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ABSTRACT

We hypothesize that pharmaceutical-embodied technical progress increases per capita output via

its effect on labor supply (the employment rate and hours worked per employed person).  We examine
the effect of changes in both the average quantity and average vintage (FDA approval year) of drugs
consumed on labor supply, using longitudinal, condition-level data.  

The estimates indicate that conditions for which there were above-average increases in utilization
of prescriptions during 1996-1998 tended to have above-average reductions in the probability of missed
work days.  The estimated value to employers of the reduction in missed work days appears to exceed
the employer’s increase in drug cost. 

The estimates are also consistent with the hypothesis that an increase in a condition’s mean drug
vintage reduces the probability that people with that condition will experience activity and work
limitations, and reduces their average number of restricted-activity days.  The estimates imply that
activity limitations decline at the rate of about one percent per year of drug vintage, and that the rate of
pharmaceutical-embodied technical progress with respect to activity limitations is about 18% per year.
Estimates of the cost of the increase in drug vintage necessary to achieve reductions in activity limitations
indicate that increases in drug vintage tend to be very “cost-effective.” 
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Per capita output is the most frequently used indicator of economic prosperity.  

Per capita output may be viewed as the product of three variables--output per hour 

worked, hours worked per employed person, and the employment rate: 

 
(Y / P) = (Y / H) * (H / E) * (E / P)      (1) 
 
where: 
 

Y = output 
P = population 
H = hours worked 
E = employment 

 
Hence factors that increase any of the three variables on the right-hand-side of eq. (1) will 

increase per capita output (Figure 1).1 

 In his seminal 1956 paper, Robert Solow showed that technical progress is 

necessary for there to be sustained growth in output per hour worked (Figure 2).  In that 

paper, Solow assumed that technical progress was exogenous: it descends upon the 

economy like “manna from heaven,” automatically and regardless of whatever else is 

going on in the economy (Jones (1998, 32-3)).  More recent theoretical (“endogenous 

growth”) models (Romer (1990)) relaxed this assumption: they have hypothesized that 

“technical progress is driven by research and development” ((Jones (1998, 89-90)).  

Empirical evidence (e.g. Griliches and Lichtenberg (1984), Lichtenberg and Siegel 

(1991)) is consistent with the hypothesis that firms and industries that perform more 

R&D exhibit higher productivity growth. 

Solow and other economists have recognized since the late 1950s that there are 

two kinds of technical progress: disembodied and embodied.  Suppose that agent i in the 

economy (e.g. a firm or government agency) engages in research and development.  If 

technical progress is disembodied, another agent (j) can benefit from agent i’s R&D 

whether or not he purchases agent i’s products. But if technical progress is embodied, 

agent j benefits from agent i’s R&D only if he purchases agent i’s products.  Solow 

                                        
1 Although they will increase per capita output, increases in the variables on the right-hand-side of eq. (1) 
will not necessarily increase social welfare.  If people prefer being out of the labor force to working, an 
increase in the employment rate will reduce social welfare.  If, on the other hand, people are prevented 
from working by illness and disability, then innovations that increase employment by enabling people to 
work will be welfare-enhancing.  Such innovations are the focus of this paper. 
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conjectured that most technical progress was embodied.  In one paper (Solow (1962, p. 

76)), he assumed that “all technological progress needs to be ‘embodied’ in newly 

produced capital goods before there can be any effect on output.” 

A number of econometric studies have investigated the hypothesis that capital 

equipment employed by U.S. manufacturing firms embodies technological change, i.e. 

that “each successive vintage of investment is more productive than the last.”  Equipment 

is expected to embody significant technical progress due to the relatively high R&D-

intensity of equipment manufacturers.  According to the National Science Foundation, 

the R&D-intensity of machinery and equipment manufacturing is about 50% higher than 

the R&D-intensity of manufacturing in general, and 78% higher than the R&D intensity 

of all industries.  

These studies have concluded that technical progress embodied in equipment is a 

major source of manufacturing productivity (output per hour) growth.  Hulten (1992) 

found that as much as 20 percent (and perhaps more) of the BLS total- factor-productivity 

change (in manufacturing) can be directly associated with embodiment—the higher 

productivity of new capital than old capital.  For equipment used in U.S. manufacturing, 

best-practice technology may be as much as 23 percent above the average level of 

technical efficiency.  Bahk and Gort (1993) concluded that “Industrywide learning 

appears to be uniquely related to embodied technical change of physical capital.  Once 

due account is taken of the latter variable, residual industrywide learning [disembodied 

technical change] disappears as a significant explanatory variable” (p. 579).  And 

Sakellaris and Wilson (2000) estimate that “each vintage is about 12 percent more 

productive than the previous year’s vintage (in the preferred specification)”, and that 

equipment-embodied technical change accounted for about two thirds of U.S. 

manufacturing productivity growth between 1972 and 1996.   

In this paper we test the hypothesis that another kind of embodied technical 

progress—pharmaceutical-embodied technical progress—has increased per capita output 

via its effect on labor supply (the employment rate and hours worked per employed 

person; see Figure 3)2,3,4  The pharmaceutical industry is even more R&D-intensive than 

                                        
2 Rizzo et al (1996) examined the effect of prescribed medicine use on work-loss disability days of 
currently employed workers only; they did not consider the effect on the probability of being employed.   
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the equipment industry: according to the NSF, the R&D intensity of drugs and medicines 

manufacturing is 74% higher than the R&D intensity of machinery and equipment 

manufacturing (Figure 4).  Therefore, it is quite plausible that there is a high rate of 

pharmaceutical-embodied technical progress.   

Data collected in the 1996 National Health Interview Survey indicate that 7% of 

people between the ages of 18 and 69 are completely unable to work due to illness and 

disability; another 5% are limited in the kind and amount of the work they can do.  

Limitations in ability to work place individuals and families at major financial risk: 

people who are unable to work are more than three times as likely to live below the 

poverty threshold as people who are not limited, controlling for age, education, race, and 

sex.  As Figure 5 shows, inability to work increases steadily with age: the rate is almost 

twice as high among 55-64 year-olds (15.2%) as it is among 45-54 year-olds (7.9%).5  

This decline in ability to work with respect to age might be interpreted as age-related 

human capital depreciation.  We hypothesize that use of newer drugs increases ability to 

work (or reduces the rate of human capital depreciation).   

At first blush, one might think that employers need only be concerned about 

work- loss days experienced by currently employed persons.  However firms make 

significant investments in recruitment and training of employees, and if these employees 

become unable to work, firms are unable to realize returns on these investments.  Firms 

as well as workers incur human capital losses. 

We will examine the effect of changes in drug utilization on labor supply using 

longitudinal, condition- level data on many major conditions in two different ways 6.  The 

first approach examines the effect of changes in the average quantity of drugs (and other 
                                                                                                                     
3 Increased labor supply is not the only, or even the most important, benefit of new drugs.  In previous 
papers (Lichtenberg (1996, 2001, 2002)), I have presented evidence that new drugs increase longevity and 
reduce expenditures on hospital care and other medical inputs. 
4 Data limitations prevent us from examining the effect of changes in drug utilization on output per hour 
worked.  Berndt et al (1997) examined this effect in a study of pharmaceutical treatment for depression, 
anxiety, migraine, and hypertension among individuals employed by insurance claims processors.  They 
found that pharmaceutical treatment increased both the number of hours worked and output (number of 
claims processed) per hour worked. 
5 Since older employed workers tend to earn more than younger employed workers, the percentage 
reduction in income from inability to work is even greater than the percentage reduction in employment.  
6 Case studies of the labor-supply effect of specific drugs or drugs for specific conditions have been 
performed.  For example, Legg et al (1997) examined the effect of sumatriptan for treatment of migraine 
disease on employee productivity.  They found that the value of the productivity increase was almost ten 
times as great as the incremental cost of the drug. 
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medical services) consumed for a given condition, using data from the 1996-1998 waves 

of the Medical Expenditure Panel Survey (MEPS).  The second approach examines the 

effect of changes in the average vintage (FDA approval year) of drugs consumed for a 

given condition; we hypothesize that drug quality tends to increase with vintage.  This 

approach is based primarily on data from National Ambulatory Medical Care Surveys 

and National Health Interview Surveys during the period 1985-1996.  Changes in 

quantity are positively correlated across conditions with changes in mean vintage, or 

quality: there is a significant positive correlation between the percentage increase 

between 1996 and 1998 in the total number of prescriptions for a condition and the 

fraction of 1996-1998 prescriptions that were for drugs approved after 1990.7 

 
I. Why analysis at the aggregate (condition) level? 

 
We seek unbiased, efficient estimates of the parameters of the “health production 

function”—the effect of drug utilization on labor supply.  The ideal way in which to 

obtain such estimates would be to randomly assign drugs to individuals, and observe their 

outcomes (labor supply), as in a randomized clinical trial (RCT).  This is often infeasible, 

however.  I will consider the problems that may arise in estimating health production 

functions in a non-experimental setting, and propose a simple and feasible solution to 

these problems. 

I begin by postulating the following simple health production function: 

O = β  T + γ P      (2) 

where 

O = outcomes (post-treatment health status) 

T = quantity of treatment (medical services consumed) 

P = pre-treatment health status 

 

For simplicity, we represent treatment intensity by a scalar (T), although in reality 

treatment involves a vector of inputs.  I postulate that both β  and γ are positive: post-

                                        
7 Based on a sample of 74 2-digit ICD9 conditions, the correlation coefficient is 0.262 (p-value= 0.024).  
Observations are weighted by the square root of the number of 1996-1998 prescriptions. 
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treatment health status is positively related to both pre-treatment status and quantity of 

treatment.   

My objective is to estimate β , the effect of treatment on outcomes, conditional on 

pre-treatment health status.  The problem is that P is often unobservable.  If T were 

uncorrelated with P (which would be the case if treatment were randomly assigned to 

individuals, as in an RCT), the simple regression of O on T (i.e., without controlling for 

P) would still yield an unbiased estimate of β .   

But this is not usually the case.  In general, people with worse initial health (lower 

P) choose higher T.  For example, older people tend to use more medical services and to 

have worse (pre-treatment) health than younger people. 

Suppose that T = π  P, and that π  < 0.  This implies that  

 

P = π-1 T      (3) 

 

Substituting (3) into (2),  

 

O = (β  + γ π  -1) T  

 

The treatment coefficient in the simple outcomes regression (i.e. the effect of treatment 

on outcomes not conditioning on pre-treatment health) is a function of all three effects.  

Since π -1 < 0, this coefficient is smaller than β , the effect of treatment on outcomes, 

conditional on pre-treatment health.  Indeed, it is quite possible for (β  + γ π -1) to be 

negative even though β  is positive: although treatment leads to improved outcomes, given 

P, the simple correlation between treatment intensity and outcomes is negative.8 

                                        
8 Omitted-variables bias in production function estimation in other, non-health, areas (e.g., manufacturing) 
has long been recognized, although the bias there is often thought to operate in the opposite direction, i.e. 
overestimation of the marginal productivity of inputs.  Chamberlin (1986) discusses the following classic 
example: 
production function: Y = α1 N + α2 A 
Y = output 
N = employment 
A = managerial ability 
α1, α2 > 0 
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When pre-treatment health status is not observable, estimates of the effect of 

treatment intensity on outcomes based on individual data are likely to be severely 

negatively biased.  However this bias may be greatly reduced and perhaps even 

eliminated by aggregation. 9  To see this, consider the following health production 

function: 

 

Oijt  = β  Tijt + γ Pijt  

 

where the subscripts denote person i in group j in year t.  (Groups may be defined by 

disease, for example.)  Aggregating (i.e., computing averages) across individuals, within 

groups and years, 

 

O.jt = β  T.jt + γ P.jt     (4) 

 

where O.jt = denotes the mean outcome of people in group j in year t, etc.  Suppose that 

mean pre-treatment health can be decomposed as follows: 

 

P.jt = θj’ + δt’      (5) 

 

This allows there to be differences between groups in mean pre-treatment health in a 

given year, and for changes over time in the mean pre-treatment health of all groups. 

Substituting (5) into (4),  

 

O.jt = β  T.jt + γ θj’ + γ δt’  

 

      = β  T.jt + θj + δt  

                                                                                                                     
A is unobservable.  In equilibrium, firms with higher A will have more employees, that is, the correlation 
between A and N is positive.  As a result, the coefficient from the simple regression of Y on N is an 
overestimate of α1. 
9 Although analysis at the individual level is often preferable to analysis of aggregate data, aggregation is 
desirable under certain circumstances.  See Grunfeld and Griliches (1960). 
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where θj = γ θj’ and δ t = γ δt’.  We can obtain consistent estimates of β  (the effect of 

treatment on outcomes) by estimating a model based on group- level panel data, with 

fixed group and year effects.  In this context, variation in the relative treatment intensity 

of different groups (T.jt) is primarily due to exogenous medical innovations, rather than 

variation in pre-treatment health status. 

 
II. The effect of changes in the average quantity of drugs 

 
The 1996-1998 MEPS condition files report condition-specific data for each 

medical condition reported by each person in each year.  It includes the following 

variables:     

 

MISSWORKijt  
 

= 1 if one or more missed workdays were associated with condition j 
borne by person i in year t  
= 0 otherwise 

RXNUMijt = the number of prescribed medicine events (prescriptions) associated 
with condition j borne by person i in year t  

OBNUMijt = the number of office-based events associated with condition j borne 
by person i in year t  

HSNUMijt  
 

= the number of hospital stays associated with condition j borne by 
person i in year t  

 
Aggregation of these data up to the condition-year level enables estimation of the 

following model10: 

 
MISSWORK.jt = βRX log(RXNUM.jt) + βOB log(OBNUM.jt)  

 
+ βHS HSNUM.jt + αj + δt + ε  jt (6) 

 
where 
 
MISSWORK.jt  

 
= the fraction of people with condition j in year t who had one or more 
missed workdays associated with the condition  

RXNUM.jt = the average number of prescribed medicines associated with 
condition j in year t  

OBNUM.jt = the average number of office-based events associated with condition j 
                                         

10 The hypothesis of diminishing marginal productivity of medical services implies that a logarithmic 
specification is appropriate.  Since HSNUM.jt is frequently zero, we do not take the logarithm of this 
variable. 
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borne by person i in year t  
HSNUM.jt  

 
= the average number of hospital stays associated with condition j in 
year t  

Including fixed condition effects (αj’s) and year effects (δ t’s) controls for the effect of 

any determinants of MISSWORK that vary across conditions but not over time and that 

vary over time but not across conditions.11  Estimation of this model will reveal whether 

conditions for which there were above-average increases in utilization of medical 

services (prescriptions, doctor visits, or hospital stays) tended to have above-average 

reductions in the fraction of people who had one or more missed workdays associated 

with the condition.   

We restricted the sample to conditions borne by people between the ages of 18 

and 65.  The micro- level dataset contained 143,536 observations.  The aggregated dataset 

contained about 280 observations (3 years times 93 2-digit ICD9 conditions/year).   

Sample mean values of the variables are shown in the following table. 

  
year misswork rxnum obnum hsnum 
1996 0.24 0.99 1.39 0.024 
1997 0.20 1.02 1.61 0.034 
1998 0.21 1.08 1.72 0.032 

 
With the exception of rxnum, the 1997 figures are much closer to the 1998 figures than 

they are to the 1996 figures.  This may be related to the fact that 1996 was the first year 

of the survey, so that data for this year may be subject to greater measurement or 

reporting error than data fo r the subsequent two years.12   

The probability that a condition was associated with one or more missed 

workdays ranged between 20% and 24%.  The average number of prescriptions per 

condition increased by 9% from 1996 to 1998. 

We estimated eq. (6) in two ways: probit estimation on grouped data, and 

weighted least-squares (WLS), weighting by the number of observations in each 

condition-year cell.  Since the dependent variable of eq. (6) is bounded between zero and 
                                        
11 For example, suppose that both the probability of missing work days and the average number of 
prescriptions vary across regions, and that certain conditions tend to be more prevalent in certain regions.  
As long as the regional distribution of conditions remains stable over the sample period, fixed-effects 
estimation controls for the influence of region. 
12 Since eq. (6) includes fixed year effects, changes in survey reporting and administration whose effects 
did not vary across conditions will not affect our results. 
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one, probit estimation is theoretically superior. In practice, the two procedures yielded 

very similar results. 

Weighted least-squares estimates of the key parameters of eq. (6) are shown in the 

following table: 

 
Parameter ββ RX ββOB ββHS 
estimate -0.0414 -0.0049 0.0208
std. error 0.0155 0.0102 0.0623
t-statistic -2.67 -0.48 0.33
p-value 0.0081 0.6323 0.7384

 
The estimate of βRX is negative and significantly different from zero, while the estimates 

of the other two parameters are far from statistically significant.  When log(obnum) and 

hsnum are dropped from the equation, the estimate (p-value) of βRX is -.0498 (0.0033). 

These estimates are consistent with the hypothesis that conditions for which there were 

above-average increases in utilization of prescriptions tended to have above-average 

reductions in the fraction of people who had one or more missed workdays associated 

with the condition.   

An increase in the average number of prescriptions consumed for a condition is 

associated with a reduction in the probability of missing work days due to the condition.  

Suppose the average number of prescriptions increased by 1 per condition per year.  We 

wish to compare the resulting increase in drug cost to the value of the estimated reduction 

in missed work days.  To a first approximation, the increase in drug cost would simply be 

the average cost of a prescription, which was $34.76 in 1996. 

We will use the following formula to estimate the value of the reduction in missed 

work days from a unit increase in the number of prescriptions per condition per year: 

 
V = (C / H) * (H / D) * E(M | M > 0) * - d prob (M > 0) 
                                                                    d RXNUM 
 
    = (C / H) * (H / D) * E(M | M > 0) * RXNUM * - d prob (M > 0) 
                                                                                    d log(RXNUM) 
 
    = (C / H) * (H / D) * E(M | M > 0) * RXNUM * -βRX   (7) 
 
where 
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C = employer costs for employee compensation 
H = hours worked 

C / H = employer costs for employee compensation per hour worked 
D = days worked 

H / D = hours worked per day 
M = workdays missed 

E(M | M > 0) = expected number of workdays missed, given that some workdays 
were missed 

prob (M > 0) = probability that some workdays were missed 
 
The sample mean value of RXNUM is 1.03, and our point estimate of -βRX is .0498.  

According to the Bureau of Labor Statistics, in 1996 employer costs for employee 

compensation per hour worked by civilian workers (C / H) was $18.68.  We assume that 

hours worked per day (H / D) is 7.  The only remaining quantity we need to estimate in 

order to compute V is E(M | M > 0).13   

To estimate this, we combined person- level information from the 1996 MEPS 

Full-Year File with condition- level information from the 1996 MEPS Condition File.  

The first file provides information about the person’s total number of missed work days 

associated with all medical conditions in 1996.14  The second file provides information 

about the number of medical conditions associated with any missed work days in 1996.  

The following table presents information about people classified by the latter 

characteristic: 

 

Number of 
conditions 
associated with 
missed work 
days 

Number of 
people 

Mean 
number of 
missed 
work days 

Mean 
number of 
missed 
work days 
per 
condition 

0 4120 0.18  
1 3225 6.88 6.88
2 1476 11.21 5.61
3 660 15.62 5.21
4 250 22.19 5.55
5+ 175 28.36 4.59

 

                                        
13 Unfortunately the MEPS Condition Files indicate only whether any workdays were missed, not the 
number of workdays missed. 
14 This is the sum of missed workdays in rounds 1, 2, and 3 of the survey (ddnowrk1-ddnowrk3). 
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There is a strong positive relationship between the number of conditions associated with  

missed work days and the mean number of missed work days.  For example, people with 

one condition missed 6.70 more work days than people with zero conditions associated 

with missed work days.  We will assume that E(M | M > 0) is a weighted average of the 

figures in the last column (weighted by the number of people), minus 0.18 (the mean 

number of missed work days of people with zero missed work-day conditions).  Hence 

E(M | M > 0) = 6.24 – 0.18 = 6.06.  The average number of work-days missed per 

condition per year by people who missed any work days from a condition is 6.06. 

Substituting these figures into eq. (7) yields an estimate of the value of the 

reduction in missed work days from a unit increase in the number of prescriptions per 

condition per year: 

 
V = (C / H) * (H / D) * E(M | M > 0) * RXNUM * -βRX   
    
   =  $18.68 *     7       *      6.06          *     1.03     *  .0498  
 
   =  $40.64. 
 

A unit increase in the number of prescriptions per condition per year (a .97 

increase in log(RXNUM)) would reduce the probability of missing any work days by 

5.1%.  Since E(M | M > 0) = 6.06, it would reduce the expected number of missed work 

days by 0.31 days, or 2.18 hours.  In 1996, the value to employers of this reduction in 

missed work days would have been $40.64.  This exceeds the average cost of a 

prescription in 1996 which was $34.76.  Moreover, employers did not bear the entire cost 

of the prescription.  According to the 1997 MEDSTAT Marketscan database, which 

represents the inpatient and outpatient healthcare service use of individuals nationwide 

who are covered by the benefit plans of large employers, health plans, and government 

and public organizations, individuals paid 15 percent of the cost of their drug claims in 

the form of copayments.  Hence the average cost to the employer of an additional 

prescription may have been 85% * $34.76 = $29.66.  The estimated value to employers of 

the reduction in missed work days appears to exceed the employer’s increase in drug 

cost. 
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III. The effect of changes in the average vintage of drugs 

 

In section A we will develop an econometric specification for testing the 

hypothesis that, ceteris paribus, the ability of a person with given medical conditions to 

work is positively related to the vintage(s) of the drug(s) he consumes for those 

conditions.15  In section B, we describe the data used to estimate the model.  Empirical 

results are presented in section C. 

A. Econometric specification 
 

Consider the following model: 
 

Lijt = β  Vijt + αj + δt   + γ Zijt + ε ijt          (8) 
 
where 
 

Lijt = an indicator of the limitations imposed on person i by condition j in year t 
(80 conditions, t = 1985, 1989, 1990,…, 1996) 
 
Vijt = an indicator (e.g. the mean) of the vintage of the drugs consumed by person 
i for condition j in year t 
 
Zijt = other attributes (e.g. age) of person i with condition j in year t 
 
ε ijt  = a disturbance. 

 
This model includes both condition fixed effects (αj) and year fixed effects (δt).  

Condition fixed effects control for the possibility that some conditions are inherently 

more limiting than others (independent of drug vintage).  Some conditions tend to limit 

activities much more than others in a given year.  For example, only 0.5% of the people 

who had chronic sinusitis (the second-most prevalent condition in 1990-1992) were 

limited by it in their major or outside activity, whereas 21.2% of the people who had 

arthritis (the third-most prevalent condition) were limited by it.  Year fixed effects control 

for the influence of disembodied technical change and for other factors that change over 

time but do not vary across conditions. 

                                        
15 We define the vintage of a drug as the year in which the drug’s active ingredient was first approved by 
the FDA. 
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While eq. (8) is a useful starting point, for a number of reasons estimation of this 

model is neither feasible (due to missing data) nor necessarily appropriate (due to 

possible nonlinearity and interaction effects).  We elaborate on these issues below. 

Censoring of vintage data.  The vintage data are censored from below: for drugs that 

have not been approved by the FDA since it was established in 1939, we know only that 

they are of pre-1939 vintage.  One way of addressing the censoring problem is to replace 

V by a dummy variable (D) defined as follows: 

D = 1 if V > V* 
    = 0 if V < V*, 

 
where V* is a vintage threshold (V* > 1939).  Also define the following: 
 

VN = E(V | V > V*) = mean vintage of “new drugs”  
VO = E(V | V < V*) = mean vintage of “old drugs”  

 
Due to censoring, only the former is known.  But this does not prevent us from testing the 

hypothesis that users of new drugs are less limited in activity than the users of old drugs, 

or from estimating the increase in drug cost required to achieve a given reduction in 

activity limitation.   

Suppose we estimate the simple regression of L on D (for simplicity, here we 

ignore non-vintage determinants of L). The slope of this regression is: 

 
bLD = LN – LO 

 
where  
 

LN = E(L | V > V*) = mean value of L for “new drug” users 
LO = E(L | V < V*) = mean value of L for “old drug” users 

 
Hence, if the estimate of bLD is negative and significant, we may reject the null 

hypothesis that drug vintage has no effect on activity limitations.   

 One can also estimate the simple regression of drug price (P) on D.  The slope of 

this regression is: 

bPD = PN – PO 
 
where  
 

PN = E(P | V > V*) = mean price of “new drugs” 
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PO = E(P | V < V*) = mean price of “old drugs”  
 
Hence the ratio of bPD to - bLD is the ratio of the new-vs.-old drug price difference to the 

new-vs.-old drug reduction in activity limitations, i.e. the increase in drug cost required to 

achieve a given reduction in activity limitation. 

 
   bPD  =    PN – PO 
  -bLD    -(LN – LO) 
 
 In eq. (8), the parameter β  is the effect of a one-year increase in vintage on L. β  is 

related to bLD as follows: 

 
β  = ∆L = (LN – LO)   =     bLD___         (9) 
      ∆V    (VN – VO)    (VN – VO) 

 
This implies that, to determine the effect of a one-year increase in vintage on L, one 

needs to divide the dummy-variable regression coefficient by an estimate of (VN – VO). 

Potential nonlinearity.  If the relationship between L and V is linear, as hypothesized in 

eq. (8), then the choice of vintage threshold (V*) won’t affect the estimate of β  we obtain 

from eq. (9), e.g. it won’t matter whether we define new drugs as post-1970 drugs or 

post-1980 drugs.  However if the relationship is nonlinear—e.g., the reduction in activity 

limitations from switching from a 1980 to a 1990 drug is greater than the reduction in 

activity limitations from switching from a 1970 to a 1980 drug—then the choice of V* 

will affect the estimate of β .  This is illustrated by Figure 6.  Suppose that the vintage 

threshold is increased: V* shifts to the right.  This will increase both VN and VO, by 

different amounts (in general), and will also affect the slope of the straight line passing 

through the points (VO, LO) and (VN, LN).  We will therefore estimate the model using 

several alternative vintage thresholds (1970, 1980, 1985, and 1990), both to check 

robustness and to investigate the possibility of nonlinearity. 

Aggregation.  We have data on L, V, and Z, for large samples of individuals over a 

period of years.  However the data on L and V come from different surveys and cover 

different individuals: data on condition-specific activity limitations come from the 

National Health Interview Survey—a household survey—and data on condition-specific 

drug utilization come from the National Ambulatory Medical Care Survey—a provider 
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(physician) survey.  Hence estimation of eq. (8) is not feasible.  But by aggregating eq. 

(8) across individuals, we obtain an equation that can be estimated16: 

 
L.jt = β  V.jt + αj + δt   + γ Z.jt + ε.jt         (10) 

 
where 
 

L.jt = is the mean value of Lijt for persons with condition j in year t.   
 
V.jt = is the mean of the vintage indicator of drugs consumed for condition j in 
year t.   

 
For example, L.jt = is the fraction of people with arthritis in 1996 who are unable to work 

because of their arthritis, and V.jt is the mean vintage of drugs prescribed to treat arthritis 

in 1996.  If the estimate of β  from eq. (10) is negative and significant, that indicates that 

conditions with greater increases in vintage had greater declines (or smaller increases) in 

activity limitations.   

Interaction effect.  In eq. (10), the response of activity limitations to a change in vintage 

(β  = ∂L / ∂V) is a constant.  But it is reasonable to hypothesize that this response is 

proportional to the average number of drugs consumed by people with that condition:  

 
β  = β’ N_Rxj        (11) 

 
where: 
 

N_Rxj is the average annual number of prescriptions consumed for condition j by 
people with that condition. 

 
Substituting eq. (11) into eq. (10),  
 

L.jt = β’ (N_Rxj * V.jt) + αj + δt   + γ Z.jt + ε.jt       (12) 
 
Due to censoring of vintage data discussed earlier, the best way to measure V given the 

available data is as the ratio of the number of new (e.g. post-1980) drugs prescribed for 

                                        
16 Estimation based on aggregate data may have advantages over estimation based on individual-level data.  
Suppose that the disturbance of eq. (8) is correlated with vintage, due to unobserved heterogeneity: people 
with more severe cases of a given condition may tend to take newer (or older) drugs for that condition.  In 
this case, the estimate of β from eq. (8) will be biased.  But as long as the exogenous change in condition 
mean unobserved severity is uncorrelated with the change in mean vintage, the estimate of β from eq. (10) 
will be unbiased.   
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the condition to the total number of drugs prescribed for the condition.  Since N_Rx is the 

ratio of the total number of drugs prescribed for the condition to the number of people 

with the condition, (N_Rx * V) equals the number of new drugs prescribed for the 

condition per person with the condition.  For example, if (N_Rx * V) = 1 in 1996, that 

means that, on average, people with the condition are taking one new drug for that 

condition. 

 Now consider the costs and benefits of a unit increase in (N_Rx * V).  A possible 

estimate of this cost is the average cost of a prescription for a new drug.  NAMCS does 

not contain any information about drug costs, but according to the 1997 MEPS, the 

average cost of a prescription for a post-1980 drug in 1997 was $59.08.  If use of the new 

drug did not reduce use of old drugs, this would be a reasonable estimate of the cost of a 

unit increase in (N_Rx * V).  However in reality, use of new drugs is likely to reduce use 

of old drugs (Lichtenberg and Philipson (2002)).  If there were 1-for-1 substitution of 

new for old drugs, the cost of the unit increase in (N_Rx * V) would be the difference 

between the price of the new drug and the price of the old drug.  The average cost of a 

prescription for a pre-1980 drug in 1997 was $26.66, so this price difference is $32.42.   

 The benefit, in dollar terms, of a unit increase in (N_Rx * V) is the reduction in 

the probability of experiencing the limitation (-β’) times the value of, or willingness to 

pay for, freedom from the limitation (WTP).  Suppose, for example, that consuming one 

new drug (increasing (N_Rx * V) by 1) reduces the probability of being unable to work 

by .03 (from 8% to 5%).  If the value of being able to work is $35,000—about the 

average annual earnings of American workers—then the benefit of reducing this activity 

limitation is (-β’) * WTP  = .03 * $35,000 = $1050.  If the benefit of the increase in drug 

vintage exceeds its cost, the increase in vintage raises social welfare. 

 

B. Data 
 

1. Limitations of activity, by condition and year 
 

Numerous health surveys (e.g., the Medical Expenditure Panel Survey) collect 

data on respondents’ activity limitations, including limitation in ability to work.  But 

people with activity limitations often suffer from multiple conditions, and these surveys 
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do not indicate which conditions are responsible for their activity limitations 17.  The 

National Health Interview Survey is the only survey we are aware of that collects 

condition-specific activity limitation data.   

The purpose of the National Health Interview Survey (NHIS) is to obtain 

information about the amount and distribution of illness, its effects in terms of disability 

and chronic impairments, and the kinds of health services people receive.  

Condition—Condition is a general term that includes any specific illness, injury, 

or impairment. Condition data are derived from the survey in two ways. First, 

respondents are asked to identify any conditions that caused certain types of impact 

associated with health, such as a visit to a doctor or a day spent in bed. Second, 

respondents are read lists of selected chronic conditions and asked whether they or any 

family members have any of these conditions. The latter information is used in making 

prevalence estimates. At a later point in the survey, a series of questions is asked about 

each of the conditions identified in either of the two ways just described. The information 

obtained on each condition helps to clarify the nature of the condition and whether 

medical services have been involved in its diagnosis or treatment. It also aids in the 

coding of the condition. All conditions except impairments are coded according to the 

ninth revision of the International Classification of Diseases (5) with certain 

modifications adopted to make the codes more suitable for information derived from a 

household survey.  

Chronic condition—A condition is considered chronic if the respondent indicates it was 

first noticed more than 3 months before the reference date of the interview, or it is a type 

of condition that ordinarily has a duration of more than 3 months. Examples of conditions 

that are considered chronic regardless of their time of onset are diabetes, heart conditions, 

emphysema, and arthritis.18 

                                        
17 1996 MEPS data indicate that among people with at least one medical condition, 79% had 2 or more 
conditions, 60% had 3 or more, and 31% had five or more.  Moreover 95% of conditions are borne by 
people with 2 or more conditions, 60% of conditions are borne by people with 5 or more conditions, and 
18% of conditions are borne by people with 10 or more conditions. 
18 The majority of conditions reported in the condition file are chronic conditions.  For example, 86% of 
conditions reported in 1996 were chronic conditions. 
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Limitation of activity because of chronic conditions— Persons are classified in terms 

of the major activity usually associated with their particular age group. The major 

activities for the age groups are:  

1. Ordinary play for children under 5 years of age  
2. Attending school for those 5–17 years of age  
3. Working or keeping house for persons 18–69 years of age  
4. Capacity for independent living (for example, the ability to bathe, shop, dress, eat, 

and so forth, without needing the help of another person) for those 70 years of age 
and over  

 

People 18–69 years of age who are classified as keeping house are also classified by their 

ability to work at a job or business. (In Collins (1997), the major activity of persons 65–

69 years is assumed to be working or keeping house; however, questions were also asked 

about the capacity for independent living in this age group, which would permit an 

alternative definition of limitation.)  

In regard to these activities, each person is classified into one of four categories:  

1. Unable to perform the major activity  
2. Able to perform the major activity but limited in the kind or amount of this 

activity  
3. Not limited in the major activity but limited in the kind or amount of other 

activities  
4. Not limited in any way  

 
In regard to these four categories, NHIS publications often classify persons only by 

whether they are limited (groups 1–3) or not limited (group 4). Persons are not classified 

as limited in activity unless one or more chronic conditions are reported as the cause of 

the activity limitation. If more than one condition is reported, the respondent is asked to 

identify the condition that is the major cause of the limitation.  

Condition Record File—This file contains information for each reported health 

condition. NHIS condition records can be used to calculate aggregate estimates and rates 

of the incidence of acute conditions, prevalence of selected chronic conditions, disability 

days and utilization associated with acute or chronic conditions, and chronic conditions 

causing limitation of activity. The Condition file contains the following types of records: 

1. Condition records, either acute or chronic, which are associated 
with disability days, doctor visits and /or hospitalizations in the two weeks 
preceding the interview. 
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2. Chronic condition records when the condition is reported to be the main or 
secondary cause of activity limitation or limitation in ability to work. 
3. Chronic condition records reported in response to a checklist of 
conditions for each body system, e.g., digestive. The total sample was divided 
into six sub-samples. Each sub-sample was asked the set of conditions 
corresponding to one of the six chronic disease checklists. 
 
To calculate limitation of activity due to chronic conditions on a condition basis, 

NCHS (1996, p. 51) says that all chronic condition records, not just those reported in 

response to a checklist of conditions for each body system, should be used. 

 

2. Vintage distribution of drugs utilized, by condition and year 
 
 

National Ambulatory Medical Care Surveys offer information on patients' visits 

to a national sample of office-based physicians. The surveys collect information on all 

drugs/medications ordered, administered, or provided during office visits. The data items 

include medication code, generic name and code, brand name, entry status, prescription 

status, federal controlled substance status, composition status, and related ingredient 

codes. Also included are demographic items describing the patient, such as age, sex, race, 

and ethnicity. The universe consists of office visits to nonfederally employed physicians 

classified by the American Medical Association (AMA) or the American Osteopathic 

Association (AOA) as "office-based, patient care" (excluding specialties of 

anesthesiology, pathology, and radiology), from 112 Primary Sampling Units (PSUs) in 

the United States.  

 Each NAMCS office visit record reports the physician’s diagnoses, any drugs 

prescribed (including the names of each of the ingredients of combination drugs), and a 

sampling weight.  Hence one can calculate, for each year in which NAMCS was 

conducted, the joint distribution of prescribed medicines, by drug and diagnosis 19.   

 To determine the vintages (FDA approval dates) of drugs reported in NAMCS, 

we used two unpublished files obtained from the FDA.  The first is a list of all of the 821 

new molecular entities (NMEs) approved during the period 1950-1993.  The second is a 

                                        
19 Up to three diagnoses may be recorded; when multiple diagnoses are recorded, we allocate the drugs 
prescribed equally across the diagnoses. 
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list of all new drug applications (NDAs) approved during the period 1939-1998.  (The 

first FDA drug approval occurred in 1939.)  This list includes both new molecular entities 

approved and other NDAs approved (new formulations, new manufacturers, etc.).  

Although the two lists are broadly consistent, there are some discrepancies.  Figure 7 

shows the number of new molecular entities approved per year, as computed from both 

lists.20  We consider the first list to be more reliable for the 1950-1993 period, since the 

FDA constructed it for the specific purpose of identifying NMEs approved during the 

period.  We use the second list only to provide data on NMEs approved during 1939-

1949 and 1994-1998.  We matched NAMCS generic drug names to ingredient names 

contained in FDA new molecular entity approvals.   

Some drugs existed before the FDA was established in 1939.  The vintages of 

these drugs are unknown—it is only known that they are of pre-1939 vintage.  In 1980—

the first year in which NAMCS collected drug data--about 60% of prescriptions were for 

drugs of pre-1939 vintage.  By 1998, this fraction had declined to about 40%.21   

To obtain meaningful indicators of the vintage distribution of drugs by condition 

and year, we must address the problem posed by the censoring of this distribution.  There 

are two ways to do this.  One is to impute a (reasonable) vintage value for drugs of 

unknown (pre-1939) vintage.  This allows estimation of the mean vintage of all 

prescriptions, including those of unknown vintage.  Figure 8 shows the mean vintage of 

prescriptions, by year, when the value 1900 is imputed to drugs with missing vintages.  

When this imputation is used, the mean age (= year prescribed – vintage) of drugs is 

fairly stable, but declines slightly, from about 55 years during 1980-85 to about 52 years 

during 1989-98. 

A second approach is to use indicators such as those shown in Figure 9, i.e. the 

fraction of drugs prescribed for condition j in year t of vintage greater than v0 (e.g. v0 = 

1970, 1980, and 1990).  The fraction of prescriptions that were for drugs approved after 

                                        
20 We also merged the two lists, by new drug approval number, and calculated the difference in approval 
years recorded in the two lists.  The mean and median differences were both approximately zero, and 98% 
of the differences were between –2 and +2 years, but there were 5 cases in which the absolute difference 
exceeded 10 years. 
21 These figures treat a prescription for a combination drug—a drug with multiple ingredients—as a 
prescription for each ingredient.  For example, a prescription for a drug containing the two ingredients 
benzalkonium chloride and tyloxapol is treated as two prescriptions, one for each ingredient. 
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1970 increased from 7.8% in 1980 to 31.2% in 1990, and to 40.3% in 1998.  We will try 

both of these approaches. 

Table 1 lists the 50 most frequent generic substances in drug mentions at office 

visits in 1994-1996.   

As Figure 10 shows, there is considerable variation across conditions with respect 

to the rate of change in the drug vintage distribution.  The Figure shows the percent of 

1998 prescriptions that were for drugs approved by the FDA after 1980, by condition, for 

conditions with more than 20 million prescriptions in 1998.  About half of the drugs used 

for three major conditions—DISEASES OF OTHER ENDOCRINE GLANDS, 

HYPERTENSIVE DISEASE, and NEUROTIC DISORDERS, PERSONALITY 

DISORDERS, AND OTHER NONPSYCHOTIC MENTAL DISORDERS—were post-

1980 drugs.  In contrast, only one-sixth of the drugs used for three other major 

conditions—ACUTE RESPIRATORY INFECTIONS, DISEASES OF THE EAR AND 

MASTOID PROCESS, and OTHER DISORDERS OF FEMALE GENITAL TRACT—

were post-1980 drugs.  We will rely on this (presumably exogenous) cross-condition 

variation in the change in the vintage distribution to identify the effect of vintage on 

activity limitations.  

 

3. Average annual number of prescriptions consumed, by condition 
 
 

The average annual number of prescriptions consumed, by condition (N_Rxj in 

eq. (12)), can be calculated for two different years during our 1985-1996 sample period 

from the medical conditions files of two household surveys: the 1987 National Medical 

Expenditure Survey and the 1996 Medical Expenditure Panel Survey.  Each of these files 

contains about 75,000 condition records.  We calculated the mean number of 

prescriptions consumed, by (2-digit ICD9) condition, in each year; N_Rxj is the mean of 

the 1987 and 1996 condition-j means.22 

 

4. Prescription prices and vintages 
 

                                        
22 The average number of prescriptions per condition was 1.22 in 1987 and 1.04 in 1996. 
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Estimation of price differences between new and old drugs requires data on the 

prices and vintages of a cross-section of prescriptions.  We obtained data on prescription 

prices from the 1997 MEPS Prescribed Medicines file, which contains price data for 

234,473 prescriptions, coded by National Drug Code number.  Using Multum’s denorm 

table, we determined the names of the active ingredients contained in each of these 

prescriptions.  To determine vintages of these prescriptions, we matched these ingredient 

names to the ingredient names contained in FDA new molecular entity approvals 

(described above).  

C. Empirical results 
 

We estimated eq. (12) for five different measures of the (dependent) activity 

limitation variable (L), and using five alternative definitions of the vintage variable (V).  

The activity limitation variables are:  

 
main_act_limit = number of people with condition whose major activity is 
limited, mainly due to this condition, as % of total number of people with 
condition 
 
main_ work_limit = number of people with condition whose ability to work is 
limited, mainly due to this condition, as % of total number of people with 
condition 
 
any_work_limit = number of people with condition whose ability to work is 
limited, mainly or secondarily due to this condition, as % of total number of 
people with condition 
 
unable_work = number of people with condition who are unable to work, mainly 
due to this condition, as % of total number of people with condition 
 
restricted_days = mean number of restricted activity days due to this condition in 
the two weeks preceding the interview 

 
The five alternative definitions of the vintage variable are23: 
 

V_Mean = mean vintage of drugs consumed by people with the condition (setting 
the vintage of drugs of missing vintage to 1900) 

 

                                        
23 Each of these variables is  multiplied by mean number of prescriptions consumed for the condition. 
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POST70 = number of post-1970 drugs consumed by people with the condition as 
% of total number of drugs consumed by people with the condition 
 
POST80 = number of post-1980 drugs consumed by people with the condition as 
% of total number of drugs consumed by people with the condition 
 
POST85 = number of post-1985 drugs consumed by people with the condition as 
% of total number of drugs consumed by people with the condition 
 
POST90 = number of post-1990 drugs consumed by people with the condition as 
% of total number of drugs consumed by people with the condition 

 
The sample includes chronic conditions experienced by people between the ages of 

18 and 69 in the years 1985 and 1989-1996.24  The micro-level data set contains about 

320,000 observations.  The data were aggregated by 2-digit ICD9 code and year; the 

aggregate data set contains about 630 observations (9 years * about 70 conditions).  The 

model was estimated using weighted least squares (WLS), with the weight equal to the 

number of sample conditions in that condition-year cell.25  All models include the 

following covariates: condition fixed effects, year fixed effects, mean age, mean years of 

schooling, percent male, and percent white. 

The estimates are presented in Table 2.  Estimates in the first column are based on 

the first vintage measure, mean vintage of drugs consumed for the condition.  The 

coefficients on this measure are negative and highly significant for four of the five 

dependent variables (all except unable_work).  This is consistent with the hypothesis that 

an increase in a condition’s mean drug vintage reduces the probability that people with 

that condition will experience activity and work limitations, and reduces their average 

number of restricted-activity days.   

Estimates in the second column are based on the “new drug share”, using the lowest 

vintage threshold (1970).  Not surprisingly (due to potentially erroneous missing-value 

imputations in the first measure), this variable is more strongly (inversely) related to all 

                                        
24 The NHIS collected consistent data on chronic conditions from 1982 to 1996 (major changes were made 
to the survey in 1997), but NAMCS was not conducted in 1982-1984 and in 1986-1988.  It has been 
conducted annually since 1989. 
25 Since most of the dependent variables are bounded between zero and one, we also computed probit 
estimates of some models.  The results were very consistent with the WLS estimates: the probit t-statistics 
on the vintage coefficient were generally about 20% smaller than the WLS t-statistics, but probit p-values 
were also generally < .001.  Since WLS coefficients are easier to interpret than probit coefficients, we 
report WLS estimates. 
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of the activity limitation measures than mean vintage is: all of the t-statistics are higher in 

column 2 than they are in column 1.  All of the dependent variables are negatively and 

significantly (at the .02 or lower level) related to POST70.26    

The remaining three columns are also based on the “new drug share” measure of 

vintage, but use increasing vintage thresholds (1980, 1985, and 1990).  With only one 

exception (the POST90 coefficient in the restricted_days regression), all of the vintage 

coefficients are negative and highly statistically significant.  Thus, the finding of a 

significant negative effect of drug vintage on activity limitations appears to be quite 

robust to alternative vintage measures and definitions of activity limitations.  

Now we will test the sensitivity of the estimates (based on the 1980 vintage 

threshold) to two other changes in model specification.  The drug vintage measures used 

in the regressions reported in Table 2 were based on all NAMCS drug mentions.  About 

10% of NAMCS drug mentions are for nonprescription (over-the-counter (OTC)) drugs; 

about one sixth are for combination drugs.  The first column of Table 3 shows estimates 

of the vintage coefficient when OTC and combination drugs are included; the second 

column shows estimates when they are excluded.  Excluding OTC and combination drug 

mentions has very little effect on the estimated vintage coefficients. 

The third column of Table 3 shows estimates of vintage coefficients when we 

include an additional covariate in the model: log(PREVjt), where PREVjt is the estimated 

prevalence of (number of people reporting) condition j in year t.  In principle, it is 

possible that the introduction of new drugs for a condition could induce people with mild, 

previously-unreported cases of the condition, to begin reporting it.  As a result, the 

average reported severity of the condition (e.g. inability to work) would decline, but this 

would be due to an increase in reporting.  The data provide no support for this hypothesis, 

however: the coefficients on log(PREVjt) are generally (weakly) positive, indicating that 

severity and reported prevalence tend to move in the same direction, not in opposite 

directions.  Moreover, controlling for reported prevalence has very little effect on the 

estimated vintage coefficients.  Given this apparent robustness, we base the remainder of 

our analysis on the estimates presented in Table 2. 

                                        
26 NHIS collects data on subcategories of restricted activity days, i.e. work-loss days and bed-days.  
Vintage coefficients were never significant in regressions of these more detailed measures. 
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Recall that the vintage coefficients in columns 2 through 5 in Table 2 should be 

interpreted as new-drug vs. old-drug differences in mean limitations (LN – LO), and that 

to determine the effect of a one-year increase in vintage on L, one needs to divide these 

coefficients by an estimate of (VN – VO).  Vintages of pre-1939 drugs are unknown, but if 

we exclude pre-1939 drugs—and redefine old drugs as drugs for which (1939 < vintage < 

V*)—we can calculate (LN – LO)/(VN – VO).27  To determine the percentage effect on L 

of a one-year increase in vintage, we divide this ratio by the mean value of L.  Estimated 

percentage reductions in activity limitations from a one-year increase in vintage (based 

on V* = 1985) are: 

main_act_limit  1.0%

main_ work_limit  1.1%

any_work_limit  0.8%

unable_work  1.2%

restricted_days  1.0%

 

These estimates imply that activity limitations decline at the rate of about one percent per 

year of drug vintage.  Previous authors have argued that the annual rate of embodied 

technical progress should be measured as the percentage change in output from a one-

year increase in the vintage of an input divided by the input’s share in total cost of 

production. 28  CMS data indicate that during the period 1985-1996, the average share of 

prescription drug expenditure in national health expenditure was 5.6%.  This implies that 

the rate of pharmaceutical-embodied technical progress with respect to activity 

limitations was about 18% per year.29   

As discussed above, by combining these estimates with data on the average prices 

of new and old drugs, we can estimate the cost of the increase in drug vintage necessary 

to achieve reductions in activity limitations.  If use of a new drug does not reduce use of 

                                        
27 We calculate this by including two vintage variables in the model, e.g. POST39—the numb er of post-
1939 drugs consumed by people with the condition as % of total number of drugs consumed by people with 
the condition—and POST85, and dividing the POST85 coefficient by the difference between the mean 
vintage of 1939-1985 drugs (=1968) and the mean vintage of post-1985 drugs (=1989).  (In these 
regressions, the POST39 coefficient is never statistically significant.) 
28 In other words, if an input improves at the rate of 20% per year, and the input accounts for 5% of total 
cost of production, than improvement in the input causes output to increase 1% (= 5% * 20%) per year. 
29 As noted above, Sakellaris and Wilson (2000) estimate that “each vintage [of manufacturing equipment] 
is about 12 percent more productive than the previous year’s vintage (in the preferred specification).” 
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old drugs, the cost of a unit increase in (N_Rx * V) is PN.  If, on the other hand, there is 

1-for-1 substitution of new for old drugs, the cost of the unit increase in (N_Rx * V) 

would be the difference between the price of the new drug and the price of the old drug 

(PN – PO).  For convenience, we refer to these as upper- and lower-bound estimates, 

respectively, of the cost of a unit increase in (N_Rx * V).  To estimate cost per unit 

reduction in an activity limitations variable, we divide either PN or (PN – PO) by minus the 

vintage coefficient. 

These calculations are shown in Table 4.  Because the dependent variable in the 

restricted_days regression was the mean number of restricted activity days due to this 

condition in just the two weeks preceding the interview, we “annualized” these 

coefficients by expressing them as percentages of average 2-week restricted activity days 

(i.e., we divided by .838 = mean(restricted_days)), and then multiplied by average annual 

restricted activity days per person due to chronic conditions (8.3 days).  The annualized 

coefficients are about ten times as large in magnitude as the original (2-week) 

coefficients. 

The last column of Table 4 shows the average (across the 4 vintage thresholds) 

estimate of the vintage cost of reduced activity limitations.  The “upper bound” average 

estimate of the vintage cost of enabling a person to work (unable_work) is $2570; the 

“lower bound” average estimate is just over half as much ($1357).  The average annual 

earnings of a full- time year-round American worker are currently in the neighborhood of 

$35,000.  Hence the increase in vintage would be “cost-effective,” even if the earnings of 

the person enabled to work were a small fraction (e.g. 10%) of average earnings.  Costs 

of reducing work limitations and activity limitations in general are about half as great as 

the cost of shifting the person from completely unable to work to able to work. 

The upper- and lower-bound estimates of the cost of achieving one less restricted-

activity day are $34 and $18, respectively.  Average daily employee compensation is 

currently about $140, about four times the upper-bound estimate.  Though smaller than 

the other ratio of benefit to cost, the vintage- induced reduction in restricted activity days 

also appears to be highly “cost-effective.” 

Finally, notice that the vintage cost of reducing activity limitations generally 

declines as the vintage threshold (V*) increases.  While these differences may not be 
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statistically significant, they suggest that the relationship between vintage and activity 

limitations may be nonlinear—e.g., that the reduction in activity limitations from 

switching from a 1980 to a 1990 drug was greater than the reduction in activity 

limitations from switching from a 1970 to a 1980 drug. 

 

IV. Summary and Conclusions  

 
 
Per capita output depends on ability to work and labor supply as well as on output 

per hour worked.  Previous research indicates that R&D-driven technical progress (often 

embodied technical progress) has been the major source of increase in output per hour 

worked.  Pharmaceuticals are about three times as R&D-intensive as other goods and 

services.  We hypothesized that pharmaceutical-embodied technical progress increases 

per capita output via its effect on labor supply (the employment rate and hours worked 

per employed person).  If this is the case, the ability of a person with given medical 

conditions to work is positively related to the vintage of the drug(s) he consumes for 

those conditions, ceteris paribus.  Since inability to work increases steadily with age, an 

alternative way of stating this hypothesis is that use of newer drugs reduces the rate of 

human capital depreciation.   

First we examined the effect of changes during 1996-1998 in the average number 

of prescriptions consumed for a condition on the probability of missed work days.  The 

estimates indicated that conditions for which there were above-average increases in 

utilization of prescriptions tended to have above-average reductions in the probability of 

missed work days.  The estimated value to employers of the reduction in missed work 

days appears to exceed the employer’s increase in drug cost. 

We then examined, using different data, the effect of changes during 1985-1996 

in the average vintage of prescriptions consumed for a condition on five different, 

condition-specific measures of activity limitation, including limits on ability to work.  

There was considerable variation across conditions with respect to the rate of change in 

the drug vintage distribution; we relied on this to identify the effect of vintage on activity 

limitations.  
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The estimates were consistent with the hypothesis that an increase in a condition’s 

mean drug vintage reduces the probability that people with that condition will experience 

activity and work limitations, and reduces their average number of restricted-activity 

days.  The finding of a significant negative effect of drug vintage on activity limitations 

appeared to be quite robust to alternative vintage measures and definitions of activity 

limitations.  The estimates implied that activity limitations decline at the rate of about one 

percent per year of drug vintage, and that the rate of pharmaceutical-embodied technical 

progress with respect to activity limitations is about 18%. 

By combining these estimates with data on the average prices of new and old 

drugs, we estimated the cost of the increase in drug vintage necessary to achieve 

reductions in activity limitations.  We calculated both “upper-bound” estimates—which 

assume that use of a new drug does not reduce use of old drugs—and “lower-bound 

estimates”—which assume that there is 1-for-1 substitution of new for old drugs. 

The “upper bound” average estimate of the vintage cost of enabling a person to 

work is $2570; the “lower bound” average estimate is just over half as much ($1357).  

Since the average annual earnings of a full-time year-round American worker is about 

$35,000, the increase in vintage would be “cost-effective,” even if the earnings of the 

person enabled to work were a small fraction (e.g. 10%) of average earnings.  Costs of 

reducing work limitations and activity limitations in general are about half as great as the 

cost of shifting the person from completely unable to work to able to work. 

The upper- and lower-bound estimates of the cost of achieving one less restricted-

activity day are $34 and $18, respectively.  Average daily employee compensation is 

currently about $140, about four times the upper-bound estimate.  Though smaller than 

the other ratio of benefit to cost, the vintage- induced reduction in restricted activity days 

also appears to be highly “cost-effective.” 

The evidence suggests that the relationship between vintage and activity 

limitations may be nonlinear—e.g., that the reduction in activity limitations from 

switching from a 1980 to a 1990 drug was greater than the reduction in activity 

limitations from switching from a 1970 to a 1980 drug. 
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Figure 1
Determinants of per capita output
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Figure 2
Existing evidence on the contribution of technical progress to growth in per capita output
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Figure 3
Hypothesized additional contribution of technical progress to growth in per capita output
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Figure 4
Industrial R&D funds as a percent of net sales in R&D-performing companies, 1997
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Figure 5
Percent of people unable to work, by age
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Figure 6
Potential nonlinearity in the relationship between 

drug vintage (V) and activity limitations (L)
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Figure 7
Alternative estimates of the number of new molecular entities 

approved by the FDA, by year, 1939-1998

0

10

20

30

40

50

60

19
39

19
45

19
47

19
49

19
51

19
53

19
55

19
57

19
59

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

Year

N
u

m
b

er
 o

f 
n

ew
 m

o
le

cu
la

r 
en

ti
ti

es
 a

p
p

ro
ve

d

List 1: NMEs approved 1950-1993

List 2: NDAs approved 1939-1997

Source: unpublished FDA data.



Figure 8
Mean vintage of drugs prescribed, 1980-1998
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Figure 9
Fraction of prescriptions that were for drugs 

approved after given dates, by year, 1980-1998
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Rank
Number of 
occurrences ingredient

1 34,834 AMOXICILLIN
2 32,847 ACETAMINOPHEN
3 15,356 IBUPROFEN
4 15,148 ALBUTEROL
5 14,648 ASPIRIN
6 14,530 HYDROCHLOROTHIAZIDE
7 12,157 FUROSEMIDE
8 11,966 GUAIFENESIN
9 11,737 ESTROGENS

10 10,745 ERYTHROMYCIN
11 10,406 PHENYLEPHRINE
12 9,674 DIGOXIN
13 9,461 LEVOTHYROXINE
14 9,159 PREDNISONE
15 9,112 CODEINE
16 9,040 TRIAMCINOLONE
17 8,890 HYDROCODONE
18 8,733 CEPHALEXIN
19 8,659 PHENYLPROPANOLAMINE
20 8,502 PSEUDOEPHEDRINE
21 8,441 TRIMETHOPRIM
22 8,009 NAPROXEN
23 7,890 NIFEDIPINE
24 7,890 BECLOMETHASONE
25 7,888 DILTIAZEM
26 7,736 SULFAMETHOXAZOLE
27 7,514 RANTIDINE
28 7,503 POTASSIUM REPLACEMENT SOLUTIONS
29 7,345 INSULIN
30 7,076 ENALAPRIL
31 6,826 INFLUENZA VIRUS VACCINE
32 6,693 HYDROCORTISONE
33 6,686 TRIAMTERENE
34 6,618 ESTRADIOL
35 6,603 ATENOLOL
36 6,502 GLYBURIDE
37 6,496 VERAPAMIL
38 6,375 LISINOPRIL
39 6,361 CHLORPHENIRAMINE
40 6,256 FLUOXETINE HYDROCHLORIDE
41 6,108 POLYMIXIN B
42 5,925 ALPRAZOLAM
43 5,680 DEXAMETHASONE
44 5,673 PROPOXYPHENE
45 5,670 MEDROXYPROGESTERONE
46 5,667 LORATADINE
47 5,553 PROMETHAZINE
48 5,475 SERTRALINE
49 5,393 WARFARIN
50 5,318 CLARITHROMYCIN

Average annual number of occurrences of the 50 most frequent generic substances in 
drug mentions at office visits: United States, 1994-1996

Table 1
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Percent of 1998 prescriptions that were for drugs approved by the FDA after 1980, 

by condition (conditions with more than 20 million prescriptions)



Column: 1 2 3 4 5
Vintage measure: V_Mean post70 post80 post85 post90

Dependent variable: main_act_limit (mean = 0.198)
vintage coefficient -0.00053 -0.03796 -0.03492 -0.05968 -0.07747
std. err. 0.00018 0.00885 0.00831 0.0136 0.02029
t-stat -3.03 -4.29 -4.2 -4.39 -3.82
p-value 0.0026 <.0001    <.0001  <.0001 0.0001

Dependent variable: main_ work_limit (mean = 0.152)
vintage coefficient -0.00038 -0.03129 -0.02904 -0.05094 -0.06498
std. err. 0.00016 0.00833 0.00782 0.01279 0.01907
t-stat -2.32 -3.76 -3.71 -3.98 -3.41
p-value 0.0206 0.0002 0.0002  <.0001 0.0007

Dependent variable: any_work_limit (mean = 0.258)
vintage coefficient -0.00054 -0.03534 -0.0367 -0.0625 -0.05934
std. err. 0.00018 0.00914 0.00855 0.01398 0.021
t-stat -3.01 -3.87 -4.29 -4.47 -2.83
p-value 0.0028 0.0001   <.0001   <.0001 0.0049

Dependent variable: unable_work (mean = 0.095)
vintage coefficient -0.00016 -0.01647 -0.01546 -0.03401 -0.04806
std. err. 0.00013 0.00665 0.00624 0.01018 0.01513
t-stat -1.23 -2.48 -2.48 -3.34 -3.18
p-value 0.2203 0.0135 0.0135 0.0009 0.0016

Dependent variable: restricted_days (mean = 0.838)
vintage coefficient -0.00328 -0.17585 -0.13504 -0.25134 -0.17854
std. err. 0.00136 0.06938 0.06523 0.10674 0.1592
t-stat -2.41 -2.53 -2.07 -2.35 -1.12
p-value 0.0163 0.0115 0.0389 0.0189 0.2626

Table 2
Estimates of vintage coefficients from eq. (6):

alternative measures of activity limitation and drug vintage 



Column: 1 2 3
Vintage measure: post80 post80 post80
OTC & combination drugs included excluded excluded
log(prevalence) excluded excluded included

Dependent variable: main_act_limit (mean = 0.198)
vintage coefficient -0.03492 -0.02842 -0.02643
std. err. 0.00831 0.0062 0.00626
t-stat -4.20 -4.59 -4.22
p-value    <.0001    <.0001   <.0001

Dependent variable: main_ work_limit (mean = 0.152)
vintage coefficient -0.02904 -0.02587 -0.02412
std. err. 0.00782 0.0058 0.00586
t-stat -3.71 -4.46 -4.12
p-value 0.0002    <.0001   <.0001

Dependent variable: any_work_limit (mean = 0.258)
vintage coefficient -0.0367 -0.03195 -0.0298
std. err. 0.00855 0.00636 0.00643
t-stat -4.29 -5.02 -4.64
p-value   <.0001   <.0001   <.0001

Dependent variable: unable_work (mean = 0.095)
vintage coefficient -0.01546 -0.01399 -0.01279
std. err. 0.00624 0.00469 0.00475
t-stat -2.48 -2.98 -2.69
p-value 0.0135 0.003 0.0073

Dependent variable: restricted_days (mean = 0.838)
vintage coefficient -0.13504 -0.08221 -0.08359
std. err. 0.06523 0.05864 0.05945
t-stat -2.07 -1.40 -1.41
p-value 0.0389 0.1615 0.1602

Table 3
Effects of excluding OTC & combination drugs and

controlling for changes in prevalence



Column: 1 2 3 4 5
Vintage threshold: 1970 1980 1985 1990 average

Drug prices
PN $52.35 $59.08 $65.54 $65.15
PO $26.09 $26.66 $29.61 $32.38
PN - PO $26.26 $32.42 $35.92 $32.76

vintage coefficients
main_act_limit -0.038 -0.035 -0.060 -0.077
main_ work_limit -0.031 -0.029 -0.051 -0.065
any_work_limit -0.035 -0.037 -0.062 -0.059
unable_work -0.016 -0.015 -0.034 -0.048
restricted_days 
(annualized) -1.742 -1.337 -2.489 -1.768

"Upper-bound cost estimates": PN / -(vintage coefficient)
main_act_limit $1,379 $1,692 $1,098 $841 $1,252
main_ work_limit $1,673 $2,034 $1,287 $1,003 $1,499
any_work_limit $1,481 $1,610 $1,049 $1,098 $1,309
unable_work $3,178 $3,820 $1,927 $1,356 $2,570
restricted_days 
(annualized) $30 $44 $26 $37 $34

"Lower-bound cost estimates": (PN - PO) / -(vintage coefficient)
main_act_limit $692 $928 $602 $423 $661
main_ work_limit $839 $1,116 $705 $504 $791
any_work_limit $743 $883 $575 $552 $688
unable_work $1,594 $2,096 $1,056 $682 $1,357
restricted_days 
(annualized) $15 $24 $14 $19 $18

Table 4
Estimated costs of increase in vintage necessary to achieve reductions in activity limitations




