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1 Introduction

Democratic institutions are characterized by a wide variety of rules and procedures

for collective deliberation. A central objective of research in political economy

is to identify the effects of these characteristics on policy outcomes, and on the

distribution of political power (see Persson and Tabellini [2001] and Besley and

Case [2001] for recent reviews of the literature). Previous research indicates that

the rules governing agenda setting are especially critical.

The fundamental importance of agenda control was established by McKelvey

[1976,1979], whose primary objective was to study voting intransitivities. McKelvey

considered a model in which proposals are considered in a known, deterministic order

established in advance of all voting (the agenda). The first policy is compared to

the second based on majority rule, the winner is compared to the third, and so

forth, with the ultimate victor enacted into law.1 He assumed that voters are

myopic, in the sense that they vote in favor of their preferred policy in every stage,

irrespective of the implications for the final outcome. Under fairly weak conditions,

he demonstrated that, for any two policies p and p0, there is a finite agenda that starts

with p and implements p0. Thus, the ultimate outcome is completely determined

by the agenda. Shepsle and Weingast [1984] subsequently established that the

introduction of strategically sophisticated voting weakens McKelvey’s result, but

does not fundamentally alter the conclusion that the agenda plays a critical role in

policy selection.2

In light of these results, it is important to understand the processes through

which agendas are determined. The existing literature attacks this issue in three

different ways. Some papers consider settings in which the agenda is selected by

a single individual (see Shepsle and Weingast [1984], Banks [1985], Miller [1980],

and Bloch and Rottier [2000]). Others assume that the agenda is determined as

the result of strategic interaction among influential individuals (see Austen-Smith

[1987], Banks and Gasmi [1987], Lockwood [1998], Penn [2001], and Dutta, Jackson,

and Le Breton [2001]). An alternative approach is to finesse the problem by identi-

1This is known in the literature as a “forward” agenda. With a “backward” agenda, the policy
emerging from the succession of pairwise comparisons is implemented only if it majority-defeats
some exogenously given status quo (otherwise the status quo prevails).

2 More precisely, they demonstrated that, for any two policies p and p0, there is a finite agenda
that starts with p and implements p0 provided that p does not cover p0. The policy p covers the
policy p0 if (1) p defeats p0 by majority rule; and (2) every policy p00 that defeats p also defeats p0.



2

fying outcomes that are robust, in the sense that they emerge whenever the policy

in question is included in the agenda (see Shepsle and Weingast [1984] and Fere-

john, Fiorina and McKelvey [1987]). Not surprisingly (given the results described

above), the existence of such robust outcomes is difficult to guarantee.3 For the first

approach, considerable political power is concentrated in the hands of the agenda

setter. The implications of the second and third approaches for the distribution of

power are less clear.

Despite this variety of approaches, the literature has adhered to the restrictive

assumption that the sequence of proposals is known in advance of all voting (“ad-

vance” agenda setting). For many democratic institutions, the agenda is determined

during the course of deliberation, in “real time,” so that the dynamics of proposing

and voting are interlocked.4 Participants in these processes have the opportunity

and incentive to make different proposals depending on the outcomes of previous

votes.

The purpose of this paper is to examine real-time agenda setting in a simple de-

mocratic institution. In particular, we imagine that there is a group of individuals

charged with making a collective choice. There is also an initial status quo policy,

possibly one inherited from previous rounds of deliberation. Individuals are recog-

nized sequentially in some predetermined order. Once recognized, an individual

makes a proposal, which is immediately put to a vote. Individuals are permitted

to condition both their proposals and their votes on all preceding events, including

other proposals and votes. Passage of a proposal requires a simple majority. If a

proposal passes, it becomes the new status quo and supersedes all previously passed

proposals. The policy that emerges from this process is implemented.5

The institution described in the preceding paragraph differs from the standard

model of agenda setting only with respect to the timing of proposals. This per-

mits us to isolate the differences between real-time and advance agenda setting.

In the sequel to this paper (Bernheim, Rangel, and Rayo [2002]), we explore the

implications of real-time agenda setting for a wider (and more realistic) class of

3For institutions with forward agendas, such outcomes exist only if the policy space contains a
Condorcet winner. However, for institutions with backward agendas and “pork-barrel” politics,
existence is guaranteed, and the robust outcome benefits a bare majority of agents at the expense
of a bare minority. See Shepsle and Weingast [1984] and Ferejohn, Fiorina, and McKelvey [1987].

4For example, in the U.S. Congress, when the queue of unvoted amendments reaches size four,
a vote must be taken before further proposals can be made (see Oleszek [2001], chapter 5).

5In other words, we model institutions with forward agendas. In Bernheim, Rangel, and Rayo
[2002], we consider insitutions with real-time agenda setting and backward agendas.
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institutions.

We begin our analysis with the observation that real-time agenda setting always

leads to the selection of a Pareto efficient outcome. Consequently, the bulk of

this paper focuses on distribution. For some familiar classes of policy spaces that

give rise to rich distributional politics, we show that the last proposer is effectively a

dictator under a variety of natural conditions. Most notably, this occurs whenever a

sufficient number of individuals have opportunities to make proposals. Thus, under

reasonably general assumptions, control of the final proposal with real-time agenda

setting confers as much political power as control of the entire agenda. Despite the

fact that a majority is required to pass any particular proposal, the process can lead

to an outcome that makes every member of the group worse off relative to inaction,

save for the last proposer. Ironically, the last proposer need not have dictatorial

powers unless a sufficient number of individuals participate in setting the agenda.6

Accordingly, within the class of institutions considered in this paper, reforms that

appear to be inclusive from a procedural perspective (by promoting “participatory

democracy” or guaranteeing a “right to be heard”) can have the unintended effect

of concentrating political power.

This paper is also related to the literature on stochastic bargaining (see, e.g.,

Baron and Ferejohn [1989], Merlo and Wilson [1995], Diermier and Merlo [2000],

Banks and Duggan [1998, 2000, 2001], and Eraslan [1998]), which similarly considers

institutions in which the members of a group vote on proposals sequentially. As

with real-time agenda setting, each proposal is made after the group has voted on

the previous proposal, rather than in advance of all voting.7 However, in contrast

to the literature on agenda setting, once the group approves a proposal, the process

terminates and the proposal is implemented. Consequently, these institutions do

not allow for reconsideration of decisions once a policy receives majority approval.

This is an important limitation in that, as a practical matter, policy makers can

and do revisit previous decisions (indeed, every policy reform bill has this charac-

teristic). The passage of a bill specifying the policy that is to prevail in some future

year does not typically preclude a legislature from altering that policy by passing

another “reform” bill before the year in question arrives; however, it does alter

6With a single proposal round, the outcome typically depends on the status quo. In particular,
a status quo that is less desirable from the perspective of a majority of the voters leads to a better
outcome for the proposer. See e.g. Romer and Rosenthal [1978].

7In the literature on stochastic bargaining, the order of proposers is determined randomly during
the course of play.
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the default option against which new alternatives are considered. The institutions

studied in the agenda control literature (including the ones examined in this paper

and its companion) are of interest in part because they allow for reconsideration.

This distinction has an important formal counterpart. For models of stochastic

bargaining, proposals may depend upon history for strategic reasons, but there is

no state variable (unless amendments are permitted). To the extent one focuses on

Markov-perfect equilibrium, members of the group might just as well announce their

proposals in advance. In contrast, with real-time agenda setting, history always

matters because there is a state variable (the current status quo).

The remainder of this paper is organized as follows. Section 2 lays out the

basic model. Section 3 presents some general results, including the selection of

Pareto efficient outcomes and Condorcet winners (where they exist). Section 4

specializes to a familiar policy space with rich distributional politics, and proves

our dictatorship results. Section 5 extends the results to other policy spaces. We

conclude in section 6 with a summary of our findings, and a discussion of results

from Bernheim, Rayo, and Rangel [2002] concerning alternative institutions, rules,

and procedures. To familiarize the reader with our analytic techniques, we include

the proofs of several key propositions in the text. Other proofs are contained in

the appendix.

2 The Model

Consider a decision-making body (“the group”) consisting of N individuals, labelled

l = 1, ..., N , where N ≥ 5. To avoid complications arising from tie votes, we assume

for convenience that N is odd. Let M ≡ N+1
2 denote the size of the smallest

majority.

2.1 Policies and Payoffs

The group must select a policy p ∈ P , where P denotes the set of feasible policies.

Let vl(p) denote the payoff to individual l if policy p is implemented. Except where

indicated, we impose the following two assumptions throughout:

Assumpiton A1: The policy space P is finite.

Assumption A2: Individuals have strict preferences over policies: p 6= p0 ⇒
vl(p) 6= vl(p0).
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Assumptions A1 and A2 are relatively innocuous. Indeed, given A1, any fail-

ure of A2 is non-generic. We nevertheless acknowledge that these assumptions rule

out some interesting and important cases, including the familiar “divide-the-dollar”

problem. The analytics of the divide-the-dollar problem are considerably more com-

plicated because one can exploit indifference to contrive elaborate history-dependent

strategies. However, as we show in section 5, our central conclusions extend to that

case largely intact.

2.2 Procedures for Collective Choice

The collective choice process consists of a sequence of T “proposal rounds.” Activity

prior to each round t establishes some “status quo” policy, pt−1. Round t begins

when individual i(t) is recognized. For now, both the initial status quo policy,

p0, and the order of recognition, i : {1, ..., T} → {1, ...,N}, are predetermined and
known to all individuals as of round 1. Recognition provides an individual with the

opportunity to make a proposal, pmt , which can be any element of P . The proposal

is then put to an immediate vote against pt−1. If it receives majority approval

(“passes”), it displaces pt−1 as the status quo policy (pt = pmt ). If it does not

pass, the status quo policy remains the same for the following round (pt = pt−1).

Equivalently, one can think of any given proposal as adding to, deleting, or replacing

portions of the prevailing status quo policy.8 In effect, the round t proposal consists

of the differences between pt−1 and pmt .

The ultimate fate of the policy that emerges from the last proposal round, pT ,

is determined in some final stage of the collective choice process. As an example,

consider an institution with a “backward” agenda: the final stage is a final up-or-

down vote against an exogenous policy pE; if pT wins it becomes law, otherwise

8It may at first seem odd to assume that a new proposal, once passed, displaces all policies
previously passed. However, this assumption involves essentially no loss of generality. It is
important to keep in mind that a policy (and therefore a proposal), as we have defined it, involves
a complete description of all collective actions, and not merely the component actions pertaining
to some particular subset of issues. To illustrate, consider the following example. Imagine that
the government faces two choices: whether to build bombers, and whether to save whales. In each
instance, there are two possibilities: build the bombers (B) or not (NB), and save whales (S) or not
(NS). There are four possible policies: (B,S), (NB,S), (B,NS), and (NB,NS). Imagine also that
the initial status quo policy (p0) involves no action (NB,NS). If the first recognized individual
wishes to propose to build bombers, he will propose (B,NS). If this passes, and if the second
individual wishes to save the whales, she proposes (B,S). Though the second proposal, if passed,
technically displaces the first, it is clear that indivdiuals are actually voting on the incremental
component policy S.
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pE is implemented.9 In most of the paper we focus on the simplest possibility:

pT is directly enacted into law. Nevertheless, for reasons that will become clear

in the next section, it is analytically useful to allow for greater generality at the

outset. For our purposes, we abstract from institutional details and simply assume

that it is possible to derive some reduced form representation of the final stage,

Ω : P → P . In other words, when the policy pT emerges from the final stage, the

ultimate outcome is Ω(pT ). Obviously, this framework includes the special case

of a degenerate final stage, wherein pT becomes law without further modification

(Ω(p) ≡ p).

2.3 Behavioral assumptions

Throughout our analysis, we assume that (1) individuals are strategically sophis-

ticated, and (2) they always vote as if they are pivotal. We make the second as-

sumption to deal with the familiar problem of indifference among non-pivotal voters,

which otherwise gives rise to a vast multiplicity of equilibria. The equilibria that we

rule out through the second assumption are unreasonable because agents cast votes

that are contrary to their true preferences. Together, our two assumptions imply

that individuals compare the continuation equilibrium if a proposal passes with the

continuation equilibrium if it is defeated, and cast their vote for the option that

yields the preferred continuation path. We also confine attention to pure strategy

subgame perfect equilibria. Henceforth, the term “equilibrium” should therefore

be construed as indicating a pure strategy subgame perfect equilibrium with the

preceding characteristics.

3 Some general results

3.1 An equivalence result for final stages

Let Ω(P ) denote the image of all points in P under the mapping Ω. Plainly, the

final policy outcome must belong to the set Ω(P ). Let J ≡ {j | j = i(t) for some
t = 1, ..., T}; this is the set of individuals who are recognized at least once.

Our first result establishes an extremely simple yet important equivalence prin-

ciple:

9Institutions with final up-and-down votes (backward agendas) are considered, among others,
by Ferejohn, Fiorina, and McKelvey [1987].
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Lemma 1: Consider a policy set P satisfying A1 and A2. An institution with

policy set P , initial status quo p0, and final stage Ω yields the same equilibrium

policy outcome as an otherwise identical institution with policy set Ω(P ), initial

status quo Ω(p0), and a degenerate final stage.

The proof of lemma 1 is completely straightforward, and, in effect, involves

relabeling of branches and nodes in the extensive form of the game, as well as

deletion of redundant branches. The lemma is useful because it implies that we can

understand all institutions in this class (including those with backward agendas) by

studying institutions with degenerate final stages (i.e., those with forward agendas).

In particular, if one wishes to know the outcome generated by an institution with

a non-degenerate final stage, one need only derive a reduced form mapping for the

final stage (Ω), and then consider an equivalent institution with a smaller policy

space (Ω(P )) and a degenerate final stage.

3.2 The recursive structure of equilibria

Lemma 1 is also important because it allows us to provide a useful recursive char-

acterization of the equilibria for these models. This requires some additional nota-

tion.

For any P 0 ⊆ P and p0 ∈ P 0 define

Z(p0, P 0) ≡ {q ∈ P 0 | ∃ S ⊆ {1, ...,N} with |S| ≥M and vl(q) ≥ vl(p0) for all l ∈ S}.

This is the set of policies in P 0 that (weakly) defeat p0 by majority rule. The use of

weak inequalities here implies that p0 ∈ Z(p0, P 0). However, in light of our genericity
assumption, strict inequalities hold for all other p ∈ Z(p0, P 0). Next, define

ϕl(p
0, P 0) ≡ arg max

q∈Z(p0,P 0)
vl(q).

This represents individual l’s most preferred element of the set Z(p0, P 0). Under

assumptions A1 and A2, this function is well defined. Finally, define

Φl(P
0) ≡ ϕl(P

0, P 0).

This is simply the image of the set P 0 under the mapping ϕl(·, P 0).
Now we exhibit the recursion. Consider first the following institution:
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Institution #1: T proposal rounds, a recognition order i(t) (for t = 1, ..., T ), a

policy space P , an initial status quo p0, and a degenerate final stage.

Observe that, without altering the game in any substantive way, one can think

of the final proposal round as part of the final stage. The policy that emerges

from round T − 1, pT−1, then serves as the input for the final stage. For any

particular pT−1, solving this final stage is straightforward: i(T ) proposes the policy

in P she most prefers among those that (weakly) defeat pT−1. In other words,

Ω(pT−1) = ϕi(T )(pT−1, P ). Lemma 1 tells us that this is in turn equivalent to the

following institution:

Institution #2: T −1 proposal rounds, a recognition order i(t) (for t = 1, ..., T −
1), a policy space Φi(T )(P ), an initial status quo ϕi(T )(p0, P ), and a degenerate

final stage.

The preceding argument demonstrates that a basic institution with T proposal

rounds and a degenerate final stage is equivalent to another basic institution with

T − 1 proposal rounds and a degenerate final stage, where the policy space has
been appropriately reduced, and where the initial status quo has been appropriately

transformed. The same argument implies that these institutions are in turn equiv-

alent to another basic institution with T − 2 proposal rounds and a degenerate final
stage, where the policy space has been further reduced to Φi(T−1) ◦ Φi(T )(P ), and
where the initial status quo has been further transformed.

Where does this argument ultimately lead? Recursive application of the same

equivalence principle implies that the original institution is equivalent to a basic

institution with zero proposal rounds and a degenerate final stage, where the policy

space is

Φi(1) ◦ ... ◦Φi(T−1) ◦ Φi(T )(P ),

and where the initial status quo has been appropriately transformed. Since this

institution is completely degenerate, the transformed initial status quo is simply

enacted into law.

According to the preceding argument, for any initial status quo p0 ∈ P , the
initial institution must generate an outcome in the set Φi(1) ◦ ... ◦Φi(T−1) ◦Φi(T )(P ).
Notice that we can solve for this set through mechanical application of the Φi map-

pings. This allows us to completely characterize all possible outcomes of the leg-
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islative process, for any conceivable initial status quo, without fully specifying the

equilibrium strategies.

For some of the arguments appearing later in this paper, it is also convenient to

define a function Qt(pt−1) that maps the status quo pt−1 in round t to the eventual

equilibrium outcome. The map is defined recursively as follows:

QT (pT−1) ≡ ϕi(T ) (pT−1, P )

and, for t < T ,

Qt(pt−1) ≡ ϕi(t)(Qt+1(pt−1), Qt+1(P )).

This intuitive construction corresponds to backward induction. Consider the prob-

lem of individual i(t) in round t when the status quo is pt−1. If proposal p0 passes in

round t, the status quo for round t+1 is p0, and the eventual outcome is Qt+1(p0). If

no new proposal passes in round t, the status quo for round t+1 is pt = pt−1, and the

eventual outcome is Qt+1(pt−1). Thus, i(t)’s problem is to choose the best policy in

the set of continuation outcomes Qt+1(P ) that can (weakly) defeat the continuation

status quo Qt+1(pt−1) by majority rule. The solution is ϕi(t)(Qt+1(pt−1), Qt+1(P )).

Note that Qt(P ) = Φi(t) ◦ ...◦Φi(T−1) ◦Φi(T )(P ). Thus, Qt(P ) denotes the set of
policies that can emerge as final outcomes if one places no restrictions on the status

quo for round t. Since Φl(R) ⊆ R for all R ⊆ P , every application of a Φl mapping
shrinks the set of possible final outcomes. It follows that the sets {Qt(P )}Tt=1 are
nested: Q1(P ) ⊆ Q2(P ) ⊆ ... ⊆ QT (P ).

3.3 Pareto efficiency

One can evaluate institutions with respect to the efficiency and distributional char-

acteristics of the outcomes they generate. With respect to efficiency, we have the

following simple result:

Theorem 1: Consider an institution with a degenerate final stage and a policy set

P satisfying A1 and A2. Then the outcome, pT , is Pareto efficient in P .

Proof: We know that pT ∈ Φi(T )(P ). Consequently, we need only demonstrate

that all points in Φi(T )(P ) are Pareto efficient in P . Consider some p ∈
Φi(T )(P ), and suppose contrary to the theorem that it is not Pareto efficient

in P . In light of assumption A2, there is some p∗ ∈ P such that every

individual strictly prefers p∗ to p. We know that there is some p0 such that p =
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ϕi(T )(p
0, P ) = argmaxq∈Z(p0,P ) vi(T )(q). But p∗ ∈ Z(p0, P ), and vi(T )(p∗) >

vi(T )(p), which is a contradiction. Q.E.D.

Theorem 1 assures us that the collective outcome will always lie on the Pareto

frontier. Consequently, starting in the next section, our analysis focuses on distri-

butional politics.

3.4 Selection of Condorcet winners

Bearing in mind the equivalence result of section 3.1, we will continue to focus on

processes with degenerate final stages. In general, there is no reason to believe

that the policy set P will contain a Condorcet winner (defined as a policy that is

majority preferred to all other policies). However, it is natural to wonder whether

the collective choice process will select a Condorcet winner if one exists. As it turns

out, this question is central to a number of the results proven in later sections.

Plainly, there are institutions of the form considered here that do not select

Condorcet winners. As an example, consider an institution with a single proposal

round. For any given initial status quo p0, there is no particular reason to believe

that the Condorcet winner, pc, is the recognized individual’s preferred outcome in

Z(p0, P ). Indeed, it is entirely possible that this individual prefers p0 to p
c.

Despite the preceding observation, the group will select a Condorcet winner,

assuming that one exists, provided that a sufficiently diversified set of individuals

have opportunities to make proposals.

Theorem 2: Consider an institution with a degenerate final stage, and a policy set

satisfying A1 and A2. Suppose that there is a Condorcet winner pc in P . Then

pc is the final outcome regardless of the initial status quo (i.e., Q1(P ) = {pc})
whenever:

(1) |J | ≥M , or
(2) pc is the preferred policy in P for some individual l ∈ J.

Proof: Consider any R ⊆ P with pc ∈ R. For all l, we have pc ∈ Φl(R) (since
pc = ϕl(p

c, R)). Moreover, for all p ∈ Φl(R), we have vl(p) ≥ vl(pc) (since
pc ∈ Z(p0, R) for all p0 ∈ P ). Using the fact that Qt(P ) = Φi(t) (Qt+1(P ))

(with QT+1(P ) ≡ P ) and applying induction, we therefore know that vl(p) ≥
vl(p

c) for all l ∈ J and p ∈ Q1(P ). By assumption A2, it follows that either
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p = pc or vl(p) > vl(p
c) for all l ∈ J . Conditions (1) and (2) both rule out

the latter possibility. Q.E.D.

For environments with single-dimensional policy sets and single-peaked prefer-

ences, theorem 2 provides conditions under which the desires of the median voter

prevail (just as in Downs’ [1957] model of electoral competition). From lemma 1, we

know that an analog of theorem 2 holds for basic institutions with non-degenerate

final stages whenever there exists a Condorcet winner in Ω(P ). This latter obser-

vation will prove useful in the next section.

4 Dictatorship results

To characterize the possible outcomes of the collective choice process with greater

precision, one must place some restrictions on the set of feasible policies. In this

section, we restrict attention to a particular class of policy sets that give rise to

rich distributional politics. Models with similar payoff structures appear elsewhere

in the theoretical literature concerning legislative policy making (see, e.g., Ferejohn

[1974] or Ferejohn, Fiorina, and McKelvey [1987]). We extend our analysis to other

types of policy sets in section 5.

For each individual, we assume that there is an associated “elementary policy.”

Let E ≡ {1, ..., N} denote the set of all elementary policies. Each l ∈ E produces

highly concentrated benefits and diffuse costs. In particular, policy l generates a net

benefit bl > 0 for individual l, and a cost cl > 0 for every individual (including l).

A policy p is a collection of elementary policies. The set of feasible policies P is the

power set of E; that is, the set of all possible combinations of elementary policies.

P includes the empty set ∅, which represents inaction (nothing is implemented).
Payoffs are additively separable:

vl(p) = −
X
j∈p

cj +

½
bl if l ∈ p
0 otherwise.

Henceforth, we will refer to P as a CBDC policy set (for concentrated benefits,

diffuse costs). We impose two additional assumptions:

Assumption A3: Total costs are increasing in the number of elementary policies.

Specifically, |p| < |p0|⇒P
j∈p cj <

P
j∈p0 cj .
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Assumption A4: A mutually beneficial policy (relative to p = ∅) exists for all
coalitions consisting of M or fewer individuals. In particular, for every policy

p with |p| ≤M , bl >
P
j∈p cj for all l ∈ p.

When all elementary policies are equally costly, Assumption A3 is trivially sat-

isfied. Consequently, this assumption effectively restricts the degree to which costs

can vary across elementary policies. For our main result, it is possible to relax this

assumption considerably (see section 5).

Assumption A4 guarantees the existence of policies that are preferred to inaction

by a majority of voters. It also guarantees that there exists such a policy for any

bare-majority coalition. If there does not exist a policy that is mutually beneficial

for all members of some majority coalition, then p = ∅ is a Condorcet winner. It

follows that the group selects ∅ under the conditions identified in Theorem 2, as

well as when p0 = ∅. Ironically, the ability to assemble majoritarian coalitions is
therefore essential for the emergence of the dictatorial outcomes derived below. Note

finally that, under assumption A4, the universalistic policy p = E need not maximize

social surplus. Consider, for example, the case of N = 5 with b1 = ... = b5 = 8,

c1 = c2 = c3 = 2, and c4 = c5 = 1. Assumption A4 is clearly satisfied, but the

surplus maximizing policy is {4, 5}.
We divide the analysis of CBDC policy sets into three subsections. The first

considers deterministic institutions in which many individuals have opportunities to

make proposals (“inclusive recognition orders”). We demonstrate that, as long a

sufficient number of individuals are recognized at some point during deliberations, a

dictatorial outcome emerges for every recognition order and every initial status quo.

The second considers deterministic institutions in which relatively few individuals

have opportunities to make proposals (“exclusive recognition orders”). Our analysis

of these environments shows that the dictatorial policy occurs with high frequency

when this outcome is not guaranteed. The third considers institutions in which the

recognition order, the number of proposal rounds, or both may be random (“random

recognition processes”). Our discussion subsumes the possibility that there is no

finite bound on the number of proposal rounds. We show that a dictatorial outcome

continues to emerge under reasonable, though somewhat restrictive assumptions

about the manner in which uncertainty is resolved.
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4.1 Inclusive recognition orders

Some collective choice processes plainly yield majoritarian outcomes. Consider,

for example, an institution with a degenerate final stage and one proposal round

(T = 1). Imagine that the initial status quo is inaction (p0 = ∅). Then the outcome
necessarily consists of M elementary policies. Specifically, the policy includes the

elementary policy i(1) and the M − 1 least costly elementary policies other than
i(1).

Compare the institution discussed in the previous paragraph to one that is more

inclusive. In particular, imagine that a large fraction of the individuals — perhaps

all of them — have opportunities to make proposals (an inclusive recognition order).

The latter institution certainly seems more egalitarian. Our next result shows that,

in the presence of real-time agenda setting, greater inclusiveness can concentrate all

political power in the hands of a single individual.

Theorem 3: Consider an institution with a degenerate final stage, a CBDC policy

set satisfying A1-A4, and N ≥ 5 individuals. Provided that either |J | > M or

i(T ) proposes more than once, the unique outcome is the policy p = {i(T )}.

Theorem 3 identifies conditions under which the last proposer, i(T ), is a dictator

in the following sense: she obtains her most preferred outcome, {i(T )}, irrespective
of the initial status quo, the order of recognition, or the costs and benefits associated

with any particular elementary policy (provided that A1 through A4 are satisfied).

It is important to emphasize the perversity of this outcome. When, for example, the

initial status quo is the null policy ∅, all individuals other than i(T ) strictly prefer it
to the final outcome. If the group simply failed to meet, everyone would be better

off except i(T ). The group produces a result that is contrary to the interests of

almost every member, even though no proposal can pass without majority support.

Theorem 3 has the following ironic implication: within the class of institutions

considered in this paper, reforms that appear to be inclusive from a procedural per-

spective (by promoting “participatory democracy” or guaranteeing a “right to be

heard”) can have the unintended effect of concentrating political power. For exam-

ple, a majoritarian outcome results when the group entertains only a single proposal,

but dictatorship emerges when every individual is allowed to make a proposal.
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4.1.1 An example

We illustrate the logic of theorem 3 through a simple example. Suppose that

N = 5, and c1 < ... < c5. To stack things against our result, we assume that

the last proposer is associated with the most costly elementary policy (i(T ) = 5).

The first step in solving for an equilibrium is to identify the final outcome for every

status quo, pT−1, that the last proposer might inherit. There are two possible cases:

(1) pT−1 does not include 5, and (2) pT−1 includes 5.

Consider case (1). There are four possibilities. Possibility (a): | pT−1| = 4

(i.e., |pT−1| = {1, 2, 3, 4}). In this case i(T ) proposes {1, 2, 5}, which passes with
the support of individuals 1, 2, and 5. Possibility (b): | pT−1| = 3 . In this case,

i(T ) drops the two most expensive policies and adds her own. For example, if

pT−1 = {1, 2, 4}, she proposes {1, 5}, which passes with the support of individuals
1, 3, and 5. Possibility (c): | pT−1| = 2 (e.g., {1, 2}). In this case i(T ) drops both
of the elementary policies in pT−1 and adds her own. This leads to the dictatorial

outcome {5}. Possibility (d): | pT−1| = 1. In this case i(T ) drops the elementary

policy in pT−1 and adds 3 others, including her own. For example, if pT−1 = {1},
she proposes {2, 3, 5}. Thus, in case (1), the only possible outcomes are of the form
{5}, {5, x}, or {5, x, y} (where x and y are elementary policies other than 5).

Now consider case (2). There are two possibilities. Possibility (a): |pT−1| ≥ 3.
In this case, i(T ) drops at least the two most expensive policies other than her own.

For example, if pT−1 = {1, 2, 3, 5}, she proposes {1, 5}, and this passes with the
support of individuals 1, 4, and 5.10 Possibility (b): |pT−1| < 3. In this case, i(T )
proposes {5}, and this passes with the support of i(T ) along with all individuals
whose elementary policies are excluded from pT−1. For example, if pT−1 = {2, 5},
individuals 1, 3, 4, and 5 vote in favor of {5}.11 Thus, in case (2), the only possible

outcomes are also of the form {5}, {5, x}, and {5, x, y}.
From the preceding arguments, we know that, given the equilibrium behavior of

the last proposer, the outcome must be {5}, {5, x}, or {5, x, y}. But this implies
that {5} is a Condorcet winner within the set of policies that can survive the final
proposal round. In particular, {5} majority defeats {5, x} for all x (only individual
10When pT−1 = {1, 2, 3, 4, 5}, i(T ) may propose either {1, 2, 5} or {5}. The latter proposal will

receive majority support as long as the policy {1, 2, 3, 4} is not mutually beneficial for at least two
of the included individuals.
11When pT−1 = {5}, all individuals are indifferent between voting for and against the proposal,

but the outcome is identical in both cases.
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x is opposed), and {5} majority defeats {5, x, y} for all x, y (only individuals x and
y are opposed). Theorem 2 then delivers the desired conclusion.

To illustrate this final step, suppose that T = 2 and i(1) = 4 (the second-to-last

proposer is associated with the second most costly elementary policy). A careful

review of the preceding arguments reveals that the final outcome never includes

elementary policy 4. Consequently, regardless of the initial status quo, individual

4 proposes either {5} or (equivalently) something that the final proposer can suc-
cessfully replace with {5} (such as {1, 2, 5}), and this proposal passes. Note that
individual 4 may take the initiative in advocating individual 5’s most preferred out-

come. Note also that proposals may pass with the opposition of those who (naively)

appear to benefit. For example, if the initial status quo is inaction (p0 = ∅) and
individual 4 proposes {1, 2, 5}, the proposal passes with the support of individuals 3,
4, and 5, and with the opposition of individuals 1 and 2. This is because, if {1, 2, 5}
is victorious, {5} is the ultimately outcome, but if {1, 2, 5} is defeated, {1, 2, 5} is
the final outcome (since individual 5 proposes it again in the final round).

Real-time agenda setting plays a crucial role in the preceding argument, inas-

much as individual 5 must have the flexibility to make different proposals when she

inherits different status quos. To illustrate, consider again the case where T = 2,

i(1) = 4, and p0 = ∅, and the equilibrium in which individual 4 proposes {5}. If the
proposal passes, individual 5 proposes {5}, but if the proposal is defeated, individ-
ual 5 proposes {1, 2, 5}. To see that this flexibility is critical, consider an otherwise
identical institution with advance agenda setting, where individual 5 must make

the same proposal regardless of the prevailing status quo. Suppose that, as on the

path of the equilibrium just considered, individual 4 proposes {5} and individual 5
proposes {5}. If individual 4’s proposal passes, the ultimate outcome is {5}. If in-
dividual 4’s proposal is defeated, the ultimate outcome is ∅ (since ∅ majority defeats
{5}). Thus, individuals 1, 2, 3, and 4 all vote against {5} in round 1, and the ulti-
mate outcome is ∅ rather than {5}. The same argument holds for any other round
1 proposal that would ultimately lead to the implementation of {5}. Thus, with

advance agenda setting, there is no equilibrium that yields the dictatorial outcome.

4.1.2 Intuition and proof

The proof of theorem 3 is based on three intuitive observations. First, if the final

proposer inherits her most-preferred policy as the status quo for round T , then this



16

policy is implemented (formally, {i(T )} = ϕi(T )({i(T )}, P )). This implies:

Property 1: {i(T )} ∈ Φi(T )(P ).

Second, regardless of the status quo prevailing prior to the final round, the

outcome never includes the elementary policies of more than M individuals. This

is because the last proposer only needs to secure the approval of a minimal winning

coalition. Formally:

Property 2: p ∈ Φi(T )(P )⇒ |p| ≤M (proof in appendix).

Third, regardless of the status quo prevailing prior to the final round, the out-

come always contains the elementary policy of the final proposer. This is because

she can always tailor her proposal to the prevailing status quo. In some instances,

she deletes some elementary policies and adds her own; in others, she adds a collec-

tion of elementary policies including her own. Formally:

Property 3: p ∈ Φi(T )(P )⇒ i(T ) ∈ p (proof in appendix).

Using properties 1 through 3, we argue that {i(T )} is a Condorcet winner in
Φi(T )(P ). Consider any other policy p

0 ∈ Φi(T )(P ) other than {i(T )}. By properties
2 and 3, there are at least M − 1 individuals other than i(T ) whose associated
elementary policies are excluded from p0. By property 3, all of these excluded

individuals together with i(T ) (a majority) prefer {i(T )} to p0. In general, the

identity of the winning majority coalition depends on the choice of p0.

The desired conclusion now follows from lemma 1 and theorem 2. By lemma

1, the institution under consideration is equivalent to one in which there are T − 1
proposal rounds, and for which the policy space is Φi(T )(P ) (one must also transform

the initial status quo appropriately, but this is inconsequential). By theorem 2, the

institution therefore selects {i(T )} as long as either i(T ) is recognized twice, or at
least M distinct individuals are recognized in proposal rounds 1 through T − 1. If
|J | > M , the latter condition is satisfied even if i(T ) is recognized only once.

4.1.3 Some remarks on the theorem

A few further remarks concerning theorem 3 are in order. First, aside from the

requirement that |J | > M , we have placed no restrictions on the order of recognition.
Some individuals may be recognized once or more than once, while others never have
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opportunities to make proposals. There is no need to cycle through those who are

recognized in any particular order. Indeed, a single individual may be recognized

in several consecutive rounds. It is natural to conjecture that consecutive proposals

are redundant, but this is not the case. Somewhat surprisingly, an individual may

be able to accomplish some objective with two consecutive proposals, but not with a

single proposal. For example, with T = 1, the institution produces a policy with M

elementary components including i(T ). However, with T > 1 and i(T − 1) = i(T ),
the outcome is {i(T )} (this follows by part (2) of theorem 2).

Second, using an alternative argument, one can extend the result to environments

for which different elementary policies have the same costs (this violates assumption

A2).12 Since we consider this a knife-edge case, we omit the proof. We take up

other extensions and generalizations in section 5.

Finally, the theorem does not hold for institutions with three individuals (N =

3). The proof breaks down when one tries to establish property 3. To illustrate,

suppose that T = 3, i(t) = t, and c1 < c2 < c3. Then the set of continuation

outcomes for any status quo pT is given by

pT−1 QT (pT−1)
∅ {1, 3}
{1} {2,3}
{2} {1,3}
{3} {3}
{1,2} {1}
{1,3} {3}
{2,3} {3}
{1,2,3} {1,3}

.

Note that if pT−1 = {1, 2} the eventual outcome is {1}. Since 1 and 2 prefer {1}
to {3}, the latter is no longer a Condorcet winner in QT (P ). This undermines

the dynamics that generate dictatorial outcomes. In this case, depending on the

initial status quo, the outcome is either {1} or {2, 3}. Since most collective choice
problems involve more than three decision makers in practice, we regard this as a

technical curiosity.

12An alternative argument is required because ϕi(p
0, P 0) may be set-valued. One must also make

an assumption concerning the manner in which individuals resolve indifference.
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4.2 Exclusive recognition orders

It is natural to question the general applicability of theorem 3. Several objections

come to mind. First, the result requires individuals to know the recognition order

as of round 1. For realistic institutions, there may be considerable uncertainty con-

cerning who will be recognized two or three rounds in the future, let alone twenty or

thirty rounds. A second related concern is that individuals must know the number

of proposal rounds as of round 1. Though it is plausible to assume that there is

a finite upper bound on the number of proposal rounds that can precede any time-

dated policy, such as the passage of a budget for a given fiscal year, deliberations on

any given proposal may vary randomly in length, creating variation in the realized

number of rounds. A third concern is that the result appears to require highly

sophisticated strategic reasoning. The familiar centipede game admits a single sub-

game perfect equilibrium, but this solution presupposes an ability to think through

many layers of strategy. In practice, play of the centipede game fails to unravel as

predicted by theory. Conceivably, our result may be vulnerable to the same criti-

cism. Finally, the requirement that |J | > M is particularly demanding for groups

with large numbers of members.

In this section, we describe one potential avenue for addressing all of these crit-

icisms simultaneously. Each of the concerns mentioned above relates in some way

to the number of proposal rounds. When relatively few individuals have opportu-

nities to make proposals (formally, |J | ≤ M), one can show that there are always
recognition orders and initial status quos for which {i(T )} is not the outcome. In
this sense, one cannot “improve” upon the requirement that |J | > M . However,

it turns out that non-dictatorial outcomes are unusual: a high fraction of possible

recognition orders generate {i(T )} for all initial status quos even when |J | is small
relative to M . Consequently, we obtain a dictatorial or near-dictatorial outcome

“most of the time” (in a sense made precise below), regardless of the group’s size,

as long as individuals can think ahead strategically only a small of number of steps,

and as long as they properly anticipate the number of remaining rounds and the

order of recognition once the end of deliberations draws near.

We begin our analysis of exclusive recognition orders by deriving several condi-

tions under which the dictatorial outcome emerges even for small |J |. The statement
of this theorem requires the following definitions: HK denotes the set of individu-

als associated with the K most costly policies in E\i(T ), and i∗K is the individual
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associated with the K-th most costly policy in E\i(T ).

Theorem 4: Consider an institution with a degenerate final stage, a CBDC policy

set satisfying A1-A4, and N ≥ 5 individuals.
(a) If T ≥ 2 and i(T − 1) 6= i∗M−1, then the outcome is either {i(T )} or
{i(T − 1), i(T )}.
(b) Under either of the following conditions, the unique outcome is the policy

p = {i(T )}:
(b1) some member of HM−2 ∪ {i(T )} has the opportunity to make at least one
proposal prior to round T .

(b2) i(T − 1) 6= i∗M−1 and i(t) 6= i(T − 1) for some t < T − 1.

Theorem 4 implies that institutions with short recognition orders can produce

non-dictatorial outcomes only in relatively unlikely circumstances. We demonstrate

this by deriving a lower bound on the fraction of recognition orders that generate

the dictatorial outcome {i(T )} for all initial status quos.

Theorem 5: Consider an institution with T > 1 proposal rounds, a degenerate

final stage, a CBDC policy set satisfying A1-A4, and N ≥ 5 individuals. The
fraction of recognition orders that generate the outcome {i(T )} for all p0 ∈ P
is not less than

B(N,T ) ≡ 1− 1
2
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If one imagines that a recognition order is selected at random in an initial stage,

and that this selection process is governed by a uniform distribution over the set of all

feasible recognition orders, then B(N,T ) provides a lower bound on the probability

that the collective choice process yields {i(T )}. Figure 1 illustrates the manner in
which this bound changes with the numbers of rounds and individuals. Notice that,

regardless of whether N is large or small, the bound approaches unity for relatively

small values of T . Also notice that the bound is more sensitive to the number of

proposal rounds than to the number of individuals. To understand why this is the

case, consult part (b1) of theorem 4. If any member of HM−2∪{i(T )} is recognized
prior to round T , the outcome is {i(T )}. The probability of not recognizing a

member of this group in any particular round is approximately 1/2 for all N . This
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probability compounds rapidly with the number of rounds, thereby generating the

observed convergence with T . Notice also that the bound is actually increasing in

the number of individuals. This suggests that, contrary to the apparent implications

of the requirement in theorem 3 that |J | > M , for fixed T dictatorial outcomes are
even more likely in large groups than in small ones.
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Figure 1: The function B(N,T )
The preceding result concerns the fraction of possible recognition orders that

produce {i(T )} for all initial status quos even when |J | ≤M . We now consider the
conditions under which a particular initial status quo produces {i(T )} regardless of
the recognition order, again even though |J | ≤M .

Theorem 6: Consider an institution with a degenerate final stage, a CBDC policy

set satisfying A1-A4, and N ≥ 5 individuals. An initial status quo p0 ∈ P
leads to the outcome {i(T )} provided that at least one of the following condi-
tions is satisfied:

(i) |J | > 2 and either p0 = ∅ or
P
j∈p0 cj > ci(T ),

(ii) |p0| ≤M − 1 and
P
j∈p0 cj > ci(T ),

(iii) |J | > |QT (p0)|.
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Part (i) tells us that, with three or more distinct proposers (a very weak condition

indeed), {i(T )} can be avoided only if the initial status quo consists of a single
elementary policy that is less costly than {i(T )}. This is a small fraction of all

feasible initial status quos; moreover, this fraction goes to zero as the number of

individuals, N , becomes large. Consequently, if a status quo is selected at random

in the initial stage, and if at least three individuals are recognized, a large group

is almost certain to produce the dictatorial outcome {i(T )}. Part (ii) tells us that
the dictatorial outcome also emerges when the initial status quo is more costly than

{i(T )} but contains fewer than thanM elementary policies, regardless of how many

individuals are recognized. Part (iii) tells us that any initial status quo p0 leads

to the outcome {i(T )} provided that the number of recognized individuals exceeds
the number of elementary policies that would be implemented were i(T ) to inherit

p0 as the round T status quo. Since |QT (p0)| < M for any initial status quo other

than p0 = ∅, p0 = E, and p0 = {j} for j with cj < ci(T ), part (iii) is typically weaker
than |J | > M (the requirement in theorem 3).

4.3 Random recognition processes

Next we turn our attention to a more explicit treatment of the possibility, mentioned

at the outset of the previous section, that individuals may be uncertain about the

recognition order, the number of proposal rounds, or both. We demonstrate that

our central result depends not on the absence of uncertainty, but rather on the timing

of the resolution of uncertainty from the perspective of the participants. Under the

conditions identified below, uncertainty can persist as late as the beginning of the

second-to-last proposal round without undermining our conclusions. Notably, our

analysis subsumes cases for which there is no finite bound on the number of proposal

rounds.

Imagine that, prior to the first proposal round, nature selects the pair (T, i(·)),
where T , the number of rounds, is chosen from the positive integers {1, 2, 3, ...}, and
i : {1, ..., T}→ {1, ..., N} is a recognition order. Nature might, for example, select
T = T 0 with probability (1−λ)T

0−1λ for λ ∈ (0, 1), and it might select the proposer
in each round through an independent draw from a uniform distribution over the

set of participants. In that case, λ represents a constant termination probability,

there is no finite bound on the number of rounds, and each participant stands a one-

in-N chance of being named as the proposer in any given round. For our purposes,
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it is unnecessary to provide a general description of the class of random process

governing the selection of (T, i(·)).
Though nature technically selects the number of rounds and the recognition

order in advance, some or all of this information may be revealed to the participants

at later points in time. We identify two polar cases. At one extreme, participants

do not learn the identity of the proposer in each round t until the beginning of t, and

T is not revealed until after the final round. At the opposite extreme, (T, i(·)) is
revealed prior to the first round. We characterize intermediate cases as follows. If,

for any given process, (T, i(·)) is completely revealed (for the first time) by the end
of round T −K, we say that the process is characterized by K degrees of advance

revelation. The first polar case corresponds to zero degrees of advance revelation

(K = 0), while the second corresponds to T degrees of advance revelation (K = T

for each realization of T ).

Our basic framework subsumes the case where (T, i(·)) is revealed prior to the
first round (T degrees of advance revelation). Theorem 5 allows us to extend this

conclusion to intermediate cases: it tells us that, under plausible assumptions about

the random process governing the selection of proposers (e.g., that all participants

have an equal chance of being selected in any round), for any process with K degrees

of advance revelation, the probability of a dictatorial outcome is close to unity

provided that K is sufficiently large. One does not need to make strong, simplifying

assumptions concerning the nature of the random process generating (T, i(·)), nor
to assume that the horizon is bounded.13 Moreover, it is apparent from figure 1

that even small values of K are sufficient to assure a dictatorial outcome with high

probability.

To underscore this last point, consider the case of K = 2, which requires that,

before the second-to-last proposal is made, participants know both T (i.e. that

there will be two more rounds) and the identity of the final proposer. Part (b1) of

Theorem 4 tells us that the outcome is dictatorial ({i(T )}) if i(T − 1) ∈ HM−2 ∪
{i(T )}. Thus, if all individuals stand an equal chance of being selected as i(T − 1),
the probability of achieving a dictatorial outcome is at least M−1

N = N−1
2N , which

converges to 1
2 for large groups. Part (a) of Theorem 4 tells us that the outcome

13As an example, imagine that, at the end of each period, there is a probability λ that the players
are told the process will end inK rounds and all remaining proposers are identified; with probability
1−λ, no information concerning T is revealed, and only the next proposer is identified. Note that,
from the perspective of the participants, the potential number of rounds remains unbounded until
the process enters the final K rounds.
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is either dictatorial or nearly dictatorial ({i(T )} or {i(T − 1), i(T )}) if i(T − 1) ∈
i∗M−1. Thus, if all individuals stand an equal chance of being selected as i(T − 1),
the probability of achieving a dictatorial or near dictatorial outcome is at least
2(M−1)
N = N−1

N , which converges to unity for large groups.

For some plausible processes, K = 2 (two degrees of advance revelation) is suf-

ficient to guarantee a dictatorial outcome with high probability. To illustrate,

imagine that there exists some set of individuals Θ ⊆ {1, ...N} with |Θ| ≥ 3 (e.g.,
elders, faction leaders, or possibly even the entire group) each of whom is always

given one opportunity to make a final proposal before the process terminates. More

specifically, |Θ| rounds prior to termination, participants are told that the process
has entered a final proposal phase consisting of |Θ| rounds, and that, in each suc-
cessive round, the proposer will be selected at random (with equal probabilities) at

the beginning of the round from among those in Θ who have not yet made final

proposals. We make no other assumptions about the random process generating

(T, i(·)), or about the nature of information revealed prior to round T − |Θ|. Note
that any process with a final proposal phase is characterized by two degrees of ad-

vance revelation: once the second-to-last proposer is identified, all participants can

identify the last proposer by default. However, because the process also reveals

some information about i(T ) and i(T −1) in period T −2 (specifically, the identities
of the last two proposers but not their order), we obtain a stronger result than for

the general case of K = 2. Specifically, we have:

Theorem 7: Consider an institution with a degenerate final stage, a CBDC pol-

icy set satisfying A1-A4, and N ≥ 5 individuals. Imagine that (T, i(·)) is
determined randomly, but that the process is characterized by a final proposal

phase. Then, with probability not less than N−2
N , the group adopts the ele-

mentary policy corresponding to whichever individual is randomly chosen to

propose last, and nothing else.

Observe that the probability that the last proposer is effectively a dictator con-

verges to unity as the size of the group becomes large.

5 Alternative Policy Spaces

In section 4, our analysis focused on a particularly simple class of policy spaces. It

is natural to wonder whether our central conclusions hold more generally. In this
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section, we consider three alternative policy spaces. The first generalizes the CBDC

assumptions to cases for which there may be multiple elementary policies associated

with each individual. The second considers cases for which multiple individuals are

associated with the same elementary policy, and therefore have common interests.

The third examines the canonical problem of dividing a fixed payoff.

5.1 Multiple projects

By adjusting the CBDC assumptions to allow for the possibility that each individual

is associated with several elementary projects, each with distinct costs and benefits,

we add considerable richness and flexibility to the policy space. Naturally, we can

no longer uniquely associate individuals with elementary policies. Hence, we define

I = {1, ..., N} as the set of individuals, and E as the set of elementary policies. An
elementary policy e is a pair, (i, k) (denoting the k-th elementary policy associated

with the i-th individual). Let Ei be the subset of E consisting of elementary policies

associated with individual i. Under the assumptions stated below, Ei is the outcome

that i would pick if i were a dictator. Let Ki ≡ |Ei|. We will continue to use P to
denote the power set of E, and p ∈ P to denote a policy (a subset of E). For any
policy p, define pi = p ∩Ei. That is, pi is the set of elementary policies associated
with individual i in the policy p.

As before, we assume that each elementary policy benefits one individual at a

cost to all others. We write the benefit of the elementary policy (i, k) to i as bik,

and we write the cost of this policy to each individual as cik. We continue to

assume that the cost of any elementary policy is the same to all of the individuals.

Accordingly, we define the total costs of any policy p as C(p) =
P
e∈p ce. The proof

of the theorem stated below actually uses only the fact that the ranking of the set

P by costs is the same for all individuals. Thus, the assumption can be weakened

to some extent without altering the proof. We also continue to assume that costs

and benefits are additive over elementary policies.

We impose assumptions A1 and A2 as before. Henceforth, K represents the

largest number of elementary policies associated with any one individual, c rep-

resents the highest (c represents the lowest) cost associated with any elementary

policy, and b represents the lowest benefit associated with any elementary policy.

We replace A3 with the following:

Assumption A5: Kc < (M − 1)c.
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Assumption A5 imposes an upper bound on the total costs of all elementary

policies associated with any one individual. For the case of Ki = 1 for all i, this

assumption weakens A3 in the sense that it requires each elementary policy to be less

expensive than M − 1 other elementary policies, rather than two other elementary
policies.14 We also replace A4 with the following:

Assumption A6: b > c
¡
M − 1 +K¢.

Assumption A6 implies that, if one adopts a collection of M −1+K elementary

policies, all individuals associated with elementary policies in this set are better

off. For the case of K = 1, this coincides (approximately) with assumption A4.15

For K > 1, A6 is more demanding that A4 since it requires the benefit from any

elementary policy to exceed the costs of more than M other elementary policies.

We are now equipped to state the theorem.

Theorem 8: Consider an institution with a degenerate final stage, a CBDC policy

set (possibly with multiple elementary policies for each individual) satisfying

assumptions A1, A2, A5, and A6, and N ≥ 5 individuals. Provided that

either |J | > M or i(T ) proposes more than once, the unique outcome is the

policy p = Ei.

Notice that theorem 3 is a special case of theorem 8 (subject to the technical

qualifications noted in the previous two footnotes).16 It states that, if the recog-

nition order is sufficiently inclusive, then all elementary policies associated with

the final proposer, and only these policies, are adopted. Thus, the final proposer

emerges as an effective dictator in a very strong sense.

5.2 Quasi-distributional politics

Next we extend the CBDC framework to subsume cases in which members of sub-

groups share common interests. Policies are then “quasi-distributional,” in the sense

14By writing the assumption in terms of bounds rather than in terms of the costs of particular
collections of policies, we have actually imposed some incidental restrictions that are not implied
by A3. One can state a version of A5 in terms of collections of policies and thereby generalize A3,
but the notation is less compact.
15The assumptions are not identical, as A6 is stated in terms of bounds, while A4 is stated in

terms of the costs and benefits for collections of policies. One can state a more cumbersome version
of A6 in the latter form that specializes exactly to A4 when Ki = 1 for all i.
16The proof is more complicated, however, because it is difficult to show that any policy q ∈

Φi(T )(P ) contains Ei(T ) (this was straightforward for the case |Ei| = 1 considered in theorem 3).
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that they affect the distribution of payoffs among subgroups, rather than across

individuals. For this class of environments, we can no longer uniquely associate

elementary policies with individuals. As in section 5.1, we define I = {1, ..., N}
as the set of individuals. The set of individuals is partitioned into groups Is,

s = 1, ..., NG, where NG ≤ N . Let Ns = |Is| (the number of individuals in
group s). The assignment of individuals into groups is described by a function

r : I → {1, ..., NG}, so that l ∈ Ir(l).
Let N∗ denote the median value of Nr(l) over all individuals. Note that this is

not the median group size. For example, if NG = 5 and the group sizes are 4, 3, 2,

1, and 1, then the median group size is 2, but N∗ = 3.

There is one elementary policy for each group. Thus, the set of elementary

policies is given by E = {1, ..., NG}. Note that we can also use E to denote the

set of groups. When the elementary policy for group s ∈ E is implemented, every

individual bears a cost cs. Each individual l ∈ Is receives a benefit bs. As before,
payoffs are additive. Note that there is a common payoff function, us(p), for all

members of the group s, so vl(p) = ur(l)(p). The policy set P is once again the

power set of E. Note that we can use p ∈ P either to represent a policy or a

collection of groups.

We continue to impose assumptions A1 and A2. However, we modify assump-

tions A3 and A4. In particular, we replace A3 with the following:

Assumption A7: For any p ∈ P with
P
j∈pNj ≥ M − N∗, we have

P
j∈p cj >

maxs∈E cs.

One can think of assumption A7, like A3, as imposing an upper bound on the

costs of individual elementary policies. For the case where each group consists

of a single individual, it implies that each elementary policy costs less than the

combination of M − 1 other elementary policies. Clearly, this relaxes A3.
Alternatively, one can also think of A7 as imposing a limit on the sizes of the

groups. It always requires N∗ < M − 1.17 Under one set of plausible conditions,

it implies N∗ < M/2.18 These conditions are not, however, necessary for the result
17If N∗ ≥M−1, then A7 requires every elementary polilcy to cost strictly more than maxs∈E cs,

which is impossible.
18If one assumes that total costs are increasing in the number of individuals whose elementary

policies are included in p (that is,
P

j∈pNj <
P

j∈p0 Nj ⇒P
j∈p cj <

P
j∈p0 cj , which is a natural

generalization of A3), then A7 reduces to the statement that N +N∗ < M (where N denotes the
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stated below. For example, when Nr(i(T )) = N∗ ≥ M , {r(i(T ))} is a Condorcet
winner in P . Consequently, the same conclusion as in theorem 9 below follows

directly from theorem 2.

To state our next assumption, we need the following definition.

Definition: A collection of groups L ⊆ E is decisive if
P
s∈LNs ≥M . Moreover,

L is minimally decisive if, in addition,
P
s∈LNs −Nk < M for all k ∈ L. Let

Λ denote the set of all minimally decisive collections of groups.

We replace A4 with the following:

Assumption A8: A mutually beneficial policy (relative to p = ∅) exists for all
minimally decisive collections of groups. That is, for all p ∈ Λ, we have
bs >

P
j∈p cj for all s ∈ p.

Note that, for the case where each group consists of a single individual, assump-

tions A4 and A8 are equivalent.

Finally, for any recognition order, we define J 0 = ∪j∈JIr(j). This represents

the set of individuals whose interests coincide with someone who has at least one

opportunity to make a proposal.

Now we are equipped to state the theorem. It is easy to verify that A7 is

never satisfied for N = 3. Consequently, the stated assumptions subsume our usual

requirement that N ≥ 5.

Theorem 9: Consider an institution with a degenerate final stage and a quasi-

distributional CBDC policy set satisfying A1, A2, A7, and A8. Assume that

Nr(i(T )) ≥ N∗. Provided that either |J 0| ≥ M +
¯̄
Ir(i(T ))

¯̄
or some member of

Ir(i(T )) proposes prior to round T , the outcome is the policy p = {r(i(T ))}.

Note that the requirement in Theorem 9 is |J 0| ≥ M +
¯̄
Ir(i(T ))

¯̄
, rather than

|J | > M . In other words, instead of requiring that at least M + 1 individuals

have opportunities to make proposals, we require only that at least M individuals

other than those in Ir(i(T )) are “represented by” those with opportunities to make

proposals. When groups are large, the latter condition is easily satified even if only

a small number of agents make proposals.

size of the largest group). Note that the latter inequality implies N∗ < M/2. It holds whenever
the size of the largest group is less than N/4, which in turn requires NG ≥ 5.
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Note also that the conclusion stated in theorem 9 depends on the identity of

the last proposer. In particular, this individual must belong to a group of size

N∗ or larger. By definition, more than half of all individuals belong to such a

group. Thus, if the last proposer is chosen at random (with equal probabilities),

then theorem 9 tells us that one obtains a dictatorial outcome with probability

greater than one-half.

It is useful to identify the analytic problem that arises when Nr(i(T )) < N
∗. The

proof of theorem 3 makes use of the fact that i(T ) always contrives to make herself

pivotal. This may not be possible in a quasi-distributional setting when i(T )’s group

is small. Consider an example in which there are four groups of sizes 2, 2, 2, and

1, so that N = 7, M = 4, and N∗ = 2. Suppose Nr(i(T )) = 1. To build a majority

coalition, i(T ) must have the support of at least four other members (instead of

the three needed before). Accordingly, if pT−1 = E, the outcome must include

the elementary policies associated with two groups other than Ir(i(T )). But then

ϕi(T )(pT−1, P ) majority-defeats {r(i(T ))}, so {r(i(T ))} is not a Condorcet winner
in Φi(T )(P ).

There is, however, reason to believe that the result might hold with greater

generality, even when Nr(i(T )) < N∗. In the previous example, i(T ) in essence

is required to find coalitions of five individuals (including i(T )) to support any

proposal, rather than the bare majority of four proposals. Thus, the situation

facing i(T ) is quite similar to that arising with a supermajority requirement. We

treat supermajority requirements in the sequel to this paper (Bernheim, Rangel, and

Rayo [2002]), and demonstrate that the dictatorship result is surprisingly robust.

Despite the foregoing, note that when the groups are of equal sizes, all groups

have size N∗, so it is no longer necessary to impose a condition on the identity of

the last proposer. Thus, theorem 9 has the following immediate corollary (where

MG ≡ (NG+1)/2 and JG denotes the set of groups for which at least one member

makes a proposal):

Corollary: Consider an institution with a degenerate final stage and a quasi-distributional

CBDC policy set satisfying A1 and A2. Suppose that

(i) Nj = N
∗ for all j ∈ E,

(ii) For any p ∈ P with |p| ≥MG − 1, we have Pj∈p cj > maxs∈E cs, and
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(iii) For any p ∈ P with |p| ≤MG, we have bs >
P
j∈p cj for all s ∈ p.

Then, provided that either
¯̄
JG
¯̄
> MG or some member of Ir(i(T )) proposes prior

to round T , the outcome is the policy p = {r(i(T ))}.

Condition (i) simply says that all groups are of the same size. Under condition

(i), A7 implies (ii), and A8 implies (iii). When each group contains exactly one

individual, condition (ii) generalizes A3, and (iii) is equivalent to A4. Condition

(ii) is never satisfied when NG = 3; hence the corollary requires NG ≥ 5 (the analog
of N ≥ 5). Note also that |J | > M implies

¯̄
JG
¯̄
> MG.

Both theorem 9 and its corollary imply that the policy outcome is {r(i(T ))}
whenever any member of Ir(i(T )), and not just i(T ), proposes prior to round T . If

we interpret groups as political parties, this requirement seems innocuous. Thus,

if the last proposer is a member of a sufficiently large political party, that party

ordinarily dictates the policy outcome.

5.3 Splitting a fixed payoff

Finally, we consider the canonical problem of dividing a fixed payoff (P = ∆N−1,

the unit simplex in RN , and vi(p) = pi). This policy space violates assumption A1
and, more importantly, A2 (the generic no-indifference condition).

The violation of A2 undermines the uniqueness of continuation equilibria, and

thereby complicates the analysis considerably. Nevertheless, provided that one

adopts a reasonable and consistent rule for resolving this indifference, the outcome

is approximately dictatorial.

To understand the issues raised by the possibility of indifference, it is useful to

start by defining a weak Condorcet winner within a set R as a policy q ∈ R such

that, for all q0 ∈ R, a majority of individuals weakly prefer q to q0. Notice that, in
general, nothing assures the uniqueness of a weak Condorcet winner.

Let pj denote the policy for which j receives a payoff of unity (pjj = 1) and every

other party receives a payoff of zero (pjl = 0 for l 6= j). This is the alternative

that j would select if j were a dictator. It is straightforward to show that pi(T )

is a weak Condorcet winner in the set Φi(T )(∆
N−1).19 Somewhat surprisingly, it

19Technically, Φi(T )(∆
N−1) is not well-defined unless, as below, one resolves indifference in a way

that is consistent with the existence of ϕi(T )(p,∆
N−1) for all p ∈ ∆N−1.
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is also possible to show that this outcome is the unique weak Condorcet winner in

Φi(T )(∆
N−1).20

Were it possible to prove an analog of theorem 2 for unique weak Condorcet

winners, then the implications of theorem 3 would generalize immediately to the

problem of dividing a fixed payoff. When the policy set includes a unique weak

Condorcet winner pwc, and when the recognition order is sufficiently inclusive, there

does indeed exist an equilibrium that selects pwc. The problem with indifference is

that, by appropriately contriving the resolution of indifference at various stages of

the game, one can in many instances achieve other outcomes.

From our perspective, the most reasonable equilibria in such circumstances are

the ones that select pwc. To sustain other outcomes, one must assume that individ-

uals who will receive zero payoffs in all continuation paths, and who therefore have

absolutely nothing at stake, resolve their indifference when making proposals and

casting votes by supporting the course that inflicts the most damage on individual

i(T ). It is difficult to sustain these outcomes once one rules out malevolence by

imposing a consistent rule for resolving indifference.

The violation of A1 also introduces some technical problems related to conti-

nuity and openness. We avoid these issues by assuming that the policy space is a

discretized version of ∆N−1. Specifically, select some positive integer m, and let

ε = 1
m . Define

∆N−1ε ≡
(
p ∈ RN | p ≥ 0,

NX
l=1

pl = 1, and pl = nε for some n ∈ {0, 1, ...,m}
)
.

For our next result, we assume that individuals vote in favor of a proposal only

if they expect to be strictly better off should the proposal pass. We also rule out

complex history dependent punishments by focusing on Markov-perfect equilibria,

which can be described by outcome functions (Qt)
T
t=1 : ∆

N−1
ε → ∆N−1ε (a sequence

of functions that, for each round t, map the status quo to a final outcome). We

demonstrate that, with these restrictions, and with at least three proposers (rather

than five as in our previous results), the final proposer receives virtually all of the

surplus. This holds for every possible initial status quo, including equal division.

In such cases, an approximately dictatorial outcome emerges even though every

individual except i(T ) would be strictly better off if the group took no action,

20Indeed, for any other element of this set, p0, there is some other element, p00, such that a
majority of individuals strictly prefers p00 to p0.
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and even though every proposal requires the approval of a majority to pass. The

outcome is approximately dictatorial in the following sense: as ε approaches zero,

i(T )’s equilibrium payoff converges to unity.

Theorem 10: Consider an institution with a degenerate final stage, a policy set

∆N−1ε , and N ≥ 3 individuals. Consider any Markov-perfect equilibrium

outcome functions (Qt)
T
t=1 under which each individual l votes in favor of p

m
t

in round t if and only if (Qt+1(p
m
t ))l > (Qt+1(pt−1))l . Provided that either

|J | > M or i(T ) proposes more than once, we have (pT )i(T ) ≥ 1 −Nε for all

p0 ∈ P .

A natural alternative assumption is that individuals resolve their indifference in

favor of the current proposal, rather than against it. This case is considerably more

complex. However, one can demonstrate that the outcome satisfies the following

two properties (proof omitted): (i) virtually all surplus is divided between i(T ),

i(T − 1), and i(T − 2), and (ii) if ε < δ
N for some sufficiently small δ, then as N

goes to infinity, the surplus received by i(T − 1) goes to zero at the rate 1
N , and the

surplus received by i(T − 2) goes to zero at the rate 1
N2 . Thus, in large groups,

the last proposer again receives essentially all of the surplus. One can extend these

results to the non-discretized simplex by invoking suitable equilibrium refinements.

6 Summary and Conclusions

In this paper, we have explored the effect of real-time agenda setting on democratic

policy making. Our analysis reveals a surprisingly robust tendency for a natural

and simple class of democratic institutions to produce high concentrations of po-

litical power. In particular, for some familiar classes of policy spaces with rich

distributional politics, the last proposer is effectively a dictator whenever a suffi-

cient number of individuals have opportunities to make proposals, as well as under

a variety of related conditions. Thus, under reasonably general assumptions, control

of the final proposal with real-time agenda setting confers as much political power

as control of the entire agenda. Moreover, this outcome is more likely to arise when

more individuals have opportunities to make proposals. Ironically, the last proposer

need not have dictatorial powers unless a sufficient number of individuals take part

in setting the agenda. Accordingly, within the class of institutions considered in

this paper, reforms that appear to be inclusive from a procedural perspective (by
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promoting “participatory democracy” or guaranteeing a “right to be heard”) can

have the unintended effect of concentrating political power. We have also demon-

strated that institutions belonging to the class considered here yield Pareto efficient

outcomes and select Condorcet winners when they exist.

In Bernheim, Rangel, and Rayo [2002], we examine the sensitivity of our central

conclusions to variations in institutional rules. Some apparently minor procedural

details matter a great deal, while seemingly important rules are actually of little

consequence. Supermajority requirements do little to overcome the dictatorial

power of the final proposer. Endogenizing the order of recognition has no effect on

the high concentration of political power when a chair chooses the order in advance

of deliberations, or when the chair makes these decisions round by round but is

aligned with a particular member of the group. In the latter case, even a chair

with “universalistic” objectives (one that wishes to implement as many elementary

policies as possible) may find it impossible to manipulate the order of recognition

so as to enact a policy that benefits more than two individuals.

When the rules of the institution permit the group to terminate deliberations

before the final round, the power of the last proposer may evaporate. However, the

particular outcome depends on the details of the termination rule. For the least

restrictive rule (one that allows individuals to bundle policy proposals with motions

to preclude reconsideration), political power is simply transferred from the final

proposer to the first proposer (and perhaps to one other individual) in a significant

fraction of environments. When individuals are not permitted to bundle policy

proposals with motions to preclude reconsideration, one can obtain almost anything

from inaction to a universalistic outcome, depending on the initial status quo.

If each proposal is subject to amendment before being put to a vote against

the prevailing status quo, the power of the last proposer evaporates, but in some

instances the group nevertheless selects policies that benefit small minorities (even

a single individual) at the expense of large majorities. A rule precluding the recon-

sideration of elementary policies once they are passed leads to outcomes that benefit

groups no larger than minimal majorities. Ironically, when such a rule is combined

with a supermajority requirement, the final outcome benefits a minority of members

at the expense of a majority, and the number of individuals benefiting from the final

outcome shrinks with the size of the required supermajority. Limitations on the

introduction of new business near the conclusion of deliberations promote inaction.
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Appendix

Proof of Lemma 1: For this proof, we use the notation introduced in section

3.2, except that we write Qt(p;P,Ω) rather than simply Qt(p) to make explicit

the dependence of this function (suppressed in the notation of the text) on both

the policy space P and the final stage Ω. Also, we use I to denote the identity
mapping. Fix P,Ω, and p ∈ P. We proceed by induction. Using the definition of
QT we obtain:

QT (p;P,Ω) = ϕi(T ) (Ω(p),Ω(P )) = ϕi(T ) (I ◦Ω(p), I ◦Ω(P )) = QT (Ω(p);Ω(P ), I) ,

which proves the claim for t = T.

Now suppose the claim is true for t+1, which together with the definition of Qt

implies:

Qt(p;P,Ω) = ϕi(t) (Qt+1(p;P,Ω), Qt+1(P ;P,Ω)) =

ϕi(t) (Qt+1 (Ω (p) ;Ω (P ) , I) , Qt+1 (Ω (P ) ;Ω (P ) , I)) = Qt(Ω(p);Ω(P ), I),

establishing the result. Q.E.D.

Proof of Theorem 3: Aside from properties 2 and 3, theorem 3 is proven in

the text.

To prove property 2, consider p ∈ Φi(T )(P ) and any q ∈ P such that p ∈
ϕi(T )(q, P ). Suppose that |p| > M . Choose any set S with i(T ) ∈ S and |S| =M ,
such that vl(p) ≥ vl(q) for all l ∈ S (existence of S is guaranteed because p ∈
ϕi(T )(q, P ), but it may not be unique). S represents a minimal decisive coalition

including the last proposer, all the members of which prefer p to q. Consider some

new policy p0 formed by deleting from p all elementary policies associated with

individuals not in S (formally, p0 = p ∩ S). Note that vl(p
0) > vl(p) for all l ∈ S

(since total costs are lower). But then vl(p
0) > vl(q) for all l ∈ S, which implies

p0 ∈ Z(q, P ), contradicting the fact that p = ϕi(T )(q, P ).

To prove property 3, it is useful to distinguish between three mutually exclusive

and exhaustive cases, defined by the characteristics of pT−1. For each case, we

describe a p0 containing the elementary policy i(T ) with |p0| ≤ M , and we prove
that p0 ∈ Z(pT−1, P ). Assumption A4 guarantees that vi(T )(p

0) > 0. Since any
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policy p excluding the elementary policy i(T ) provides individual i(T ) with a non-

positive payoff, this implies that i(T )’s best choice must result in the implementation

of some policy p00 containing the elementary policy i(T ), as desired.

Case 1: i(T ) ∈ pT−1. If |pT−1| ≤ M , take p0 = pT−1. If |pT−1| > M , suppose
that i(T ) proposes the policy p0 obtained by droppingM−1 elementary policies from
pT−1 other than i(T ). The proposed policy improves the payoff to any individual

associated with an elementary policy that is not dropped. Since this group forms

a majority, p0 ∈ Z(pT−1, P ).
Case 2: i(T ) /∈ pT−1 and |pT−1| < M . Consider any p0 such that and i(T ) ∈ p0,

|p0| =M , and p0∩pT−1 = ∅. By A4, all individuals associated with elementary poli-
cies in p0 strictly prefer p0 to p. Since this group forms a majority, p0 ∈ Z(pT−1, P ).

Case 3: i(T ) /∈ pT−1 and |pT−1| ≥ M . Consider any p0 such that i(T ) ∈ p0,
|p0| = |pT−1|−(M−2), and p0\{i(T )} ⊂ pT−1 (in other words, dropM−1 elementary
policies from pT−1 and add i(T )). By A3 and N ≥ 5 (which implies M ≥ 3), all
individuals are better off except those in pT−1\p0. But |pT−1\p0| = M − 1, so
p0 ∈ Z(pT−1, P ). Q.E.D.

Proof of Theorem 4: The following argument makes use of properties 1-3

from section 4.1.2. We begin with a lemma. Note that the four cases stated in the

lemma are mutually exclusive and exhaustive.

Lemma 4.1: Consider any q ∈ P .

(i) If
P
k∈q ck > ci(T ), then ϕi(T )(q, P ) ∩

¡
HM−2 ∪ {i∗M−1}

¢
= ∅,

(ii) If q = {j} with cj < ci(T ) and j 6∈ HM−2, then ϕi(T )(q, P ) = E\ (HM−2 ∪ {j}),

(iii) If q = {j} with cj < ci(T ) and j ∈ HM−2, then ϕi(T )(q, P ) = E\
¡
HM−2 ∪ {i∗M−1}

¢
,

and

(iv) If q = ∅, then ϕi(T )(q, P ) = E\
¡
HM−2 ∪ {i∗M−1}

¢
.

Proof: For the proof of each part, we use p = ϕi(T )(q, P ) for notational simplic-

ity.

(i) We begin by showing that there exists p0 ∈ Z(q, P ) such that i(T ) ∈ p0 andP
k∈p0 ck <

P
k∈q ck. If i(T ) ∈ q, this is trivial (simply drop any elementary policy

from q). If i(T ) 6∈ q, the construct p0 as follows: if |q| > 1, drop any two elementary
policies from q and add i(T ); if |q| = 1, then p0 = {i(T )}.
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Clearly,
P
k∈p ck ≤

P
k∈p0 ck (otherwise i(T ) would propose p

0 rather than p).

Thus,
P
k∈p ck <

P
k∈q ck.

Next we argue that j 6∈ q and j 6= i(T ) implies j 6∈ p. Suppose not. Consider

p00 = p\{j}. All individuals but j prefer p00 to p, and j prefers p00 to q (since j’s

elementary policy is excluded from both p00 and q and since the cost of p00 is lower).

Thus, all those who prefer p to q also prefer p00 to q, so p00 ∈ Z(q, P ). But then i(T )
would propose p00 rather than p, a contradiction.

Now suppose that, contrary to part (i) of the lemma, there exists some j ∈
p ∩ ¡i∗M−1 ∪HM−2¢. Let S = {i ∈ E | vi(p) > vi(q)}. Then |S| =M (if |S| > M ,
then p\{j} ∈ Z(q, P ), and i(T ) prefers p\{j} to p, so p 6∈ ϕi(T )(q, P )). Since p is less

costly than q, we must have E\S ⊆ q and (E\S)∩p = ∅ (otherwise an individual in
E\S would prefer p to q). Since |E\S| =M−1, and since i(T ) 6∈ E\S, there is some
j0 ∈ E\S with cj0 < cj . Consider bp formed by deleting j from p and inserting j0.

Clearly,
P
k∈bp ck <Pk∈p ck <

P
k∈q ck. Thus, all members of S\{j} strictly preferbp to p and p to q, while j0 clearly prefers bp to q. Since |(S\{j}) ∪ {j0}| =M , we havebp ∈ Z(q, P ). But since i(T ) strictly prefers bp to p, this contradicts p = ϕi(T )(q, P ).

(ii) Since i(T ) ∈ p, we know that j strictly prefers q to p. It follows that j 6∈ p
(if not, then p\{j} ∈ Z(q, P ), and i(T ) strictly prefers p\{j} to p, a contradiction).
Moreover, since i(T ) ∈ p and ci(T ) > cj , we know that individual i prefers p to q

only if i ∈ p. Thus, |p| ≥ M . Clearly, E\ (HM−2 ∪ {j}) ∈ Z(q, P ). Moreover,

with j 6∈ HM−2, this is the lowest cost policy containing i(T ) and at least M − 1
other elementary components other than j. Thus, it is i(T )’s best choice.

(iii) The proof is identical to that of part (ii), except that E\ ¡HM−2 ∪ {i∗M−1}¢
takes the place of E\ (HM−2 ∪ {j}).

(iv) Since i(T ) ∈ p and ci(T ) > 0, we know that individual i prefers p to q only
if i ∈ p. Thus, |p| ≥ M . Clearly, E\ ¡HM−2 ∪ {i∗M−1}¢ ∈ Z(q, P ). Moreover,

it is the lowest cost policy containing i(T ) and at least M − 1 other elementary
components. Thus, it is i(T )’s best choice. Q.E.D.

Proof of part (b1): Lemma 4.1 and i(T ) ∈ p imply that all members of HM−2
prefer {i(T )} to all other elements of Φi(T )(P ). The same is obviously true for

individual i(T ). Given that {i(T )} is a Condorcet winner in Φi(T )(P ) (see the
proof of theorem 3), part (b1) of theorem 4 follows from theorem 2, part (2).

Proof of part (a): If i(T−1) ∈ HM−2∪{i(T )}, we know the outcome is {i(T )}
by part (b1). So, throughout the rest of the proof of part (a), we will suppose that
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i(T − 1) ∈ E\ ¡{i(T ), i∗M−1} ∪HM−2¢ ≡ LM−1 (note that LM−1 is the set of M − 1
least costly elementary policies other than i(T )).

We claim that {i(T−1), i(T )} ∈ Φi(T )(P ). In particular, consider q = {i(T ), i(T−
1), i∗M−1} ∪HM−2. Note that {i(T − 1), i(T )} ∈ Z(q, P ) (it is strictly preferred to
q by members of E\ ¡{i∗M−1} ∪HM−2¢). The only elements of P that i(T ) prefers
to {i(T − 1), i(T )} are {i(T )} and {i(T ), j} where cj < ci(T−1). Note that all

members of {i(T − 1), i∗M−1} ∪HM−2 strictly prefer q to both {i(T )} and {i(T ), j}
(since i(T − 1) ∈ LM−1 and cj < ci(T−1) implies j 6∈ {i(T − 1), i∗M−1} ∪ HM−2).
Consequently, {i(T )}, {i(T ), j} 6∈ Z(q, P ). But then {i(T − 1), i(T )} = ϕi(T )(q, P ),

as required.

Now we establish that Φi(T−1) ◦ Φi(T )(P ) = {{i(T )}, {i(T − 1), i(T )}}. By

theorem 3, we know that {i(T )} ∈ Φi(T−1) ◦ Φi(T )(P ). Since i(T ) ∈ p for all
p ∈ Φi(T )(P ) and since {i(T − 1), i(T )} ∈ Φi(T )(P ), we have {i(T − 1), i(T )} =
ϕi(T−1)({i(T−1), i(T )},Φi(T )(P )) ∈ Φi(T−1)◦Φi(T )(P ). We claim that p 6∈ Φi(T−1)◦
Φi(T )(P ) for all other p ∈ Φi(T )(P ). Suppose not. Consider any q ∈ Φi(T )(P ) such
that p ∈ ϕi(T−1)(q,Φi(T )(P )) for p 6∈ {{i(T )}, {i(T − 1), i(T )}}. There are two cases
to consider.

(i) i(T − 1) 6∈ p. Since {i(T )} is a Condorcet winner in Φi(T )(P ), we know that
{i(T )} ∈ Z(q,Φi(T )(P )). But since i(T ) ∈ p, individual i(T − 1) strictly prefers
{i(T )} to p. Thus, p 6∈ ϕi(T−1)(q,Φi(T )), a contradiction.

(ii) i(T −1) ∈ p. Since i(T ) ∈ p, we know that |p| ≥ 3. Since p ∈ Z(q,Φi(T )(P ))
and |p| ≤ M , we must also have |q| ≥ 3 (otherwise all members of (E\p) ∪ {i(T )},
a majority, would prefer q to p). Everyone in (E\q) ∪ {i(T )} must then prefer
{i(T − 1), i(T )} to q. Since |q| ≤ M and i(T ) ∈ q, this is a majority, so {i(T −
1), i(T )} ∈ Z ¡q,Φi(T )(P )¢. But since i(T −1) prefers {i(T −1), i(T )} to p, we have
a contradiction. This completes the proof of part (a).

Proof of part (b2): From part (a), we know that Φi(T−1) ◦ Φi(T )(P ) =
{{i(T )}, {i(T − 1), i(T )}}. All individuals other than i(T −1) strictly prefer {i(T )}
to {i(T−1), i(T )}. Consequently, for any j 6= i(T−1), Φj({{i(T − 1), i(T )}, {i(T )}}) =
{i(T )}. The desired result follows directly. Q.E.D.

Proof of Theorem 5: The proof consists of two steps.

Step 1: Characterization of Φi(T−1)◦Φi(T )(P ). There are four cases to consider.
(a) i(T − 1) ∈ HM−2 ∪ {i(T )}. Then, by theorem 4, part (b1), we know that

Φi(T−1) ◦Φi(T )(P ) = {i(T )}.
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(b) i(T − 1) ∈ LM−1 (defined, as in the proof of theorem 4, as the M − 1 lowest
cost elementary policies other than i(T )). From the proof of theorem 4, part (a),

we know that Φi(T−1) ◦ Φi(T )(P ) = {{i(T )}, {i(T − 1), i(T )}}. Note that, in this

case, Φj ◦Φi(T−1) ◦ Φi(T )(P ) = {i(T )} for any j 6= i(T − 1).
(c) i(T − 1) = i∗M−1 and i(T ) is not the lowest cost elementary policy. We

claim that, if p is an element of Φi(T−1) ◦ Φi(T )(P ), then either p = {i(T )}, or p is
of the form E\ (HM−2 ∪ {j}) for j ∈ LM−1. Suppose Φi(T−1) ◦ Φi(T )(P ) contains
some other policy p. Consider any q ∈ Φi(T )(P ) such that p = ϕi(T )(q,Φi(T )(P )).

From the proof of theorem 3, we know that {i(T )} ∈ Z(q,Φi(T )(P )). By lemma

4.1, we know that i∗M−1 6∈ p. Thus, i∗M−1 strictly prefers {i(T )} to p, which is a
contradiction. Note that, in this case, Φj ◦ Φi(T−1) ◦ Φi(T )(P ) = {i(T )} for any
j ∈ HM−2 ∪ {i(T )}.

(d) i(T − 1) = i∗M−1 and i(T ) is the lowest cost elementary policy. Then by

lemma 4.1 parts (i) and (iv), i∗M−1 6∈ p for all p ∈ Φi(T )(P ). But then, by theorem
2 part (2), Φi(T−1) ◦ Φi(T )(P ) = {i(T )}.

Step 2. Computation of the function B(N,T ). There are two cases to consider.

Case 1: i(T ) is not the lowest cost elementary policy. In that case, according

to step 1, the process can yield an outcome other than {i(T )} only if either (a)
i(t) = i(T − 1) ∈ LM−1 for all t < T − 1, or (b) i(T − 1) = i∗M−1 and i(t) 6∈
HM−2 ∪ {i(T )} for all t < T − 1. Case 1(a) occurs for the following fraction of

recognition orders: µ
N − 1
N

¶µ
M − 1
N

¶µ
1

N

¶T−2
.

Case 1(b) occurs in the fraction of recognition orders:µ
N − 1
N

¶µ
1

N

¶µ
M

N

¶T−2
.

Case 2: i(T ) is the lowest cost elementary policy. In this case, according to step

1, the process can yield an outcome other than {i(T )} only if i(t) = i(T−1) ∈ LM−1
for all t < T − 1, which occurs in the following fraction of orders:µ

1

N

¶µ
M − 1
N

¶µ
1

N

¶T−2
.

Combining these expressions, we find that the fraction of orders producing {i(T )}
is at least:

1−
µ
M − 1
N

¶µ
1

N

¶T−2
−
µ
N − 1
N

¶µ
1

N

¶µ
M

N

¶T−2
.
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We replaceM−1 with N−1
2 and factor to obtain the formula for B(N,T ). Q.E.D.

Proof of Theorem 6: We begin the proof with a lemma.

Lemma 6.1: For any p ∈ P and t < T , the total cost of Qt(p) is not greater than

the total cost of QT (p).

Proof: Note first that, for any p ∈ P , if Qt(p) 6= Qt+1(p), then a majority of

individuals must strictly prefer Qt(p) to Qt+1(p).

Next we argue that, for all t = 1, ..., T − 1, the total cost of Qt(p) is not greater
than the total cost of Qt+1(p) (the lemma follows directly). Suppose on the con-

trary the that total cost of Qt(p) is greater than the total cost of Qt+1(p) for some

such t. Then all members of E\Qt(p) strictly prefer Qt+1(p) to Qt(p). Indi-

vidual i(T ) also prefers Qt+1(p) to Qt(p) (since both policies include i(T )). But

|{i(T )} ∪ (E\Qt(p))| ≥M (since i(T ) ∈ Qt(p) and |Qt(p)| ≤M), which contradicts
the fact that Qt(p) must be majority-preferred to Qt+1(p). Q.E.D.

Now we prove the theorem.

Part (i): Consider once again the four mutually exclusive and exhaustive cases

discussed in the proof of theorem 5, step 1. For cases (a) and (d), Φi(T−1) ◦
Φi(T )(P ) = {i(T )}, so Q1(p0) = {i(T )}. For case (b), Φj ◦ Φi(T−1) ◦ Φi(T )(P ) =
{i(T )} for any j 6= i(T − 1), so as long as |J | > 2 (which assures i(t) 6= i(T − 1) for
some t < T − 1), Q1(p0) = {i(T )}.

Now consider case (c). We claim that QT (p0) is no more costly than the policy

LM−1∪{i(T )}. By assumption, either p0 = 0 or
P
j∈p0 cj > ci(T ). First consider the

subcase where p0 = ∅. By lemma 4.1 part (iv), QT (p0) = E\
¡
HM−2 ∪ {i∗M−1}

¢
=

LM−1∪{i(T )}, as required. Next consider the subcase where
P
j∈p0 cj > ci(T ). Note

that (p0 ∩ LM−1) ∪ {i(T )} ∈ Z(p0, P ) (since it omits from p0 no more than M − 1
elementary policies). Thus, QT (p0) must be no more costly than LM−1 ∪ {i(T )}
(or i(T ) would propose (p0 ∩ LM−1) ∪ {i(T )} instead).

In light of the preceding claim, lemma 6.1 tells us that Q1(p0) is no more costly

than LM−1 ∪ {i(T )}. We know from the proof of theorem 5 that if p is an element

of Φi(T−1) ◦ Φi(T )(P ), then either p = {i(T )}, or p is of the form E\ (HM−2 ∪ {j})
for j ∈ LM−1. Also recall that Q1(p0) ∈ Φi(T−1) ◦Φi(T )(P ). But E\ (HM−2 ∪ {j})
for j ∈ LM−1 is more costly than LM−1 ∪ {i(T )} (since the latter policy is the same
as E\ ¡HM−2 ∪ {i∗M−1}¢. Thus, Qt(p0) = {i(T )}, as desired.
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Part (ii): If |p0| ≤ M − 1 and Pj∈p0 cj > ci(T ), then {i(T )} ∈ Z(p0, P ), so
QT (p0) = {i(T )}. Since {i(T )} is strictly less costly than all other policies in
Φi(T )(P ) (given that all such policies contain i(T )), lemma 6.1 implies immediately

that Q1(p0) = {i(T )}.
Part (iii): From the argument given in the proof of theorem 2 and the fact that

{i(T )} is a Condorcet winner in Φi(T )(P ), we know that vl (Q1(p0)) ≥ vl({i(T )})
for all l ∈ J\{i(T )}. By lemma 6.1, |Q1(p0)| ≤ |QT (p0)| < |J |. Consequently,

since i(T ) ∈ Q1(p0), there exists l0 ∈ J\{i(T )} such that l0 6∈ Q1(p0). But then

vl0 (Q1(p0)) ≥ vl0({i(T )}) implies Q1(p0) = {i(T )}. Q.E.D.

Proof of Theorem 7: Consider the selection of a proposal in round T −2. Let
iA and iB denote the two members of Θ who make proposals after T − 2. Suppose
in addition that i∗M−1 /∈ {iA, iB} (which occurs with probability N−2

N ). According

to part (a) of theorem 4, all individuals know that, if ik is chosen to propose last

(k = A,B), the final outcome will be either {ik} or {iA, iB}. From the perspective of
round T−2, all individuals other than iA and iB (including i(T−2)) would therefore
strictly prefer an outcome that produces iA when iA is chosen to propose last, and

iB when B is chosen to propose last, to any other outcome that is achievable given

the continuation equilibria for rounds T −1 and T . Suppose that i(T −2) proposes
{iA, iB}, and that the proposal passes. In round T − 1, all individuals other than
iA and iB know that if they vote against pmt (regardless of what it is), the ultimate

outcome will be ik (with pT−1 = {iA, iB}, ik will propose {ik} in the final round,
and this will pass). Consequently, they will vote for pmt only if it also yields {ik}
as the final outcome. Thus, passing the proposal {iA, iB} in round T − 2 produces
iA when iA is chosen to propose last, and iB when iB is chosen to propose last. If

i(T − 2)’s equilibrium proposal led to any other outcome, i(T − 2) would have an
incentive to deviate to the proposal {iA, iB}, and all individuals other than iA and
iB would have an incentive to support it. Thus, as long as i∗M−1 /∈ {iA, iB}, the
process implements the elementary policy associated with the last proposer, and

nothing else. Q.E.D.

Proof of Theorem 8: We begin with some notation. For any i ∈ I and q ∈ P ,
let G(q) denote some set of M − 1 individuals, not including i(T ), satisfying the
following condition: j ∈ G(q) implies vj

¡
ϕi(T )(q, P )

¢ ≥ vj(q). That is, G(q) repre-
sents a group of M − 1 individuals other than i(T ) who (weakly) prefer ϕi(T )(q, P )
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to q (by A2, equality will hold only if q = ϕi(T )(q, P )). By the definition of ϕi(T )(·),
one can always identify such a group, though it need not be unique. When it is not

unique, G(q) represents some arbitrary selection from the set of groups satisfying

this condition. Let Γ(q) denote the set of M − 1 individuals which is the com-
plement of G(q) ∪ {i(T )} in I. The support of individuals in Γ(q) is not required
for the passage of ϕi(q, P ) (although in any given instance some members of this

group may nevertheless prefer this outcome to q). Thus, one can think of Γ(q)

as the “minority.” Finally, we define ϕ−1
i(T )
(p, P ) as the set of policies q such that

p = ϕi(T )(q, P ). Note that this inverse exists for all p ∈ Φi(T )(P ).
Step 1: As in the proof of theorem 3, we proceed by demonstrating that

Φi(T )(P ) has the following three properties.

Property 1: Ei(T ) ∈ Φi(T )(P ). As before, this is straightforward, since Ei(T ) =
ϕi(T )(Ei(T ), P ).

Property 2: For any p ∈ Φi(T )(P ) and q ∈ ϕ−1i(T )(p, P ), we have |pj | = 0 for all
j ∈ Γ (q).

Suppose not. Consider any policy q ∈ ϕ−1i(T )(p, P ). Define p
0 = p∩¡∪j∈G(q)∪{i(T )}Ej¢

(in other words, delete all elementary policies associated with individuals in Γ (q)

from p). Plainly, all j ∈ G (q) ∪ {i(T )} strictly prefer p0 to p and weakly prefer p
to q, so p0 ∈ Z (q, P ). But since i(T ) prefers p0 to p, this contradicts the fact that
p = ϕi(T ) (q, P ).

Property 3: For any p ∈ Φi(T )(P ) with p 6= Ei(T ), we have C(p) > C(Ei(T )).
By assumption A5, this is obviously the case for any p with |p| ≥M − 1. So for

the remainder of this proof, we focus on the case of p with |p| < M − 1. Consider
any q ∈ ϕ−1i(T )(p, P ). Note for future reference that |pj | = 0 for some j ∈ G(q) (since
|p| < M − 1).

We prove property 3 through a series of three claims.

Claim 1: C(q) ≥ C(p). Assume on the contrary that C(p) > C(q). For all

j ∈ G(q) with |pj | = 0, we have vj(p) = −C(p) < −C(q) ≤ vj(q), which contradicts
j ∈ G(q).

Claim 2: If C(q) = C(p), then p = Ei(T ). By assumption A2, C(q) = C(p)

implies q = p. Assume contrary to the claim that p 6= Ei(T ). There are two cases
to consider.

Case 1: |pj | = 0 for all j 6= i(T ). Consider any p0 such that
¯̄̄
p0i(T )

¯̄̄
= Ki(T ),¯̄̄

p0j
¯̄̄
= 1 for j ∈ G(q), and

¯̄̄
p0j
¯̄̄
= 0 for j /∈ G(q) ∪ {i(T )}. By assumption A6, all
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j ∈ G(q) ∪ {i(T )} strictly prefer p0 to p. Since p = q, we have p0 ∈ Z(q, P ). Since
i(T ) strictly prefers p to p0, we have p 6= ϕi(T )(q, P ), a contradiction.

Case 2: |pj∗ | > 0 for some j∗ 6= i(T ). Consider p0 constructed as follows:

p0 = p\Ej∗ . All individuals but j∗ strictly prefer p0 to p. Since p = q, p0 ∈ Z(q, P ).
Since i(T ) strictly prefers p0 to p, we have p 6= ϕi(T )(q, P ), a contradiction.

Claim 3: If C(q) > C(p) and p 6= Ei(T ), then C(p) > C(Ei(T )). We prove claim
3 through a series of three steps. Throughout, we assume that C(q) > C(p) and

p 6= Ei(T ).
3.1: ∃j∗ ∈ G(q) such that |pj∗ | > 0. Suppose not. Then, by property 2, |pj | = 0

for all j 6= i(T ). Arguing exactly as in the proof of case 1 for claim 2, this can only

be the case if p = Ei(T ), a contradiction.

3.2: |qj | > 0 for all j ∈ Γ(q). Suppose on the contrary that there exists some
j ∈ Γ(q) such that |qj | = 0. Then, since C(q) > C(p), we have vj(p) > vj(q). In

that case, p is preferred to q by all members of G(q)∪ {i(T ), j}, which constitutes a
supermajority. Consider p0 defined as follows: p0 = p\Ej∗ (where j∗ was identified in
step 3.1). Note that p0 is strictly preferred to p by all individuals in G(q)∪{i(T ), j}
except for j∗. Since p is preferred to q by all members of this same group, a strict

majority prefers p0 to q. Thus, p0 ∈ Z(q, P ). Since i(T ) strictly prefers p0 to p, we
have p 6= ϕi(T )(q), a contradiction.

3.3: pi(T ) = Ei(T ) (from which it follows immediately that C(p) > C(Ei(T )), as

desired). Suppose not. Divide the set G(q) into the following two subsets:

A = {j ∈ G(q) | C(pj) < C(qj)− c} and B = G(q)\A.

Now construct p0 as follows:

p0i(T ) = Ei(T ),

p0j = 0 = pj for j ∈ Γ(q),
p0j ⊇ pj and

¯̄
p0j
¯̄
= |pj |+ 1 for j ∈ A,

p0j = qj for j ∈ B.

Note that C(p0j) ≤ C(pj)+c for all j ∈ G(q). Thus, C(p0) ≤ C(p)+
¡
K +M − 1¢ c.
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Note also that C(p0j) ≤ C(qj) for j ∈ G(q). Thus,

C(p0) = C(p0i(T )) + C
¡∪j∈G(q)p0j¢

≤ Kc+ C
¡∪j∈G(q)qj¢

≤ Kc+ C
¡∪j∈G(q)qj¢+ £C ¡∪j∈Γ(q)qj¢− (M − 1)c¤+ C(qi(T ))

= C(q)− £(M − 1)c−Kc¤
< C(q)

(where we have used step 3.2 for the second inequality and A5 for the final inequal-

ity). Thus, C(p0) < C(q).

Consider any j ∈ A ∪ {i(T )}. Note that

vj(p
0)− vj(p) ≥ b− ¡C(p0)− C(p)¢

≥ b− ¡K +M − 1¢ c
> 0

by assumption A6. Thus, all such j strictly prefer p0 to p. Since A ∪ {i(T )} ⊆
G (q) ∪ {i(T )}, these same individuals strictly prefer p to q, and therefore strictly
prefer p0 to q.

Now consider any j ∈ B. Since p0j = qj , we have vj(p0)−vj(q) = C(q)−C(p0) > 0.
Thus, all such j strictly prefer p0 to q.

From the preceding, it follows that all j ∈ G (q) ∪ {i(T )} strictly prefer p0 to
q. Thus, p0 ∈ Z(q, P ). But since i(T ) strictly prefers p0 to p, this implies that

p 6= ϕi(T )(q, P ), which is a contradiction.

Step 2: Now we argue that Ei(T ) is a Condorcet winner in Φi(T )(P ). By

property 1, we know that Ei(T ) ∈ Φi(T )(P ). Consider any p ∈ Φi(T )(P ) other than
Ei(T ). Let q be any policy in ϕ−1i(T )(p, P ). By properties 2 and 3, we know that,

for all j ∈ Γ(q), we have vj(Ei(T )) − vj(p) = C(p) − C(Ei(T )) > 0. Thus, all such

j strictly prefer Ei(T ) to p. Obviously, i(T ) also strictly prefers Ei(T ) to p. Since

|Γ(q)| =M − 1, a majority of individuals strictly prefer Ei(T ) to p, as required.
Step 3: To complete the proof of the theorem, we apply lemma 1 and theorem

2, exactly as in the proof of theorem 3. Q.E.D.

Proof of Theorem 9: Consider any p ∈ Φi(T )(P ). Throughout, we use q to

denote some policy for which p = ϕi(T )(q, P ) (if there is more than one such policy,

we select one arbitrarily).
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The proof of this theorem requires the following two preliminary results.

Lemma 9.1: Suppose Ns ≥ N∗. Consider any decisive set L ⊆ E with s ∈ L.
Then there is a minimally decisive set L0 ⊆ L with s ∈ L0.

Proof: Let S ≡ |L|. Let the function µ : {1, ..., S} → L be such that, for

all l ∈ {1, ..., S}, we have (i) for all l, l0 ∈ {1, ..., S}, µ(l) 6= µ(l0), (ii) for all l ∈
{2, ..., S}, Nµ(l) ≥ Nµ(l−1), and (iii) if Nµ(l) = Ns for some l with µ(l) 6= s, then

l < µ−1(s). In other words, µ−1(·) indexes the elements of L in order of increasing
size (with s placed after other groups of equal size). Since L is decisive, we know

that
PS
l=1Nµ(l) ≥ M . Moreover, Nµ(S) < M (otherwise we would have N∗ =

Nµ(S) ≥ M , which would violate A7). Accordingly, there exists some integer z ∈
{1, ..., S} such thatPS

l=zNµ(l) ≥M and
PS
l=z+1Nµ(l) < M . Let L

0 = {µ(z), µ(z+
1), ..., µ(S)}. In light of (ii),PS

l=z+1Nµ(l) < M implies that
P
j∈L0 Nj−Nk < M for

all k ∈ L0. Thus, L0 is minimally decisive. Let L00 = {l ∈ E | Nl > N∗}. In light
of (iii) and the fact that Ns ≥ N∗, we have

PS
l=µ−1(s)+1Nµ(l) ≤

P
j∈L00 Nj < M .

Thus, z ≤ µ−1(s), which implies s ∈ L0. Q.E.D.

Lemma 9.2: There exists p0 ∈ Z(q, P ) such that r(i(T )) ∈ p0 and p0 ⊆ L for some
L ∈ Λ.

Proof: There are two cases to consider.

Case 1: r(i(T )) ∈ q.
If q is not decisive, take p0 = {r(i(T ))}. Notice that p0 is preferred to q (weakly

if q = p0) for the decisive set E\q, so p0 ∈ Z(q, P ). Moreover, we know that

{r(i(T ))} ⊆ L for some L ∈ Λ (this follows directly from lemma 9.1, since one can

always find a decisive set containing r(i(T ))).

If q is minimally decisive, simply take p0 = q.

If q is decisive but not minimally decisive, then, by lemma 9.1, there exists some

minimally decisive set p0 ⊆ q such that r(i(T )) ∈ p0. Since Pj∈p0 cj <
P
j∈q cj , all

j ∈ p0 strictly prefer p0 to q, so p0 ∈ Z(q, P ).
Case 2: r(i(T )) /∈ q.
First suppose that

P
j∈qNj ≥M . By deleting elements of q starting with those

associated with the smallest groups and moving to the largest, one can find some

q0 ⊂ q such that M >
P
j∈q0 Nj ≥M −N∗. Construct q00 = (q\q0)∪ {r(i(T ))}. By

A7,
P
j∈q00 cj <

P
j∈q cj . Thus, all individuals in any group l ∈ E\q0 strictly prefer
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q00 to q. By construction, E\q0 is decisive. By lemma 9.1, we know there exists

some L ⊆ E\q0 with r(i(T )) ∈ L and L ∈ Λ. Let p0 = L ∩ q00. Individuals within

groups belonging to L (weakly) prefer p0 to q00, and strictly prefer q00 to q. Thus,

p0 = Z(q, P ), as required.

Now imagine that
P
j∈qNj < M . Note that the set E\q is decisive. Thus, by

lemma 9.1, there is a minimally decisive set p0 ⊆ E\q with r(i(T )) ∈ p0. By A8, all
individuals belonging to groups within p0 strictly prefer p0 to q. Thus, p0 ∈ Z(q, P ).
Q.E.D.

Now we return to the proof of the theorem. Much as in the proof of theorem 3,

we proceed by establishing three properties of Φi(T )(P ).

Property 1: {r(i(T ))} ∈ Φi(T )(P ).
Since {r(i(T ))} is the favorite policy of individual i(T ), we have {r(i(T ))} =

ϕi(T )({r(i(T ))}, P ).
Property 2: p ∈ Φi(T )(P ) implies p ⊆ L for some L ∈ Λ.
Assume not. Let Ψ denote the set of groups that (weakly) prefer p to q. Clearly,

Ψ is decisive, and Ψ contains r(i(T )). From lemma 9.1, we know that there exists

some L ∈ Λ with L ⊆ Ψ and r({i(T )}) ∈ L. Consider the policy p0 = p∩L. Since it

is not the case that p ⊆ L, we have p0 ⊂ p, soPl∈p0 cl <
P
l∈p cl. Consequently, all

members of any group j ∈ p0 (including r(i(T ))) strictly prefer p0 to p. Since these
individuals also (weakly) prefer p to q, they strictly prefer p0 to q, which implies

p0 ∈ Z(q, P ). But since i(T ) strictly prefers p0 to p, this contradicts p ∈ ϕi(T )(q, P ).

Property 3: p ∈ Φi(T )(P ) implies r(i(T )) ∈ p.
Suppose that the property is false, i.e. that there exists p ∈ Φi(T )(P ) with

r(i(T )) 6∈ p. Then vi(T )(p) ≤ 0. Lemma 9.2 establishes the existence of some

p0 ∈ Z(q, P ) such that r(i(T )) ∈ p0 and p0 ⊆ L for some L ∈ Λ. Clearly, vi(T )(p0) ≥
vi(T )(L) > 0, where the second inequality follows from A8. Thus, p 6∈ ϕi(T )(q, P ),

which is a contradiction.

Now we prove the theorem. In particular, we claim that {r(i(T ))} is a Condorcet
winner in Φi(T )(P ). By property 1, we know that {r(i(T ))} ∈ Φi(T )(P ). Consider
any other p ∈ Φi(T )(P ). By property 3,

P
j∈p cj > cr(i(T )). Thus, all individuals

within groups j ∈ E\p strictly prefer {r(i(T ))} to p, as do individuals within r(i(T )).
Note that the set of individuals who strictly prefer {r(i(T ))} to p can be written
as E\ (p\{r(i(T ))}). Since, by property 2, p ⊆ L for some L ∈ Λ, we know that
p\{r(i(T ))} is not decisive. But then E\ (p\{r(i(T ))}) is decisive, as required.
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Since {r(i(T ))} is a Condorcet winner in Φi(T )(P ), we know (from the argu-

ment used in the proof of Theorem 2) that, for all p ∈ Q1(P ), we have vi(p) ≥
vi ({r(i(T ))}) for all i ∈ J 00 ≡ {j | j = i(t) for some t = 1, ..., T − 1}, and hence
for all i ∈ ∪j∈J 00Ir(j). If J 00 ∩ Ir(i(T )) is non-empty, then the fact that vi(p) ≥
vi ({r(i(T ))}) for i ∈ J 00 ∩ Ir(i(T )) requires p = {r(i(T ))}. If |J 0| ≥ M +

¯̄
Ir(i(T ))

¯̄
,

then
¯̄∪j∈J 00Ir(j)¯̄ ≥ M , in which case the fact that vi(p) ≥ vi ({r(i(T ))}) for all

i ∈ ∪j∈J 00Ir(j) implies p = {r(i(T ))} (otherwise {r(i(T ))} would not be a Condorcet
winner). Q.E.D.

Proof of Theorem 10: The theorem is trivial when ε ≥ 1/N . Consequently,
assume ε < 1/N . We begin with two lemmas.

Lemma 10.1: Consider any pT−1 ∈ ∆N−1ε . Under either of the following condi-

tions, there exists some set of individuals S with i(T ) 6∈ S and |S| = M − 1
such that (QT (pT−1))l = 0 if and only if l ∈ S.

(i) QT (pT−1) 6= pT−1,

(ii)(QT (pT−1))i(T ) < 1−Nε.

Proof: (i) Since QT (pT−1) 6= pT−1, there exists a set S00 with i(T ) 6∈ S00

and |S00| = M − 1 such that (QT (pT−1))l > (pT−1)l ≥ 0 for l ∈ S00. We claim

that (QT (pT−1))l = 0 for all l ∈ E\ (S00 ∪ {i(T )}). Suppose not. Consider p0

constructed as follows: p0l = 0 for l ∈ E\ (S00 ∪ {i(T )}), p0l = (QT (pT−1))l for

l ∈ S00, and p0i(T ) = (QT (pT−1))i(T ) +
P
i∈E\S00 (QT (pT−1))i (in other words, divert

all surplus from members of E\ (S00 ∪ {i(T )}) to i(T )). Plainly, p0l > (pT−1)l for

l ∈ S00 ∪ {i(T )}. Since |S00 ∪ {i(T )}| = M , the policy p0 would pass if proposed

in round T ; since p0i(T ) > (QT (pT−1))i(T ), individual i(T ) would therefore have

an incentive to propose it. But this contradicts the hypothesis that QT (pT−1)

is i(T )’s optimal proposal. Since (QT (pT−1))l = 0 for l ∈ E\ (S00 ∪ {i(T )}) and
|E\ (S00 ∪ {i(T )})| = M − 1, we must have (QT (pT−1))i(T ) > (pT−1)i(T ) ≥ 0 (or

QT (pT−1) would not pass). Taking S = E\ (S00 ∪ {i(T )}) delivers the desired
conclusion.

(ii) In light of part (i), we prove this by showing that QT (pT−1) 6= pT−1. Sup-
pose on the contrary that QT (pT−1) = pT−1. Since (pT−1)i(T ) < 1 − Nε, we haveP
j 6=i(T ) (pT−1)j ≥ (N + 1) ε, which implies the existence of a set S0 with i(T ) 6∈ S0
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and |S0| = N−1
2 =M − 1 such that Pj∈S0 (pT−1)j ≥

¡
N+1
2

¢
ε =Mε. It is therefore

possible to construct a policy p0 with the property that p0j ≥ (pT−1)j+ε for all j 6∈ S0.
All members of E\S0, including i(T ), strictly prefer p0 to pT−1. Since |E\S0| =M ,
the policy p0 would pass if proposed in round T , and i(T ) would therefore have an

incentive to propose it. But this contradicts the hypothesis that QT (pT−1) = pT−1.

Q.E.D.

Lemma 10.2: Consider any set A with i(T ) 6∈ A and |A| = M − 1. Define the

policy xA as follows: xAi(T ) = 1−(M−1)ε; for l ∈ A, xAl = ε; for l 6∈ A∪{i(T )},
xAl = 0. Then Qt(x

A) = xA for all t = 1, ..., T .

Proof: First consider the case of t = T . If QT (x
A) 6= xA, then there must beM

individuals with
¡
QT (x

A)
¢
l
> xAl . But this can only be the case if

¡
QT (x

A)
¢
i(T )

<

xAi(T ), which implies that i(T ) would not propose QT (x
A), a contradiction.

Now suppose that Qt+1(x
A) = xA. Imagine that, contrary to the claim,

Qt(x
A) 6= xA. Then there must be M individuals with

¡
Qt(x

A)
¢
l
>
¡
Qt+1(x

A)
¢
l
=

xAl . Once again, this can only be the case if
¡
Qt(x

A)
¢
i(T )

< xAi(T ). But then we

know that there is some set B with |B| = M and i(T ) 6∈ B such that
¡
Qt(x

A)
¢
l
>¡

Qt+1(x
A)
¢
l
= xAl . Since |A| =M − 1, there is at least on individual, j∗, in both A

and B.

Consider some equilibrium from round t onward, given pt−1 = xA, for which the

outcome is Qt(x
A). Let pAT−1 denote the status quo at the outset of round T on

the equilibrium path. Plainly, QT (p
A
T−1) = Qt(x

A). There are two possibilities.

(i) pAT−1 = QT (p
A
T−1). Consider any set D = B\{j} for some j ∈ B\{j∗}. Since¡

Qt(x
A)
¢
l
≥ ε for l ∈ D\{j∗} and ¡Qt(xA)¢j∗ ≥ 2ε, we havePl∈D

¡
Qt(x

A)
¢
l
≥M².

Consequently, we can construct a policy p0 with p0l =
¡
Qt(x

A)
¢
l
+ ε for l ∈ E\D.

Since pAT−1 = Qt(x
A) and |E\D| = M , if p0 is proposed in round T , it will pass.

Since i(T ) prefers p0 toQt(xA), i(T ) will propose p0, which contradicts the hypothesis

that the outcome is Qt(x
A).

(ii) pAT−1 6= QT (pAT−1). Then, by lemma 10.1 part (i), there exists a set S with
i(T ) 6∈ S and |S| = M − 1 such that (QT (pT−1))l = 0 for all l ∈ S. But this

contradicts the existence of the set B. Q.E.D.

Now suppose, contrary to the theorem, that there exists p0 such that (Q1(p0))i(T ) <

1 − Nε. Consider some equilibrium resulting in the outcome Q1(p0), and suppose

that, for each t = 1, .., T , the policy bpt−1 is the status quo at the outset of each round
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t on the equilibrium path (by construction bp0 = p0). Plainly, Qt(bpt−1) = Q1(p0).
We claim that, for all t ∈ 1, ..., T − 1, we have (Qt+1(bpt−1))i(T ) < 1 − Nε.

Suppose on the contrary that there is some t0 for which (Qt0+1(bpt0−1))i(T ) ≥ 1−Nε.

Then we know that, in equilibrium, bpt0 6= bpt0−1 is proposed in round t0 and it passes
(so that the outcome is Qt0+1(bpt0) rather than Qt0+1(bpt0−1)). But, by lemma 10.1

part (ii), there exists a set of individuals S with i(T ) 6∈ S and |S| = M − 1 such
that (Qt0+1(bpt0))l = (QT (bpT−1))l = 0 for all l ∈ S. Moreover, (Qt0+1(bpt0))i(T ) <
(Qt0+1(bpt0−1))i(T ). Thus, under the assumption that those who are indifferent vote
against proposals, at leastM individuals (those in S∪{i(T )}) vote against bpt0 , which
contradicts the hypothesis that bpt0 passes.

Since (Qt+1(bpt−1))i(T ) < 1 − Nε, we know from lemma 10.1 part (ii) that, for

every round t, there exists some set of individuals S(t) with i(T ) 6∈ S(t) and |S(t)| =
M−1 such that (Qt+1(bpt−1))l = 0 if and only if l ∈ S(t). Imagine that i(t) proposes
xS(t) (as described in lemma 10.2, with A = S(t)). If the proposal passes, we know

by lemma 10.2 that the outcome is xS(t). Since x
S(t)
l > (Qt+1(bpt−1))l for all l ∈ S(t)

as well as for l = i(T ) (given that (Qt+1(bpt−1))i(T ) < 1 − Nε), we know that the

proposal passes (given that |S(t) ∪ {i(T )}| = M). Consider the case where i(T )

proposes more than once. In any round t < T for which i(t) = i(T ), individual

i(T ) would gain by deviating to the proposal xS(t), contradicting the assumption of

equilibrium. Now consider the case where |J | > M . We know from lemma 10.1

part (ii) that there is some t00 ∈ {1, ..., T − 1} such that (Qt00+1(bpt00))i(t00) = 0, which
implies (Qt00+1(bpt00−1))i(t00) = 0 (otherwise i(t00) would propose bpt00−1), and hence
i(t00) ∈ S(t00). But then individual i(t00) would gain by deviating to the proposal

xS(t
00), contradicting the assumption of equilibrium. Q.E.D.
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