NBER WORKING PAPER SERIES

ECONOMIC PERSPECTIVES ON SOFTWARE DESIGN:
PC OPERATING SYSTEMS AND PLATFORMS

Steven J. Davis
Jack MacCrisken
Kevin M. Murphy

Working Paper 8411
http://www.nber.org/papers/w8411

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
August 2001

Available for download at http://gsbwww.uchicago.edu/fac/steven.davis/research. We have benefited greatly from
the assistance of many persons in preparing this study. We thank James Allchin, Hillel Cooperman, Paul Maritz
and Todd Nielsen of Microsoft Corporation for taking the time to speak with us about software design issues
generally and the evolution of the PC operating system in particular. We thank David Evans, Albert Nichols, Peter
Passell, Bernard Reddy and Lynn Shisido-Topel for many helpful comments. Passell also provided valuable
editorial assistance, and Shishido-Topel and Grant Govertsen provided much able research assistance. We
gratefully acknowledge research support from Microsoft Corporation. The views expressed herein are those of the
authors and not necessarily those of the National Bureau of Economic Research.

© 2001 by Steven J. Davis, Jack MacCrisken and Kevin M. Murphy. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including ©
notice, is given to the source.

Economic Perspectives on Software Design:

PC Operating Systems and Platforms

Steven J. Davis, Jack MacCrisken and Kevin M. Murphy
NBER Working Paper No. 8411

August 2001

JEL No. L86, L13, L41

ABSTRACT

Improvements in the software that provides hardware management, user interface and platform
functions have played a central role in the growth and transformation of the personal computer (PC)
industry. Several forces shape the design of these “operating system” products and propel their evolution
over time, including:

A. The need to efficiently manage the interacting components of PC systems so as to keep pace with
rapid advances in computer technologies, simplify computer use and facilitate the development
of applications software.

B. The need to maintain compatibility with existing applications while preserving the
flexibility to incorporate additional functions that support new applications.

C. The desire to economize on customer support costs and assign clear responsibility for
making the interacting components of the PC work together.

D. The desire to bundle multiple software features into a single package so as to more

effectively meet the demand for complementary applications or reduce the diversity in
product valuations among consumers.
We analyze these forces and the factors that determine whether and when new features and functions are
included in commercial operating system products. We also explain how this integration and bundling
spurs growth in the PC industry and fosters innovation.

Steven J. Davis Jack MacCrisken
University of Chicago Graduate School of Business Chicago Partners, LLC
1101 East 58" Street 516 Greer Road
Chicago, IL 60637, Palo Alto, CA 94303
Chicago Partners, LLC MacCrisken@aol.com
and NBER

sid@gsbsjd.uchicago.edu

Kevin M. Murphy

University of Chicago Graduate School of Business
1101 East 58" Street

Chicago, IL 60637,

Chicago Partners, LLC

and NBER

Murphy@gsbkma.uchicago.edu

1. Introduction

This paper considers several economic forces that shape the design of software.
We focus on “operating system” software that provides an applications platform and user
interface for personal computers, and which is often combined with basic functions that
manage the computer hardware. Prominent examples include the Apple Mac OS, IBM
0S/2 and Microsoft Windows. Much of our analysis also applies to the design of
software applications and other software that coordinate many interacting components of
a larger system.

One reason to study the economic forces that shape the design and evolution of
operating system products is to better understand the spectacular growth and productivity
performance of the personal computer industry. Over the last two decades, the PC has
evolved from an expensive and clunky device with a narrow range of applications into an
inexpensive technological marvel used by hundreds of millions. The PC has become
ubiquitous in data storage, information processing, communication and entertainment
activities at the work place and in the home. It is now a major business and consumer
product and a key complement to many types of creative activity. Improvements in
operating system software, broadly defined, played a major role in this transformation.

A second reason is to build a sounder analytic basis for the treatment of product
design issues under antitrust law. Design features of Microsoft Windows were key issues
in United States v. Microsoft Corporation, the most prominent antitrust case in a

generation.' According to the government, Microsoft engaged in various anticompetitive

' Civil Action 98-1232 (D.D.C. 1998).

actions, including the tying of its web browser to Windows. The presiding trial judge
concurred, ordering that Microsoft be split in two and placing tight restrictions on the
design of their respective software products.” We do not explicitly assess legal tying
doctrine, but our analysis suggests that product integration and bundling are often in
consumers’ interests.’

Third, software is inherently malleable in ways that bring product design issues to
the fore. Software code can be expanded, modified and combined to add functionality,
bundle features and redraw the boundaries between product categories. Moreover, major
and minor design changes in software products often have minimal impact on marginal
costs. Extra features do not alter the (extremely low) cost of stamping a CD-ROM that
contains the code for a software product. In addition, consumers can easily dispose of
many unwanted features in software: the relevant code can reside unused on a computer
disk indefinitely without significant cost. All told, these characteristics lead to an
extraordinary degree of design flexibility in software.

Fourth, and not coincidentally, competition in many software products is

exhibited through innovation rather than price.* Thus the consumer benefits from

2 As of this writing, the remedy is stayed, pending a review of the case by an appellate court. The District
Court’s Findings of Fact (11/5/1999), Conclusions of Law and Final Order (4/13/2000) and Final Judgment
(6/7/2000) in U.S. v. Microsoft are available at http://www.usdoj.gov/atr/cases/ms_index.htm. Economic
analyses of the case include Economides (2000), Evans, Nichols and Schmalensee (2001), Fisher and
Rubinfeld (2000), Gilbert and Katz (2001), Klein (2001) and Whinston (2001).

3 U.S. v. Microsoft involves allegations of an illegal tie of Microsoft’s Windows 9x software, which
provides hardware management functions, a user interface and an applications platform, to its Internet
Explorer web browsing software. Another recent antitrust case, Caldera, Inc. v. Microsoft Corp. (72 F.
Supp.2d 1295 (D. Utah 1999)) involves an allegedly illegal tie of the MS-DOS operating system to
Microsoft Windows 3.1, which provides a user interface and applications platform. See Hylton and
Salinger (2001) for a detailed assessment of tying law and theory that treats both of these cases.

*On dynamic competition in software markets, in particular, see Evans, Nichols and Reddy (1999), Evans
and Schmalensee (2001) and Liebowitz and Margolis (1999). Other studies of dynamic competition include
Gans, Hsu and Stern (2000), Reinganum (1985) and Vickers (1986).

competition largely take the form of product improvements, new product introductions
and, occasionally, the creation of whole new product categories.

Finally, the PC operating system is the prime example of a product that derives
most of its value from its capacity to function as a platform for other products. And as a
platform, the demand for PC operating systems is influenced by network effects. Easy
file sharing, widespread familiarity with the same user interface and the compatibility of
software applications across computers and computer users are examples of direct
network benefits from the use of a common software platform. The greater incentive for
software developers to invest in new applications as the number of platform users grows
is an example of an indirect network benefit. Thus design characteristics — in particular,
the ability to create a common standard and to elicit the development of complementary
applications — are critical determinants of market outcomes for platform products.

Section 2 of the paper provides important factual background and highlights the
declining cost and growing power of personal computing. Section 3 identifies three basic
forces that propel the evolution of commercial operating system products: the need to
keep pace with advances in computer-related technology, the need to simplify computer
use, and the desire to stimulate new applications for the operating system-as-platform.
Section 4 elaborates on design flexibility in software products and discusses alternative
concepts of software integration. Section 5 describes “componentized” design
architectures for complex software products, analyzes the costs and benefits of
componentization, and explains its role in managing the evolution of a software platform.
Section 6 explains how the need to manage the interacting components of a PC system

drives the continual integration of new features into operating systems. Section 6 also

sketches a theory of how and when operating systems evolve in order to simplify end-
user experience with the computer system, facilitate applications development and reduce
customer support costs for software vendors. Section 7 discusses demand-based motives
for the bundling of software applications and utilities with operating system products, and
the implications of bundling for economic efficiency and consumer welfare.

Our study draws on a variety of sources for factual background and analysis. The
discovery and trial record in U.S. v. Microsoft brought forth a wealth of testimony related
to the economic and technological forces that shape the design of operating systems and
other software. Several senior executives and software developers at Microsoft kindly
answered our questions about software design issues and the evolution of the PC
operating system.” We also draw on previous research in economics and related fields,

especially in our analysis of demand-based motives for software bundling.

2. Factual Background

2.1 Operating Systems and Platforms

Every computer requires a central processing unit (CPU) and an operating system
(OS). The CPU is hardware, typically one or more microprocessors, that performs basic
operations. The OS is software that manages the CPU and other hardware such as the
keyboard, monitor, storage media and communication devices. Hardware management

functions are often combined with an interface between the user and the computer. The

° We interviewed James Allchin, Hillel Cooperman, Paul Maritz and Tod Nielsen at the Microsoft
corporate campus in Redmond, Washington on August 24, 1999. At the time of our interviews, Allchin was
Senior Vice President for Personal and Business Systems, Cooperman was a project manager for a future
version of Windows under development, Maritz was Group Vice President for Platforms and Applications

interface allows the user to access and manipulate files, run programs and operate the
hardware, either directly or through instructions generated by applications software. In
turn, the hardware management and user interface functions are often combined with a
software platform into a single “operating system” product.

A software platform contains Application Programming Interfaces (APIs) that
specify how a software developer can access useful modules of code built into the
platform. The APIs, and the underlying code modules, enable a software developer to
economize on writing new code for applications software. Essentially, the applications
software calls on the processing functions built into the platform product, which reduces
the need for applications developers to write code that performs routine functions.
Microsoft Windows, for example, contains thousands of APIs that can be accessed by
software applications and that are relied upon by software developers. In this way, a
software platform supports the development and operation of software applications such

as word processors, spreadsheets and games.®
2.2 Expanding Functionality of OS Products

A striking aspect of the evolution in commercial OS products is the continual
integration of new features, many of which began as stand-alone applications. Examples
include the graphical user interface, disk management and data compression utilities,

memory management utilities, fax and e-mail utilities, support for local area networks,

and Nielsen was Vice President, Developer Marketing. Allchin and Maritz were also major witnesses in
U.S. v. Microsofft.

® An OS product can function as a software platform, but another platform can also be layered on top of an
OS. For example, Microsoft Windows 3.x consisted of a graphical user interface and applications platform
layered on top of the DOS operating system. Later, this graphical user interface was integrated with other
operating system functions to become the Windows 9x and Windows NT line of products. A software
application can also serve as a platform for other add-on software products, and the hardware in a computer
system can be viewed as a platform for running software. See Section II in Evans, Nichols and
Schmalensee (2001) for a more detailed discussion of alternative types of software platforms.

integrated audio support and web browsing functions. Software that cost hundreds or
even thousands of dollars in the early 1990s is now routinely included with operating
system products, and at a small fraction of the original cost.

Why this process has been so relentless — and what it means for competition - is
controversial and important. Indeed, the questions received a great deal of attention in
U.S. v. Microsoft.” Undeniably, though, the continual integration of new features into OS
products pre-dates the coming of age of Microsoft Windows, circa 1992. All
commercially successful OS products aimed at the general computer user in recent
decades have expanded functionality over time. This suggests that the impulse to include
ever more functions in operating systems reflects fundamental economic and

technological forces.

" David Farber, Professor of Telecommunication Systems at the University of Pennsylvania's Moore School
of Engineering, remarks in his 10/5/98 deposition (page 91) that memory management systems were add-
ons in early versions of DOS, but it became efficient over time to “include them integrally” in the OS. John
Soyring, Director of Network Computing Software at IBM, discusses IBM’s development of Internet
browsing software and its inclusion in OS/2 on pages 35, 37 and 38 of his 11/18/98 a.m. live testimony.
Avadis Tevanian, Senior Vice President of Software Engineering at Apple Computer Corporation,
discusses the integration or bundling of Internet functionality with the Mac OS on pages 37-38, 43, 47 and
65-66 of his 11/5/98 p.m. live testimony. James Gosling, Vice President and Sun Fellow at Sun
Microsystems and Chief Scientist of the Java Software Division, discusses “built-in web support” for a
web-enhanced version of the Solaris OS on pages 34 and 36 of his 12/9/98 p.m. live testimony. Steven
McGeady, Intel Vice President and participant in Intel's early Internet and Java development efforts,
expresses the view in his 10/8/98 deposition (pages 59-61) that multimedia software should be built into
standard PCs. Glenn Weadock, President of Independent Software, Inc., states in his 1/8/98 deposition
(pages 103-104) that the definition of basic OS functionality has evolved over time. Edward Felten,
Assistant Professor of Computer Science at Princeton University notes with approval in his 12/14/98 a.m.
live testimony (page 44) that new versions of software products often have more functionality and give
users more choice. William Harris, President and CEO of Intuit, Inc., also remarks upon the expanding
functionality of the OS over time in his 1/4/99 a.m. live testimony (pages 50-51). According to Harris, the
benefits to Intuit of expanded OS functionality include additional code for modem support and the
management of printer drivers. Harris also notes (pages 51-52) that Intuit itself has expanded the
functionality of its software products over time by integrating new Web functionality and by bundling
different application products together. Here and below, all citations to live, deposition and filed testimony
refer to U.S. v. Microsoft, unless otherwise noted. Written testimony and transcripts of oral testimony by
Microsoft witnesses, along with Microsoft’s legal filings, are available at
http://www.microsoft.com/trial/mswitness/default.asp. Court and government filings and the testimony of
government witnesses are available at http://www.usdoj.gov/atr/cases/ms_index.htm. The Court of Appeals
website at http://ecfp.cadc.uscourts.gov provides links to the filings in the appeals portion of the case.

We identify and discuss three such forces in the next section. To set the stage, we
first review the breathtaking pace of technological advance and cost reduction during the

PC era.
2.3 The Growing Power and Declining Cost of Personal Computing

It is hard to exaggerate the pace of technological change — and the resulting
collapse in the cost of computing power — that have transformed the structure of the
computer industry several times in two decades.

Start with microprocessors. When IBM introduced the first PC in 1981, its Intel
processor contained 29,000 transistors; Pentium III processors, now standard on low-end
PCs, contain 9.5 million transistors. Processing power rose commensurately: The Intel
Pentium IT 450 MHz chip (released in late 1998) performs roughly 4,000 times as many
instructions per second as the Intel 8086-5 chip that did the number-crunching for the
IBM PC-XT, a popular PC in the mid 1980s. The price for mid-range Intel processors fell
from $12.12 per MIPS (millions of instructions per second) in 1993 to $0.09 per MIPS in

2001 (Figure 1).®

¥ We compiled the data for Figures 1 through 5 and Table 1 in this section from advertisements in back
issues of trade and advertising publications for the PC industry. To construct Figures 1, 2 and 3, we first
identified the characteristics of new mid-range PCs at each date (Intel processor, memory amount and hard
disk capacity). We then priced each of these components as separate, stand-alone items. The data
underlying Figures 1 through 5 and Table 1, and additional information about its construction and sources,
are available from the authors upon request.

Figure 1: The Price of Processing Power in Personal
Computers, 1993-2001, Intel Processor MIPS

$14

486-DX2 50 MHZ
512 w4 $1212 per MIPS
w $104
Ay
[
p $8
Yt
o
o 961
=
S s] PIII 933 MH:
$0.09 per MIF
$2
$0 T > *
& & & &) & & S &

Or consider random access memory (RAM), the memory on a chip that can be
accessed in billionths of a second. PCs using DOS, the leading OS until the early 1990s,
could not utilize more than 640,000 bytes of memory at a time. Today, 64 million bytes
of RAM is viewed as a bare minimum in a desktop PC. The price per megabyte of RAM
fell from $880 in January 1984 to just 38 cents in June 2001 — an average rate of decline
of 44 percent annually (Figure 2).

Much the same has happened with “hard drive” storage. In the late 1980s, 20-
megabyte drives were widely viewed as adequate for the typical home or office desktop.
By mid 1999, even cheap PCs came with drives that held at least 4,300 megabytes and
that offered much faster data access than a decade earlier. The price per megabyte of
storage fell from $199 in January 1983 to a mere half penny in June 2001 — an average

annual rate of decline of 57 percent (Figure 3).

Figure 2. The Price of Random Access Memory
(RAM) in Personal Computers, 1984 -2001, Log Scale
o $1,000
2
g $100 -
]
> $10 -
) Average annual slope is -0.44
o
o 51 -
=
& 50 ‘ ‘
N N T R
Figure 3. The Price of Hard Disk Storage in
Personal Computers, 1983-2001, Log Scale
g $1,000.00 -
2 $100.00 1
& $10.00
> $1.00 -
i $0.10 - Average annual slope is -0.57
S $0.01 -
o
=% $0.00 | | | | | | | | |
SR S S A R LR A LN\
N T

Alternative forms of storage have proliferated, even as prices plummeted (Figure

4). “Floppy” disk drives, once the only form of storage for PCs, used 5-1/4 inch disks that

10

held a mere 160 kilobytes in 1981.° By 1983, floppy capacity had increased to 360
kilobytes at a cost of $708 per megabyte for the drive unit. The next big advance in
secondary storage was a 1.2-megabyte disk at a cost of $145 per megabyte for the drive
unit. CD-ROM drives, introduced in 1990, hold over 600 megabytes, and the “read only”
storage capacity costs a mere 76 cents a megabyte. Storage capacity for DVD-ROM
devices, introduced on PCs in 1998, cost less than a penny per megabyte. Over the 1983-
1999 period, the price per megabyte in secondary storage devices fell at an average rate

of 62 percent annually.

Figure 4. The Price of Secondary Storage Devices
for Personal Computers, 1983 - 2001
$600
-“é $500 -
-
o $400 - \
- i 3.5"1.44 MB
=)
8 $200 - ¢
oy
& $100 - X*\xw*_
H=K
50
SR R S R - (- (R
s SR G < SR G N

The ongoing revolution in printer technology has been equally dramatic, if harder
to quantify. In 1984 a slow, noisy, low-resolution “dot-matrix” printer cost about $600

and, as a practical matter, printed only text. The black and white laser printers of the early

?In 1981, DOS Version 1.0 supported an 8-sector 160 KB floppy (single side). Version 1.1, released in
1982, supported an 8-sector 320 KB floppy (double sided). Version 2.0 (1983) supported a 9-sector 360 KB
floppy, and Version 3.0 (1984) supported a 1.2 MB floppy. See “DOS Versions” in Computer Language
Company (1999).

11

1990s were much sharper and printed graphics — but were an order of magnitude more
expensive. But in recent years color printers using “inkjet” technology have overwhelmed
other technologies in low-end printers. They produce fine color at high resolution — and
slower models cost around $100 as of mid 1999. (Table 1)

Modems, too, have come of age. In the early 1980s, the typical home or office
modem could transfer data at 300 bps (bits per second) and was effectively limited to
transmitting text. Today, the standard modem on PCs is capable of 57,600 bps. Cable
modems and DSL service can transfer data at several million bps. Prices, no surprise,
have fallen sharply. In 1985 the price for a modem device amounted to roughly 27 cents
per bps transfer rate, more than 1,000 times the corresponding price for cable modem and

DSL devices 15 years later (Figure 5).

Table 1. Printers for Personal Computers,
Prices and Characteristics, 1984-2001

Debut

Year Category Product Specifications Price Date
B&W Dot Matrix Epson FX-80 160 characters/sec., 9 pin dot matrix $589 Jan-84

Epson FX-80 $429 Jan-85
Epson LX 80 100 characters/second, letter quality ~ $232 Jun-86

1984 B&W Ink Jet Think]Jet 300x300 dpi, 1-2 minutes per page $495 Oct-84
B&W Ink Jet ThinkJet $445 Oct-84
B&W Ink Jet ThinkJet $435 Jan-85
B&W Ink Jet ThinkJet $388 Jan-86

1984 B&W Laser LaserJet 300x300 dpi, 8 pages per minute
B&W Laser LaserJet $2,995 Jan-85
B&W Laser Laser]Jet $2,376 Jan-86
B&W Laser Laser]et $2,289 Jan-87
B&W Laser LaserJet IlIsi 300 dpi, 17 pages per minute $3,525 Jan-92
B&W Laser LaserJet 4 600 dpi, 8 pages per minute $1,435 Jan-93
B&W Laser LaserJet 4L 300 dpi, 4 pages per minute $669 Jan-95
B&W Laser Laser]Jet 5L 600 dpi, 4 pages per minute $527 Jan-96
B&W Laser LaserJet 5si 600 dpi, 24 pages per minute $2,449 Jan-98
B&W Laser LaserJet 1100se 600 dpi, 8 pages per minute $399 Jun-99
B&W Laser Laser]et 2100M 1200 dpi, 10 pages per minute $629 Jun-00
B&W Laser Laser]Jet 1100xi 600 dpi, 8 pages per minute $349 Dec-00

1991

1994

B&W Laser

Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet
Color Ink Jet

Color Laser
Color Laser
Color Laser
Color Laser
Color Laser
Color Laser
Color Laser
Color Laser

LaserJet 1200

Color DeskJet 500C
Color Desk]Jet 500C
Color Desk]Jet 500C
Color DeskJet 500C
Color DeskJet 500C
Color Desk]Jet 500C
Color Desk]Jet 560C
Color DeskJet 660C
Color Desk]Jet 680C
Color DeskJet 672C
Color DeskJet 420C
Color DeskJet 420C
Color DeskJet 812C
Color Desk]Jet 930C
Color Desk]Jet 930C

HP Color Laser]et
HP Color Laser]et
HP Color LaserJet 5
HP Color LaserJet 5

HP Color LaserJet 4500
Tektronix Phaser 740/N

QMS Magicolor 330

1200 dpi, 15 pages per minute

300 dpi, 4 minutes per page color

300 dpi, 3 minutes per page color
300 dpi, 3 minutes per page color
300 dpi, 1.5 pages per minute color
300 dpi, 1.5 pages per minute color
300 dpi, 4 minutes per page color
300 dpi, 4 minutes per page color
600 dpi, 3 pages per minute

1200 dpi, 2 pages per minute

1200 dpi, 2 pages per minute

300 dpi, 1-2 pages per minute
300 dpi, 2-3 pages per minute
600 dpi, 4 pages per minute

600 dpi, 5 pages per minutes
600 dpi, 4 pages per minute

HP Color LaserJet 4550 600 dpi, 4 pages per minute

13

$377

$1,059
$719
$699
$619
$396
$299
$479
$388
$292
$199
$119
$99
$149
$199
$177

$6,000
$5,929
$5,829
$3,939
$2,499
$1,850
$1,849
$1,888

Jul-01

Oct-91
Jan-92
Jun-92
Jan-93
Jan-94
Jan-95
Jan-95
Jan-96
Jan-97
Jun-98
Feb-99
Jun-99
Jan-00
Jun-00
Jul-01

Sep-94
Jan-96
Jan-97
Jun-98
Feb-99
Jun-99
Jan-00
Jul-01

Figure 5. The Price of Modem Devices
for Personal Computers, 1983-2001
$800
$700 1 Cable
o $600 *Ky 512 Kbps
24
-E 6500 . 00 bps 14400 bps 57600 bps
& $400 | 9600 bps 33600 bps
U
"g $300 -| 28800 bps
= 5200 | 300 b —_
$100 - \L\'_
50
SR R S N - (- (R
SR R S S

All told, this onslaught of technology has put incredible power in the hands of
anyone with a thousand dollars to spend.'” In early 1986, a “high end” PC with a 286
processor running at 8§ megahertz (MHz), half a megabyte of RAM and 20 megabytes of
hard drive storage cost about $2,800. As of early October 1999, $§947 bought a Compaq
Presario 5360 PC system with a 450 MHz processor, 64 megabytes of RAM and 4
megabytes of video RAM, 10,000 megabytes of disk storage, a 15-inch high-resolution
color monitor, a 56K modem, a 32x CD-ROM, Microsoft Windows 98 and a color ink-jet
printer with a resolution of 1200 x 1200 dpi."" For an extra 250 dollars, the color printer

could be replaced by a multi-function printer, fax, copier and scanner.'

' Berndt and Rappaport (2001, Table 1) estimate that the quality-adjusted price of desktop personal
computers fell at an average rate of 27 percent per year from 1976 to 1999 and more than 35 percent per
year in the 1990s.

" Based on advertisements in volume 21Q of the PC Mall mail-order catalog. The PC system described in
the text reflects PC Mall order numbers 47090, 45775 and 48269 plus the application of a $150 3-piece
bundle rebate.

12 Replacing order number 48269 with number 44476.

14

The incredible pace of technological change and cost reduction on the hardware
side of PC systems has driven many of the developments on the software side. Market
leadership in commercial OS and other software categories has undergone several shifts
in recent decades, even though the Microsoft Windows family of operating systems has
held the leading position since 1993. As emphasized by Evans, Nichols and Reddy
(1999), major shifts in the leadership of software categories have often been closely
linked to technological developments in hardware. This fact has not been lost on
suppliers of OS software, and largely explains why they have integrated new features that

keep OS products abreast of technological developments in hardware.

3. Three Key Forces that Propel the Evolution of OS Products

3.1 Keeping Pace with Technological Advances

As suggested above, rapid innovation in computers is one of the great
technological wonders of our age. And the resulting changes in what users expect from
computers compel frequent upgrades in complementary products — especially ones as
central to computer performance as operating systems.

By the early 1990s, exponential advances in speed and functionality had made
PCs a staple on virtually every desk in the corporate enterprise, while advances in the
efficiency and miniaturization of chips, batteries, hard drives and other components made
computers easily portable. New innovations in data sharing and interconnectivity, led by
Novell and 3Com, gave rise to an entire new industry in PC networks and servers.

In the mid-1990s the face of computing was again changed by technology — this

time by the Internet. The Internet powered a surge in the demand for both PCs and

15

servers and created an entirely new computing environment in the form of the web
browser. Yet more recently, hand-held computing devices such as the Palm Pilot have
come of age, providing still another hardware platform for data manipulation and
communication.

This explosive growth in memory, processing muscle and versatility has created
powerful incentives to add new capabilities and features to OS products that keep pace
with hardware developments. For example, Microsoft made PC-DOS 1.0 to
specifications set for the original IBM PC in 1981. When IBM added a hard drive to the
PC a year later, version 2.0 was enhanced to support the additional storage medium. DOS
3.1 adapted the PC for use on local area networks. DOS 3.2 and DOS 3.3 supported the
new 3-1/2 inch, 720-kilobyte and 1.44-megabyte floppy disks respectively. And when the
386 microprocessor arrived, DOS version 3.3 was there to support it."

By no coincidence, leadership in the market for OS products has often been up for
grabs since the mainframe era of the 1960s. Microsoft emerged as the pre-eminent
producer of PC operating system products in the early 1990s. As late as 1992, though,
some knowledgeable observers touted IBM's OS/2 product as likely to become the
dominant general-purpose OS for PCs."

Consider the ongoing impact of printer technology on operating systems. In the
mid-1980s the only high-quality printers for home and office use were very expensive
black-and-white laser printers. But color ink-jet printers, introduced in 1991, are now

nearly as ubiquitous as microwave ovens. They have opened desktop printing of cards,

1 Cusumano and Selby (1995, page 148) provide a more detailed narrative of how the first several
generations of DOS evolved in response to hardware advances.

16

brochures and the like to a mass market. And, in tandem with the advent of low-cost
digital still cameras, they are making the PC an integral part of photography. To
accommodate the plethora of sophisticated new printers from a half-dozen major
manufacturers, operating systems have incorporated ever-larger numbers of ever-more-
complex printer “drivers.” It seems likely that future OS products will incorporate basic
software for manipulating and printing photo images.

More generally, so long as the cost of processing power, random access memory
and data storage fall at 40-60 percent a year, the practical uses of personal computers will
continue to expand rapidly. The ability to manage huge amounts of data and display
complex graphics has decentralized publishing from the factory to the desktop. Rapid
number crunching and super-cheap memory have transformed the spreadsheet into an all-
purpose tool for business, finance and science. The Internet gives PCs access to
avalanches of data. And with the expansion of functionality, of course, comes new
demands on OS products to manage more hardware and more software with more

sophisticated user interfaces.

3.2 Simplifying Computer Use

A second key force behind OS integration is the need to make computers easier to
use. Just as standard features on an automobile evolved from bare necessities to include
gas gauges, heaters, defrosters and other “extras,” computer operating systems have

evolved to accommodate consumer tastes and to facilitate computer use. For example,

'* See Gookin (1992). As Evans and Schmalensee (2001) note, analysts also disagreed over whether OS/2
Warp 3.0 (introduced in November 1994) would prevail over Windows 95 (introduced in August 1995) to
become the leading OS product for PCs.

17

the UNIX operating system, used on a substantial share of engineering and scientific
workstations, gradually added a full-screen editor, virtual memory, terminal
independence, job control capability and a networking API called “sockets”."?

And because of the tremendous popularity of Internet applications among today’s
computer users,'® web browsers are now routinely integrated into (or bundled with) OS
products. Internet Explorer, the web browsing technology developed by Microsoft, is
integrated into Windows 98 and later versions of Windows. But Microsoft is hardly alone
in packaging a browser with an OS. IBM led this trend, developing its own browser for
OS/2. Sun Microsystems' Solaris and Java OS, SCO’s UnixWare and Open Server all
provide browser functionality by bundling Netscape Navigator with the OS. In addition
to bundling their OS products with Netscape Navigator, Sun also supplies the HotJava
web browser.

PCs of the past were notoriously frustrating to end-users. Walter Mossberg’s Wall
Street Journal column on personal technology debuted in 1991 “with the contention that
personal computers are too hard to use, and that the blame lies not with the people trying
to use them but with the supposed geniuses who design the machines and the software
that runs on them.” Mossberg later lamented, “even rocket scientists are baffled by

personal computers. I once got e-mail from a scientist at NASA who works on giant

supercomputers all day with aplomb but goes home at night and finds to his great

' See Quarterman and Wilhelm (1993), chapter 2.

'® According to a recent survey by Compaq, a major PC manufacturer and vendor, on-line services are now
the number one reason why consumers buy PCs (Ramstad, 1998). Reid (1997) describes the explosive
growth of the Internet.

18

frustration that he can’t get the family IBM-compatible PC to run multimedia software
correctly.”"”

As the market for PCs has widened, the market pressure to make them easier to
use has intensified. Weekend tinkers may revel in the most intricate workings of the PC.
For their part, science labs, graduate schools and businesses with sophisticated
information management departments may tolerate — even take pride in their ability to
control - the PC’s eccentricities. But those early markets for computers are saturated.
Much of the growth in demand now comes from untutored users — small businesses and
households — who expect to plug and play (or work).

One much-welcomed response to this changing market reality has been the
expansion of the PC operating system to include elements that previously stood alone,
such as software “drivers” to run peripherals ranging from scanners to DVD players.
Likewise, the addition of TCP/IP communications software has simplified the once

absurdly complicated task of linking computers to network servers, effectively opening

the Internet to the untutored.'®

3.3 Attracting Software Developers
A third key force behind integration is the desire to encourage software
developers to create new applications for the operating system-as-platform, thereby

enhancing the operating system’s value to consumers and giving it a leg up in the market.

" The quotation is drawn from a 1994 column explaining Mossberg’s reason for initiating the column three
years earlier.

'8 TCP/IP stands for Transmission Control Protocol/Internet Protocol. Because of its position in the
software hierarchy between the Internet application and the communication I/O system (e.g., a modem or
LAN), the configuration of a non-integrated TCP/IP package is extremely difficult for the non-technical
user.

19

Platform vendors compete by making it cheap and easy for independent software vendors
to develop applications. They accomplish this goal, in part, by providing software
building blocks (APIs) that lower the cost of developing complementary software

applications.'® %

These building blocks include support for soundcards, integrated audio,
extended memory, object linking and embedding, scalable fonts, and the like.

The desire to support software developers also explains why commercial OS
products incorporate web-browsing support and other Internet functionality.”’ The
integration of IE into Windows ensures software developers that a browser with known
functionality and specifications is available with Windows. And this, in turn, facilitates
the development of simpler, yet more powerful, software applications.

Microsoft’s own word processor, Word 97 (and later versions), uses Internet

Explorer (or other default browser) to automatically convert any typed-in web address

(URL) into a live link. Clicking on the address brings up the web page in the browser, if

' In our interview with Todd Nielsen, Microsoft Vice President of Developer Marketing, he stressed that
independent software vendors want a rich infrastructure, but they don’t want to “do the plumbing.” He also
stressed that Microsoft undertakes extensive efforts to cultivate relationships with independent software
vendors, to educate them about new and existing APIs in Microsoft platform products, to encourage their
participation in beta testing, and to respond to their concerns.

% See Cusumano and Yoffie (1998), pages 76-78, for a discussion of Netscape’s use of APIs to promote its
Navigator and Communicator products as applications platforms. Typically, platform vendors also devote
considerable additional resources to stimulating the development of complementary applications by
independent software firms. As of 1995, Microsoft spent about 65 million dollars annually supporting
independent software developers and had about 400 technical support engineers who exclusively served
independent developers. See Microsoft (1995). According to the same document, Microsoft hosts about
200 developer conferences and seminars per year that are attended by more than 30,000 developers
worldwide. Microsoft also engages in an extensive consultation and testing program with developers prior
to the release of new OS software. As an example, approximately 7,500 copies of an early version of
Windows 95 were distributed to independent hardware and software vendors by December of 1993. About
12,000 beta-1 kits for Windows 95 were distributed by June of 1994. See page 20 of Microsoft (1995).

*! The integration of Internet Explorer into the Windows 98 OS is one of Microsoft’s allegedly
anticompetitive actions in U.S. v. Microsoft, but other leading suppliers of OS products have also made the
integration of web-support features and Internet functionality an important focus of OS development
efforts. IBM has “Internet-enabled” OS/2 and other software products and perceives “tremendous value” in
doing so. (Soyring, 11/18/98 a.m. live testimony, pages 36-37.) Some Internet protocols and functionality
are “built into” the Mac OS, and other Internet functionality is bundled with the Mac OS. (Tevanian,
11/5/98 p.m. live testimony, pages 43, 63, 66 and 67.) Similarly, “built-in web support for the Web-

20

the user is connected to the Internet. A stand-alone browser can be used to achieve
comparable functionality — indeed, many operating system products work this way. But
integration ensures the availability of specific browser services for any software
application running on the OS. And this, in turn, encourages the development of
applications that rely on browser functionality. The designers of Quicken financial
planning software, for example, can be confident that every PC user who runs Windows
98 (or later versions) has access to built-in code that enables rapid, automatic information

retrieval from the web.

3.4 Summary of Key Forces

To summarize, three important forces propel the evolution of the PC operating
system and lead to the continual integration of new features: (a) the need to keep pace
with new products and advances in computer technologies, (b) the need to simplify PC
use, including the desire to incorporate features that have become part of the basic
functionality of PC systems, and (c) the desire to stimulate the development of new and
improved software applications that complement the OS and enhance its value as a
platform.

These key forces behind the evolution of OS products came through loud and
clear in our interviews with Microsoft personnel, as did other forces that we discuss
below. Paul Maritz, Microsoft Group Vice President for Platforms and Applications (at
the time of our interview) summarized it this way. When thinking about which features to

integrate into its platform products, Microsoft asks the following questions:

enhanced Solaris” OS includes TCP/IP, NFS protocols and limited URL support. (Gosling, 12/9/98 p.m.
live testimony, pages 34 and 36.)

21

e Does the feature help the user?
e Does it help developers?
e [s a competitor doing it?
e Does it break backward compatibility?
In addition, according to Maritz, widely used, non-differentiated utilities and widely used

features with high interoperability requirements tend to get integrated.

4. Software Design Flexibility and Integration Concepts

4.1 The Inherent Flexibility of Software Design

Several witnesses in U.S. v. Microsoft emphasized the remarkable flexibility of
software. Professor David Farber neatly describes this flexibility in his written direct
testimony:

[S]oftware modules are then ‘knitted together’ into unified programs.
That is, each software product is built up from simple low-level routines
that are then called by routines at a higher level of composition. Routines
at each level are called by yet higher level routines until the desired
functionality of the end product is achieved. In this manner, all software is
built up layer by layer though the use of often-large numbers of routines,
but each with limited complexity. As a result of this layering, software has
an inherently malleable and modular structure that gives software
developers broad freedom in combining (i.e., bundling) different functions
into software products. This malleability also gives a software developer
two related types of design freedom: (1) to integrate two separate CD-
ROM’s because the functions on one particular CD-ROM can be
integrated by an OEM or retail end user with functions on another CD-

ROM and (2) to determine which functions to include within software sold

22

as one product and which to separate and sell as a different product,
whether produced by the same or different software developer, for
installation and use together by the retail end user. (page 7)

In short, the same functionality can be achieved in many ways — and, in particular, with
more or less tightly integrated code.?

Flexibility and choice in software design work against efforts to define the
boundary between OS and applications software, or between the operating system,
narrowly conceived, and the broader notion of an operating environment. Indeed, the
inherent flexibility of software design underscores the arbitrary nature of definitions of
what is part of the operating system and what isn’t.”

Several other factors confound attempts to fix these boundaries.** First, there is no

consensus as to which functions belong within the domain of the operating system.”’

** Soyring also remarks upon the great flexibility in software design on pages 66-68 of his 11/18/98 a.m.
live trial testimony and on page 11 of his filed testimony. The same theme is implicit in much of the live
testimony of Felten and Tevanian, much of the live and deposition testimony of Weadock, and much of the
deposition testimony of William Harris (President and CEO of Intuit, Inc.). Weadock explicitly discusses
flexibility in software design on pages 48-49 of his 1/8/98 deposition testimony. Harris discusses the
contrast between the componentized design of Internet Explorer and the design of Netscape Navigator on
pages 9-10, 45 and 73 of his 1/4/99 p.m. live testimony and pages 34-35 of his 9/29/98 deposition
testimony. Tevanian discusses how Apple weighed the choice between full technological integration and
bundling of Internet protocols and functionality into the Macintosh OS on pages 37-39, 43, 47, 63, 65 and
66 of his 11/5/98 p.m. live testimony and page 47 of his 7/17/98 deposition testimony. A central theme of
Felten's testimony is that Microsoft chose to design Windows 98 in a tightly integrated manner, even
though technical efficiency does not require such a design.

» Weadock stresses that shared program libraries create indeterminacy in delineating a specific code set
that defines a software product. See pages 110, 115-116 and 119-120 of his 1/8/98 deposition testimony.
He also states (pages 56-57) that “The delineation of what is system software versus what is OS software is
a difficult and, except perhaps in legal proceedings, irrelevant distinction.” Farber (10/5/98 deposition,
pages 103-104) states that it is something of a norm as to what file systems are simple or primitive enough
to be considered part of the OS.

Weadock's deposition testimony quite effectively highlights the difficulties. He returns several times to
the issue of what constitutes integration with the OS, what properly qualifies as part of the OS, and what
functionality is properly deemed within the domain of the OS. However, it is difficult or impossible to
distill any general principles regarding these matters from Weadock's testimony, because he advances
often-conflicting criteria and so many exceptions to particular rules. See pages 13-14, 46, 48-58, 62, 65,
101-104 and 115-121 of his 1/8/98 deposition testimony. Weadock is aware of these tensions and
ambiguities. For example, he remarks that a disk defragmentation utility falls into a gray area as regards OS
integration. This type of utility performs a basic housekeeping function, which tends to confer OS status in
Weadock's view, but it can also be acquired from third-party vendors, which argues against OS status in his
view.

23

Second, most knowledgeable observers agree that the functions of the PC operating
system, however narrowly defined, have grown and will continue to grow. Third, while
experts have proposed a variety of tests for whether a particular set of files is actually
integrated into the OS, these tests are ambiguous, inconsistent — and often in conflict with
common sense views about the functional boundaries of the operating system.*®

The flexibility of software design matters to our analysis for two reasons. First,
we devote only modest attention to the “engineering” aspects of OS design that often
loom large in textbook discussions of computer programming techniques.27 Principles
matter in software development, as does the issue of meeting design objectives at
reasonable cost. But the inherent flexibility of software code, coupled with the very large

size of the market for OS products, implies that the engineering costs of software

2 Some witnesses make this point explicitly. See, for example, page 55 of Weadock's 1/8/98 deposition

testimony.

%% A partial review of expert testimony in U.S. v. Microsoft turned up ten distinct criteria for determining

whether particular software components (files or groups of files) are properly deemed integrated, “built

into” or part of the PC operating system:

1. Whether there exist multiple cross-dependencies among the components. (Soyring, 11/18/98 a.m. live
testimony, pages 48 and 67, and 10/15/98 deposition testimony, pages 167 and 189.)

2. Whether the component in question exposes APIs to third-party users. (Soyring, 11/18/98 a.m. live
testimony, page 48, and 10/15/98 deposition testimony, page 167.)

3. Whether the component in question is called upon by a wide variety of applications software.
(Weadock, 1/8/98 deposition, pages 48-49.)

4. Whether the component performs services that are not directly available to end-users. (Weadock,
1/8/98 deposition, pages 49-53.)

5. Whether the component performs "low-level" services; i.e., interacts in a fairly detailed and specific
way with specific devices. (See pages 49-53 of Weadock's 1/8/98 deposition testimony, where he
mentions network card drivers and Winsock as examples of software features that lie within the
boundaries of the OS because, in part, they perform low-level services. Farber (10/5/98 deposition,
pages 91-92) defines a computer OS “as something that provides low level services, [but an] operating
system platform or product or release, as commercially understood is a lot more.”)

6. Whether the component performs housekeeping functions. (Weadock, 1/8/98 deposition, page 53.)

7. Whether the component provides security and protection for other essential operating system
functions. (Farber, filed testimony, page 10.)

8. Whether the component performs a function also performed by a separate software product available
on the market from another vendor. (Soyring, 10/15/98 deposition, pages 207-208; Weadock, 1/8/98
deposition, pages 46, 48, 56-58, 62 and 65.)

9. The extent to which the component is essential to basic OS functionality. (Weadock, 1/8/98 deposition,
pages101-102.)

24

programming are unlikely to outweigh strong commercial incentives for achieving a
particular design objective.

Second, design flexibility implies that the boundary between OS and applications
software is fuzzy and mutable — and will in all likelihood remain so. Hence, we think that
efforts to draw a bright line between operating systems and applications software on the
basis of technical design criteria are misguided. Instead, we treat OS software as a
commercial product, not simply a technological object, and we recognize that the
functionality of commercial OS products must evolve in response to technological and

market forces.
4.2 Functional and Whole-Cloth Integration of New Features

To most PC users, “integration” means that the software features and hardware
components work together smoothly and with modest effort. Computer buyers value the
perception and experience of integrated performance — whether or not there is integration
in a technical sense.” Hence, in marketing their software, firms refer to integration in the
casual sense of integrated look and function, rather than in terms of internal design

architecture.”’ PC users also value integration in the sense of easy, automated installation

10. The extent to which the component can be traced back to earlier versions of the OS. (Weadock, 1/8/98
deposition, page 46.)
27 Farber discusses some principles of software engineering and design in his filed testimony.
% Several witnesses in U.S. v. Microsoft testify to this effect. See pages 35-37, 52, 54 of the 11/18/98 a.m.
and page 86 of the 11/19/98 p.m. live testimony and pages 165-166 of the 10/15/98 deposition testimony
offered by John Soyring (IBM), pages 59 and 62-63 of the 11/5/98 p.m. live testimony by Tevanian
(Apple), and page 37 of the 10/28/98 p.m. live testimony by David Colburn, Senior Vice President of
Business Affairs for America Online, Inc.
* See, for example, pages 37-38 of the 12/9/98 p.m. live testimony by James Gosling. Gosling is shown a
Sun marketing document that reads in part, “In addition to its HotJava Browser, the web-enhanced Solaris
operating environment also comes standard with Java Virtual Machine, JIT compiler and integrated Java
APP’s. ... Through the web-enhanced Solaris operating environment we offer web-based client server
computing.” Gosling responds as follows: “But when it talks about the Java software being built in as an
integral part of the operating environment, it doesn’t mean anything stronger than the Java Virtual Machine
is another application that runs on top of the OS. ... The CD-ROM is nothing much different than sort of
the digital equivalent of a paper bag into which you throw, you know, whatever you think is appropriate.”

25

of distinct software products, even when the products are simply bundled together on the
same CD-ROM.*" In a parallel manner, much of our analysis flows from a functionality-
based perspective on integration and product design. From this perspective, it is the result
that matters, not the means by which that functionality is achieved.

Nonetheless, the technical distinction between integration and bundling does bear
on an economic analysis of OS design. Whole-cloth or “tight” integration, in the sense of
multiple cross-dependencies among major components of the OS, involves costs and
benefits. On the cost side, whole-cloth integration makes it harder for a PC user to
economize on disk usage by deleting (or never acquiring) unneeded files or fragments of
code. OS design can also affect memory usage on the PC, because an entire file must be
loaded into memory even if only a portion of the code in the file is required for the
execution of a particular task.”’ The bottom line: OS integration (in the sense of cross-
dependencies) can place greater demands on the storage and memory resources needed to
operate a PC. Hence, the huge size of a modern integrated operating system like
Windows 98 or the MacOS imposes a cost — literal and figurative — on system resources.

But this cost is modest and falling rapidly. By 1999, disk storage costs per
megabyte were less than one-half of one percent of 1990 levels.*”* And the capacity of the

hard drive on a typical new PC system was 9,100 megabytes — up from 65 megabytes in

See page 35 of Soyring's 11/18/98 a.m. live testimony for a very similar exchange regarding an IBM
marketing document on the “integration” of Internet functionality into OS/2.

3% As a case in point, IBM decided to install multiple different software products within its OS/2 offering in
response to customer complaints about difficult, time-consuming installation procedures (Soyring,
deposition testimony, pages 165-166).

*! See pages 55-57 of the 12/14/98 p.m. live testimony by Professor Edward Felten, a specialist in operating
systems, Internet software and Web browsing programs.

32 Based on advertisements in back issues of PC magazine, disk storage costs per megabyte fell from $5.92
in May 1990 (Windows 3.0 release date) to $2.95 in April 1992 (Windows 3.1 release date) to 33 cents in
August 1995 (Windows 95 release date) to 3 cents in June 1998 (Windows 98 release date) to 2 cents per
megabyte in May 1999.

26

1990.* Thus as of May 1999, even a 50 percent reduction in the size of Windows 98
would free only 1.2 percent of the disk space on a typical new PC system at an implied
savings in hardware cost of just $2.25.*

As we noted earlier, random access memory installed on new computers has also
increased dramatically in recent years, and the cost of RAM has declined more than
proportionately. Over the course of the 1990s, the memory capacity of the typical new
PC system rose from 2 megabytes to 64 megabytes, while the buyer’s outlay per
megabyte fell to less than 2 percent of 1990 levels.” What’s more, effective memory
usage is no longer severely constrained by the technical parameters of PC operating
systems, as it was with PC-DOS.

In analyzing the efficiency of software integration it’s also worth noting that,
while “small” files dedicated to narrowly defined tasks may economize on memory
requirements, the organization of the OS into fewer, larger files also has technical
advantages.”® First, it takes longer to load many small files into random access memory
than one large file comprised of the same code. Second, the “calling file,” which also
resides in memory, must contain more code to load many small files than one large file.
Third, breaking software programs into small files increases disk storage requirements,

because each file, no matter how small, uses a minimum amount of disk space.37

3 The 1990 figure is from PC magazine's annual review of best products, and the 1999 figure is based on
advertisements in the 5/25/99 issue of PC magazine.

3 Based on a PC system with a 9.1-gigabyte hard drive and a Windows 98 system requiring 225 megabytes
of disk storage. At 2 cents per megabyte, the approximate cost of disk storage as of May 1999, the disk
space freed up by a 50 percent reduction in the size of Windows 98 amounts to about $2.25.

%> Based on advertisements in back issues of PC magazine, memory costs per megabyte fell from $99 in
May 1990 to $37.25 in April 1992 to $36.13 in August 1995 to $2.95 in June 1998 to $1.55 as of May
1999.

% Farber discusses several criteria that govern how software files are organized into files on pages 7-8 of
his filed testimony. He observes that “The most technically efficient size for a file is generally larger than a
single routine and smaller than an entire application.”

37 Four kilobytes under Windows 98, 32 kilobytes under many earlier PC operating systems.

27

That said, there is little doubt that, on balance, whole-cloth OS design increases
the demands on disk storage and, in some circumstances, on the memory resources
required to operate a PC. However, these resource demands are a minor factor in light of
the development of larger, cheaper storage disks and memory chips. Thus our economic
analysis of OS design places little weight on considerations related to storage and
memory requirements, even though they loom large in some technically oriented
discussions of OS design.™®

More important, in our view, whole-cloth integration can serve both end-users
and applications developers by promulgating a common standard provided by an OS
product. The shared files and other cross-dependencies make it less attractive to tinker
with the OS, because such tinkering is likely to degrade overall performance. And by
preserving a standardized environment, a highly integrated OS like Windows 98 assures
hardware and software vendors that the full set of capabilities and APIs is available in
every installation of the product. By reducing the number of configuration possibilities
for the code modules, a standardized environment also lowers the cost and difficulty of
testing OS performance and its interaction with complementary software and hardware
products.

Thus whole-cloth integration protects a platform vendor and other software and
hardware firms from poor performance caused by unpredictable differences across

installations of the platform. The bottom line is lower testing and customer support costs

¥ See, for example, pages 11-12 of Professor Farber's filed testimony and page 44 of the 12/14/98 a.m. live
testimony and pages 55-59 of the 12/15/98 p.m. live testimony offered by Professor Felten.

28

for the platform vendor, lower development and customer support costs for the suppliers

of complementary products — and greater customer satisfaction.””

5. Componentized Design Architectures

Computer users value software for performance, ease of use and compatibility
with other elements of a computer system. The internal design of software — how it
accomplishes tasks or achieves ease of use and compatibility — is of little intrinsic interest
to end-users. If two software products offer comparable capability, ease of use and
compatibility, end-users value them equally, even if they rely on radically different
internal designs.

Nevertheless, internal design can greatly influence the market response to software
products and their capacity to successfully evolve. Software platforms require useful
applications programming interfaces (APIs) to encourage the development of
complementary applications. Better APIs lead to more and better software applications,
which benefit consumers, the platform vendor and independent software developers.
Indeed, good APIs are essential for the success of a software platform, even though few
users of, say, Windows or the Mac OS could identify specific APIs or explain how they
smooth the way for applications software.

We turn now to another aspect of internal software design, often referred to as
“componentization”. Like APIs, a componentized design provides indirect benefits that

are not readily apparent to end-users. Componentization can facilitate product

%% Of course, the standardized feature set promulgated by whole-cloth integration may not suit all users of
OS software. Weadock, Farber and other witnesses for the government in the Microsoft antitrust action
stress this point in connection with the whole-cloth integration of Internet Explorer into Windows 98.

29

development, design and testing and thereby reduce the cost of supplying software. It can
also facilitate continual improvements in a large, complex system like one comprised of a
software platform and thousands of complementary applications. But there’s a downside,
too: Componentization can diminish performance or add to product development costs.*’
To develop these points, we shall describe the concept of componentization and

identify its costs and benefits.*' We also explain why, other things equal, a

componentized approach to software design is more attractive and efficient for a firm that
offers a broad line of software or one that sells large-scale system software. Microsoft fits

this description on both counts.
5.1 What Is Componentization?

Componentization refers to a modular design architecture that structures and
constrains the interactions among elements of a software system. This design architecture
prescribes the pathways along which components communicate, and the precise manner
in which one component “requests” information or processing services from another.

A few analogies can make this abstract concept more tangible and clarify some of
the tradeoffs involved in a componentized design.

o Consider two alternative “design architectures” for an integrated TV-VCR system.
One is a closed system housed in a one-piece construction. This architecture makes
the machine compact, easy to use and cheaper to manufacture. A second is a modular

construction with separate units for the TV and the VCR. The units are only

40 Cusumano and Yoffie (1998), pages 180-198 and 201-221, provide an insightful discussion of
Netscape’s struggle to achieve a componentized design architecture for its Navigator and Communicator
products, the obstacles it encountered in pursuit of that goal, and the difficulties it faced because of its
limited success in achieving a componentized architecture. Baldwin and Clark (2000) provide an extensive
description and analysis of modular design strategies.

30

“integrated” in the sense that they easily connect and work together. This design
makes it easy to upgrade individual pieces of the system. If the modular system is
“open”, it can also accommodate new components, like a DVD player, later on. Thus
the modular design makes for a more flexible system, even though it may be less
efficient or more costly in the short run.

o Consider the distinction between open-stack and closed-stack policies for book
retrieval in a library. An open-stack policy permits patrons to take books directly
from the stacks, and by whatever route seems desirable or convenient. In computer
parlance, the user can “make calls” on the library services in an unconstrained
manner. In contrast, a closed-stack policy processes all requests for book retrieval
through a designated checkpoint. Here, there is a single pathway (or a limited
number) by which users “make calls” upon library services. Like a closed-stack
library, componentized software prescribes and limits the pathways by which a user
(or other software) can call upon the processing services produced inside the
component.

o Consider the provision of french fries as a metaphor for the provision of computing
resources or processing services. Because patrons have different appetites, one size
portion does not fit all, and a dispensary might be designed to distribute one fry at a
time in order to meet every customer’s wishes on the button. However, because most
customers want many fries, this design solution involves a very large number of
individual “calls” on the kitchen, slowing deliveries and reducing the dispensary’s

total capacity to deliver the goods. A more efficient design would dispense many fries

*I Our understanding of componentization benefited greatly from interviews with Paul Maritz and James
Allchin of Microsoft.

31

at a time — but not too many, because a lot would be wasted if they came in orders of
500 when the typical customer wanted just 100. Thus, designing an efficient
dispensary requires forethought about the optimal batch size.

o Consider the development of a new fighter jet that incorporates several distinct, but
interacting, technological advances. A fighter is a complicated technological
“system” with many subsystems and interacting components. Each must properly
work and interact in order for the overall system to perform at maximum capacity. An
intelligent design architecture will make it possible to organize development and
testing around many small teams, each of which focuses on a subsystem or
component. This approach allows development to proceed along many fronts,
tackling many relatively small problems simultaneously. Of course, it is essential that
the components work together when reassembled into an overall system. This re-
assembly may take place many times in the course of developing, testing and refining
a new fighter jet or other system product. So clearly, the “componentization” of the
fighter jet system cannot be carried out in a haphazard way. It requires forethought
about how the components will interact once put back together.

Each of these analogies captures an important aspect of software
componentization. The TV-VCR combo highlights the concept of modularity, which
often involves a tradeoff between long run “dynamic” benefits and short run “static”
costs. The library example illuminates the constraints on the pathways by which users
retrieve information or make calls on system services. As explained below, this type of
constraint also involves a tradeoff between dynamic benefits and static costs. The french

fry example, while contrived, shows the importance of forethought about the manner in

32

which components are linked and the nature of requests for processing services. The
fighter jet example highlights the virtues of a componentized approach to the

development and testing of a new system-like product.
5.2 The Costs and Benefits of Componentization

Designing intelligently componentized software is difficult, time consuming — and
thus expensive. According to Microsoft’s Paul Maritz, componentized design “requires a
great deal of abstract thinking of a sort that human beings aren't naturally good at”.** It is
especially difficult to componentize an existing large-scale software product that was not
originally designed that way.

An ill-conceived decomposition can generate tremendous demands on the
microprocessor by increasing the number of calls between interfacing components. Even
with the powerful processing capability of today's computers, it is very easy to slow
execution dramatically. Thus it is not enough that software components work together;
they must do so in a way that avoids excessive demands on the overall system.

Even a well-designed decomposition can degrade performance. Maritz offers an
example involving the HTML “renderer,” which is essential technology for web
browsing.”> The HTML renderer functions as a distinct component within Microsoft's
Internet Explorer, but in Netscape Navigator the renderer is closely mingled with other
functionality and code. According to Maritz, this mingling of the HTML renderer with

other functionality in Navigator allows for faster processing than a componentized

design. As a consequence, Microsoft had to put more effort into streamlining operations

* Interview with the authors. See Chapter 4 in Cusumano and Yoffie (1998) for an account of the
difficulties that Netscape faced in the pursuit of a componentized design architecture for its Navigator and
Communicator software.

* Interview with the authors.

33

within the components of Internet Explorer in order to achieve processing speeds in web

browsing activities comparable to Navigator’s.

On the other side of the ledger, a componentized design delivers many benefits.

Some of these are obvious; others are subtle.

First, componentization facilitates code sharing across same-generation programs
and code reuse in new products. Code sharing has several benefits:

o It reduces the need to reinvent the same wheel for each program, thereby
economizing on development costs.

o Since the code has a longer useful life, developers have greater incentives to invest in
optimizing a component’s technical performance.

o By simplifying the interactions among blocks of software code, componentization
reduces product testing and debugging costs. This benefit is in addition to cost
savings afforded by the reuse of code that is already tested and debugged.

o Code sharing across products (e.g., Microsoft’s Word, Excel and PowerPoint) helps
to harmonize the user interface and other aspects of the user experience.**

Second, componentization makes it easier to integrate new functionality

45

into existing software by restricting and simplifying interactions within the program.

And when the introduction of new functionality does cause problems, a componentized

Cusumano and Selby (1995) sound similar notes in their discussion of Microsoft's approach to software
design architecture. For example, they write on page 235 that “Sharing helps to harmonize the "look and
feel" of different products; it also facilitates user tasks that require more than one application, reduces
redundant writing of code, and cuts down the size of individual applications.”

* Drawing on their interview with Microsoft developer Jon De Vaan, Cusumano and Selby (1995, page
245) provide a nice example of how software code that is not properly compartmentalized makes it difficult
to add new features. In their discussion of the “revert to save” feature in Excel 5.0, they write that “The
original procedure was very complicated, affecting as many as twenty different parts of the program. Since
people did not commonly use the feature, developers would often forget it existed and "break" the feature
when making an unrelated change. As a result, it has been historically riddled with bugs. De Vaan replaced
this with a much simpler design that centralizes the function in one place in the code, so that developers
working on other part of the system do not have to worry about it.”

34

design makes it easier to identify the source of the problem and fix it. This advantage
becomes more important as software products and systems become larger, because more
complicated systems increase the potential for unforeseen interactions that create bugs.
Hence, by simplifying and compartmentalizing design, componentization makes is easier
to handle modern systems with hundreds of thousands or even millions of lines of code.

Third, componentization makes it easier to maintain the “backward
compatibility” of platforms as they evolve.*® Recall the closed-stack versus open-stack
book retrieval analogy. The rearrangement of book stacks disrupts the pathways by which
library users retrieve books under an open-stack policy. Hence, users must “reprogram”
their “calls” on library services when the stacks are rearranged. Under a closed-stack
policy, however, library patrons continue to present book-retrieval requests in the same
manner as before. Likewise, computer users (or other software components) can
continue to present their requests to a redesigned software component, so long as the
component’s interface remains unchanged.

This advantage is especially valuable in a product like Windows that
serves as a platform for thousands of software applications. To attract users, after all, a

new Windows release must continue to serve as a platform for the existing stock of

“ The absence of a proper design strategy for maintaining backward compatibility can be disastrous for a
software firm. Shapiro and Varian (1997, page 194) make this point with a concrete example. “In some
cases, the desire to maintain compatibility with previous generations has been the undoing of market
leaders. The dBase programming language was hobbled because each new version of dBase had to be able
to run programs written for all earlier versions. Over time, layers of dBase programming code accumulated
on top of each other. Ashton-Tate, the maker of dBase, recognized that this resulted in awkward
"bloatware", which degraded the performance of dBase. Unable to improve dBase in a timely fashion, and
facing competition from Borland's more elegant, object-oriented relational database program, Paradox,
dBase's fortunes fell sharply.”

35

Windows applications.*” Componentization makes it easier to sustain the legacy even as
the system expands its functionality.

Fourth, componentization facilitates a small-teams approach to software
development by making it easier to break a project into discrete tasks. This benefit is
obviously more valuable in the development of large-scale products like software
platforms or integrated collections of software applications like the Microsoft Office
Suite. In fact, Microsoft places great emphasis on a small-teams approach to the
development of even the largest, most complicated software.**

The preceding discussion identifies some interesting tradeoffs in software design
related to componentization. First, there is a tradeoff between static efficiency and
dynamic efficiency — between short-run and long run advantages.* Intelligently
componentized software is more flexible in that it eases the integration of new
functionality into an evolving software system. However, a one-piece design may be less
costly to achieve and deliver faster processing.

Second, there is a tradeoff between scope and specialization. When the same basic
functionality is used in many related (but not identical) products and circumstances, there
is a greater payoff to the careful design of a single component that delivers the

functionality widely. Alternatively, when the functionality is required in essentially the

7 Brad Silverberg, then Senior Vice President at Microsoft, emphasizes this point in an August 1993
interview with Cusumano and Selby (1995, pages 167-168): “[Windows] 3.0 was pretty big and pretty
slow; 3.1 made a lot of improvements ... [But] at some point you can't break compatibility, either. It's the
interfaces. Some of them define the APIs through the applications. In some ways, if we could do them over
again, we know how we could do it so we could write the system faster. But once you have those
interfaces, you're pretty much locked. You can't just change them and break applications. A system like we
have, we don't own it; the ISVs [independent software vendors] own it. We [the Windows/MS-DOS group]
exist for one purpose, which is to run applications. And [if] you break an application, you don't have a
reason for being any more.”

* Cusumano and Selby (1995, especially chapter 2) develop this theme in rich detail.

* See Chapter 4 in Cusumano and Yoffie (1998), especially pages 194-196, for a discussion of the dynamic
tradeoffs that Netscape faced in the creation of modular design architectures for its software products.

36

same product and circumstances repeatedly, it becomes more attractive to embed it

within software dedicated to a narrower range of activities.
5.3 An Example

Consider the different internal designs of Microsoft's Internet Explorer and
Netscape's Navigator and Communicator software. Early on, Microsoft decided to pursue
a highly componentized design strategy for its web-browsing technologies.™ Netscape’s
browser software lacked the same degree of design modularity.”'

As explained by the CEO of Intuit, the maker of Quicken financial software, a
componentized browser provides the ability to show “an HTML frame within the context
of the user interface of our products,”? permitting a seamless experience for the users of
Quicken products.53 Basically, the user remains within the Quicken environment, even
when calling upon browser technology to retrieve information from the web. Early
browsing software did not have this capability.

Intuit faced this issue squarely in 1996 and early 1997.>* Netscape Navigator was
not componentized as of early 1997, which led to discussions between Intuit and
Netscape about the development of a componentized version of the then-leading browser.
The componentized nature of Microsoft's Internet Explorer technologies in Windows 95

became an important factor in Intuit’s decision to switch from Navigator to IE as its

%% See the Declaration of David Cole (November 8, 1997) in U.S. v. Microsoft for an informative
description of Internet Explorer's componentized design architecture.

>! See pages 183-185 in Cusumano and Yoffie (1998) on the contrast between the highly componentized
design of Microsoft’s Internet Explorer software and the design of Netscape’s Navigator and
Communicator software.

>2 Harris, 9/29/98 deposition testimony, pages 34-35.

>3 Harris, 1/4/99 p.m. live testimony, page 45.

% Harris, 1/4/99 p.m. live testimony, pages 9-12, and 9/29/98 deposition testimony, pages 34-36.

37

primary browser for Quicken products.” Intuit subsequently distributed some five
million copies of IE with 1997 versions of Quicken, Turbotax and Quickbooks.*®

Also in this period, America Online (AOL) sought to provide a “seamless
consumer interaction ... when [going] from one environment to another”, such as from
AOL's proprietary network to the web.”” Netscape’s browser technology required a
visible leap from one environment to another, whereas the componentized nature of IE
(which AOL adopted) allowed for a seamless experience.”

It’s clear, then, that the componentized design of IE made it more attractive to
some providers of complementary software applications and Internet services — and, in
the process, enhanced the value of Windows as a software platform. The examples also
illustrate how design flexibility allowed for the same basic functionality — browsing
technology — to be implemented in different ways that, in turn, had an important

influence on market outcomes.

5.4 Componentized Software: Why, Especially, at Microsoft?

Microsoft platform products like Windows and Windows NT and business
applications like the Office Suite are among the largest software systems offered by any
mass-market software vendor. Because a componentized design architecture facilitates a
small-team approach, it is especially valuable in the development and improvement of

these large software systems. Componentization also helps maintain backward

> Harris, 1/4/99 p.m. live testimony, pages 9-10.

>® Harris, 1/4/99 p.m. live testimony, page 75.

37 Colburn, 10/28/98 p.m. live testimony, page 37, and 10/29/98 a.m. live testimony, page 34.

3% Colburn, 12/9/98 p.m. live testimony, pages 37-40. Colburn speaks about an “integrated browser” as
providing the seamless user experience that AOL sought, but the context of his remarks make clear that he
is using this terminology to refer to the componentization of browser technology.

38

compatibility in the evolution of platform products.” Microsoft owns the most successful
commercial software platforms. It also has a larger, more diverse set of independent
software vendors writing to its platform than any other software firm.

In addition, Microsoft has the broadest line of software and the largest revenues
from software of any firm in the world. The company spends more on software
development than any other firm. Hence, it has the most to gain from code reuse, from
optimizing the inner workings of a software component and from harmonizing features
and performance across software products. The emphasis on componentization at
Microsoft has intensified over the past decade in line with the increase in its software
development efforts, the expanding breadth of its software product line and the increasing
scale and complexity of products like Windows and Office.*

This interpretation of Microsoft's approach to software development and design
also fits with the observation that Microsoft has become a leading developer of object-
oriented software design tools. These tools facilitate the use of a componentized design
strategy.

By the early 1990s, and perhaps earlier, Microsoft's approach to software
development emphasized several of the virtues associated with componentized design
architecture. In an August 1993 interview, Microsoft CEO Bill Gates stated that two key

principles for managing software development are “A development process that allows

> The costs of maintaining backward compatibility come through loud and clear in some remarks by Lou
Perazzoli, Software Engineering Manager for Windows NT in 1993. In the course of discussing Microsoft
efforts to incorporate Windows 3.1 features into Windows NT 3.0, Perazzoli states that in a typical week,
about 1,000 new bugs get opened. "And the question is, how the hell can anybody developing software
have so many bugs? It turns out that it is called “compatibility”. If we didn't have to be compatible with
Windows [3.1], we wouldn't have so many bugs." [As quoted on page 319 of Cusumano and Selby (1995).]
5 Microsoft's moves toward greater emphasis on modularity and componentization over time is a clear
theme in the discussions of Cusumano and Selby (1995), although they do not use the term

39

large teams to work like small teams” and “Product architectures that reduce
interdependencies among teams.”®!

Since the late 1980s, Microsoft has made a conscious effort to harmonize the user
interface, feature set and performance characteristics across its major software products.
Initially, this effort focused on external user-oriented aspects of software such as the user
interface and the content of pull-down menus. With time, though, code sharing and
functional integration received greater emphasis. This process is especially evident in the
MS Office Suite. Originally, Word, Excel and PowerPoint were independent products
with little or no shared code and limited integration. As discussed at length in Cusumano
and Selby (1995), much had changed by the mid-1990s. The Office products are now
closely integrated and share much of their code. What’s more, their ongoing development
is now closely coordinated. Seen in this light, the move toward componentized design at

Microsoft is one step in a long-term effort toward greater harmonization of features and

greater functional integration across software.

6. Efficient Management of Interacting Features and
Components
6.1 Simplifying the End-User Experience

To perform properly, technologically advanced products often require complex
coordination of many interacting components. Achieving the necessary degree of

coordination presents challenges in design, installation and operation. Most consumers,

“componentization”. Paul Maritz and James Allchin confirmed this move in the course of our interviews
with them.
8 Cusumano and Selby (1995), page 25 and, also, page 237.

40

however, place a high premium on ease of use, even for products that depend on arcane
technology. They want no-fuss installation, push-button performance and automated
management of interacting components. When problems arise, they expect quick

solutions.

It should be no surprise, then, that, many product improvements are responses to
customer demand for ease of use. Examples include cable-ready televisions, integrated
home stereo systems, factory-installed automobile air conditioners, fax-copier machines,
internal PC modems and PC distributors who pre-install the OS and other software. As
these examples suggest, greater ease of use often involves the integration of distinct

components that could be sold separately.

Consider the example of automobile air conditioners. When they first became
available, air conditioners were installed by the auto dealer or by a specialized firm hired
by the dealer. Problems were common and often involved the interaction between the air
conditioner and components of the automobile engine. For example, cooling systems
designed for cars without air conditioning often boiled over when subjected to the added

demands of an air conditioner.

Other potential interaction problems were more subtle or specific to certain
engine designs. A/C compressors have very high peak power requirements, which can
stall the engine. A slippable connection between the engine and the A/C compressor
such as a belt-drive can solve the problem. But with a rigid coupling - such as a gear
system — serious problems arise if the A/C compressor clicks on when the engine is
already under high load. By the same token, diesel engines have a different power curve

from gasoline engines and different acceleration characteristics. So it may be necessary

41

to shut the A/C compressor off in diesel-powered vehicles during warm-up and
acceleration. Gasoline engines, by contrast, rarely require this type of regulation of the

air conditioning system.

Because of such complications, the availability of “factory air” became a big
selling point for automobile manufacturers. While “factory air” was often still installed
by the dealer, the system was designed to the automaker’s specifications and carried the
automaker’s warranty. Automobile cooling systems were beefed up to account for the
added load, and boil over problems — common in the 1960s — became a thing of the past.
Today, car buyers take all this for granted. They buy a car, push the “A/C ON” button,

and it works.

The preceding remarks can be distilled into three assumptions that inform a theory

of product integration:

(1) Customers and dealers have a limited capacity or desire to manage

the complexities generated by interacting components.

(i1)) Greater ease of operating the product often involves the integration

of distinct components that can be sold separately.

(i) Integration requires up-front design costs beyond initial product

development costs.

Two other factors influence the timing of integration:

42

(iv) When a new product or feature is introduced, performance, cost and
demand are initially uncertain. The uncertainty may involve the
ultimate level of consumer acceptance, which version of the
product will ultimately achieve the greatest commercial success and
technological performance, and the size of up-front design costs

required for seamless integration.

(v) The demand for a successful new product grows over time as
information about its availability, characteristics and performance

diffuses among the base of potential users.

Assumption (i) implies a latent demand for integration, but not every new feature
or product will eventually be integrated into a larger system. Other things equal,
integration is more attractive to the manufacturer of the system product — and likely to
generate greater social gains — when more buyers use the stand-alone feature or product,®”
when the design and production costs of integration are lower, and when the stand-alone

feature interacts with other features of the system in a complicated way.

Uncertainty about the technical performance of a new product and its interaction
with system components creates an incentive to delay integration. As technical problems
are identified and resolved this concern diminishes, so that integration becomes more
attractive. Both from the perspective of economic efficiency and the system
manufacturer's profitability, technological uncertainty adds value to the option of waiting

to integrate. This “option value” arises because a manufacturer incurs irreversible costs

52 In some cases, the stand-alone product may be unpopular because it is difficult to use (e.g., TCP/IP), but
a smart developer can foresee that it would be popular if integrated.

43

when it commits to one approach to design and integration. The costs may involve direct
expenditures, or they may take the form of harm to the system manufacturer’s reputation
for quality and reliability if the newly integrated feature performs poorly or interferes
with other system components. By retaining the option to select its approach to

integration, the manufacturer leaves room to act on information not yet available.

In short, the option value of waiting induced by technological uncertainty reflects
two issues: (a) whether integration involves acceptable performance gains relative to the
cost of achieving integration and, (b) when more than one technical option is available,
how best to integrate the new product. Of course, this option value is not the only
consideration that governs the timing of integration. If the benefits of integration are
large or the up-front costs of integration are small, early integration becomes more

attractive.

Uncertainty about demand for the new product also induces an option value of
waiting to integrate. This option value of waiting reflects two issues: (a) whether demand
is sufficiently high to justify the fixed integration costs, and (b) which version of the new
product or feature to integrate. Of course, as demand-side sources of uncertainty

diminish, integration becomes more attractive.

Even when eventual integration is assured, delay may be rational. Both technical
uncertainty about how to integrate and demand uncertainty about which version to
integrate encourage delay. Even when there is no technical or demand uncertainty, a pure
“discounting” effect — the time-value of money invested — encourages delay if the up-

front costs are high relative to the initial rewards from integration.

44

Hence there are strong economic incentives to postpone integration until (a) kinks
and performance problems in the new product are identified and resolved, and (b)
demand for the new product is revealed to be sufficiently high to justify the costs. Large

benefits and small sunk costs encourage earlier integration.

This type of theory delivers the following stylized introduction-innovation path

for new products:

Favorable Product
Revelations About Integrated
Technological and —— [pto
Demand System
Uncertainty

New Product

Introduction
Unfavorable Product

Revelations About Not
Technological and

Integrated
Demand Ino
ncertainty System

The theory also points to a potentially important complementarity between the
integration of existing features and products into a system and the development of new
stand-alone products that interact with the system. The integration of existing products
into a computer OS, for example, economizes on the limited capacity of users and dealers
to manage interacting components. Integration thereby opens the door to the
development and introduction of additional non-integrated products. For example, the

integration of better support for video display hardware and software into the OS

45

simplifies the use of video-intensive applications and encourages the customer to make

greater use of non-integrated products like scanners and digital cameras.®

In the extreme scenario in which customers and dealers have a fixed tolerance for
managing interacting components, halting integration eventually stifles the development
and introduction of new products. In this regard, it is striking that despite the automation
of everything from the clutch to the choke to radio tuning, the modern automobile has
about as many user-operated controls as the earliest autos. Drivers, it seems, will put up
with just so much distraction when they are in motion. Moreover, even if there is no
absolute upper bound on the capacity of consumers and dealers to manage interacting
components, assumption (i) implies that integration of existing products into a system

increases the demand for new non-integrated products that make use of the system.

6.2 Facilitating Applications Development

We can summarize the foregoing theory: Product integration simplifies end-user
experience by helping to manage the interacting components in a system product. We
now sketch a parallel and complementary theory that focuses on how integration
facilitates the development of new applications for the system product. In the case of
computers, the integration of key software building blocks (APIs) into the PC operating

system promotes innovation and product variety by reducing the cost of innovation.**

The key assumption in this theory of how OS integration facilitates applications
development is analogous to assumption (i) above: Software applications developers have

a limited capacity or desire to manage the complexities generated by interacting software

% See Boyce (1998) for an evaluation of the integration of new features into Windows 98.
% This sort of integration also facilitates the on-line distribution of software products, a point we take up
below.

46

and hardware components. Other assumptions in this theory parallel assumptions (ii)-(v)

above.

Most developers of software applications focus on “high-level” design and
functionality while leaving critical but routine tasks such as file management, memory
management, graphical displays, and video and audio management to the operating
system. This division of labor relieves developers of the need to re-invent the wheel in
each application and allows them to focus on their areas of expertise and commercial

interest.

Specialization at this broad level is reflected in the often-drawn distinction
between “systems programmers” and “applications programmers.” The distinction is
usefully applied to firms as well as individuals. Norton, for example, is a successful,
well-respected software firm that mostly employs system programmers and specializes in
operating system functions. Corel, another respected software firm, mostly employs

applications programmers and focuses almost entirely on applications-oriented software.

Many software developers are highly specialized in a particular application

- e.g., financial analysis, architecture, electric power distribution or laboratory
automation — and they focus on specialized aspects of their field. Their knowledge, when
embodied in software applications, is often the main source of added value and
commercial viability for their products. For example, the local power company buys a
computer-aided design package from AutoDesk primarily because of the expert
knowledge embodied in the software, not because the CAD package offers better

standard features (e.g., toolbars) than other software products.

47

Likewise, the incorporation of TCP/IP and other popular networking protocols
into Windows provides independent software vendors a larger standard set of system
services to leverage into specialized applications. Because the Hypertext Markup
Language (HTML) has become a standard for web applications, its use by the Windows
Help facility in place of a proprietary language makes it easy for developers to code

sound and video into Help files and to provide Help links to the developer’s web site.

This efficient division of labor among software developers implies that the
integration of richer support tools into the OS leads to better, less costly software
applications. Software developers know they can design applications with Internet
Explorer functionality in mind because the IE technologies are integrated into the
Windows OS. In addition, as explained in Section 5, the “componentized” nature of IE

technologies affords greater flexibility in program design.

Thus, an applications program can call on the HTML display facility of the
browser interface — one component of the IE technologies — whether or not the computer
user is on the Internet. Alternatively, by calling on other components of the IE
technologies, an applications program can execute Internet transactions without
displaying web pages or making any activity visible to the user. Intuit’s Quicken is now
designed so that a Windows user can access the latest interest rates and stock prices from
the Web without leaving the Quicken application. This unobtrusive use of components of
the IE technologies is more convenient than retrieving the same information by initiating

a browser shell program with a separate user interface.

For another indication of how the integration of software into the PC operating

system facilitates specialization and product variety, consider some responses by

48

software developers to improvements in IE technology that were integrated into
Windows 98. According to Business Week “at least four new browsers” that ride on top
of IE were introduced shortly after the release of Windows 98.%° Because Microsoft has
built the complex software into Windows needed to run Java applets, display graphics,
play audio and video and perform other tasks expected of browsers, even the simplest

browser built around IE technology can do these things.

In this way, OS integration gives product developers stronger incentives to
create specialized browsers. IBM’s Lotus Development, for example, has developed a
browser built on IE technology that “works well and has a distinctive Notes look™.
Similarly, MediaLive has developed Surf Monkey, a “kid-safe” browser using IE

technology.®®

Note, too, that the integration of software building blocks into the PC operating
system makes on-line distribution of new software faster. Business Week offers the
example of the stand-alone Netscape Communications’ Navigator browser, whose 8§ MB
of code take at least 45 minutes to download on a 33.6 kilobit-per-second connection. By
contrast, Bigfoot’s NeoPlanet Browser, which makes use of I[E components that are
already part of Windows, occupies just 791 KB and can be downloaded in five minutes.
Consequently, the wide dissemination of IE technology through OS integration increases

competition and innovation in browser shell programs.

Basically, OS integration reduces the cost of innovation in the applications

market. This positive effect on the supply side of innovation adds to the demand-side

% Wildstrom (1998).

49

effects discussed above, whereby OS integration opens the door to new PC applications

by simplifying the use of interacting components in a computer system.

OS integration is also a useful way to standardize the computing and software
development environment. Furthermore, by facilitating on-line distribution, it reduces
the cost of distributing applications products. On-line distribution is especially important
for specialized software products that are unlikely to be carried by traditional retail

outlets.

Regarding which software building blocks become integrated into the OS and
when, it should be clear that an analysis parallel to the one developed in the preceding
section applies here as well. For example, once a platform supplier publishes a set of
APIs that developers come to rely on, it becomes costly to remove the APIs or to alter
them in ways that damage backward compatibility. Hence, a platform vendor has strong
incentives to postpone the introduction of new APIs until he is confident about both their

usefulness and his ability to offer continued support for the APIs as the platform evolves.
6.3 Reducing Customer Support Costs

Another motive for integrating stand-alone elements into the OS is the desire to
hold down customer support costs. For many software firms, customer support is a major
cost of business and, in a world of dirt-cheap CD-ROMs, the main incremental cost of

selling software.

% The creation of custom browsers is explicitly taught in the Microsoft documentation on IE4. Chapter 11,
pages 135-145, in Microsoft (1998) describes the WebBrowser Control, from which custom browsers can
easily be built.

50

This point comes through loud and clear in Microsoft's experience with customer
support.®” As of the early 1990s, Microsoft was fielding about 60,000 customer support
inquiries per day, including 20,000 phone calls that had to be handled by product support
engineers. Microsoft personnel in the customer support division actually outnumbered the

68
firm’s software developers.

Microsoft answered one customer support call for every three software units sold,
at an average cost of twelve dollars each. At that rate, just a few calls from a customer
can wipe out the profit from selling most software products, even before factoring in
development costs. As of 1993, in fact, customer support costs equaled 20 percent of the
gross revenues from Windows and 25 percent from Windows NT. Most calls came from
customers who had purchased the software within the previous 90 days, and about half of
these “relate to setting up or installing the software...printing, usage of new or changed

features, the operating environment, and interoperability with other products.”®

This stark reality encouraged Microsoft to focus on design advances that would
reduce customer support calls and costs. These innovations drew heavily on usability
studies for new software products along with detailed statistical summaries of the

problems that prompted support inquiries.”

The careful integration of software functionality into the OS can dramatically

reduce the costs of customer support. Consider, for example, what it took for a PC user

%7 This paragraph draws on pages 224 and 362-370 of Cusumano and Selby (1995).

% According to remarks by Mike Maples, former Microsoft Vice President, as quoted in Cusumano and
Selby (1995) on page 367.

% This quotation is from page 365 in Cusumano and Selby (1995), who cite a document titled “Case Study:
The New Microsoft Support Network.”

7 Cusumano and Selby (1995), pages 375-384. Our interviews with Hillel Cooperman and other Microsoft
personnel indicate that intensive usability studies have become an even more important input to software
design decisions at Microsoft in recent years.

51

to get on-line in, say, 1993. The user had to acquire and install an operating system, a
modem, a browser or other Internet software, an Internet provider, an Internet account
and a TCP/IP “stack.” He also had to enter the appropriate parameters and data for each
piece of software and hardware. Getting on-line required that all the information be
entered correctly and that all the pieces worked together properly. As many who
undertook this task can ruefully recall, getting on-line also required innumerable calls to
customer support centers. By contrast, the integration of these elements into modern
operating systems like Windows and MacOS 9 allows today's PC user to stroke a few
keys to get on-line the first time. At Microsoft, and no doubt other firms, this type of OS
integration has dramatically reduced the resources devoted to helping customers connect

to the Web and other networks.”"

The integration of the HTML-based Help system into Windows 98 was also
motivated, in part, by the desire to reduce customer support costs. Frequent web
references point users to documents that provide background, examples, technical
information and links to other web-based information sources. This system can be used at
all levels of the software development hierarchy — OS tools, applications and company-

based Intranet software.

Not all stand-alone elements will eventually be integrated into OS products. As
discussed earlier in the chapter, integration becomes more attractive as the use of the
stand-alone element increases, when integration leads to lower design and production
costs, and when the stand-alone element interacts with the other elements of the OS in a

complicated way. This section simply adds another potential benefit that must be

" Personal communication with James Allchin.

52

weighed against the costs. In parallel with our earlier discussion, the timing of
integration is influenced by uncertainty regarding the magnitude of customer support

costs and how integration might most effectively reduce such costs.

The demand for OS integration can also arise from customer preferences for
dealing with a single vendor - especially in cases where there are many interacting
components in a complex system. Computer software systems can be extremely
complicated, sometimes involving several sub-systems with a million lines of code
each.” When problems arise, customers want to know where to turn for solutions. And

when a single seller supplies all the components, the answer is clear.

Early users of microcomputers had to assemble the systems, piece by piece. No
one, except for an occasional “techie”, attempted the task without assistance from
customer support centers. If something went wrong with the computer after assembly,
the user had to determine which parts vendor to contact for advice before he could even
hope to return the computer to working order. Altair was the first to build a
microcomputer system that included a power supply, motherboard, CPU, memory, I/O
and OS (BASIC interpreter). The present-day predominance of this form of integration
suggests, among other things, that customers highly value the opportunity to buy all the

pieces assembled and supported by a single vendor.

Or consider a more personal example. One of us (MacCrisken) worked as the
Data Base Administrator for Intel in the early 1980s. During that period, Intel

experienced a variety of network performance problems, which often involved the

> The complexity of microcomputer OS software has increased dramatically over time. MS-DOS 1.0 was
designed for the original IBM PC in 1981 and had about 4,000 lines of code, MS-DOS 3.0 was designed

53

interaction of the mainframe OS, the communications software and the network
hardware. Fortunately for Intel, all of these products came from IBM. So when

problems arose, Intel called on IBM - and the buck stopped there.

However, if a customer buys routers from Cisco, computers from Dell, modems
from 3Com and the components don't interact properly, what options are open to the
customer? Too often the choice is between bouncing from finger-pointing vendor to

figure-pointer vendor, or hiring a third party troubleshooter to solve the problem.

Sometimes, the customer's demand for a single vendor can be met by the
integration of additional features into a computer's operating system. This permits the
seller to test the integration exhaustively before putting the components on the market,
and it assigns clear responsibility for the failure of interacting components to work
together. Less-informed and less-sophisticated computer users are especially likely to
value the acquisition of software products from a single firm with a well-established

reputation for quality and customer support.

7. Demand-Based Motives for Software Bundling

Software is frequently bundled in the sense that multiple features or applications
are packaged together or distributed jointly. Often, one or more items in the bundle are

(or were) previously sold as separate products.

for the IBM PC/AT in 1984 and had about 40,000 lines of code (Ichibiah and Knepper, 1991, pp. 252-253),
and Windows 95 has about 11 million lines of code (Reid 1997, p. 149).

7 See, e.g. McCartney (1986). In discussing the pros and cons of using more than one vendor for a
computer system, the writer reports that “when a problem develops on a multi-vendor network, suppliers
tend to pass the buck.” And, “no one takes responsibility.”

54

A few examples highlight the ubiquity of software bundling. PCs often come
bundled with a large collection of software applications at no extra charge. Adobe,
Corel, Lotus, Microsoft, Norton and other software firms often bundle stand-alone
applications together in “suites” or multi-feature packages. PCTools, for example,
offered a large collection of distinct software features on a single CD-ROM. And
software vendors routinely bundle large collections of utilities and features with OS and
platform products. In 1993, for example, Microsoft Windows for the first time included
disk compression features similar to Stac's Stacker and fax functions similar to Delrina's

WinFax product (Markoff, 1996).

As some of these examples suggest, the joint distribution of software features and
applications often takes place even when there are no technical benefits or cost savings
from code-level integration. In line with this observation, we show that demand-based
effects alone can provide powerful motives for software bundling. We also explain why

software bundling motivated by demand considerations leads to economic efficiency.

Before developing the economic logic of bundling, some preliminary remarks
help place this section’s analysis in proper perspective.”® First, demand-based motives
for software bundling are distinct from, but fully consistent with, the motivations for OS
integration discussed in earlier sections. Second, the benefits of bundling can be achieved
by any method of joint distribution, including integration. As a practical matter, a mix of
technological, timesaving and demand-based factors may motivate the integration of
particular software functionality. But for analytic clarity, we emphasize purely demand-

based motives in this section. Third, demand considerations can lead a profit-maximizing

™ See Shapiro and Varian (1999, pages 73-79) for a broad, introductory perspective on bundling.

55

firm to offer certain software applications at a zero or negative price. When this occurs,
even a tiny technological benefit or cost saving makes integration the preferred strategy

for achieving joint distribution.

7.1 Complementary Demand with the Operating System

The zero-price bundling and integration of certain software features with
Microsoft’s Windows OS has been criticized as predatory and anti-competitive.” It is
important to recognize, however, that the most basic theory of pricing by a multi-product
firm with downward sloping demand points to a very different explanation for this
behavior - an explanation which implies that zero-price bundling of software applications

with OS products is a socially beneficial form of competition.

Start with the standard theory of pricing for a firm that sells multiple products
with complementary demands. Two products are said to be complements when greater
sales of one stimulate demand for the other. As an example familiar to many parents,
sales of Barbie dolls stimulate the demand for Barbie clothes. After reviewing the pricing
implications of complementary demand, we apply the logic to the bundling of OS and
applications software. We then consider some implications of complementary demand for

market structure and consumer welfare.

Consider a multi-product firm with downward sloping demand for each product.
To focus on demand-based explanations for bundling, assume that production costs are
unrelated across products. Also, set aside the motivations for product integration treated

in earlier sections. To further simplify the exposition, assume that all of the firm's

> For example, see the Complaint filed by the U.S. Department of Justice on May 18, 1998 in U.S. v.
Microsoft and the Plaintiffs' Revised Proposed Findings of Facts filed on August 10, 1999.

56

products are complements, so that greater sales of any one product increase demand for

the others.

Under these conditions, complementary demand encourages the multi-product
firm to set lower prices than would a collection of independent firms, each selling a
single product. The logic is straightforward: a lower price on any one product generates
additional sales of that product and all products with complementary demands. A multi-
product firm internalizes this demand spillover onto the complementary products, while
independent single-product firms do not.”® In fact, complementary demand can lead the

firm to price some products below marginal cost.

This point can be demonstrated by means of a simple model. Assume that the firm

sells two complementary products with linear demand curves,

g9, = a,—bp, —dp,

g, = a,—b,p, —dp,,
where ¢ and p denote quantities and prices, and the a, b and d parameters describe
demand. Positive values for a and b imply positive, downward sloping demand curves,
and a positive value for d corresponds to the case of complementary demands. Assume
that d is less than b; and b,, so that own-price effects dominate. In addition, assume that

the firm produces and sells each product at constant marginal costs denoted by ¢; and c;.

Consider a numerical example in which the first product has bigger demand. The

following parameter values fit this situation: a; = 100, a;= 50, by =b,=1, c; = c> = 10,

"® Tirole (1988) treats the pricing behavior of multiproduct firms with interdependent demands at length.
He also provides extensive references to the relevant literature. Portions of his treatment in chapters 1 and 3
are especially pertinent to the discussion at hand.

57

and d = .5. With these values, profit maximization yields the prices, p;=55 and p,=5."
The firm prices good 2 below marginal cost in order to generate more profits by

stimulating additional sales of good 1.

Now apply this logic to Microsoft's bundling of OS and applications software.
The complementarity requirement certainly holds in this case, because Microsoft's PC
software applications typically run on computer platforms that make use of its Windows
OS products. So sales of PC applications software stimulate demand for Windows, and
vice-versa. To understand why complementary demand easily leads to zero-price
bundling of applications software, it is important to recognize that the marginal cost of
software sales may be quite low.”® If we modify the previous example so that marginal

cost is zero for each product, the profit-maximizing prices become p;=33.3 and p,=0.

Zero marginal costs are not necessary for a zero price outcome, although low
marginal costs make such an outcome more likely. If we modify the numerical example
so that a,=20 and retain the assumption that marginal cost equals 10 for each good, the
firm’s profit-maximizing prices become p;=65 and p,=-15. The relatively low demand
for good 2, coupled with complementary demand and low (but positive) marginal costs,

leads the firm to set the price of good 2 below zero in order to stimulate sales of good 1.

In practice, a negative price may or may not exploit complementary demand any
more effectively than a zero price. If a negative price can be conditioned on actual use,

then the firm can earn more profits in the preceding example by paying others to use

77 The mathematical supplement to Davis and Murphy (2001) derives expressions for the profit-maximizing
prices.

¥ The marginal costs of software production (i.e., replication) and distribution are often quite low, but
customer support costs are high for many software products. So the full marginal cost is low for some, but
certainly not all, software products.

58

product 2. Alternatively, if paying someone to take possession of a product provides no
guarantee or incentive that he will actually use it, there is no point in offering the product
at a negative price. Instead, by distributing the product at no charge, the firm maximizes
product usage (and any effects of complementary demand) without incurring the
additional expense of paying customers to take possession. Taking this observation into
account and setting p,=0 in the example with a,=20 leads to a profit-maximizing price for

the first good of p;=57.5.

Adobe has pursued this pricing strategy for complementary software products
with great success. As Shapiro and Varian (1999, page 254) observe, Adobe allowed its
portable document format (PDF) to “become an open standard but cleverly exploited the
complementarities between creating and viewing a document. Adobe charged for the
PDF creation software, while giving away the viewing software.” Adobe successfully
pursued a similar strategy with its Postscript page-description language and related

software products.

Although extremely simple, the theoretical examples capture three salient aspects
of the pricing and bundling of OS and applications software. First, OS and applications
software are complementary in use. Second, marginal costs (of production, distribution
and customer support) are quite low for many types of software. Third, the demand for
OS software is typically greater than the demand for a particular applications product.
The third point, in particular, indicates that OS products play the role of good 1 in the

numerical examples, and applications play the role of good 2.

59

We have now developed a simple explanation for the zero-price bundling of
software features or applications with the OS that does not involve any dynamic or
strategic considerations. Nor does it involve any direct technological or timesaving
benefits of integration or reductions in customer support costs of the sort highlighted in
earlier sections. Instead, the key elements in this explanation are low marginal costs for
the bundled feature and complementary demand with the OS. Other things equal, zero-
price bundling is more likely for complementary goods that have relatively low

demand.”

Two additional cost factors reinforce this complementarity motive for zero-cost
bundling of software applications and features with the OS. First, this method of
bundling is more convenient for the consumer than any other distribution method because
it eliminates the time and effort associated with acquiring and installing the zero-price
item.* Second, this form of bundling is also less costly for the software firm than other
forms of distribution. There are no separate distribution costs and no customer support

costs related to installation.

Other aspects of Microsoft's pricing behavior lend support to this interpretation of
zero-price bundling with the OS. In particular, Microsoft has been a price-cutter in many
software application categories such as CD encyclopedias, web browsers, personal
financial planning and core business applications.®’ This behavior is a natural

consequence of Microsoft's broad software product line, given that distinct categories of

PIn fact, with zero marginal costs, (@, /a,) > (b, /d) is a necessary and sufficient condition for p, <0

in the two-good model.
% The relevance of this point is borne out in testimony by IBM's Director of Network Computing in U.S. v.
Microsoft. See the deposition testimony of John Soyring, pages 165-166.

60

software applications are complements in use and, especially, the strong complementarity
between Microsoft’s OS products and its software applications that run on the OS.
Complementary demand across product lines gives Microsoft a stronger incentive than its
competitors to set low prices, even when it has the same development and production

costs and the same degree of market power for particular software products.™

7.2 Implications for Market Structure and Consumer Welfare

Whether it involves zero-price bundling of features with the OS or lower prices
on stand-alone products, this type of behavior improves economic efficiency and helps
consumers. The incentive for a multi-product firm to set lower prices in the face of
complementary demand leads to higher output, more consumer benefits and greater

economic efficiency.*

Indeed, in the simple two-good model, consumers are unambiguously better off
when a single, integrated firm sells both products than when a different firm sells each
product. What's more, total profits are higher with a single, integrated firm. Since profits
are higher and consumers are better off when a single firm sells both goods, economic

efficiency must also be greater.®

Complementary demand (4>0) is the critical assumption that underlies the
favorable effects of the single-firm market structure on consumer welfare and economic

efficiency. While our mathematical model is highly stylized, the economic logic of

#1 See Liebowitz and Margolis (1999), especially pages 154-157, for some systematic evidence. Khanna
and Yoffie (1996) discuss how deep discounting on Microsoft's Office Suite helped bring about a steep
decline in the price of business applications software during the 1990s.

%2 We develop this point more fully in Section IX of Davis, MacCrisken and Murphy (1999). Shapiro and
Varian (1999) also emphasize this point. See their chapter 6, especially page 162.

% This point regarding complementary demand is closely related to standard arguments about the social
benefits of vertical integration when both upstream and downstream firms exercise market power.

61

complementary demand is general, and the model carries important implications for

thinking about market structure, efficiency and consumer welfare in software markets.

To appreciate some of these implications, consider the evolution of the software
market during the 1990s. Many commentators remark with a tone of concern, even alarm,
that Microsoft has become the leading vendor for many business and consumer software
products during the 1990s.** One source of this concern is a perception that Microsoft
enjoys an unfair competitive advantage over other software firms because of the

tremendous success of the Windows platform.

Without pretending to address this issue in full, we can garner some important
insights by applying our analysis to the question of market structure and consumer
welfare. To that end, suppose that two complementary products - let us call them OS and
WB - have been developed by separate firms. The demand structure and marginal costs
of production are the same as above. Initially, the two firms independently price and sell
their products. Recognizing that the action of each affects the other, the two firms behave
strategically in the manner of Bertrand (prices as strategies) or Cournot (quantities as

strategies).™

We have already established that total profits are higher when a single, integrated
firm sells both products. Hence, the two firms have a strong incentive to merge. Under

the assumptions set forth here, a merger would be profitable for the firms and beneficial

% The mathematical supplement in Davis and Murphy (2001) contains a precise statement of these claims
and a proof.

% See, for example, the remarks on pages 37-38 by Katz and Shapiro (1999), two prominent and highly
respected economists with extensive backgrounds in industrial organization and antitrust matters. Their
tone is one of concern, not alarm.

% The mathematical supplement in Davis and Murphy (2001) spells this out explicitly and derives explicit
solutions for prices and quantities in the Bertrand and Cournot cases.

62

for consumers. Nonetheless, suppose that the two firms do not merge, because other
aspects of their businesses do not mesh well, or perhaps because of opposition by the

antitrust authorities.®’

In the absence of a merger or acquisition, each firm might subsidize the price
charged by the other. In this manner, the two firms could try to internalize the demand
complementarity without actually merging. Firms sometimes do enter into mutual
promotion agreements that contain cross subsidies of this sort. Of course, if this option
were a perfect substitute for merging, there would be no incentive to merge. In practice,
though, inter-firm subsidies often run into serious practical problems. If the OS firm
subsidizes the sale of WB, the WB firm may respond by expanding into market segments
that are not especially helpful to the OS firm. Practical problems with this type of subsidy
arrangement are apt to be especially severe when the net-of-subsidy price for WB is zero
or negative, as in some of our numerical examples. An even more basic problem with the
cross-subsidy solution is that it does not confer common ownership and control. The two
firms may have imperfectly aligned incentives over how to market or design their
respective products. Thus, even if a successful cross-subsidy arrangement is feasible,
there will remain incentives to bring the two complementary products under common

ownership and control.

%7 Opposition by the antitrust authorities in the presence of important demand complementarities is quite
plausible. In 1994, the U.S. Department of Justice denied a proposed acquisition of Intuit by Microsoft.
Intuit sells the popular Quicken line of software, which was and is the leading personal finance software for
PCs. Intuit's line of software products is highly complementary to Microsoft's operating system software.
Nonetheless, the DOJ denied the proposed acquisition, because Microsoft Money was the leading
competitor to Quicken. See Katz and Shapiro (1999). To take another example, it is highly unlikely that the
DOJ would have acquiesced to a Microsoft acquisition of Netscape in 1994 when Microsoft had no
browser, or in 1995 when Microsoft's Internet Explorer was clearly inferior to Netscape's Navigator.

63

This brings us squarely to the issue of market entry. We tailor our assumptions so
that the analysis speaks to government claims in U.S. v. Microsoft. Let us rule out cross-
firm subsidies and consider four specific assumptions. First, the two goods are initially
owned and sold by separate firms. Second, it is costly for the OS firm to develop its own
version of WB but much more costly for the WB firm to develop its own version of OS.
Third, the demand structure and marginal production costs are such that it is profit
maximizing for an integrated firm to sell WB at a zero or negative price. Fourth, demand
is great enough so that entry into the WB market is profitable for the OS firm. These four
assumptions reflect key aspects of the market situation circa 1994 as it pertains to
Microsoft and its Windows OS, on one hand, and Netscape and its Navigator web

browser, on the other hand.

Given these assumptions, the OS firm finds it profitable to develop its own
version of WB, although the development costs are quite high. After incurring these large
development costs, it then proceeds to give away its version of WB at no charge. It may
even pay others to distribute WB or pay consumers to use it. This course of action
obviously harms the firm that originally developed the WB product. Indeed, in our

stylized model, the OS firm drives the original WB firm out of the market.

On first encounter, the decision by the OS firm to spend large sums to develop a
“zero-revenue” product might appear anti-competitive or predatory. The government has
drawn just such inferences in U.S. v. Microsoft from facts that parallel the assumptions in
our stylized analysis. Indeed, the government's chief economic expert in the case draws
the conclusion that “Microsoft had monopoly power, and its bundling and related actions

‘made no business sense’ save for the protection of that power.” (Fisher, 2000, page 183)

64

But it is clear from our analysis that even the most basic two-good model of
complementary demand delivers a simple, pro-consumer interpretation of Microsoft's
behavior regarding the development and pricing of Internet Explorer. There is nothing
esoteric about this explanation - no strategic or dynamic considerations are at play. Just

basic economics.

If this complementary demand interpretation of Microsoft's pricing behavior is
correct, Microsoft's large and broad presence in software markets has highly beneficial
effects for consumers and overall economic efficiency. By the same token, breaking
Microsoft into an OS company and a separate software applications company, as the trial
judge ordered in U.S. v. Microsoft, would lead to lower output and higher consumer

prices in both market segments.

7.3 Complementarities with other Sources of Profits

Another simple demand-based explanation for zero-price bundling emphasizes
complementarities with profit opportunities in other markets, rather than complementarity
in use with the OS. To borrow Klein’s (1999) terminology, product A has “negative
marginal costs” when its adoption and use by customers generate additional profits for
the firm in other markets, say B and C, that exceed the marginal costs of producing,
distributing and supporting product A. In principle, this form of complementarity can
arise even when there is no direct complementarity in use between product A and
products B or C. In practice, “negative marginal costs” may reinforce the bundling
motive that stems from direct complementarity in use.

Web browsers like the IE browser shell and Netscape Navigator are examples of

software with this potential. Greater use of Navigator, for instance, increased traffic flow

65

on Netscape’s web site, which enabled Netscape to earn more from web advertisements
and from commissions on Internet commerce.®® The commissions arise in connection
with revenue-sharing agreements that Netscape made with firms that sell products and
services over the Internet. Netscape earned a commission on the sales that resulted when
Navigator directed web traffic to another firm’s web site.

This type of revenue-sharing arrangement is an important aspect of Internet
commerce and is by no means limited to web browsers. For example, AOL and Yahoo!
generate revenue through such agreements. PC manufacturers Compaq and Gateway
have also taken steps to generate revenues from Internet commerce in connection with
their OEM sales. These PC makers redesigned their keyboards to give prominent
placement to the web sites and services of their on-line partners. When a customer uses a
Compaq PC to access AOL, for example, Compaq gets a share of the customer’s monthly

AOL fees (Ramstad, 1998).

Klein (1999) stresses negative marginal costs of this sort in his explanation for
Microsoft’s vigorous efforts to distribute its browser software through zero-price
bundling and integration with its OS products.* This negative marginal cost feature of
browsers reinforces the complementarity motive for zero-price bundling that we
developed above. In other words, negative marginal costs and complementarity in use
with OS products are distinct forces that favor zero-price bundling. Either force alone can
lead to zero-price bundling. When both forces are in play, the demand-based motive for

zero-price bundling or integration with the OS becomes stronger.

% See Cusumano and Yoffie (1998), pages 36-38, 149-151, 200-201 and 325-328.
% Klein uses the term “packaging” to refer to bundling motivated by demand complementarities in use with
the OS.

66

We think Klein overstates the role of “negative marginal costs” in Microsoft's
decision to distribute Internet Explorer at no charge. Microsoft, unlike Netscape,
generated little revenue from advertisements and commissions earned in connection with
customer flow through its web portal. Furthermore, Microsoft's decision to componentize
the design of Internet Explorer involved a sacrifice of potential portal-related revenues,
because the componentized design made it easier for other companies to use IE
technologies to build their own browsers and thereby direct customers to non-Microsoft

web portals.”

Nonetheless, we agree with Klein's basic point that web browsers are highly
complementary with other sources of profits. Prominent examples include Netscape
itself, AOL and other online service providers, Internet aggregators likeYahoo!, and
Internet retailers like Amazon.com. For this reason, it seems likely that the price of web
browsers would have gravitated toward zero regardless of whether Microsoft had pursued
a zero-price policy for Internet Explorer. Microsoft’s actions simply accelerated the

process.

Two additional remarks clarify the relationship between the negative marginal
cost and complementarity-in-use explanations for zero-price bundling with OS products.
First, browsers exhibit negative marginal costs because they are complementary to other
activities with profit-making potential for the browser firm -- namely, Internet sales and
web advertisements. In this respect, negative marginal costs involve a complementarity,

but not a direct complementarity in use with the OS. Second, even the negative marginal

% We confirmed this point in our interview with Paul Maritz. According to Maritiz, Microsoft recognized
that its decision to componentize IE, and especially its decision to license the componentized IE technology
to AOL, would detract from the growth and revenue potential of MSN, Microsoft’s web portal. However,

67

cost explanation for the zero-price bundling of browsers requires some form of
complementarity with the OS. Otherwise, the browser could just as well be freely
distributed on street corners rather than bundled with the OS. In addition to the
complementarity in use at the heart of our first demand-based explanation for bundling,
three complementarities in distribution play a role in the zero-price bundling of browsers
with the OS: (a) It is cheaper to distribute browser and OS software together; (b) it is
more convenient for customers to acquire them together; and (c) customers who place a

high value on the OS are more likely to also place a high value on a browser.

7.4 Reducing the Diversity of Buyer Valuations

A third demand-based explanation for product bundling begins with the
observation that buyer valuations of a bundle are often much less dispersed than
valuations of the individual items in the bundle. So, by combining many items into a
single package, the high and low valuations a customer attaches to particular items tend
to average out. Consequently, a seller can much more confidently predict a customer's

valuation of the bundle than of any one item in the bundle.

A newspaper is a good example of this type of bundled product. Customer
valuations of the entire newspaper are much less dispersed than their valuations of
individual sections devoted to sports, weather, international news, and so on. The same
idea applies to individual articles. Customer valuations of particular articles about
baseball's home run leaders, the likelihood that Michael Jordan will resume his NBA
career and predictions for the upcoming football season are much more dispersed than the

valuations attached to the sports section as a whole.

the full integration of Web-support functionality into Windows, including the componentization of IE, was

68

Uncertainty regarding the value that consumers place on individual products
undermines effective pricing from the firm's standpoint. If individual valuations for a
product are highly dispersed, the firm must choose between higher prices that exclude
many consumers with low valuations and lower prices that forego substantial surplus to
many consumers with high valuations. By bundling items together, the firm can reduce
the diversity in customer valuations for the bundled product relative to the individual
items -- or, at a minimum, reduce the diversity in customer valuations as a percentage of
bundle value as its size grows.”’ The firm may then be able to set a price for the bundle
that generates more revenue than it could obtain by separately pricing the individual
items. Hence, provided that the costs of including multiple goods are not large, bundling

can lead to higher profits.”

A simple numerical example shows how bundling can lead to higher profits and
greater economic efficiency by reducing the diversity of buyer valuations. Consider a
firm that owns the rights to 100 “information goods” such as software products. Assume
the firm can replicate these items at zero cost. The firm sells the items in a market with

anonymous buyers who differ in the value that they attach to individual items. In

viewed as essential to preserve the viability of the Windows platform.

* To be more precise, suppose that customer valuations have the same mean and standard deviation for
each item. With a negative correlation across customers, even a weak one, in the valuations attached to
individual items, the variance in valuations for the bundled product can shrink with bundle size. The
example we develop below has this property. Even with a zero or positive correlation (but less than one)
across customers in the valuations on individual items, the average valuation per item in the bundle
converges to a constant by the law of large numbers, while the standard deviation of the valuation attached
to the entire bundle grows less than proportionately to bundle size. Hence, the ratio of the standard
deviation of the bundle value to the total bundle value declines with bundle size.

%2 This idea dates to Stigler (1963), who showed how bundling can increase profits when consumer
valuations for two goods are negatively correlated. Schmalensee (1984) showed that bundling can increase
profits even when consumer valuations of the two goods are uncorrelated or positively correlated. Bakos
and Brynjolfsson (1999) develop this type of bundling theory in a direction that is especially applicable to
information goods. McAfee, McMillan and Whinston (1989) and Bakos and Brynjolfsson consider motives
for mixed bundling, in which the firm sells the same product separately and as part of a bundle. Adams and

69

particular, suppose that there are also 100 consumer types, indexed by i=1,2,...100. The
ith consumer places a value of 101 on the ith item and a value of 1 on the other 99
items.” Consumers purchase one or zero units of each item, and there are equal numbers

of each consumer type.

Given these assumptions, Table 2 displays the firm's profit-maximizing outcomes
for bundles of various sizes. If the firm sells items individually, then it faces the
following demand curve for each item: at a price less than or equal to 1, everyone buys;
at a price greater than 1 but less than or equal to 101, only the high-valuation type buys;
and at a price greater than 101, no one buys. Clearly, the firm will never find it
advantageous to sell individual items for a price less than 1 or between 1 and 101. If the
firm prices individual items at 1, it sells them to every type, and its profits on all items
amount to 10,000 per hundred consumers. If it prices individual items at 101, it sells
only to high types, and its profits amount to 10,100 per hundred consumers. So, given
that the firm sells items individually, the profit-maximizing price is 101 and the total
profit is 10,100 per hundred consumers. In this way, we determine the profit-maximizing

outcomes for the first row in the table. The other rows are filled in using parallel logic.

Yellen (1976) provide an insightful early treatment of how bundling affects consumer surplus and
economic efficiency.

% To be more precise, we assume that the ith consumer places a value of 101+z on the ith good, where z is
a very small positive number that we ignore in the calculations below.

70

Table 2. Profit-Maximizing Outcomes for Bundles of Various Sizes

0 @ ©) 4 (5 (6) 0
@ glfn_}dle Slz;h Number of Price Per tem Profits Per 100 Coefficient Of Fraction of Items
Bu y};je; h © Product Bundle Price in Bundle Consumers Variation of Bundle Used by Each
Y Bundles 3)(1) (DH*(2)*(3) Valuations * Consumer
Bundle)
1 100 101 101 10,100 497.5 0.01
2 50 102 51 10,200 350.0 0.02
4 25 104 26 10,400 244.9 0.04
5 20 105 21 10,500 217.9 0.05
10 10 110 11 11,000 150.0 0.10
20 5 120 6 12,000 100.0 0.20
25 4 125 5 12,500 86.6 0.25
50 2 150 3 15,000 50.0 0.50
100 1 200 2 20,000 0.0 1.00
* Column (6) reports the coefficient of variation of buyer valuations for a bundle of the indicated size. The coefficient of
variation is calculated as 100 times the standard deviation of buyer valuations divided by the mean of buyer valuations. The
mean and standard deviations are calculated over all buyers, whether or not they actually purchase the bundle at the profit-
maximizing price. The resulting coefficient of variation measures the diversity of buyer valuations placed on the bundle,
expressed as a percentage of the mean valuation for the bundle. In this example, the coefficient of variation is the same for all
bundles of a given size.

As the table shows, the firm maximizes profits in this example by selecting the
largest bundle. This result reflects the effect of bundling on the diversity of buyer
valuations for the bundled product relative to the individual items in the bundle. Indeed,
in this simple example, every consumer attaches a value of exactly 200 to the bundle that

contains all 100 items. More generally, column (6) shows that the diversity among

71

potential customers in the valuations attached to a bundle declines with bundle size. This
diversity reduction aspect or “predictive value” of bundling leads a profit-maximizing
firm to choose a lower price per item in a larger bundle. The firm more than makes up
for the lower price per item by selling the bundled items to a larger number of customers.

Total profits rise with bundle size, as indicated by column (5).%

The predictive value of bundling improves economic efficiency by promoting the
widespread distribution and use of the firm's information goods. To understand why
widespread distribution is efficient, recall that the firm can replicate its information goods
at zero cost. Because replication is costless, and because every consumer type places a
positive value on each information good in this example, economic efficiency calls for
the widest possible distribution. Bundling leads to wider distribution and use, as shown
in column (7) of the table. The largest bundle maximizes the distribution and use of the

individual information goods.

A major barrier to this type of bundling in many cases is the cost of including
additional items in the bundle. High marginal costs for individual items greatly reduce
the attractiveness of bundling when customers place little or no value on many individual
items. Even modest marginal costs can undermine bundling. If we modify the example
in Table 1 so that the marginal cost of each item is 2 rather than 0, the profit-maximizing

bundle size is one item, instead of 100 items. For this reason, bundling to reduce buyer

% In this example, bundling raises profits by facilitating consumer acquisition of low-valuation items that
they would not otherwise buy. Bundling can also raise profits by enabling the firm to more effectively
extract consumer surplus on high-valuation items that consumers would buy in any event. To see this point,
modify the example in the text by introducing 100 new consumer types as follows. Assume that the ith new
type places a value of 200 on the ith item and a value of zero on the other 99 items, for i=1,2,...100.
Provided that the number of new-type consumers is sufficiently small, the profit-maximizing price at each
bundle size is the same as in Table 2. Furthermore, efficiency and profits still rise with bundle size.

72

diversity is much more attractive for information goods than for physical goods, which
typically involve non-negligible marginal costs. For information goods stored in

electronic form, the marginal costs of replication and transmission are near zero.

These observations help explain important aspects of pricing behavior by firms
that sell digital products. For example, many Internet aggregators provide access to
enormous information libraries and a wide range of services for a single flat fee. For
$23.95 a month (as of July 2001), AOL provides unlimited access to a wide range of
services including Internet access, stock quotes, foreign exchange and commodity market
information, e-mail and instant messaging to other online users. All of these services are

accessible from local phone numbers in most localities in the United States.

E-library (http://www.elibrary.com) is another example. Bakos and Brynjolfsson

(1999) write: “As of 1997 and 1998, E-library provides access to a bundle of 150
newspapers, 800 magazines, 2,000 works of literature, 18,000 photos, and thousands of

additional information goods for a fixed price of $59.95 per year for individual users.”

The same economic rationale that explains the bundling approach adopted by
AOL, E-library and many other Internet firms also helps explain bundling by software
firms. The key elements in this theory of software bundling are low marginal costs and a
desire to reduce the diversity of buyer valuations. Hence, software features or
applications that create large customer support burdens are unlikely to be bundled if the

only motive is a reduction in the diversity of buyer valuations.

However, consumer surplus now declines with bundle size. For a more general treatment, see Bakos and
Brynjolfsson (1999, 2000).

73

Unlike the complementarity-based explanation for bundling, the buyer diversity
explanation requires no particular relationship among the bundled items. Thus, according
to this theory, it is not surprising that a grab-bag collection of software utilities and
applications are often bundled with OS products. For example, an OS upgrade might
contain some Internet utilities, Plug-and-Play functions, Multimedia support, WebTV,

and 1394/USB support.”

Product bundling motivated by a desire to reduce buyer diversity promotes
economic efficiency for much the same reason that it allows firms to increase profits.
The predictive value of bundling leads firms to price and market low marginal cost goods
in such a way that they become more widely distributed. Consequently, consumers
acquire and use many products that they would not purchase separately in the absence of
bundling. For goods with a zero marginal cost of replication and transmission, the
widespread distribution and use promoted by bundling is an efficiency-enhancing

outcome.

The consumer welfare implications of bundling motivated by a desire to reduce
buyer diversity are less clear. Salinger (1995) considers a case where bundling leads to
higher consumer welfare. Bakos and Brynjolfsson (1999) make clear that this result is
not general. However, both analyses approach the consumer welfare effects of bundling
from a static perspective. In a dynamic setting, the higher profits generated by bundling

provide incentives to develop the items or features in the bundle.”® This point is

%1394 and USB refer to standards for high-speed serial communication.
% Even in a static setting, bundling may enable a firm to earn enough revenues to cover fixed costs and
continue serving customers, when it would otherwise exit the market. See Bakos and Brynjolfsson (2000).

74

especially pertinent in the context of software and other information goods, because their

costs of development are often high, even if their costs of replication are low.

7.5 Summary of Demand-Based Motives for Bundling

In summary, this section develops three purely demand-based explanations for the
zero-price bundling or integration of software utilities and applications with the OS. First,
the complementarity in use between the OS and applications software will in some
circumstances make it optimal to price the application at zero; i.e., to bundle it with the
OS at no extra charge. Second, when the application involves a “negative marginal cost”
to the supplier, in the sense that greater customer use sufficiently enhances profit for the
seller in other markets, zero-price bundling with the OS is again optimal. Third, bundling
of software features and products can increase profits and lead to more widespread

product distribution by reducing the diversity of buyer valuations.

Low marginal costs facilitate bundling under the complementarity explanation
and are especially important in the buyer-diversity explanation. The complementarity
and buyer-diversity explanations both predict that software features with high customer
support costs are less likely to be bundled with the OS.”” Demand complementarities are
an essential element in the first explanation for bundling that we developed in this
section, but they are inessential to the other two. All three demand-based explanations
are quite distinct from, but compatible with, the explanations that we developed in
Section 6 under the heading of “Efficient Management of Interacting Features and

Components.”

*7 Section 6.3 points out that some software features are integrated into the OS as a method to reduce
customer support costs. That argument is distinct from the explanations for bundling developed in this

75

Our analysis of demand-based motives for bundling carries important
implications for thinking about market structure, consumer welfare and economic
efficiency in the software industry. For example, the complementary nature of demand
for OS software and web browsing software implies a simple and plausible interpretation
of Microsoft's decision to spend hundreds of millions of dollars developing and
promoting Internet Explorer, a so-called “zero-revenue product”. This complementary
demand explanation involves no complicated dynamic or strategic behavior. And there is
nothing anti-competitive or predatory about Microsoft's pricing and product development
decisions under this simple interpretation. In fact, consumers are better off, and economic

efficiency is greater.

8. Concluding Remarks

Improvements in the software that provides hardware management, user interface
and platform functions have played a central role in the growth and transformation of the
personal computer (PC) industry. Several forces shape the design of these operating
system products and propel their evolution, including:

e The need to efficiently manage the interacting components of PC systems so as to
keep pace with rapid advances in computer technologies, simplify computer use and
facilitate the development of applications software.

e The need to maintain compatibility with existing applications while preserving the

flexibility to incorporate additional functions that support new applications.

section. In particular, the complementarity and buyer-diversity explanations for bundling apply with
greater force for software applications that ~ave low marginal costs.

76

e The desire to economize on customer support costs and assign clear responsibility for
making the interacting components of the PC work together.

e The desire to bundle multiple software features into a single package so as to more
effectively meet the demand for complementary applications or reduce the diversity
in product valuations among consumers.

The integration and bundling of new features and functions into operating system
products spurs growth in the PC industry and fosters innovation through several channels.
By making PC systems easier to set up and use, integration opens the door to new, non-
integrated hardware and software products. It also expands the number of PC users and
the range of PC uses. In addition, the integration of APIs (software building blocks) into
operating system products enables applications developers to concentrate on their areas
of expertise. This specialization leads to an increase in the quality, number and variety of
software applications. Note, too, that the integration of widely used features and software
development tools into operating system products promotes a standard computing
environment. As a separate point, demand-based motives for bundling applications and
utilities with operating system products lead to wider and cheaper distribution of software
among PC users. Bundling also adds to consumer welfare by stimulating the
development of software applications that would otherwise be unprofitable.

These beneficial effects of operating system integration (and bundling) enlarge
the market for both software and hardware. Because scale economies are important in the
computer industry, the market-enlarging effects of integration mean greater enjoyment of
network benefits (as PC usage grows) and lower average costs (as up-front product

development expenditures are spread more widely). Hence, the full benefits derived from

77

adding features and functions to operating system products are greater, perhaps much
greater, than the immediate benefits. In short, our analysis indicates that the integration
and bundling of new features and functions into PC operating system products have been
highly beneficial for consumers and a major stimulus to growth and innovation in the
computer industry.

We thus conclude that judicial or regulatory restrictions on software design would
likely retard innovation in the computer industry and hurt consumers. To be sure, there
are circumstances under which it is feasible and profitable for a firm with market power
to design products for anti-competitive purposes, and to harm consumers in the process.
Whinston (1990) shows that product design can be used to exclude a rival from the
market for a tied good while raising the tying firm’s profit and harming consumers.”®
Farrell and Katz (2000) identify conditions under which product integration by the
monopoly supplier of one component in a system can reduce the incentives for
innovation by other firms. And a firm might intentionally design a platform product to
raise costs for rivals who compete in the sale of complementary applications.

A full assessment of the issues raised by anti-competitive product designs is
beyond the scope of this study. However, a few points should help to place the matter in
perspective.” First, theoretical demonstrations of profitable, but anti-competitive, product
design are fragile in the sense that they do not survive natural modifications to the

underlying assumptions. Second, the circumstances that give rise to the possibility of

% See Carlton and Waldman (2000) for a related analysis that is motivated by allegations in U.S. v.
Microsofi.

% See Hylton and Salinger (2001) and Evans and Schmalensee (2001) for an extended treatment of these
issues. Also, see Easterbrook (2000) and Posner (2000), who emphasize the limited capacity of the judicial
process and antitrust enforcement machinery to effectively respond to allegedly anti-competitive conduct in
information and technology-intensive sectors. Easterbrook and Posner are federal judges who sit on the

78

anti-competitive product designs also give rise to the possibility of other harmful, anti-
competitive strategies. Hence, it is unclear whether product design restrictions can
prevent or ameliorate anti-competitive conduct. Third, as a practical matter, it can be
extremely difficult to distinguish anti-competitive product designs from pro-competitive
designs, or to determine whether the harm caused by an allegedly anti-competitive design

outweighs the beneficial effects.'®

Fourth, even if it were possible to discern, say, anti-
competitive forms of integration and bundling and respond with legal restrictions on
design that address the underlying problem, there would remain the danger that the
design restrictions would impede beneficial forms of integration and bundling. As this
study shows, highly beneficial forms of product integration and bundling are ubiquitous
for software platforms and software products generally.'®' These points reinforce our
view that legal restrictions on the design of software products are likely to slow
innovation and harm consumers.

As we stressed at the outset, software is inherently malleable, and competition in
many software product categories revolves around innovation. This reality partly
motivated our focus on design issues rather than the pricing of software. Of course,
pricing also matters because it directly affects consumer welfare, firms’ profits and the
incentives to innovate. Pricing and design also interact in many ways in addition to the

connection between pricing and bundling that we discussed — see Shapiro and Varian

(1999).

U.S. Court of Appeals. Davis, MacCrisken and Murphy (1999, Section IX) consider whether a platform
supplier can profit by adopting a design that raises costs for rival suppliers of complementary applications.
"% Harm to rivals and the exclusion of rivals from a significant share of sales are not good indicators of
anti-competitive behavior or consumer harm. For example, Davis, Murphy and Topel (2001) show that a
product design that excludes rival sales can be highly beneficial for consumers.

1T Tying can also have other benefits not emphasized in our study such as lower production costs.

79

Davis, Murphy and Topel (2001) stress that product design changes can either
intensify or soften price competition. Rival firms with secure positions in the same
market have strong incentives to differentiate their products in ways that relax price
competition.'” To bring this about, a firm can focus on design improvements that appeal
more strongly to its existing customers than to its rival’s customers. In contrast, when a
firm seeks to displace a rival, it becomes attractive to intensify price competition by
designing product improvements that appeal strongly to the rival’s customers.

The durability of software raises dynamic pricing issues of the sort identified by
Coase (1972). The seller of any durable product competes against its own past and future
sales, a fact that can strongly affect the profitability of alternative design strategies. See
the analyses by Fudenberg and Tirole (1998) and Ellison and Fudenberg (2000) and our
discussion in Davis, MacCrisken and Murphy (1999). Product design choices also play an
important role in the evolution of standards for system products and affect compatibility
with products supplied by other firms. Besen and Farrell (1994), Katz and Shapiro (1994)
and Shapiro and Varian (1999) contain useful discussions on these topics and references

to related work.

192 See, also, Shaked and Sutton (1982), Economides (1986) and Chapter 7 in Tirole (1988).

80

References

Adams, William James and Janet 1. Yellen, 1976, “Commodity Bundling and the Burden

of Monopoly,” Quarterly Journal of Economics, 90, no. 3, 475-498.

Bakos, Yannis and Erik Brynjolfsson, 1999, “Bundling Information Goods: Pricing,

Profits and Efficiency,” Management Science, 45, no. 12 (December).

Bakos, Yannis and Erik Brynjolfsson, 2000, “Bundling and Competition on the Internet:

Aggregation Strategies for Information Goods” Marketing Science (January).

Baldwin, Carliss Y. and Kim B. Clark, 2000, Design Rules: Volume 1, The Power of

Modularity. Cambridge, Massachusetts: The MIT Press.

Berndt, Ernst R. and Neal J. Rappaport, 2001, “Price and Quality of Desktop and Mobile
Personal Computers: A Quarter-Century Historical Overview” American Economic

Review, 91, no. 2 (May), 268-273.

Besen, Stanley and Joseph Farrell, 1994, “Choosing How to Compete: Strategies and

Tactics in Standardization,” Journal of Economic Perspectives, 3, no. 2.

Boyce, Jim, 1998, Inside Windows 98. New Riders Publishing.

Carlton, Dennis W. and Michael Waldman, 2000, “The Strategic Use of Tying to
Preserve and Create Market Power in Evolving Industries,” George J. Stigler
Center for the Study of the Economy and the State, Working Paper No. 145
(March). Available at
http://gsbwww.uchicago.edu/research/cses/WorkingPapersPDF’s/145.pdf.

Coase, R.H., 1972, “Durability and Monopoly,” Journal of Law and Economics, 15, 149-

149.

81

Computer Language Company, 1999, Computer Desktop Encyclopedia. Point Pleasant,
Pennsylvania. Searchable at
http://www.computerlanguage.com/sitemain/content.html.

Cusumano, Michael A., and Richard W. Selby, 1995, Microsoft Secrets. New York:

Simon & Schuster.

Cusumano, Michael A. and David B. Yoffie, 1998, Competing on Internet Time: Lessons

from Netscape and its Battle with Microsoft. New York: The Free Press.

Davis, Steven J., Jack MacCrisken and Kevin M. Murphy, 1999, “The Evolution of the
PC Operating System: An Economic Analysis of Software Design,” June 29.

Available at http://gsbwww.uchicago.edu/fac/steven.davis/research.

Davis, Steven J. and Kevin M. Murphy, 2000, “A Competitive Perspective on Internet
Explorer,” American Economic Review, 90, no. 2, 184-187. Republished in
expanded form with mathematical supplement in this volume. Available at

http://esbwww.uchicago.edu/fac/steven.davis/research.

Davis, Steven J., Kevin M. Murphy and Robert H.Topel, 2001, “Entry, Pricing and
Product Design in an Initially Monopolized Market.” Available at

http://esbwww.uchicago.edu/fac/steven.davis/research.

Easterbrook, Frank H., 2000, “Information and Antitrust”. Keynote address delivered at a
symposium on “Antitrust in the Information Age” at the University of Chicago on
October 29, 1999. Revised version is dated October 4, 2000.

Economides, Nicholas, 1986, “Minimal and Maximal Product Differentiation in

Hotelling’s Duopoly,” Economic Letters, 21, 67-71.

82

Economides, Nicholas, 2000, “The Microsoft Antitrust Case,” Working paper 2000-09,
Stern School of Business, New York University. Available at

http://www.stern.nyu.edu/networks.

Ellison, Glenn and Drew Fudenberg, 2000, “The Neo-Luddite’s Lament: Excessive
Upgrades in the Software Industry,” Rand Journal of Economics, 31, no. 2

(Summer), 253-272.

Evans, David S., Albert Nichols and Bernard Reddy, 1999, "The Rise and Fall of Leaders
in Personal Computer Software," National Economic Research Associates.

Available at http://www.neramicrosoft.com/NeraDocuments/Analyses.

Evans, David S., Albert Nichols and Richard Schmalensee, 2001, “An Analysis of the

Government’s Case in U.S. v. Microsoft,” Antitrust Bulletin, 46, no. 2 (Summer).

Evans, David S. and Richard Schmalensee, 2001, “Some Economic Aspects of Antitrust
Analysis in Dynamically Competitive Industries,” NBER Working Paper 8268

(May).

Farrell, Joseph and Michael L. Katz, 2000, “Innovation, Rent Extraction, and Integration
in Systems Markets,” Journal of Industrial Economics, 48, no. 4 (December), 413-

432

Fisher, Franklin M., 2000, “The IBM and Microsoft Cases: What’s the Difference?”

American Economic Review, 90, no. 2 (May), 180-183.

Fisher, Franklin M. and Daniel L. Rubinfeld 2000, “United States v. Microsoft: An

Economic Analysis,” in Did Microsoft Harm Consumers? Two Opposing Views.

Washington, DC: AEI-Brookings Joint Center for Regulatory Studies.

83

Fudenberg, Drew and Jean Tirole, 1998, “Upgrades, Trade-Ins and Buybacks” Rand

Journal of Economics, 29, no. 2 (Summer).

Gans, Joshua S., David H. Hsu and Scott Stern, 2000, “When Does Start-Up Innovation

Spur the Gale of Creative Destruction?” NBER Working Paper 7851.

Gilbert, Richard J. and Michael L. Katz, 2001, “An Economist’s Guide to U.S. v.

Microsoft,” Journal of Economic Perspectives, 15, no. 2 (Spring), 25-44.
Gookin, Dan, 1992, “Windows 3.1 vs. OS/2 2.0,” InfoWorld.

Hylton, Keith N. and Michael Salinger, 2001, “Tying Law and Policy: A Decision
Theoretic Approach,” Boston University School of Law Working Paper Series,
Law and Economics Working Paper No. 01-04. Available at

http://www.bu.edu/law/faculty/papers.

Ichbiah, Daniel and Susan L. Knepper, 1991, The Making of Microsoft. Prima

Publishing.

Katz, Michael and Carl Shapiro, 1994, “Systems Competition and Network Effects,”
Journal of Economic Perspectives, 3, no. 2.
Khanna, Tarun and David Yoffie, 1996, “Microsoft, 1995,” Harvard Business School

Case Study 9-795-147.

Klein, Benjamin, 1999, “Microsoft’s Use of Zero Price Bundling to Fight the Browser
Wars” in Jeffrey A. Eisenach and Thomas M. Lenard, editors, Competition,

Convergence and the Microsoft Monopoly. Boston, MA: Kluwer Academic

Publishers for the Progress & Freedom Foundation.

84

Klein, Benjamin, 2001, “The Microsoft Case: What Can a Dominant Firm Do to Defend

Its Market Position?” Journal of Economic Perspectives, 15, no. 2 (Spring), 45-62.

Liebowitz, Stanley J. and Stephen E. Margolis, 1999, Winners, Losers and Microsoft:

Competition and Antitrust in High Technology. Oakland, California: The

Independent Institute.

Markoff, A. 1996, “Tomorrow, the World Wide Web,” New York Times, July 16, page

DI.

McAfee, R. Preston, J. McMillan and Michael D. Whinston, 1989, “Multiproduct
Monopoly, Commodity Bundling, and Correlation of Values,” Quarterly Journal of

Economics, 104 (May), 371-384.

McCartney, Laton, 1986, “The Pros and Cons of Going Multi-Vendor (Practicality of
Companies Utilizing More Than One Vendor For Computer Systems),” Dun’s

Business Month, 128 (November), 93.

Microsoft, 1995, “Microsoft Developer Relations: Proving Microsoft’s Commitment to

Third Parties,” Microsoft Corporation White Paper.

Microsoft, 1998, Microsoft Internet Explorer Resource Kit. Microsoft Press.

Ramstad, Evan, 1998, “PC Makers Hunt for Gold in Internet Hookups,” Wall Street

Journal, August 12, Page B1.

Reid, Robert H., 1997, Architects of the Web: 1,000 Days that Built the Future of

Business. New York: Wiley.

Reinganum, Jennifer F., 1985, “Innovation and Industry Evolution,” Quarterly Journal of

Economics, 99, no. 1, 81-99.

85

Posner, Richard, 2000, “Antitrust in the New Economy.” Address delivered to a
conference on antitrust sponsored by the American Law Institute-American Bar
Association Committee on Continuing Professional Education, September 14,
2000, New York and published in Tech Law Journal. Available at

http://www.techlawjournal.com/atr/-2000914posner.asp.

Salinger, MA, 1995, “A Graphical Analysis of Bundling,” Journal of Business, 68, no. 1,

85-98.

Schmalensee, Richard L., 1984, “Gaussian Demand and Commodity Bundling,” Journal

of Business, 57 (January), S211-S230.

Shaked, Avner and John Sutton, 1982, “Relaxing Price Competition through Product

Differentiation,” Review of Economic Studies, 49, 3-17.

Shapiro, Carl and Michael L. Katz, 1999, “Antitrust in Software Markets,” in Jeffrey a.

Eisenach and Thomas M. Lenards, editors, Competition, Innovation and the

Microsoft Monopoly: Antitrust in the Digital Marketplace. Boston, MA: Kluwer

Academic Publishers for the Progress & Freedom Foundation.

Shapiro, Carl and Hal R. Varian, 1999, Information Rules: A Strategic Guide to the

Network Economy. Boston, MA: Harvard Business School Press.

Stigler, George J., 1963, “United States v. Loew's, Inc.: A Note on Block Booking,”
Supreme Court Review, pp. 152-157.

Tirole, Jean, 1988, The Theory of Industrial Organization. Cambridge, MA: MIT Press.

Vickers, John, 1986, “The Evolution of Market Structure When There Is a Sequence of

Innovations,” Journal of Industrial Economics, 35, no. 1, 1-12.

86

Whinston, Michael, D., 1990, “Tying, Foreclosure, and Exclusion,” American Economic
Review, 80, no. 4 (September), 837-859.

Whinston, Michael, D., 2001, “Exclusivity and Tying in U.S. v. Microsoft: What We
Know, and Don’t Know,” Journal of Economic Perspectives, 15, no. 2 (Spring), 63-
80.

Wildstrom, Stephen H., 1998, “Build Your Own Browser,” Business Week, July 20, Page

17.

87

