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ABSTRACT

This paper examines evidence on the effect of class size on student achievement. First, it is shown

that results of quantitative summaries of the literature, such as Hanushek (1997), depend critically on

whether studies are accorded equal weight. Hanushek summarizes 277 estimates extracted from 59

published studies, and weights all estimates equally, which implicitly places more weight on some studies

than others. A small number of studies, which often present estimates for several small subsamples of

a larger sample, account for more than half of the estimates. Studies from which relatively many estimates

were extracted tend to find negative effects of school resources, whereas the majority of studies from

which relatively few estimates were extracted tend to find positive effects. When all studies in

Hanushek’s literature summary are given equal weight, resources are systematically related to student

achievement. In addition, when studies are assigned weights in proportion to the “impact factor” of the

journal in which they were published -- a crude measure of journal quality -- class size is systematically

related to achievement. When studies are given weights in proportion to their number of estimates,

however, resources and achievement are not systematically related. It is argued that assigning equal

weights to studies, or weights according to quality, is preferable to assigning weights according to the

number of estimates extracted from the studies, because study quality is unlikely to be related to the

number of estimates taken from the study, and because researcher discretion in selecting estimates is

limited when studies are assigned equal weight. Second, a cost-benefit analysis of class size reduction is

performed. Results of the Tennessee STAR class-size experiment suggest that the internal rate of return

from reducing class size from 22 to 15 students is around 6%.
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1This is based on a regression of log expenditures per pupil on the pupil-teacher ratio

using data from the 1992-93 National Center for Education Statistics Common Core of Data.

2This quote is from Hanushek (1997; p. 148).

Apart from the opportunity cost of students’ time, the number of teachers hired per

student is the main determinant of the economic cost of education.  Looking across school

districts in Texas, for example, variability in the pupil-teacher ratio accounts for two-thirds of the

variability in expenditures per student.1  If reducing class size does not increase student

achievement, then variations in overall spending per pupil are unlikely to matter either because

the pupil-teacher is such an important determinant of overall spending.

In a series of influential literature summaries, Hanushek (1986, 1989, 1996a, 1996b,

1997, 1998) argues, "There is no strong or consistent relationship between school inputs and

student performance."2  Although Hanushek never defines his criterion for a strong or consistent

relationship, he apparently draws this conclusion from his findings that estimates included in his

sample are almost equally likely to find positive effects of small class sizes on achievement as they

are to find negative effects, and a majority of the estimates are statistically insignificant. 

Hanushek’s findings are widely cited as evidence that attending a smaller class confers few benefits

for students.  For example, Chester Finn and Michael Petrilli (1998) cite Hanushek’s literature

summary to argue, “there’s no credible evidence that across-the-board reductions in class size boost

pupil achievement.”  In addition, several authors (e.g., Chubb and Moe, 1990) have argued that

the presumed failure of the education system to convert inputs into outputs implies that

incentives in public education are incapable of producing desired results.  

The next section reanalyzes the data in Hanushek’s literature reviews, including his paper

in this symposium.  Hanushek’s quantitative summary of the literature on class size is based on
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277 estimates drawn from 59 studies.  More estimates were drawn from some studies than others. 

Hanushek’s analysis applies equal weight to every estimate, and therefore assigns much more

weight to some studies than others.  The main finding of my reanalysis is that Hanushek’s

pessimistic conclusion about the effectiveness of schooling inputs results from the fact that he

inadvertently places a disproportionate share of weight on a small number of studies that

frequently used small samples and estimated misspecified models.  This problem arises because

Hanushek used a selection rule that would extract more estimates from studies that analyzed

subsamples of a larger data set than from studies that used the full sample of the larger data set,

and because considerable discretion was exercised in the application of the selection rule.  

For example, if one study analyzed a pooled sample of third through sixth graders, it

would generate one estimate, whereas if another study using the same data analyzed separate

subsamples of third, fourth, fifth, and sixth graders, that study would generate four estimates.  

Moreover, if the second study estimated separate models for black, white and Hispanic students

it would yield 12 estimates, and if it further estimated separate regressions for math and reading

scores for each subsample, as opposed to the average test score, it would yield 24 estimates.  As a

consequence, most of the estimates were extracted from a small minority of studies.  It is not

uncommon for some of the estimates to be based on as few as 20 degrees of freedom.  Estimates

based on smaller samples are likely to yield weaker and less systematic results, other things (e.g.,

the level of aggregation) being equal.  Moreover, a close examination of the nine studies that

provided the largest number of estimates (123) in Hanushek’s sample suggests that the data and

econometric specifications used in the lion’s share of the estimates are not capable of detecting
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3This is not meant as a criticism of these studies.  Many of them were not about class size,

and only control for it as an ancillary variable in a regression designed to answer another

question.

class-size effects of reasonable magnitudes, even if they exist.3  For example, one third of these

studies estimated specifications that controlled for both expenditures per student and students per

teacher, which effectively imposes that schools that have fewer students per teacher spend less

money on teacher salaries or other inputs to achieve their low student-teacher ratio than schools

with larger student-teacher ratios; this is not the policy experiment that most observers have in

mind.  

Even using Hanushek’s classification of the estimates -- which in many cases appears to

be problematic -- class size is systematically related to student performance if the various studies

in the literature are accorded equal weight. 

A more general point raised by the reanalysis of Hanushek’s literature summary is that

not all estimates are created equal.  Hedges, Laine and Greenwald (1994) and other formal meta-

analyses of class-size effects reach a different conclusion than Hanushek apparently because they

combine estimates across studies in a way that takes account of the estimates’ precision. 

Although their approach avoids the statistical pitfalls generated by Hanushek’s method, it still

yields uninformative results if the equations underlying the studies in the literature are mis-

specified.  Research is not democratic.  In any field, one good study can be more informative than

the rest of the literature.  There is no substitute for understanding the specifications underlying

the literature and conducting well designed experiments.  A similar point was made much more

eloquently by Galileo some time ago (quoted from Sobel, 1999; p. 93):
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I say that the testimony of many has little more value than that of few, since the

number of people who reason well in complicated matters is much smaller than

that of those who reason badly.  If reasoning were like hauling I should agree that

several reasoners would be worth more than one, just as several horses can haul

more sacks of grain than one can. But reasoning is like racing and not like

hauling, and a single Barbary steed can outrun a hundred dray horses.

Insofar as sample size and strength of design are concerned, I would argue that

Tennessee’s Project STAR is the single Barbary steed in the class size literature.  Project STAR

was an experiment in which 11,600 students and their teachers were randomly assigned to small-

and regular-size classes during the first four years of school.  According to Mosteller (1995), for

example, Project STAR “is one of the most important educational investigations ever carried out

and illustrates the kind and magnitude of research needed in the field of education to strengthen

schools."  Research on the STAR experiment indicates that primary-school students who were

randomly assigned to classes with about 15 students performed better than those who were

assigned to classes with about 22 students, even when they were observed at the end of secondary

school.  

Section II considers the economic implications of the magnitude of the relationship

between class size and student performance using results from Project STAR.  The key economic

question of, “How big an improvement in student performance is necessary to justify the cost?”

is rarely raised.  A method is presented for estimating the internal rate of return from reducing

class size.  The estimates suggest that the (real) internal rate of return from reducing class size

from 22 to 15 students is around 6%.   At a 4% discount rate, the benefits of reducing class size

are estimated to be around twice the cost.  
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1.  Reanalysis of Literature Review

Eric Hanushek kindly provided me with the classification of estimates and studies

underlying his 1997 literature summary.  These same data are used in his contribution to this

symposium.  Hanushek (1997; p. 142) describes his sample selection as follows: 

This summary concentrates on a set of published results available through 1994,

updating and extending previous summaries (Hanushek, 1981, 1986, 1989).  The

basic studies meet minimal criteria for analytical design and reporting of results. 

Specifically, the studies must be published in a book or journal (to ensure a

minimal quality standard), must include some measures of family background in

addition to at least one measure of resources devoted to schools, and must provide

information about statistical reliability of the estimates of how resources affect

student performance.  

He describes his rule for selecting estimates from the various studies in the literature as follows: 

The summary relies on all of the separate estimates of the effects of resources on

student performance.  For tabulation purposes, a ‘study’ is a separate estimate of

an educational production found in the literature.  Individual published analyses

typically contain more than one set of estimates, distinguished by different

measures of student performance, by different grade levels, and frequently by

entirely different sampling designs.  

Most of the studies included in Hanushek’s literature summary were published in

economics journals.  The modal journal was the Economics of Education Review, which

accounted for 22% of the articles and 35% of the estimates.  

Table 1 summarizes the distribution of the estimates and studies underlying Hanushek’s

literature summary.  The first column reports the number of estimates used from each study,

classifying studies by whether only one estimate was taken (first row), two or three were taken

(second row), four to seven were taken (third row), or eight or more were taken (fourth row). 
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4Many of these studies reported more than one estimate, but only one estimate was

selected because the other estimates were not judged sufficiently different in terms of sample or

specification.  Hanushek (1997) notes that as a general rule he tried to “reflect the estimates that

are emphasized by the authors of the underlying papers.”

5Hanushek (2000; Appendix) explains that, “Link and Mulligan (1986) included an

ambiguous footnote about whether teacher-pupil ratio was included in all 24 equations in their

Only one estimate was taken from 17 studies.4  Nine studies contributed more than seven

estimates each.  These nine studies made up only 15% of the total set of studies, yet they

contributed 44% of all estimates used.  By contrast, the 17 studies from which one estimate was

taken represented 29% of studies in the literature and only 6% of the estimates. 

A consideration of Hanushek’s classification of some of the individual studies in the

literature helps to clarify his procedures, and indicates problems associated with weighting

studies by the numbers of estimates extracted from them.  Two studies by Link and Mulligan

(1986; 1991) each contributed 24 estimates -- or 17% of all estimates.  Both papers estimated

separate models for math and reading scores by grade level (3rd, 4th, 5th or 6th) and by race

(black, white, or Hispanic), yielding 2 x 4 x 3 = 24 estimates apiece.  One of these papers,  Link

and Mulligan (1986), addressed the merits of a longer school day, using an 8-percent subsample

of the data set used in Link and Mulligan (1991).  In their 1986 paper, the interaction between

class size and peer ability levels was included as a control variable, without a class-size main

effect.  In their text, however, Link and Mulligan (1986; p. 376) note that when they included

class size in the 12 equations for the math scores, it was individually statistically insignificant.  In

an e-mail communication, Eric Hanushek explained that he contacted Link and Mulligan to

ascertain the significance of the class-size variable if it was included in their 12 reading

equations.5  This  procedure would seem to violate the stated selection rule that restricted
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paper or just 12” which prompted his contact with Link and Mulligan.  This explanation is

puzzling, however, because none of the four footnotes in Link and Mulligan (1986) concerns

class size, and the text is quite clear that the reference to class size refers to the 12 math

equations.  It is also unclear why Hanushek did not try to ascertain the sign of the 24 unreported

estimates.  

estimates to a “set of published results.”   Moreover, because the estimates in Link and Mulligan

(1986) is based on a small subset of the data in Link and Mulligan (1991), the additional

estimates add little independent information.  

Another issue concerns the definition of family background for estimate selection.  The

Link and Mulligan (1991) paper controlled for no family background variables, although it did

estimate separate models for black, white and Hispanic students.  Evidently, this was considered

a sufficient family background control to justify the extraction of 24 estimates in this case. 

Likewise, percent minority was the only family background variable in Sengupta and Sfeir

(1986), from which eight estimates were taken.   Card and Krueger (1992), however, reported

several distinct estimates of the effect of the pupil-teacher ratio on the slope of the earnings-

education gradient using large samples of white males drawn from the 1970 and 1980 Censuses,

but only one estimate was selected from that paper.  In an e-mail correspondence, Hanushek

explained that he extracted only one estimate from this study because only one specification

controlled for family background information -- although all estimates conditioned on race in the

same fashion as Link and Mulligan (1986), and more flexibly than Sengupta and Sfeir (1986).    

No estimates were selected from Finn and Achilles’s (1990) analysis of the STAR

experiment apparently because it did not control for family background (other than race and

school location), even though random assignment of students to classes in that experiment should

assure that family background variables and class size are orthogonal.  
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6Their paper mentions that a full set of estimates for the additional samples was included

in a Philadelphia Federal Reserve Bank publication, but this paper was not included in

Hanushek’s sample. Their footnote 22 also provides some description of the class-size results in

the other samples. 

Hanushek selected 11 OLS estimates from Cohn and Millman (1975), but excluded

estimates that corrected for simultaneity bias.  The latter estimates were consistently more

positive and were the authors’ preferred specification.  The authors’ preferences were over

ridden, however.  Moreover, the OLS estimates which Hanushek selected controlled for both the

average class size and pupil-teacher ratio in a secondary school, a clear specification error.  

Summers and Wolfe (1977) provides another illustration of the type of researcher

discretion that was exercised in extracting estimates.  Summers and Wolfe analyze data for 627

sixth-grade students in 103 elementary schools.  They mention that data were also analyzed for

533 eighth-grade students and 716 twelfth grade students, with similar class-size results, but

these results were not included in Hanushek’s tabulation.6  Summers and Wolfe (1977; Table 1)

provide two sets of regression estimates: one with pupil-specific school inputs and another with

school-averages of school inputs.  They also provide pupil-level estimates of class-size effects

estimated separately for subsamples of low, middle and high achieving students, based on

students’ initial test scores (see their Table 3).  Hanushek selected only one estimate from this

paper, the main effect from the student-level regression.  Why the estimates reported for the

various subsamples were excluded is unclear.  It could be argued that studies that report models

with interactions between class size and student characteristics yield multiple estimates for

subgroups more efficiently than studies that estimate separate models for subsamples, yet only

one estimate was taken from interactive models.   Furthermore, because Hanushek (1991) draws
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inferences concerning the effect of the level of aggregation of the data on the estimates, it is

unfortunate that results using both sets of input data (pupil-level or school-level) were not

extracted.  Contrary to Hanushek’s conclusion about the effect of data aggregation, Summers and

Wolfe (1977; p. 649) conclude, “when there are extensive pupil-specific data [on inputs]

available, more impact from school inputs is revealed.”  

Hanushek classified six estimates from Smith (1972) as having unknown sign, which was

particularly puzzling because there is no reference to estimates of the effect of class size or the

pupil-teacher in Smith’s paper.  When I inquired, Hanushek provided the following rationale:

“Mike reports reproducing the Coleman report results, showing that pupil-teacher ratios have no

effect.”  While Smith reports having replicated “most” of the Coleman Report results, he makes

no specific reference to results concerning the pupil-teacher ratio.  Moreover, Smith concludes

that his analysis puts “into question any findings at the secondary level about relationships

between school resources and student achievement” from the Coleman Report.  Other papers in

Hanushek’s sample did analyze the Coleman data, so it would seem unnecessary to classify six

nonexistent estimates from Smith’s paper as insignificant.  

In a small number of cases, estimates were misclassified and unpublished estimates were

selected.  Kiesling (1967), for example, was classified as having three estimates of the effect of

class size, but there is no mention of a class size variable in Kiesling’s article.  Eric Hanushek

informed me that Kiesling’s estimates were taken from his unpublished thesis, which seems to

violate his intention of only using published estimates.   In Montmarquette and Mahseredjian

(1989), the sign of the class-size result was inadvertently reversed.  I have not corrected this or

other any other error that I detected because I want to emphasize that the discrepancy in results
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7I also follow the practice of using the terms class size and pupil-teacher ratio

interchangeably.  The difference is primarily a question of how one aggregates micro data. 

comes from the weighting of the studies.  Moreover, once one starts down the road of correcting

estimates there is no end.  A corrected sample in my view would include different estimates from

Cohn and Millman (1975), fewer estimates from Link and Mulligan (1986), no estimates from

Smith (1972) some estimates from Finn and Achilles (1990), and on and on.  My objective is not

to derive the best data set possible, but to see how sensitive Hanushek’s (1997) results are when

alternative assumptions are used to aggregate his original sample.  Correcting all the errors in

Hanushek’s selection and coding of estimates would undoubtedly weaken his conclusion that

school inputs do not matter for student achievement. 

Alternatively Weighted Tabulations

Column 1 of Table 2 summarizes Hanushek’s tabulation of the estimates he selected from

the literature.  His approach equally weights all 277 estimates that were extracted from the

underlying 59 studies.  Following Hanushek, estimates that indicate smaller classes are

associated with better student performance are classified as positive results.7  The bottom of the

table reports the ratio of the number of positive to negative results, and the p-value that

corresponds to the chance of obtaining so high a ratio from a series of 59 independent Bernoulli

trials.  The results in column (1) are unsystematic -- positive and negative estimates are virtually

equally likely to occur.  Only one quarter of the estimates are statistically significant, and the

statistically significant estimates are also about equally likely to be positive and negative. 

 As mentioned, Hanushek’s procedure places more weight on the studies from which he
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8If the weights were selected to minimize the sampling variance of the combined

estimate, the optimal weights would be the inverse of the sampling variances of the individual

estimates (see Hedges and Olkin, 1985).

extracted more estimates.  There are a number of reasons to question the statistical properties of

such an approach.  First, the procedure places more weight on estimates that are based on

subsamples, all else equal.  The optimal weighting scheme would do just the reverse.8  Second,

authors who find weak or negative results (e.g., because of sampling variability or specification

errors) may be required by referees to provide additional estimates to probe their findings (or

they may do so voluntarily), whereas authors who use a sample or specification that generates an

expected positive effect of smaller classes may devote less effort to reporting additional estimates

for subsamples.  If this is the case, and findings are not independent across estimates (which

would be the case if a mis-specified model is estimated on different subsamples), then

Hanushek’s weighting scheme will place more weight on insignificant and negative results.  

Third, and perhaps most importantly, the uneven application of Hanushek’s stated

selection rule raises questions about the discretion of the researcher in selecting many or few

estimates from a particular paper.  A good case could be made, for example, that more estimates

should have been extracted from Summers and Wolfe (1977),  and fewer from Link and

Mulligan (1986 and 1991).  Weighting studies equally lessens the impact of researcher discretion

in selecting estimates.  

Fig. 1 provides evidence that Hanushek’s procedure of extracting estimates assigns more

weight to studies with unsystematic or negative results.  The figure shows the fraction of

estimates that are positive, negative or of unknown sign, by the number of estimates Hanushek

took from each study.  For the vast majority of studies, from which Hanushek took only a small
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number of estimates, there is a clear and consistent association between smaller class sizes and

student achievement.  For the 17 studies from which Hanushek took only one estimate, for

example, over 70% of the estimates indicate that students tend to perform better in smaller

classes, and only 23% indicate a negative effect.  By contrast, for the nine studies from which he

took a total of 123 estimates the opposite pattern holds: small classes are associated with lower

performance.  

Table 3 more formally explores the relationship between the number of estimates that

Hanushek extracted from each study and their results.  Specifically, column (1) reports a

bivariate regression in which the dependent variable is the percent of estimates in a study that are

positive and statistically significant  (based on Hanushek’s classification) and the explanatory

variable is the number of estimates that Hanushek took from the study.  The unit of observation

in the table is a study, and the regression is estimated for Hanushek’s set of 59 studies.  Columns

2-5 report analogous regression equations where the dependent variable is the percent of

estimates that are positive and insignificant, negative and significant, negative and insignificant,

or of unknown sign, respectively.  Hanushek’s extracted fewer estimates from studies that found

positive and significant effects of smaller classes (r = -0.28), and this relationship is stronger than

would be expected by chance alone.  Moreover, the opposite pattern holds for studies with

negative and significant findings: relatively more estimates from studies with perverse class size

effects are included in the sample, although this relationship is not significant. 

Also notice that in 20% of the estimates that Hanushek extracted, the researchers had not

reported the sign of the coefficient on the class-size variable.  Statistical studies that do not report

the coefficient of the class-size variable -- let alone its sign -- are unlikely to be high quality
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9For example, if a study was classified as having one estimate that was positive and

significant and one that was positive and insignificant, these two categories would each be

assigned a value of 50%, and the others would be assigned 0.  If a study reported only one

estimate, the corresponding category would be assigned 100% for that study.  

studies of the effect of class size.  Table 3 and Fig. 1 indicate that the incidence of  unreported

signs rises with the number of estimates extracted from a study, which suggests that the quality

of the study does not rise with the number of estimates extracted from it.  

The rule that Hanushek used for selecting estimates would be expected to induce a

positive association between the prevalence of insignificant results and the number of estimates

taken from a study, since studies with more estimates probably used smaller subsamples (which

are more likely to generate insignificant estimates).  But this sampling bias cannot explain the

inverse relationship between the number of estimates taken from a study and the prevalence of

statistically significant, positive estimates of class size effects.  The uneven application of the

estimate selection rule could explain this pattern.  Precisely to avoid the undue influence of

researcher discretion in quantitative literature summaries, Stanley (2001) gives the following

advice for carrying out a meta-analysis,  “In order not to give undue weight to a single study, one

estimate should be chosen or averaged from many comparable estimates.”    

As a partial correction for the oversampling from studies with negative estimates, in

column (2) of Table 2, the underlying studies -- as opposed to the individual estimates extracted

from the studies -- are given equal weight.  This is accomplished by assigning to each study the

percent of estimates that are positive and significant, positive and insignificant, and so on, and

then taking the arithmetic average of these percentages over the 59 studies.9  This simple and

plausible change in the weighting scheme substantially alters the inference one draws from the
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10Also note that if the number of citations to each particular article is used as the weight --

which has the advantage of including articles published outside of journals -- the results are quite

similar.        

literature.  In particular, studies with positive effects of class size are 57% more prevalent than

studies with negative effects.   

In column (3) an alternative approach is used.  Instead of weighting the studies equally,

the studies are assigned a weight equal to the 1998 “impact factor” of the journal that published

the article, using data from the Institute for Scientific Information.  The impact factors are based

on the average number of citations to articles published in the journals in 1998.  Not surprisingly,

the journals with the highest impact factors in the sample are the AER, QJE and JPE.  Impact

factors are available for 44 of the 59 studies in the sample; the other 15 studies were published in

books, conference volumes, or unpublished monographs.  Studies not published in journals were

assigned the impact factor of the lowest ranked journal.  The weighted mean of the percentages is

presented in column 3 of Table 2.  Although there are obvious problems with using journal

impact factors as an index of study quality (e.g., norms and professional practices influence the

number of citations), citation counts are a widely used indicator of quality, and the impact factor

should be a more reliable measure of study quality than the number of estimates Hanushek

extracted.  The results are quite similar when either the arithmetic mean or journal-impact-

weighted mean is used.  In both cases, studies with statistically significant, positive findings

outweigh those with statistically significant, negative findings by more than two to one.10  

Another approach to adjust for estimate selection bias is to use the regressions in Table 3

to generate predicted percentages for all studies under the hypothetical situation in which one

estimate was extracted from each study.  This approach would be preferable to the equally-
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11The intercept in column (1), for example, gives the expected percentage positive and

significant if there are zero estimates.  Adding the slope gives the expected percentage if one

estimate is extracted per study.  These expected percentages are reported in column 4.

weighted-studies approach in column (2) if the marginal estimates extracted from studies are

systematically different than their average estimates.  Such a pattern could arise, for example, if

the first estimate that each study presents is for its most relevant outcome measure (e.g.,

curriculum-based tests) and subsequent estimates are for less relevant outcomes (e.g., IQ, which

is supposed to measure inherent intelligence).  These weights could also help overcome certain

forms of uneven researcher discretion in selecting estimates.  A linear approximation to what the

average study would find if one estimate were extracted from all studies is derived by adding

together the intercept and slope in each of the regression models in Table 3.11  These results give

a prediction of the outcome that would have been obtained if one estimate had been selected

from each study.   

Results are reported in column (4) of Table 2.  This approach for adjusting for the

selection of estimates from the studies indicates even stronger and more consistently positive

effects of class size.  After adjusting for selection, studies with positive results are twice as likely

as studies with negative results; the probability of observing at least this many studies with

positive results by chance is less than one in a hundred.  Among studies with statistically

significant results, positive results outnumber negative results by four to one.  

It should be emphasized that the results reported in Table 2 are all based on Hanushek’s

coding of the underlying studies.  Although Hanushek (1997) tried to “collect information from

all studies meeting” his selection criteria, he notes that, “Some judgment is required in selecting

from among the alternative specifications.”  As mentioned, the selection and classification of
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estimates in several of the studies is open to question, and could in part account for the curious

relationship between the number of estimates taken from a study and the study’s findings. 

A Closer Look at Nine Studies

Fig. 1 indicates that the nine studies from which Hanushek extracted 123 estimates are

critical for the conclusion that class size is unrelated to student achievement in the estimate-level

survey.  In view of their importance for Hanushek’s conclusion, Table 4 summarizes the analysis

underlying these studies.  Another reason for taking a closer look at these studies is that

Hanushek (2000) defends his procedure of placing a disproportionate amount of weight on these

studies by arguing that they are of higher quality than the studies from which he extracted

relatively few estimates.  

Table 4 describes the analysis in each of these nine studies, summarizes their findings,

and comments on their econometric specifications.  For a variety of reasons, many of these

papers provide less than compelling evidence on class-size effects.  For example, Jencks and

Brown (1975) analyze the effect of secondary school characteristics on students’ educational

attainment, but their sample is necessarily restricted to individuals who were continuously

enrolled in secondary school between 9th and 12th grade.  Thus, any effect of class size on

secondary school dropout behavior -- a key determinant of educational attainment -- is missed in

this sample.  

At least a dozen of the studies in the full sample, and one third of those in Table 4,

estimated regression models that included expenditures per pupil and teachers per pupil as

separate regressors in the same equation.  Sometimes this was the case because stepwise
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12 The common use of stepwise regression in this literature is one reason why so many

estimates turn up with unknown but insignificant signs -- they did not make the final cut in the

stepwise procedure, so they were not reported.

13The S variable could be interpreted more broadly as all cash outlays per classroom. The

logarithmic specification simplifies the algebra and was used in many studies;  interpretive

problems also arise in a linear specification.  

regressions were estimated (e.g., Fowler and Walberg, 1991), and other times it was a deliberate

specification choice (e.g,. Maynard and Crawford, 1976).12  In either case, the interpretation of

the class-size variable in these equations is problematic.  To see this, write log expenditures per

student as:  EXP = TP + S, where EXP is log expenditures per student, TP is the log

teacher-pupil ratio, and S is the log of average teacher salary.13  Assume that the "true model" of

achievement (y) is:

E(y) = a + b TP + c S.     (1)   

The goal is to derive unbiased estimates of  b and c.  The misspecified estimated model is:

E(y) = a' + b' TP + d EXP. (2)   

Substituting S = EXP - TP for S in equation (1) and rearranging terms yields:

E(y) = a + (b-c) TP + c EXP.  (3)   

The expected value of the estimated coefficient, b',  is b-c.  If proportionate changes in the

teacher-pupil ratio and teacher pay have equal effects on achievement, then b’ in equation (2)

will be zero.  Clearly, this raises interpretative problems for the effect of class size if

expenditures per pupil are also held constant. 

Some of the samples used in the nine studies are extremely small.  For example, four of

Burkhead’s estimates use a sample of 22 schools, with only 12 degrees of freedom.  Hanushek

(2000) argues that the sample sizes are unrelated to the number of estimates he extracted from a
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study, but his comparison does not adjust for the fact that the unit of observation also varies

across the estimates.  Studies from which few estimates were extracted tend to analyze more

highly aggregated data.  Analyses of more highly aggregated data tend to have lower sampling

variance because residual variability is averaged out.  The correlation between the square root of

the sample size and the number of estimates Hanushek extracted is -.24 at the school level, 0.07

at the class level, -0.10 at the grade level, -0.34 at the district level, and -0.17 at the state level.  

In some cases, multiple estimates were selected from papers that used the same data to

estimate different specifications, although the specifications were not particularly different (e.g.,

Sengupta and Sfeir, 1986).  In other cases, multiple estimates were selected from models that

used different dependent variables, even though the dependent variables were highly related (e.g.,

Fowler and Walberg, 1981).  Another problem in the selection of some estimates is that studies

occasionally included class size and an interaction between class size and percent minority (or

other variables).  Only the class size main effect was selected, although in many of these cases

smaller class sizes had a positive effect for students at the mean level of the interacted variable

(e.g., Sengupta and Sfeir, 1986).  Hanushek’s selection algorithm has the effect of ignoring the

effect of class size on the achievement of minority students, who often benefit the most from

smaller classes.  

The imprecision of the estimates in many of the papers also presents a problem.  For

example, the confidence interval for the change in math scores associated with a reduction in

class size from 22 to 15 students in Sengupta and Sfeir (1986) runs from -0.04 to 0.43 standard
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14This is based on their equation (10), which omits the interaction between class size and

the percent minority.  Insufficient information is reported to calculate a confidence interval for

the model with interactions.

deviations.14  This is wide enough to admit a large positive effect or a small negative one. 

My review of the studies in Table 4 is not meant as a criticism of the contributions of

these studies.  Many are excellent studies.  But problems arise in Hanushek’s use of many of the

estimates he extracted from these studies because, in many cases, they were not designed to

examine the effect of class size, per se, but some other feature of the education process. 

Maynard and Crawford, for example, were interested in the effect of exogenous shifts in family

income (arising from the Rural Income Maintenance Experiment) on children’s academic

outcomes, and the study provides persuasive results on this issue; class size and expenditures per

pupil were just ancillary variables that the researchers held constant.  Indeed, some of the authors

(e.g., Jencks and Brown) cautioned against interpreting their class-size variables because of

weaknesses in their data or analysis.  

It is hard to argue that these nine studies deserve 123 times as much weight as Summers

and Wolfe’s (1977) AER paper.  Indeed, given the discretion used to select the estimates

described previously, it would seem to me to be much more sensible to put equal weight on all of

the studies, than to weight them by the number of estimates Hanushek extracted.  

Value Added Studies

In this symposium Hanushek argues that the within-state value added studies provide the

“most refined investigation of quality.”  In essence, he abandons the rest of the literature to focus

on the subset of estimates he extracted from half a dozen studies that examine gains in students’
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scores.  He bases this argument on the assumption that omitted state-level variables cause bias in

regressions that use data at a more aggregated level.  Implicitly, Hanushek’s  argument is that the

very same states that in his view waste money on school resources like smaller classes have

another set of policies that improve student achievement, creating a bias in the state-level

analyses.  Yet he does not specify what these policies are.  He also does not report any variable

that, when added to an aggregate-level regression, makes the effect of class size disappear.  

Indeed, several studies, including Card and Krueger (1992) and Heckman, Layne-Farrar and

Todd (1995), point in just the opposite direction: when state dummy variables are added to a

state-level regression, the effect of class size becomes larger.  This suggests that omitted, fixed

state-level variables induce a bias against finding a beneficial effect of smaller classes.   

Hanushek’s presumption that the value added studies are the most informative is also

challenged by Todd and Wolpin (2001) in this symposium, who show that value-added

specifications are highly susceptible to bias for a number of reasons.  For example, they show

that even if there are no omitted variables that are correlated with class size in a value-added

specification -- a highly unlikely assumption -- there would still be bias if test scores are serially

correlated.  Moreover, the value added specification makes the untenable assumption that family

inputs that affect the trajectory of student achievement are uncorrelated with class size, and that

test scores are scaled in a way that makes comparison over time meaningful.  Some of the value

added specifications that Hanushek considers to be “refined” also estimate highly questionable

specifications.  For example, Kiesling (1984), controlled for the class size and the amount of

large group instruction, small group instruction, and individualized instruction in his value-added

estimates.  This specification allows class size to vary, but not the amount of attention students
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receive from the teacher.    

Differencing the dependent variable could also introduce a great deal of noise, which is

probably one reason why so many of the value added studies yield imprecise estimates.  The fact

that the vast majority of value-added estimates – more than 80% –  find statistically insignificant

effects of class size does not mean that smaller classes do not help students, on average.  There

may be an effect, but the studies may lack power to detect it.  Failing to reject the null hypothesis

does not prove the null hypothesis to be true.  Hanushek devotes no attention to the precision of

the estimates, and obscures the inference further by ignoring the sign of insignificant estimates

when he tabulates the literature.  

Summing up

In response to work by Hedges, Laine and Greenwald (1994), Hanushek (1996b; p. 69)

argued that, “Unless one weights it in specific and peculiar ways, the evidence from the

combined studies of resource usage provides the answer” that resources are unrelated to

academic achievement, on average.  Since Hanushek’s results are produced by implicitly

weighting the studies by the number of “separate” estimates they present (or more precisely, the

number of estimates he extracted from the studies), it seems to me that the opposite conclusion is

more accurate:  Unless one weights the studies of school resources in peculiar ways, the average

study tends to find that more resources are associated with greater student achievement.  This

conclusion does not, of course, mean that reducing class size is necessarily worth the additional

investment, or that class size reductions benefit all students equally.  These questions require

knowledge of the strength of the relationships between class size and economic and social
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benefits, knowledge of how these relationships vary across groups of students, and information

on the cost of class size reduction.  These issues are taken up in the next section.  But the results

of my reanalysis should give pause to those who argue that radical changes in public school

incentives are required because schooling inputs are unrelated to schooling outputs.  When the

study is the unit of observation, Hanushek’s coding of the literature suggests that class size is a

determinant of student achievement, at least on average.  

2.  Economic Criterion

Hanushek (1997; p. 144) and his article in this symposium argues, “Given the small

confidence in just getting noticeable improvements [from school resources], it seems somewhat

unimportant to investigate the size of any estimated effects.”  The size of the effect would seem

worth considering now since Hanushek’s classification of studies in the literature does provide

evidence of a systematic relationship between school inputs and student performance.  Moreover,

if the estimates in the literature are imprecise, they all could be statistically insignificant and

unsystematic but there could nonetheless be large economic and social returns from reducing

class size.  The power of the estimates is relevant.  Can a meaningful null hypothesis be rejected? 

The calculations below use the results of the Tennessee STAR experiment to illustrate the costs

and benefits of reducing class size.

A.  Lazear’s Theory of Class Size

Before presenting benefit-cost calculations, it is useful to consider an economic model of

class size.  Lazear (1999) provides a model in which students who attend a smaller class learn
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15Based on these assumptions, and the assumption that uninterrupted instruction time

maps linearly into student achievement, Lazear derives a specific functional form for the

education production function which is convex in class size. 

more because they experience fewer student disruptions during class time, on average.  Such a

result follows naturally if the probability of a child disrupting a class is independent across

children.  He then quite plausibly assumes that disruptions require teachers to suspend teaching,

creating a negative externality that reduces the amount of learning for everyone in the class.15 

There may be other benefits to smaller classes as well.  For example, it is possible that spending

time in a small class reduces a student’s propensity to disrupt subsequent classes because the

student learns to behave better with closer supervision, or enables teachers to better tailor

instruction to individual students.  Nonetheless, Lazear’s model probably captures an important

feature of class size, and yields a specific functional form for the education production function.

Another implication of Lazear’s model is that the optimal class size is larger for groups of

students who are well behaved, because these students are less likely to disrupt the class. Schools

therefore have an incentive to assign weaker, more disruptive students to smaller classes. 

Compensatory education programs, which automatically provide more resources to lower

achieving schools, could also be viewed as targeting resources to weaker students.  If schools

voluntarily assign weaker students to smaller classes (as predicted by Lazear) or if compensatory

funding schemes cause weaker students to have smaller classes, a spurious negative association

between smaller classes and student achievement would be created.  This phenomenon could

explain why studies that focus on exogenous changes in class size -- such as Angrist and Lavy’s

(1999) analysis of Maimonides law, as well as the STAR experiment -- tend to find that smaller

classes have a beneficial effect on student achievement.   For educational policy, it is the gain in
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achievement from exogenous reductions in class size from current levels that is relevant, not the

relationship estimated from observed variations in class size voluntarily chosen by schools.    

One final aspect of Lazear’s model is worth emphasizing.  If schools behave optimally, 

they would reduce class size to the point at which the benefit of further reductions are just equal

to their cost.  That is, on the margin, the benefits of reducing class size should equal the cost. 

This implication provides a plausible economic null hypothesis.  If we are starting from the

optimal level, the costs and benefits of exogenous shifts in class size should be roughly

equivalent.  Of course, if school districts are maximizing with full information, as Lazear

assumes, then all educational interventions (e.g., programs to improve teacher quality, vouchers,

etc.) will have the same payoff from the marginal dollar.  

B. Benefits and Costs of Educational Resources

Many studies suggest that education has a causal effect on earnings (see, e.g., Card, 1999,

for a survey).  Two important benefits of improved school resources are that students learn more

and raise their educational aspirations, which pays off in terms of better job placements and

higher earnings later on when students join the labor market.  Nevertheless, the effect of school

resources on achievement is most commonly measured in terms of student performance on

standardized tests.  This section converts test outcome measures into dollars by using the

relationship between test scores and earnings.  This relationship is used to calculate the internal

rate of return from reducing class size.  

Three recent studies illustrate the magnitude of the relationship between students’ test

scores while in school and their subsequent earnings.  Murnane, Willet and Levy (1995) estimate
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16They estimate a multiple regression with the log of the wage as the dependent variable

and indicators for the reading and math scores in the bottom and lower quartile as explanatory

variables.  When they estimate separate regressions for men and women, they also control for

father’s occupation, father’s education, number of children and birth order, mother’s age, and

birth weight.  The wage gap between those who score in the top and bottom quartiles on the

reading exam in these models is 13% for men and 18% for women, and on the math exam it is

17% for men and 9% for women.

that male high school seniors who scored one standard deviation (SD) higher on the basic math

achievement test in 1980 earned 7.7% higher earnings six years later, based on data from the High

School and Beyond survey.  The comparable figure for females was 10.9%.  This study, however,

also controls for students’ eventual educational attainment, so any effect of cognitive ability as

measured by test scores on educational attainment is not counted as a gain from higher test

scores.  Currie and Thomas (1999) use the British National Child Development Study to examine

the relationship between math and reading test scores at age 7 and earnings at age 33.16  They

find that students who score in the upper quartile of the reading exam earn 20% more than

students who score in the lower quartile of the exam, while students in the top quartile of the

math exam earn another 19% more.  Assuming normality, the average student in the top quartile

scores about 2.5 standard deviations higher than the average student in the bottom quartile, so

their results imply that a one SD increase in reading test performance is associated with 8.0%

higher earnings, while a one standard deviation increase in the math test is associated with 7.6%

higher earnings.  Neal and Johnson (1996) use the National Longitudinal Survey of Youth to

estimate the effect of students’ scores on the Armed Forces Qualification Test (AFQT)  taken at

age 15-18 (adjusted for age when the test was taken) on their earnings at age 26-29.  They find

that a one SD increase in scores is associated with about 20% higher earnings for both men and

women.  
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Neal and Johnson find a larger effect of test scores on wages than Currie and Thomas

probably for three reasons: (1) students were older when they took the AFQT exam, and Currie

and Thomas find some mean regression in test scores; (2) Neal and Johnson examine the effect

of only one test score, whereas Currie and Thomas simultaneously enter the reading and math

score in a wage equation, and the scores are correlated; (3) the British and American labor

markets are different.  Based on these three studies, a plausible assumption is that a one SD

increase in either math or reading scores in elementary schools is associated with about 8%

higher earnings.  

From an investment perspective, the timing of costs and benefits is critical.  The cost of

hiring additional teachers and obtaining additional classrooms are borne up front, while the 

benefits are not realized until years later, after students join the labor market.  To illustrate the

benefits and costs, consider extending the STAR class-size reduction experiment to the average

student who entered kindergarten (that is, the first year of primary school) in the United States in

1998.  In the STAR experiment, classes were reduced from about 22 to about 15 students, so

assume that funds are allocated to create 7/15 = 47% more classes.  Denote the cost of reducing

class size in year t as C
t
.  The present value (PV) of the costs discounted to the initial year (1998)

using a real discount rate of  r  is:  

Probably a reasonable approximation is that the cost of creating and staffing 47% more
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17Folger and Parker (1990) tentatively conclude from the STAR experiment that

proportionality is a reasonable assumption. 

18See Digest of Education Statistics, 1998, Table 169.

19Students spent less than four years in a small class because half the students entered the

experiment after the first year, and because some students moved to a new school or repeated a

grade, causing them to return to regular size classes.  

20The figure is based on data from the March 1999 Current Population Survey.  The

sample consists of all civilian individuals with any work experience  in 1998.  

classrooms is proportional to the annual per pupil cost.17  I assume the additional cost per pupil

each year a pupil is in a small class equals $3,501, or 47% of $7,502, which was the nationwide

total expenditures per student in 1997-98.18  Although the experiment lasted 4 years, the average

student who was assigned to a small class spent 2.3 years in a small class.19   As a consequence, I

assume the additional costs are $3,501 in years one and two, 30% of $3,501 in year three, and

zero in year four.  Column (2) of Table 5 provides the PV of the costs for various values of the

discount rate.   

The pecuniary benefits of reduced class size are harder to quantify, and occur further in

the future.  Fig. 2 illustrates the age-earnings profile for workers in 1998.20  The figure displays

average annual earnings for workers at each age between 18 and 65.  As is commonly found,

earnings rise with age until workers reach the late 40s, peak in the early 50s, and then decline. 

Average earnings are quite low until workers reach their mid 20s.  

Suppose for the time being that the earnings of the current labor force represents the exact

age-earnings profile that the average student who entered primary school in 1998 will experience

when he or she completes school and enters the labor market.  Let E
t
 represent the average real

earnings each year after age 18.  Also assume that $ represents the increase in earnings
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21Work by Krueger and Whitmore (1999) and Nye, Zaharias, Fulton, et al. (1994)

suggests that the improved test performance of small class students in Project STAR may have

fallen to about 0.10 standard deviations by the end of secondary school.  Although I suspect that

some of the initial gain from small classes in the STAR experiment faded after students returned

to regular-size classes, the calculations reported in Table 5 are probably still reasonable.  The

reason for this is that Currie and Thomas’s estimate of $ is based on test scores at age 7.  They
find some regression to the mean in test scores as students age.  If the 0.10 SD gain at older ages

is used in the calculations, then the appropriate estimate to use for $ would be higher.  

associated with a one standard deviation increase in either math or reading test scores.  The

preceding discussion suggests that 8% is a reasonable estimate for the value of $.  Now let *
M

and *
R 
 represent the increase in test scores (in SD units) due to being assigned to a smaller class

in the first four years of primary school.  The STAR experiment suggests that *
M
 = *

R
 = 0.20 SD

is a reasonable figure to use (see, e.g., Finn and Achilles, 1990, Mosteller, 1995, or Krueger,

1999).21  The addition to annual earnings must be discounted back to the initial year to account

for the fact that a dollar received in the future is less valuable than a dollar received today. 

Assuming students begin work at age 18 and retire at age 65, the present value of the higher

earnings stream due to smaller classes is:

Using these assumptions, column (3) of Table 5 reports the PV of the additional earnings due to

reducing class size by 7 students for various values of the discount rate.   

One important issue, however, is that real earnings are likely to grow substantially

between 1998 and when the average student who began primary school in 1998 retires.  That is,

when those who where kindergartners in 1998 enter the labor market, their average real earnings

will be greater than that depicted in Fig. 2.  Over the 20th century, real earnings and productivity
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22Formally, the average real wage for a worker who reaches age A in year t, denoted Y
t
, 

is calculated by Y
t
= E

A
(1+γ)t, where E

A 
 is the average earnings in Fig. 2 for a worker of age A

and γ is the rate of productivity growth.

have typically grown by 1% or 2% per year, roughly in step with labor productivity.  The

estimates of $ discussed above are all based on earnings long after students started school, which

reflect the effect of higher productivity growth on earnings.  Consequently, columns (4) and (5)

present discounted benefits assuming either 1% or 2% annual productivity and real wage growth

after 1998.22  The latest United States Social Security Trustees’ intermediate projection is for real

wages to grow by slightly less than 1% per year over the next 75 years, so column (4) probably

provides a reasonable forecast of future earnings.  

The next question is which discount rate should one use to discount costs and benefits

from age 5 until 65?  The current yield on essentially risk-free long-term inflation-indexed

United States  government bonds is just under 4%.  If we assume an interest rate of 4% (row 3),

then the benefits of reducing class size from 22 to 15 in the early grades would be 43% greater

than the costs absent real wage growth, and 100% greater than the costs if real wages grow by

1% per year.  If society desires to reflect some risk in the interest rate used to discount future

benefits of reduced class size -- because the payoff is uncertain -- a higher discount rate would be

desired.  With a discount rate of 6% and 1% annual productivity growth, the costs of reducing

class size from 22 to 17 students are predicted to almost equal the benefits, in line with Lazear’s

prediction. 

The internal rate of return, r*, can be calculated by solving for the discount rate that

equates the benefits and costs in the following equation:
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23Note, however, that Jencks and Phillips (1999) find that math test score gains between

10th and 12th grade have about the same impact on subsequent earnings as cross-sectional

differences in scores of equivalent magnitude in 10th grade.  

The internal rate of return for different assumptions about productivity growth are presented in

the bottom row of Table 5.  If earnings grow by 1% per year, as expected by the Social Security

Trustees, the internal rate of return is 6.2%.  

C. Caveats

The cost-benefit calculations presented here are subject to many qualifications.  I consider

the following to be most important:  

! The effect of test score gains on earnings in the future may turn out to be different than the

value of $ that was assumed.  Indeed, because $ was estimated from cross-section relations it

could reflect the effect of omitted characteristics.23  In addition, general equilibrium effects could

affect the value of $ if class size is reduced on a wide scale.  It is also likely that school resources

influence noncognitive abilities, which in turn influence earnings especially for blue collar

workers (see Cawley, et al., 1996), but are not reflected in test scores.  

! Class size probably influences other outcomes with economic consequences, such as crime and

welfare dependence, and there may be externalities from human capital, so the economic benefits

could be understated. In addition, improved school quality probably has non-economic private

and social benefits, such as improved citizenship and self-enlightenment.

! It is unclear how much real earnings will grow in the future, although the 0 to 2% annual
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growth figures probably provide a reasonable range.  

! The calculations in Table 5 neglect fringe benefits, which are about one third of total

compensation.  If fringe benefits are proportional to earnings, the reported benefits are

understated by about one third.  The calculations also assume that everyone works for pay, at

least part year, which tends to overstate the economic benefit.

! The cost of reducing class size in the early grades may be different than assumed here.  For

example, expenditures per student are typically lower in grammar school, yet expenditures per

students in all grades was used. 

! The quality of teachers could decline (at least in the short run) if class size is reduced on a

wide scale.  

! Inner city schools were over sampled in the STAR experiment, and as a consequence the

proportion of students in the sample who are black was 32% as compared with 23% in all of

Tennessee.  Minority students tend to benefit more from smaller classes.  However, because the

sample contains few Hispanic children, the proportion of all minority students in STAR (33%)

closely matches the entire United States (31%).  

! The cost-benefit calculations do not take into account distributional effects.  Because smaller

class sizes appear to generate greater benefits for economically disadvantaged students, an

argument could be made that they generate positive welfare gains apart from efficiency

considerations.  
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3.  Conclusion

The method Hanushek uses to summarize the literature is often described as a “vote

counting” exercise.  The results depend critically on whether the approach allows one study, one

vote.  When studies are given equal weight, the literature exhibits systematic evidence of a

relationship between class size and achievement.  As implemented by Hanushek, however,

studies from which he extracted multiple estimates are given multiple votes.  No statistical theory

is presented to support this weighting scheme, and it can be misleading.  For example, other

things equal, studies that report a larger number of estimates for finer subsamples of a given

sample will have less systematic and less significant estimates.  Another reason why studies are a

more natural unit of observation is that studies are accepted for publication, not estimates.  The

importance of a study as the unit of observation is acknowledged by the requirement that studies

be published in a book or journal to assure a minimal quality check.  The individual estimates

that comprise a study do not pass this quality hurdle in isolation: the combined weight of

evidence in a study is evaluated to decide whether to publish it.   Perhaps most importantly,

weighting studies equally reduces the influence of researcher discretion in selecting which

estimates to include or exclude in the analysis.  

A referee raised the valid question: “Can we learn anything from meta-analysis at all?” 

This is a good question.  At best, I think quantitative literature summaries like those relied on by

Hanushek in this symposium can provide a formal representation of the research findings in a

particular literature.  This type of meta-analysis serves a purpose much like polling authors to

assess their views of what they found.  I suspect this is the reason why Hanushek (1997) reported

that he tried to “reflect the estimates that are emphasized by the authors of the underlying
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papers.”   Thus, a meta-analysis can give a more formal accounting of what a literature has found

than a qualitative literature review.   If this is the goal, however, then weighting studies by the

number of estimates that Hanushek extracted from them is clearly inappropriate.  Equally

weighting the studies would be more appropriate for this objective.  

Moreover, a meta-analysis only can be as good as the underlying studies in the literature. 

If each of the underlying studies yields biased estimates, then their aggregate representation will

be biased as well.  A proper meta-analysis, however, could help to shed light more than any

individual study when the statistical power of the individual studies is low.  For example, if most

studies use a small sample or a specification that causes estimates to be imprecise, then a proper

meta-analysis could detect systematic patterns in the data even if individual studies by and large

cannot.  For this reason I have focused on the ratio of the number of positive to negative

estimates.  If estimates are insignificant, they will still tend to indicate more positive than

negative effects if class size truly has a beneficial effect.  By lumping all statistically insignificant

estimates into one category, Hanushek obscures much of the signal that can be inferred from the

studies.  

I suspect the referee’s concern was deeper, however.  The studies are of varying quality

and often examine very different outcomes for different populations.  Should the amalgamation

of such studies be trusted?  Personally, I think one learns more about the effect of class size from

understanding the specifications, data, methods and sensitivity of results in the few best studies,

than from summarizing the entire literature; hence my earlier reference to Galileo.  The

quantitative summaries of the effect of class size undoubtedly impute more precision and

certainty to what has been learned in the literature than is justified.  Nevertheless, I think the
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literature as a whole certainly does not provide prima facie evidence that input-based school

policies are a failure, as Hanushek argues in this symposium.  If anything, the literature is

consistent with the opposite conclusion: on average, students who attend schools with smaller

classes tend have higher academic achievement.  This conclusion also makes economic sense:

one would not expect a free lunch.  Some communities chose to spend money to reduce class

size, and private schools often provide smaller classes than public schools (see Meyers et al.,

2000 for evidence in New York City) so presumably parents feel they benefit from the extra

expenditure.  There must be a great deal of irrationality if smaller classes convey no benefits.  

The cost-benefit calculations described in Section II, subject to the many qualifications

listed there, suggest that the internal real rate of return from  a 7-student reduction in class size in

the first four years of primary school is about 6%.  At a 4% discount rate, every dollar invested in

smaller classes yields about $2 in benefits.  The “critical effect size” -- or minimum gain for the

benefit of a reduction from 22 to 15 students to equal the costs -- would equal 0.10 standard

deviation units if productivity grows at 1% per annum, and a 4% real discount rate is assumed. 

This would be a natural null hypothesis against which to test the findings in the literature to judge

their economic significance. 

One conclusion to be drawn from this reanalysis is that the literature suggests a positive

effect of smaller classes on student achievement, although the effect is subtle and easily obscured

if misspecified equations are estimated or small samples are used.  Quantitative literature

summaries can also obscure the effect of class size if some studies are given much more weight

than others.  The relationship between class size and achievement is not as robust as, for

example, the relationship between years of education and earnings.  But this is probably because
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relatively small gains in test scores from smaller classes translate into positive benefit-cost

differentials.  The results of the STAR experiment suggest that the internal rate of return from

lowering class size is in the neighborhood of what would be expected from economic theory. 

Even subtle effects could be economically important.  Anyone who expects much larger

achievement gains from reducing class size is expecting extra-normal returns.  Although such

returns are possible, economists are usually skeptical that such large returns are available.
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Fig. 1.  Average Percent of Estimates Positive, Negative or Unknown Sign, 

by Number of Estimates Taken from Study
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studies in each category.



Fig. 2.  Age Earnings Profile, 1998
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Table 1: Distribution of Class Size Studies and Estimates Taken in Hanushek (1997)

Number of

Estimates Number of Total Number Percent of Percent of

Extracted Studies of Estimates Studies Estimates

      (1) (2) (3) (4) (5)

  

1 17 17 28.8% 6.1%

2-3 13 28 22.0% 10.1%

4-7 20 109 33.9% 39.4%

8-24 9 123 15.3% 44.4%

 

Total 59 277 100.0% 100.0%

Note: Column (1) categorizes the studies according to the number of estimates that 

were taken from the study.  Column (2) reports the number of studies that fall into each

category.  Column (3) reports the total number of estimates contributed from the studies.

Column (4) reports the number of studies in the category as a percent of the total number 

of studies.  Column (5) reports the number of studies in the category as a percent of the

total number of estimates used from all the studies.



Table 2: Reanalysis of Hanushek's (1997) Literature Summary of Class Size Studies

      Studies  Studies Weighted        Regression-

    Hanushek's       Equally  by Journal Impact       Adjusted

Result    Weights       Weighted           Factor               Weights 

(1) (2) (3) (4)

Positive & Stat. Sig. 14.8% 25.5% 34.5% 33.5%

Positive & Stat. Insig. 26.7% 27.1% 21.2% 27.3%

Negative & Stat. Sig. 13.4% 10.3% 6.9% 8.0%

Negative & Stat. Insig. 25.3% 23.1% 25.4% 21.5%

Unknown Sign & Stat. Insig. 19.9% 14.0% 12.0% 9.6%

    

Ratio Positive to Negative 1.07 1.57 1.72 2.06

P-Value 0.500 0.059 0.034 0.009

Note:  See text for full explanation.  Column (1) is from Hanushek (1997; Table 3),

and weights studies by the number of estimates that Hanushek extracted from

them.  Columns (2), (3) and (4) are author's tabulations based on data from 

Hanushek (1997).  Column (2) weights each estimate by the inverse of the number

of estimates taken from that study, thus weighting each study equally.  Column (3)

calculates a weighted average of the data in column (2), using the "journal impact factor"

as weights; articles that are not published in a journal are assigned the lowest journal impact 

factor.  Column (4) uses the regressions in Table 3 to adjust for sample selection (see text).  

Table is based on 59 studies.

*P-value corresponds to the proportion of times the observed ratio, or a higher ratio, of 

positive to negative results would be obtained in 59 independent random draws in which

positive and negative results were equally likely.  



Table 3: Regressions of Percent of Estimates Positive or Negative, and 

Significant or Insignificant, on the Number of Estimates Used from Each Study;

Class Size Studies

Dependent Variable:

Percent Percent Percent Percent Percent

Positive & Positive & Negative & Negative & Unknown Sign

Significant Insignificant Significant Insignificant  & Insignificant

         (1)          (2)          (3)          (4)          (5)

Intercept 35.7 27.4 7.4 21.0 8.5

            (6.4)            (6.0)            (4.5)            (5.9)             (5.6)

Number of -2.16 -0.07 0.62 0.44 1.18

Estimates Used            (0.96)          (0.89)          (0.66)          (0.88)           (0.83)

R-square 0.08 0.00 0.01 0.00 0.03

  

Notes: Standard errors are shown in parentheses.  Sample size is 59 studies.

Dependent variable is the percent of estimates used by Hanushek in each result

category.  Unit of observation is a study.



Table 4: Summary of the 9 Studies from which 8 or more estimates were extracted

Study Description Hanushek Coding         

of Class Size Results    Comments

Burkhead 

(1967)

Stepwise regressions estimated using 3 school-level data sets. Chicago sample is 39 secondary-

school-level observations; dependent variables are 11th grade IQ scores (proportion in stanine 5-

9), 11th grade reading scores (proportion in stanine 5-9), residuals of reading and IQ scores from

a regression on 9th grade IQ scores, secondary school dropout rate, and post-secondary school

intentions; independent variables are teacher man-years per pupil, median family income, school

enrollment, drop out rates, and 8 other variables. Atlanta sample is 22 secondary-school-level

observations; dependent variables are median 10th-grade verbal achievement test score, residual

of 10th-grade verbal score from a regression on the 8th grade IQ score, male dropout rate, and

percent enrolled in school year after graduation; independent variables include pupils per teacher,

expenditures per pupil, teacher pay, median income, and 4 other variables. Sample of 176

secondary schools from Project Talent; dependent variables are average 12th grade reading

11 neg & insig                

3   pos & insig

It is unclear how the stepwise procedure was implemented. In

many of the final models, none of the independent variables

were statistically significant. More parameters are estimated

than data points. Effects of pupil-teacher ratio, expenditures per

pupil and teacher pay are difficult to separately identify. IQ is

supposed to be invariant to environmental factors, so it is an

unusual outcome variable. Half of the class-size coefficients in

the final models indicate a positive effect of smaller classes; it is

unclear how Hanushek coded only 3 as positive. The average

standardized effect size is a positive effect of smaller classes.

score, secondary school dropout rate, college attendance  rate,  and  residuals  of  12th grade 

reading scores from a regression on 10th  grade  scores;  explanatory  variables  included class  

size,  expenditures per student, enrollment, beginning teacher salary, and median income.

Fowler and 

Walberg (1991)

Uses a backward stepwise regression procedure in which all explanatory varables are initially

entered in the equation and then variables were dropped one by one until only the statistically

significant ones remained. 18 dependent variables were used, ranging from math and reading

tests to percent of students constructively employed, and 23 independent variables were used,

including pupil-teacher ratio, expenditures per student, teacher salary and school size. Sample

consists of 199 to 276 NJ secondary schools in 1985. Some variables are measured at the

district level.

1 neg & sig                    

1 pos & sig                     

7 unknown & insig

Effect of pupil-teacher ratio is difficult to interpret conditional on

expenditures per pupil. Pupil-teacher ratio is included in only 4

of the final 18 models reported. It is unclear how Hanushek

selected 9 estimates. Many of the dependent variables are

highly related; for example, average math score, percent

passing the math exam, and the percent passing both the math

and reading exam are used as the dependent variable in

separate equations, as are math and reading scores from the

Minimum Basic Skills Test and High School Proficiency Test.  

Jencks and 

Brown (1975)

Uses sample of students from 98 secondary schools from Project Talent data to estimate a two

step model. In first step, high school fixed effects are estimated from a regression that controls

for students' 9th grade characteristics and test scores.  In the second step, high school effects are 

related to class size, expenditures per student, and other school inputs, as well as mean post-high-

school education plans in 9th grade and average SES. Sample size in second step estimation

ranges from 49 to 95. Dependent variables are 2 measures of educational attainment (reported

15 months or 63 months after high school), career plans (by sex); occupation (by sex); and

vocabulary, social studies, reading and math tests.  

3 neg & sig                    

3 neg & insig                  

4 unknown & insig

The sample only consists of those who were continuously in high

school between 9th and 12th grade. Thus, high school dropouts

are truncated from the sample, so any effect of high school

characteristics on high school drop out behavior, and related

career implications, is missed. Based on the results in Table 9,

the four estimates Hanushek classified as unknown signs all

have positive effects of smaller classes on test scores. 



Cohn, Millman 

and Chew 

(1975)

Sample consists of 53 Pennsylvania secondary schools from 1972. Eleven goals (test scores,

citizenship, health habits, creative potential, etc.) are the outcome variables; exogenous

explanatory variables are selected from 31 variables, including class size, instructional personnel

per pupil, student-faculty ratio, and average daily attendance. Outputs are measured at 11th-

grade level, inputs are measured at the district, school, or 11th-grade level. Stepwise regression

is used to select the initial specifications; outcome variables were considered endogenous

determinants of other outcomes if there was a high correlation between them and if "an a priori

argument could support their inclusion in the model." Two stage least squares, reduce form, and

OLS estimates are reported.  Instrumental variables are all excluded variables.

1 neg & sig                    

9 neg & insig                  

1 pos & insig

Hanushek appears to have selected the OLS model results,

which are the weakest for class size. The reduced form

estimates indicate 8 positive effects of smaller classes and 3

negative ones, all of which are insignficant. The simultaneous

equation models indicate 3 positive and 3 negative coefficients,

all of which are insignificant. Procedures to select exogenous

explanatory variables, endogenous variables, and exclusion

restrictions are open to question.

Link and 

Mulligan (1986)

Separate OLS regression models for math and reading scores were estimated for 3rd, 4th, 5th

and 6th graders, by white, black and Hispanic background, yielding 24 regressions. Explanatory

variables are pretest score, interaction between large class (26 or more) and majority-below-

average classmates, dummy indicating whether teacher says student needs compensatory

education, mother's education, weekly instructional hours, sex, teacher experience. Student is

unit of observation. Sample drawn from Sustaining Effects data set. Median sample size is 237

students.

24 unknown & insig Models reported include interaction between large class size and

peer effects but not class size main effect. The text states that

when class size was included as a main effect in the math

equations it was not individually statistically significant; no joint

test of the class-size-peer-group interaction and main effect is

reported. The interactions generally indicate that students with

weak peers do better in smaller classes. No mention of the

main effect of class size in the reading equations is reported, so

it is unclear how Hanushek could classify 24 estimates as

insignificant. The class-size-peer-group interactions generally

indicate that students in classes with low achievers do better in

smaller classes. 

Link and 

Mulligan (1991)

Separate OLS regression models for math and reading scores were estimated for 3rd, 4th, 5th

and 6th graders, by white, black and Hispanic background, yielding 24 regressions. Explanatory

variables are pretest score, class size, a dummy indicating whether teacher says student needs

compensatory education, weekly instructional hours, sex, same race percentage of classmates,

racial busing percentage, mean pre-test score of classmates, standard deviation of pre-test score

of classmates. Student is unit of observation. Sample drawn from Sustaining Effects data set.

Median sample size is 3,300.

3 neg & sig                    

8 neg & insig                  

5 pos & sig                    

8 pos & insig

No family background variables except race. Standard errors do

not correct for correlated effects within classes. Compensatory

education variable is potentially endogenous.

Maynard and 

Crawford (1976)

Study designed to look at effect of family income on children's outcomes. Data from Rural

Income Maitenance Experiment in IA and NC. Dependent variables are days absent (grade 2-9

or 9-12), comportment grade point average, academic GPA (grade 2-9 or 9-12), and standardized

achievement tests (deviation from grade equivalents scores or percentile ranks). More than 50

explanatory variables, including expenditures per student (IA), enrollment, log enrollment per

teacher, income, log average daily attendance relative to enrollments, average test score for

student's grade and school (NC), remedial program, etc. Student is unit of observation. Estimates

equations separately for each state.

2 neg & sig                    

3 neg & insig                  

2 pos & sig                    

4 pos & insig

Class size is just an ancillary variable in a kitchen-sink

regression designed to look at the effect of random assignment

to an income maintenance plan. Class size effects are difficult

to interpret once expenditure per student is held constant. Many

of the explanatory variables (e.g., average class performance

and attemdamce relative to enrollment) further cloud

interpretation of class size effects. 

Sengupta and 

Sfeir (1986)

Sample contains 25 or 50 school-level observations on 6th graders in California. Dependent

variables are math, reading, writing and spelling test scores. Explanatory variables are average

teacher salary, average class size, percent minority, and interaction between percent minority and

class size. Another set of 4 models also controls for nonteaching expenditures per pupil.

Estimates translog production functions by LAD.   

7 neg & sig                    

1 neg & insig

No controls for family background other than percent minority. It

is unclear why the specifications are sufficiently different to

justify taking 8 as opposed to 4 estimates. In all 8 equations,

interactions between class size and percent minority indicate

that smaller classes have a beneficial effect at the average

percent minority, but only the class size main effect is used.   



Stern (1989) Uses school-level data from CA to regress test scores on average student characteristics,

teachers per student, the square root of the number of students, and teacher pay. Math, reading,

and writing tests are used in two school years, yielding 12 estimates. Median sample size is

2,360 students.  

9 neg & sig                    

3 pos & insig

The 9 equations that yield negative effects of teachers per

student in a grade level also control for the number of students

in the grade level; the 3 positive estimates exclude this variable.

More students in a grade level have a strong, adverse effect on

scores. If the teacher-pupil ratio has a nonlinear effect, the

number of students in a grade level could be picking it up. In

addition, variability in class size in this paper is not due to

shocks in enrollment, which many analysts try to use in

estimating class size effects.  



Table 5: Discounted Present Value of Benefits and Costs of 

Reducing Class Size from 22 to 15 in Grades K-3 (1998 Dollars)

Discount   Increase in Income Assuming

Rate Cost   Annual Productivity Growth Rate of:

   None  1 Percent 2 Percent

(1)  (2) (3) (4) (5)

0.02 $7,787 $21,725 $31,478 $46,294

0.03 $7,660 $15,174 $21,667 $31,403

0.04 $7,537 $10,784 $15,180 $21,686

0.05 $7,417 $7,791 $10,819 $15,238

0.06 $7,300 $5,718 $7,836 $10,889

Internal Rate

of Return: 0.052 0.062 0.073

_________

Note: Figures assume that a 1 standard deviation increase in math 

test scores or reading test scores in grades k-3 is associated with 

an 8 percent increase in earnings, and that attending a small class

in grades K-3 raises math and reading test scores by 0.20 SD. 

Real wages are assumed to grow at the same rate as productivity.

Costs are based on the assumption that students are in a smaller

class for 2.3 years, as was the average in the STAR experiment.


