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1. Introduction and Summary 

 

The paper examines the role of one market imperfection—proportional transaction costs in 

trading the underlying security—on the observed discrepancy of European option prices from the 

prices that would prevail in a frictionless market.  We derive upper bounds on the reservation 

write prices of call and put options and lower bounds on the reservation purchase prices of call 

and put options by extending stochastic dominance arguments to incorporate proportional 

transaction costs. 

 

The main contribution of this paper is the derivation of stochastic dominance bounds in the case 

that trading is permitted over the life of the option.  These bounds are tight.  Furthermore, the 

upper bound on the reservation write price of a European call option, derived in Proposition 1, 

and the lower bound on the reservation purchase price of a European put option, derived in 

Proposition 6, are invariant to the frequency of trading permitted over the life of the option.  

These results are to be contrasted to the upper bounds on the call option price derived by the 

super-replication method of Bensaid et. al. (1992) and the approximate replication method of 

Leland (1985).  The latter upper bounds tend to the stock price, as the frequency of trading 

increases. 

 

An attractive feature of our bounds is that they may be derived for any given arbitrary 

distribution of the stock price, if the stock price is bounded below by zero and the first moment 

exists.  In particular, as the trading frequency increases, the stock price process need not 
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converge to the lognormal, but may converge to a mixed diffusion - point process.  Even if we 

were to set the transaction cost rate equal to zero, it is nowhere assumed that the market is either 

complete or tends to a complete market, as the frequency of trading increases.  Thus, the model 

accommodates stochastic volatility and stock price jumps.1 

 

The results of this paper are related to earlier results on option bounds in incomplete markets, 

originally derived by Perrakis and Ryan (1984) and extended by Ritchken (1985) and Levy 

(1985).  These bounds were extended to a multiperiod setup by Perrakis (1986, 1988), and 

Ritchken and Kuo (1988), as a generalization of the binomial option pricing model.2 

 

The results of this paper are also related to earlier results by Constantinides and Zariphopoulou 

(1999, 2001).3  Specifically, Constantinides and Zariphopoulou (2001) assumed that (i) the utility 

                                                 
1 Since the market is incomplete, the bounds need not tend to the Black-Scholes option price, as the frequency of 

trading increases, even if the transaction costs rate is set equal to zero. 

2 Indeed, these bounds have been shown to coincide with the binomial option price when the return distribution 

achieves only two values, and to converge to the Black-Scholes (1973) value when the multiperiod returns tend to a 

diffusion process.  See Perrakis (1986) for the binomial model and Perrakis (1988) for the convergence in the 

trinomial model to the Black-Scholes price. 

3 The basic idea behind both papers is the following.  One finds the minimal wealth level of an investor at which it is 

feasible to write a call option.  At that minimal wealth level, the optimal policy over the lifetime of the option is to 

consume nothing and refrain from trading.  This property simplifies the derivation of the reservation write price of a 

call option at the minimal wealth level.  The last but non-trivial step is the demonstration that the reservation write 

price at the minimal wealth level serves as an upper bound on the reservation write price at all feasible wealth 
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function exhibits constant relative risk aversion (RRA) that lies between zero and one; (ii) there 

are multiple risky securities; and (iii) the vector of asset returns is an i.i.d. process in either a 

discrete-time or a continuous-time framework.  Whereas the resulting upper bound on the 

reservation write price of a European call option is weaker than the upper bound derived in the 

present paper, the comparative advantage of the Constantinides and Zariphopoulou (2001) 

approach is that the derivative need not be European and its payoff need not be convex and path 

independent.  Therefore, pricing bounds may be derived for a broader set of derivatives.  

Constantinides and Zariphopoulou (1999) replaced the assumption that the utility function 

exhibits constant RRA with the weaker assumption that the utility function is bounded from 

above and below by two “utility functions” that exhibit constant RRA. 

 

In Section 2, we introduce a single-period economy.  There are two primary securities, a riskless 

bond, and a risky stock, interpreted as a stock market index.  There are also cash-settled call 

options written on the stock that expire at the end of the period.  The stock is interpreted as the 

stock market index.  Trading occurs only at the beginning and the end of the period.  Trading in 

the stock incurs proportional transaction costs.  The investors maximize expected utility of 

wealth at the end of the period.  In Section 3, we derive stochastic dominance bounds on the 

reservation purchase price and on the reservation write price of a call option. 

 

In Section 4, we introduce a multiperiod economy.  The critical generalization is that trading is 

permitted over the life of the option.  Another non-critical generalization is that an investor’s 

                                                                                                                                                             
levels. 
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horizon may extend beyond the expiration date of the option.  A limiting assumption in this 

economy is that the rate of return on the stock is independently (but not necessarily identically) 

distributed. 

 

In Section 5, we derive stochastic dominance bounds on the reservation purchase price and on 

the reservation write price of a call option, in the multiperiod economy.  The upper bound 

derived in Proposition 1 is invariant to the frequency of trading permitted over the life of the 

option.  The upper bound derived in Proposition 2, and the lower bounds derived in Propositions 

3 - 5 depend on the modeled frequency of trading over the life of the option. 

 

In Section 6, we generalize the results in two directions.  In Section 6.1, we sketch the derivation 

on bounds on the reservation prices of put options.  In particular, in Proposition 6, we provide a 

lower bound on the reservation purchase price of a put option.  It has the distinguishing feature, 

along with Proposition 1, that it is independent of the trading frequency.  In Section 6.2, we 

sketch the derivation of bounds on options with physical delivery.  In Section 7, we specialize 

the stock price probability distribution to be lognormal.  We show that the upper bound on the 

reservation write price of a call option is tight both in absolute terms and in comparison to 

Leland’s (1985) bounds.  We also show that the lower bound on the reservation purchase price of 

a put option is tight.  These results jointly impose tight upper and lower bounds on the implied 

volatility. 

 

In the remainder of this section, we complete the literature review.  Merton (1990), and Boyle 
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and Vorst (1992) considered a self-financing policy that replicates the payoff of a long call 

option in the presence of proportional transaction costs, when the stock price process is binomial. 

The cost of the dominating policy tends to the stock price as the density of the binomial steps 

tends to infinity.  Bensaid et. al. (1992) introduced the notion of super-replication, which 

replaces the goal of replicating the payoff of a call option with the goal of dominating it.  They 

showed that super-replication coincides with replication for physical delivery options, as well as 

for all types of options, when the transaction cost rate is low.  Hence, in this case as well, the cost 

of the dominating policy tends to the stock price as the density of the binomial steps tends to 

infinity.  See also Edirisinghe, Naik and Uppal (1993).  Perrakis and Lefoll (1997) showed that a 

similar trivial bound holds for the portfolio replicating the short call option.  In a fairly general 

setting, Davis and Clark (1993) conjectured and Soner, Shreve and Cvitanic (1995) proved that 

the stock price is indeed the minimum-cost dominating policy for the long call option in the 

presence of proportional transaction costs, however small the (finite) proportional transaction 

cost rate may be. 

 

Leland (1985) introduced a class of imperfectly replicating policies in the presence of 

proportional transaction costs.  He calculated the total cost, including transaction costs, of an 

imperfectly replicating policy and the “tracking error”, that is, the standard deviation of the 

difference between the payoff of the option and the payoff of the imperfectly replicating policy.  

Related work includes Avellaneda and Paras (1994), Brennan and Schwartz (1979), Figlewski 

(1989), Grannan and Swindle (1996), Hoggard, Whalley and Wilmott (1993), and Toft (1996). 
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Hodges and Neuberger (1989), and Davis, Panas and Zariphopoulou (1993) computed explicitly 

an investor’s reservation purchase and write prices of a call option.  They solved numerically for 

the optimal multi-period investment policy in the bond, stock and option, under the assumption 

that the utility function is exponential, with given absolute risk aversion coefficient. 

 

2. The Single-Period Economy 

 

We present the main results first in the context of a single-period economy.  There are three 

types of financial assets: a default-free bond, a non-dividend-paying stock, and a cash-settled call 

option on the stock.  Since the stock is the only primary risky asset, it has the natural 

interpretation as the stock market portfolio or index.  The option has the natural interpretation as 

an index option.  The assets may be traded only at the initial date (the beginning of the period) 

and the terminal date (the end of the period).  An investor may hold long or short positions in 

these assets.  The terminal date is chosen to coincide with the expiration date of the option.  

Obviously, this is a limitation of the single-period economy and is eliminated in the multiperiod 

economy. 

 

A bond with price one at the initial date has price R, R > 1, at the terminal date, where R is a 

constant.  The bond trades do not incur transaction costs.  The stock price is S0 at the initial date 

and S at the terminal date.  We assume that S0 > 0 and that the support of S is the interval [0, ∞).4  

                                                 
4 The case where the support of S is the interval [S′, S′′], where S′ > 0,and S′′ ≤ ∞ results in a significant tightening 

of the bounds.  This case will be discussed also. 
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At the initial and terminal dates, the stock trades incur proportional transaction costs, charged to 

the bond account.  The investor pays (1 + k1)S0 out of the bond account to purchase one share of 

stock at the initial date.  The investor is credited (1 - k2)S0 in the bond account to sell (or, sell 

short) one share of stock at the initial date.  We assume that 0 ≤ k1< 1 and 0 ≤ k2 < 1.  The same 

proportional transaction cost structure applies at the terminal date. 

 

We make the plausible assumption that the expected return on the stock, gross of transaction 

costs, exceeds the bond return: 

 

E [S/So] > R.      (2.1) 

 

We define the expected return on the stock, net of transaction costs, R*, as 

 

R* ≡ {(1 - k2)/(1 + k1)} E[S/So].    (2.2) 

 

We derive bounds on the option price in both cases, R* > R and R* ≤ R.  Both cases are plausible, 

depending on the length of the time period and the levels of transaction costs k1 and k2 . 

 

Each investor is endowed with certain quantities of the bond, the stock, and European-style 

derivatives on the stock that expire at the terminal date.  The investors trade at the initial date, 

incurring in the process transaction costs.  At the terminal date, they sell (or, close the short 

positions in) the bond and stock accounts, and exercise (or be exercised upon) their options, if it 
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is optimal to do so.5 

 

Let W = W(S) denote an investor’s wealth at the terminal date, net of transaction costs, as a 

function of the stock price, S, at the terminal date.  If the investor’s utility is defined only for 

non-negative terminal wealth, then a portfolio is feasible, if W ≥ 0 with probability one.  In that 

case we confine our attention to cases where the initial endowment is such that the set of feasible 

policies is non-empty.  If the investor’s utility is defined for both positive and negative terminal 

wealth, as, for example, in the case of exponential utility, then the set of feasible policies is non-

empty for any initial endowment.  In the next section, we consider the case that utility is defined 

only for non-negative terminal wealth and sketch the other case in footnotes. 

 

The investor’s expected utility is E[u( W(S) )], where E[·] denotes the expectation, conditional 

on So.  We make the plausible assumption that the utility function, u(·), is increasing and 

concave.  At the initial date, the investor chooses a feasible policy to maximize expected utility. 

 

 

                                                 
5 In the single-period economy, we cannot distinguish between the expiration date of the option and the end of the 

investor’s horizon.  Hence the unsatisfactory assumption that the investor liquidates the stock account on the 

expiration date of the option.  One implication of this assumption is that the transaction costs of liquidating the stock 

account are sunk costs.  In section 4, we model a multiperiod economy.  The investor’s horizon may be longer than 

the term of the option’s maturity and may even be infinite.  Then the investor need not liquidate the stock account on 

the expiration date of the option. 
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3. Option Bounds in the Single-Period Economy 

 

We derive option bounds in a single-period economy.  Specifically, we derive two upper bounds 

on the reservation write price and two lower bounds on the reservation purchase price of a 

European, cash-settled call option on the stock with payoff [S - K]+ at the terminal date.  The 

major simplifying feature of a single-period economy is that trading is allowed only at two dates, 

the beginning and the end of the period.  The complication of intermediate trading is introduced 

in the next section, in the context of a multiperiod economy. 

 

We focus on the case that the investor’s utility is defined only for non-negative terminal wealth.  

The bounds derived below remain valid when utility is defined for both positive and negative 

terminal wealth.  The minor modifications in the argument are sketched in footnotes. 

 

We derive the bounds by considering an investor with optimal policy such that the investor’s 

wealth at the terminal date, W(S), satisfies the following two properties: (1) W(0) = I ≥ 0 6; and 

(2) W(S) – NS is non-decreasing in S, for S ≥ 0, where N > 0.  In general, the investor’s portfolio 

includes derivatives on the stock, and W(S) is not an affine function of S.7 

                                                 
6 If utility is defined for both positive and negative terminal wealth, then the condition I ≥ 0 is eliminated. 

7 We motivate the properties (1) and (2) in the special case that the investor’s portfolio consists of investment in the 

bond and stock (the market portfolio) but not in derivatives.  We denote by I/R the dollar investment in the bond and 

by N/(1 - k2) the number of shares of stock held.  Then the wealth at the terminal date is W(S) = I + NS.  Necessary 

conditions that guarantee the non-negativity of net worth are I ≥ 0 and N ≥ 0.  The condition I ≥ 0 implies the 
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Let C be the price at which the investor can write the call option.  To derive the first upper bound 

on the reservation write price, we consider the zero-net-cost position which consists of: (a) a 

short position in n calls, where 0 < n ≤ N; and (b) a long position in nC/(1 + k1)S0  shares of 

stock.  At the terminal date the payoff is h(S), where 

 

h(S) = {(1 - k2)/(1 + k1 )}nCS / S0 - n[S - K]+.   (3.1) 

 

The policy is feasible because W(S) + h(S) ≥ 0 8.  This follows from the fact that, by assumption, 

W(S)  ≥ 0 and n ≤ N.  Note that h(S) 0 as S  , where the stock price is defined by h( ) = 0 

and  > 0.  Note also that W(S) + h(S) is increasing in S everywhere, even though h(S) is not.  

The increase in expected utility in writing the n calls is 

>
<

<
> Ŝ Ŝ Ŝ

Ŝ

 

E[u(W(S) + h(S))] - E[u(W(S))]     (3.2) 

 

     ≥ E[u′(W(S) + h(S)) h(S)] 

(by the concavity of  u(·) ) 

 

                                                                                                                                                             
assumed property (1).  We motivate the assumed property N > 0 by the observation that at least some investors hold 

the market that is in positive net supply. 
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8 If utility is defined for both positive and negative terminal wealth, then the policy is feasible irrespective of 

whether the condition W(S) + h(S) ≥ 0 holds or not. 



 

     ≥ E[u′(W( ) + h( )) h(S)] Ŝ Ŝ

(since u′( W(S) + h(S)) is decreasing in S and h(S) 0 as S  ) >
<

<
> Ŝ

 

     ≥ u′( W( ) + h( )) E[h(S)] Ŝ Ŝ

 

>0, unless 

 

E[h(S)] ≤ 0 .      (3.3) 

 

This simplifies into 

 

C ≤ E[[S - K]+] / R* ≡ C 1 .     (3.4) 

 

If equation (3.4) is violated, the investor increases expected utility by writing n calls.  Therefore, 

C 1 is an upper bound on the reservation write price of as many as N call options.9 

                                                 
9 If S is bounded from below by a strictly positive number S′, and if R* > R, then the upper bound in (3.4) may be 

tightened as 

 C 1′ = {(R-R1)E[[S-K]+]+(R*-R)[S′-K]+} / R(R*-R1),  if S ≥ S′ > 0,  and R *> R   (3.4)′ 

 

where R1 ≡ S′(1-k2)/S0(1+k1) and R* is defined in equation (2.2).  The proof is an adaptation of the proof in Perrakis 

(1986) to allow for proportional transaction costs.  The difference now is that the zero-net-cost position, while it still 
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Investors with different utility functions have a different reservation write price of a call option.  

Some investors may have a reservation write price below C 1.  However, no risk averse (or, risk-

neutral) investor with N > 0 has a reservation write price above C 1. 

 

We obtain a second upper bound on the reservation write price of a call by considering the 

following zero-net-cost position: (a) write n call options, where 0 < n ≤ N; and (b) invest nC in 

the bond.  At the terminal date the payoff, h(S), is 

 

h(S) = -n[S - K]+ + nRC .    (3.5) 

 

The policy is feasible because  W(S) + h(S) ≥ 0 .10  The stock price  is defined implicitly by 

h( ) = 0.  Note that h(S)  0 as S .  Note also that W(S) + h(S) is increasing in S. 

Ŝ

Ŝ >
<

<
> Ŝ

 

                                                                                                                                                             
contains a long position of nC/(1+k1)S0 shares of stock, is short in the riskless asset, as well as in the calls.  The 

portion αnC of borrowed money is set by the requirement that the net wealth at S = S′ must be equal to zero, so that 

it stay initially nonnegative.  We have two cases: either S′ < K, in which case it can be shown that α = R1/R ; or S′ ≥ 

K, resulting in α=K(1-k2) / RS0(1+k1).  The first case yields a call option upper bound equal to (R-R1)E[[S-K+]] / 

(R*-R1)R, while the second one ends up with the well-known value of the option when it is always in the money, 

S0(1+k1) / (1-k2) - K/R.  We combine the two values and obtain equation (3.4)′. 

10 If utility is defined for both positive and negative terminal wealth, then the policy is feasible irrespective of 

whether the condition  W(S) + h(S) ≥ 0  holds or not. 
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Proceeding as before, we find that the investor increases expected utility by writing a call option, 

unless  E[h(S)] ≤ 0,  which simplifies into 

 

C ≤ E[[S - K]+] / R ≡ C 2 .    (3.6) 

 

Note that C 1  >
< C 2 as R*  R.  We combine the results of equations (3.4) and (3.6) and conclude 

that  min[

<
>

C 1, C 2]  is an upper bound on the reservation write price of as many as N call 

options.  In the absence of transaction costs, the bound becomes identical to the upper bound 

originally derived by Perrakis and Ryan (1984), and re-derived by different methods by Levy 

(1985) and Ritchken (1985). 

 

We derive next two lower bounds on the reservation purchase price of a call option.  Let C be 

the price at which the investor can purchase the call option.  First, we prove the following 

preliminary result.  If at least one investor holds N / (1 - k2) shares of stock, where  N > 0, then 

absence of arbitrage requires that C satisfy the restrictions11 

 

[S0 – K/R, 0]+ ≤ C ≤ S0(1+k1)/(1-k2).     (3.7) 

                                                 
11 Consider first the left-hand inequality.  If  S0 – K/R ≤ 0 , violation of equation (3.7) implies arbitrage.  If  S0 – K/R 

> 0 , and equation (3.7) is violated, an investor earns arbitrage profit  { C - S0 – K/R }n  by buying n / (1 - k2) call 

options, where  0 < n ≤ N , selling n shares of stock, and investing nK/R in bonds.  At the end of the period, the 

wealth is I + (N – n) S + n [S - K]+ + nK ≥ I + NS .  Similar arguments establish the right-hand inequality. 
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Let g be a parameter that satisfies the restriction 

 

C(1-k2)/S0(1+k1) ≤ g ≤ 1.     (3.8) 

 

Consider the zero-net-cost position consisting of: (a) the purchase of n call options, where  0 < n 

≤ N; (b) the sale of  ng / (1 - k2)  shares of stock out of the inventory of  N / (1 - k2) shares; and 

(c) the investment of  n(gS0-C)  in bonds.  At the terminal date the payoff is h(S), where12 

 

h(S) = n[S - K]+ - ngS + nR(gS0 – C).    (3.9) 

 

The reader may verify the following properties:  h(0) ≥ 0 ; h(S) is decreasing and affine in S, for  

S < K ; and h(K) < 0 .  Therefore, the equation  h(S) = 0  has one and only one root in the 

interval [0, K], given by 

 

S1 = R(S0-C/g).     (3.10) 

 

                                                 
12 At the end of the period, the wealth is I + (N – n) S + gnS0 [S - K]+ / C + (1 - g)nS0R  and exceeds the wealth 

I + NS  by h(S), as given in equation (3.9).  The payoff is independent of the transaction cost rates, k1 and k2 .  An 

implication of this is that both of the lower bounds derived here (equations (3.15) and (3.16)) are independent of the 

transaction cost parameters.  This is a feature specific to the single-period economy and does not carry over to the 

multiperiod economy. 
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If g< 1, then h(S) is increasing and affine in S for S > K.  Then the equation h(S) = 0 has a 

second root, S2.  This root lies in the interval [K, ∞) and is given by13 

 

S2 = {K - R(gS0-C)}/(1 – g).     (3.11) 

 

Note that h(S) ≥ 0,  for 0 ≤ S ≤ S1  and  S2 ≤ S ; and  h(S) ≤ 0  for  S1 ≤ S ≤ S2.  The increase in 

expected utility in purchasing the calls is 

 

E[u(W(S) + h(S))] - E[u(W(S))]     (3.12) 

 

    ≥ E[u′( W(S) + h(S)) h(S)] 

(by the concavity of u(·)) 

 

    ≥ prob(S ≤ S2) E[u′( W(S) + h(S)) h(S) | S ≤ S2] 

(since u′( ) ≥ 0 and h(S) ≥ 0, for S2 ≤ S) 

 

    ≥ prob(S ≤ S2) E[u′(W(S1) + h(S1)) h(S) | S ≤ S2] 

(since u′( W(S) + h(S)) is decreasing in S, h(S) ≥ 0, for 0 ≤ S ≤ S1, and h(S) ≤ 0 for S1 ≤ S ≤ S2) 

 

                                                 
13 If  g = 1 , then the equation  h(S) = 0  does not have a second root.  With slight abuse of notation, we say that the 

equation  h(S) = 0  has a second root  at S2 = ∞ . 
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≥ prob(S ≤ S2) u′( W(S1) + h(S1)) E[h(S) | S ≤ S2] 

 

    > 0, 

unless 

E[h(S) | S ≤ S2] ≤ 0,     (3.13) 

 

assuming that  prob(S ≤ S2) > 0.  This simplifies into 

 

C ≥ E[[S - K]+ | S ≤ S2]/R - g{E[S | S ≤ S2]}/R + gS0 ≡ C(g,S2).  (3.14) 

 

First, we set g = 1.  Then equation (3.11) states that S2 = ∞ and equation (3.15) becomes 

 

C ≥ R-1 E[[S - K]+] + S0 - R-1 E[ S ] ≡ C1.    (3.15) 

 

We conclude that C1 is a lower bound on the reservation purchase price of as many as N call 

options.  This is identical to the lower bound found in Perrakis and Ryan (1984). 

 

If the distribution of S has a finite support, with S ≤ S′′ < ∞, then the lower bound in (3.15) can 

be tightened further, by choosing a value of g < 1 such that S2 = S′′.  The appropriate expression 

has been derived in Perrakis (1986) and will not be repeated here.  In all cases, however, the 

tightest lower bound, C2 , is obtained by maximizing C(g,S2) with respect to g and S2 , subject to 
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equation (3.10).14  This tightest lower bound is15 

 

C2 = R-1 E[ [S - K]+ | S ≤ S3],     (3.16) 

 

where S3 is defined implicitly by 

 

E[S/S0 | S ≤ S3 ] – R = 0.     (3.17) 

 

We conclude that C2 is a lower bound on the reservation purchase price of as many as 

N call options.  This bound is identical to the tightest lower bound derived earlier with stochastic 

dominance arguments by Levy (1985) and Ritchken (1985).  The reader may verify that 

 

C1 ≤ C2 ≤ min [C 1, C 2]     (3.18) 

 

and that C1, C2, and C 1 are increasing and convex functions of the price S0 , with slopes that 

tend to 1 and (1 + k1)/(1 - k2), respectively, as S0→∞. 

 

In the next two sections, we reexamine the bounds when intermediate trading is permitted. 

 

                                                 
14 The maximizing value of g is a function of S0 .  In a multiperiod economy, g becomes a function of a random 

variable and this complicates the derivation and numerical calculation of the tightest lower bound. 
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4. The Multiperiod Economy 

 

We generalize the single-period economy to a multiperiod economy.  Each investor makes 

sequential investment decisions at the discrete trading dates t = 0, 1,…,T′, where T′ is the 

terminal date and is finite.16  Before the option is introduced, there are two types of financial 

assets: a default-free bond, and a non-dividend-paying stock.  An investor may hold long or short 

positions in these assets.  The bond is default free, pays no coupons and has constant one-plus-

rate-of-return R per period, where R > 0.17  The stock pays no dividends.  Its price at date t is 

denoted by St .  We assume that the support of St is the interval (0, ∞) and that the rates of return 

on the stock,  St/St-1, St+1/St,…, are i.i.d., with  RS ≡ E[St+1/St].18 

 

We consider an investor who enters at date t with dollar holdings xt in the bond account and yt/St 

shares of stock.  The investor increases (or, decreases) the dollar holdings in the stock account 

from yt to yt + vt by decreasing (or, increasing) the bond account from xt to  xt - vt - max[k1vt, -

k2vt], where  0 ≤ k1< 1 and 0 ≤ k2 < 1.  The decision variable vt is constrained to be measurable 

with respect to the information up to date t. 

                                                                                                                                                             
15 The derivation is available from the authors upon request. 

16 The assumption that the time interval between trading dates is one is innocuous: the unit of time is chosen to be 

such that the time interval between trading dates is one. 

17 The results extend routinely to the case that the rate of interest is time-varying but deterministic. 

18 The results extend routinely to the case that the rates of return on the stock are independently but not identically 

distributed. 
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Given the investment decision vt at date t, the bond account dynamics is 

 

xt+1 = {xt - vt - max[k1vt, -k2vt]}R, t ≤ T′ - 1   (4.1) 

 

and the stock account dynamics is 

 

yt+1 = (yt + vt)St+1/St, t ≤ T′ - 1.    (4.2) 

 

At the terminal date, the stock account is liquidated,  vT′ = - yT′ .  The net worth is defined as 

 

WT′ = xT′ + yT′ - max [-k1 yT′ , k2 yT′] .   (4.3) 

 

At each date, the investor chooses the investment vt with the objective to maximize the expected 

utility of the net worth, E[ u(WT′) ].19.  We make the plausible assumption that the utility 

function, u(·), is increasing and concave, and is defined for both positive and negative terminal 

net worth.20 

                                                 
19 The results extend routinely to the case that consumption occurs at each trading date and utility is defined over 

consumption at each of the trading dates and over the net worth at the terminal date.  See, Constantinides (1979) for 

details.  The model with utility defined over terminal net worth alone is a more realistic representation of the 

objective function of a financial institution. 

20 If utility is defined only for non-negative net worth, then the decision variable is constrained to be a member of a 
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We define the value function recursively for t ≤ T′ - 1 as 

 

V(x, y, t) ≡ maxv E [V({x – v - max[k1v , -k2v]}R, (y + v )St+1/St, t + 1)]  (4.4) 

 

and 

 

V(x, y, T′) = u(x + y - max[-k1 y , - k2 y]).    (4.5) 

 

We denote by vt the optimal investment decision at date t.  We assume that the parameters of the 

problem satisfy appropriate technical conditions such that the value function exists and is once 

differentiable.  The monotonicity and concavity of the utility function, combined with the 

linearity of the transaction costs structure, imply that the value function, V(x, y, t), is increasing 

and concave in (x, y).21 

 

Next, we enrich the investment opportunity set by introducing a European-style, cash-settled 

derivative that expires at date T, T ≤ T′ .  We define by  c(ST)  the cash payoff at expiration to an 

investor that takes a position in this derivative.  For example, if an investor buys (writes) n call 

                                                                                                                                                             
convex set, A , that ensures the non-negativity of the net worth.  See, Constantinides (1979) for details.  However, 

the derivation of bounds on the prices of derivatives requires an entirely different approach and yields weaker 

bounds.  This case is studied in Constantinides and Zariphopoulou (1999, 2001). 

21 See, Constantinides (1979) for details. 
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options struck at K, then  c(ST) = (-) n [ST – K]+ .  We define by J(x, y, S, t) the value function at 

date t of an investor who has a derivatives position paying off  c(ST) at date T, and who has 

endowments x and y in the bond and stock accounts, respectively, where S is the stock price at 

date t.  The endowments x and y are net of any cash flows that the investor has incurred at date t 

or at an earlier date in acquiring the derivatives position.  We stipulate that the investor must 

hold on to the derivatives position until its expiration.22 

 

Formally, we define the value function J(x, y, S, t) recursively for t ≤ T - 1 as 

 

J(x, y, S, t) ≡ maxj E[J({x – j - max[k1j, -k2j]}R, (y + j)St+1/St, t + 1)], St+1, t + 1)]  (4.6) 

 

and 

 

J(x, y, S, T) = V(x + c(S), y, T).    (4.7) 

 

We denote by jt the optimal investment decision at date t.  Note that the optimal investment jt in 

the J-problem may well differ from the optimal investment decision vt in the V-problem. 

 

In the next section, we derive bounds on the purchase and write prices of derivatives when 

                                                 
22 It may well be suboptimal for the investor to hold on to the derivatives position till its expiration.  In deriving the 

pricing bounds in the next section, we make no assumption to the effect that it is optimal to hold on to the 

derivatives position until its expiration. 
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intermediate trading in the bond and stock accounts is permitted and is modeled as in this 

section. 

 

5. Option Bounds when Intermediate Trading is Permitted 

 

We consider an investor who enters date t with dollar holdings x in the bond account and y in the 

stock account.  First, suppose that the investor is not allowed to trade in derivatives at date t and 

at all future dates.  The investor’s maximized expected utility of wealth at the terminal date is 

given by V(x, y, t), where the value function V is defined in equations (4.4) and (4.5).  Next, we 

enrich the investment opportunity set by introducing a European-style, cash-settled call option 

that expires at date T, T ≤ T′.  Suppose that the investor writes a call option for a cash price C 

and invests the proceeds in purchasing C / (1 + k1)St shares of stock.  The investor’s maximized 

expected utility of wealth at the terminal date is given by J(x, y + C / (1 + k1), St, t), where the 

value function J is defined in equations (4.6) and (4.7). 

 

The investor’s expected utility increases by adopting the zero-net-cost position at date t, if and 

only if  J(x, y + C / (1 + k1), St, t) > V(x, y, t).  In equilibrium, the write price of the derivative 

must be such that  J(x, y + C / (1 + k1), St, t) ≤ V(x, y, t).  We exploit this condition and derive an 

upper bound on the reservation write price of the call.  We apply a similar argument to derive a 

lower bound on the reservation purchase price of the call. 

 

The derivation of bounds in the single-period economy in Section 3 relies on the key property 
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that the marginal utility is non-increasing in the stock price.  This property is obtained under the 

monotonicity of wealth condition: the wealth at the end of the period, including the payoff of the 

derivative, is a non-decreasing function of the stock price.  This condition, combined with the 

assumed concavity of the utility function, implies that the marginal utility is non-increasing in 

the stock price.  The monotonicity of wealth condition is guaranteed by judiciously limiting the 

size of the position in the derivative relative to the stock and bond positions. 

 

In the multiperiod economy, we cannot necessarily satisfy (with probability one) the 

monotonicity of wealth condition, even if we limit the size of the position in the derivative 

relative to the stock and bond positions.23  The reason is that the optimal trading in the bond and 

the stock accounts at intermediate dates may result in portfolio positions that violate the 

monotonicity of wealth condition.  Whereas it is easy to generate examples that violate the 

condition, the probability of such a violation can be made arbitrarily small, by increasing the 

investor’s wealth at the initial date t, relative to the size of the position in the derivative. 

 

Without loss of generality, in all the propositions below, we assume that the investor trading in 

options buys or writes exactly one option, n = 1.  We also assume that the investor’s wealth is 

sufficiently large so that the probability of violation of the monotonicity of wealth condition is 

arbitrarily small. 

 

                                                 
23 This problem is addressed formally in Constantinides and Zariphopoulou (1999, 2001), by limiting the set of 

admissible policies. 

 23



 

Proposition 1: Under the assumptions of the multiperiod economy, at any time t prior to the 

option expiration, the reservation write price of a call option is bounded above by C 1(St, t), 

where 

 

C 1(St, t) = {(1 + k1) / (1 - k2)} E[(ST - K)+ | St] / RS
T-t .   (5.1) 

 

Proof: We write C 1(St, t) as C 1(t) for short.  It suffices to prove that 

 

∆t ≡ J(x, y + C 1(t) / (1 + k1), St, t) – V(x, y, t) ≥ 0, t ≤ T.   (5.2) 

 

If indeed equation (5.2) holds at date t, we consider the zero-net-cost policy of writing a call 

option for cash price of C 1(t) and investing the proceeds in purchasing C 1(t) / (1 + k1)St shares 

of stock.  The increase in the investor’s expected utility is ∆t and is positive, by equation (5.2).  

Therefore, the investor’s reservation write price is bounded above by C 1(t) and the proposition 

follows. 

 

The proof of equation (5.2) is by induction.  Equation (5.2) holds at t = T because 

 

∆T = J(x, y + C 1(T)/(1 + k1), ST, T) – V (x, y, T) 

 

 = V(x - (ST - K)+, y + C 1(T)/(1 + k1), T) – V(x, y, T)   (5.3) 
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        ≥ V(x - (ST - K)+ + (1 – k2)C 1(T)/(1 + k1), y, T) – V(x, y, T) 

 

        ≥ 0, 

 

by the definition of  C 1(T).  Finally, we assume that equation (5.2) holds for some t, t≤ T and 

prove that it holds for t - 1 also.  Let vt-1 be the optimal investment decision at date t-1 for the 

investor who does not trade in the derivative.  Then 

 

∆t-1 = J(x, y + C 1(t - 1)/(1 + k1), St-1, t-1) – V(x, y, t-1) 

 

      ≥ E[J({x - vt-1 - max[k1vt-1, -k2vt-1]}R, {y + vt-1 + E[(ST - K)+|St-1]/(1-k2)RS
T-t+1}St/St-1, St, t) 

 

– V({x - vt-1 -max[k1vt-1, -k2vt-1]}R, (y + vt-1)St/St-1) ,t) | St-1],   (5.4) 

 

by the definition of the functions V and J and the fact that vt-1 is the optimal investment decision 

for the V-problem but not necessarily for the J-problem, 

 

      ≥ E[V({x - vt-1 -max[k1vt-1, -k2vt-1]}R, {y + vt-1 + E[(ST - K)+|St-1]/(1-k2)RS
T-t+1}St/St-1 - 

             C 1(t)/(1+k1), t) – V({x - vt-1 - max [k1vt-1, -k2vt-1]}R, (y + vt-1)St/St-1), t) | St-1], 
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by the assumption that equation (5.2) holds for t, 

 

      ≥ E[Vy ({E[(ST - K)+|St-1]/(1-k2)RS
T-t+1}St/St-1 - C 1(t)/(1+k1)) | St-1], 

 

by the concavity of the function V, where the expression Vy denotes the partial derivative of 

V({x - vt-1 -max[k1vt-1, -k2vt-1]}R, {y + vt-1 + E[(ST - K)+St-1]/(1-k2)RS
T-t+1}St/St-1 - C 1(t)/(1+k1), 

St, t) with respect to its second argument, 

 

      ≥ E[Vy h(St) | St-1] 

 

where, 

 

h(St) ≡ {E[(ST - K)+ | St-1] / (1-k2)RS
T-t+1}St/St-1 - C 1(t)/(1+k1).  (5.5) 

 

Note that E [h(St) | St-1] = 0, by the definition of C 1(t).  Note also that 

 

h(S) 0 as S <>  S ,     (5.6) >
<

ˆ

 

where the stock price  is uniquely defined by h( ) = 0 and  > 0.Ŝ Ŝ Ŝ 24 
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24 We prove the last statement as follows.  First, we note that [∂C 1(t)/∂St]/(1+k1) is increasing, tends to zero for  

St→0, and tends to 1/(1-k2) for  St→∞.  Second,  0 < {E[(ST - K)+St-1] / (1-k2)RS
T-t+1}/St-1 < 1/(1-k2) because  0 < 



 

 

Note also that Vy is decreasing in y because V is a concave function of the dollar value in the 

stock account.  Also, {y + vt-1 + E[(ST - K)+St-1]/(1-k2)RS
T-t+1}St/St-1 - C 1(t)/(1+k1)is increasing 

in the stock price St, by the monotonicity of wealth assumption.  Therefore, Vy is decreasing in 

St.  Equation (5.5), (5.6) and the fact that Vy is decreasing in St imply 

 

∆t-1 ≥ Vy (at St = ) E[h(SŜ t) | St-1]     (5.7) 

 

  ≥ 0.          

 

The proposition states that the single-period bound under transaction costs, C 1, remains valid in 

a multiperiod context, subject to the monotonicity assumption of the wealth in the stock price 

during the successive portfolio revisions in the interval [t, T].  This is an important result 

because the bound is invariant to the number of trading dates allowed over the life of the option.  

Furthermore, the calculation of the bound C 1(St, t) is straightforward. 

 

We state below an extension of the second single-period bound under transaction costs, C 2, to a 

multiperiod context. 

 

                                                                                                                                                             
E[(ST - K)+St-1] / E[STSt-1] < 1.  Since h(0) = 0 and the slope of h(St) is initially positive and eventually negative, 

we conclude that h(St) = 0 has exactly one second root for St > 0. 
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C 2(St, t) = [(1+k1)/(1-k2)]T-t E[(ST - K)+ | St]/RT-t.    (5.8) 

 

The proof is omitted because it is a simplified version of the proof of Proposition 2, which is 

presented in the appendix.  If the length of time between trading dates is “a” instead of one, then 

equation (5.8) becomes 

 

C 2(St, t) = [(1+k1)/(1-k2)](T-t)/a E[(ST - K)+ | St]/RT-t.    (5.8)′ 

 

The bound C 1(St, t) dominates the bound C 2(St, t) even when the length of time between trading 

dates is T – t.25  The bound C 2(St, t) increases and tends to infinity, as the length of time between 

trading dates decreases.  In the next proposition, we state another extension of the second single-

period bound, C 2, to a multiperiod context.  The latter bound is tighter than the bound C 2(St, t), 

but requires numerical calculation. 

 

Proposition 2: Under the assumptions of the multiperiod economy, at any time t prior to the 

option expiration, the reservation write price of a call option is bounded above by C 3(St, t).  

C 3(ST, T) is defined as 

                                                 
25 In the single-period economy, the upper bound  C 2(St, t)  is given by equation (3.6) and equals  E[(ST - K)+ | 

St]/RT-t  rather than  [(1+k1)/(1-k2)]T-t E[(ST - K)+ | St]/RT-t.  Therefore, in the single-period economy, C 1 
>

<  C 2 as R* 

 R. <

>
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C 3(ST, T) = (ST - K)+.      (5.9) 

 

For t ≤ T – 1, C 3(St, t) is defined as 

 

C 3(St, t) = E[C 3(St+1, t+1) I(St+1 - x) | St] / RE[I(St+1 - x) | St],  (5.10) 

 

where 

        I(z) = 1/(1 + k1), if z ≤ 0 

= 1/(1 - k2), if z > 0      (5.11) 

 

and x solves the equation 

 

E[C 3(St+1, t+1) I(St+1 - x) | St] / E[I(St+1 - x) | St] = C 3(x, t+1).  (5.12) 

 

Proof: See the appendix. 

 

Next, we examine the multiperiod versions of the lower bounds C1 and C2, given by equations 

(3.15) and (3.16), respectively.  As with the single-period economy, we consider the zero-net-

cost policy of buying one call option at time t, financed by the sale of gt/(1 + k1) shares of stock, 
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with gt ≤ 1 and with the remaining funds invested in the riskless asset26.  First, we examine the 

case gt = 1 for all t. 

 

Proposition 3:27 Under the assumptions of the multiperiod economy, at any time t prior to the 

option expiration the reservation write price of a call option is bounded below by C1(t).  C1(T-1) 

is defined as 

 

C1(ST-1,T-1) = Max{0, E[(ST - K)+ST-1]/R + ST-1(1-k2)/(1+k1) – E[STST-1]/R}. (5.13) 

 

For t<T-1, C1(St,t) is defined as 

 

C1(St,t) = Max{0, E[C1(St+1, t+1) I(St+1 - x) | St] / RE[I(St+1 - x) | St] 

 

+ (1-k2)/(1+k1){St – E[St+1 I(St+1-x)St]/RE[I(St+1-x)St]}},  (5.14) 

 

where the function I(.) is given by (5.11) and x solves the equation 

 

{(1-k2)E[St+1 I(St+1-x)St]/(1+k1) - E[C1(St+1, t+1) I(St+1 - x) | St]} /RE[I(St+1 - x) | St] 

 

= x(1-k2)/(1+k1) – C1(x, t+1).       (5.15) 

                                                 
26 We assume that the call price at time t is less than St(1-k2)/(1+k1). 
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The bound C1(St,t) in Proposition 3 is not the tightest available, insofar as the choice of shorting 

1/(1+k1) shares for every call option purchase may not be optimal.  On the other hand, the 

transformation of cash into shares in the multiperiod economy was done in an efficient manner, 

as with the upper bound in Proposition 2.  This bound C1(St,t) must be computed numerically, 

but the computation is similar to that of the upper bound C 3 and does not present any particular 

problems. 

 

The following result presents a multiperiod version of the bound C2, which must also be 

computed numerically.  Although this bound does select the shorted shares gt efficiently, it does 

not transform cash into stock efficiently and, thus, does not necessarily dominate C1(St,t). 

 

Proposition 4:28 Under the assumptions of the multiperiod economy, a lower bound C2(t) on the 

reservation purchase price of a call option at any time t prior to option expiration is derived 

recursively from the expressions 

 

C2(St, t) = E[C2(St+1, t+1)St, St+1 ≤ S3(t)]/R,    (5.16) 

 

where S3(t) is defined implicitly for all t≤T-1 by 

 

                                                                                                                                                             
27 The proof is in the appendix of the unabridged version of the paper, available from the authors upon request. 
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28 The proof is in the appendix of the unabridged version of the paper, available from the authors upon request. 



 

{(1+k1)/(1-k2)}E[St+1St, St+1≤S3(t)] = RSt,    (5.17) 

and 

C2(ST, T) = (ST-K)+. 

 

 

Proposition 5 yields the tightest possible lower bound available by our methodology.  It 

combines the optimal choice of gt with the efficient transformation of cash into stock in the 

multiperiod context.  It must be computed numerically and is the most complex to estimate, 

insofar as it requires the recursive evaluation of the optimal gt. 

 

Proposition 5:29 Under the assumptions of the multiperiod economy, the tightest lower bound 

C3(t) on the reservation purchase price of a call option at any time t prior to option expiration is 

derived recursively from the expressions 

 

C3(ST-1,T-1) = E[(ST - K)+ST-1, ST ≤ S3(T-1)]/R,   (5.18) 

 

where S3(T-1) is defined implicitly by 

 

{(1+k1)/(1-k2)}E[STST-1, ST≤S3(T-1)] = RST-1,   (5.19) 

 

                                                 
29 The proof is in the appendix of the unabridged version of the paper, available from the authors upon request. 
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and the shorted stock gT-1(ST-1) is equal to 

 

gT-1(ST-1) = [(S3(T-1)- K)+ – RC3(ST-1,T-1)]/[(1+k1)S3(T-1)/(1-k2) – RST-1]+  (5.20) 

 

At any time t<T-1 these expressions become 

 

C3(St, t) = {E[C3(St+1,t+1)I(St+1-x)St, St+1≤S3(t)] 

+ (k1+k2)E[St+1Gt+1(St+1,x)I(St+1-x)St, St+1 

 

≤ S3(t)]/(1+k1)}/RE[I(St+1-x)St, St+1≤S3(t)];    (5.21) 

 

S3(t) is defined implicitly by the equation 

 

  E[St+1St, St+1<S3(t)]/(1-k2)E[I(St+1-x)St, St+1≤S3(t)] = RSt ;  (5.22) 

 

gt(St) is defined implicitly by the equation 

 

R(gtSt/(1+k1) – C3(St,t)/(1-k2)) + C3(S3(t),t+1)/(1-k2) – gtS3(t)/(1+k1) = 0 ;  (5.23) 

 

I(.) is given by (5.11), with G(St+1,x)≡{gt+1(St+1) for St+1 ≤ x, 0 for St+1 > x}, and with x given 

implicitly by the equation 
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R(gtSt(1-k2)/(1+k1) – C3(St,t)) = gt+1(x)x(1-k2)/(1+k1) – C3(x,t+1).  (5.24) 

 

 

The dependence of the multiperiod efficient lower bound C3(St, t) on the partition of the interval 

[t,T] is quite complex.  On the one hand, each successive partition reduces the bound because of 

the presence of the transaction costs in (5.22).  On the other hand, transaction costs add to the 

expectation the extra term involving the expectation of St+1Gt+1 in (5.21). 

 

6. Generalizations 

 

6.1 Bounds on Put Prices 

 

We may use the upper bounds on the write price of a call option, derived in Propositions 1 and 2, 

to derive upper bounds on the write price of a put option.  Let C  be an upper bound on the 

reservation write price of a call option, when trading is permitted between the current date t and 

the expiration date T.  We prove that P  is an upper bound on the reservation write price of a put 

option, where 

 

P  = C  - (1-k2) S(t) / (1+k1) + K / RT-t.    (6.1) 
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To prove it, assume that the put write price equals P .  Then (a) write a put, (b) short 1/(1+k1) 

shares, and (c) lend K / RT-t.  The net inflow is P  + (1-k2) S(t) / (1+k1) - K / RT-t and equals C .  

Also, the net inflow at T is  - max[K - S(T), 0] - S(T) + K = -max[S(T) - K, 0] and equals the net 

inflow at T of a short position in a call.  The investor’s expected utility weakly increases in 

writing the put.  Therefore, P  is an upper bound on the reservation write price of a put option.  

This completes the proof. 

 

Likewise, we may use the lower bounds on the purchase price of a call option, derived in 

Propositions 3-5, to derive lower bounds on the purchase price of a put option.  Let C be a lower 

bound on the reservation purchase price of a call option, when trading is permitted between the 

current date t and the expiration date T.  We prove that P is a lower bound on the reservation 

write price of a put option, where 

 

P = C - (1+k1) S(t) / (1-k2) + K / RT-t.    (6.2) 

 

To prove it, assume that the put purchase price equals P.  Then (a) buy a put, (b) buy 1/(1-k2) 

shares, and (c) borrow K / RT-t.  The net outflow is P + (1+k1) S(t) / (1-k2) - K / RT-t and equals 

C.  Also, the net inflow at T is  max[K - S(T), 0] + S(T) + K = max[S(T) - K, 0] and equals the 

net inflow at T of a long position in a call.  The investor’s expected utility weakly increases in 

buying the put.  Therefore, P is a lower bound on the reservation purchase price of a put option.  

This completes the proof. 
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The bounds on the price of a put, expressed in equations (6.1) and (6.2), are weak because they 

introduce the round-trip transaction cost in trading one share of stock.  Alternatively, we may 

derive directly upper and lower bounds on the reservation prices of puts by replicating the 

methods employed in deriving Propositions 1-5.  We report below, without proof, just one of 

these results.  It is a lower bound on the reservation purchase price of a put option.  It has the 

distinguishing feature, along with Proposition 1, that it is independent of the trading frequency.  

Furthermore, it is easy to compute. 

 

Proposition 6: Under the assumptions of the multiperiod economy, at any time t prior to the 

option expiration, the reservation purchase price of a put option is bounded below by P(St, t), 

where 

 

P(St, t) = (1-k2)E[(K-ST)+St] / (1+k1)RS
T-t.    (6.3) 

 

We may use an upper bound on the write price of a put option, to derive an upper bound on the 

write price of a call option.  We may also use a lower bound on the purchase price of a put option 

to derive a lower bound on the purchase price of a call option.  In particular, the lower bound on 

the purchase price of a put option in equation (6.3) implies the following lower bound on the 

reservation purchase price of a call option: 

 

    C(St, t) = P(St, t) + (1-k2)St / (1+k1) - K/RT-t 
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= (1-k2){E[(K-ST)+St]/RS
T-t + St}/(1+k1) - K/RT-t   (6.4) 

 

     = (1-k2)E[(ST-K)+St]/(1+k1)RS
T-t + K(1-k2)/(1+k1)RS

T-t – K/RT-t. 

 

6.2 Bounds on Options with Physical Delivery 

 

The bounds derived in this paper apply to cash-settled options.  Nonetheless, their extension to 

options with physical delivery is relatively simple.  Consider first the upper bound in Proposition 

1.  Since the settlement terms affect the option only at date T, it suffices to consider C 1(ST-1, T-

1).  At date T, the value function  J(x, y + C 1(T)/(1+k1), ST, T)  is equal to  V(x, y + 

C 1(T)/(1+k1), ST, T)  for ST ≤ K/(1+k1), and to  V(x + K, y+C 1(T)/(1+k1) - ST, ST, T)  for ST > 

K/(1+k1). 30  The value function is, therefore, greater than or equal to V(x, y + C 1(T)/(1+k1) – 

(ST(1+k1) - K)+/(1+k1), ST, T), which in turn is equal to V(x, y, T), if  C 1(T) = (ST(1+k1) - K)+ = 

(1+k1)(ST - K/(1+k1))+.  Hence, for physical delivery options the upper bound C 1(St, t) is equal 

to (1+k1)E[(ST - K/(1+k1))+St]/RS
T-t.  Note that this bound is independent of k2.  A similar 

relation holds for the bound C 3(ST-1, T-1), which is equal to E[(ST - K/(1+k1))+ST-1]/R, while 

(5.10)-(5.12) continue to apply for t < T-1. 

                                                 
30 Under transaction costs the option holders will always exercise the option when ST(1-k2)≥K, will always let the 

option expire when ST(1+k1)≤K, and may take either action for ST∈(K/(1+k1), K/(1-k2)); see Perrakis and Lefoll 

(1997). Here we adopt the most conservative assumption for the option writer, that exercise will take place when 

ST>K/(1+k1). 
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7. Numerical Results 

 

We illustrate the bounds in the case that the interest rate is zero.  The dividend yield is assumed 

zero and the stock price process is a geometric Brownian motion, such that the mean annual 

equity premium is 4% and the annual stock volatility is 15%: 

 

    dSt/St = 0.04 dt + 0.15 dWt ,     (7.1) 

 

where Wt is a standard Brownian motion on the physical probability measure.31  These 

assumptions respect the constraint in equation (2.1), that the expected rate of return on the stock, 

gross of transaction costs, exceeds the bond return.  We assume that the current stock price is 

100.  We consider a 3-month, European call option with strike-to-price ratio  K / S = 0.95, 1.00, 

and 1.05. 

 

                                                 
31 It is only for purposes of illustration that we model the stock price process by a lognormal.  An attractive feature 

of these bounds is that they may be derived for any arbitrary distribution of the stock price, provided that the stock 

price is bounded below by zero and the first moment exists.  In particular, as the trading frequency increases, the 

stock price process need not converge to the lognormal, but may converge to a mixed diffusion - point process.  

Even if we were to set the transaction cost rate equal to zero, it is nowhere assumed that the market is either 

complete or tends to a complete market, as the frequency of trading increases.  Thus, the model accommodates 

stochastic volatility and stock price jumps.  Since the market is incomplete, the bounds need not tend to the Black-

Scholes option price, as the frequency of trading increases, even if the transaction costs rate is set equal to zero. 
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In Table 1, we set that the transaction cost rates equal to 1%,  k1 = k2 = 0.01.  In the second row, 

we present the Black-Scholes call price.  The Black-Scholes price of the at-the-money call is 

2.99.  The hedge ratio of this call is 0.51.  It costs 0.51 x 100 x 0.01 = 0.51 just to set up the 

initial hedge, raising the reservation write price to 3.50, even without allowance for rehedging 

costs.  By contrast, in the third row, we present the stochastic dominance upper bound on the 

reservation write price of a call option, provided by Proposition 1.  Note that this bound is 

independent of the number of trading dates over the life of the call.  The Proposition 1 bound for 

the at-the-money call is 3.57.  The bound is tight.  The bound is tight also for the out-of-the-

money and the in-the-money call. 

 

In the next three rows, we present the call upper bounds provided by Proposition 2 with trading 

once every three months, monthly, and biweekly.  In almost all cases considered, the bound 

provided by Proposition 2 is tighter than the bound provided by Proposition 1, but the absolute 

difference is small.  In Proposition 2, the bound becomes tighter as the trading interval decreases, 

but the absolute difference is small.  Overall, both propositions provide tight bounds on the 

reservation write price.  In the same table, we also present the upper bounds in terms of the 

implied volatility.  In all cases, we obtain the standard result that the implied volatility is 

decreasing in the ratio K / S.  We do not display the lower bounds on the reservation purchase 

price of a call option, implied by Propositions 3-5, because these bounds are weak, at least for 

1% transaction cost rates. 

 

We present Leland’s (1985) reservation write price of a call option, when the trading interval is 
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of length ∆t.  The variance is adjusted as 

 

    22 2 2 k
t

σσ σ π→ +
∆

     (7.2) 

 

and the reservation price is calculated from the Black-Scholes formula.  This reservation write 

price does not reflect the transaction cost incurred initially in setting up the hedged position.  In 

Table 1, we adjust the reservation price to reflect this cost.  Even with this adjustment, the 

comparison between Leland’s write price and our upper bound is tenuous for three reasons.  

First, the Leland write price is designed to take advantage of the properties of the lognormal 

process.  By contrast, our bounds do not take advantage of the lognormal process and, therefore, 

work for any process.  Second, the Leland write price relies on the approximation that the trading 

interval is short.  Third, it ignores the risk incurred by the hedging agent as the result of the 

variance of the tracking error.  This risk is negligible only if the trading interval is short.  Thus, 

we present results for trading intervals of length one day and one week.  In all cases, the Leland 

write price provides weaker bounds than the bounds provided by Propositions 1 and 2. 

 

In Table 2, we set the transaction cost rates equal to 3%,  k1 = k2 = 0.03.  All other assumptions 

remain unchanged.  As expected, the bounds implied by Propositions 1 and 2 are weaker in the 

presence of the higher transaction costs, but are still tight.  By contrast, the Leland write price 

provides substantially weaker bounds.  In all cases, the implied volatility is decreasing in the 

ratio K / S. 
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In Table 3, we present a lower bound on the reservation purchase price of a put option implied 

by Proposition 6 when the transaction cost rates equal 1% and 3%.  Note that this bound is 

independent of the trading interval.  The bound is tight.  In the same table, we also present the 

lower bound in terms of the implied volatility.  In all cases, the implied volatility is decreasing in 

the ratio K / S. 

 

8. Concluding Remarks 

 

We have derived upper and lower bounds on option prices based on the given distribution of the 

underlying stock return.  The distribution of the underlying stock return is consistent with time-

series processes of the stock return that allow for diffusion processes with stochastic volatility, 

mixtures of lognormal and jump processes, and empirically fitted distributions.  Although the 

bounds were illustrated numerically for the case of lognormal distributions, we stress that the 

bounds are widely applicable. 

 

The bounds were derived for European options only.  An important extension of the 

methodology presented in this paper would be the derivation of bounds for American options, 

both put options and call options with dividends.  Such an extension presents difficulties, since 

option writers or holders need to hedge their positions against both immediate and deferred 

exercise at any point in time. 
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APPENDIX: Proof of Proposition 2 

 

We provide a proof in the case that the probability density function f(St+1/St), has its support in 

[0, ∞), with f(z) > 0 for z >0.  The proof is easy also in the case that f(z) has finite support [a, b],  

with f(z) > 0 in that interval.  First, we prove the following lemma. 

 

Lemma 2.1: The function C 3(St, t) is increasing and convex in St, and C 3(0, t) = 0. 

 

Proof: By equation (5.9), the lemma holds at t = T.  The proof proceeds by induction.  We 

assume that the function C 3(St+1, t+1) is increasing and convex in St+1, and C 3(0, t+1) = 0.  We 

prove that C 3(St, t) is increasing and convex in St, and C 3(0, t) = 0. 

 

We define the functions g(y, St) and p(y, St) as 

 

   g(y, St) ≡ E[C 3(St+1, t+1) I(St+1 - y) | St]    (A.1) 

 

and 

 

p(y, St) ≡ RE[I(St+1 - y) | St],     (A.2) 

 

where the function I(·) is defined in equation (5.11).  By direct differentiation, we obtain 
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  g′ ≡ ∂g(y, St)/∂y = {(1+k1)-1 - (1-k2)-1}f(y/St) St
-1 C 3(y, t+1)   (A.3) 

 

and 

 

   p′ ≡ ∂p(y, St)/∂y = R{(1+k1)-1 - (1-k2)-1} f(y/St) St
-1.   (A.4) 

 

Note that g′/p′ = C 3(y, t+1)/R.  We also write 

 

D(y, St) ≡ ∂{g(y, St)/p(y, St)}/∂y = {p g′ - g p′}/p2     (A.5) 

 

              = {-p′/p}{g/p - C 3(y, t+1)/R},  if f(·) > 0. 

 

The sign of D is the same as the sign of  g/p - C 3(y, t+1)/R, because -p′/p is positive.  We prove 

that there exists some x, x > 0, such that D(x, St) = 0, by showing that there exists some  ε,  ε > 0, 

such that D( ε, St) > 0; and that D(y, St) is negative for sufficiently large y.  First, we note that 

g/p > 0.  Second, we note C 3(y, t+1) tends to zero, as y tends to zero, by assumption.  Therefore, 

there exists an  ε,  ε > 0, such that D( ε, St) > 0. 

 

We prove that D(y, St) is negative for sufficiently large y.  The function g/p is bounded from 

above, as y tends to infinity because 
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g(y, St)/p(y, St) ≤ tmax ( , )
min ( , )

y

y t

g y S
p y S

 1

2

1
1

k
k

+ 
 − 

= E[ C 3(St+1, t+1) | St].  (A.6) 

 

The function C 3(y, t+1) is unbounded from above, by assumption.  Therefore, there exists some 

x, x > 0, such that D(x, St) = 0, thereby identifying a local maximum of the function g(y, St)/p(y, 

St) with respect to y.  The next task is to prove that the local maximum is unique and is a global 

maximum for y ≥ 0. 

 

Suppose that there exists a number x΄, such that x΄ > x, and x΄ is the smallest value of y such that 

D(y, St) = 0.  Then D(x΄ -  ε, St) < 0 for some  ε > 0.  However, g(x΄, St)/p(x΄, St) < g(x΄ -  ε, 

St)/p(x΄ - ε, St), because g/p attains a local minimum at y = x΄.  Also, C 3(x΄ - ε, t+1) < C 3(x΄, 

t+1), because C 3(y, t+1) is increasing in y, by assumption.  Therefore 

 

D(x΄ - ε, St) = g(x΄ - ε, St)/p(x΄ - ε, St) - C 3(x΄ - ε, t+1) 

 

> g(x΄, St)/p(x΄, St) - C 3(x΄, t+1)    (A.7) 

 

        > 0, 

 

which is a contradiction.  We conclude that the function g/h attains a global maximum for y > 0 

at y = x, where x is the unique root of D(y, St) = 0.  The global maximum is given by 
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    g(x, St)/p(x, St) = C 3(x, t+1)/R.    (A.8) 

 

From the definition of C 3(St, t) in equation (5.10), we conclude that 

 

    C 3(St, t) = g(x, St)/p(x, St).     (A.9) 

 

We proceed to show that C 3(St, t) is increasing and convex in St.  By equation (A.9), C 3(St, t) is 

the value of g(y, St)/h(y, St), maximized over y.  We define the variables z = St+1/St and w = y/ St 

and write 

 

   C 3(St, t) = maxy g(y, St)/p(y, St) 

 

 = maxw E[C 3(St z, t+1) I(z – w)] / RE[I(z – w)],  (A.10) 

 

where the expectation is taken over the random variable z that has probability density f(z).  After 

taking the expectation, the maximand is a function of St and w.  Conditional on w, the maximand 

is an increasing and convex function of St.  These properties are preserved under the operation of 

maximization with respect to w.  Therefore, C 3(St, t) is increasing and convex in St.  Finally, 

C 3(0, t) = 0 because g(x, 0)/p(x, 0) = 0.                
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Lemma 2.2: 

 

E[h(St, St+1, t) | St] = 0     (A.11) 

 

where, 

 

 h(St, St+1, t) ≡ {C 3(St, t)R - C 3(St+1, t+1)}I(-C 3(St, t)R + C 3(St+1, t+1)).  (A.12) 

 

Proof: By Lemma 2.1 and equations (5.10) and (5.12), there exists a unique number x, x > 0, 

such that  C 3(St, t)R - C 3(x, t+1) = 0.  By the monotonicity of C 3(x, t+1) in x, we obtain that  

C 3(St, t)R - C 3(St+1, t+1)  0, as S>
< t+1  x.  Therefore, by equation (5.10) <

>

 

E[h(St, St+1, t) | St ] = E[C 3(St, t)R - C 3(St+1, t+1)}I(St+1 - x) | St ]  (A.13) 

 

= 0.         

 

Proof of Proposition 2: It suffices to prove that 

 

∆t ≡ J(x + C 3(St, t), y, St, t) – V(x, y, t) ≥ 0,   t ≤ T.   (A.14) 

 

If, indeed, equation (A.14) holds at date t, we consider the zero-net-cost policy of writing a call 
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option for cash price of C 3(St, t) and investing the proceeds in the cash account.  The increase in 

the investor’s expected utility is ∆t and is positive, by equation (A.14).  Therefore, the investor’s 

reservation write price is bounded above by C 3(St, t) and the proposition follows. 

 

The proof of equation (A.14) is by induction.  Equation (A.14) holds at t = T because 

 

∆T = J(x + C 3(ST, T), y, ST, T) – V(x, y, T) 

 

     = V(x - (ST - K)+ + C 3(ST, T), y, T) – V(x, y, T)   (A.15) 

 

        = 0, 

 

by the definition of C 3(ST, T) in equation (5.9).  Next, we assume that equation (A.14) holds for 

some t + 1, t + 1 ≤ T and prove that it holds for t also.  Let vt be the optimal investment decision 

at date t for the investor who does not trade in the derivative.  Then 

 

        ∆t = J(x + C 3(St, t), y, St, t) – V(x, y, t) 

 

≥ E[J({x - vt - max[k1vt, -k2vt] + C 3(St, t)}R, (y + vt)St+1/St, St+1, t+1) 

 

– V({x - vt - max[k1vt, -k2vt]}R, (y + vt)St+1/St, t+1) | St],   (A.16) 
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by the definition of the functions V and J and the fact that vt is the optimal investment decision 

for the V-problem but not necessarily for the J-problem, 

 

≥ E [V({x - vt - max[k1vt, -k2vt] + C 3(St, t)}R - C 3(St+1, t+1), (y + vt)St+1/St, St+1, t+1) 

 

– V({x - vt - max[k1vt, -k2vt]}R, (y + vt)St+1/St, t+1) | St], 

 

by the assumption that equation (A.14) holds for t + 1, 

 

≥ E[V({x - vt - max[k1vt, -k2vt]}R, (y + vt)St+1/St + h(St, St+1, t), t+1) 

 

– V({x - vt - max[k1vt, -k2vt]}R, (y + vt)St+1/St, t+1) | St], 

 

We define Vy as the partial derivative of V({x - vt - max[k1vt, -k2vt]}R, (y + vt)St+1/St + h(St, St+1, 

t), t+1) with respect to its second argument.  Then 

 

∆t ≥ E[Vy h(St, St+1, t) | St], 

 

since V is concave in its second argument, 

 

 48
       ≥ Vy(at St+1 = x)E[h(St, St+1, t) | St]    (A.17) 



 

 

since Vy is decreasing in its second argument and h(St, St+1, t)  0, as S>
< t+1  x, <

>

 

        ≥ 0, 

 

since E[h(St, St+1, t) | St] = 0, by Lemma 2.2.                
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Table 1 

The Reservation Write Price of a 3-Month European Call 

with 1% Transaction Cost Rate1a 

(% implied volatility in parenthesis) 

 
 

Strike-to-price ratio 0.95 1.00 1.05 
Black-Scholes price 6.07 

(15.0) 
2.99 
(15.0) 

1.19 
(15.0) 

Proposition 1 bound, 
any trading interval 

6.93 
(20.3) 

3.57 
(17.9) 

1.50 
(16.8) 

Proposition 2 bound, 
trading interval 3 months 

6.91 
(20.1) 

3.57 
(17.9) 

1.51 
(16.9) 

Proposition 2 bound, 
trading interval 1 month 

6.89 
(20.0) 

3.55 
(17.8) 

1.49 
(16.8) 

Proposition 2 bound, 
trading interval ½ month 

6.88 
(20.0) 

3.55 
(17.8) 

1.49 
(16.8) 

Leland price, trading interval 1/250 years1b 8.36 
(28.3) 

5.42 
(27.2) 

3.28 
(26.5) 

Leland price, trading interval 1/52 years1c 7.59 
(24.0) 

4.50 
(22.8) 

2.38 
(21.7) 

 

                                                 
1a The parameter values are r = 0, µ = 0.04, σ = 0.15, S0 = 100, k1 = k2 = 0.01, T = 0.25 years. 

1b The corresponding Leland prices, without an adjustment for the initial hedging cost, are 7.69, 4.90, and 2.91, 

respectively. 

1c The corresponding Leland prices, without an adjustment for the initial hedging cost, are 6.88, 3.98, and 2.05, 

respectively. 
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Table 2 

The Reservation Write Price of a 3-Month European Call 

with 3% Transaction Cost Rate2a 

(implied volatility in parenthesis) 

 
 

Strike-to-price ratio 0.95 1.00 1.05 
Black-Scholes price 6.07 

(15.0) 
2.99 
(15.0) 

1.19 
(15.0) 

Proposition 1 bound, 
any trading interval 

7.21 
(21.9) 

3.72 
(18.7) 

1.56 
(17.2) 

Proposition 2 bound, 
trading interval 3 months 

7.02 
(20.8) 

3.65 
(18.3) 

1.55 
(17.1) 

Proposition 2 bound, 
trading interval 1 month 

6.95 
(20.4) 

3.59 
(18.0) 

1.51 
(16.9) 

Proposition 2 bound, 
trading interval ½ month 

6.92 
(20.2) 

3.58 
(18.0) 

1.51 
(16.9) 

Leland price, trading interval 1/250 years2b 11.86 
(47.1) 

8.97 
(45.1) 

6.58 
(43.4) 

Leland price, trading interval 1/52 years2c 10.18 
(38.2) 

7.02 
(35.2) 

4.59 
(33.3) 

 

                                                 
2a The parameter values are r = 0, µ = 0.04, σ = 0.15, S0 = 100, k1 = k2 = 0.03, T = 0.25 years. 

2b The corresponding Leland prices, without an adjustment for the initial hedging cost, are 9.94, 7.35, and 5.29, 

respectively. 

2c The corresponding Leland prices, without an adjustment for the initial hedging cost, are 8.17, 5.43, and 3.42, 

respectively. 
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Table 3 

The Reservation Purchase Price of a 3-Month European Put3a 

(% implied volatility in parenthesis) 

 
 

Strike-to-price ratio 0.95 1.00 1.05 
Black-Scholes price 1.07 

(15.0) 
2.99 
(15.0) 

6.19 
(15.0) 

Proposition 6 bound, 1% transaction cost 
rate, any trading interval 

0.83 
(13.4) 

2.46 
(12.3) 

5.32 
(8.9) 

Proposition 6 bound, 3% transaction cost 
rate, any trading interval 

0.80 
(13.2) 

2.35 
(11.8) 

5.11 
(6.7) 

 

                                                 
3a The parameter values are r = 0, µ = 0.04, σ = 0.15, S0 = 100, T = 0.25 years. 
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