When the rest of the quantities on the right hand side of equation (29) are computed from 

the calibrated values for our standardized firm with a debt to total capital ratio of 22.62 percent, the 

equation yields our base case value for µ  of 10.63 percent. 

 Panel A of Table I summarizes our parameter choices.  These choices are used to derive the set of 

parameters that are presented in Panel B of Table I. 

4.  Optimal Capital Structure 

 In our model, each potential capital structure implies different values for tax shields and 

bankruptcy costs, and ultimately different price distributions for the firm’s securities.  Beginning with an 

all equity firm, we identify ‘optimal’ capital structures from the perspective of shareholders and managers 
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for various firm and debt characteristics.  The optimal capital structure is defined as the swap that 

maximizes the objective function in question, conditional on the swap being fair, that is, satisfying 

equation (4).  From the shareholders’ perspective, the optimal capital structure is the one that maximizes 

the post-swap value of each share of equity, and from the manager’s perspective, the optimal capital 

structure is the one that maximizes the manager’s expected (post-swap) utility at time Tu. 

4.1.  Optimal Capital Structures for a Representative Firm 

4.1.1.  The Shareholders’ Perspective 

 Table II presents estimates of optimal capital structure, from the shareholder perspective, with the 

model calibrated as discussed above.  Each column represents a different level of asset volatility, and the 

values of all other parameters are as described in Section 3.  The optimal capital structure is shown in 

Row 1.  Optimal leverage levels are clearly very sensitive to asset volatility, equaling 39.56 percent when 

asset volatility is 13 percent and 7.91 percent when asset volatility is 53 percent.  The negative relation 

between leverage and volatility is consistent with casual empiricism, as well as with studies suggesting 

that riskier firms do in fact use less leverage (see, for example, Titman and Wessels, 1988; or Rajan and 

Zingales, 1995).   

Given our estimate of asset volatility of 0.3802, the model does reasonably well at predicting 

capital structures.  For the median firm, the model predicts a debt to total capital ratio of 14.42 percent 

(equal to book debt of 15.55 divided by book debt of 15.55 plus market value of equity of 92.22).  In 

comparison, for a sample of 2,609 firms for which there is sufficient data on Compustat for 2000, the 

median debt to total capital ratio (computed as book debt/ book debt plus market equity) equals 22.62 

percent.  Even with lower values of volatility of 0.28 or 0.33, the model’s predicted leverage ratios are 

still lower than those for the median firm on Compustat.  

Table II highlights the importance of measuring asset volatility when determining capital 

structures.  The procedure we describe above, which picks the model parameters to match the yield spread 

on the firm’s bonds and the expected recovery rate, conditional on reaching bankruptcy, to values 
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typically observed in practice, gives a value of 0.3802 for asset volatility.  The believability of our 

model’s output (as well as that from other models of capital structure) depends crucially on this parameter 

choice. 

As an independent check on the plausibility of this value for asset volatility, we compute the 

standard deviation of the change in firm value (estimated as the market value of equity plus the book 

value of debt) for each of the 1,043 firms for which data are available on Computstat between 1980 and 

1999.  Calculated in this way, the median estimate of the standard deviation of the change in firm value is 

0.285.  However, this value is likely to understate the standard deviation of change in asset value at a 

typical firm for two reasons.  First, the procedure used to obtain this estimate is subject to a survivorship 

bias.  Since more volatile firms are more likely to leave the sample than less volatile firms, estimating 

volatility on the basis of firms that survived throughout the sample period will lead to a lower value than 

if data for all firms were available.  Second, this calculation implicitly assumes that the market value of 

debt is equal to its book value.  Empirically, there is a positive relation between a firm’s equity and debt 

values, so assuming the value of debt is equal to its book value will tend to lower estimated volatilities as 

well.  It is not clear how to quantify precisely the extent to which these two factors lead the Compustat-

based estimate of 0.285 to be understated.  However, they do suggest that if the estimate of 0.3802 

produced by our calibration procedure is too high, it is not too high by much; surely a number greater 

than 0.30 seems appropriate. 

As a final approach to estimating asset volatility, we use daily data on equity prices to compute 

the standard deviation of equity returns for all firms on CRSP with no missing returns for the three 

months ending January 2001 (the point in time at which we calibrated our model).  The median standard 

deviation of the equity returns for the firms in this sample is 0.685.  Within the context of our model, an 

application of Ito’s Lemma to this equity volatility implies a standard deviation of asset value changes 

equal to 0.56.  Although equity returns may have been more volatile than usual during the three months 

ending in January 2001, the computed standard deviation of 0.56 suggests that the 0.38 value we use is 

not too high. 
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4.1.2.  Why are our Predicted Leverage Ratios so Low? 

Our findings are counter to the common intuition that the tradeoff approach to capital structure 

choice implies substantially more leverage than is observed in the data.  Examination of rows 10 and 11 

in Table II, which show the values of bankruptcy costs and tax shields for different levels of asset 

volatility, suggests one reason our predicted levels may be lower than intuition might suggest.  These 

rows indicate that the average values of the tax shields are substantially higher than the average 

bankruptcy costs for all of the volatility levels represented in the table.  When a firm considers changing 

its capital structure, the trade-off is not only between 1) the interest tax shields gained (lost) from the debt 

that is added (retired) and 2) the impact of the change on bankruptcy costs.  The change in the expected 

value of the interest tax shields on the old debt that remains after the capital structure change must also be 

considered.  In other words, the true marginal cost of adding leverage includes not just additional 

bankruptcy costs, but also the decline in the value of the tax shields from existing debt.8  

The dynamic nature of our model also leads to lower leverage ratios.  The fact that future debt 

levels will increase with subsequent increases in firm value limits the aggressiveness with which firms in 

our model issue debt at time zero.  In contrast, firms in the static models described in the literature issue 

debt more aggressively, because they cannot change debt levels in the future even if firm value changes 

(see, for example, Leland, 1994; and Leland and Toft, 1996). 

 A third reason our dynamic approach yields lower debt ratios than Leland’s (1994) static model 

concerns the maturity of the debt.  Leland’s (1994) model has perpetual debt, in which the firm makes 

deductible interest payments forever.  By contrast, in our model, which contains finitely lived debt, the 

interest payments, but not the principal payments are deductible.  As a result, interest deductions are 

relatively less valuable in our model than in Leland’s, leading to a preference for less leverage.   

 Finally, as discussed above, a particularly important parameter in models of capital structure 

                                                           
8 This effect is similar to one commonly studied in introductory economics classes.  The firm’s ability to increase 
value by issuing debt is limited because of the reduction in value of the infra-marginal tax shields in much the same 
way as a monopolist’s ability to increase profits by lowering prices is limited by the loss of profits on infra-marginal 
units. 
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choice is σ , the firm’s asset volatility.  We have argued above, using three alternative approaches, that 

the appropriate value of this parameter is greater than 0.30.  In contrast, Leland (1994), as well as other 

related work, such as Leland and Toft (1996), use 0.20 as the estimate of asset volatility.  Leland (1994) 

and Leland and Toft (1996) justify this choice by noting that an asset volatility of 0.20 implies an equity 

volatility of 0.30.  While 0.30 is a plausible estimate of the volatility of an equity index, it is less than half 

of our estimate of individual firms equity volatilities, which are relevant for capital structure choices.  

Nonetheless, while we believe that using a σ  value of 0.20 is too low given the data, it is still worth 

noting from Table II, that a σ  value of 0.20 increases the leverage ratio only to about 30 percent, which 

is still in the neighborhood of the median firm’s leverage of 22.62 percent and lower than the estimates of 

optimal leverage ratios provided in the literature.9  

4.1.3.  Measuring the Tradeoff between Tax Shields and Bankruptcy Costs 

 The choice of an optimal capital structure as a tradeoff between the debt tax shields and 

bankruptcy costs is discussed in virtually all introductory corporate finance courses.  This tradeoff is 

featured prominently as a figure in the leading textbooks (for example, see Figure 18.2 on p. 511 of 

Brealey and Myers, 2000, or Figure 16.1 on p. 404 of Ross, Westerfield and Jaffe, 1999).  Because of its 

widespread coverage in corporate finance curricula, it has surely had some impact on capital structure 

choice in practice. 

To implement a capital structure policy based on this idea, especially when there are transactions 

costs associated with issuing or retiring securities, one needs to know not just the securities associated 

with an optimal capital structure, but also the magnitude of the costs of deviating from it.  Since we can 

calculate firm value for any capital structure, not just the optimal one, our approach provides a 

straightforward way to estimate these costs.  To illustrate, Figure 1 presents a graph of firm value as a 

function of leverage, assuming that all other parameters are at their base case values. 

                                                           
9 In addition, our estimate of the growth rate of the bankruptcy boundary g that comes from our calibration process 
is 3.69%, which is lower than the 7.5% used by Ju (2001) and has the effect of lowering implied debt ratios.  
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Consistent with the numbers reported in Table II, the value-maximizing leverage ratio in Figure 1 

is 14.42 percent, at which firm value equals $107.77.  The graph illustrates that the relation between 

leverage and firm value is fairly flat around this optimal level.  For example, firm value with a leverage 

ratio of 10.3 percent or 19.4 percent is only 0.5 percent below the maximum value of $107.77.  For debt 

to total capital ratios between approximately 7 percent and 25 percent, firm value is still above $106.  The 

value of a firm with leverage anywhere in the latter range would increase by less than 1.65 percent if that 

firm were to return to its optimal capital structure.  Given transactions costs and the likely uncertainty 

about the precise leverage ratio that maximizes firm value, it seems plausible that a reasonable capital 

structure policy would be to leave capital structure unaltered, so long as debt ratios fluctuate within this 7 

percent to 25 percent range.  

These estimates help to explain the empirical results of Welch (2002), who documents that firms 

do not regularly adjust their capital structures to maintain their target levels when equity values change.  

Figure 1 suggests that such behavior on the part of firms is consistent with the predictions of a simple 

tradeoff model.  It probably is optimal for a firm to adjust its capital structure only when the divergence 

from the target level is substantial.  Over time, as individual firms do not adjust their capital structures in 

response to idiosyncratic shocks to their equity values, we would expect cross-sectional differences in the 

capital structures of otherwise similar firms to appear.  Such observed differences, which are sometimes 

used as evidence against theories of optimal capital structure, correspond exactly to what one would 

expect from a model such as ours. 

4.1.4.  The Manager’s Perspective 

We next evaluate our model in an agency framework by replacing the assumption that capital 

structure is chosen to maximize the per share value of equity with the assumption that it is chosen to 

maximize the manager’s utility function.  We first assume that the manager maximizes a constant relative 

risk aversion (CRRA) utility function with a risk aversion parameter of 2 and has 50 percent of his non-

option wealth invested in shares of the firm, with the remainder invested in risk-free assets.  As detailed 
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in Section 3, our calibration assumes that this stake in the firm equals 0.32 percent of the firm’s equity 

and that the manager has at the money call options to purchase an additional 0.38 percent of the firm’s 

equity.  We calculate the optimal capital structure from the manager’s perspective by choosing the swap 

that maximizes the value of his utility function rather than the value of a share of common stock. 

The results from this managerial model are presented in Table III.  Since the manager is assumed 

to be risk-averse and the risk of the firm’s equity increases with leverage, it is not surprising that the 

manager prefers less leverage than the shareholders.  From a comparison of Tables II and III for each 

level of risk, it appears that the optimal leverage from manager’s perspective is about 3 percentage points 

lower than from the shareholders’ perspective. 

4.2.  Sensitivity of Optimal Capital Structure to Model Parameters 

4.2.1.  Tax Rates 

Since the major factor leading to a preference for debt is its tax-deductibility, we expect the 

model’s results to be especially sensitive to tax rates.  We compute optimal capital structures (from the 

shareholder’s perspective) as a function of corporate tax rates in Table IV. 

Table IV indicates, unsurprisingly, that optimal leverage ratios are positively related to the firm’s 

tax rate.  However, this relation appears to be nonlinear and is not as strong as one might expect.  With a 

corporate tax rate of just one percent, the optimal leverage ratio equals 2.24 percent.  This ratio rises 5.18 

percentage points to 7.42 percent when the tax rate rises to 12 percent.  In contrast, at higher tax rates the 

same 11 percentage point increase in tax rates (from 67 percent to 78 percent) leads to only a 2.27 

percentage point increase in leverage, from 22.57 percent to 24.84 percent.  Given the other base-case 

parameters, even very high corporate tax rates do not lead to highly leveraged firms; a tax rate of 78 

percent implies an optimal leverage ratio of only 24.8 percent. 

4.2.2.  Bankruptcy Boundary 

An important element of our model is that the firm is assumed to default if it hits a pre-specified 

bankruptcy boundary.  The idea underlying this assumption is that most publicly traded debt contains 
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covenants enabling debtholders to force default when the value of the firm is sufficiently low.  In our 

model, the parameter g represents the steepness of this boundary, so that a lower g increases the 

likelihood that the firm defaults given poor performance.  Intuitively, g can be thought of as a negative 

function of the strength of the debt covenants.  It is not clear conceptually how we expect this variable to 

be related to the shareholders’ optimal leverage:  Stronger debtholder rights make debt more attractive 

allowing debt to be issued at lower interest rates.  Whether these lower interest rates are sufficient to 

compensate shareholders for the increased bankruptcy probabilities is not obvious. 

Table V presents estimates of the optimal capital structure as a function of g.  The results in this 

Table indicate that optimal leverage is a positive function of g.  As the rights of debtholders to force 

default increase, firms find it optimal to use less leverage.  Thus, it appears that the direct effect of a 

lower g through increased bankruptcy probabilities is more than sufficient to offset the indirect effect of 

lower interest rates. 

4.2.3.  Costs Conditional on Reaching Bankruptcy 

The bankruptcy cost parameter in our model, BCα , represents the proportional value lost to 

bankruptcy costs conditional on hitting the default boundary.  We examine the sensitivity of optimal 

capital structure to this parameter in Table VI. 

Not surprisingly, leverage is negatively related to bankruptcy costs.  With BCα  equal to 10 

percent, the optimal leverage ratio is 24.84 percent, compared to 14.30 percent with BCα  of 50 percent.  

However, the relation is relatively weak.  While one might expect that as BCα  approaches zero, the firm 

will become extremely highly leveraged, the results in Table VI show that when BCα  declines to 10 

percent, the leverage ratio only increases to 24.84 percent.  These results from Tables V and VI suggest 

that the threshold at which the debtholders can force the firm into bankruptcy is likely to be as important 

as the magnitude of the value that is consumed in the bankruptcy process.  Perhaps this finding should not 

be surprising since what affects financing decisions are expected bankruptcy costs at the time they are 
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made, and bondholders’ rights clearly affect expected bankruptcy costs through their impact on 

bankruptcy probabilities.  Yet, in most textbook discussions of the effect of bankruptcy on capital 

structure, incremental costs conditional on bankruptcy are discussed at length, while the rights of 

debtholders to force bankruptcy are not usually emphasized.10  

4.3.  Model Estimates for Individual Firms 

 In addition to estimating the model using parameters for a typical firm, we examine its ability to 

predict the capital structures observed in a sample of 15 actual firms, five firms from each of three 

industries – wholesale distribution, beer and wine manufacturing, and paper and allied products.  The 

volatility for each firm is estimated, using the model, by computing the volatility that yields the observed 

spread between each firm’s actual current cost of debt and the yield on Treasury Bonds.  The resulting 

volatility values range from 27.67 percent to 71.98 percent with a median value of 34.34 percent.  The 

stock and option holdings for the individual CEO’s are from the 2000 proxy statements filed by the 

sample firms with the SEC. 

 Table VII reports the estimated asset volatility, actual leverage, and estimated leverage, both 

value maximizing and utility maximizing, for each of the 15 sample firms.   The striking feature of these 

results is that, while the model appears to do a good job of predicting leverage for firms with relatively 

little to typical levels of debt, such as Tessco Technologies, Audiovox, Grainger, and Kimberly-Clark, it 

substantially underestimates leverage for firms with large amounts of debt.  The fact that the model tends 

to underestimate rather than overestimate leverage for these individual firms is once again counter to the 

usual intuition that tax shields are far too large to be offset by bankruptcy costs.   

                                                           
10 To the extent that these rights are endogenous choices because of voluntarily adopted covenants rather than 
exogenous consequences of the legal system, they should be modeled as a choice variable for the firm, instead of as 
exogenous parameter as we do here.  Expanding the model in this way would be a useful direction for future 
research. 
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5.  Conclusion 

This paper considers a model of optimal capital structure in which the major forces affecting 

firms’ financing decisions are corporate taxes and bankruptcy costs.  As such, this model incorporates 

effects that have been discussed at great length in the corporate finance literature since Modigliani and 

Miller (1963).  The model contains a number of features designed to capture key elements of the capital 

structure decision in a realistic way, including contingent-claim valuation of tax shields, a bankruptcy 

boundary on firm value below which firms default, and a target capital structure at which the firm 

refinances its debt at maturity.  We calculate closed-form solutions for the important variables in this 

model, calibrate it using recent market data, and solve for the optimal capital structures from both the 

shareholders’ and manager’s perspectives. 

In contrast to most of the literature since at least Miller (1977), we find that the tradeoff model 

does not predict that firms are underlevered.  For a hypothetical firm constructed to be typical of large, 

publicly-traded companies, the model predicts a leverage ratio less than the actual sample median – the 

predicted debt to total capital ratio is 14.42 percent compared to a sample median of 22.6 percent.  We 

also calibrate the model to reflect actual firms and find that the model’s failures go in the opposite 

direction from what is usually presumed.  In contrast to the usual intuition, the model suggests that the 

majority of these firms appear to be overlevered, at least when only taxes and bankruptcy costs are 

considered. 

 Our approach allows the computation not only of the optimal capital structure, but also of the cost 

to a firm of any deviation from the optimum.  Our estimates indicate that these costs are relatively small, 

less than 0.5 percent in value for about a ten-percentage point deviation in leverage.  This finding is 

consistent with recent evidence that adjustments to capital structure in order to maintain a long-run target 

are relatively rare (Welch 2002). 

 We also perform a comparative static analysis of the model’s underlying parameters, to determine 

their impact on capital structure choice.  One parameter that appears to be particularly important is g, the 
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slope of the bankruptcy boundary, which we interpret as a measure of the strength of a firm’s debt 

covenants.  Our model assumes that this parameter is set exogenously; in a more realistic model of capital 

structure the strength of these covenants would be an important decision variable in a firm’s financing 

decisions. 

 By focusing on the tradeoff between tax shields and bankruptcy costs, we do not mean to 

downplay the importance of other factors.  Clearly, the literature has identified agency and information 

issues as key factors that must be considered in financing decisions.11  Rather, our message is that the 

simple tradeoff framework actually does much better at predicting average leverage levels than has 

typically been supposed, and should not be dismissed lightly as at least a first-pass way of understanding 

a firm’s financing choices.  

 We also want to emphasize the usefulness of the approach of taking models seriously and 

calibrating them using market data.  This quantitative approach has been usefully applied in other 

branches of economics, notably macroeconomics.  Its main appeal is that it allows for quantitative 

comparisons between alternative theories.  Given the multitude of theories in corporate finance together 

with the general lack of exogenous variation across firms facing any researcher attempting to do 

traditional empirical work, it seems likely that subsequent advances are likely to come from taking some 

of these models seriously and applying numerical methods to them.  

                                                           
11 An interesting recent paper applying methods similar to ours that incorporates some of these factors is Titman and 
Tsyplacov (2001).   
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Table I 

Model Parameters 
 

Panel A: Chosen Parameters 

 

Variable Calibrated 
Value 

Variable Description 

Tu 1 Time at which manager evaluates utility and 
options mature 

T 10 Time at which debt matures 

r 0.0522 Annualized risk-free rate 
( )0V  $100 Value of assets before swap 

µ  0.1063 Drift of value of firm assets 

σ  0.3802 Volatility of value of firm assets 

NNS 100 Total shares outstanding before swap 

 γ   2 Manager’s risk aversion parameter 

NMan 0.32 Number of shares owned by manager 

CallsN  0.38 Number of exchange traded European calls 
owned by manager 

K $1 Strike price of calls 

( )0NFW  $0.32 Manager’s non-firm wealth in dollars at time 
zero 

BCα  0.491 1 - Debtholder bankruptcy recovery rate 

g 0.0369 Bankruptcy boundary exponential growth rate 

τ 0.34 Effective tax rate for debt tax shield 

DivRate 0.015 Dividend payout rate to equity holders as a 
percentage of the unlevered value of the firm. 

 



Table I (continued) 
Model Parameters 

 
Panel B: Derived Variables 

Variable Variable Description 

FS Face value of debt after swap 

SC  Constant annualized coupon rate paid on debt 
after swap.  This is set to price the debt at par. 

( )0sD  Initial total value of debt after swap 

NS Total shares outstanding after swap 

( )0SE  Initial total value of equity after swap 

( )0SBC  Initial total value of bankruptcy costs after 
swap 

( )0STB  Initial total value of tax benefits of debt after 
swap 

( )uNFW T  Value of manager’s non-firm wealth at time uT  

Utility(0) Expected future value of manager’s utility 
before swap 

UtilityS(0) Expected future value of manager’s utility after 
swap 

φ  
Discounted risk-neutral expected value of the 
quantity ( ) ( )0V T V  

( )0Dynamic
SE  Initial total value of equity after swap 

( )0Dynamic
SBC  Initial total value of bankruptcy costs after 

swap 

( )0Dynamic
STB  Initial total value of tax benefits of debt after 

swap 

δ  After tax cash payout rate to both debtholders 
and equity holders as a percentage of the 
unlevered value of the firm. 

( )K
uV T  Value of assets that makes a share of stock 

worth K dollars at time uT  



Row Variable 0.1300 0.1800 0.2300 0.2800 0.3300 0.3802 0.4300 0.4800 0.5300

1)  Debt/Total Capital After Swap 39.56% 31.84% 25.91% 21.25% 17.50% 14.42% 11.89% 9.74% 7.91%

Equity:
2)  Value of Equity Before Swap $100 $100 $100 $100 $100 $100 $100 $100 $100
3)  Number of Shares Before Swap 100 100 100 100 100 100 100 100 100
4)  Value of Equity After Swap $75.54 $81.82 $85.94 $88.73 $90.72 $92.22 $93.41 $94.42 $95.29
5)  Number of Shares After Swap 60.44 68.16 74.09 78.75 82.50 85.58 88.11 90.26 92.09
6)  Change in Share Price $0.250 $0.201 $0.160 $0.127 $0.100 $0.078 $0.060 $0.046 $0.035

Debt:
7)  Face Value of Debt After Swap $49.44 $38.23 $30.05 $23.94 $19.24 $15.55 $12.60 $10.18 $8.18
8)  Value of Debt After Swap $49.44 $38.23 $30.05 $23.94 $19.24 $15.55 $12.60 $10.18 $8.18
9)  Coupon After Swap $2.636 $2.073 $1.666 $1.362 $1.129 $0.943 $0.792 $0.663 $0.551

10)  Bankruptcy Costs After Swap $1.847 $2.563 $3.194 $3.706 $4.077 $4.298 $4.365 $4.288 $4.079

11)  Tax Benefit After Swap $26.831 $22.614 $19.184 $16.373 $14.041 $12.065 $10.378 $8.888 $7.554

Volatility of Firm Asset Value

Table II
Model Output for Firms with Different Firm Asset Volatilities Where Objective is to Maximize Share Value
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Figure 1. Firm value for different levels of debt financing. Values are estimated using a dynamic
model in which the firm refinances maturing debt and that accounts for the impact of interest tax
shields and bankruptcy costs associated on the total value of the levered firm.



Row Variable 0.1300 0.1800 0.2300 0.2800 0.3300 0.3802 0.4300 0.4800 0.5300

1)  Debt/Total Capital After Swap 38.92% 30.38% 23.87% 18.74% 14.61% 11.25% 8.54% 6.33% 4.85%

Equity:
2)  Value of Equity Before Swap $100 $100 $100 $100 $100 $100 $100 $100 $100
3)  Number of Shares Before Swap 100 100 100 100 100 100 100 100 100
4)  Value of Equity After Swap $76.34 $83.54 $88.21 $91.41 $93.68 $95.36 $96.61 $97.57 $98.31
5)  Number of Shares After Swap 61.08 69.62 76.13 81.26 85.39 88.75 91.46 93.67 95.45
6)  Change in Share Price $0.250 $0.200 $0.159 $0.125 $0.097 $0.075 $0.056 $0.042 $0.030

Debt:
7)  Face Value of Debt After Swap $48.63 $36.45 $27.66 $21.08 $16.03 $12.09 $9.02 $6.59 $4.69
8)  Value of Debt After Swap $48.63 $36.45 $27.66 $21.08 $16.03 $12.09 $9.02 $6.59 $4.69
9)  Coupon After Swap $2.587 $1.962 $1.512 $1.172 $0.909 $0.698 $0.531 $0.394 $0.284

10)  Bankruptcy Costs After Swap $1.646 $2.040 $2.366 $2.558 $2.600 $2.498 $2.274 $1.957 $1.584

11)  Tax Benefit After Swap $26.617 $22.029 $18.238 $15.045 $12.316 $9.949 $7.906 $6.121 $4.583

Volatility of Firm Asset Value

Table III
Model Output for Firms with Different Firm Asset Volatilities Where Objective is to Maximize the Manager's Utility

The values are for a manager with a risk aversion parameter of 2, who owns 0.32 shares and 0.38 options on the firm's shares, and has 
non-firm wealth with a value equal to the value of 0.32 shares.



Row Variable 1% 12% 23% 34% 45% 56% 67% 78%

1)  Debt/Total Capital After Swap 2.24% 7.42% 11.11% 14.42% 17.42% 20.13% 22.57% 24.84%

Equity:
2)  Value of Equity Before Swap $100 $100 $100 $100 $100 $100 $100 $100
3)  Number of Shares Before Swap 100 100 100 100 100 100 100 100
4)  Value of Equity After Swap $97.80 $94.02 $92.61 $92.22 $92.65 $93.83 $95.66 $98.05
5)  Number of Shares After Swap $97.76 92.58 88.89 85.58 82.58 79.87 77.43 75.16
6)  Change in Share Price $0.001 $0.016 $0.042 $0.078 $0.122 $0.175 $0.236 $0.305

Debt:
7)  Face Value of Debt After Swap $2.24 $7.54 $11.58 $15.55 $19.55 $23.64 $27.89 $32.41
8)  Value of Debt After Swap $2.24 $7.54 $11.58 $15.55 $19.55 $23.64 $27.89 $32.41
9)  Coupon After Swap $0.117 $0.412 $0.666 $0.943 $1.249 $1.584 $1.949 $2.352

10)  Bankruptcy Costs After Swap $0.017 $0.758 $2.241 $4.298 $6.778 $9.585 $12.715 $16.256

11)  Tax Benefit After Swap $0.062 $2.314 $6.435 $12.065 $18.982 $27.052 $36.262 $46.713

Tax Rate

Table IV
Model Output for Firms with Different Tax Rates Where Objective is to Maximize Share Value



Row Variable 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

1)  Debt/Total Capital After Swap 11.82% 13.19% 14.66% 16.21% 17.87% 19.64% 21.55% 23.65% 26.04% 28.98% 33.45%

Equity:
2)  Value of Equity Before Swap $100 $100 $100 $100 $100 $100 $100 $100 $100 $100 $100
3)  Number of Shares Before Swap 100 100 100 100 100 100 100 100 100 100 100
4)  Value of Equity After Swap $94.18 $93.17 $92.04 $90.79 $89.41 $87.87 $86.16 $84.20 $81.89 $78.95 $74.27
5)  Number of Shares After Swap 88.18 86.81 85.34 83.79 82.13 80.36 78.45 76.35 73.96 71.02 66.55
6)  Change in Share Price $0.068 $0.073 $0.079 $0.084 $0.089 $0.093 $0.098 $0.103 $0.107 $0.112 $0.116

Debt:
7)  Face Value of Debt After Swap $12.62 $14.16 $15.81 $17.57 $19.45 $21.47 $23.66 $26.08 $28.83 $32.21 $37.33
8)  Value of Debt After Swap $12.62 $14.16 $15.81 $17.57 $19.45 $21.47 $23.66 $26.08 $28.83 $32.21 $37.33
9)  Coupon After Swap $0.736 $0.843 $0.963 $1.095 $1.241 $1.404 $1.588 $1.799 $2.052 $2.378 $2.912

10)  Bankruptcy Costs After Swap $3.360 $3.856 $4.381 $4.930 $5.501 $6.093 $6.711 $7.365 $8.079 $8.913 $10.109

11)  Tax Benefit After Swap $10.158 $11.182 $12.229 $13.289 $14.360 $15.438 $16.527 $17.639 $18.800 $20.073 $21.712

g

Table V
Model Output for Firms with Different Bankruptcy Boundaries Where Objective is to Maximize Share Value



Row Variable 10% 15% 20% 25% 30% 35% 40% 45% 50%

1)  Debt/Total Capital After Swap 24.84% 22.58% 20.74% 19.20% 17.91% 16.81% 15.85% 15.03% 14.30%

Equity:
2)  Value of Equity Before Swap $100 $100 $100 $100 $100 $100 $100 $100 $100
3)  Number of Shares Before Swap 100 100 100 100 100 100 100 100 100
4)  Value of Equity After Swap $83.83 $85.78 $87.33 $88.57 $89.60 $90.45 $91.17 $91.78 $92.31
5)  Number of Shares After Swap 75.16 77.42 79.26 80.80 82.09 83.19 84.15 84.97 85.70
6)  Change in Share Price $0.115 $0.108 $0.102 $0.096 $0.091 $0.087 $0.084 $0.080 $0.077

Debt:
7)  Face Value of Debt After Swap $27.71 $25.02 $22.84 $21.05 $19.55 $18.27 $17.18 $16.23 $15.40
8)  Value of Debt After Swap $27.71 $25.02 $22.84 $21.05 $19.55 $18.27 $17.18 $16.23 $15.40
9)  Coupon After Swap $1.591 $1.459 $1.348 $1.252 $1.170 $1.099 $1.037 $0.983 $0.935

10)  Bankruptcy Costs After Swap $2.424 $3.113 $3.582 $3.893 $4.093 $4.213 $4.277 $4.300 $4.295

11)  Tax Benefit After Swap $13.965 $13.916 $13.752 $13.514 $13.235 $12.933 $12.624 $12.315 $12.011

Bankruptcy Costs

Table VI
Model Output for Firms with Different Bankruptcy Costs Where Objective is to Maximize Share Value



Hughes Supply 0.2767 56.36% 21.35% 19.66%

Avnet 0.3352 43.32% 22.42% 20.70%

Tessco Technologies 0.6251 7.37% 5.60% 4.07%

Audiovox Corp. 0.7060 8.46% 8.49% 6.44%

Grainger (W.W.) 0.7198 8.00% 8.02% 6.47%

Mondavi 0.3369 29.21% 14.58% 12.82%

Willamette 0.3303 32.76% 20.32% 14.34%

Pyramid Breweries 0.3434 31.74% 16.73% 15.48%

Golden State 0.3301 35.52% 19.24% 18.23%

Ravenswood 0.4695 8.77% 22.97% 6.89%

Boise Cascade 0.2795 48.19% 15.39% 12.74%

Kimberly-Clark 0.5387 6.24% 7.22% 4.45%

Mead 0.3768 30.75% 49.98% 15.06%

P H Glatfelter 0.3280 37.01% 20.28% 19.36%

Wausau-Mosinee 0.3553 30.90% 15.37% 13.58%

Panel C: Paper and Allied Products Manufacturing

Company

Estimated Debt/Total Capital

Panel A: Wholesale Distribution Firms

Panel B: Beer and Wine Manufacturing

Table VII
Individual Firm Estimates

Volatility of 
Asset Value

Actual Debt/Total 
Capital Value 

Maximizing
Utility 

Maximizing
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Appendix 

In this appendix, we develop the dynamic model in more detail and then describe the procedure 

for computing the manager’s utility at time .uT  

The Dynamic Model 

To obtain ( ) ( ) ( ), , and G T H T I T 1 in (6), (7), and (8), we need the first passage time density 

function. To this end, we define 

     
( )

( )( ) log
g T t

s

V t
x t

F e− −

 
≡   

 
.      (A1) 

 
Then one simple application of Ito’s lemma (under the risk-neutral measure) yields 

 ( )2 2 ( )Qdx r g dt dZ tδ σ σ= − − − + . (A2) 

 
Consequently, ( )x t  is a Brownian motion with drift 2 / 2m r gδ σ≡ − − − and diffusion σ , starting at 

( )
0

0
log

gT
s

V
x

F e−

 
=  

 
.  From Ingersoll (1987), the first-passage time density function ( )f t  for crossing 

the origin is given by 

 0 0
3/2 1 / 2( ) ,

x x mt
f t n

t tσ σ
 +

=  
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                (A3) 

 
where )(•n is the standard normal density function.  Now lengthy but straightforward calculations yield2 
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1 2
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−
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, (A5) 

and 

                                                                 
1 For simplicity, we omit the other arguments of these functions. 
2 Explicit derivation is available upon request. 
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In these expressions, )(•N is the cumulative standard normal distribution function. 

Given ( ) ( ) ( ), , and ,G T H T I T  the values of the debt, bankruptcy costs and tax benefits of the 

current debt are given by equations (10), (13), and (15), respectively.  The total firm value in the static 

model, when debt is only sold by the firm one time, is given by the value of the firm’s unlevered assets 

plus the tax benefit of debt (15) minus the bankruptcy cost (13) 

 ( ) ( ) ( )(0) 0 0 0S S STV V TB BC= + −  . (A8) 
 
We now turn our attention to the dynamic model.  In this model the firm optimally issues debt 

every T years.  Obviously, the optimal coupon for the second issue will depend on the firm value TV  at 

time T.3  We note, however, the following scaling property:  if the optimal coupon in the first period is 

SC , then the optimal coupon in the second period will be ( )0 .S TC V V   That is, the coupon is scaled by 

                                                                 
3 Here and below we sometimes write the time index on V as a subscript, i.e., ( ) .TV V T=  
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0 .TV V   The scaling property holds, because at time T  the firm is identical to itself at time zero, except 

that it is 0TV V  times as large.  In fact, all future issues of debt will be scaled by the ratio of the firm’s 

asset value when the debt matures to its asset value when the debt is issued. 

Even though at time zero only the current issue of debt is outstanding, the tax benefits and 

bankruptcy cost reflect all future debt issues.  Let )0(Dynamic
STB  denote the total tax benefit in the 

dynamic model.  Then the scaling property discussed in the previous paragraph implies that the total tax 

benefit at time T  will be ( )(0)Dynamic
S TTB V V .  If we now let (0)STB  denote the tax benefit from the 

initial issue of debt, we have 

  ( ) ( ) ( ) ( )00|00)0( Dynamic
SS

Dynamic
S

TQrT
S

Dynamic
S TBTBNBCTB

V
VEeTBTB φ+=



+= − , (A9) 

where 

 | ,rT Q TV
e E NBC

V
φ −  =   

  (A10) 

 

and “NBC” denotes that there has been no bankruptcy yet by time .T  

Equation (A9) states that the total tax benefit is the tax benefit for the first period, plus the risk-

neutral discounted total tax shield at the end of the first period. Solving for )0(Dynamic
STB , we obtain  

 
( )
φ−

=
1

0
)0( SDynamic

S

TB
TB .  (A11) 

 
The total tax shield has an intuitive series expansion. Each term in the expansion  

 ( )( )L++++= 3210)0( φφφS
Dynamic
S TBTB  (A12) 

 
evidently represents the present value of the tax benefit from the debt issue in each succeeding period. 

To find φ , we need the conditional distribution of TV such that the firm has not gone bankrupt at 

time .T   Again, from Ingersoll (1987) we have the following conditional density function for TV :  
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Using the above density function, tedious but straightforward derivations yield the following closed form 

solution for φ  
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1 2
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e N d N d
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,  (A14) 

where 2/1 σλ m+=  and  
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Similarly, the total bankruptcy cost in the dynamic model, )0(Dynamic

SBC , is given by 

 
( )
φ−

=
1

0
)0( SDynamic

S

BC
BC .  (A16) 

The total leveraged firm value, (0)Dynamic
STV , in the dynamic model equals the unleveraged firm value 

( )0V , plus the total tax benefit Dynamic
STB , less the total bankruptcy cost )0(Dynamic

SBC ,  

 ( ) ( ) ( ) ( ) ( ) ( )0 0
(0) 0 0 0 0

1
S SDynamic Dynamic Dynamic

S S S

TB BC
TV V TB BC V

φ
−

= + − = +
−

. (A17) 

 
The optimal capital structure is obtained by maximizing either the total firm value or the manager’s 

utility. 

The Manager’s Utility at time uT  

To compute the manager’s utility at time uT , we need to obtain the value of equity at uT .  We note that at 

uT , part of the first period has passed.  To determine the value of )( u
Dynamic
S TE  at uT , we first note that 

the total firm value at ,uT  ( ),Dynamic
S uTV T  is the sum of the value of the equity and the debt at time :uT  

 ( ) ( )( ) .Dynamic Dynamic
S u S u S uTV T E T D T= +                         (A18) 
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The debt )( uS TD  can be computed from equation (10) since its coupon ( SC ), face value ( SF ) and 

remaining maturity )( uTT − , are all known.  More specifically, )( uS TD  is obtained from equation (10) 

by making the followings replacements: 

 uTTT −→  and ( ) 





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=→ −− u
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TTg
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00 . (A19) 

 
Since )( u

Dynamic
S TE  can be obtained from (A18) if )( u

Dynamic
S TTV  and )( uS TD  are known, we need to 

determine )( u
Dynamic

S TTV . 

To compute )( u
Dynamic

S TTV , we use the present value of the total cashflow )( St CV τδ +  from uT  

to T  and the present value at uT of the total firm value )(TTV Dynamic
S  at T .  From the scaling property, 

we have 
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   (A21)   

where 
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which is similar to the φ  factor in equation (A14).  Explicit calculation yields   
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Next we obtain the present value at uT of the cashflow )( St CV τδ +  from uT  to T .  Given the value 

uTV , 

which is random at time 0, 
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where *

ut T t= + .  The inner integral is similar to theφ  factor in equation (A23).  It follows that 
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Although the derivation is tedious, the time integrals can be done in closed form yielding 
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and the ( )txxxI ;,, 321  function is defined as, 
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( )•N  is the normal distribution function, ( )•1  is the indicator function, and .2 1
2
24 xxx −=  




