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1. Introduction 
 

Why are some countries so rich while others are so poor?  There are two fundamentally different 

approaches to answering this question.  One approach is to trace economic outcomes back to 

fundamental forces, such as geography, climate, or culture.  The alternative approach is to argue 

for the existence of multiple equilibria.  If there are multiple equilibria, one country may be stuck 

in a poverty trap while another may be very wealthy, even though both countries have exactly 

the same exogenous characteristics.  

Most approaches to estimating and testing poverty trap models have focused on short run 

and medium run dynamics as countries gravitate towards different �convergence clubs,� 

depending on their initial positions.  Some recent examples of this approach are Durlauf and 

Johnson (1995), Berthelemy and Varoudakis (1996), Desdoigts (1999), and Feve and Le Pen 

(2000).  Instead we concentrate on the implications of a poverty trap for long run behavior.  In 

the long run, a theory of �fundamental forces� corresponds to a unique relationship between 

exogenous factors and income levels, while the existence of a poverty trap generates at least two 

relationships.  

Our test consists of asking whether moving from a single relationship between exogenous 

factors and economic performance, to multiple relationships (in practice we allow only two), 

significantly improves the model�s fit.  The advantage of this approach is that it depends only on 

the �reduced form� mapping from exogenous factors to the level of income, while the 

approaches based on short and medium run behavior require the inclusion, and modeling, of all 

the endogenous variables in the development process.  There is, however, a cost in that we test 

only the existence of a poverty trap; we do not specify the mechanism by which the poverty trap 

emerges. 
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If we assume that the �fundamental factors� are the same in every country, the income 

levels of countries should be distributed around a single expected value, while multiple equilibria 

would generate income levels that are clustered around several distinct values.  This model has 

been extensively investigated by Quah (1996, 1997) who argues that there are �twin peaks� in 

the empirical distribution of national per capita incomes. Bianchi (1997) and  Paap and van Dijk 

(1998) test the existence of �twin peaks� against a single peak and reject a single peak; �twin 

peaks� capture the structure of the data much better than a single peak.  

However, this result may be due to the omission of some �fundamental forces.�  

Intuitively, if countries differ in some fundamental ways, these differences may explain the 

actual distribution of income per capita. The �twin peaks� may be capturing the distribution of 

the exogenous variables that underlie economic performance, rather than indicating the existence 

of multiple equilibria.  We therefore extend the model to test if there is a single or multiple 

relationship between exogenous variables and economic outcomes.  In the case of multiple 

equilibria, our theory suggests that not only may we have multiple equilibria that are functions of 

some underlying, exogenous, variables but that the probability a country is close to a one steady 

state rather than the other is also a function of these underlying characteristics. 

We begin by adding latitude as a fundamental exogenous variable that is clearly 

correlated with economic outcomes; countries at higher latitudes tend to be better off.  When we 

test this single relationship against a model with two regimes we find that we can reject the 

single relationship model.  The two regimes we find are a high level steady state which is 

independent of latitude and a low level steady state in which income rises with latitude.  This is 

suggestive of a low level equilibrium (perhaps primarily agricultural) in which climate matters 

and a higher level equilibrium based on industry and services that is independent of climate.  The 
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probability of being in the high level equilibrium also rises with latitude, being close to zero 

throughout the tropics but rising sharply as we enter the temperate zones.   

When we extend the model to include more meaningful geographical variables we 

continue to find multiple equilibria following a similar pattern.  Cool, coastal countries, with 

heavy rainfall, evenly spread throughout the year, tend to be better off.  In the low level 

equilibrium, income rises with these favorable characteristics, and they also increase the chance 

that a country is in a high level equilibrium in which income is independent of geography.       

Our test involves comparing the hypothesis of a single equilibrium with that of two 

steady states.  However, we assume that our geographical variables identify the �fundamental 

forces�. It is always possible that a more complex single regime model, with extra exogenous 

explanatory variables, might adequately represent the data.  Taken is this light, our results imply 

only that we can reject simple geographical determinism as the explanation of the �twin peaks� 

in the distribution of income levels across countries. It remains to be seen if other fundamental 

forces could explain the empirical distribution of income levels we observe.   

Section 2 provides a brief discussion of how multiple equilibria can arise and the  

selection of exogenous variables that act as fundamental forces. While the model specification 

we use is apparently very simple, estimation and testing are not as straightforward as they appear 

at first sight, due to the fact that the model lacks the regularity conditions that underlie standard 

techniques. Our econometric methodology and the numerical techniques we employ are 

described in appendices, and our results are given in section 3. 
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2. The Model 

There is a huge theoretical literature on models that have the potential to generate multiple 

equilibria and poverty traps (e.g. see Azariadis (1996)).  We do not focus on a particular 

mechanism.  Instead, if there is a poverty trap we argue that the GDP per capita, y, of a country 

can be written as  

  1
*
1 )( uxyy +=  with probability )(xp  

       (1) 

2
*
2 )( uxyy +=  with probability )(1 xp−  

 

where  y1*(x) and y2*(x) represent two possible steady state levels of income for the country, 

given its exogenous characteristics, x.  The disturbance terms, u1 and u2, represent short run 

deviations from steady state.  Note that we allow the probability of being in a particular steady 

state to depend on x.  

 One way of justifying equation (1) is to think of economic development as a 

multidimensional stochastic dynamical system.  If the deterministic part of the system is non-

linear it can give rise to multiple steady states.  If most stochastic shocks are small, the countries 

will spend most of their time in the neighborhood of one of these equilibria. However, rare large 

shocks can move a country between equilibria, and which equilibrium a country is in at a 

particular point in time is random and depends on the history of these large shocks.  This 

interpretation of equation (1) is set out more formally in appendix 1. 

 It is natural to thinks of one of the equilibria in equation (1) as a high income equilibrium 

while the other is a low income poverty trap.  The model set out in appendix 1 implies that 

countries can �jump� from the poverty trap to a high income level and vice versa, so that the 

probability p(x) represents the proportion of time a country is in equilibrium 1.   An alternative 
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way of thinking about equation (1) would be to assume that all countries start in the low level 

equilibrium and, at different times, jump irreversibly to the high level equilibrium.  In this case, 

equation (1) represents a snapshot of a disequilibrium state and p(x) is the probability of a 

country with characteristics x still being in the low level equilibrium at the time of the snapshot.  

We do not try to distinguish between these two interpretations of equation (1) here since this 

would require an analysis of the dynamics of the system. 

 We can estimate the model of multiple equilibria set out in (1) and then test it against the 

model of a single steady state given by  

uxyy += )(*    (2) 

A key issue is what variables should be included as exogenous in the vector x.  As is 

made clear in appendix 1, we must be careful not to include any variables that may be 

endogenous.   Many of the variables often used in growth models, such as the savings rate, the 

school enrollment rate, the population growth rates, and even policy variables such as tax rates 

and openness to trade, may themselves be endogenously determined.  Including such variables 

may give the impression of a unique equilibrium relationship when in reality they are a function 

of the equilibrium being observed. �Fundamental forces� must be characteristics that determine a 

country�s economic performance, but are not determined by it.   

 Landes (1998) and Diamond (1997) emphasize the role of geography and culture as 

underlying factors that historically have determined the pace of economic development. Sachs 

and Warner (1997) and Gallup and Sachs and Mellinger (1999) have argued that geography has a 

significant impact on modern economic growth, while Hall and Jones (1999) use geography as 

an exogenous instrument in their estimation. On the other hand, Easterly and Levine (1997)  
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argue that ethnic fragmentation (the opposite of our homogeneity measure) is a significant factor 

in Africa�s growth tragedy.  

In what follows we concentrate on physical geography as exogenous characteristics of a 

country that affects its equilibrium income level. We do not use cultural variables (with the 

exception of homogeneity of the population, which we find not to be significant).  This is not a 

rejection of the role of culture in development. The problem with using culture as a determinant 

of income levels is that there are good arguments that cultural variables, such as religious 

affiliation, are endogenous in the long run and that their inclusion would bias our results. Note 

that cultural variables may be appropriate in a short or medium run analysis when they can be 

regarded as fixed in the time period under consideration.  

Even in the case of geography, exogeneity may be called into question in the long run.  

While the physical geography of a given land mass may be fairly exogenous, exogeneity may fail 

because a country�s borders may change.  For example, both the United States and Russia 

underwent large expansions in the 18th and 19th centuries, while in this century the Austro-

Hungarian and Ottoman empires disintegrated.  Alesina and Spolagre (1997) and Bolton and 

Roland (1997) have suggested socio�economic mechanisms that lead to the endogenous 

formation of nations. If we take a long enough time frame, the composition of countries cannot 

be regarded as exogenous. We think of the time period under analysis here as being long run but 

with country borders exogenously given.  That is, we have an implicit assumption that border 

changes happen relatively slowly with respect to the mechanisms that determine long run income 

levels.  

Table 1 gives definitions, sources, and some summary statistics on the data we use.  

Table 2 shows a correlation matrix for our exogenous variables and income per capita; among 
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our variables, latitude has the highest correlation with income per capita.  We can think of 

latitude as a catchall for a variety of geographical indicators; it has a high degree of correlation 

with temperature and rainfall levels, as well as with their variability.1  While we begin by using 

latitude as our exogenous variable, we eventually proceed to a richer model allowing the 

different geographical variables we have identified to have independent roles. 

 

3.  Estimation and Testing 

Given our choices of exogenous factors, we wish to estimate the unique relationship 

given by equation (2) and the multiple equilibrium relationship in equation (1) and test between 

them.  To make matters simple, we assume that the functions being estimated are linear and that 

the disturbance terms around the steady states in equations (1) and (2) are independent and 

normally distributed2, though we allow each relationship to have its own variance.   

While equation (2) is easy to estimate (we simply use ordinary least squares), the system 

of equations (1) poses some problems.  The likelihood function corresponding to equation (1) is  
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which says that with probability p(x), GDP per capita, y, is distributed normally with standard 

deviation s1 around x1β , while with probability 1-p(x) it is distributed normally with standard 

deviation s2 around x2β . 

We can estimate the coefficients in (3) using maximum likelihood methods, but there are 

several difficulties with this approach. In addition to problems of estimation, there are  

difficulties in constructing valid hypothesis tests.  These problems are discussed in detail in 

appendix 2.  Our approach to overcome these problems of estimation and testing is to use the 
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techniques suggested Feng and McCulloch (1994, 1996).  The most important point to note is 

that we must place a lower bound on the variance of the disturbances in each equilibrium 

relationship in (1).  This rules out the case where one equilibrium relationship simply gives exact 

outcomes, without any error, for a small number of countries while the other fits the rest of the 

data.   This restriction is necessary for estimation purposes, but it also seems a plausible 

restriction on what we mean by multiple equilibria.  We wish to find multiple stable steady 

states, around which countries congregate, not just argue that adding a small number of dummy 

variables, that exactly predict a number of outliers, improves the fit of the model. 

In addition to the theoretical and conceptual problems of estimation and testing, the  

nonlinear maximum-likelihood grid search method we use for estimation, and Monte Carlo 

methods we use for testing, are sometimes sensitive to the numerical procedures employed.  In 

appendix 3 we report the exact numerical methods that were used, to allow replication of our 

results, and we discuss the robustness of our results to alternative numerical procedures. 

Our dependent variable is GDP per capita in 1985 from the Penn World Tables 5.6 (see 

Summers and Heston (1991)).  For our purposes the year used is of little significance; using 1985 

gives us the most complete dataset, with all 152 countries having data available for this year. 

Table 3 reports estimates and tests the simple �twin peaks� model. The first column of 

table 3 is a regression of the log of 1985 GDP per capita on a constant. Log income per capita in 

1985 had an average value of around 7.9, with a standard deviation of about 1.  Column (2) of 

table 3 reports the results of fitting a model with two steady states using the maximum likelihood 

methods described in the appendices.  The results suggest that about 85% of the countries in our 

sample are clustered around a low level poverty trap (regime I), though the standard deviation of 

these countries around this low level of income is quite large.  On the other hand, 15% of 
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countries are clustered much more tightly around a high level equilibrium (regime II). This 

clearly matches the �twin peaks� in  described by Quah (1996). 

The last row of table 3 gives likelihood ratio test of the multiple equilibria model against 

a single relationship.  Due to the failure of the standard regularity conditions (as discussed in 

appendix 2) this likelihood ratio test does not have the usual chi-squared asymptotic distribution.  

Instead, we give the 5% critical value for the test, calculated by the Monte Carlo method 

explained in appendix 3 and reported in table 7.  As already found by  Bianchi (1997) and  Paap 

and van Dijk (1998) using similar techniques, the test decisively rejects the single steady state 

model in favor of the alternative that countries are clustered around two distinct steady states. 

The key question is whether or not the addition of extra exogenous explanatory variables 

makes these �multiple equilibria� disappear.   We begin by introducing latitude as a proxy for 

climate.  In table 4 we report the result of adding absolute latitude to the model as an exogenous 

variable.  In the model with a single regime (column (1)) we find that income per capita is 

significantly greater at higher latitudes.  On its own, latitude can explain about 40% of the 

variation in income levels across countries.  We then  estimate the two regime model (column 

(2)), assuming for now that the steady state level of income varies with latitude but that the 

probability of each regime is the same for every country.  We again find a low level steady state 

and a high level steady state.  In both these equilibria income level rises with latitude, though in 

the low level steady state the sensitivity to latitude is twice as great. However, for countries at 

high latitudes the two steady states are very close together, while in the tropics the two steady 

states are very far apart. 

In column (2) we are assuming that the probability of each steady state is fixed; every 

country in this model has a 70% chance of being in the low level equilibrium and a 30% chance 
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of being in the high level equilibrium. While this two regime model fits the data better than a 

single regime, the improvement in the log likelihood is not significant at the 5% significance 

level. 

Therefore we cannot reject that income depends on a �fundamental force� in the shape of 

latitude.  However, the results in column (2) of table 4 depend on the unrealistic assumption that 

the probability of each regime is the same across countries. Equatorial countries may not only 

have lower income when in the poverty trap, they may also find it harder to escape from the trap 

than countries with temperate zone.  In column (3) of table 4 we report results where we allow 

the probability of each regime to vary with latitude.   The functional form we use is 

Probability )()( 0 latitudepCIregime λ+=  (4) 

where C is the cumulative normal distribution (ensuring the probability lies between zero and 

one) and p0 and λ are parameters to be estimated.  

The results in column (3) of table 4 are shown graphically in figure 1, where we plot 

income per capita against latitude.  Again, we have a low level regime (regime I) where the level 

of income is very sensitive to latitude.  We also have a high level steady state (regime II), but in 

this regime the level of income seems  independent of latitude, since the latitude variable is not 

statistically significant.  The probability of being in the low level steady state is high for 

countries at the equator but falls with latitude.  In fact, the probability of being in the low level 

regime is close to one at the equator, but declines to around 25% at latitude 600, which 

corresponds to Northern Europe.  The improvement in fit (as measured by the log-likelihood) 

when we allow the regime probability to vary with latitude is quite large and we can reject the 

model of a single regime against the alternative of two regimes with the probability of each 

regime varying with latitude.  
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Latitude is really only a proxy for some underlying geographical variables. We wish to 

introduce our geographical variables directly.  Unfortunately, our statistical methodology is not 

very good at handling a large number of independent variables � a large number of degrees of 

freedom tends to push the estimates  towards the boundary where some explanatory variables 

become �dummy variables� and are used to explain perfectly a small number of countries.     In 

table 5 we report simple OLS estimates in which we explain income per capita with a range of 

exogenous variables.  We begin with all our variables in column (1); parsing down by sequential 

elimination of variables that are not statistically significant at the 5% levels leaves the four 

geographical variables whose coefficients are reported in column (2): percentage of land within 

100km of the coast, log of maximum average monthly temperature, log of average monthly 

rainfall, and the log of the standard deviation of rainfall month to month over the year.  These 

four variables account for over 60% of the variation in income per capita.  The richer countries 

tend to be cool and coastal, with high but steady rainfall over the year.  Note that favorable 

geography tends to increase a country�s the income level, but the simple O.L.S. estimates may be 

a combination of a rising equilibrium level of income as geography improves and a higher 

chance of jumping to a high level equilibrium with better geography.   

Having selected our exogenous variables, we could follow our theoretical framework and 

estimate a two regime model in which all the parameters of the model vary across regimes, and 

the probability of being in a regime depends on all the geographical variables.  However, when 

we try this the maximum likelihood estimate again converges to the boundary where one regime 

has a minimal error term - the model has too many parameters relative to the number of countries 

being explained; it always goes to a �dummy variable� solution where one regime is used to 

model a group of countries exactly. 
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To avoid this problem, we impose the restriction that in the high level equilibrium the 

level of income is fixed and is independent of geography.   In addition, we assume that the 

relative coefficients on our geography variables are the same in low level regime and when 

determining the regime probability.3  The model we actually estimate is:  

∑ ++=
=

4

1
11 )()(

j
iijiji xpproabilitywithxay εβ  

(5) 
)(122 iii xpyprobabilitwithay −+= ε   

 

where ))(()(
4

1
0 ∑+=

=j
jiji xpCxp βλ  

where i represents a country, j a geographical variable and C is again the cumulative normal 

distribution.  These restrictions clearly make it more difficult for the multiple equilibrium model 

to perform well as compared with completely unrestricted estimation.  The results of this 

estimation are shown in column (2) of table 6. The estimates of the effect of geography in the 

low level equilibrium are very similar to those in the simple OLS model reported in column (1).  

However, the likelihood ratio test again rejects the model in column (1), with a single 

relationship, in favor of our multiple equilibrium model. This multiple equilibrium model has a 

high level equilibrium which is independent of geography (given by the regime II constant), and 

a low level equilibrium which is very sensitive to geography.  Good geography not only 

improves a country�s steady state income in the low level equilibrium, it also raises the 

probability that a country is in the high level equilibrium.  The probability of being in the high 

level equilibrium improves slowly with improvements in geography.  For a wide range of 

countries there is a positive probability of being in each equilibrium and this model has real 

multiple equilibria. 
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5. Conclusion 

We have found empirical evidence of the existence of a poverty trap.  There appears to be 

a high level equilibrium that is the same for all countries.  In the low level equilibrium, cool 

coastal countries, with high year-round rainfall, have high incomes.  Countries with favorable 

geography have quite high income levels in the low level equilibrium and they find it relatively 

easy to jump to the high level equilibrium.  On the other hand, hot landlocked countries, with 

low or very seasonal rainfall, have very low levels of income in the low level steady state.  In 

addition, it is very hard for them to break out of this poverty trap and reach the high level 

equilibrium.  Geography matters. But we reject simple geographical determinism in favor of a 

multiple equilibrium model.  

  While we find evidence of multiple equilibria, we have nothing to say about why these 

multiple equilibria come about, or how countries can make the transition from one equilibrium to 

the other.  To do this requires a more structural, dynamic, model that allows for the interaction 

between the endogenous social and economic forces that determine human development and 

economic growth. 
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Appendix 1 

We assume that the economic system comprises a vector of exogenous variables, x, and 

endogenous variables, z. The discussion of which variables should be considered exogenous and 

which endogenous is postponed until section 3. The evolution of the endogenous variables at 

time t is assumed to be given by 

ttt xzfz ε+= − ),( 1  (1.1) 

where longer lags can be incorporated by redefining lagged variables as current variables (at the 

expense of increasing the size of the parameter space).  The steady states, or equilibria, of the 

deterministic part of this system are given by 

*})*,(:*{)( zxzfzxg t ==  (1.2) 

In general, equation (2) may give rise to many different steady states. However, if the function f 

is linear we can write the system as 

ttt BxAzz ε++= −1  (1.3) 

and, if A is invertible, the steady state is unique and is given by 

BxAIz 1)(* −−=  (1.4) 

and provided the matrix A has a maximal eigenvalue less than one, the steady state is stable and 

we can write  

tt uxzz += )(*  where ∑=
∞

=
−

0s
st

s
t Au ε  (1.5) 

In a linear system we either have one steady state, or if A is not invertible, no steady states or an 

infinite continuum of steady states. In order to generate distinct, isolated, steady states we require 

the function f to be nonlinear. 
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 One approach to modeling multiple steady states would be to estimate a relationship like 

(1.1) directly, allowing for non-linearities, and solve equation (1.2) for its steady states. This 

could be done using a system of cross-country regressions (for example, as a vector 

autoregression), explaining the evolution of all the endogenous variables in the development 

process. The disadvantage of this approach is that it requires the construction of a complete 

model of economic and social development, a daunting undertaking.  Instead of estimating the 

full model, it is possible to take a short cut and estimate only the growth equation for income per 

capita.  However this may be misleading.  It is easy to construct examples in which the single 

equation in (1.1) that generates economic growth is linear, but non-linearities elsewhere in the 

system generate multiple equilibria, including multiple steady state values of the income level.  

Similarly, if non-linearities are found in the income growth equation, they must be combined 

with other parts of the system to determine if there are multiple equilibria. 

    This gives us an incentive to find alternative methods of testing for multiple equilibria 

that do not require estimation of the entire system.  One method is to note that the random 

dynamical system (1.1) represents the short term evolution of the system and we can consider its 

behavior on longer time scales.  Consider a non-linear model for which the deterministic part of 

equation (1.1) generates multiple steady states. Further, let us simplify matters by assuming that, 

for each level of the exogenous variables, the set of locally stable attractors of the deterministic 

part of equation (1.1) consists of at most two steady states.  This means that for almost all initial 

conditions the deterministic part of the system converges to one of these steady states.  

 If the noise in equation (1.1) in small, we can image that the system will converge to a 

steady state and then oscillate in the neighborhood of that steady state. If the noise is sufficiently 

small, the oscillations near the steady state can be confined to a neighborhood in which the 
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dynamical system is approximately linear, and we can apply equations (1.3), (1.4) and (1.5) to 

model the local behavior of the system. Hence we can write 

tt uxzz 1
*
1 )( +=    if )(10 xZz ∈  

(1.6) 
tt uxzz 2

*
2 )( +=   if )(20 xZz ∈  

 
If the system starts at time zero in the basin of attraction Z1(x) it converges to the steady state 

z2
*(x) and at time t will large be in the neighborhood of this steady state. Similarly, if it starts in 

the basin of attraction Z2(x) it converges to z2
*(x).  The boundary between these two basins of 

attraction is a unstable separatrix; eventually the random noise in the system will force the model 

into one of the basins and lead to convergence to a steady state.  

The system (1.6) provides a feasible method of estimation, however, while the two steady 

states are functions of the exogenous variables, which basin of attraction the initial condition lies 

in depends on all the endogenous variables in the vector of initial conditions.  Equation (6) is 

essentially a model of convergence clubs (subtracting z0 from both sides of the equations in (6) 

gives a growth model)  an economy converges to its local �club,� which �club� it is a member of 

depending on both its exogenous factors and its initial position.  Again, however, in this 

approach we have to model all the endogenous variables in the development process as part of its 

�initial position� in order to decide to which club a country belongs.  

 We can view equation (1.6) as the medium run behavior of the model. Most of the time 

the shocks to the system are small, so that economies converge to the steady state in whose basin 

of attraction they lie.  Now suppose at longer time scales large shocks may occur.  We can regard 

the system (1.6) as a two state process.   The system is usually close to one steady state or the 

other but when a large shock occurs it is possible that the endogenous variables in the model 

jump out of one basin of attraction and into the other, after which they converge to the 
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neighborhood of the new steady state.  After a sufficiently long period of time the system 

becomes ergodic and losses its dependence on initial conditions; we can describe long run 

behavior as a stationary equilibrium probability distribution over neighborhoods of the two 

states.   

 These intuitive ideas can easily be formalized. Equation (1.1) gives rise to a random 

dynamical system and can be regarded as a Markov process, mapping points in the state space of 

the endogenous variables into probability measures over that state space. Under some technical 

regularity conditions4, after sufficient time has passed, the empirical cross section distribution of 

independent observations drawn from such models approximates the invariant probability 

measure on the state space. Kifer (1988) shows that, provided large shocks are sufficiently rare 

in the error term in (1.1), the invariant probability measure puts almost all its weight in the 

neighborhoods of the attractors (i.e. the two stable steady states) of the deterministic part of the 

system.   

The invariant measure which describes the long run behavior of the system is an  

equilibrium probability distribution which depends on the transition probabilities of moving from 

one steady state to the other; if a steady state has a relatively large basin of attraction it will be 

more difficult to exit, and it will have a higher weight in the stationary distribution. The size of 

the basin of attraction may depend on the exogenous variables as shown in (1.6); this implies the 

long run probability of the system being in a particular steady state also depends on the 

exogenous variables.   Formally, this gives rise to the �reduced form� model 

tt uxzz 1
*
1 )( +=   with probability )(xp  

(1.7) 
tt uxzz 2

*
2 )( +=   with probability )(1 xp−  

 



 21  

where both the steady states, and the probability of being in each steady state, depend on the 

exogenous variables. The advantage of this approach is that in the very long run, the endogenous 

variables can be written as depending on the exogenous variables alone. 

 Clearly, all three approaches to the problem are valid under the assumptions set out 

above.  However, estimating the full multidimensional development process in the short run 

dynamic relationship does not appear to be a feasible proposition at present.  Estimating a model 

with  �convergence clubs� is well established in the literature.  However, our approach here will 

be to use the framework set out in (1.7).  Note that compared to (1.6) equation (1.7) ignores the 

information contained in �initial conditions,� in practice lagged values of the endogenous 

variables.  The advantage we achieve by doing this is that we do not have to specify the 

(potentially very large) set of endogenous variables in the model and estimate the boundary 

between the two steady states.    

 While equation (1.7) specifies a system of equations, determining all the endogenous 

variables, we can simply pick out the income per capita (y)  to give the model 

y
tt uxyy 1

*
1 )( +=  with probability if )(xp  

(1.8) 
y
tt uxyy 2

*
2 )( +=  with probability )(1 xp−  

 

 Equation (1.8) corresponds with equation (1) in the main text.  

 

Appendix 2 

We wish to estimate equation (1) using maximum likelihood techniques.  However, if we allow 

one of the relationships to collapse, to completely explain a small set of data points while the 

variance of its error term goes to zero, the model�s usual continuous probability density function 

collapses to a discrete atom of probability, causing the likelihood function to become unbounded.  



 22  

Essentially, this means that the m parameters in one of the relationships in (8) are used to 

completely explain m data points, without noise, while the other relationship is fitted to the rest 

of the data. If we estimate (1) with no constraint on the error variances, the maximum likelihood 

estimator will always converge to this boundary.   

However, this is really a model of a single relationship, with m special cases being 

explained in ad hoc way.  It is similar to including a number of dummy variables to explain 

outliers from a particular relationship.  Conceptually, our notion of multiple equilibria is that 

there are more than one basin of attraction, with a substantial number of countries lying in each 

basin.  If we wish to estimate such a model we must place a lower bound on standard deviation 

of the regime disturbances in (1) to rule out this �dummy variables� estimate.         

Imposing such a constraint allows us to estimate the relationship (1).  We really want to 

find a greatest local maximum that corresponds to non-zero variance of the error terms in (1). In 

practice, the likelihood surface is quite irregular even away from the boundary, with multiple 

local maxima.  To try to ensure convergence to the greatest local maximum we therefore 

undertake a grid search over initial starting values.  This is discussed in more detail in appendix 

3. 

Having found the maximum likelihood estimate of equation (1), we can construct the 

likelihood ratio  statistic  �2(log(λr /λu)), where λr is the likelihood of the restricted (one regime) 

model and λu is the likelihood of the unrestricted (two regime) model.  The two models are 

nested, but the parameter restrictions imposed by the hypothesis of a single relationship are not 

straightforward. Under the null of a single relationship, the true parameters in equation (1) lie on 

the boundary of the parameter space and some the variables in the model become irrelevant, 

making their associated parameters unidentified.  It follows that the model fails the usual 
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regularity conditions and the likelihood ratio statistic will not have the usual chi-squared 

asymptotic distribution.   

We can overcome this problem by generating appropriate critical values for the 

likelihood ratio test via Monte Carlo methods (as in, for example, McLachan (1987)). This 

involves a Monte Carlo study, using random data generated from the estimated relationship 

given by equation (2).  Using this data we can calculate critical values of the likelihood ratio 

statistic under the null hypothesis that the estimated model with one relationship is the true 

model.  In doing this we must be careful to use the same approach in estimating the two regime 

model in the Monte Carlo study as used in our actual estimator. In particular, as pointed out by 

Feng and McCulloch (1994), the critical values of the likelihood ratio test depend on the cut-off 

used to constrain the minimum allowable regime variance in the two regime model.  

For each value of the cut-off variance we can construct a valid test at the appropriate 

significance level, but the simulations in Feng and McCulloch (1996) suggest that imposing a 

higher cut-off can substantially increase the power of the test.  Intuitively, a very low cutoff 

allows the estimated model to approach the boundary where we have the �dummy variable� 

model, and produces a very high log likelihood for the two-regime model, whatever the true 

underlying structure of the data.  This points towards using a relatively high cut-off for the 

minimal variance allowed in the two regime model, though we do not wish to make it so large as 

to exclude the �true� relationship. In our estimation we limit the standard deviation of each 

regime to be at least 0.05 (with income measured in natural logs) which corresponds to countries 

lying around their steady state GDP per capita with a standard error of at least 5%. We also 

experimented with limits of 0.1 and 0.01 (corresponding to standard deviations in income level 

of 10% and 1% respectively) but found that tightening the constraint sometimes led us to exclude 
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the previously found maximum, while weakening the constraint never produced greater local 

maxima but instead led the maximum likelihood estimate to converge to the boundary. 

In addition to our constraint on the standard deviation of each regime, the probability of 

each regime must lie between zero and one.  To ensure that these constraints hold, we actually 

replace the probabilities and standard errors in (3) with 

)()( 0 xpCxp λ+=  

)(95.005.0 ii Cs σ+=  

where C is the cumulative normal distribution.  This constrains the probability of regime I to lie 

between zero and one while the standard deviation of each regime is between 0.05 and one.  The 

upper bound on the standard deviations of the regimes is not actually required, but we find that, 

in practice, imposing such a bound does not affect the estimates.  In reporting the results we 

report estimates of derived probabilities and standard deviations with standard errors calculated 

by the delta method. 

 

 

Appendix 3 

 In order to find the maximum likelihood estimate we undertake a grid search over initial 

conditions. Experimentation showed that the crucial parameters to search over are the probability 

of each regime, the standard deviation of the two regimes, and the initial gap between the 

intercepts of the two regimes.  For the other parameters we use as initial conditions the estimates 

from the single regime model. The starting points for the two intercepts were positioned to be 

equally spaced around the intercept of the single regime model.  The starting values (with 

number of options in brackets) used were: 
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intercept difference (3) d: 0.5, 1, 2. 

standard error (5)  iσ : �1.282, �0.524, 0, 0.524, 1.282. 

probability intercept (7) p0 : -7, �1.282, �0.524, 0, 0.524, 1.282, 7. 

probability slope (3)  λ : -1, 0, 1. 

 

Note that the initial starting conditions for the two regimes are symmetrical, so there is no gain 

from allowing a negative intercept differential in the starting conditions.  

In the Monte Carlo study we first generated random data points based on the single 

regime model (the null hypothesis) assuming a normal distribution of errors, with the estimated 

standard deviation, around the relationship.  Then, using the same grid search program as above, 

we find the maximum likelihood estimate of the two regime model and calculate the likelihood 

ratio statistic, testing the two regime model against a single regime.  Repeating this process 500 

times using randomly generated data gives us the empirical distribution of the likelihood ratio 

statistic under the null. 
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Table 2 
Correlations 

 GDP 
per 
capita 

latitude 
 

log 
rainfall 
 

log s.d. 
rainfall 

log max 
temp 

log s.d. 
max 
temp 

% land 
coastal 

land 
locked 

homoge
neity 

GDP per 
capita 

1.000         

latitude 
 

0.636 1.000        

log rainfall 
 

-0.241 -0.397 1.000       

log s.d. 
rainfall 

-0.621 -0.628 0.743 1.000      

log max temp -0.537 -0.812 0.273 0.538 1.000     

log s.d. max 
temp 

0.414 0.812 -0.557 -0.582 -0.597 1.000    

% land 
coastal 

0.347 0.012 0.207 0.055 0.087 -0.219 1.000   

land locked 
 

-0.232 0.066 -0.009 0.048 -0.110 0.127 -0.479 1.000  

homogeneity 0.546 0.501 -0.248 -0.425 -0.386 0.306 0.415 -0.193 1.000 

 



  

 Table 3 
�Twin Peaks�  

 
Dependent Variable: Log GDP per capita 1985, 152 observations. 
 Single Regime Two Regimes 

 
  Fixed Regime 

Probabilities 
  Regime I Regime II 
Constant 
 
 

7.891 
(0.084) 

7.612 
(0.097) 

9.411 
(0.052)  

Standard deviation  of 
regime disturbance 
 

1.041 
 

0.876 0.180 

Probability of regime I 
 
 

 0.845 
(0.043) 

R2 0  
Log likelihood -221.4 -208.7 
Likelihood ratio test of two 
regimes vs. one regime 
[5% critical value] 

26.0 
[11.6] 

Standard deviation of the regime disturbance constrained to exceed 0.05. 



  

 
Table 4 

Latitude and Income Level 
 
Dependent Variable: Log GDP per capita 1985, 152 observations. 
 Single Regime 

 
 

Two Regimes 
 

Two Regimes 
 

  Fixed Regime 
Probabilities 

Regime Probabilities Vary 
with Latitude 

  Regime I Regime II Regime I Regime II 

Constant 
 
 

6.922 
(0.118) 

6.392 
(0.178) 

8.136 
(0.331) 

6.979 
(0.137) 

9.261 
(0.145) 

Latitude 
 
 

0.041 
(0.003) 

0.049 
(0.005) 

0.025 
(0.010) 

0.035 
(0.007) 

0.003 
(0.003) 

Standard deviation of 
regime disturbance 
 

0.806 0.574 0.538 0.809 0.102 

Probability I Intercept 
 
 
Effect of latitude on 
probability of regime I 
 
Probability of regime I 
at equator. 
 
Probability of regime I 
at latitude 60. 
 
 

 0.532 
(0.328) 

 
 
 
 

0.703 
(0.114) 

 
0.703 

(0.114) 

3.588 
(0.943) 

 
-0.071 
(0.022) 

 
1.000 

(0.001) 
 

0.255 
(0.158) 

R2 0.401   
Log likelihood -181.9 -175.1 -166.9 
Likelihood ratio test of two 
regimes vs. single regime 
[5% critical value] 

 13.8 
[17.9] 

30.2 
[21.8] 

Standard deviation of the regime disturbance constrained to exceed 0.05. 



  

Table 5 
Geography and Income Level: OLS Estimates 

 
Dependent Variable: Log GDP per capita 1985. 
Constant 
 
 

8.199 
(1.106) 

10.237 
(0.867) 

Log Rainfall 
 
 

0.423 
(0.133) 

0.387 
(0.139) 

Log Standard Deviation of 
Rainfall 
 

-0.652 
(0.114) 

-0.724 
(0.125) 

Log Maximum 
Temperature 
 

-0.277 
(0.312) 

-0.734 
(0.285) 

Percent of Land within 
100km of the coast 
 

0.696 
(0.229) 

0.805 
(0.172) 

Log of Standard Deviation 
of Maximum Temperature 

0.083 
(0.140) 

 

 

Landlocked -0.249 
(0.194) 

 

 

Homogeneity  0.321 
(0.325) 

 

 

Latitude 
 
 

0.010 
(0.011) 

 

R2 0.663 
 

0.594 

N 102 115 

Log likelihood -92.14 -112.65 

 



  

Table 6 
Geography and Income Level 

Dependent Variable: Log GDP per capita 1985, 115 observations. 
 Single Regime 

 
 

Two Regimes: 
Regime II independent 

of geography 
Regime I Constant 
 
 

10.237 
(0.867) 

10.213 
(0.479) 

Regime II Constant 
 
 

 9.448 
(0.034) 

Log Rainfall 
 
 

0.387 
(0.139) 

0.334 
(0.120) 

Log Standard Deviation of 
Rainfall 
 

-0.724 
(0.125) 

-0.639 
(0.136) 

Log Maximum 
Temperature 
 

-0.734 
(0.285) 

-0.749 
(0.152) 

Percent of Land within 
100km of the coast 
 

0.805 
(0.172) 

0.801 
(0.163) 

Standard deviation of 
regime I disturbance 
 

0.659 0.652 

Standard deviation of 
regime II disturbance 
 

 0.092 

Probability I Intercept 
( 0p ) 
 
Effect of geography on 
probability of regime I 
( λ ) 

 -2.477 
(1.186) 

 
-2.034 
(0.711) 

R2 0.594  
Log likelihood -112.7 -100.9 
Likelihood ratio test of 
two regimes vs. single 
regime [5% critical value] 

 23.6 
[10.1] 

Standard deviation of the regime disturbance constrained to exceed 0.05. 



  

Table 7 
Critical Values for the Likelihood Ratio Test of Two Regimes Versus One Regime 

 
Income Level 
Depends on: 

Intercept  
 

Latitude  
 

Latitude  
 

Geography: 
Regime II 
Independent 
of Geography 
 

Regime Probabilities Fixed Regime 
Probabilities 

Fixed Regime 
Probabilities 

Regime 
Probabilities 
Vary with 
Latitude 

Regime 
Probabilities 
Vary with 
Geography 

Constraint on 
Regime Disturbance 

Standard 
Deviation > 
0.05 

Standard 
Deviation > 
0.05 

Standard 
Deviation > 
0.05 
 

Standard 
Deviation > 
0.05 
 

N 
 

152 152 152 115 

 
Significance Level 

    

10% 10.14 15.92 19.54 7.76 
5 % 11.66 17.94 21.76 10.05 
1 % 15.13 21.14 26.51 15.53 

Critical values based on the empirical distribution of the likelihood ratio statistic under the null of 
one regime (500 repetitions). 



  

Figure 1
Latitude and Income Per capita
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Endnotes 
                                                           
1 Using a principal components analysis of the geographic variables produces a first principal 

component that captures about 46% of the geographical variation across countries, but does 

markedly less well than latitude in explaining income levels.  

2 It is tempting to take a more general approach, and not specify the distribution of the error terms.  

However, a model with distributions around two steady states is observationally equivalent to one 

with a bimodal distribution around a single steady state.  In order to identify the two models we 

have to impose some distributional assumptions on the distribution of the error terms. 

3 Extending the model to allow geography to affect a country�s income level in the high�level 

equilibrium, but keeping the relative weights on geography the same across the two equilibria, 

produced an insignificant coefficient on geography in the high level equilibrium.   

4 These require that the randomness in the system, the mapping from the state space into 

probability measures, be continuous in the total variation norm, and tight, so that the sequence of 

outcomes generated by the system remains in a bounded area with probability one.  


