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ABSTRACT

After some historical discussion of the rational expectations (RE) solution procedures of
John Muth, Alan Walters, and Robert Lucas, this paper considers the relevance for actual economies
of issues stemming from the existence of multiple RE equilibria. In all linear models, the minimum
state variable (MSV) solution——as defined by the author (JME, 1983)——is unique by
construction. While it might be argued that the MSV solution warrants special status as the bubble-
free solution, the focus in this paper is on its adaptive, least-squares learnability by individual agents,

as discussed extensively in important recent publications by George Evans and Seppo Honkapohja. 

             Although the MSV solution is learnable and the main alternatives are not, in most standard

models, Evans and Honkapohja have stressed an example in which the opposite is true. The present

paper shows, however, that parameter values yielding that result are such that the model is not well

formulated, in a specified sense (one that avoids implausible discontinuities). More generally,

analysis of a pair of prominent univariate specifications, featured by Evans and Honkapohja, shows

that the MSV solution is invariably learnable in these structures, if they are well formulated.
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1. Introduction 

 It is not widely known, I believe, that the first publication to present a rational 

expectations analysis of a complete macroeconomic/monetary model was authored by 

A. A. Walters (1971).  This paper, “Consistent Expectations, Distributed Lags, and the 

Quantity Theory,” appeared somewhat earlier in the year than Thomas Sargent’s (1971) 

justly influential “A Note on the Accelerationist Controversy,” and furthermore the latter did 

not feature the explicit solution of a full macroeconomic model.1  Robert Lucas’s first two 

money/macro papers with rational expectations (1972a, 1972b) had been presented at 

conferences in 1970-71 but had not yet appeared in print. 

 Of course Walters termed his expectational hypothesis “consistent expectations,” 

rather than rational expectations (RE), and refers to John Muth’s (1961) seminal paper only 

briefly, in a footnote.2  But that does not diminish the insightfulness of Walters’s analysis.  

Indeed, this reader is left with the feeling that his expectational hypothesis and method of 

analysis were worked out independently of previous writings, with knowledge of Muth’s 

paper perhaps arriving rather late in the publication process. 

 In the 30-plus years since 1971 a lot of activity has taken place in the area of RE 

money/macro analysis, to put it mildly.  Consequently, I have no intention of trying to survey 

the many developments that have taken place.  But I would like to take up some particular 

issues concerning solution concepts and the problem of “indeterminacy,” or multiple 

solutions, in RE models.  I will begin in Section 2 by outlining Walters’s solution procedure 

and contrasting it with the one used by Muth (1961).  Then, in Section 3, I will outline 

                                                 
1 Sargent’s paper, like Walters’s, emphasizes that fixed distributed-lag formulas for expectations can be 
consistently incorrect, since they fail to reflect policy processes. 
2 Where Muth is given his brother’s first name, Richard.  Incredibly, the same mistake appears over 20 years 
later in Krugman (1994, p. 49). 
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Lucas’s (1972b) procedure and turn to the topic of multiple solutions, which has been active 

for many years and recently has become increasingly prominent.  My own “minimum-state-

variable” interpretation and extension of Lucas’s procedure, developed in McCallum (1983), 

is also discussed and the dependence of several recent controversies on the solution concept 

is emphasized.  Next, Section 4 describes an approach to selection among multiple solutions, 

based on the criteria of E-stability and adaptive learnability, that was initiated in the 1980s by 

George Evans and recently treated comprehensively in major publications by Evans and 

Honkapohja (1999, 2001).  Section 5 examines an example featured by those authors in 

which their criterion conflicts with my own, and argues that this conflict occurs only with 

parameter values that make the model economically implausible. That argument is rather ad 

hoc in nature, however, so Section 6 proposes some general requirements for a model to be 

regarded as plausible or “well formulated.”  The paper’s main result is in Section 7, which 

shows that for an important class of well formulated models, the unique MSV solution is 

invariably learnable. Finally, Section 8 provides a brief summary and conclusion. 

2. Consistent and Rational Expectations 

 Walters (1971) analyzed price level behavior in a model that is fairly similar to the 

standard workhorse for monetary RE analysis, which includes the Cagan (1956) money 

demand function and a policy process represented in terms of money supply.  Walters’s 

money-demand equation is written as 

(1) pt = αmt-1 + β(pe
t − pt-1) + εt, 

with α > 0 and 0 < β < 1.  Here the dating of variables differs from the version that has 

become standard and, for some reason, pt and mt represent the price level and the money 

stock, rather than their logarithms.  The expectational variable is pe
t, the expectation of pt 
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formed at time t−1.  The shock term εt is taken to be purely random (i.e., white noise) so its 

expectation at t−1 is zero and thus we have pe
t = αmt-1 + β(pe

t − pt-1).  Consequently, we can 

solve out pe
t and obtain the solution expression 

(2) pt = [α/(1−β)] mt-1 − [β/(1−β)] pt-1 + εt. 

It will be noted that the foregoing solution procedure—of taking expectations, solving for pe
t, 

and substituting out the latter—cannot be used when pe
t+1 enters the system. 

 Walters (1971) considers the implied paths of pt, and representations of pe
t, for three 

different money supply processes.  The paper’s main message is that the pe
t representations 

usually do not satisfy the adaptive expectations formula, pe
t =  (1−λ)[pt-1 + λpt-2 + λ2pt-3 + ...], 

that was very widely used at the time.  Indeed, any fixed distributed-lag formula for 

expectations will be systematically incorrect unless it happens to reflect the money supply 

process.   This important conclusion, which was also the main message of Sargent (1971), is 

a precursor of the famed Lucas (1976) critique.  Two limitations of Walters’s analysis are 

that (i) the effect of shocks to the money supply is not considered and (ii) the model is not 

extended to include structural equations of a more standard macroeconomic system with 

sluggish price adjustments of the expectational Phillips-curve type.  

 Walters (1971, p. 273; 1988, p. 290) has expressed the view that the term “consistent 

expectations” is preferable to rational expectations, and I would not strongly disagree.  I 

would argue, however, that the related term “model-consistent expectations” is somewhat 

undesirable.3  The reason is that it leads to easily into an anti-RE argument such as “it is 

implausible that all of an economy’s agents would believe in the particular model of the 

                                                 
3 This term has been used by many writers including Brayton et. al. (1997) and Isard, Laxton, and Eliasson 
(1999).  
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economy being used by the researcher.”4  My objection (McCallum, 1999b) is that this 

statement does not represent the assumption that is actually required for the basic version of 

RE.  The proper assumption is that agents form expectations so as to avoid systematic 

expectational errors in actuality, which implies that each agent behaves as if he knew the 

structure of the actual economy.  Then expectations will agree with the researcher’s model, 

but the reason is that the latter is by design his best attempt to depict the true structure of the 

actual economy—for if it were not, he would adopt a different model.  There is no 

assumption that agents consciously create explicit models at all, only that they manage their 

own private affairs so as to avoid systematic expectational errors in actuality. 

 From here on I will use Etzt+j to denote E(zt+j|Ωt), where Ωt is the information set at t, 

typically (but not necessarily) taken to include all variables dated t and earlier.  Using this 

notation, the first of Muth’s (1961) two models can be written as 

(3) −βpt =  γEt-1pt + ut, 

where pt is a market price and ut is a random shock term.  If the latter is white noise, the same 

solution procedure as Walters’s could be used, but Muth generalizes to permit ut =  

where ε

i t i
i 0

w
∞

−
=

ε∑

t is white noise.  Then to obtain a solution he essentially applies an undetermined 

coefficient approach to the moving-average solution form 

(4) pt =  i t i
i 0

W
∞

−
=

ε∑

in order to evaluate the Wis in terms of β, γ, and the wis.  That same strategy is adequate, and 

is used, with Muth’s second and more complex model.  The latter, which recognizes 

                                                 
4 A variant is the claim that it is implausible that all agents would believe in the same model of the economy.  
But, first, this is an objection to macroeconomics, not rational expectations, and second, there are some RE 
models in which agents’ expectations are not all alike.  

 4 



inventory speculation, can be expressed as 

(5) −βpt + It =  γEt-1pt + ut + It-1 

(6) It = α(Etpt+1 − pt) 

where It  is inventory holdings at the end of t, −βpt is consumption demand in t, and γEt-1pt + 

ut is production.  Substituting (6) into (5), one obtains an equation involving pt, Et-1pt, Etpt+1, 

and pt-1 as well as ut.  Again the solution procedure of undetermined coefficients (henceforth, 

UC) in terms of the moving average representation of the solution (i.e., in terms of εt, εt-1, ...) 

is applicable, but now it leads to a quadratic characteristic equation.  Muth selects between 

the two roots on the grounds of boundness—i.e., non-explosiveness or dynamic stability—of 

the resulting solution.  This same procedure could be applied if additional exogenous shocks 

were included in the model, so we see that Muth’s (1961) paper developed a solution 

procedure—and an implicit solution concept—for a rather wide class of  linear models.5 

3. Multiple Solutions and the MSV Concept 

 Lucas (1972a, 1972b) provided the next—enormously influential—publications with 

RE in money/macro models.  The former was the greater piece of work, of course, but for 

present purposes it will be useful to focus on the simplified linear model in the second.  

There Lucas’s aggregate demand-supply system includes a Phillips-type supply function and 

a logarithmic nominal income identity, plus a policy rule assumed for simplicity to pertain 

directly to nominal income.  I will not now discuss the model itself, since it includes some 

questionable features, but will go immediately to the relevant point.  This is that Lucas’s 

solution procedure involves a UC calculation not in terms of moving average parameters, but 

                                                 
5 To me, writing without the benefit of inside information, it seems possible that recognition of the extent of 
Muth’s achievement may have provided a major reason for Walters to have abstained from additional research 
in the area during the 1970s.  Matthews (1998) suggests that the dominant reason was the attitude taken by the 
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with respect to the parameters (coefficients) of a conjectured solution form that includes only 

the variables and shocks recognized to be relevant to the current state of the system, i.e., the 

relevant state variables. 

 The importance of this step can be illustrated simply in terms of the following basic, 

non-specific, model: 

(7) yt = α + aEtyt+1 + ut 

(8) ut = ρut-1 + εt. 

Here |ρ| < 1 and εt is white noise.  Since there are no relevant state variables in sight except 

ut,6 it is natural to conjecture a solution of the form 

(9) yt = φ0 + φ1ut, 

and then solve for the coefficients φ0 and φ1.  Since (9) implies Etyt+1 = φ0 + φ1ρut, 

substitution into (7) gives φ0 + φ1ut = α + a(φ0 + φ1ρut) + ut, which implies 

(10a) φ0 = α + aφ0 

(10b) φ1 = aρφ1 + 1. 

Thus we have φ1 = 1/(1−aρ) and φ0 = α/(1−a), the unique solution that is of form (9). 

 But there are more solutions.  Suppose that one enters the apparently extraneous var- 

iables yt-1 and ut-1 into the following candidate solution expression that might be considered 

instead of (9): 

(11) yt = φ0 + φ1yt-1 + φ2ut + φ3ut-1. 

Then proceeding as before leads to the UC equalities 

 

                                                                                                                                                       
Economic Journal’s editor, David Champernone, who was not favorably inclined toward the hypothesis of 
consistent or rational expectations. 
6 One could proceed equivalently in terms of ut-1 and εt, since ut is AR(1).  
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(12a) φ0 = α + aφ0 + aφ1φ0 

(12b) φ1 = a φ1
2 

(12c) φ2 = aφ1φ2 + aρφ2 + 1  

(12d) φ3 = aφ1φ3. 

The second of these is satisfied by = 0 or by φ = 1/a.  The first of these roots implies a 

solution equivalent to the one given previously, but the second leads to the solution 

)(
1

−φ )(
1

+

(13) yt = −(α/a) + (1/a)yt-1 − (1/aρ)ut + φ3ut-1, 

which is consistent with all of the model’s equations for any value of φ3.  Thus there is an 

infinity of solutions, if ones of form (11) are considered.  In some models based firmly on 

full optimizing analysis, there will be transversality conditions that exclude explosive 

solutions, which would eliminate this infinity if |a| < 1, as would usually be the case.  But 

there are several notable examples in the literature in which relations such as (13) qualify as 

solutions under stringent optimizing assumptions. 

 To many workers, Lucas’s procedure of restricting attention to solutions of a form 

such as (9) will be attractive, since it is capable of generating solutions that are based only on 

fundamentals—thereby excluding “bubble” components that involve variables that do not 

enter the model and therefore can appear in the solution only because they are (arbitrarily) 

expected (by the model’s agents) to be relevant.  This elimination of bubble solutions does 

not occur if one adopts a moving average formulation, in the fashion preferred by Muth 

(1961).  Partly for this reason, perhaps, Lucas’s approach rapidly gained popularity during 

the 1970s. 

 An issue arises, however, in models that include lagged values of endogenous 

variables.  Suppose that the relevant model includes 
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(14) yt = α + aEtyt+1 + cyt-1 + ut  

rather than (7), in addition to (8).  Then the solution clearly must include yt-1 as well as ut as a 

relevant state variable.  And then if one searches for a solution of the form 

(15) yt = φ0 + φ1yt-1 + φ2ut, 

it will be found that Etyt+1 = φ0 + φ1(φ0 + φ1yt-1 + φ2ut) + φ2ρut and the UC equations become 

(16a) φ0 = α + aφ0 + aφ1φ0 

(16b) φ1 = a φ1
2 + c 

(16c) φ2 = aφ1φ2 + aρφ2 + 1. 

In this case there are two solutions, one based on 

(17) =  )(
1

−φ
1 1 4ac

2a
− −  

and the other on 

(18) =  )(
1

+φ
1 1 4ac

2a
+ − , 

where we use the convention that z  is positive for all z > 0.  Of course, we shall require 

that φ1 be real-valued, since complex solutions make no sense for prices or quantities.  But 

whenever there is a real solution there seem to be two—which will often have very different 

properties—even if we follow the Lucas (1972b) procedure. 

 A solution concept that provides uniqueness was proposed, however, by McCallum 

(1983).  Clearly, the two expressions (17) and (18) define two different functions and 

therefore two quite distinct solutions to the model (14)(8).  Consequently, consider the 

special case of (14) in which c = 0.  In this case yt-1 does not enter the model and thus could 

be considered to be an extraneous state variable, which should not appear in the solution, if it 

is to include only relevant state variables.  Accordingly, McCallum (1981, 1983) proposed 
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that since equals 0 in this special case, and φ does not, then the solution based on  

should be regarded as the relevant solution.  His (1983) paper develops a rather general 

procedure for finding this “bubble-free” solution, which is unique by construction in linear 

models.

)(
1

−φ )(
1

+ )(
1

−φ

7  This procedure was given the name “minimum state variable” (MSV) solution by 

Evans (1986), who referred to the step of choosing between the two roots in the last example 

as constituting a “subsidiary principle.”  In what follows it will be important to be 

unambiguous about the concept of a MSV solution.  Throughout I will be using that term to 

designate the unique solution—unique by construction—described in McCallum (1983, 

1999).  This is the way that the term was used by Evans (1986, 1989) and by Evans and 

Honkapohja (1992), but differs from the terminology in the latter’s more recent publications 

(1999, p. 496; 2001, p. 194), where their convention permits multiple solutions to be given 

the MSV adjective.  Either terminology could be used, of course, but the one adopted here is 

more appropriate for the issues at hand. 

 Recently, the possible occurrence of multiple solutions has assumed new prominence 

in the area of monetary economics under the heading of “indeterminacies.”  Notable topics in 

which indeterminacy is central to policy issues include (i) inflation forecast targeting [e.g., 

Woodford (1994), Bernanke and Woodford (1996), King (2000)], (ii) the Taylor Principle 

[Woodford (2001), King (2000), Clarida, Gali, and Gertler (1997, 1999)], (iii) the zero-

lower-bound deflation trap [Benhabib, Schmitt-Grohe, and Uribe (2001), Schmitt-Grohe and 

Uribe (2000), McCallum (2002), Alstadheim and Henderson (2002)], and (iv) the fiscal 

theory of the price level [Woodford (1995), Sims (1994), Cochrane (1998), McCallum 

(2001), Kotcherlakota and Phelan (1999)].   

                                                 
7 The MSV solution is required, by definition, to be linear.  For a discussion of this and several other points, see 
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 In this context it is important to recognize that the type of indeterminacy present in all 

of these cases involves multiple RE solutions and accordingly is quite different from the 

“price level indeterminacy” problem that was discussed extensively in the monetary literature 

of the 1940s and 1950s by Lange (1942), Patinkin (1949, 1961, 1965), Gurley and Shaw 

(1960), and Johnson (1962).  In particular, the former involves multiple time paths for real 

variables even with some nominal variable fixed (as a consequence of dynamic expectational 

behavior) whereas the latter involves the model’s failure to determine any nominal variable 

despite unique paths for all real variables (occurring as a consequence of the absence of any 

nominal anchor, a static concept).  I have suggested several times that a more constructive 

terminology would refer to “multiple solutions” and “nominal indeterminacy,” respectively, 

but thus far have made little headway. 

 In any event, one’s position on policy issues relating to the four topics (i)-(iv) 

logically depends on his beliefs concerning the status of multiple RE solutions.  Are such 

multiplicities relevant in principle and empirically for actual economies, or are they 

theoretical curiosa with little or no relevance to actual economies?  The following sections 

present the outline of an argument in favor of the latter position.   

4. E-Stability and Learnability 

 In a series of articles appearing in the 1980s, George Evans (1985, 1986, 1989) 

proposed an alternative criterion for designation or “selection” of the economically relevant 

RE solution in cases in which multiplicity obtains.  His initial criterion, now known as 

iterative E-stability, can be briefly reviewed.  The basic presumption is that individual 

economic agents will not be endowed with perfect knowledge of the economic system’s 

structure, so it is natural to consider whether plausible error-correction mechanisms are 

                                                                                                                                                       
McCallum (1999). 
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convergent to particular solutions.  This can be determined for each of the multiple RE 

solutions, and the presence or absence of such mechanisms may yield a criterion for selection 

of one solution as economically relevant.  For an illustration, consider again the model 

(14)(8), which we rewrite for convenience: 

(14) yt = α + aEtyt+1 + cyt-1 + ut 

(8) ut = ρut-1 + εt. 

Suppose that the economy’s individuals believe that the actual behavior of yt can be 

expressed by an equation that includes the same variables as (15), but that they do not know 

the exact values of the parameters. If at time t the typical agent’s  belief is that these values 

are φ0(n), φ1(n), and φ2(n), then the system’s perceived law of motion (PLM) will be8  

(19) yt = φ0(n) + φ1(n)yt-1 + φ2(n)ut. 

In this case the implied expectation at t of yt+1 will be 

(20) φ0(n) + φ1(n)yt + φ2(n)ρut. 

Using that expression in place of Etyt+1 in (14)—which implies that we are temporarily 

abandoning RE—gives  

(21) yt = α + a [φ0(n) + φ1(n)yt + φ2(n)ρut] + cyt-1 + ut 

or, rearranging, 

(22) yt = [1−aφ1(n)]-1 [α + aφ0(n) + aφ2(n)ρut + cyt-1 + ut] 

as the system’s actual law of motion (ALM).  Now imagine a sequence of iterations from the 

PLM to the ALM.  Writing the left-hand side of (22) in the form (19), but for iteration n+1, 

gives φ0(n+1) + φ1(n+1)yt-1 + φ2(n+1)ut =  [1−aφ1(n)]-1 [α + aφ0(n) + aφ2(n)ρut + cyt-1 + ut] 

and therefore implies that 

                                                 
8 Here n is being used to index iterations in an eductive process of learning that takes place in meta-time. 
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 (23a) φ0(n+1) = [1 − aφ1(n)]-1[α + a φ0(n)] 

(23b) φ1(n+1) = [1 − aφ1(n)]-1c 

(23c) φ2(n+1) = [1 − aφ1(n)]-1[aφ2(n)ρ + 1]. 

The issue, then, is whether iterations defined by (23) are such that the φj(n) converge to the φj 

values in (15) as n increases without bound.  If they do, then the solution (15) is said to be 

iteratively E-stable.  Evans (1986) found that in several prominent and controversial models 

the MSV solution is iteratively E-stable. 

 On the basis of results by Marcet and Sargent (1989), Evans (1989) switched his 

attention to E-stability without the “iterative” qualification, defined as follows.  Conversion 

of equations (23) to the continuous form, appropriate as the iteration interval approaches 

zero, yields 

(24a) dφ0(n)/dn = [1 − aφ1(n)]-1[α + a φ0(n)] − φ0(n) 

(24b) dφ1(n)/dn = [1 − aφ1(n)]-1c − φ1(n) 

(24c) dφ2(n)/dn = [1 − aφ1(n)]-1[a φ2(n)ρ + 1] − φ2(n). 

If the differential equation system (24) has φj(n) → φj for all j, the solution (15) is E-stable.  

An important feature of this continuous version of the iterative process is that it is intimately 

related to an adaptive learning process that is modelled as taking place in real time.9  For 

most non-explosive models, that is, values of parameters analogous to the φj in (15), which 

are estimated by least squares (LS) regressions on the basis of data from periods t−1, t−2, …, 

1 and used to form expectations in period t, will converge to the actual values in (15) as time 

passes if and only if equations (24) converge to those values.  Thus E-stability and LS 

                                                 
9 The E-stability process itself is conceived of as taking place in notional time (meta time).  For the sake of 
brevity, the present account omits discussion of several important papers on learning; for many references, see 
Evans and Honkapohja (1999, 2001).   
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learnability typically go hand in hand.10  This result, which is discussed extensively by Evans 

and Honkapohja (1999, 2001), is useful because it is technically much easier, in most cases, 

to establish E-stability than to establish LS learnability.11 

  5. Questionable Example 

As mentioned above, Evans’s early work indicated that the E-stability/learnability 

principle often supports the MSV criterion.  More recently, however, the implied message 

has been quite different.  Thus in various places Evans and Honkapohja (E&H) have argued 

that MSV solutions may or may not have the property of E-stability (and LS learnability).  It 

is my belief, however, that this recent message is misleading; that in all or almost all sensible 

models the MSV solution does possess E-stability.  Thus the agenda of this section is to 

discuss and reconsider the main example put forth by E&H (1992, pp. 9-10; 1999, pp. 496-7; 

2001, p. 197) as representing a case in which the MSV solution is not E-stable.  

 Following E&H (1992), the relevant model’s reduced form can be written as 

(25) yt = α + γEt-1yt + ζEt-1yt+1 + δyt-1 + εt, 

with δ ≠ 0, ζ ≠ 0, and εt white noise.  The MSV solution will be of the form 

(26)  yt = φ0 + φ1yt-1 + φ2 εt, 

and φ1 will be determined by a quadratic equation with the MSV solution given by the φ1 root 

that equals zero when δ = 0.  The other root gives a bubble solution and there are also bubble 

solutions of a form that includes additional terms involving yt-2 and εt-1 on the right-hand side 

of (26). 

Necessary conditions for E-stability of a solution of form (26) are (E&H, 1992, p. 6) 

                                                 
10 It is interesting to note that a modelling strategy closely related to LS learning is explicitly mentioned by 
Walters (1971, p. 281). 
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(27)  γ + ζ − 1 + ζφ1 < 0   and    γ − 1 + 2ζφ1 < 0. 

On the basis of these, E&H show on their pp. 9-10 that the non-MSV solution of form (26) is 

E-stable, and the MSV solution is E-unstable, when γ = −ζ > 1 and δ > 0.  Also, on p. 5 they 

show that the bubble solutions are E-stable if γ > 1, δζ > 0, and ζ < 0.  If such parameter 

values were economically sensible, these results would constitute explicit counter-examples 

to my suggestion that MSV solutions are invariably E-stable.   

 Let us, however, reconsider the economic model that E&H (1992) use to motivate the 

reduced form equation (25).  It is a log-linear “model of aggregate demand and supply with 

wealth effects in aggregate demand, money demand, and aggregate supply” (1992, p. 9).  

Letting yt, mt, and pt be the logs of output, money, and the price level, with it a nominal 

interest rate, they write:12 

(28a) yt = −g1(it − Et-1(pt+1 − pt)) + g2(mt − pt) + v1t 

(28b) yt = f(mt − pt) + v2t 

(28c) mt − pt = yt − a1it + a2(mt − pt) + v3t 

(28d) mt = d pt-1 + v4t. 

The fourth equation “is a monetary policy reaction function….” (1992, p. 9).  Solving these 

four equations for a reduced form expression for pt gives 

(29) pt = d pt-1 + h Et-1(pt − pt+1) + ut 

with h = g1[f−g2 + g1(a2+f − 1)a1
-1]-1 and where ut is a linear combination of the (white noise) 

vit terms.  Consequently, the model is of form (25) with yt in the latter representing pt in the 

model and with γ = h, ζ = −h, and δ = d. 

                                                                                                                                                       
11 For a notable recent application to monetary policy analysis, see Bullard and Mitra (2000). 
12 Here (28b) is aggregate supply and (28c) is money demand.  It is my distinct impression that E&H intend for 
all parameters to be interpreted as non-negative. 
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It follows, then, that the condition γ = −ζ > 1 requires h > 1.  In that regard, note first 

that if real-balance terms are excluded, i.e., if g2 = f = a2 = 0, then h = − a1 is negative.  Thus 

sizeable real-balance effects are needed.  Second, note that a2 should probably be specified as 

negative, not positive, since the latter would imply a money demand function with income 

elasticity greater than 1.0, in contrast with most empirical estimates.  But with a2 < 0, the 

parameter f would have to be quite large to generate h > 1.  In other words, real money 

balances would have to enter strongly in the production function for output.  Thus h > 1 

seems highly improbable in the context of the IS-LM model of the type utilized. 

In addition, the condition δ > 0 implies d > 0 in (28d), implying that the money 

supply is increased by the monetary authority when the price level is higher than average in 

the previous period.  That represents, it seems clear, a positively perverse form of policy 

behavior. 

An alternative way of interpreting the reduced-form equation (25), not mentioned by 

E&H, is as a microeconomic supply-demand model.  Suppose we have demand and supply 

functions 

(30a) qt = β0 + β1pt + β2Et-1(pt+1 − pt) + v1t 

(30b)  qt =  α0 + α1pt + α2Et-1pt + v2t 

where the disturbance terms include effects of exogenous variables such as demanders’ 

income and the price of inputs to production.  Here we would hypothesize that β1 < 0 and β2 

> 0, to reflect downward sloping demand with respect to the current price and a speculative 

demand motive.  Also, let α1 ≥ 0 and α2 ≥ 0 to reflect upward sloping supply with respective 

to relevant prices.  Then the reduced form is 

(31) pt = (α1 − β1)-1 [(β0 − α0) + β2 Et-1pt+1 − (α2 + β2) Et-1pt + v1t − v2t]. 
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In terms of equation (25), this specification suggests ζ > 0, γ < 0, and δ = 0.  But the first two 

of these are just opposite in sign to the requirements for the E&H example.  Furthermore, it is 

plausible that pt-1 might appear instead of Et-1pt in the supply equation (as in the cobweb 

model).  But then its coefficient in the reduced form would be negative, and therefore 

inconsistent with the d > 0 assumption in the E&H case under discussion. 

 In sum, I would argue that the specification used most prominently by E&H, to 

provide an example featuring the absence of E-stability for the MSV solution, is highly 

unappealing in terms of basic economic theory.  It must be admitted, however, that this 

argument is quite specific and rather ad hoc in nature.  Accordingly, I will now turn to a more 

general line of argument. 

6. Well Formulated Models 

 In this section I propose conditions necessary for important classes of linear models 

to be “well formulated.”  Consider again the single-variable specification (14), which is 

reproduced once more for convenience: 

(32) yt = α + aEtyt+1 + cyt-1 + ut, 

with ut = ρ ut-1 + εt.  With εt white noise, ut is an exogenous forcing variable with an 

unconditional mean of zero.  Applying the unconditional expectation operator to (32) yields 

(33) E yt = α + aEyt+1 + cEyt-1 + 0. 

But if yt is covariance stationary, we then have13 

(34) E yt = α / [1− (a + c)]. 

From the latter, it is clear that as a + c approaches 1.0 from above, the unconditional mean of 

yt approaches −∞ (assuming that α > 0), whereas if a + c approaches 1.0 from below, the 
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unconditional mean approaches +∞.  Thus there is an infinite discontinuity at a + c = 1.0.  

This implies that a tiny change in a + c could alter the average (i.e., steady state) value of yt 

from an arbitrarily large positive number to an arbitrarily large negative number.  Such a 

property is highly implausible and therefore, I suggest, unacceptable for a well-formulated 

model. 

In light of the preceding discussion, my argument is that, to be considered well 

formulated, the model at hand needs to include a restriction on its admissible parameter 

values, a restriction that rules out a + c = 1 and yet admits a large open set of values that 

includes (a, c) = (0, 0).  In the case at hand, the appropriate restriction is a + c < 1.  Of course, 

a + c > 1 would serve just as well mathematically to avoid the infinite discontinuity, but it is 

clear that a + c < 1 is vastly more appropriate from an economic perspective since it includes 

the region around (0, 0).  Note that the oft-seen condition a + c ≠ 1 does not eliminate the 

unacceptable property.  It should be clear, in addition, that the foregoing argument could be 

easily modified to apply to yt processes that are trend stationary, rather than strictly 

(covariance) stationary.14 

 Now let us consider a second model specification that, like (32), is emphasized by 

E&H (1999, 2001).  It can be written as 

(35) yt = α + β0 Et-1yt + β1 Et-1yt+1 + δyt-1 + ut, 

with ut = ρ ut-1 + εt as before.  For this case, consider the conditional expectation, Et-1yt: 

(36) Et-1yt = (1 − β0)-1 [α  + β1 Et-1yt+1 + δyt-1 + ρut-1]. 

                                                                                                                                                       
13 Note that it is not being assumed that yt is necessarily covariance stationary.  Instead, an implication that 
would hold, if it were, is being used to motivate the assumption that will be made subsequently. 
14 Generalizing, suppose that yt in (32) is a m×1 vector of endogenous variables, so that α is m×1 while a and c 
are m×m matrices.  Then the counterpart of 1 − (a + c) > 0 is that the eigenvalues of [I − (a + c)] all have 
positive real parts, i.e., that the eigenvalues of [a + c] all have real parts less than 1.0  That requirement is 
necessary for the multivariate version of (32) to be well formulated. 
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Here it is clear that, for given values of Et-1yt+1, yt-1, and ut-1, Et-1yt will pass through an 

infinite discontinuity at β0 = 1.  Consequently, for basically the same reason as before, β0 < 1 

is necessary for the model to be well formulated.  In addition, β0 + β1 + δ < 1 continues to 

apply.15   

 An application of these criteria to the questionable example of E&H (1992), featured 

above in Section 5, is immediate.  That example’s result, of a MSV solution that is not E-

stable, requires γ = h > 1.  But in the notation of (35), that condition is β0 > 1, which is 

incompatible with our requirement for models of form (35) to be well formulated.  Thus the 

questionable example is discredited on general grounds, in addition to the specific reasons 

developed in Section 5. 

7. Main Results 

 We are now prepared to develop a more general version of the foregoing argument.  

In particular, it will be shown that being well formulated (henceforth, WF) is a sufficient 

condition for the MSV solution to be E-stable in univariate models of classes (32) and (35).  

Let us begin with (35), but assuming that δ = 0 since that case has been emphasized by E&H.  

For this model, conditions for E-stability can be found by reference to Figure 1, which is 

adapted from the diagram of E&H (1999, p. 492; 2001, p. 191).  In the cited references, it is 

derived and reported that the MSV solution is E-stable in regions I, V, and VI but E-unstable 

in regions II, III, and IV.  In regions I and VI, moreover, the MSV solution is reported to be 

                                                                                                                                                       
 
15 The multivariate extension for the case in which yt is a vector yields the requirements that the eigenvalues of 
[I −β0] and [ I − (β0 + β1 + δ)] all have positive real parts. 
 

 18 



strongly E-stable whereas in V it is weakly E-stable.16  Reference to our conditions for model 

(35) to be well formulated (with δ = 0) shows immediately that the condition obtains only for 

regions I and VI.  Thus in this particular but prominent case, the MSV solution is strongly E-

stable if the parameter values are such that the model is well formulated. 

 Next consider the more difficult and important model of equation (32).  The issue at 

hand is whether the MSV solution possesses E-stability, i.e., whether the differential 

equations (24) are locally stable at the MSV values for the φj.  Necessary and sufficient 

conditions for this to be true are given by Evans and Honkapohja (2001, p. 202) as follows: 

a(1−aφ1)-1 < 1, ca(1− aφ1)-2 < 1, ρa(1− aφ1)-1 < 1.  These will be utilized below, but first it 

will be useful to examine Figure 2, which again is adapted from E&H (2001, p. 203).  There 

E-stability regions are shown under the assumption 0 ≤ ρ < 1.  In this case, the results 

reported by E&H indicate that the MSV solution is E-stable in regions I and VII but E-

unstable in region IV, while “both solutions [i.e., from both roots of (16b)] are explosive or 

nonreal” elsewhere (E&H, 2001, p. 203).17  Specifically, solutions for φ1 are complex-valued 

in regions III and VI, and both solutions feature explosive behavior in regions II and V.  As 

indicated above, the MSV solution is well formulated in regions I, V, and VII (being 

complex in VI).  Thus for regions I and VII, the E&H version of Figure 2 supports the 

hypothesis that the MSV solution is E-stable in all well formulated models of form (32).  But 

what about region V?  There the E-stability conditions are in fact met (E&H, 2001, p. 202). 

In the E&H graphical summary this region is not distinguished from VI because in V the 

solutions are both dynamically unstable (explosive).  But there is no compelling reason to 

                                                 
16 Strong E-stability occurs in cases in which local convergence to the MSV parameter values occurs even when 
the function considered includes additional variables (excluded from the MSV specification). This implies that 
certain other solutions are not E-stable. 
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ignore the MSV solution simply because it is explosive; it may be accurately indicating what 

would happen if (e.g.) extremely unwise policy behavior were imposed on the system.18  For 

a discussion and rationalization of this position, with a closely related example, see 

McCallum (1999).  In any case we see that this specification, too, conforms to the 

proposition that MSV solutions are E-stable in all well formulated models.19 

 We wish to have results for the more general case with ρ < 1, permitting negative 

values, but let us proceed by first demonstrating algebraically that the E-stability conditions 

are satisfied by the MSV solution to model (32) when 0 ≤ ρ < 1 and the WF restriction a + c 

< 1 is imposed.   Afterwards we can go on to the case with −1 < ρ < 0 permitted.  The main 

task, then, is to show that if 1− (a + c) > 0, then (1−a φ )1
-1a < 1 where  = (1−d)/2a with d = 1φ

ac41−

1φ

.  Note first that 1−a  = (1 + d)/2 so (1−a )1φ 1φ

1φ

-1a = 2a/(1+d).  Then for a proof by 

contradiction, suppose that 2a/(1+d) > 1.  Then a > 0 and 2a−1 > d.  Since both of its sides 

are positive, the latter implies 4a2 − 4a + 1 > d2 = 1−4ac.  But with a > 0 the last inequality 

reduces to a − 1 > −c or 0 > 1− (a + c), which is the contradiction that proves (1−a )1φ -1a < 1.  

The latter is the first of the three E-stability conditions listed in the previous paragraph.  The 

second results from writing (1−a )1φ -2a c = (1−a φ 1)-1a , which follows because (1−a )1φ -1c = 

.20  Since (1−a φ 1)-1aφ1 = (1−d)/(1+d), which is smaller than 1 for all d > 0, we have the 

desired inequality.  Finally, with (1−a )1φ -1a < 1 and ρ non-negative, the third condition also 

                                                                                                                                                       
17 Note that the MSV solution is the AR(1) solution that E&H  (2001) refer to as   “ the solution.”      −b
18 The same statement does not apply to region II, where the MSV solution is E-stable but explosive, because 
there the model is not well formulated.  This region illustrates that, though sufficient, the WF condition is not 
necessary for E-stability. 
19 The usual presumption that E-stability implies LS learnability does not carry over automatically in cases of 
dynamic instability (explosive solutions).  E&H (2001, pp. 219-220) indicate, however, that learnability will 
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holds.   

If ρ can be negative, which is plausible, it is possible that a sufficiently large negative 

ρ together with (1−a )1φ -1a < −1 could lead to failure of the last condition.  This possibility 

can be eliminated, however, by adding a second WF requirement to rule out a different type 

of infinite discontinuity.  This type pertains to the dynamic response of yt to the exogenous 

forcing variable ut.  The response coefficient is φ2 = (1 − aφ1 − aρ)-1 so to avoid an infinite 

discontinuity we require that 1 − aφ1 − aρ > 0 or 1 − aφ1 > aρ.  To see that this condition is 

sufficient for our purposes, note that with the MSV solution, 1 − aφ1 = (1 + d)/2 is 

unambiguously positive.  Consequently, the WF condition 1 − aφ1 > aρ implies that 1 > 

(1 − aφ1)-1aρ, which is identical to the E-stability condition under discussion.  Thus we have 

shown that in model (32) with ρ< 1, the MSV solution is E-stable for all parameter values 

satisfying our two WF conditions. 21 22   

 What about possible E-stability of the non-MSV solutions?  A recent analysis that 

recognizes not just solutions such as (15) with root (18), but also ones involving “ARMA-

type stationary sunspot” phenomena, has recently been conducted by Evans and McGough 

(2002).  Their finding is that such solutions can be E-stable only in regions equivalent to IV 

and VII.23  Whether their results are consistent with the position that non-MSV solutions are 

not E-stable or least-squares learnable in model (32)(8) if its parameters satisfy both of our 

conditions for being well formulated is unclear.  Other relevant results have been provided by 

                                                                                                                                                       
prevail in the current case if an adjustment is made to the model to permit the shock variance to grow along 
with the yt values (and ut is white noise). 
20 The last expression is just a rearrangement of (16b). 
21 A closely related result, more general in some respects but without inclusion of the ut shock term, has been 
developed by Gauthier (2003).  Also see Wenzelburger (2002), who suggests that some extension to nonlinear 
models may be possible. 
22 A stronger condition than our second WF requirement, process consistency, is considered in the Appendix.  
23 Evans and McGough (2002) do not, however, consider the explosive regions II and V. 
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Desgranges and Gauthier (2002). 

 Clearly, the main weakness of the foregoing argument is that the results pertain only 

to univariate models.  It is my conjecture that the results can be extended to rather general 

multivariate linear formulations, but this extension has not yet been verified. 

8. Conclusions 

 Let us conclude with a brief restatement of the paper’s results.  After some historical 

discussion of the RE solution procedures of Walters (1971), Muth (1961), and Lucas 

(1972b), this paper considers the relevance for actual economies of issues stemming from the 

existence of multiple RE equilibria.  In all linear models, the minimum state variable (MSV) 

solution—as defined by McCallum (1983, 1999)—is unique by construction.  While it might 

be argued that the MSV solution warrants special status as the (unique) bubble-free solution, 

the focus in the present paper is on its adaptive, least-squares learnability by individuals not 

initially endowed with full knowledge of the economy’s parameters, as discussed in 

important recent publications by Evans and Honkapohja (1999, 2001). 

 Although the MSV solution is learnable and the main alternatives are not learnable in 

most standard models, Evans and Honkapohja (1992, 1999, 2001) have stressed an example 

in which the opposite is true.  The present paper shows, however, that parameter values 

yielding that result are such that the model is not well formulated, in a specified sense (one 

that avoids implausible discontinuities).  More generally, analysis of a pair of prominent 

univariate specifications, featured by Evans and Honkapohja, shows that the MSV solution is 

invariably learnable in these structures, if they are well formulated.   
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Appendix 

 Because of the possibility that  −1 < ρ < 0, we have ruled out a second type of infinite 

discontinuity, pertaining to the dynamic response of yt to the exogenous forcing variable ut, 

by requiring that 1 − aφ1 − aρ > 0.  For the MSV solution, 1 − aφ1= (1+d)/2 so we need 

1 + d − 2aρ > 0, or d > 2aρ − 1, to avoid the discontinuity.  Clearly there is no problem unless 

2aρ > 1 (so a < 0).  If it is, the relevant condition may be written (since d = 1 4ac− ) as 

1 − 4ac > 1 − 4aρ + 4a2ρ2 or  − 4ac >  − 4aρ + 4a2ρ2 or, with a < 0,  −c < aρ2 − ρ.  Now for 

the latter to hold for all ρ such that −1 < ρ < 0, it is necessary and sufficient that a + c > −1.  

That requirement is stronger, however, than the one adopted in this paper. 

 For the stronger condition, an alternative and more general argument can be based on 

the concept of “process consistency,” discussed by Flood and Garber (1980), McCallum 

(1983, pp. 159-160), and Evans and Honkapohja (1992, pp. 10-12).  A model fails to be 

process consistent when solving out expectational variables, by iteration into the infinite 

future, is illegitimate because the implied infinite series does not converge.24  For model 

(32)(8) to be process consistent, then, it must be the case that at least one of the roots to (16b) 

exceeds 1.0 in absolute value.  Thus process consistency obtains in region V of Figure 2, but 

not in region VII, according to the root properties reported by E&H (2001, p. 203).  

Requiring process consistency is therefore consistent with our main result but rules out some 

MSV solutions that are E-stable and permitted by the weaker condition adopted in Section 7.   

                                                 
24 An extensive discussion of related issues is given by Sargent (1987, pp. 176-204 and 305-308). 
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Figure 2  
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