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I. INTRODUCTION

What are the sources of differences across asset prices? How does the cross section

of stock prices behave over the business cycle? Do prices show secular trends and, if so,

what is the source of this trend? Asset prices are the result of the interaction of cash flows

with the stochastic discount factor and, consequently, answers to these questions rest on a

thorough understanding of each of these two components. Surprisingly though, there has been

little theoretical work combining a rich payoff structure with an interesting pricing kernel in a

general equilibrium framework, and, hence, these issues have not been successfully addressed

in the literature. The purpose of this paper is to fill this void. Specifically, we write a general

equilibrium model that tightly links the cross section and the time series of asset prices to cash

flows and a consumption based stochastic discount factor. The model successfully reproduces

the historical experience of the cross section of US stock prices as well as the realized history

of the market portfolio. In addition, our set up is able to address traditional concerns in the

asset pricing literature: A high equity premium and volatility of returns, the long horizon

predictability, and a low volatility of the risk free rate.

To gain some insight on the interaction between cash flows and stochastic discount

factors, Figure 1 shows evidence on the relation between the cross section of asset prices and

the business cycle. Panel A shows the log of the price dividend ratio of the market portfolio

versus the cross sectional standard deviation of the log price dividend ratios of industry-sorted

portfolios for the sample period 1927-2001. Both series show a great deal of comovement and

indeed their correlation is a solid .75. As it is well known variation in the price dividend ratio of

the market portfolio is mostly driven by shocks to expected rates of return, an aggregate effect.

The high correlation between these two series then suggests a link between the aggregate factors

driving the time series variation of the market portfolio and the cross sectional dispersion across

industries. Moreover, Panel B, where we plot the same series in first differences, shows that

the same pattern holds for higher frequencies. Once again both series show a great deal of

comovement and their correlation coefficient is still a healthy .40.

Clearly, price dividend ratio fluctuations can only be driven by news to cash flows and

news to discount rates, so whatever variation there is in the cross section of these ratios must

be driven by differences on how each industry loads in either one of these two components.

We can then apply the traditional tools of variance decomposition literature to deepen our
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understanding of the driving forces behind the time variation in the cross sectional dispersion.

Table I Panel A reports the percentage of the variance of log price dividend ratio that is

driven by shocks to expected cash flows versus shocks to expected returns for two industries

in our sample, Railroads and Paper. For comparison we include the more standard variance

decomposition for the market portfolio.1 Paper and Railroads differ markedly. For example,

while Paper is similar to the market portfolio, as shocks to discount rates make up the largest

component of the variance of its log price-dividend ratio, this is not true for Railroads, where

the cash flow component seems to have a bigger role (although statistically insignificant). A

similar exercise across industries reveals that for some industries the variance of log price-

dividend ratios is driven to a large extent by cash flow news whereas for others they explain a

much smaller fraction of this variance.

Table I Panel B reports the same result from the perspective of standard five year ahead

predictability regressions. Price dividend ratios predict future returns in the case of Paper, very

much like (or even better than) the well known predictability result for the market portfolio,

whereas they do not in the case of Railroads.

The variance decomposition and predictability regressions are ideal instruments to an-

alyze what drives the price dividend ratios of various industries and summarize their cross

sectional differences conveniently, but we are interested in another aspect of the data as well,

namely, the level and trend of asset prices. To illustrate this Figure 2 plots the price of Rail-

roads and Paper, normalized both by the level of US consumption. For comparison, we have

included the price consumption ratio of the market portfolio. The pattern is striking: while

Railroads has experienced a severe secular decline, Paper experienced a surge in the mid fifties

and has remained roughly steady ever since. These two industries differ only in their cash flow

realizations and we are interested in finding out how far can these cash flows go in rationalizing

the observed histories.

Our model will be able to shed light on the cross-sectional differences in predictability
1The voluminous literature on the variance decomposition starts with Campbell and Shiller’s (1988a,b)

seminal contribution. See also Cochrane (1991). The general finding is that the cash flow component does not

explain much of the variation of the log price-dividend ratio of the market portfolio, while the return component

explains a larger percentage of it. Vuoltenahoo (2002) conducts the same exercise at the firm level, finding that,

in contrast to the market portfolio, individual stock returns are mainly driven by news to cash flows. Ours is

the same exercise at an intermediate level of aggregation.
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and variance decomposition, and, in the process, account for the diverse historical experiences

of the industries in our data set. Specifically, we write an economy with a representative agent

whose preferences are the log version of the habit persistence model of Campbell and Cochrane

(1999). As these authors have shown, these preferences induce fluctuations in the stochastic

discount factor that can successfully explain the main patterns of aggregate market data.2

The novel aspect of this paper is the model of cash flow we introduce, a necessary in-

gredient if prices are the object of interest.3 In our set up the representative consumer can

trade multiple dividend paying assets. Rather than modeling the level of dividends themselves,

we specify processes for the fraction that each asset contributes to total consumption. These

processes are stationary and bounded between zero and one. This modeling device then nat-

urally induces dividend series that add to a consumption process that is consistent with the

observed behavior of the US time series.4 Moreover the framework, while rich in implications,

is tractable enough to yield pricing formulas that are interpretable and that are directly linked

to fundamentals.

In particular, we find that asset prices are given by a linear function of a stochastic

trend in dividends plus a second term that reflects deviations from this trend. The loadings

on the stochastic trend and the actual dividends vary with the business cycle, as they increase
2The literature on habit persistence and asset pricing is large and includes, in addition to Campbell and

Cochrane (1999), Sundaresan (1989), Constantinides (1990), Abel (1990), Ferson and Constantinides (1991),

Detemple and Zapatero (1991), Daniel and Marshall (1997), and Li (2001). The habit persistence literature

though has largely concentrated on the time series properties of the market portfolio rather than on the cross

section, the main focus of the present work. Wachter (2000 and 2001) is an exception as she studies the bond

pricing implications of the habit persistence model of Campbell and Cochrane (1999), effectively pricing bonds

and the the aggregate market portfolio.
3As mentioned modeling cash flows has elicited very little research. An early reference in this direction is

Bossaerts and Green (1990) who model dividend processes directly. Abel (1999) and Bansal, Dittmar, and

Lundblad (2001) have proposed a consumption leverage model where an asset’s premium is determined by the

extent to which its dividend loads on consumption. None of these papers though attempt to address the time

series variation of the cross section of stock prices‘. Furthermore, these models are not fully fledged general

equilibrium model nor are the cash flow processes defined in such a way as to prevent assets to become irrelevant

as a fraction of total consumption or to account for more than it. Our model is more closely related to the

general equilibrium set up of Brock (1982), though his is a production economy framework.
4The model is rich enough to accommodate sources of income other than financial. Indeed Santos and

Veronesi (2001) use the technology introduced in this paper to shed light on the connection between labor

income and asset prices.
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during peaks and decrease during troughs. Cash flow shocks then have a very different effect

on an asset’s price depending on where the economy is over the business cycle. Conversely,

aggregate shocks affect assets differently depending on whether their current dividends are

above or below the stochastic trend. In addition, prices depend on the covariance between the

share of consumption that the asset commands and consumption growth and once again the

weight of this component depends on where the economy is over the business cycle inducing

an additional source of conditional and unconditional cross sectional variation. We are able

then to offer a complete characterization of the cross section of asset prices as a function of

both aggregate and idiosyncratic cash flow shocks.

In this paper we are interested in the connection between fundamentals and the level of

prices, a distinct information not captured in returns. This can only be done if one specifies

a cash flow model. Because this is the novel contribution of the paper we simply sketch the

implications of our set up for returns. A thorough theoretical and empirical analysis of these

implications can be found in a companion paper. (Menzly, Santos, and Veronesi (2002)).

In order to asses the empirical validity of our setup we need to obtain values for the

different parameters of the model. As in Campbell and Cochrane (1999), we calibrate the

preference parameters to match basic moments of the aggregate market portfolio and the

interest rate. In addition, we use dividend and consumption data from 1927-2001 to estimate

the parameters of the cash-flow model for the industry-sorted portfolios. Importantly, we avoid

the use of any information contained in individual prices or returns to obtain these parameters,

otherwise the assessment of the model’s ability to account for the main empirical properties of

the cross section would be compromised.

We then conduct two sets of experiments. First, we run simulations of our economy. This

will allow us to compute moments for which we have no closed form solutions. In particular,

given that our set up explicitly models cash flows and discount factors, we want to asses

whether our model can account for the predictability of returns across industries as well as the

variance decomposition of their price dividend ratios, as in Table I and Figures 1 and 2. Our

model provides a striking account of these cross sectional differences.

Second, we investigate whether the model can reproduce the observed US financial his-

tory. To do so we feed the pricing formulas found in the theoretical section the realized

consumption and cash flow shocks. We show that the model offers a remarkable account of
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the observed history of the prices of industry portfolios, an account, recall, that is simultane-

ously consistent with the behavior of the aggregate market. Furthermore, we show as well that

the model naturally generates the positive correlation between the log price dividend ratio of

the market portfolio and the time series of the cross sectional standard deviation of log price

dividend ratios. The model performs well even when both times series are in first differences,

accounting for the historical patterns in Figure 1, Panels A and B.

The paper proceeds as follows. Section II covers the model, which is solved in Sections

III and IV. The model’s calibration is reported in Section V. Section VI evaluates the model.

Section VII ties some loose ends in the model and Section VIII concludes. All proofs are

contained in the Appendix.

II. THE MODEL

II.A Preferences

The economy is composed of a representative consumer who maximizes:

E
[∫ ∞

0
u (Ct, Xt, t) dt

]
= E

[∫ ∞

0
e−φt log (Ct −Xt) dt

]
,

where Xt denotes the habit level and φ denotes the subjective discount rate.5

The effect of habit persistence on the agent’s attitudes towards risk can be conveniently

summarized by the surplus consumption ratio, St, defined as:

St =
Ct −Xt

Ct
.

Movements of this surplus directly translate into fluctuations of the local curvature of

the utility function, 1/St. As can readily be checked, a low St is associated with “bad states,”

periods of high risk aversion, whereas a high St corresponds to “good states,” periods of low
5The idea of habit formation dates back to Duesenberry (1949). Deaton and Muellbauer (1980) provide a

survey and early references. These preferences have been used in a rich variety of contexts. Some applications

include Boldrin, Christiano, and Fisher (2001), Fuhrer (2000), or Lettau and Uhlig (2000) in the RBC liter-

ature, Bakshi and Chen (1996) and Carroll, Overland, and Weil (2000) in the growth literature. The asset

pricing applications are many and were briefly cited the previous footnote. These preferences have generated

a remarkable amount of empirical work, for instance, Muellbauer (1988), Heien and Durham (1991), Heaton

(1993), and Dynan (2000).
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risk aversion. These fluctuations naturally translate into the corresponding variation on the

prices and returns of financial assets.

II.B The cash flow model

There are n risky assets, not all necessarily financial, paying a dividend rate
{
Di

t

}n

i=1
,

in units of a homogeneous and perishable consumption good. These dividends must add up to

a process that is consistent with the observed time series of US consumption. For this reason,

and in accordance with the empirical evidence, we assume that the process for aggregate

consumption growth can be well approximated as an i.i.d. process:

dCt

Ct
= µcdt+ σcdBt, (1)

where µc is the mean consumption growth, σc is a 1× n dimensional vector, and Bt denotes a

n× 1 dimensional standard Brownian Motion vector. Furthermore, without loss of generality

we impose that

σc = (σc,1, 0, · · · , 0) . (2)

Instead of positing processes for
{
Di

t

}n

i=1
that add up to the aggregate consumption

process (1), we model the shares of consumption that are generated by each of asset

si
t =

Di
t

Ct
, (3)

as a mean reverting process of the form

dsi
t = κ

(
si − si

t

)
dt+ si

t

vi −
n∑

j=1

sj
tv

j

 dBt, (4)

for i = 1, · · · , n, where si is the average share of the endowment source i, κ is the speed of

mean reversion and vi for i = 1, · · · , n are n dimensional vectors of constants. The form of the

volatility function is chosen in order to guarantee that si
t > 0 for i = 1, · · · , n and

∑n
i=1 s

i
t = 1

for all t > 0.6

We notice two important features of the diffusion part in process (4): (i) It is para-

metrically indeterminate, that is, adding a constant vector, c, to all the vi’s leaves the share
6The assumption that the mean reversion speed, κ, is common across shares is made to simplify the pre-

sentation and can be easily generalized. The restriction of a common mean reversion speed though cannot be

rejected in the data set we employ in this paper.
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processes unaltered; (ii) Since sn
t = 1 −

∑n−1
j=1 s

j
t , one only needs to specify n − 1 vectors vi,

i = 1, .., n− 1 to completely describe the share process. In other words, we can assume vn = 0

without loss of generality.

In what follows, we choose to renormalize the vi’s, for i = 1, ..., n in order to minimize

the effect of the term
∑n

j=1 s
j
tv

j in the diffusion part of (4). We can accomplish this by simply

setting c in (i) such that unconditionally
n∑

j=1

sjvj = 0. (5)

II.C Habit dynamics

The particular assumptions on the dynamics of St are of critical importance in habit

persistence models. In particular, Campbell and Cochrane (1999) assume that log (St) follows

a mean reverting process with shocks that are conditionally perfectly correlated with con-

sumption growth. We depart from Campbell and Cochrane (1999) and impose the stochastic

structure instead on the inverse of the surplus consumption ratio, which we denote Yt,

Yt =
1
St

=
Ct

Ct −Xt
=

1

1−
(

Xt
Ct

) > 1. (6)

Throughout we refer to Yt as the inverse surplus. We assume that it follows a mean reverting

process:

dYt = k
(
Y − Yt

)
dt− α (Yt − λ)

(
dCt

Ct
− µcdt

)
, (7)

where Y is the long run mean of the inverse surplus and k is the speed of the mean reversion:7

Et [Yτ ] = Y +
(
Yt − Y

)
e−k(τ−t). (8)

The parameter α > 0 captures the impact of consumption growth shocks on the inverse surplus

process. A negative shock to consumption growth, for example, results in an increase in the

inverse surplus, or, equivalently, a decrease in the surplus level. Finally, the parameter λ ≥ 1

ensures a lower bound for the inverse surplus, and an upper bound for the surplus itself. For

instance, if the surplus St is to live in [0, .1] (as in the calibration of Campbell and Cochrane

(1999)) then Yt ∈ [10,∞), and this can be guaranteed by setting λ = 10. Furthermore, this

modeling device avoids the concerns raised by Chapman (1998), namely, the possibility of

negative marginal utility of consumption in habit persistence endowment economies.
7The stationary density of the inverse surplus process can be found in the Appendix.
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III. ASSET PRICES

We assume that markets are complete and, as a consequence, the standard asset pricing

formula holds. That is, if gτ is the payment of a particular asset at time τ , then the price at

time t is:

P g
t = Et

[∫ ∞

t
e−φ(τ−t)

(
uc (Cτ −Xτ )
uc (Ct −Xt)

)
gτdτ

]
= (Ct −Xt)Et

[∫ ∞

t
e−φ(τ−t)

(
gτ

Cτ −Xτ

)
dτ

]
. (9)

Let sg
τ = gτ/Cτ the share of consumption of the asset that represents a claim to gτ . Then

straightforward manipulations of equation (9) yield:

P g
t

Ct
=

1
Yt

Et

[∫ ∞

t
e−φ(τ−t)sg

τYτdτ

]
. (10)

Calculation of the prices then requires computation of the expectation in expression (10)

for the assets of interest. Rather than show prices as a function of Yt, as in (10), we present

the results in terms of the surplus consumption ratio, St, for this is the convention adopted by

Campbell and Cochrane (1999) and others after them (see Li (2001) and Wachter (2000)).

III.A. The price of the total wealth portfolio

The total wealth portfolio gives claim to the whole consumption stream, gτ = Cτ , and

hence sg
τ = 1. In this case, the application of equation (8) in the pricing equation (10) leads

immediately to the following proposition:8

Proposition 1. The price consumption ratio of the total wealth portfolio is given by:

P TW
t

Ct
=

1
φ+ k

[
1 +

kY

φ
St

]
. (11)

Equation (11) neatly captures the mechanism embedded in habit persistence models. A

positive consumption shock increases St, as it is perfectly correlated with consumption growth,

and this results in an increase of the price consumption ratio. The reason is that a positive

shock in consumption growth makes the investor less risk averse and hence the price of the

total wealth portfolio is bid up relative to the pre-shock level.
8Throughout the paper, we assume that the parameters for the process for the inverse surplus Yt satisfy the

integrability condition Et

[∫∞
t

e−φ(τ−t)Yτdτ
]

< ∞. This is sufficient to invoke Fubini Theorem to justify the

inversion of integration and expectation implicit in the derivation of (11).
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Clearly, if α = 0 and Yt = Y = λ = 1, then St = 1/Y for t ≥ 0 and the price consumption

ratio of the total wealth portfolio is given by 1/φ, the standard price consumption ratio of the

log economy (Rubinstein (1976)).9

III.B The price of individual securities

Now gτ = Di
τ and sg

τ = si
τ , the share of asset i. Since in the case of individual securities

the interaction between cash-flow effects and discount effects is difficult to disentangle, we

solve for two simpler cases first. The first one, in section III.B.1, shuts off the discount-effect

channel, that is, the habit, but it allows for a rich cross-sectional variation in cash-flow betas.

The second case, in section III.B.2, assumes equal cash flow betas but it allows for habit effects.

Section III.B.3 finally combines the two cases.

III.B.1 Model A: Prices in the absence of habit persistence

To shut down the effect of the variation in the degree of risk aversion we must have

Xt = 0 for all t. Hence, we simply set

Model A α = 0 and Yt = Y = λ = 1 (12)

We then obtain the standard log utility representation with multiple assets. The prices of

individual securities then follow easily: since in equation (10) we have sg
τYτ = si

τ and from (4)

Et

[
si
τ

]
= si +

(
si
t − si

)
e−κ(τ−t) (13)

by substituting (13) into (10) we find:10

Proposition 2. (Prices under Model A.) Let α = 0 and Yt = Y = λ = 1, then the price of

asset i, PA,i
t , is given by

PA,i
t =

D
i
t

φ
+
Di

t −D
i
t

φ+ κ
, (14)

where Di
t = siCt.

D
i
t is the level dividends would have given current consumption in the absence of any

idiosyncratic shock and it is a stochastic trend to which dividends revert. Prices are then
9Notice though that the unconditional mean of the price consumption ratio of the total wealth portfolio is

not 1
φ
, as one has to take into account the Jensen inequality term when taking expectations in (11).

10Since 0 < si
t < 1 for all t, we can invoke Fubini Thorem to justify the inversion of expectation and the

integration implicit in the derivation of (14).
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driven by a common factor, which is the current level of consumption scaled by the average

share, and an idiosyncratic factor which is the distance between the current dividend level,

Di
t, and the stochastic trend. The first term accounts for the differences in levels across prices

on average for a given level of consumption and it is discounted by 1/φ. The second term is

responsible for the cross sectional variation observed in prices and it is discounted by the sum

of φ plus the speed of mean reversion, κ. Notice that although the assets are characterized by

different covariances of their own dividend growth with consumption growth, that is, different

θi = viσc, this last parameter does not enter in the pricing function. The reason is that under

log-utility, the discount factor effects offset cash flow effects. This parameter, however, affects

the time-series of the dividends with respect to consumption growth and hence, as we shall

see, the expected excess returns on this stock.

Armed with expression (14) we can immediately compute the price dividend ratio,

PA,i
t

Di
t

=
(

1
φ+ κ

)[
1 +

(
κ

φ

)
si

si
t

]
. (15)

It follows immediately from (15) that predictable changes in the cross section of price dividend

ratios over the business cycle are exclusively driven by changes in the dispersion of the shares

si
t relative to their long term averages. In the presence of consumption growth, those assets

whose shares covary positively with consumption growth will experience, on average, declines

in the price dividend ratios, whereas those that covary negatively will see an increase in their

price dividend ratios.

III.B.2 Model B: Prices in the absence of cash flow effects

To asses the impact of the variation in the discount factor on the cross section of stock

prices we now shut down the “cash flow effect.” We do this by requiring that share growth

does not covary with consumption growth, covt

(
dsi

t

si
t
, dCt

Ct

)
= 0, that is,

θi ≡ viσ′c = 0 for all i = 1, .., n (16)

This implies that all assets have identical cash flow betas

Model B covt

(
dDi

t

Di
t

,
dCt

Ct

)
= σcσ

′
c. (17)

As in the previous case, the prices of individual securities are easy to obtain. Since from

condition (16), the shares si
t and the inverse surplus Yt are independent processes, we have
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Et

[
si
τYτ

]
= Et

[
si
τ

]
Et [Yτ ]. We can then use formulas (13) and (8) and insert them in the

pricing equation (10) to easily obtain the result in the following proposition:

Proposition 3. (Prices under Model B.) Let covt

(
dDi

t

Di
t
, dCt

Ct

)
= σcσ

′
c, then the price of asset

i, PB,i
t , is given by

PB,i
t =

[
1 +

kY

φ
St

]
D

i
t

φ+ k
+
[
1 +

(
kY

φ+ κ

)
St

]
Di

t −D
i
t

φ+ κ+ k
. (18)

As in expression (14) there are two terms in the price formula. The first one captures

the variation due to the common factor. Now the effect of shocks in consumption, which affect

D
i
t = siCt, is amplified whenever the surplus is relatively high, as investors are in this case less

risk averse. The second term captures the source of idiosyncratic variation, both in the time

series and the cross section. Once again idiosyncratic shocks to dividends will be amplified

whenever St is high.

Similarly to Model A, straightforward manipulations of equation (18) yield the following

expression for the price dividend ratio,

PB,i
t

Di
t

=
1

φ+ k

[
1 +

(
kY

φ

)
St

](
si

si
t

)
+

1
φ+ κ+ k

[
1 +

(
kY

φ+ κ

)
St

](
1− si

si
t

)
. (19)

Model B has very different implications for the behavior of the cross section of price

dividend ratios over the business cycle when compared to Model A. Recall that in the latter

predictable changes in the cross section were exclusively driven by changes in the distribution

of shares due to their covariance with consumption growth, the channel that is shut down here.

In contrast, now cash flow shocks have a very different effect on the cross section depending

on whether they occur during business cycle peaks or troughs. As can be immediately seen

from expression (19), cash flow shocks are magnified during peaks and dampened in troughs.

Moreover, as the next proposition shows, even in the absence of cash flow shocks the cross

section of price dividend ratios is sensitive to the business cycle.

Proposition 4. For a given distribution of shares, the cross sectional variance of price

dividend ratios is an increasing function of the surplus consumption ratio.

That is, the cross sectional dispersion of the price dividend ratios increases during busi-

ness cycle peaks and decreases during troughs.
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III.B.3 Prices in the general case

The model in the general case is considerably more complex than Models A and B, and

a closed form solution is not available. Instead we offer an approximate solution, where the

nature of the approximation is sketched in Section VII. Numerical computation of prices show

the approximation is within 0.1% of the true price for the set of portfolios we consider. Prices

for the general case then are given by

P i
t ≈ ωiPA,i

t λSt +
(
1− ωi

)
PB,i

t , (20)

where

ωi =
αθi

φ+ k + κ+ αθi
, (21)

and we recall that θi = viσ′c. Under condition (5), θi is simply the unconditional covariance

between the growth rate of shares dsi
t/s

i
t and consumption growth dCt/Ct.11 In equation (21),

φ+ k+ κ+αθi has the interpretation of a discount rate and it is assumed to be positive. The

sign of ωi is then solely determined by the sign of θi.

In order to better interpret equation (20) it is useful to write it as:

P i
t ≈ ωiPA,i

t +
(
1− ωi

)
PB,i

t + ωi (λSt − 1)PA,i
t . (22)

The price of asset i is a linear combination of the price of the asset found for Model A

and that of Model B plus a correction that interacts the surplus consumption ratio with the

price of the asset under Model A. To interpret further the last term of equation (22) recall first

that Stλ ≤ 1. Assume then that asset i’s share covaries positively with consumption growth,

ωi > 0. In this case the asset provides little insurance against adverse shocks in consumption

growth as the asset pays on average little in those states. As a consequence

ωi (λSt − 1)PA,i
t < 0,

and the asset trades at a discount relatively to an otherwise identical asset with zero or negative

covariance with consumption growth. This effect enters multiplicatively the price of the asset

under Model A, which allows for a general covariance structure of dividend growth with con-

sumption growth. Roughly, one can interpret the expression ωi (λSt − 1) as the correction one

needs to add to the price of the asset that corresponds to the logarithmic economy when the
11This follows immediately since

∑n
i=1 siviσ′c = σc,1

∑n
i=1 sivi,1 = 0, where we have used expression (2).
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degree of risk aversion is different than one. Moreover the magnitude of the insurance discount

depends on where the economy finds itself over the business cycle. In troughs, |λSt − 1| is very

large and so is the discount of the asset whose cash flows covary positively with consumption

growth. When the economy experiences positive consumption growth shocks St increases and

the price discount |λSt − 1| diminishes accordingly.

From equation (20), it is immediate to obtain an expression for the price-dividend ratio

in the general case. Since the formula can be readily computed from (15) and (19), we avoid

repeating it here. Importantly, though, in the general case we can still expect that a result

similar to Proposition 4 holds. However, the contemporaneous correlation of shares si
t and

surplus St makes it hard to obtain a general proposition. A thorough assessment of the model

on this dimension is then postponed until Section VII.

IV. ASSET RETURNS

In this section we compute the risk free rate and the expected excess rate of return of

the total wealth portfolio and individual securities. We solve for these quantities insofar as

they permit a better understanding of the relationship between cashflows, discount factors,

and asset prices, as explained in the introduction. The reader is referred to Menzly, Santos,

and Veronesi (2002) for an empirical investigation of the implications of our model for returns.

In order to compute the expected rate of return of the different assets it is useful to

consider first the pricing kernel process,

dmt

mt
= −µm(St)dt+ σm(St)dBt where mt = uc (Ct, Xt, t) = e−φt

(
Yt

Ct

)
, (23)

and

µm(St) = φ+ µc − σcσ
′
c + k

(
1− Y St

)
− α (1− λSt)σcσ

′
c

σm(St) = − [1 + α (1− λSt)]σc. (24)

Expression (24) is essential in the computation of the expected excess rate of return of

any asset, which is the instantaneous covariance between the increments in returns and the

kernel, σi
R,tσ

′
m (see, for example, Duffie (1992), page 98.)
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IV.A The risk free rate

The risk free rate is given by µm(St), that is,

rf (St) = φ+ µc − σcσ
′
c + k

(
1− Y St

)
− α (1− λSt)σcσ

′
c, (25)

a version of the formula found in Campbell and Cocrane (1999). The interpretation of this

formula is standard (see Campbell, Lo, and MacKinlay (1997), page 331, equation 8.4.19.)

IV.B The return on the total wealth portfolio

The excess return on the total wealth portfolio is

dRTW
t =

dP TW
t + Ctdt

P TW
t

− rf (St).

An application of Ito’s Lemma and the equilibrium condition µTW
R,t = −σTW

R (St)σ′m(St) allows

us to write the dynamics of the return of the market portfolio as:

dRTW
t = µTW

R (St) dt+ σTW
R (St) dBt

where

µTW
R (St) = (1 + α (1− λSt))

[
1 +

kY St (1− λSt)α
kY St + φ

]
σcσ

′
c (26)

σTW
R (St) =

[
1 +

kY St (1− λSt)α
kY St + φ

]
σc (27)

To understand the intuition, consider first the case where consumption is far away from

habit, that is St = λ−1. In this case, risk-aversion is low and expected returns and variance are

low, both equal to σcσ
′
c. As St decreases, current consumption gets closer to the habit level,

which in turn increases both the degree of risk aversion and the volatility of the returns on the

total wealth portfolio. These two effects contribute to increase the premium investors require

to hold stocks. As St gets close to zero, however, the volatility of the surplus also declines to

zero, because St is a process in
[
0, λ−1

]
. This latter property carries over to the volatility of

returns, that declines when St approaches zero, partially undoing the effect of the increase in

the degree of risk aversion. When this effect is large enough the required premium falls.

However, this effect does not apply to the Sharpe ratio, which is always decreasing in St:

SR (St) =
µTW

R,t (St)√
σTW

R (St)σTW
R (St)

′
= (1 + α (1− λSt))

√
σcσ′c. (28)
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The Sharpe ratio then moves countercyclically, decreasing in booms and raising in reces-

sions. The Sharpe ratio plays an important role in the interpretation of the formulas for the

returns of individual securities below.

To synthesize the properties of the aggregate variables in this model, and to compare

them to the model of Campbell and Cochrane (1999), Panels A-D of Figure 3 plot some of the

aggregate variables against the level of the surplus St. The plots use calibrated parameters, as

discussed in section V. Panel A plots the stationary density of the surplus-consumption ratio

St, given the calibrated parameters. Panel B plots the price-consumption ratio of the total

wealth portfolio, which has the characteristic upward slope with respect to St. Panel C plots

the excess expected return and volatility of the total wealth portfolio, along with the real rate

of interest. Finally, Panel D plots the Sharpe-ratio of the total wealth portfolio, as function of

the state variable St. Comparison with the corresponding Figures in Campbell and Cochrane

(1999, see Figures 2 to 6, pages 219-223) reveals essentially the same qualitative behavior of all

these functions. The only difference is in the expected returns and volatility functions, as they

bend back towards zero as St gets close to zero. However, the region of St where these function

are upward sloping has a very small unconditional probability, as shown by the stationary

density of St in Panel A.

IV.C The return on individual securities

We now turn to individual securities. Again, it is useful to first compute the return

processes for the two special cases introduced in Section III.

IV.C.1 Model A: Returns in the absence of habit persistence

We start by finding the expected excess rate of return in the absence of habit persistence

effects. First recall that in the standard log economy the expected excess rate of return of the

total wealth portfolio is simply given by σcσ
′
c. Then the next propositions characterizes the

basic moments of the returns of individual securities.

Proposition 5. (Expected returns under Model A) Let α = 0 and Yt = Y = λ = 1, then the

expected excess rate of return of asset i, µA,i
R,t, is given by

µA,i
R,t = σcσ

′
c +

φsi
t

φsi
t + κsi

θi −
n∑

j=1

sj
tθ

j

 . (29)
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Assets whose shares covary positively with consumption growth, so that θi−
∑n

j=1 s
j
tθ

j >

0, will command a higher premium than the total wealth portfolio, as the asset provides little

insurance against adverse consumption shocks. This is more so as si
t increases, as the asset

will make a larger fraction of consumption. Clearly, the opposite argument holds for the case

where the dividend-consumption share covaries negatively with consumption growth.

IV.C.2 Model B: Returns in the absence of cash flow effects

When habit persistence is present but there are no cash flow effects, there can be no

cross sectional dispersion in expected returns in the long run and all the variation observed in

sample is solely due to conditional cross sectional variation. This conditional cross sectional

variation is driven by shocks to cash flows but these shocks have rather different effect on the

cross section depending on when they occur over the business cycle.

Proposition 6. (Expected returns under Model B.) Let covt

(
dDi

t

Di
t
, dCt

Ct

)
= σcσ

′
c, then the

expected excess rate of return of asset i, µB,i
R,t, is given by

µB,i
R,t = (1 + α (1− λSt))

[
1 +

kY Stα (1− λSt)
kY St +

(
1 + f

(
si
t/s

i
))
φ

]
σcσ

′
c (30)

where

f

(
si
t

si

)
=

(φ+ k)κ
(

si
t

si − 1
)

(φ+ κ)κ+ (φ+ k)
(
κ+ φ

si
t

si

) . (31)

It follows from equation (31) that f(si
t/s

i) ≷ 0 whenever si
t ≷ si, and that f(1) = 0

when si
t = si. Then one can easily check that,

µB,i
R,t T µTW

R,t iff si
t S si, (32)

where µTW
R,t is given by equation (26).

To understand the intuition behind (32) take the case where si
t < si. In this case the

dividends of asset i are likely to experience growth above that of consumption and this effect

gets incorporated into current prices. Still, the conditional expected excess returns are above

that of the total wealth portfolio. At this stage it is useful to return to the price of asset i

under Model B, given in expression (18) and that we can rewrite as

PB,i
t = si

[
P TW

t +
(
si
t

si
− 1
)(

1 +
k

φ+ κ

(
St

S

))
Ct

φ+ κ+ k

]
,
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where P TW
t is given in equation (11). When si

t < si the second term in parenthesis becomes

negative and hence the relative impact of changes in the level of P TW
t on P i

t increases. This

decreases the diversification opportunities offered by asset i and hence increases its required

premium to hold it. The second effect is a “dampening” or “hedging” effect: If si
t < si then

positive shocks to Ct, and hence to St, translate into negative shocks of the second term in

parenthesis, which partly counterbalance the positive movement in P TW
t induced by the same

shocks. It can be shown though that the first “level” effect dominates the “hedging” one.

IV.C.3 Returns in the general case

We use our approximate pricing formula to obtain the expected excess rate of return of

individual assets in the general case. The formula for returns simply combines the two sources

discussed in the previous two subsections, as it is given by

µi
R,t ≈ (1 + α (1− λSt))

[(
1 + γ1

(
si
t, St

)
St (1− λSt)α

)
+ γ2

(
si
t, St

)
si
tθ

i
]
σcσ

′
c (33)

where the functions γ1

(
si
t, St

)
> 0 and γ2

(
si
t, St

)
> 0 are given in equations (39) and (40) in

Appendix B.

Briefly, the first term in the product, (1 + α (1− λSt)), is proportional to the Sharpe

ratio of the total wealth portfolio and, naturally, it is common across assets. When the Sharpe

ratio is high, which occurs when the surplus consumption ratio is low, this term is high and as

a consequence so will be the expected excess rate of return. The first term in brackets is related

to the covariation of the marginal rate of substitution with changes in the surplus consumption

ratio, and it is similar in intuition to the one in discussed in Section IV.C.2 (Model B). Instead,

the second term in the bracket captures the component of the premium that results from the

covariation of the marginal rate of substitution with the asset’s cash flow shocks, and it is

similar to the one in discussed in Section IV.C.1 (Model A).12

V. CALIBRATION

V.A Data

We calculated quarterly dividends, returns, market equity and other financial series from

the CRSP database. We use CRSP and COMPUSTAT data files to form 20 value-weighted
12Notice that under condition (5), which we invoke when we look at the general case, we have that µA,i

R,t ≈

σcσ
′
c +

φsi
t

φsi
t+κsi θi.
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industry every month formed according to their two digit Standard Industrial Classification

(SIC) code.13 Finally, whenever possible, we augmented our financial series with accounting

data from the Compustat data base. To merge the two files we rely on the link structure issued

by CRSP. Table II provides a description of the industry portfolio and summary statistics.

The real consumption data is obtained from the National Income and Product Accounts

(NIPA) for the period 1946-2001. As many before us, we define total consumption as non-

durables plus services. We use the Shiller (1989) annual data for the period 1927-1945, where

we interpolate the consumption data to obtain quartely quantities.14 The risk free rate is the

90-day Treasury bill and the inflation rate is calculated using the Consumer Price Index.15

V.B Model parameters

V.B.1 Preference parameters,
{
φ, k, Y , λ, α

}
We use the stationary distribution of the process Yt, given in equation (36) in the ap-

pendix, to calibrate the preference parameters,
{
φ, k, Y , λ, α

}
, to the aggregate market port-

folio and interest rates. For a given choice of parameters, we can then compute the population

averages of expected returns, return volatility, and price-consumption ratio for the total wealth

portfolio, and the average level and volatility of risk-free rate. We match the population aver-

ages for the total wealth portfolio with the corresponding values for the market portfolio in the

data. Clearly the total wealth portfolio and the market portfolio are different but our results

show that they are very similar in terms of moments and prices. For this reason we use the

total wealth portfolio as we have convenient formulas for the returns and prices that can be

easily used to match them to data.16

13The two digit SIC grouping are similar to those employed by Moskowitz and Grinblatt (1999) and Boudoukh,

Richardson and Whitelaw (1994). The SIC codes are obtained from CRSP, which reports the time-series of

industry classification codes. Although the COMPUSTAT classification is considered to be more accurate, the

series is modified only from 1994, which leads to a survival bias.
14We also tested our results in the period starting in 1963 to reflect the concerns of some authors that the

sample of firms in COMPUSTAT is limited in the earlier part of the sample. See Fama and French (1997, page

156.) This is also the sample period chosen by Moskowitz and Grinblatt (1999). In addition, we also used the

sample from 1953:1 to 1999, favored by some as it avoids the Korean war. See, among others, Campbell and

Mankiw (1990). The results were very similar and are not reported here.
15The real rate has been computed as rR,t = rN,t − Et [inflationt], where the latter is obtained from fitting

an AR(4) to the inflation process.
16That the distinction between the total wealth portfolio and the market portfolio is less relevant than may

seem at first is also to be found in Campbell and Cochrane (1999), see in particular their comments in page 221.

18



In our model λ and Y cannot be identified separately: All our pricing implications

depend on the ratios Y /Yt and λ/Yt. Given the linearity of the process (7), if we scale Y , λ

and Yt by a constant, no changes will occur to the prices, returns or interest rates. Without

any loss of generality then we choose to set the average inverse surplus to match the steady

state degree of risk aversion in Campbell and Cochrane (1999), Y = 29.6.17 The remaining

parameters {φ, k, λ, α} are then obtained by matching (i) the average excess stock return, (ii)

the average interest rate, (iii) the interest rate volatility, (iv), the average price consumption

ratio and (v) the average Sharpe ratio. The parameter values so obtained are in Panel A of

Table III, while the population averages of the total-wealth portfolio, as well as the sample

averages in the 1927-2001 periods are in Table IV. The calibrated model succeeds in matching

the equity premium, the average price-dividend ratio, the volatility of market returns, and the

Sharpe ratio. The model also delivers the right level and volatility of the risk free rate.

V.B.2 Share process parameters,
{
κ, si,vi

}
i=1,···,n

The share process (4) presents several challenges for the estimation. A full analysis of

the estimation procedure is outside the scope of this paper and we leave it to future research.

Here we outline a simple estimation procedure, which relies on an approximation of the share

process that is similar to the one we used to obtain prices of individual assets in the general

case. Monte Carlo simulations show that this methodology works well when n is “large” and

the variance of the share process is not too large. Appendix B contains additional details.

The methodology is in two steps: First, we estimate the drift parameters
{
κ, s1, .., sn

}
through GMM applied to the Euler discretization of the process (4). Since by assumption the

process for shares has a stochastic volatility, we use a two-stage GMM with NW corrected

variance covariance matrix. The second steps is to compute the vectors
{
v1, ..,vn

}
. To do

this, we assume that the term
∑n

j=1 s
j
tv

j that appears in the volatility function in (4) is

approximately constant. In this case, we can back out the vectors vi’s from the variance-

covariance matrix of the process for the log si
t. The results of the estimation are contained

17This value of Y is slightly higher than the one in Campbell and Cochrane (1999). The steady state surplus

consumption ratio these authors is S = .0676. Given that they work with γ = 2 rather than with γ = 1, their

steady state degree of risk aversion is γ

S
≈ 29.6. The difference is due to the fact that our results match the

numerical average in our generated Campbell and Cochrane (1999) surplus consumption series. Clearly, the

choice of λ affects the volatility of the habit and this prevents setting it equal to its perhaps natural boundary

of one as this would induce, contrary to intuition, excessive volatility in the habit.
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in Panel B of Table III. We do not report the entire matrix v =
(
v1, ...,vn

)′, but only the

coefficients that are relevant for pricing, namely, θi = viσ′c.

VI. MODEL EVALUATION

To evaluate the model we conduct two types of excercises. First, in Section VI.A we run

simulations of our economy. This will allow us to compute moments that are of interest and

for which we have no closed form solutions. Then in Section VI.B we evaluate whether our

model can account for the observed financial history of the US. To accomplish this we feed the

formulas found in Section III the realized consumption and cash flow shocks and ask whether

the calibrated time series can reproduce the main patterns observed in the data.

VI.A Performance of the model in simulated data

We simulate 10,000 time series of length equal to the available time series. To ease the

comparison with data, we simulate consumption and shares at very small intervals (1 day)

but retain information only at the quarterly frequency. This generates a number of quarters

slightly above the two million mark. The simulations employ the parameter values reported

in Section V. In order not to bias the simulation procedure, each simulation includes an initial

“burn out” period so each simulation starts in a randomly selected point.

VI.A.1 Means and standard deviations

Panel A of Table IV reports some summary statistics from the simulations for aggregate

variables, namely, the market portfolio and the interest rate. As already mentioned, the model

is sufficiently flexible to match well the sample moments of the market portfolio. In particular

the Sharpe ratio is matched almost to the point. In addition the volatility of market returns,

a moment that was not used to calibrate the model, is close to that observed in the data. The

model succeeds as well in reproducing the level and volatility of the risk free rate, a standard

difficulty in habit persistence models. The model is then able to reproduce the results of

Campbell and Cochrane (1999) for the market portfolio.

Importantly the calibration did not use any cross sectional information and it is here

that the validity of the model can start to be objectively assessed. Panel B reports some

summary statistics about the cross-section of prices and returns of industry portfolios. For

ease of comparison with the actual realized averages, Figure 4 plots the main results contained

in Table IV Panel B. Panel A in Figure 4 plots the the sample average excess return for each
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industry versus the mean obtained of our simulation. The model is able to generate average

excess returns across industries that are close to those observed in the data though the sample

average is slightly above the average return obtained across simulations. This is to be expected,

given that the same occurs at the market portfolio level.

Panel B plots the sample average price-dividend ratios versus the average price dividend

ratio in the simulated data. Once again the model reproduces its sample counterpart with the

only exception of Construction, where the model generates an average price dividend ratio well

out of line with data. Finally, Panel C reports the sample average Sharpe ratios versus their

simulations counterpart, and once again the model performs well. The model is then able to

replicate the trade-off between risk and return across industries.

VI.A.2 Predictability in the aggregate and in the individual industries

Table V contains the results from standard predictability regressions, both in the data

and in the simulations. Panel A reports results for the aggregate market portfolio. For com-

pleteness, and to ease the comparison with previous research, we report the predictability

regressions for two samples periods, the full sample 1927-2001 and for the shorter and most

standard postwar sample 1947-1994. Similarly to Campbell and Cochrane, who also use a long

and short sample though both ending in 1995, the model produces a good deal of predictability

at the aggregate level. The model successfully reproduces the increasing nature of R2s versus

the horizon. For example, the average R2 across simulations in a two year ahead predictability

regression is 17.7%, against a 6% in the full sample and 29% in the post-war sample. At the

5 year horizon, the numbers are 26.7% in average across simulations, and 12% and 56% in

the long and short sample respectively. Importantly the predictability in the short sample is

stronger than in the 1927-2001 one as the former excludes the period 1995-2001 that saw high

price dividend ratios and high realized returns.

Panel B reports the predictability regressions for individual industries, which, as before,

can be more easily grasped graphically. Figure 5 Panel A shows that, consistently with the data

corresponding to the long sample period, the model produces a large cross-sectional difference

in the two and five year ahead predictability of returns, though it slightly overestimates the

two year predictability. The model successfully reproduces the low predictability for industries

such as Mining, Construction, and Railroads and the high predictability for Chemical and

Utilities. The model does also well for industries with an intermediate level of predictability
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like Dept. Stores. Similar results obtain for the five year predictability (Figure 5 Panel B.)

How are we to interpret this cross sectional variation within the context of our model?

Predictability at the aggregate level is exclusively driven by time-variation in the surplus-

consumption ratio St, which affects the stochastic discount factor. In the case of individual

assets though, to the impact of the time variation in the stochastic discount factor we have

to add the fluctuations of share si
t around its long run mean si, as equation (33) shows. This

additional effect is purely idiosyncratic and it induces differences in the extent to which price

dividend ratios can predict future returns across industries. To isolate this cash flow component

consider, for example, Model A where the variation in the stochastic discount factor was shut

down. Then, by simple manipulation of formula (29) we find

µA,i
R,t ≈ σcσ

′
c + (φ+ κ) θiD

i
t

P i
t

,

where we have imposed that, approximately,
∑n

j=1 s
j
tθ

j ≈ 0 (see condition (5)). The level of θi

determines the level of predictability in the absence of discount factor effects. In such a model,

expected returns change as the covariance between consumption and returns is regulated by

the shares, si
t, and hence by the dividend price ratio. When there are discount factor effects,

the interaction between the cash flows and the discount factor becomes hard to disentangle

and a high θi may even result in less predictability. For example, suppose that a stock’s share

is positively correlated with consumption. Then si
t will, on average, decrease with St. The

effect on the price-dividend ratio is now ambiguous. On the one hand, a lower St results

in a lower price dividend ratio as the investor has become more risk averse. On the other,

the lower si
t will tend to push the price dividend ratio up, as dividend growth above that of

consumption is expected. Notice though that both effects unambiguously contribute to the

increase in expected returns.

Another factor that affects the extent to which industry returns are predictable is the

volatility of cash flows, determined by vivi′ . Clearly, other things equal, the higher this

volatility the lower the predictability as a larger component of the variation in returns is driven

by shocks to cash flows, a point to which we return in the next section. Finally, assets differ in

one additional dimension and it is in their long run contribution to the overall consumption,

si. Provided that si
t is close to its long run mean, the higher the value of si the closer the asset

is to being effectively the market portfolio and hence the higher the predictability of returns
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of asset i.18

The next section uses standard price-dividend ratio decompositions applied to industry

portfolios in order to shed some additional light on the predictability results.

VI.A.3 The variance decomposition: news to cash flows and news to expected returns

Variation in price dividend ratios of individual securities is driven by both changes in

the forecasts of dividend growth and changes in the forecasts of future discount rates, the two

building blocks of our model. To asses how much of the variance of the price dividend ratio of

individual industry portfolios is driven by each component in the data we can use the variance

decomposition of the (log) price dividend ratio proposed by Cochrane (1992),

var
(
log
(
P i

t /D
i
t

))
≈

∞∑
j=1

ρjcov
(
log
(
P i

t /D
i
t

)
,∆ log

(
Di

t+j

))
−

∞∑
j=1

ρjcov
(
log
(
P i

t /D
i
t

)
, log

(
Ri

t+j

))
,

and then compare these sample estimates with their counterparts in the simulations. As argued

in the previous section this exercise will throw light on the cross sectional differences in the

predictability regressions.

Table VI contains the results of this variance decomposition. Recall that the decompo-

sition is not an orthogonal one so quantities higher than 100% and less than 0% are possible.

Panel A contains the results at the aggregate level and it shows that the model matches the

data to a good degree: Essentially, most of the variation in the price-dividend ratio in the

model (at the aggregate level) stems from changes in returns, that is, changes in the stochastic

discount factor.

Panel B contains the same variance decomposition across industries which are more

conveniently presented in Figure 6. The return component makes for a large part of the

variance of price dividend ratios for many of the industries in our sample. In particular, it

does so strongly for Paper, Chemical, Petroleum, Construction, Machinery, Electrical Eq. and

Utilities. Mining, Food and Retail on the other hand seems to be equally driven by each
18To confirm these intuitions, in results not reported here, we regressed the predictability obtained in the

model, as measured by the R2 of the two and five year predictability regressions for each industry, on the

three parameters that completely determine the cash flow process for each asset, vivi′ , θi, and si. The three

parameters came strongly significant with the expected signs, and explained more than 85% of the variation in

the cross-sectional differences in average R2 across simulations.
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component. Finally, the variance of the price dividend ratio of Prim. Metals and Railroads is

dominated by its cash flow component.

The model also produces considerable cross-sectional differences in the variance decom-

position across industries, and for most industries it replicates the empirical counterpart to a

good extent. For example, as in the data, the model also predicts that the price-dividend ratios

of Chemicals, Petroleum and Utilities should be mainly driven by shocks to returns, the ones

of Prim. Metals and Railroads should be mainly driven by shocks to cash flows, and the one

of Food should be equally driven by the two sources. For other industries, however, the model

seems to slightly underpredict the fraction of the variance of the price dividend ratio that is

driven by the return component and slightly overpredict the fraction that is driven by cash

flow shocks. Thus, for a number of industries, such as Machinery, Electrical Eq. and Paper,

the model predicts a more equal weight across the two sources of variation in price-dividend

ratios than the data imply. Finally, for some industries, such as Construction, Apparel and

Paper, the model’s predictions are not reflected in the data estimates. Yet, the model succedes

in producing large cross-sectional differences in the sensitivity of the price-dividend ratio to

cash flow shocks and return shocks.

The intuition for this result can be grasped by looking at equation (20). After simple

manipulations, we can write the price-dividend ratio as P i
t /D

i
t ≈ ψi

0 (St) + ψi
1 (St)

(
si/si

t

)
, for

two functions ψi
0 (St) and ψi

1 (St) . For typical parameter values we have ∂ψi
1 (S) /∂S > 0.

Consider now an asset i characterized by a relatively low volatility of si
t. In this case, most of

the variation of the price-dividend ratio stems from changes in St, which is related to aggregate

returns. Thus, a variance decomposition would reveal a large return component. Conversely,

an asset characterized by a large volatility of the share si
t would have a price-dividend ratio

greatly affected by the movement in si
t. Thus, the variation of price-dividend ratios would be

mainly affected by cash flow shocks.19 This intuition nicely links our empirical results with

those of Vuolteenaho (2002). Indeed, he finds that firm-level returns are mainly driven by cash

flow shocks, and that these cash flow news are essentially idiosyncratic. Within the context of

our model, we can see that at the very disaggregate level, the (idiosyncratic) volatility of shares
19As for the predictability case, we verified this intuition by regressing cross-sectionally the average (across-

simulations) cash-flow component and return component of the variance of the P/D ratios on the various

characteristics of the cash-flow process. The volatility vivi′ is by far the most important driving force of the

cross-sectional differences, with the signs as explained in the text.
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would be very high, generating most of the variance of the price-dividend ratio. In the case of

industries, instead, aggregation reduces the (idiosyncratic) volatility of shares, increasing then

the role of returns in the variance decomposition. In the limit, at the aggregate market level,

cash flow news have little effect and only returns affect the price-dividend ratio.

VI.B The historical performance of the US stock market

Inspection of equation (20), together with equations (14) and (18), highlights the obvious:

The model makes point by point predictions of what the price should have been given the

realized fundamentals. If there is any discrepancy between the historical price and the one

implied by the model then this can be immediately rejected. Still, does our model reproduce

the main patterns observed in the historical experience of the US stock market? To answer

this question, we feed the pricing formulas in Section III.B.3 the observed consumption and

cash flow shocks and see whether the resulting prices match the observed patterns.

VI.B.1 Aggregate quantities

Figure 7 Panel A plots the surplus consumption ratio implied by the model once we feed

to the estimated model the observed consumption shocks. Panel A also includes the surplus

consumption ratio of Campbell and Cochrane (1999) for comparison’s sake. The two series

track each other tightly. The surplus consumption ratio captures the main patterns of the US

business cycle: The depression of the 30s (with St hitting almost zero), the 1960’s expansion,

the recession in the mid 70’s and early 80’s, the recovery afterwards, the mild recession of the

early 90’s and the strong expansion that followed it. It also shows the start of the new recession

at the end of 2001. Panel B includes the consumption series together with the habit level, Xt,

implied by our surplus consumption series. As intuition suggests, the habit level moves slowly

and tracks consumption.

Panel C of Figure 7 reports the plot of the time-series of market portfolio log price-

dividend ratio in the data and the one generated by the model. As found by Campbell and

Cochrane (1999), the model offers a remarkable account of the realized history of the log price

dividend ratio of the market portfolio. Still there are two interesting periods in which the

model generated price dividend ratio does not track the realized one. First, the model is not

able to replicate the extraordinary performance of the market in the second half of the 90s,

a usual shortcoming. There are two possible explanations for this. First, the percentage of

firms that switched from dividend distribution to share repurchases as a mean of distributing
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earnings increased considerably in the 90s (see Fama and French (2002)). If this is the case,

cash distributions would be seriously underestimated during this period and as a consequence

the price dividend ratio would appear higher than its actual level. An alternative explanation,

one favoured by many, is that the nineties witnessed a phenomenal speculative bubble, a

possibility our model does not allow for. Further research is then needed to account for the

performance of the market in the 90s.

Second, the model also predicts price dividend ratios that are lower than the realized

ones during most of the 30s. The reason is simple and it stems from the high volatility of

consumption growth during the 30s, which led the surplus-consumption ratio St to hit almost

zero. From Panel A of Figure 3, the stationary distribution of St shows that this is an almost

zero-probability event and it stems from a slight mispecification of the model. Indeed, in

order to account for this behavior, we should assume that consumption growth has a time-

varying volatility, which we have ruled out in our assumption that consumption growth is i.i.d.

Although the model implies an unrealistically low price dividend ratio during this period, we

prefer to keep the model simple rather than construct an even more complicated model to

account for the 30s.

VI.B.2 The price-consumption ratios across industries

Figures 8 and 9 plot the fitted and the actual price-consumption ratios for the 20 indus-

tries in our sample. The reason for concentrating on the price consumption ratios, rather than

on price dividend ratios, is that we want to asses whether the model can account for the ob-

served levels of prices, and it is best to normalize them by a common factor like consumption in

order to make them stationary. Dividing each industry’s price by its corresponding dividend

obscures the comparison as dividend measurement error may be different across industries.

Still, price dividend ratio plots are very similar to the price consumption ratio ones.

As we can see, the model implied price consumption ratios track well their empirical

counterparts. For instance, the fitted time series account for the secular decline of Railroads

and Primary Metals and the steady rise of Financials. It also explains the main fluctuations

in Chemical, Fab. Metals, Food, Paper, Machinery, Electric Eq., Retail, and Others. The

model seems to be less successful in explaining the time series of Construction, Utilities or

Transportation Equipment.

Notice also that, interestingly enough, price consumption ratios for some industries saw
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remarkable levels during the late 60s and early 70s. For instance, Manufacturing, Apparel,

and Other Transportation saw levels of price consumption ratios during that period that have

no equivalent at any other point in time. Our model captures the rise in the price consump-

tion ratio of Apparel and partly the one of Other Transportation, but it misses the one in

Manufacturing.20

To better understand the differences between all these time series it is illustrative to

concentrate on two industries for which the model seems to perform well: Paper and Railroads.

Panels A and B in Figure 10 reproduce the price consumption ratios, both fitted and realized,

for these two industries. Panels C and D report the two shares that correspond to these two

industries. First notice the long decline that Railroads has experienced during our sample

period. The decline in its price consumption ratio mirrors the decreasing importance of this

sector in the overall market. The price consumption ratio held relatively well during the

1960s, precisely when the share decline temporarily halted and even rose slightly. Importantly,

the time series pattern of the price consumption ratio of Railroads seems dominated by its

idiosyncratic component: The precipitous drop of its share over consumption. Business cycle

components seem less important and the price consumption ratio does not react to either the

mid seventies or early eighties recession.

Paper shows a rather different pattern. First, the share of Paper experienced an impor-

tant increase in the decade following WWII and remained fairly constant after that, perhaps

showing early hints of a recent decline. The price consumption ratio mirrored these develop-

ments but with a certain lag, due to the fact that the economy experienced a downturn after

the conflict that undid the positive effect of the share increase in the price. Indeed notice that

St declined considerably after 1945-6. It is then only in the fifties that the price consumption

ratio of Paper “catches up” with its share’s increase.21 The trend continued during the next
20The sudden rise of the price consumption ratio during those years seems largely to be restricted to these

three industries, whereas the rise in the 90s happens in ten of the twenty industries. Of these three industries

only Apparel and Other Transport. saw a slight rise and then decline in their shares (these plots are not

reported,) which can account for the qualitatively aspect of the pattern but certainly not enough quantitatively.

The share of Manufacturing saw a steady increase throughout that period.
21At this point it is illustrative to compare our model with the traditional Gordon model. The latter implies

a price consumption ratio that is proportional to si
t. For this reason the Gordon model would have the price

consumption ratio of Paper to immediately react to the increase in the share. In contrast our model manages

to reproduce the lag as it allows for the countervailing effect of the decrease in the surplus consumption ratio.
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two decades, when the surplus consumption ratio was on the rise, but it was cut when the

recession in the mid seventies kicked in and that continued all the way to early eighties, when

the worst recession in the post-war period set in. Paper recuperated after that and benefited

from the increase in the surplus consumption ratio that now undoes the effect of a declining

share on the price consumption ratio.

In summary, as presented in section III, prices are driven by both idiosyncratic compo-

nents and aggregate ones, and their importance is rather different depending on the particular

industry. The model and its calibration are able to capture a crucial component in the diverse

historical experiences present in the cross section.

VI.B.3 The time series of the cross sectional standard deviation of asset prices

Figure 11 plots the cross-sectional dispersion of price-consumption ratios (Panel A) and

price-dividend ratios (Panel B), and their empirical counterpart.22 The plots have a number

of implications: First, Panel A shows that the cross-sectional dispersion of asset prices is, to a

first degree, generated by dividend levels. This follows from the fact that basic manipulations

of the formulas found in Section III.B.3 show that the price consumption ratio of an individual

industry is linear in the share, si
t, although with stochastic coefficients. Second, a comparison

of the fitted plot with the dynamics of the surplus St in the top panel of Figure 7 reveals that

the standard deviation of price consumption ratios drops when St does as well.

Panel B shows the cross-sectional standard deviation of price-dividend ratios. Also in this

case the model produces the correct level of dispersion and the correct dynamics: Interestingly,

while the cross-sectional dispersion of price dividend ratios increased slowly in the 50s and 60s

to drop in the 70s, our model produced a much quicker increase in dispersion in the middle of

the 50s, and steady decline until the end of 70s, where it matched again the level of the cross-

sectional dispersion of price dividend ratios in the data. Then, both series increase, although

the 90s saw the dispersion in the data surge considerably.

Table VII shows the correlation between the time-series of the market price dividend ratio

and the time-series of the cross-sectional dispersions of the price dividend ratios of individual

assets both in the data and the simulations. The model successfully accounts for a large

Of course, the Gordon model can be easily rejected as it does not allow for time varying price dividend ratios.
22Differently from Figure 1, we plot the cross-sectional standard deviation of the level of price-consumption

ratios and price-dividend ratios, as we are interested in seeing the fit against their empirical counterparts, and

not the correlation with the market price consumption ratio.
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percentage of the correlation though not all. Specifically, while the model produces an average

correlation (across simulations) between the market log price dividend ratio and the cross-

sectional dispersion of individual price dividend ratios of about 23%, the data show a higher

number, about 75%. In levels, the respective numbers are 44% and 89%. Recall that we

showed that for a given set of shares si
t’s, the cross-sectional dispersion of price dividend ratios

increases as St increases. However, the time variation in si
t, possibly also correlated with the

market, is an additional source of variation in price dividend ratios. This source of variation in

the cross section seems as important in the model as the fluctuations in the stochastic discount

factor and hence the failure to capture all the correlation between the price dividend ratio of

the market portfolio and the cross sectional standard deviation.

When we concentrate on the first differences the results improve further and the model

seems to account for an even larger percentage of the correlation between the first difference

of the price dividend ratio of the market portfolio and the first difference of the cross sectional

standard deviation of individual price dividend ratios. For instance, these time series have

a .75 correlation coefficient in the data whereas the simulations of the model produce a .52

correlation coefficient. The numbers when the series are in logs are .40 and .27 respectively.

VII. DISCUSSION

VII.A The cash flow model

This paper models cash flows in order to obtain formulas for prices. Unlike previous

models though, ours is a full general equilibrium model where restrictions are imposed in the

cash flow processes to make them consistent with the observed US consumption process. A

natural question then is whether ours is a “good” model of cash flows. The answer to this

question requires a thorough empirical analysis that goes beyond the objective of this paper

and certainly the cash flow model could be relaxed along several dimensions. Still we argue

that any sensible model of cash flows will conform to the main characteristics of the model

proposed in equation (4).

As Bossaerts and Green (1990) recognized, general equilibrium imposes tight restrictions

in the set of processes that generate the dividends, otherwise one may posit a process for a

particular source of income that may end up accounting for the whole consumption process

or even more than it. This would naturally induce rather counterfactual predictions for prices
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and returns. The share process (4) naturally defines each source as a fraction of the overall

consumption in a way that prevents any such source from completely dominating consumption.

Some of these sources may appear to have trends in sample as they converge to their natural

long run level, si.

If the share technology is a sensible modeling device, one is left to argue the specific

functional form of both the drift and diffusion parts. As for the volatility, what is critical is

that the exposure of the share to additional shocks “dies” in the boundary in order to keep it

confined in the unit simplex. The behavior of the volatility when the share is far from these

boundaries may be important to address some empirical regularities and here we accepted this

particular functional form for its convenient tractability.

As for the drift component, a perhaps strong assumption is that we implicitly assume

that the investors know the long run contribution of any sector to the overall consumption. It

can be shown that the linearity of the model can be used to extend the results here reported

to the case where agents use cash flow shocks to learn about si. This extension, that we intend

to explore in future research, has important implications for the pricing equations. To sketch

briefly the intuition behind these results, it is useful to concentrate in the case of Model A

in Section II.B.1 . As we saw there, a positive dividend shock that places the share si
t above

its long run contribution necessarily results in a decrease in the price dividend ratio. That is,

when dividends go up, prices go up as well but by less than the dividend amount (see equation

(15)). The reason is that, a positive dividend shock signals weak dividend growth as the share

will mean revert to its long run level. Instead, if agents update on si, a positive dividend shock

yields an upward revision on this estimate, which can, in turn, result in an increase in the

price dividend ratio. Essentially learning about si induces additional sources of variation in

the prices and returns of individual securities.

VII.B Using price data to learn about the parameters of the cash flow model

So far we have not used of information other than cash flow data in order to avoid

contaminating our assessment of whether the model can account for the empirical regularities

of the cross section. Of course, if the purpose is to estimate the parameters of the cash flow

model, use of asset pricing data can lead to better estimates of these fundamental parameters.

In particular, estimation of the long run shares si can be much improved by the inclusion

of financial data for prices contain market expectations about the long run contribution of a
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particular sector to the overall level of consumption.23

Although a full fledged estimation of the model using prices and returns deserves a thor-

ough examination, we can compute the level of si that makes the average price-consumption

ratio in the data equal to the average fitted price-consumption ratio. We keep all the other

parameters, including the shares’ speed of mean reversion κ, as in Table II. The result of this

simple exercise is contained in Figure 12. The figure shows that in order to match the aver-

age price-consumption ratio, the average long-term share of Petroleum, Construction, Primary

Metals, Transportation Eq. and Utilities should be lower than the average historical level,

while the ones of Machinery, Electrical Eq., Manufacturing, Dept. Stores and Retail should be

higher. In other words, since we can interpret the average si as the expected long-term shares

from investors’ perspective, the first set of industries are expected to decline in relative size

compared to their historical averages, while the second set of industry is expected to increase

in relative size.

VII.C The nature of the approximation for prices

As already mentioned, we can only offer approximate formulas for the general case.

To understand the nature of the approximation recall that, in order to obtain a closed form

solution for prices, the integral in expression (10) needs to be solved. The heart of the technical

problem is then the characterization of the process qi
t = si

tYt. By Ito’s Lemma, the drift of the

stochastic process for qi
t includes the term

(Yt − λ) si
t

n∑
j=1

sj
tθ

j ,

which is quadratic in the shares. However, since we normalized the θi’s to have a null un-

conditional value,
∑n

j=1 s
jθj = 0, we can approximate the process for qi

t with the one for a

stochastic variable q̂i
t defined as

dq̂i
t = dqi

t − (Yt − λ) si
t

n∑
j=1

sj
tθ

jdt.

For Model A and B the approximation is exact, as in the former case Yt = λ = 1 and in the
23Clearly, if we use cross sectional price information to estimate si, the fitted price consumption series would

be centered around the realized one, and this logically improves the appearance of the plots in Figures 8 and 9.

In order to save in space we omit these plots.
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latter case θi = 0 for all i = 1, ..., n. For the general case, it turns out that

(Yt − λ) si
t

n∑
j=1

sj
tθ

jdt

is extremely small, leading to an approximation error of less than 0.1% in prices. Indeed, one

can expect the approximation error to be relatively small so long the variance of
∑n

j=1 s
j
tθ

j

is small. We conjecture that this is always the case when n is sufficiently large. Certainly

the volatility of this quantity in our data set, with 20 industry portfolios, is puny and has no

pricing impact.

VII.D Comparison with Campbell and Cochrane (1999)

Our model differs from that of Campbell and Cochrane (1999) in modeling Yt rather

than the surplus consumption ratio. A simple application of Ito’s Lemma though allows us to

compute the differential equation governing the law of motion of st = log (St) = − log (Yt):

dst =
(
k
(
1− est−s

)
+

1
2
λ̂ (st)

2

)
dt+ λ̂ (st)

(
dCt

Ct
− µc

)
(34)

where

λ̂ (st) = α (1− λest)σc,1.

Expression (34) should be compared with equation (3) in Campbell and Cochrane (1999).

Besides the Ito term in the drift rate, the model is qualitatively very similar to Campbell and

Cochrane (1999): st follows a mean reverting process with a decreasing volatility in st, as

regulated by a function λ̂ (st). Differences arise simply to the different functional forms of the

drift and volatility.

Campbell and Cochrane (1999) choose the functional form of the sensitivity function,

the sensitivity of st with respect to shocks to consumption growth, to guarantee that the

risk free rate remains constant. It is useful then to compare our set up to that of Campbell

and Cochrane (1999) in light of equation (25). As it is well known, a drawback of habit

persistence models is that the dependence of the risk free rate on St may result in rates that

are too volatile when compared with data. It is for this reason that Campbell and Cochrane

(1999) judiciously choose functional forms for the dynamics of the surplus consumption ratio

that guarantee stable interest rates. Equation (25) shows the parametric restrictions that are

needed in order to yield a constant risk free rate:

α =
k

λσcσ′cS
, (35)
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which is, essentially, the modeling choice made by Campbell and Cochrane (1999). We have

not imposed condition (35).24 There were two reasons to do this. First, we wanted our model

to deliver implications for both the risk free rate and the stock market to provide as complete a

picture as possible of financial markets. The second reason is linked to the lower risk-aversion

coefficient that we assume compared to Campbell and Cochrane (1999). If we were to impose

(35), stabilizing the interest rate would result in a very highly volatile habit level, which is

difficult to reconcile with its intuition of being a smoothed average of past consumption levels.

VIII. CONCLUSIONS

If one is interested in prices modeling cash flows is unavoidable. In this paper we advance

a model of cash flows that we combine with a stochastic discount factor to solve for prices within

a general equilibrium consumption based asset pricing model. Prices in our model are given

by a term that is linear in what dividends should be, given the current consumption level, a

stochastic trend, and a second term that is the deviation of the current level of dividends with

respect to their stochastic trend. The coefficient in each of these two terms depend on the

variable that summarizes the aggregate state of the economy, the surplus consumption ratio.

This representation sheds light on several issues.

Shocks to cash flows have very different effects on prices depending on where they occur

over the business cycle. In particular, when cash flow betas are identical across assets, cash flow

shocks have a large impact on prices during business cycle peaks and a smaller effect in troughs.

Conversely, the business cycle drives the cross section of price dividend ratios in predictable

ways. Once again, if assets have identical cash flow betas, the dispersion of individual price

dividend ratios increases over business cycle peaks. This result survives when we allow for a

general covariance structure between dividend growth across different assets and consumption

growth, as model simulations show. This matches the empirical regularity uncovered in this

paper, namely, that the cross sectional standard deviation of price dividend ratio tracks the

level of the price dividend ratio of the market portfolio.
24Neither do Campbell and Cochrane (1999) in the working paper version of their paper. See also their

discussion in pages 214-216 of the published version. Notice also that the source of variation in the risk free

rate is different from the one recently explored by Wachter (2001), where the real rate changes due to changes

in the drift rate of consumption. In our paper, as in Campbell and Cochrane (1999), consumption growth is an

i.i.d. process.
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The model matched the cross sectional dispersion in the variance decomposition across

industries as well as the observed history of prices across our set of industry portfolios. In par-

ticular, the model links secular trends in prices to the lower share that these assets contribute

to overall consumption but shows that business cycle considerations need to be included in

order to fully account for the history of price levels.25

There is an important aspect of the ideas advanced in this paper that we intend to tackle

in future research. Our set up is one that allows for a full specification of the conditional

moments of financial variables, whether price dividend ratios or returns, and, consequently,

we can identify and study these conditional moments through the lenses of the model. To

motivate this exercise, it is useful to return to Figure 2. In addition to the level of prices, the

main motivation to include it early in the paper, the plot shows a rather intriguing difference

between Paper and Railroads. The time series of these two industries are almost the mirror

image of each other. Railroads tracks the price consumption ratio of the market portfolio

until 1960 when they uncouple and move in opposite direction. Up to 1960 then Railroads

seems driven mostly by a common aggregate factor whereas afterwards it comoves less with

the market, to the point where it does not even react significantly to the correction in the mid

1970s. Paper is exactly the opposite. It seems to be largely disconnected of the aggregate price

consumption ratio in the early part of the sample and it is only after 1960 that it shows the

same business cycle patterns that characterize the market, though Paper did not experience

the sudden and extraordinary rise of aggregate prices in the second half of the 90s. Indeed,

the variance decomposition looks rather different across industries when the sample is split

evenly. In the 1927-1962 sample, the variance of the price dividend ratio for Railroads is only

driven by shocks to expected returns whereas in the 1963-2001 sample is the exact opposite.

For Paper shocks to expected returns is a much large component of the variance of the price

dividend ratio throughout.

It seems then that the weight of each component on the variance of the price dividend

ratio is changing over time. We believe that, in general, looking at these and other conditional

moments can give additional insights into asset prices and, perhaps more importantly, into the

elusive connection between finance and macroeconomics.

25Clearly, though our model is supposed to explain prices at any frequency, it cannot reproduce the behavior of

prices at very high frequencies, and ingredients others than the ones brought to bear here need to be introduced

to account for them.
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APPENDIX

(A) The stationary density of Yt

The stationary density for the process Y in equation (7) depends only on three param-

eters, Y , λ and b = k/
(
α2σcσ

′
c

)
and it is given by

ψ (Y ) =
e
−2b Y−λ

(Y−λ) × (Y − λ)−2b−2∫∞
λ e

−2b Y−λ
(y−λ) × (y − λ)−2b−2 dy

. (36)

We use equation (36) to compute the unconditional moments of aggregate variables. We

match these unconditional moments to their sample counterparts in the calibration described

in Section V. Specifically, we choose the parameters Y , λ, k and α to match the following

moments:26

E
[
dRTW

t

]
=

∫ ∞

λ
µTW (Y )ψ (Y ) dY = Data

E
[
rf (Y )

]
=

∫ ∞

λ
r (Y )ψ (Y ) dY = Data

E
[
drf (Y )2

]
=

∫ ∞

λ
σ2

r (Y )ψ (Y ) dY = Data

E

[
P

C
(Y )
]

=
∫ ∞

λ

P

C
(Y )ψ (Y ) dY = Data

E
[
dRTW

t

]√
E
[(
dRTW

t

)2] =

∫∞
λ µTW (Y )ψ (Y ) dY√∫∞

λ ||σTW (Y ) ||2ψ (Y ) dY
= Data.

(B) The Share Process

We estimate the parameters in two steps: First, we estimate the parameters si and κ by

applying standard GMM arguments to the discretized Euler equation

si
t+∆ = siκ+ (1− κ) si

t + εit+∆

where εit+∆ such that

E
[
εit+∆|εt, εt−∆, ..., st, st−∆

]
= 0

E
[(
εit+∆

)2 |εt, εt−∆, ..., st, st−∆

]
= σi (st)σi (st)

′

26The last equation matches the Sharpe ratio, computed in the data as the ratio of mean stock returns over its

standard deviation. Although the model has a closed form expression for the Sharpe ratio (see equation (28)),

matching its unconditional average to its sample counterpart would not take into account a Jensens’ inequality

term. The appropriate procedure is to compute the model-implied ratio of the unconditional mean return to

the unconditional mean volatility, and match that to its sample counterpart.
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for some function σi (st). Defining et+∆ = st+∆ − sk − (1− k) st, we impose the moment

conditions

E [et+∆] = 0 and E [et+∆ � st] = 0

Since the model effectively predicts a stochastic volatility for the errors et+∆, we estimate the

parameters by efficient GMM with Newey-West spectral density matrix

ST = Γ0 +
q∑

v=1

(1− (v/ (q + 1)))
(
Γv + Γ′

v

)
where Γv = E [utut−v] is the v-lag autocovariance matrix of (de-meaned) errors ut. The

number of lags qwas chosen to equal four (quarters).

Next, we turn to estimate the vectors vi’s. Notice that the diffusion part of the process

log(si
t) is given by σi

log = vi −
∑n

j=1 s
j
tv

j . We rely on an approximation of this volatility

function. Monte Carlo simulations show that the methodology is accurate. If we assume

that the
∑n

j=1 s
j
tv

j component of σi
log does not move by a good deal over the sample period,

then we can assume it constant and approximately equal to
∑n

j=1 s
jvj . Hence the diffusion

process of the log-share would be σi
log ≈ vi −

∑n
j=1 vjsj . In addition, because shares sum

up to one, without loss of generality we can assume vn = 0. Hence, define the vector yt =[
∆ log (Ct) ,∆ log

(
s1t
)
, ...,∆ log

(
sn−1
t

)]′ and compute
σc

σ1
log
...

σn−1
log

 = Chol

(
1
T

T∑
t=1

yty′t

)

Hence, we can impose

σlog ≡


σ1

log
...

σn−1
log

 =


v1

...

vn−1

−
n−1∑
j=1

vjsj

= v(−n)−1n−1s(−n)′v

=
(
In−1 − 1n−1s(−n)′

)
v(−n)

which finally implies

v(−n)=
(
I− 1n−1s(−n)′

)−1
σ

(−n)
log
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We use this formula to calibrate the model to the share process.

Once we estimate the vi’s, we can renormalize them in order to make
∑n

i=1 s
ivi = 0 and

so impose (5).

(C) Derivation of the pricing formulas.

In this appendix we only provide the explicit steps about the approximate formula (20).

Special cases, and exact, of the following derivation are the pricing functions in Proposition 1

- 3, which can be derived directly following the steps in the text.

Define for convenience vY = −ασc so that the Habit process can be rewritten as

dYt = k
(
Y − Yt

)
dt+ (Yt − λ)vY dBt (37)

Given the form of the utility function, as before, we obtain immediately the price of the

stock:

P i
t = (Ct −Xt)Et

[∫ ∞

0
e−φτqi

t+τdτ

]
(38)

where qi
t = si

tYt. Notice first that since 0 < qi
t < Yt for all i, if Et

[∫∞
0 e−φτYt+τdτ

]
<

∞ we can invoke Fubini’s theorem and invert the order of intergration, to obtain P i
t =

(Ct −Xt)
∫∞
0 e−φτEt

[
qi
t+τ

]
dτ . We assume that the parametric restrictions on φ, k and λ en-

sure Et

[∫∞
0 e−φτYt+τdτ

]
< ∞ (see Karatzas and Shreve (1991, page360-361) for conditions).

Using Ito’s lemma, we can write

dqi
t =

κ (Yts
i − qi

t

)
+ k

(
si
tY − qi

t

)
− α (Yt − λ) si

tθ
i + (Yt − λ) si

t

n∑
j=1

sj
tθ

j

 dt

+

qi
t

vi −
n∑

j=1

sj
tvj

+ si
t (Yt − λ)vY

 dBt

We now use (5) and approximate the term
∑n

j=1 s
j
tθj by E

[∑n
j=1 s

j
tθj

]
=
∑n

j=1 s
jθj = 0.

Given n large, if the cross-sectional dispersion of θi’s is not too large, the time-variation of∑n
j=1 s

j
tθj is actually small. Our simulations show that the approximate price is within 0.1%

from its actual price. Thus, pricing will be based on the approximate process:

dqi
t =

{
κsiYt +

(
kY + αλθi

)
si
t − (κ+ k + αθi) qi

t

}
dt+

qi
t

vi −
n∑

j=1

sj
tvj

+ si
t (Yt − λ)vY

 dBt
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Define Zi
t =

(
Yt, q

i
t, s

i
t

)′
. This evolves according to the system dZt = A0+A1Zt+Σ (Yt, st) dBt

where A0 =
(
kY , 0, κsi

)′,
A1 =


−k 0 0

κsi − (κ+ k + αθi) kY + λαθi

0 0 −κ


and Σ (Yt, st) is a 3× n appropriate matrix. Since it is linear, and since A1 admits 3 distinct

real eigenvalues, we have

Et [Zt+τ ] = Ψ (τ)Zt +
∫ τ

t
Ψ (τ − s)A0ds

with Ψ (τ) = U exp (Λ · τ)U−1, where Λ is the diagonal matrix with eigenvalues of Ai
1 and U

is the matrix of associated eigenvectors. Since direct computation show that

Λ =


−κ 0 0

0 −k 0

0 0 − (κ+ k + αθi)

 and U =


0 κ+αθi

κsi 0
kY +λαθi

k+αθi
1 1

1 0 0


we have the solution

Ψ (τ) =


e−kτ 0 0

κ si
κ+αθi

(
e−kτ − e−(k+κ+αθi)τ

)
e−(k+κ+αθi)τ (kY +λαθi)

k+αθi

(
e−κτ−e−(k+κ+αθi)τ

)
0 0 e−κτ


Therefore, in order to obtain the price, we need to compute

Et

[
qi
t+τ

]
= e2Et [Zt+τ ] = e2Ψ (τ)Zt +

∫ τ

0
e2Ψ (τ − s)A0ds

where e2 = (0, 1, 0). First, we have

e2Ψ (τ)Zt =
κ si

κ+ αθi

(
e−kτ − e−(k+κ+αθi)τ

)
Yt + e−(k+κ+αθi)τqi

t

+

(
kY + λαθi

)
k + αθi

(
e−κτ−e−(k+κ+αθi)τ

)
si
t

Similarly

e2Ψ (τ − s)A0 =
κ si

κ+ αθi

(
e−k(τ−s) − e−(k+κ+αθi)(τ−s)

)
kY

+

(
kY + λαθi

)
k + αθi

(
e−κ(τ−s)−e−(k+κ+αθi)(τ−s)

)
κsi
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Since ∫ τ

0
e−a(τ−s)ds = e−aτ

∫ τ

0
easds = e−aτ e

aτ − 1
a

=
1− e−aτ

a

we obtain∫ τ

0
e2Ψ (τ − s)A0ds =

κ sikY

κ+ αθi

(
1− e−kτ

k
− 1− e−(k+κ+αθi)τ

(k + κ+ αθi)

)

+

(
kY + λαθi

)
κsi

k + αθi

(
1− e−κτ

κ
− 1− e−(k+κ+αθi)τ

(k + κ+ αθi)

)
We then have (approximately)

Et

[∫ ∞

t
e−φ(τ−t)qi

τdτ

]
=
∫ ∞

0
e−φτe2Ψ (τ)Ztdτ +

∫ ∞

0
e−φτ

∫ τ

0
e2Ψ (τ − s)A0dsdτ

Recalling that for any constant a > 0,
∫∞
0 e−aτdτ =

[
e−aτ

−a

]τ=∞

τ=0
= 1

a , using the results above,

we obtain (after tedious algebra):∫ ∞

0
e−φτ

∫ τ

0
e2Ψ (τ − s)A0dsdτ =

κ sikY

φ (φ+ k) (φ+ k + κ+ αθi)
+

(
kY + λαθi

)
κsi

φ (φ+ κ) (φ+ k + κ+ αθi)

and, similarly∫ ∞

0
e−φτe2Ψ (τ)Ztdτ =

κ si

(φ+ k) (φ+ k + κ+ αθi)
Yt +

1
(φ+ k + κ+ αθi)

qi
t

+

(
kY + λαθi

)
(φ+ κ) (φ+ k + κ+ αθi)

si
t

Thus,

Et

[∫ ∞

t
e−φ(τ−t)qi

τdτ

]
=

κ si

(φ+ k) (φ+ k + κ+ αθi)
Yt +

1
(φ+ k + κ+ αθi)

qi
t

+

(
kY + λαθi

)
(φ+ κ) (φ+ k + κ+ αθi)

si
t

+
κ sikY

φ (φ+ k) (φ+ k + κ+ αθi)
+

(
kY + λα θi

)
κsi

φ (φ+ κ) (φ+ k + κ+ αθi)

Finally, using (Ct −Xt) = Ct/Yt, we find

P i
t

Ct
=

1
Yt
Et

[∫ ∞

t
e−φ(τ−t)qi

τdτ

]
=

κ si

(φ+ k) (φ+ k + κ+ αθi)
+

1
(φ+ k + κ+ αθi)

si
t +

(
kY + λα θi

)
(φ+ κ) (φ+ k + κ+ αθi)

si
t

Yt

+
κ sikY

φ (φ+ k) (φ+ k + κ+ αθi)
1
Yt

+

(
kY + λαθi

)
κsi

φ (φ+ κ) (φ+ k + κ+ αθi)
1
Yt
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which can be rewritten as

P i
t

Ct
=

κ si

(φ+ k) (φ+ k + κ+ αθi)

(
1 +

kY

φ
St

)
+

1
(φ+ k + κ+ αθi)

(
si
t +

kY + λα θi

φ+ κ
St

(
si
t +

κ

φ
si

))
and then, upon definition of ωi = αθi/ (φ+ k + κ+ αθi) and some more algebric manipula-

tions, as (20). �

Proof of Proposition 4. It is immediate when taking the cross sectional variance in expres-

sion (19) and taking the derivative with respect to St. �

(D) Derivation of the return formulas.

To obtain the approximate return formula, an exact one for propositions 5 and 6, we

define ρi
t = P i

t /Ct which, for notational convenience, is denoted by

ρi
t = ai

0 + ai
1St + ai

2s
i
t + ai

3s
i
tSt

where

ai
0 =

κ si

(φ+ k) (φ+ k + κ+ αθi)
=

κ si

(φ+ k)
ai

2

ai
1 =

κ si

(φ+ k) (φ+ k + κ+ αθi)
Y k

φ
+

1
(φ+ k + κ+ αθi)

(
kY + λαθi

)
(φ+ κ)

κ

φ
si

= ai
2

1
φ

(
κ siY k (φ+ κ) + (φ+ k)

(
kY + λαθi

)
κsi

(φ+ k) (φ+ κ)

)

= ai
2

(
κ siY k (2φ+ k + κ) + (φ+ k)λαθiκs

i

φ (φ+ k) (φ+ κ)

)
ai

2 =
1

(φ+ k + κ+ αθi)

ai
3 =

1
(φ+ k + κ+ αθi)

(
kY + λαθi

)
(φ+ κ)

= ai
2

(
kY + λαθi

)
(φ+ κ)

The definition St = 1/Yt implies

dSt

St
=
(
k

(
1− St

S

)
+ (1− Stλ)2 vY v′Y

)
dt− (1− λSt)vY dBt

Hence

dρi
t = ai

1dSt + ai
2ds

i
t + ai

3

(
Stds

i
t + si

tdSt + dsi
tdSt

)
43



= µi
ρ,tdt−

(
ai

1 + ai
3s

i
t

)
St (1− λSt)vY dBt +

+
(
ai

2 + ai
3St

)
si
t

vi −
n∑

j=1

sj
tv

j

 dBt

where µρ,t contains all the “dt” terms. Therefore

dP i
t = ρi

tdCt + Ctdρ
i
t + dCtdρ

i
t

= P i
tµ

i
P,tdt+ P i

tσ
i
P,tdBt

with

σi
P,t = σc −

(
ai

1 + ai
3s

i
t

)
St (1− λSt)

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

vY +

(
ai

2 + ai
3St

)
si
t

(
vi −

∑n
j=1 s

j
tv

j
)

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

=

(
1 +

(
ai

1 + ai
3s

i
t

)
St (1− λSt)α

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

)
σc +

(
ai

2 + ai
3St

)
si
t

(
vi −

∑n
j=1 s

j
tv

j
)

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

and again µi
P,t contains the “dt” terms. So expected returns are

µi
R,t = −σi

P,tσ
′
m

Since the volatility vector of the pricing kernel is σm = − (1 + α (1− Stλ))σc, we obtain

µi
R,t = (1 + α (1− Stλ))

(
1 +

(
ai

1 + ai
3s

i
t

)
St (1− λSt)α

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

)
σcσ

′
c

+
(1 + α (1− Stλ))

(
ai

2 + ai
3St

)
si
t

(
θi −

∑n
j=1 s

j
tθ

j
)

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

Again, since we chose the θi’s such that approximately
∑n

j=1 s
j
tθ

j = 0, to a first order we have

µi
R,t ≈ (1 + α (1− Stλ))

{(
1 +

(
ai

1 + ai
3s

i
t

)
St (1− λSt)α

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

)
σcσ

′
c +

(
ai

2 + ai
3St

)
si
tθ

i

ai
0 + ai

1St + ai
2s

i
t + ai

3s
i
tSt

}

which implies that functions γ1

(
si
t, St

)
and γ2

(
si
t, St

)
in (33) are given by

γ1

(
si
t, St

)
=

(
ai

1 + ai
3s

i
t

)
ai

0 + ai
1St + ai

2s
i
t + ai

3s
i
tSt

(39)

γ2

(
si
t, St

)
=

1
σcσ′c

(
ai

2 + ai
3St

)
ai

0 + ai
1St + ai

2s
i
t + ai

3s
i
tSt

� (40)
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TABLE I
Railroads and Paper: 1927 - 2001

Panel A: Variance Decomposition

Ret. Comp. t-stat. CF. Comp. t-stat.

Mkt Portfolio -1.426 -7.545 0.1466 0.9102
Railroads -0.3172 -1.1726 0.3875 1.5291
Paper -1.3007 -6.8039 -0.2888 -1.9991

Panel B: Predictability Regressions

� t-stat. R2

Mkt Portfolio -0.0196 -2.4846 12.06 %
Railroads -0.0060 -0.6934 0.78 %
Paper -0.0401 -4.7262 21.06%



Table II
Description and Summary Statistics of Industries

Industry SIC Avg. No. of Min. No. of Avg. Market
Description Stocks Stocks Cap. (%)

1. Mining 10-14 145.2 30 2.656
2. Food 20 98 48 4.943
3. Apparel 22-23 74 18 0.609
4. Paper 26 37.8 5 1.904
5. Chemical 28 150.5 25 10.394
6. Petroleum 29 35.4 23 10.610
7. Construction 32 36.2 5 1.273
8. Prim. Metals 33 75.7 44 4.269
9. Fab. Metals 34 73.6 9 1.415
10. Machinery 35 185.7 25 5.760
11. Electric Eq. 36 198.9 14 6.064
12. Transport Eq. 37 91.4 46 7.646
13. Manufacturing 38-39 153.6 10 2.902
14. Railroads 40 34 8 3.049
15. Other Transport. 41-47 61.4 15 0.875
16. Utilities 49 127.7 21 7.856
17. Dept. Stores 53 42.4 20 3.743
18. Retail 50-52 54-59 254.2 22 2.313
19. Financial 60-69 441.6 15 6.927
20. Other 619.2 57 14.788



TABLE III
Model Parameters

Panel A: Calibrated Parameters

k Y � � � �C �C
0.0506 29.6 9.7922 53.0621 0.0527 0.0173 0.0177

Panel B: Parameters of Share Process

Pt
 No. Name si (%) �i(%) Pt
 No. Name si (%) �i (%)

1 Mining 0.01528 -0.02836 11 Electrical E. 0.41537 0.02086
2 Food 0.24393 -0.01399 12 Transport Eq. 0.68679 0.02456
3 Apparel 0.03653 -0.04168 13 Manufacturing 0.05596 -0.0136
4 Paper 0.12313 -0.02534 14 Railroads 0.00166 0.0126
5 Chemical 0.57202 -0.02536 15 Other Transp. 0.04848 0.02504
6 Petroleum 0.46272 0.00557 16 Utilities 0.55889 0.00415
7 Construction 0.17422 -0.04336 17 Dept. Stores 0.09263 -0.03049
8 Prim. Metals 0.15567 0.00689 18 Retail 0.07681 -0.02541
9 Fab. Metals 0.09226 -0.01187 19 Financial 0.68679 0.03709
10 Machinery 0.37739 0.00626 20 Other 0.53999 -0.02094

Mean Reversion � (%) 1.04336P
si (%) 5.41651

Panel A: Preference parameters calibrated to match the sample average of mar-
ket excess return, the sample average risk free rate, the volatility of the risk free
rate, the average price consumption ratio of the market portfolio, and the average
Sharpe ratio. �C and �C are obtained from NIPA tables. Panel B:

�
�; s1; ::; sn

	
are

estimated using a two stage GMM procedure with NW corrected variance covari-
ance matrix applied to the Euler discretization of the process (4).

�
�1; � � � ; �n

�
are

computed from the vectors vi's from the variance-covariance matrix of the process
for the log sit, where we have assumed that the term

Pn
j=1 s

j
tv

j that appears in the
volatility function in (4) is approximately constant.



TABLE IV
Averages and Standard Deviations

Panel A: Aggregate Variables

��R �R r�f ��r Ave PD� SR�

Model 6.654 20.272 0.716 1.265 31.229 0.334
Data 7.345 22.034 1.015 2.022 29.612 0.333

Panel B: Industries

Avg. Return Avg. P/C Avg P/D Sharpe Ratio
Data Model Data Model Data Model Data Model

1 Mining 6.586 6.656 0.020 0.004 36.586 49.593 0.287 0.268
2 Food 8.226 6.449 0.036 0.076 30.122 34.100 0.417 0.319
3 Apparel 6.365 6.152 0.005 0.013 35.559 45.126 0.201 0.282
4 Paper 8.875 6.377 0.016 0.040 31.063 38.951 0.322 0.297
5 Chemical 9.241 6.110 0.082 0.184 34.036 34.035 0.397 0.329
6 Petroleum 8.984 6.876 0.074 0.136 23.784 31.940 0.436 0.326
7 Construction 7.338 6.878 0.009 0.122 32.0247 82.902 0.242 0.244
8 Prim. Metals 6.862 7.395 0.027 0.054 31.628 46.512 0.217 0.275
9 Fab. Metals 7.063 6.533 0.010 0.028 32.662 34.108 0.287 0.319
10 Machinery 9.137 7.016 0.050 0.113 49.197 34.914 0.326 0.308
11 Electrical E. 9.750 7.341 0.055 0.133 40.953 34.005 0.322 0.308
12 Transport Eq. 9.409 7.499 0.056 0.201 22.191 36.867 0.306 0.297
13 Manufacturing 8.315 6.435 0.026 0.017 48.659 33.487 0.350 0.324
14 Railroads 7.846 7.160 0.017 0.001 27.509 35.017 0.258 0.306
15 Other Transp. 6.170 7.520 0.007 0.013 52.413 36.277 0.224 0.298
16 Utilities 6.309 6.757 0.059 0.167 20.094 30.245 0.276 0.339
17 Dept. Stores 8.679 6.077 0.027 0.028 39.734 36.694 0.333 0.314
18 Retail 8.211 6.509 0.021 0.023 45.045 42.251 0.351 0.285
19 Financial 8.464 7.589 0.070 0.185 28.976 31.489 0.302 0.317
20 Other 6.525 6.218 0.125 0.169 34.311 33.519 0.332 0.330

Panel A: * Statistics that the model was chosen to replicate. Model generated excess
market returns, market returns volatility, average risk free rate and its volatility,
average market price dividend ration, market Sharpe ratio versus the model gen-
erated counterparts. Panel B. Sample average returns, average price consumption
ratios, average price dividend ratios, and average Sharpe ratios versus the simu-
lated averages for the set of 20 industry portfolios. The model is simulated at the
quarterly frequency. All return are annualized.



TABLE V
Predictability

Panel A: Market Portfolio

1 year 2 years 3 years 5 years
� R2 � R2 � R2 � R2

Model -0.3024 0.1085 -0.4976 0.1773 -0.6216 0.2194 -0.7720 0.2670
Data -0.1084 0.0513 -0.1808 0.0656 -0.2460 0.0779 -0.3920 0.1206
Data (1947 - 1994) -0.2692 0.1755 -0.4768 0.2937 -0.6696 0.4209 -1.0480 0.5614

Panel B: Predictability Across Industries

2 year predictability 5 year predictability
|- � |- |- R2 |- |- � |- |- R2 |-

Model Data Model Data Model Data Model Data

1 Mining -0.1240 -0.1512 0.0311 0.0476 -0.1300 -0.3420 0.0506 0.1043
2 Food -0.3616 -0.1064 0.1020 0.0284 -0.5380 -0.2020 0.1414 0.0415
3 Apparel -0.1888 -0.2024 0.0467 0.0826 -0.2520 -0.4700 0.0713 0.1682
4 Paper -0.2664 -0.2760 0.0678 0.0629 -0.3840 -0.8020 0.0961 0.2106
5 Chemical -0.4000 -0.2744 0.1294 0.0839 -0.6080 -0.5480 0.1825 0.1391
6 Petroleum -0.3864 -0.4488 0.1060 0.1441 -0.5820 -0.8960 0.1496 0.2687
7 Construction 0.0016 -0.1248 0.0174 0.0208 0.0640 -0.3480 0.0452 0.0710
8 Prim. Metals -0.1200 -0.0088 0.0308 0.0001 -0.1360 -0.1400 0.0543 0.0142
9 Fab. Metals -0.3640 -0.1736 0.1020 0.0511 -0.5380 -0.3360 0.1416 0.0900
10 Machinery -0.3064 -0.0552 0.0757 0.0063 -0.4420 -0.2560 0.1062 0.0484
11 Electrical E. -0.3000 -0.1616 0.0697 0.0286 -0.4320 -0.4400 0.0976 0.0790
12 Transport Eq. -0.2368 -0.1424 0.0526 0.0178 -0.3180 -0.3100 0.0770 0.0395
13 Manufacturing -0.3832 -0.1072 0.1120 0.0289 -0.5780 -0.3280 0.1580 0.1062
14 Railroads -0.2952 -0.1048 0.0699 0.0150 -0.4260 -0.1200 0.0997 0.0078
15 Other Transp. -0.2472 -0.0584 0.0559 0.0099 -0.3480 -0.1700 0.0821 0.0291
16 Utilities -0.4600 -0.3392 0.1471 0.1146 -0.7060 -0.8380 0.2126 0.3064
17 Dept. Stores -0.3352 -0.1720 0.0981 0.0616 -0.5000 -0.5420 0.1382 0.2155
18 Retail -0.2000 -0.1224 0.0484 0.0583 -0.2660 -0.2540 0.0710 0.1081
19 Financial -0.3536 -0.3536 0.0833 0.1206 -0.5200 -0.8760 0.1186 0.2820
20 Other -0.4072 -0.0912 0.1317 0.0253 -0.6220 -0.1500 0.1867 0.0207

Panel A. Long horizon return regressions. The �rst line corresponds to the long
average statistics of the long horizon regressions in arti�cial data. The second line
corresponds to its sample counterpart for the period 1927-2001. The third line
corresponds to the sample period, 1947-1994. Panel B. Long horizon regressions, 2
and 5 year, across industries both in arti�cial data (Model) and historical data.



TABLE VI
Variance Decomposition

Panel A: Market Portfolio
CF Component Return Component

Model Dividend 0.12442 -0.79127
Model Consumption -0.04039 -0.95855

Data 0.14655 -1.14686

Panel B: Industries

Cash Flow Component Return Component
Model Data Model Data

1 Mining 0.89906 0.4793 -0.02241 -0.48552
2 Food 0.31642 0.41623 -0.5988 -0.59811
3 Apparel 0.73706 0.1969 -0.18315 -0.65425
4 Paper 0.54955 -0.28881 -0.36862 -1.12882
5 Chemical 0.20923 0.10608 -0.70983 -1.13722
6 Petroleum 0.25367 0.41863 -0.65961 -1.12375
7 Construction 1.18856 0.09522 -0.21573 -1.00528
8 Prim. Metals 0.94517 0.78275 -0.00163 -0.2155
9 Fab. Metals 0.32465 0.14027 -0.59182 -0.69194
10 Machinery 0.46244 0.24976 -0.45759 -0.92006
11 Electrical E. 0.4745 0.18175 -0.44513 -1.08215
12 Transport Eq. 0.65107 0.32261 -0.2774 -0.70583
13 Manufacturing 0.25306 0.31889 -0.6605 -0.90606
14 Railroads 0.50692 0.38748 -0.41424 -0.24663
15 Other Transp. 0.60819 -0.03385 -0.31892 -0.64547
16 Utilities 0.05997 -0.11848 -0.85534 -1.10745
17 Dept. Stores 0.37063 0.18955 -0.54601 -0.99149
18 Retail 0.73414 0.22496 -0.18888 -0.3239
19 Financial 0.34233 0.64092 -0.57919 -1.10387
20 Other 0.18109 0.37208 -0.73773 -0.51911

Panel A: Variance decomposition of the log price-dividend ratio (line 1) and of the
log price consumption ratio (line 2) in arti�cial data for the market portfolio. Line
3 is the variance decomposition of the log price dividend ratio in historical data.
Panel B: Variance decomposition of the price-dividend ratio across industries both
in arti�cial data (Model) and historical data.



TABLE VII
Correlation Market P/D Ratio with
Dispersion of Industry P/D Ratios

Panel A: Standard Deviation of Industry P/D's
Log(P/D) P/D

Level First Di�. Level First Di�.

Model 0.2279 0.2761 0.4435 0.5232
Data 0.7517 0.4051 0.8941 0.7539

Panel B: Absolute Deviation of Industry P/D's
Log(P/D) P/D

Level First Di�. Level First Di�.

Model 0.2859 0.3469 0.5436 0.6388
Data 0.8022 0.3844 0.9420 0.7989



Figure 1: Market log PD and Cross-Sectional Dispersion of Industries log PDs
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Panel A: Log price dividend ratio of the market portfolio versus the (rescaled)
cross sectional standard deviation of the log price dividend ratios of the 20 industry
portfolios for the sample period 1927-2001. Panel B: Plots of the same time series
as in Panel A but in �rst di�erences.



Figure 2: Railroads and Paper
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Price consumption ratio of Railroads (Panel A) and Paper (Panel B) for the sample
period of 1927-2001. The dotted line corresponds to a rescaled price consumption
ratio of the market portfolio.

9



Figure 3: Aggregate Quantities
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Panel A: Stationary density function of St. Panel B. Price consumption ratio of
the total wealth portfolio as a function of St. Panel C: Expected returns and
volatility of returns of the total wealth portfolio as a function of St and the risk
free rate. Panel D: Sharpe ratio of the total wealth portfolio as a function of St.
The parameters used are those of Table III.
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Figure 4: Model Performance: Unconditional Moments
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Panel A: Sample average returns versus average returns in simulated data across
industries. Panel B: Sample average price dividend ratios versus average price
dividend ratios in simulated data across industries. Panel C: Sample average Sharpe
ratios versus average Sharpe ratios in simulated data across industries. Numbers
are reported in Table IV.
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Figure 5: Model Performance: Predictability
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Panel A: R2 corresponding to the two year predictability regression across industries
both in historical and simulated data. Panel B: R2 corresponding to the �ve year
predictability regression across industries both in historical and simulated data.
Numbers are reported in Table V.
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Figure 6: Model Performance: Variance Decomposition
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Panel A: Cash 
ow component of the variance decomposition of the log price-
dividend ratio across industries both in historical and simulated data. Panel B:
Return component of the variance decomposition of the log price-dividend ratio
across industries both in historical and simulated data. Numbers are reported in
Table VI.
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Figure 7: Time Series: Surplus, Habit and Market log P/D
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Panel A: Historical surplus consumption ratio given realized consumption shocks
both in the model and the one obtained by Campbell and Cochrane (1999). Panel
B: Nondurable and services consumption per capita and habit level implied by the
model. Panel C: Log market price dividend ratio both in historical data (continuous
line) and model implied when fed the observed consumption and dividend data
(dotted line).
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Figure 8: Time Series P/C ratios: Industry 1 - 10
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See Notes after Figure 9.
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Figure 9: Time Series P/C ratios: Industry 11 - 20
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Price consumption ratio both in historical data (continuous line) versus model
implied when fed the observed consumption and dividend data (dotted line) across
the 20 industries.
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Figure 10: Shares and P/Cs: Railroads and Paper
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Panels A and B: Historical Price consumption ratio of Paper and Railroads (contin-
uous line) versus model implied when fed the observed consumption and dividend
data (dotted line). Panels C and D: Realized dividend consumption shares for
Railroads and Paper.
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Figure 11: Market Behavior and the Cross-Sectional Dispersion of P/Cs and P/Ds
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Panel A: Historical cross sectional standard deviation of price consumption ratios
(continuous line) versus model implied when fed the observed consumption and div-
idend data (dotted line). Panel B: Historical cross sectional standard deviation of
price dividend ratios (continuous line) versus model implied when fed the observed
consumption and dividend data (dotted line).
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Figure 12: Market Implied Long-Term Shares si
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Sample average shares across industries versus the ones estimated to match the
average price consumption ratio of the corresponding industry.
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