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1 Introduction

Describing the joint behavior of the yield curve and macroeconomic variables is important for

bond pricing, investment decisions and public policy. Many term structure models have used

latent factor models to explain term structure movements, and although there are some interpre-

tations to what these factors mean, the factors are not given direct comparisons with macroe-

conomic variables. For example, Pearson and Sun (1994)’s factors are labeled “short rate” and

“inflation”, but their estimation does not use inflation data. The terms “short rate” and “infla-

tion” are just convenient names for the unobserved factors. Another example is Knez, Litterman

and Scheinkman (1994), who call their factors “level,” “slope” and “curvature”. Similarly, Dai

and Singleton (2000) use the words “level,” “slope” and “butterfly” to describe their factors.

These labels stand for the effect the factors have on the yield curve rather than describing the

economic sources of the shocks.

In the absence of a workhorse general equilibrium model for asset pricing (see Hansen and

Jagannathan (1991)), factor models have the advantage that they only impose no-arbitrage con-

ditions and not all other conditions that characterize the equilibrium in the economy. Most

existing factor models of term structure are unsatisfactory, however, because they do not model

how yields directly respond to macroeconomic variables.1 In contrast, empirical studies try

to directly model the relationships between bond yields and macro variables by using Vector

Autoregressive (VAR) models. Studies like Estrella and Mishkin (1997) and Evans and Mar-

shall (1998) use VAR’s with yields of various maturities together with macro variables. Using

the VAR, these studies infer the relationships between yield movements and shocks in macro

variables using impulse responses (IR’s) and variance decomposition techniques. For example,

Evans and Marshall (2000) associate shocks to economic activity and price levels with level ef-

fects across the yield curve. Another type of shock which can be identified with various schemes

comes from monetary policy (see, for example, Gali (1992), Sims and Zha (1995), Bernanke

and Mihov (1995), Christiano, Eichenbaum and Evans (1996a), and Uhlig (1999). For a survey,

see Christiano, Eichenbaum and Evans (1998)).

Existing macro VAR studies are characterized by three features. First, only maturities whose

yields which have been included in the VAR may have their behavior directly inferred by the

dynamics of the VAR. As an unrestricted VAR is generally not a complete theory of the term

structure, it says little about how yields of maturities not included in the VAR may move. Sec-

ond, the implied movements of yields in relation to each other may not rule out arbitrage oppor-

tunities when the cross-equation restrictions implied by this assumption are not imposed in the

estimation. Finally, unobservable variables cannot be included as all variables in the VAR must
1 The exception is Piazzesi (2001), who uses a term structure model with interest-rate targeting by the central

bank and releases of macroeconomic variables such as nonfarm payroll employment.
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be observable. The VAR approach, however, is very flexible, and the Impulse Response Func-

tions (IR’s) and variance decompositions give insights into the relationships between macro

shocks and movements in the yield curve.

A related asset-pricing literature beginning with Sargent (1979) has tried to estimate VAR

systems of yields under the null of the Expectations Hypothesis (see Bekaert and Hodrick

(2001)). While the validity of the Expectations Hypothesis as a term structure model is still

being debated (see Fisher and Gilles (1998) and Longstaff (2000)), this literature has not fo-

cused on incorporating macro variables into the VAR. Our approach in this paper specifically

focuses on how macro variables affect term structure dynamics, where the term structure dy-

namics are given by a Gaussian (VAR) term structure model with time-varying risk premia,

consistent with deviations from the Expectations Hypothesis (see Fisher (1998) and Dai and

Singleton (2001)).

We incorporate macro variables as factors in a term structure model by using a factor rep-

resentation for the pricing kernel, which prices all bonds in the economy. The pricing kernel

depends on the shocks to both observed macro factors and unobserved factors. Since macro fac-

tors are correlated with yields, incorporating these factors may lead to models whose forecasts

are better than models which omit these factors. We investigate whether the purely unobserv-

able factors of multi-factor term structure models can be explained by macro variables, and we

examine how the latent factors change when macro variables are incorporated into such models.

Using a pricing kernel with macro factors is a direct and tractable way of modeling how macro

factors affect bond prices.

Our methodology gives us several advantages over existing empirical VAR approaches.

First, it allows us to characterize the behavior of the entire yield curve in response to macro

shocks rather than just the yields included in the VAR. Second, a direct comparison of macro

variables with latent yield factors can be made. Third, variance decompositions and other meth-

ods can estimate the proportion of term structure movements attributable to observable macro

shocks, and other latent variables. Finally, our approach retains the tractability of the VAR

approaches because we estimate a VAR subject to nonlinear no-arbitrage restrictions.

The model is a discrete-time multi-factor model with time-varying risk premia. This term

structure model is Gaussian, like a VAR model, and IR’s and variance decompositions from the

model can be easily obtained. Formally, our model is a special case of discrete-time versions of

the affine class introduced by Duffie and Kan (1996), where bond prices are exponential affine

functions of underlying state variables. In our model, however, some of the state variables are

observed macroeconomic aggregates. With Gaussian processes, the affine model reduces to

a VAR with cross-equation restrictions. Our set-up accommodates lags and moving average
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errors in the driving factors and allows us to compute variance decompositions where we can

attribute the proportion of movements in the yield curve to observable and unobservable factors.

We can plot IR’s of shocks to various factors on any yield, since the no-arbitrage model gives

us bond prices for all maturities.

Our measures of inflation and real activity are obtained from extracting principal compo-

nents of two groups of variables that are selected to represent measures of price changes and

economic growth. These factors are then augmented by latent variables. As term structure stud-

ies have suggested up to three latent factors as appropriate to capture most salient features of

the yield curve, we estimate models with three latent factors in addition to the macro variables.

Our main model has three correlated unobservable factors, together with the two macro factors

(inflation and real economic activity).

The cross-equation restrictions from no arbitrage improve out-of-sample forecasts from a

VAR. We find that these forecasts can be further improved by incorporating macro factors into

models with latent variables. We show that a significant part of the latent factors implied by

traditional models with only latent yield variables can be attributed to macro variables. In

particular, “slope” and “curvature” factors can be related to macro factors, while the “level”

factor survives largely intact when macro variables are incorporated.

We find that macro factors explain a significant amount of the variation in bond yields.

Macro factors explain up to 85% of the forecast variance at long horizons at short and medium

maturities of the yield curve. The proportion of forecast variance of yields attributable to macro

factors decreases at longer yields. At the long end of the yield curve 60% of the forecast vari-

ance is attributable to macro factors at a 1-month forecast horizon, while at very long forecast

horizons over 60% of the variance is attributable to unobservable factors.

This paper is organized as follows. Section 2 summarizes the data and details the construc-

tion of the macro factors as principal components of several macroeconomic variables. Section

3 motivates an affine equation for the short rate, which can be interpreted as a regression of

the short rate on macro factors and an ‘unexplained’ component of short rate movements. This

last term consists of one or more unobservable (orthogonal) factors. If the latent component

is orthogonal to the macro variables, we can interpret this regression as versions of a Taylor

(1993) rule, where the short rate responds to a linear combination of observable factors, and an

orthogonal unobserved component. Section 4 presents the general model, discusses the estima-

tion strategy, and describes the specific parameterization of the model to be estimated. We lay

out our estimation results in Section 5, and discuss the implied IR’s, variance decompositions

and forecasting results. Section 6 concludes.
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2 Data

2.1 Yield Data

We use data on zero coupon bond yields of maturities 1, 3, 12, 36 and 60 months from Jan-

uary 1952 to December 2000. The bond yields (12, 36 and 60 months) are from the Fama

CRSP zero coupon files, while the shorter maturity rates (1 and 3 months) are from the Fama

CRSP Treasury Bill files. Figure 1 plots some of these yields in the upper graph and Table 1

presents some sample statistics. The table shows that the data are characterized by some stan-

dard stylized facts. The average postwar yield curve is upward sloping; standard deviations of

yields generally decrease with maturity; and yields are highly autocorrelated, with increasing

autocorrelation at longer maturities.

The yield levels show mild excess kurtosis at short maturities which decreases with ma-

turity, and significantly positive skewness at all maturities. Excess kurtosis is, however, more

pronounced for first-differenced yields (for example, 19.44 for the 1-month yield). Although

the distribution of yields in the 1990’s seems to exhibit Gaussian tails, the evidence for the long

series of monthly postwar yields rejects a normal distribution. For our purposes, the Gaussian

assumption made in later sections is a sufficient first approximation to the dynamics of the yield

curve, as we are mainly interested in the joint dynamics of yields and macroeconomic variables.

The Gaussian model we present in Section 4 can be extended to incorporate heteroskedastic dy-

namics parameterized by discretized square-root processes.

An important stylized fact is that yields of near maturity are extremely correlated - the

correlation between the 36-month and 60-month yield is 99%. In our estimations we use all

five yields to estimate our models, but we specify that some of the yields are measured with

error. We choose the 1, 12 and 60-month yields to be measured without error to represent the

short, medium and long ends of the yield curve in our models with 3 unknown factors. (The

3-month yield has a 99% correlation with the 12-month yield, and the 36-month yield has a

99% correlation with the 60-month yield.)

2.2 Macro Variables

We use macro variables that can be sorted in two groups. The first group consists of various

inflation measures which are based on the CPI, the PPI of finished goods, and spot market

commodity prices (PCOM). The second group contains variables that capture real activity: the

index of Help Wanted Advertising in Newspapers (HELP), unemployment (UE), the growth

rate of employment (EMPLOY) and the growth rate of industrial production (IP). This list of

variables includes most variables that have been used in monthly VAR’s in the macro literature.

4



Among these variables, PCOM and HELP are traditionally thought of as leading indicators of

inflation and real activity, respectively. All growth rates (including inflation) are measured as

the difference in logs of the index at time t and t− 12, t in months.

To reduce the dimensionality of the system, we extract the first principal component of each

group of variables separately. That is, we extract the first principal component from the inflation

measures group, and we extract the first principal component from the real activity measures

group. This leaves us with two variables which we call “inflation” and “real activity”. More

precisely, we first normalize the three (four) macro variables related to inflation (real activity)

to zero mean and unit variance. For each group, the normalized variable vector Zt can be

represented as

Zt = Cf
o
t + εt, (1)

where Zt = (CPIt PPIt PCOMt) for the inflation group or Zt = (HELPt UEt EMPLOYt IPt)

for the real activity group. The error term εt satisfies E(εt) = 0 and cov(εt) = Γ, where Γ is

diagonal. The matrices C and Γ are either 3 × 1 or 4 × 1 for the inflation group and the real

activity group respectively. The extracted macro factor f ot has mean zero (E(f ot ) = 0) and unit

variance (var(fot ) = 1).

Table 2 shows the loadings of the first three (four) principal components, and the factor

loadings for using only one principal component to explain the variation in each group. Over

70% (50%) of the variance of nominal variables (real variables) is explained by just the first

principal component of the group. The first principal component of the inflation measures loads

negatively on CPI, PPI, and PCOM. Since negative shocks to this variable represent positive

shocks to inflation, we multiply it by −1 so that we can interpret it as an “inflation” factor. The

first principal component of real activity measures loads negatively on HELP, EMPLOY, and IP

and positively on UE. Again, we multiply this variable by−1 to interpret positive shocks to this

factor as positive shocks to economic growth. We call this factor “real activity”. We plot these

macro factors in the bottom plot in Figure 1.

To obtain some intuition about these constructed measures of inflation and real activity,

Figure 2 plots the inflation and real activity measures versus the actual inflation and real activity

series. The top plot of Figure 2 graphs the inflation factor in circles versus the normalized

inflation measures CPI, PCOM and PPI. The inflation factor closely tracks CPI and PPI, which

roughly move together. The bottom plot of Figure 2 graphs the real activity factor in circles

versus the economic growth variables HELP, EMPLOY, IP and the negative of UE. All these

series have roughly the same cycles, and the real activity factor most closely corresponds with

EMPLOY.
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Table 3 displays the correlation between the principal components and the original macro

series in each group. These correlations show that the inflation factor is most closely correlated

with PPI and CPI (97% and 93% respectively) and less correlated with commodity prices (59%).

The real activity factor is most closely correlated with employment growth (91%) and industrial

production (87%).

The unconditional correlation between the two macro factors is tiny, one tenth of 1%, as

reported in Table 3. Although the unconditional correlation is weak, the lower plot in Figure 1

of the macro factors indicates that some conditional correlations might be important. In fact,

when we estimate a VAR for the macro factors, some of the conditional correlations turn out

to be significant (they are not reported here). More specifically, we estimate a bivariate process

with 12 autoregressive lags for the macro factors:

f ot = ρ1f
o
t−1 + . . .+ ρ12f

o
t−12 + Ωut−1 (2)

where ρ1 to ρ12 and Ω are 2 × 2 matrices with ut IID N(0,I). The estimation results show that

the coefficient on the seventh lag of real activity in the inflation equation is significant and the

coefficient on the first two lags of inflation in the equation for real activity are significant. This

can also be seen from the impulse responses plotted in Figure 3. The response of inflation

to shocks in real activity is positive and hump-shaped, while the response of real activity to

inflation shocks is initially weakly positive, and then turns slightly negative before dying out.

Since principal components are linear transformations of the data, the skewness, kurtosis and

autocorrelation of the macro variables (Table 1) are inherited by the principal components f ot .

Some preliminary information about the relationship between the macro factors and the

yield curve can be gained from the correlation matrix in Table 3. The inflation factor is highly

correlated with yields. This correlation is highest for short yields (67% correlation between

inflation and 1-month yields), and somewhat smaller for long yields (56% correlation between

inflation and 60-month yields). Real activity is only weakly correlated with yields. This corre-

lation does not exceed 6% for any maturity. This weak relationship is not representative for all

measures of real activity. For example, the correlation of HELP and 1-month yields is 63%, but

our real activity factor loads mostly on EMPLOY and IP. Hence, at least for measures of eco-

nomic activity, it may matter whether the particular variable in question is a leading indicator

of business cycles. This implies that in our analysis we may potentially understate the impact

of real activity on the yield curve by the construction of our real activity factor.
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3 A First Look at Short Rate Dynamics

3.1 Policy Rules and Short Rate Dynamics in Affine Models

According to the policy rule recommended by Taylor (1993), movements in the short rate should

be traced to movements in contemporaneous macro variables f ot and a component which is not

explained by macro variables, an orthogonal shock vt:

rt = a0 + a
′
1f
o
t + vt (3)

The shock vt may be interpreted as a monetary policy shock following identifying assumptions

made in Christiano, Eichenbaum and Evans (1996a,1996b). Taylor’s original specification uses

two macro variables as factors in f ot . The first variable is an annual inflation rate, similar to

our inflation factor, and the second variable is the output gap. GDP data are only available at

a quarterly frequency, while our real activity factor is constructed using various monthly series

such as EMPLOY and IP.

Another type of policy rule that has been proposed by Clarida, Gali, and Gertler (2000) is

a forward-looking version of the Taylor rule. According to this rule, the central bank reacts

to expected inflation and the expected output gap. This implies that any variable that forecasts

inflation or output will enter the right-hand side of (3). In the hope of capturing the information

underlying macro forecasts, we add lagged macro variables as arguments in equation (3).2 This

is done by writingX ot = (f
o′
t f

o′
t−1 . . . , f

o′
t−p−1)

′ for some lag length p and including the lags as

arguments in the policy rule:

rt = b0 + b
′
1X
o
t + vt. (4)

Affine term structure models (Duffie and Kan (1996)) are based on a short rate equation

just like equation (3) together with an assumption on risk premia. The difference between the

short rate dynamics in affine term structure models and the Taylor rule is that in affine term

structure models the short rate is specified to be an affine (constant plus linear term) function of

underlying latent factors Xut :

rt = c0 + c
′
1X
u
t . (5)

2 Clarida, Gali, and Gertler (2000) implement their forward-looking rule by redefining the shock term v t to

include forecast errors f ot+1−Et(fot+1). This allows them to use future values of macro variables f ot+1 as arguments

on the right-hand side of (3). We could in principle adopt the same approach by including these forecast errors

into some latent variables, but this would mean that we would have to drop the assumption that latent and macro

variables are orthogonal. Our focus is assigning as much explanatory power to macro factors as possible, so we

specify the latent variables as orthogonal.
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The unobserved factors themselves follow affine processes, of which a VAR is a special Gaus-

sian case. The prices of bonds of longer maturities are explicit exponential affine functions

(dependent upon parameters) of fut if pricing is risk neutral. In the more general case that we

consider, the risk adjustment needs to be specified carefully to obtain similar closed-form so-

lutions for bond yields (this is explained in the next section). With or without risk adjustment,

equation (5) is always an important determinant of the shape of the entire yield curve in affine

term structure models.

Equations (3) through (5) are very similar: they all specify the short rate as affine functions

of factors. We can combine them by writing:

rt = δ0 + δ
′
11X

o
t + δ

′
12X

u
t , (6)

The approach we take in this paper is to specify the latent factorsXut as orthogonal to the macro

factors Xot . In this case, the short rate dynamics of the term structure model can be interpreted

as a version of the Taylor rule with the errors vt = δ′12X
u
t being unobserved factors. We use the

restrictions from no-arbitrage to separately identify the individual unobserved factors.

3.2 Estimating the Short Rate Dynamics

The short rate equation (6) can be estimated by ordinary least squares because of the indepen-

dence assumption on Xot and Xut . Table 4 reports the estimation results from two regressions:

the original Taylor rule (3) and the forward-looking version of the Taylor rule (4), which in-

corporates lags of the macro variables. These regression results give a preliminary view as to

how much of the yield movements macro factors may explain with respect to the unobservable

variables. The R2 of the estimated Taylor rule is 45%, while the estimated forward-looking

version of the Taylor raises the R2 to 53%. These numbers suggest that macro factors should

have explanatory power for yield curve movements.

The behavior of the residuals, however, provides some intuition about what to expect from

a model with unobservable factors. First, the residuals from both versions of the Taylor rule

are highly autocorrelated. The autocorrelation of residuals from the short rate equation with

only contemporaneous macro factors is 0.945, while the autocorrelation from the equation that

includes lagged macro factors is slightly lower, 0.937. The short rate itself has an autocorre-

lation of 0.972, indicating that macro variables do explain some of the persistent shocks to the

short rate. Second, unless a variable which mimics the short rate itself is placed on the RHS of

equation (3), the residuals will follow the same broad pattern as the short rate. This can be seen

from Figure 4, which plots the residuals together with the de-meaned short rate. This suggests

that the “level” factor found by earliest term structure studies (see Vasicek (1977)), may still

8



reappear when macro variables are added in a linear form to the short rate in a term structure

model.

The coefficients on inflation and real activity in the simple Taylor rule are both significant

and positive. This is consistent with previous estimates of the Taylor rule in the literature, and

also the parameter values proposed by Taylor (1993)’s original specification. However, these

coefficients are highly sensitive to the sample period selected. In particular, the sign of the

Taylor-rule coefficient on real activity crucially depends on the inclusion of the two recessions

in 1954 and 1958. This is evident from the plots of real activity and the 1-month yield in

Figure 1. There are two major reductions in output around May 1954 and April 1958, which

also correspond to NBER recessions. Both these recessions go hand in hand with decreases

in the 1-month rate. These two recessions make the Taylor rule coefficient on output positive.

If we start the estimation of the Taylor rule later, say in 1960 or 1970, the coefficient on real

activity is negative. Only if we start the estimation after the monetary experiment of 1982 is

the coefficient positive. Interestingly enough, the coefficient on output is not significant for the

whole post-1982 period, but it is significant for the Greenspan years (post-1987). In contrast,

Table 4 reports that most parameter estimates for the forward-looking version of the Taylor

rule are not significant, except for the 11th lag on the inflation rate and current real activity.

This suggests that using many lags in the Taylor rule may lead to an over-parameterized and

potentially poorly behaved system.

4 A Term Structure Model with Macro Factors

Based on the macro dynamics (2) and the short rate equation (6), we now develop a discrete-

time term structure model. The model combines observable macroeconomic variables with un-

observable or latent factors. Risk premia in our set-up are time-varying, because they are taken

to be affine in potentially all of the underlying factors. Section 4.1 presents the general model

and Section 4.2 parameterizes the latent variables and risk premia. We outline our estimation

procedure in Section 4.3. Section 4.4 summarizes our parameterization.

4.1 General Setup

4.1.1 State Dynamics

Suppose there are K1 observable macro variables f ot and K2 latent variables fut . The vector

Ft = (f
o′
t , f

u′
t )
′ is assumed to follow a Gaussian VAR(p) process:

Ft = Φ0 + Φ1Ft−1 + . . .+ ΦpFt−p + θ0ut (7)
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with ut ∼ IID N(0, I). The state of the economy is described by a K vector of state vari-

ables Xt. We partition the state vector Xt into observable variables Xot and unobservable vari-

ables Xut . The observable vector contains current and past levels of macroeconomic variables

Xot = (f
o′
t f

o′
t−1 . . . , f

o′
t−p)

′, while Xut = f
u
t contains latent yield factors. We take the bivariate

VAR(12) in equation (2) as the process for inflation and real activity so set p = 12. Moving

average terms can be accommodated by including q lagged error terms θ1ut−1, . . . , θqut−q on

the right hand side of (7). In this case, the vector of observable state variables also includes past

innovations to the macro variablesX ot = (f
o′
t f

o′
t−1 . . . , f

o′
t−p u

o′
t−1 . . . u

o′
t−q)

′.3

We write the dynamics of Xt = ( (Xot )
′ (Xut )

′ )′ in compact form as a first order Gaussian

VAR:

Xt = µ+ ΦXt−1 + Σεt (8)

with εt = (u′t 0 . . . 0)
′. In the first order companion form, there are blocks of zeros in theK×K

matrix Σ to accommodate higher order lags in Ft.

4.1.2 Short Rate Equation

The one-period short rate rt is assumed to be an affine function of all state variables:

rt = δ0 + δ
′
1Xt. (9)

We work with monthly data, so that we can use the one-month yield y1t as an observable short

rate rt. By constraining the coefficient δ1 to depend only on contemporaneous factor values,

we can obtain strict versions of the Taylor rule (3). We call this the “Macro Model.” We also

consider the case where δ1 is unconstrained, which correspond to the forward-looking Taylor

rule incorporating lags. We refer to this formulation as the “Macro Lag Model,” because it uses

lags of macro variables in the short rate equation.

Structural changes (or regime shifts) in the economy may cause the relationships in the fac-

tor dynamics (8) and the short rate equation (9) to change over time (Ang and Bekaert (1998)).

We will assume that during our sample period, these relationships are stable, just as in Gali

(1992), Christiano, Eichenbaum and Evans (1996a) and Cochrane (1998).

4.1.3 Pricing Kernel

To develop the term structure model, we use the assumption of no-arbitrage (Harrison and Kreps

(1979)) to guarantee the existence of an equivalent martingale measure (or risk-neutral measure)

Q such that the price of any asset Vt that does not pay any dividends at time t+ 1 satisfies Vt =
3 In the case of one lag p = 1 and no MA components q = 0, then K = K 1 +K2.
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EQt (exp(−rt)Vt+1), where the expectation is taken under the measure Q. The Radon-Nikodym

derivative (which converts the risk-neutral measure to the data-generating measure) is denoted

by ξt+1. Thus, for any t + 1 random variable Zt+1 we have that EQt (Zt+1) = Et(ξt+1Zt+1)/ξt.

The assumption of no-arbitrage, or equivalently the assumption of the existence of ξt+1, allows

us to price any asset in the economy, in particular all nominal bond prices.

Assume that ξt+1 follows the log-normal process:

ξt+1 = ξt exp
(− 1
2
λ′tλt − λ′tεt+1

)
, (10)

where λt are the time-varying the market prices of risk associated with the sources of uncertainty

εt. We parameterize λt as an affine process:

λt = λ0 + λ1Xt (11)

for a K-dimensional vector λ0 and a K × K matrix λ1. This specification has been used by

Constantinides (1992), El Karoui, Myneni and Viswanathan (1992), and Liu (1999), among

many others. Fisher (1998) and Dai and Singleton (2001) argue that this specification can

explain deviations from the Expectations Hypothesis. Equations (10) and (11) relate shocks in

the underlying state variables (macro and latent factors) to ξt+1 and therefore determine how

factor shocks affect all yields.

We define the pricing kernelmt+1 as:

mt+1 = exp(−rt) ξt+1/ξt. (12)

Substituting rt = δ0 + δ′1Xt we have:

mt+1 = exp(−1
2
λ′tλt − δ0 − δ′1Xt − λ′tεt+1) (13)

4.1.4 Bond Prices

We take equation (13) to be a nominal pricing kernel which prices all nominal assets in the

economy. This means that the total gross return process Rt+1 of any nominal asset satisfies:

Et(mt+1Rt+1) = 1. (14)

If pnt represents the price of an n-period zero coupon bond, then equation (14) allows bond

prices to be computed recursively by:

pn+1t = Et(mt+1p
n
t+1). (15)
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The state dynamics of Xt (equation (8)) together with the dynamics of the short rate rt
(equation (9)) and the Radon-Nikodym derivative (equation (10)) form a discrete-time Gaussian

K-factor model with K1 observable factors and K2 unobservable factors. It falls within the

affine class of term structure models because bond prices are exponential affine functions of the

state variables. More precisely, bond prices are given by:

pnt = exp(Ān + B̄
′
nXt), (16)

where the coefficients Ān and B̄n follow the difference equations:

Ān+1 = Ān + B̄
′
n(µ− Σ′λ0) +

1

2
B̄′nΣΣ

′B̄n − δ0
B̄′n+1 = B̄

′
n(φ− Σλ1)− δ′1 (17)

with Ā1 = −δ0 and B̄1 = −δ1.

These difference equations can be derived by induction using equation (15).4 For a one-

period bond, n = 1, we have:

p1t = Et [mt+1] = exp {−rt}
= exp {−δ0 − δ′1Xt} .

Matching coefficients leads to Ā1 = −δ0 and B̄1 = −δ1. Suppose that the price of an n-period

bond is given by pnt = exp(An + BnXt). Now we show that the exponential form also applies

to the price of the n period bond:

pn+1t = Et [mt+1p
n
t ]

= exp

{
−rt − 1

2
λ′tλt + An

}
Et [exp {−λ′tεt+1 +B′nXt+1}]

= exp

{
−rt − 1

2
λ′tλt + An

}
Et [exp {−λ′tεt+1 +B′n(µ+ φXt + Σεt+1)}]

= exp

{
An − δ0 + B′nµ+ (B′nφ− δ′1)Xt −

1

2
λ′tλt

}
Et [exp {−(λ′t +B′nΣ)εt+1}]

= exp

{
−δ0 + An +B′n(µ− Σλ0) +

1

2
B′nΣΣ

′Bn − δ′1Xt +B′nφXt − B′nΣλ1Xt
}

Matching coefficients results in the recursive relations in equations (17).

The continuously compounded yield ynt on an n-period zero coupon bond is given by:

ynt = −
log pnt
n

= An +B
′
nXt (18)

4 See the techniques in Campbell, Lo and MacKinlay (1997), Bekaert and Grenadier (2001) and Backus, Foresi,

Mozumdar and Wu (2001).
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where An = −Ān/n and Bn = −B̄n/n. Note that yields are affine functions of the state

Xt, so that equation (18) can be interpreted as being the observation equation of a state space

system. Additional observation equations will come from the observable variables X ot . Most

examples of discrete-time affine models have not incorporated lagged state variables or moving

average errors. However, by treating both the lagged variables and moving average errors as

state variables in Xt, the affine form is still maintained. Despite time-varying risk premia, our

system is still Gaussian, and IR’s, variance decompositions and other techniques can be handled

as easily as an unrestricted VAR.

4.2 Choice of Parameterization

4.2.1 Latent Variables

Empirical studies have concluded that three unobserved factors explain much of yield dynamics

(see Knez, Litterman and Scheinkman (1994)). To compare models with only latent variables

with models incorporating both latent and macro factors we use three unobservable factors.

Hence our most comprehensive model consists of two macro and three latent factors.

Since there are unobservable variables present, normalizations can be made that give obser-

vationally equivalent systems. The idea behind these normalizations in a VAR setting is that

affine transformations and rotations of the unobservable factors lead to observationally equiv-

alent yields. These normalizations are discussed in detail in Dai and Singleton (2000). We

estimate the most general parameterization for the unobserved variables in this paper, and then

re-estimate the system a second time while setting any insignificant parameters to zero. This

is more efficient, ensures identification, allows comparison across models, and gives sufficient

freedom to capture yield curve dynamics.

We estimate the following system for the unobservable factors:

fut = ρf
u
t−1 + u

u
t , (19)

where uut IID N(0,1) and the 3×3 companion matrix ρ is lower triangular. This is the most gen-

eral identified representation for a Gaussian specification. A multi-factor Vasicek (1977) model

with correlated unobservable factors consists of (19), an affine short rate equation (5), and the

assumption that λ1 = 0. In a Vasicek model, specifying the companion form and holding fixed

the covariances is equivalent to holding the companion form fixed and specifying the covari-

ances. As the latent factors are AR(1) processes, the coefficients Φ2 . . . Φp, in equation (7)

corresponding toXut = f
u
t are zero. Numerous papers in the term structure literature have used

independent factors as a first-cut modeling approach, including Longstaff and Schwartz (1992)

and Chen and Scott (1993). At the estimated parameters, however, the latent factors usually
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turn out to violate the independence assumption. We therefore estimate a correlated latent fac-

tor model to give the latent variables a fair chance to explain the yield curve by themselves,

without the inclusion of macro variables.

We impose independence between latent and macro factors, so that the upper-right 24 × 3
corner and the lower-left 3 × 24 corner of Φ in the compact form in (8) contains only zeros.

This approach to including observed macro factors in a pricing kernel specifies all uncertainties

arising in the latent factors as orthogonal to the macro variables and can answer how yields

respond to pure macro shocks. However, by assuming independence of latent and macro factors

we cannot ask how macro factors respond to latent yield factors. This contradicts empirical

evidence that the term structure predicts movements in macro economic activity (see Harvey

(1988) and Estrella and Hardouvelis (1991)). Extensions of this model where this question can

be addressed can be done by freeing up the companion matrix to allow feedback (so Φ does not

contain zero corner blocks), and looking at contemporaneous correlations of macro and latent

factors (θ0 does not contain zero corner blocks). We leave extensions that free up correlations

between factors for future research and focus on the impact of macro variables on yields.

4.2.2 Risk Premia

The data-generating and the risk neutral measures coincide if λt = 0 for all t. This case is usu-

ally called the “Local Expectations Hypothesis,” which differs from the traditional Expectations

Hypothesis by Jensen inequality terms (see Cochrane (2001), Chapter 19). Macro models, such

as Fuhrer and Moore (1995), usually impose the Expectations Hypothesis to infer long term

yield dynamics from short rates. The dynamics of the term structure in the real measure depend

on the risk premia parameters λ0 and λ1 in equation (11). A non-zero vector λ0 affects the

long-run mean of yields because this parameter affects the constant term in the yield equation

(18). A non-zero matrix λ1 affects the time-variation of risk-premia, since it affects the slope

coefficients in the yield equation (18). In a Vasicek (1977) model λ0 is non-zero and λ1 is zero,

which allows the average yield curve to be upward sloping, but does not allow risk premia to be

time-varying.

Estimating prices of risk is difficult. Many estimations of term structure models with latent

factors cannot reject the hypothesis that the market prices of risk are zero (for example, see the

low t-statistics in Dai and Singleton (2000)). Parameter estimates of λ0 and λ1 are therefore

interesting in themselves, because the evidence against the expectations hypothesis is still being

debated. Although there is strong traditional evidence against it (Campbell and Shiller (1991)),

newer evidence finds the expectations hypothesis much harder to reject in international data

(Hardouvelis (1994)), or taking into account small-sample biases (see Bekaert and Hodrick

(2001) and Bekaert, Hodrick, and Marshall (2001)).
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The number of λ parameters to estimate is very large: λ0 has 5 and λ1 has 25 parameters

in the case of the models with macro variables. To avoid over-fitting, we fix some of these

parameters before estimation. First, we set any λ1 parameters corresponding to the latent vari-

ables to zero in estimations of models with macro variables, if they were already insignificant

in the Yields-Only estimation. We also specify the λ1 matrix to be block-diagonal, with zero

restrictions on the upper-right and lower-left corner blocks. This assumption is in the spirit of

trying to let the macro variables characterize as much of the term structure dynamics as possible

without resorting to orthogonal latent variables. Finally, we set all λ1 parameters corresponding

to lagged macro variables to zero. This leaves two non-zero matrices on the diagonal of λ1 to

estimate: a 2× 2 matrix for current macro variables and a 3× 3 matrix for the latent variables.

4.3 Estimation Method

To estimate the model, we transform a system of yields and observables (Yt, Xot ) into a system

of observables and unobservables Xt = (Xot , X
u
t ). The yields themselves are analytical func-

tions of the state variablesXt, which allow us to infer the unobservable factors from the yields.

The estimation method is maximum likelihood, and we derive the likelihood function in the Ap-

pendix. In traditional VAR approaches, yields and macro variables are used directly as inputs

into a VAR after specifying the autoregressive lag length. The likelihood for the VAR is a func-

tion of (Yt, Xot ), and inferences about yield curve movements and macro shocks can be drawn

from the parameters in the companion form coefficients and covariance terms. Our approach

amounts to estimating a VAR of (Yt, Xot ), with assumptions that (i) identify an unobservable

component orthogonal to macro shocks and (ii) guarantee no arbitrage.

We use a two-step consistent estimation procedure. In the first step, we estimate the macro

dynamics (2) and the coefficients δ0 and δ11 of the macro factors in the short rate dynamics

equation (6). In a second step, we estimate the remaining parameters of the term structure

model holding all pre-estimated parameters fixed. One reason to do this is the difficulties as-

sociated with estimating a large number of factors simultaneously with maximum likelihood

when yields are highly persistent.5 This procedure also avoids the estimation of a large number

of lag coefficients (ρ1, . . . ρ12) in the bivariate VAR for the macro variables by maximizing a

computationally intensive likelihood function.

Both the macro dynamics (2) and the short rate coefficients of the macro variables in equa-

tion (6) are estimated by ordinary least squares, as reported in Sections 2 and 3. Since our
5 We tried to estimate various versions of the model in a single step with maximum likelihood. These estimations

typically produced explosive yield dynamics. Fixing the parameters that characterize the dependence of the short

rate on the observable factors in a (consistent) first-step estimation turned out to be a tractable way to avoid the

problem of nonstationary dynamics.
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constructed macro factors have zero mean and unit variance, the constant δ0 in the short rate

equation represents the unconditional mean of the 1 month yield, which equals 5.10% on an

annualized basis. This number has to be divided by 12 to obtain an estimate for δ0 at a monthly

frequency. The regression coefficients δ11 of the short rate equation give the maximal proportion

of short rate movements explained by the macro factors, with all remaining orthogonal factors

being unobservable. We use the term structure model to identify the unexplained proportion.

Holding δ0, δ11, and the parameters entering equation (2) fixed, we estimate all other pa-

rameters of the term structure model including the remaining coefficients in δ12 corresponding

to the latent factors in the term structure estimation. To obtain starting values for ρ in equation

(19) we estimate the model with λ0 and λ1 equal to zero. We then estimate λ1 still holding λ0
fixed at zero. In the next estimation round, we estimate λ0 while setting parameters in λ1 that

turned out to be insignificantly different from zero. We finally set insignificant λ0 parameters

to zero and re-estimate. This method gives more efficient estimates than a one-step estimation

under the null that the insignificant parameters are equal to zero.

Finally, our likelihood construction solves for the unobservable factors from the joint dy-

namics of the zero coupon bond yields and the macro factors. To do this, we follow Chen and

Scott (1993) and assume that as many yields as unobservable factors are measured without er-

ror, and the remaining yields are measured with error. In particular, for our models with three

latent factors we assume the 1, 12 and 60-month yields are measured without error, and the 3

and 36-month yields are measured with error.

4.4 Summary of Parameterization

To summarize, we estimate the following special case of the general model. The bivariate

system of macro factors f ot follows the process:

f ot = ρ1f
o
t−1 + . . .+ ρ12f

o
t−12 + Ωut, (20)

with ut IID N(0,I). The 2× 2 matrices ρ1, . . . , ρ12,Ω consist of free parameters.

The trivariate system of latent factors f ut follows the process:

fut = ρf
u
t−1 + εt (21)

with εt IID N(0,1). The 3 × 3 matrix ρ is lower triangular to ensure identification. The shock

processes εt and ut are independent.

The short rate equation is:

rt = δ0 + δ
′
11X

o
t + δ

′
12X

u
t , (22)
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where the parameters δ0 and δ11 are consistently estimated by least squares in a first-step proce-

dure prior to maximizing the likelihood. The observable factors are X ot = (f
o′
t f

o′
t−1 . . . , f

o′
t−p)

and the latent factors are Xut = f
u
t . The full set of state variables isXt = ((Xot )

′, (Xut )
′)′.

Market prices of risk are affine in the state vector:

λt = λ0 + λ1Xt. (23)

The matrix λ1 has an upper-left 2 × 2 matrix and a lower-right 3 × 3 matrix corresponding to

f ot and fut , while the remaining parameters are set to zero. The parameters in λ0 corresponding

to f ot and fut are free, and all remaining parameters are restricted to be zero.

Our most comprehensive model contains two macro factors and three unobservable factors,

which we denote as the “Macro Lag” model. The estimation of δ11 that restricts the parame-

ters on lagged parameters to be zero as in equation (22) is denoted the “Macro” model. The

estimation without any macro variables we call the “Yields-Only” model.

5 Estimation Results

Section 5.1 interprets the parameter estimates of the Macro and Yields-Only models. To deter-

mine the effect of the addition of macro factors into term structure models, we look at the IR’s

of each factor in Section 5.2. The variance decompositions in Section 5.3 allow us to attribute

the forecast variance at a particular horizon to shocks in macro and latent factors. We compare

the latent factors from the different models in Section 5.4 and find that macro factors do ac-

count for some of the latent factors from the Yields-Only model. In Section 5.5, we find that

imposing the cross-equation restrictions from no-arbitrage forecasts better than the unrestricted

VAR’s common in the macro literature. Moreover, incorporating macro variables into a term

structure model helps us obtain even better forecasts. Derivations for the IR’s and variance

decompositions are presented in the Appendix.

5.1 Parameter Estimates

5.1.1 Yields-Only Model

Table 5 presents the estimation results for the Yields-Only Model. The order of the latent factors

in Table 5 is unspecified, but we present the estimation results by ordering the latent factors by

decreasing autocorrelation. The model has one very persistent factor, one less persistent but still

very strongly persistent factor, and the last factor is strongly mean-reverting. This is consistent

with previous multi-factor estimates in the literature such as Chen and Scott (1993).
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These unobservable factors have been labeled “level,” “slope,” and “curvature” respectively

because of the effects of these factors on the yield curve. In Figure 5 we plot the normalized

factors against three normalized transformations of the 1 month, 12 month and 60 month yields

(y1t , y
12
t and y60t respectively). The first latent variable, Unobs 1, closely corresponds to a “level”

effect, which is defined as 1/3(y1t + y
12
t + y

60
t ). The correlation between Unobs 1 and the

level transformation is 92%. The second latent variable, Unobs 2, closely corresponds to a

“spread” transformation, defined as y60t −y1t . Unobs 2 and the spread have a correlation of 58%.

Finally, the third latent variable, Unobs 3, is related to a “curvature” transformation, defined as

y1t − 2y12t + y60t . Unobs 3 has a 77% correlation with curvature.6

In Table 5, the estimated vector λ0 has one significant parameter corresponding to the most

highly autocorrelated factor. The parameter is negative, so that the unconditional mean of the

short rate under the risk-neutral measure is higher than under the data-generating measure.

Since bond prices are computed under the risk-neutral measure, negative parameters in λ0 in-

duce long yields to be on average higher than short yields. Time-variation in risk premia is

mainly driven by the first and third unobservable factor. In other words, risk premia in bond

yields mainly depend on the level and the curvature of the yield curve.

5.1.2 Models with Yields and Macro Variables

Tables 6 and 7 contain estimation results of the Macro Model and the Macro Lag Model. The

autocorrelations of the unobservable factors are comparable across all models, with the excep-

tion of Unobs 3. The autocorrelation of Unobs 3 is approximately the same in the Yields-Only

and Macro Model (0.7646 and 0.7728 respectively) but is more persistent in the Macro Lag

Model (0.8210). The δ1 coefficients corresponding to latent factors are also approximately the

same across the three models.

Turning to the risk premia parameters in Tables 6 and 7, the λ1 coefficients corresponding to

inflation and real activity are significant. This implies that time-variation in risk premia signif-

icantly depends on observable macro factors. However, the estimates of the λ1 risk parameters

differ across the Macro and Macro Lag Model. In particular, the inflation-real activity cross-

terms (λ1,12 and λ1,21), where the additional two subscripts denote matrix elements, are much

larger in absolute magnitude in the Macro Model than in the Macro Lag Model. Similarly,

the inflation and real activity diagonal terms (λ1,11 and λ1,22) are smaller in the Macro Model

estimation than in the Macro Lag Model. This implies that the behavior of inflation and real

activity on the term structure may be potentially quite different across the Macro and Macro
6 For comparison, the standard Knez, Litterman and Scheinkman (1994) three principal components of the

1 month, 12 month and 60 month yields have correlations 100%, 99.8% and 88.6% with the level, spread and

curvature yield transformations.
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Lag Models. We confirm this in the following sections where we examine IR’s and variance

decompositions. In contrast, the λ1 parameters corresponding to the latent factors are roughly

similar across the Macro and Macro Lag Models, with the exception of the Unobs 3 diagonal

term (λ1,55).

5.2 Impulse Responses

5.2.1 Factor Weights Across the Yield Curve

From equation (18), the effect of each factor on the yield curve is determined by the weights

Bn that the term structure model assigns on each yield of maturity n. These weights Bn also

represent the initial response of yields to movements in the various factors. Figure 6 plots

these weights as a function of yield maturity for the Yields-Only model in the upper graph, and

the Macro Model in the lower graph. The Bn coefficients have been scaled to correspond to

movements of one standard deviation of the factors, and have been annualized by multiplying

by 1200.

Turning first to the Yields-Only model, the weight on the most persistent factor (Unobs 1)

is almost horizontal. This means that it affects yields of all maturities the same way, so we can

call it a level factor. The coefficient of the second factor (Unobs 2) is upward sloping. It mainly

moves the short end of the yield curve relative to the long end, so Unobs 2 is therefore a slope

factor. The coefficient on the least persistent factor (Unobs 3) is hump-shaped. Movements in

this factor affect yields at the short-end of the yield curve and middle and long-end of the yield

curve with different signs. Hence, the Bn weights corresponding to Unobs 3 have a twisting

effect, so Unobs 3 is thus a curvature factor. The inverse hump in the coefficient of this factor

cannot be accommodated in a model with independent factors and constant risk premia, where

yield coefficients are monotone functions of maturity.

The corresponding coefficients of the Macro model in the lower plot in Figure 6 look very

similar. We again find that Unobs 1 though 3 represent level, slope and curvature factors. We

find the same correspondence in the Bn coefficients of the Macro Lag model (which we do not

graph here). The Bn coefficients corresponding to inflation and real activity we represent as

stars and circles, respectively. The effect of inflation is hump-shaped but mostly affects short

yields and less so long yields. The magnitude of the inflation weights are higher than the level

factor weights at short maturities, and about half the magnitude of the slope factor weights. Real

activity has a much weaker hump-shaped effect on the yield curve. This suggests that macro

factors have much explanatory power for yield curve dynamics. To trace out the long-term

responses of the yield curve from shocks to the macro variables after the yield curve’s initial

response, we now compute IR’s.
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5.2.2 Impulse Responses from Macro Shocks

We look at IR’s to yields of maturities 1, 12 and 60 months. Our term structure model allows

us to obtain the movements of the yield curve in response to driving shocks at all horizons,

including maturities omitted in estimation. The IR’s for all maturities are known analytical

functions of the parameters. This is in contrast to estimations with VAR’s where IR’s can only

be calculated for yields included in the VAR. Our estimation also guarantees that the movements

of yields are arbitrage-free.

Figure 7 shows IR’s of 1, 12 and 60 month yields from the Macro model and the Macro

Lag model. In addition, we calculate the IR’s from a simple unrestricted VAR(12), with macro

factors and 5 yields similar to Campbell and Ammer (1993). We order the variables with macro

factors first, and then yields with increasing maturities. The x-axis on each plot is in months

and the IR’s are given in terms of annualized percentages for a shock of one standard deviation.

In all models, shocks to inflation and real activity raise the yield curve across all maturities,

with a larger response to inflation shocks. The IR’s of macro shocks are hump-shaped in all

models. The hump in the unrestricted response to real activity shocks occurs after one year,

while the hump in the response to inflation shocks occurs later, after two years. The magnitudes

and the exact location of the humps differ across models.

Turning first to the IR’s of the unrestricted VAR in the first column of Figure 7, a one-

standard deviation shock to inflation initially raises the 1-month yield about 10 basis points.

The response peaks after about two years at 30 basis points and then slowly levels off. The

response of longer yields has the same overall shape. The initial response of the 1-year yield

(5-year yield) is only 8 basis points (5 basis points). The response increases to around 25 basis

points (22 basis points) after two years, and then dies off slowly. The response of yields to real

activity shocks in the unrestricted VAR is slightly smaller than the response to inflation shocks.

The response is again hump-shaped with the hump occurring after one year. The unrestricted

response of the 1-month yield to a 1 standard deviation output shock is around 15 basis points

initially. The response increases to 30 basis points after two years, and then dies off. The initial

responses of the 1-year yield (5-year yield) is 15 (10) basis points. The response increases to

25 (18) basis points after one year and then dies off.

The last two columns of Figure 7 list IR’s in the Macro and Macro Lag models. The hump-

shape of the IR’s are similar to the shape of the IR’s from the unrestricted VAR, but the IR’s

are much larger. For example, the initial response of the 1-year yield to a 1 standard deviation

inflation shock is 50 basis points in the Macro model. The response then increases to almost

1 percentage point after one year, where it peaks. The hump in the IR to inflation shocks in

the Macro Lag model occurs later, after 2 years, and is therefore similar to the pattern in the
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unrestricted response. The IR’s from the Macro Lag model, however, are more erratic than those

of the Macro model. This is because the contemporaneous and 11 lags of the short rate equation

contain many insignificant parameters, which cause poor behavior due to over-parameterization.

Our results are different from the empirical VAR studies such as Evans and Marshall (2000).

They associate shocks to price levels and economic growth as having a level-shift effect across

the yield curve. We find that shocks to these factors generally affect the short yield end of the

yield curve more than the long end of the yield curve. The structure in Evans and Marshall

(2000) is to construct VAR’s for yields with macro variables and a monetary policy proxy (the

federal funds rate). In our model, most of the movement in the yield curve at long horizons

is explained by unobserved factors, whereas in the VAR most movements in the term structure

are unexplained and are absorbed by the VAR as covariance error. When estimating the model,

the first unobservable factor mimics the level of the term structure because this is the linear

combination that looks like the first principal component of yields, which the macro factors

cannot replicate. This factor is very persistent, and affects the long end of the yield curve more

than the short end.

5.3 Variance Decompositions

To gauge the relative contributions of the macro and latent factors to forecast variances we con-

struct variance decompositions. These show the proportion of the forecast variance attributable

to each factor, and are closely related to the IR’s of Section 5.2. Table 8 summarizes our results.

The proportion of unconditional variance accounted for by macro factors is decreasing with the

maturity of yields: highest at the short and middle-ends of the yield curve, and smallest for the

long-end. The largest effect is on the 1-month yield where macro factors account for 83% of

the unconditional variance (where the forecasting horizon is infinite). The proportion of fore-

cast variance explained by macro factors displays an interesting pattern for different parts of the

yield curve. For short and intermediate maturities, this pattern is hump-shaped. For example,

macro factors account for 50% of the 1-step ahead forecast variance of the 1-month yield. This

percentage rises to 78% at 12 months and 85% at 60 months, but then converges to 83% for ex-

tremely long horizons. For long yields, the explanatory power of the macro variables decreases

with forecasting horizon. Macro variables only account for 40% of the unconditional variance

of long yields, while the rest is attributed to latent factors. The low variance decomposition

of long yields is due to the dominance of persistent unobserved factors (the near unit-root fac-

tor). Overall, Table 8 shows that the macro factors explain a large amount of term structure

movements, particularly at the short and middle parts of the yield curve.

More detailed variance decompositions are listed in Table 9 for 1, 12 and 60 month maturi-

ties. To interpret the top row of Table 9, for the Yields-Only model, 13.81% of the 1-step ahead
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forecast variance of the 1-month yield is explained by the first unobserved factor, 33.03% by the

second unobserved factor and 53.14% by the third unobserved factor. In the row labeled h = 1

of the Macro Model in the first panel corresponding to the 1-month yield, 48.87% of the 1-step

ahead forecast variance is attributable to inflation, 0.74% to real activity and the remainder to

the latent factors.

Focusing on the Macro Model, inflation has more explanatory power for forecast variances

than real activity at all points of the yield curve and for all forecast horizons. For example, at the

12-month horizon 68.60% (9.46%) of the forecast variance of the 1-month yield is accounted

for by inflation (economic growth). The explanatory power of real activity generally rises with

the forecast interval h. At the long end of the yield curve the explanatory power of inflation

decreases with h. Inflation and real activity remain important in the Macro Lag Model, but

the proportion attributable to macro variables is much smaller for the 60 month yield than the

Macro Model.

Turning now to the latent factors in Table 9, Unobs 1, corresponding to the first highly per-

sistent latent factor, dominates the variance decompositions for all the yields at long horizons.

Its importance increases for yields with long maturity. This effect mirrors the flat Bn yield fac-

tor weights in Figure 6. The second unobserved factor (Unobs 2) has greatest effect on short-run

flucations of yields with intermediate maturities. The third unobserved factor (Unobs 3) is the

strongly mean-reverting factor and acts only on the short end of the yield curve. In Table 9 it

accounts for 53% of the forecast variance for the 1-month yield at a one month horizon, but has

little effect on longer yields. These patterns are mirrored in both the Yields-Only model and

models with macro variables, but with different magnitudes. These variance decompositions

suggest that the role of the “level” factor (Unobs 1), “butterfly” factor (Unobs 2) and “slope”

factor (Unobs 3) remain roughly the same with the addition of macro factors. The next sec-

tion seeks to quantify the change in the behavior of these unobserved factors in the presence of

macro variables.

5.4 Comparison of Factors

The addition of macro factors into a term structure model is shown quantatively in Table 10. In

this table we regress the latent factors from the Yields-Only model onto the macro and latent

factors from the Macro and Macro Lag Models. We run three series of regressions, first only on

the macro variables (Panel A), and then onto the macro and latent variables of the Macro Model

(Panel B), and then onto the macro and latent variables of the Macro Lag Model (Panel C). All

the variables in the regressions are normalized.

Turning first to Panel A of Table 10, the traditional level factor loads significantly onto
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inflation and real activity, with an adjusted R2 of 22%. In particular, the loading on inflation is

positive and large (0.46). This suggests that the traditional level factor captures a strong inflation

effect. When the second latent factor, labeled “slope,” is regressed onto the macro factors, we

obtain a high R2 of 49%, with significant negative loadings particularly on inflation (-0.67).

Hence, much of the traditional slope factor is also related to the dynamics of inflation. Finally,

the third latent factor (“curvature”) is poorly accounted by macro factors R2 = 3%. However,

the traditional curvature factor does load significantly onto real activity.

Panel B of Table 10 reports the regression from the traditional Yields-Only factors onto the

macro and latent factors implied by the Macro Model. The level factor from the Yields-Only

model translates almost one for one with the level factor of the Macro Model. The magnitude

of the coefficient on Unobs 1 of the Macro model is very close to 1, and the full regression

produces an R2 of 99%. However, the loadings on the macro factors are significant suggesting

that macro variables do account for some of the level factor.

The reason why the level factor survives almost intact when macro factors are introduced is

because the level factor proxies for the first principal component of the yield curve, as shown

in Figure 5. The unobservable factors are linear combinations of the yields, and the best linear

combination of yields which explains term structure movements is the first principal component.

When macro factors are added, these factors still do not resemble the level of the yield curve,

and so this factor is still necessary to explain the movements across the term structure.

When we regress the Yields-Only slope factor (Unobs 2) onto the Macro Model factors

the loading of the Unobs 2 factor from the Macro Model is significantly smaller than 1, while

the coefficient on inflation is very large and negative, and the coefficient on real activity is

also significant. This means that a large part of the traditional slope factor can be attributed

to inflation movements. In particular, when inflation is high, the slope narrows because the

short rate increases relative to the long rate. Turning finally to the regression of the Yields-Only

curvature factor (Unobs 3), this regression still has a significant negative coefficient on real

activity, but most of the correspondence is with the Unobs 3 factor from the Macro Model (the

coefficient is 0.91).

Panel C of Table 10 reports the regression coefficients of the latent factors from the Yields-

Only model onto the macro and latent factors of the Macro Lag Model. We see that the level

effect again survives almost one for one and there is still a large loading on the inflation factor by

the Yields-Only model’s Unobs 2. However, the R2’s of the Unobs 2 and Unobs 3 regressions

are much smaller than the Macro Model regressions in Panel B.

In summary, Table 10 shows that the traditional level and slope factors are markedly as-

sociated with and accounted by observable macro factors. In particular, inflation accounts for
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large amounts of the dynamics of the traditional slope factor. However, the level effect survives

almost intact when macro factors are added to a term structure model.

5.5 Forecasts

The variance decompositions hint that term structure models with observable macro variables

may help in forecasting future movements in yields. However, these are statements based on

assuming a particular model as the true model after estimation, and may not hold in a practical

setting where more parsimonious data representations often out-perform sophisticated models,

particularly if these more sophisticated models are over-parameterized. To determine if this is

actually the case we conduct an out-of-sample forecasting experiment.

Our procedure for examining out-of-sample forecasts over the last 5 years of our sample is

as follows. We examine forecasts for all the five yields used in estimation. At each date t, we

estimate the models using data up to and including time t, and then forecast the next month’s

yields at time t + 1. The macro factor data is formed using the principal components of the

macro data up to time t, and we estimate the short rate equation and the bivariate VAR of the

macro dynamics only using data up to time t for the Macro and Macro Lag Models. Hence, we

only use data available in the information set at time t in making the forecast at time t+ 1.

We perform a comparison of out-of-sample forecasts for six models. First, we use a simple

random walk. Second, we investigate out-of-sample forecasts for the corresponding VAR(12)’s

which do not impose cross-equation restrictions. Our first VAR uses only yields, and we use

a second VAR which incorporates yields and macro variables. Our last three models are the

Yields-Only model, the Macro model and the Macro Lag model. We use two criteria to compare

our forecasts across the models. The first is the Root Mean Squared Error, RMSE, of actual and

forecasted yields, and the second is the Mean Absolute Deviation, MAD.

Table 11 lists the results of the out-of-sample comparisons. Lower RMSE and MAD values

denote better forecasts. We note the following points regarding the forecasting performance of

the models. First, a random walk easily beats an unconstrained VAR. The result holds inde-

pendently of whether the VAR’s only contain yields, or are augmented with macro variables.

The bad performance is due to the high persistence of yields and small sample biases in the

estimation of autoregressive coefficients in over-parameterized VAR’s.

Second, imposing the cross-equation restrictions from no-arbitrage helps in forecasting. The

improvement in forecasting performance is substantial, generally about 25% of the RMSE and

30% of the MAD for all yields. These constrained VAR’s perform in line with, and slightly

better, than a random walk (except for the 3-month yield). Duffee (2001) remarks that beating
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a random walk with a traditional affine term structure model is difficult. From forecasting

exercises without risk premia (not reported here), we know that this result crucially depends on

the type of risk adjustment. Linear risk premia, not considered by Duffee (2001), seem to do

well in this regard.

Third, the forecasts of the Macro model are far better than those of the Macro Lag model.

While the forecasts of the Macro Lag model are comparable to those of unconstrained VAR’s,

the Macro model slightly outperforms a random walk (except for the 3-month yield). Both

the Macro model and the Macro Lag model impose cross-equation restrictions on a VAR with

yields and macro variables. The Macro Lag model, however, has a large number of insignificant

coefficients entering the short rate equation. This over-parameterization causes poor out-of-

sample performance.

Finally, incorporating macro variables helps in forecasting. More precisely, the forecasts

of the Macro model are uniformly better than the Yields-Only model (except for the 3 month

yield). Hence, we can conclude that (i) adding term structure restrictions improves forecasts

relative to unconstrained VAR’s, even beating a random walk, and (ii) forecasts can be further

improved by including macro variables. Note, however, that we have shown this improvement

is only in incrementally adding macro factors to a given number of latent factors.

6 Conclusion

This paper presents a Gaussian model of the yield curve with observable macroeconomic vari-

ables and traditional latent yield variables. The model takes a first step towards understanding

the joint dynamics of macro variables and bond prices in a factor model of the term structure.

Risk premia are time-varying; they depend on both observable macro variables and unobserv-

able factors. Our approach extends the existing empirical VAR work by imposing no-arbitrage

assumptions which allow identification of unobservable factors, and allows the movements of

the entire yield curve to be derived consistent with no-arbitrage.

We find that macro factors explain a significant portion (up to 85%) of movements in the

short and middle parts of the yield curve, but explain only around 40% of movements at the

long end of the yield curve. The effects of inflation shocks are strongest at the short end of

the yield curve. Comparing the latent factors from traditional three latent factor models of

term structure, the “level” factor survives almost intact when macro factors are incorporated,

but a significant proportion of the “level” and “slope” factors are attributed to macro factors,

particularly to inflation. Incorporating macro factors in a term structure model also improves

out-of-sample forecasts.
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In future research, we plan to extend our empirical specification to allow non-diagonal terms

in the companion form for the factors. This introduces correlations among the latent factors and

feedback from latent factors to macro variables. This allows inference of how latent yield factors

drive macro variables, along the lines of Estrella and Hardouvelis (1991) but with the dynamics

of the yield curve modeled in a no-arbitrage pricing approach.
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Appendix

A Likelihood Function
We have data on an N vector of zero coupon yields Y t. Our approach to estimation is to solve for the unobserved
factors fut from the yields Yt and the observed variables X o

t , which includes observed macro variables f ot and
latent variables fut and lagged terms of the driving factors.

Suppose first that we have N = K2 yields of different maturity n1, . . . , nK2 , as many yields as we have
unobserved factors, f ut . Stacking the equations for the K2 yields, with Yt = (y

n1
t . . . y

nK2
t )′, we can write:

Yt = A+BXt, (A-1)

where A is K2x1 and B is K2xK . Partition the matrix B into B = [BoBu] where Bo is a K2 × (K − K2)
matrix which picks up the observable factors and B u is a K2xK2 invertible matrix that picks up the unobservable
factors. Then we can infer the unobservable factors in X u

t ≡ fut from Yt and the pricing matrices A and B using
an inversion from the equation:

Yt = A+BoXot +BuXut . (A-2)

However, the term structure model will only price exactly the yields used to invert the latent factors. To
increase the number of yields to N ≥ K2 in the estimation, we follow Chen and Scott (1993), and others, in
assuming that some of the yields are observed with measurement error. There will be K 2 yields from which
we invert to obtain the latent variables, and the other N − K2 yields are measured with error. We assume this
measurement error is IID, and the measurement error is uncorrelated across the yields measured with error. Let
Bm denote a N × (N -K2) measurement matrix and umt be an (N -K2)-dimensional Gaussian white noise with a
diagonal covariance matrix independent of X t. We can then write:

Yt = A+BoXot +BuXut +Bmumt . (A-3)

In equation (A-3) the yields measured without error will be used to solve for X u
t , and the yields measured with

error have non-zero umt . For a given parameter vector θ = (µ,Φ,Σ, δ0, δ1, λ0, λ1), we can invert equation (A-3) to
obtain Xut and umt . The variance of the measurement error in our estimations are very small and choosing different
bonds to be measured without error do not affect our results.

Denoting the normal density functions of the state variables X t and the errors umt as fX and fum respectively,
the joint likelihood L(θ) of the observed data on zero coupon yields Y t and the observable factors X o

t is given by:

L(θ)) =

T∏
t=2

f(Yt, X
o
t |Yt−1, Xot−1)

log(L(θ)) =

T∑
t=2

− log | det(J)|+ log fx(Xot , Xut |Xot−1, Xut−1) + log fum(umt )

= −(T − 1) log | det(J)| − (T − 1)1
2
log(det(ΣΣ′))

− 1
2

T∑
t=2

(Xt − µ− ΦXt−1)′(ΣΣ′)−1(Xt − µ− ΦXt−1)

− T − 1
2
log

N−K2∑
i=1

σ2i −
1

2

T∑
t=2

N−K2∑
i=1

(umt,i)
2

σ2i
(A-4)

where σ2i is the variance of the i-th measurement error and the Jacobian term is given by

J =

(
I 0 0

Bo Bu Bm

)
.

Note that the Jacobian terms of the likelihood in equation (A-4) do not involve A n, and hence the constant prices
of risk λ0 but do involve the linear prices of risk λ1.
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B Impulse Responses
To derive the IR’s of the yields from shocks to the macro variables and latent yield factors F t = (f

o′
t , fu

′
t )
′ consider

the VAR(12) form of Ft in equation (7), repeated here:

Ft = Φ0 +Φ1Ft−1 + . . .+ΦpFt−12 + θ0ut. (B-5)

The Φi coefficients take the following form in our parameterization:

Φ0 = 0 Φ1 =

(
ρ1 0
0 ρ

)
Φi =

(
ρi 0
0 0

)
for i = 2, . . . , 12.

We write this as an implied Wold MA(∞) representation:

Ft =

∞∑
i=0

Piut−i, (B-6)

where ut = (u
o′
t uu

′
t )
′ are the shocks to Ft. Note that a Choleski adjustment is needed to take into account the

contemporaneous correlation of the shocks.
The yield on an n-period zero coupon bond y nt is a linear combination of current and lagged values of u t from

equation (18), which we can write as:

ynt = An +
∞∑
i=0

ψni ut−i, (B-7)

where the row vectors ψni are functions of Bn. Note that this is just a linear transformation of the original MA(∞)
form, and the Bn are closed-form from equation (17).

For example, for the Macro Model, the state-space X t is given by:

Xt = (f
o′
t fo

′
t−1 . . . fo

′
t−12 f

u′
t )
′,

where f ot are the two macro factors, and f ut are the three unobservable factors. The yields for maturity n, y nt , can
be written as:

ynt = An +B′nXt
= An +B′n1f

o
t + · · ·+B′n12f

o
t−12 +B′n13f

u
t

= An + B̄′n1Ft + · · ·+ B̄′n12Ft−12 (B-8)

where we partition as Bn = [Bn1 . . . Bn13], where Bni corresponds to f ot−i for i = 0, . . . , 12 and Bn13 corre-
sponds to fut , and B̄n1 = [Bn1 Bn13], and B̄ni = [Bni 0] for i = 2, . . . 12.

Then substituting the MA(∞) representation for F t we have:

ψn0 = B̄′n1P0
ψn1 = B̄′n1P1 + B̄′n2P0

...

ψni = B̄′n1Pi−1 + · · ·+ B̄′n12Pi−12, for i ≥ 12. (B-9)

and so on.
The vector ψni is the IR for the n-period yield at horizon i for shocks to the driving variables F t at time 0. For

k yields of maturities n1, . . . nk, we can stack the coefficients of each yield to write:

Yt = A+

∞∑
i=0

Ψiut−i, (B-10)

where Yt = (y
n1
t . . . ynkt )

′ and the j-th row of Ψi is ψni .
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C Variance Decompositions
Working with the MA(∞) representation of the yields in equation (B-10), the error of the optimal h-step ahead
forecast at time t, Ŷt+h|t is:

Ŷt+h|t − Yt+h =

h−1∑
i=0

Ψiut+h−i (C-11)

Let the j-th component of a vector be denoted by a superscript j and Ψ jk,i denote the element in row j, column k
of Ψi. Then:

Ŷ jt+h|t − Y jt+h =

K∑
k=1

(Ψjk,0u
k
t+h + . . .Ψjk,h−1ukt+1) (C-12)

Denote the mean squared error of Ŷ jt+h|t as MSE(Ŷt+h|t). Then

MSE(Ŷt+h|t) =
K∑
k=1

(Ψ2jk,0 + · · ·+Ψ2jk,h−1). (C-13)

The contribution Ωjk,h of the k-th factor to the MSE of the h-step ahead forecast of the j-th yield is:

Ωjk,h =

∑h−1
i=0 Ψ

2
jk,i

MSE(Ŷt+h|t)
, (C-14)

which decomposes the forecast variance at horizon h of the j-th yield to the various factors.
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Table 1: Summary Statistics of Data

Central Moments Autocorrelations
mean stdev skew kurt lag 1 lag 2 lag 3

1 mth 5.1316 2.7399 1.0756 4.6425 0.9716 0.9453 0.9323
3 mth 5.4815 2.8550 1.0704 4.5543 0.9815 0.9606 0.9419

12 mth 5.8849 2.8445 0.8523 3.8856 0.9824 0.9626 0.9457
36 mth 6.2241 2.7643 0.7424 3.5090 0.9875 0.9739 0.9620
60 mth 6.4015 2.7264 0.6838 3.2719 0.9892 0.9782 0.9687

CPI 3.8612 2.8733 1.2709 4.3655 0.9931 0.9847 0.9738
PCOM 0.9425 11.2974 1.0352 6.0273 0.9684 0.9162 0.8600

PPI 3.0590 3.6325 1.4436 4.9218 0.9863 0.9705 0.9521
HELP 66.7517 22.0257 -0.1490 1.8665 0.9944 0.9900 0.9830

EMPLOY 1.6594 1.5282 -0.4690 3.2534 0.9378 0.8954 0.8410
IP 3.4717 5.3697 -0.5578 3.6592 0.9599 0.8889 0.7972
UE 5.7344 1.5650 0.4924 3.2413 0.9906 0.9777 0.9595

The 1, 3, 12, 36 and 60 month yields are annual zero coupon bond yields from the Fama-Bliss CRSP bond
files. The inflation measures CPI, PCOM and PPI refer to CPI inflation, spot market commodity price in-
flation, and PPI (Finished Goods) inflation respectively. We calculate the inflation measure at time t using
log(Pt/Pt−12) where Pt is the inflation index. The real activity measures HELP, EMPLOY, IP and UE refer
to the Index of Help Wanted Advertising in Newspapers, the growth rate of employment, the growth rate in
industrial production and the unemployment rate respectively. The growth rate in employment and industrial
production are calculated using log(It/It−12) where It is the employment or industrial production index.
For the macro variables, the sample period is 1952:01 to 2000:12. For the bond yields, the sample period is
1952:06 to 2000:12.
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Table 2: Principal Component Analysis

Principal Components: Inflation
Factor

1st 2nd 3rd Loading
CPI -0.6343 -0.3674 0.6802 -0.9286

PCOM -0.4031 0.9080 0.1145 -0.5901
PPI -0.6597 -0.2015 -0.7240 -0.9657

% variance
explained 0.7143 0.9775 1.0000

Principal Components: Real Activity
Factor

1st 2nd 3rd 4th Loading
HELP -0.3204 -0.7365 -0.5300 0.2719 -0.4622

UE 0.3597 -0.6283 0.6871 0.0612 0.5188
EMPLOY -0.6330 -0.1648 0.2444 -0.7158 -0.9131

IP -0.6060 0.1886 0.4327 0.6403 -0.8742
% variance
explained 0.5202 0.7946 0.9518 1.0000

We take the three (four) macro variables representing inflation (real activity) and normalize them to unit
variance. Then the normalized data Zt has the following 1 factor model:

Zt = Cfot + εt

where C is the factor loading vector, E(f ot ) = 0, cov(f ot ) = I , E(εt) = 0, and cov(εt) = Γ, where Γ is a di-
agonal matrix. The columns titled “principal components” list the principal components corresponding to the
first to smallest eigenvalue. The % variance explained for the nth principal component gives the cumulative
proportion of the variance explained by the first up to the nth eigenvalue. IP refers to the growth in industrial
production, CPI to CPI inflation, PCOM to commodity price inflation and PPI to PPI inflation, HELP refers
to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment rate, EMPLOY to the
growth in employment. The sample period is 1952:01 to 2000:12
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Table 3: Selected Correlations

CPI PCOM PPI
Inflation 0.9286 0.5901 0.9657

HELP UE EMPLOY IP
Real Activity 0.4622 -0.5188 0.9131 0.8742

Real
Inflation Activity 1 mth 12 mth

Real Activity 0.0017
1 mth 0.6666 0.0627

12 mth 0.6484 0.0510 0.9771
60 mth 0.5614 -0.0270 0.9191 0.9639

The table reports selected correlations for the inflation factor extracted from the first principal component
of PCI, PCOM and PPI, the real activity factor extracted from the first principal component of HELP, UE,
EMPLOY and IP, and the 1, 12 and 60 month bond yields, which are used in the estimation. IP refers to
the growth in industrial production, CPI to CPI inflation, PCOM to commodity price inflation, PPI to PPI
inflation, HELP refers to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment
rate, EMPLOY to the growth in employment. The sample period is 1952:06 to 2000:12.
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Table 4: The Dependence of the Short Rate on Macro Variables

Panel A: y1t on Constant, Inflation and Real activity

Coeff Inflation Real Activity Constant Adj R2

t 0.0143 0.1535 0.4250 0.4523
(0.0070)∗ (0.0070)† (0.007)†

Panel B: y1t on Constant, 12 lags of Inflation and Real activity

Coeff Inflation Real activity Constant Adj R2

t 0.0037 0.0398 0.4296 0.5337
(0.0534) (0.0065)† (0.0306)†

t− 1 0.0659 0.0150
(0.0828) (0.0452)

t− 2 -0.0435 0.0105
(0.0830) (0.0450)

t− 3 0.0062 -0.0054
(0.0833) (0.0444)

t− 4 0.0233 -0.0172
(0.0828) (0.0441)

t− 5 -0.0088 0.0145
(0.0825) (0.0442)

t− 6 -0.0245 -0.0213
(0.0825) (0.0438)

t− 7 0.0175 0.0062
(0.0821) (0.0435)

t− 8 0.0080 0.0196
(0.0825) (0.0438)

t− 9 -0.0049 0.0121
(0.0821) (0.0441)

t− 10 -0.0079 0.0005
(0.0820) (0.0439)

t− 11 0.1427 -0.0069
(0.0522)† (0.0299)

In Panel A we regress the 1 month yield y1t on a constant, the inflation factor and the real activity factor.
In Panel B we regress y1t on a constant, inflation, real activity and 11 lags of inflation and real activity. We
report OLS standard errors in parenthesis. Standard errors significant at the 5% (1%) level are denoted ∗ (†).
Sample period is 1952:01 to 2000:12.
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Table 5: Yields-Only Model Estimates

Companion Form Φ
0.9924 0.0000 0.0000

(0.0039)
0.0000 0.9548 0.0000

(0.0062)
0.0000 -0.0021 0.7646

(0.0001) (0.0210)

Short Rate Parameters δ1 (× 100)
Unobs 1 Unobs 2 Unobs 3
0.0136 -0.0451 0.0237

(0.0020) (0.0005) (0.0015)

Prices of Risk λ0 and λ1
λ1 matrix

λ0 Unobs 1 Unobs 2 Unobs 3
Unobs 1 -0.0033 -0.0069 0.0000 0.0000

(0.0004) (0.0040)
Unobs 2 0.0000 0.0445 0.0000 -0.2585

(0.0050) (0.0197)
Unobs 3 0.0000 -0.0049 0.0000 0.0241

(0.0090) (0.0026)

Measurement Error (× 100)
3 month 36 month
0.0203 0.0090

(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the 3-factor Yields-Only model
Xt = ΦXt−1+εt, with εt ∼ N(0, I), Φ lower triangular and the short rate equation given by r t = δ0+δ′1Xt.
All factors Xt ≡ fut are unobservable. The coefficient δ0 is set to the sample unconditional mean of the short
rate, 0.0513/12. The prices of risk λt are given by λt = λ0+λ1Xt. The system is first estimated with λ0 = 0
and λ1 unconstrained. In a second estimation, the insignificant coefficients in λ 1 are set to zero. The sample
period is 1952:06 to 2000:12.

36



Table 6: Macro Model Estimates

Companion Form Φ for Latent Factors
0.9915 0.0000 0.0000

(0.0042)
0.0000 0.9392 0.0000

(0.0122)
0.0000 0.0125 0.7728

(0.0146) (0.0217)

Short Rate Parameters δ1 for Latent Factors (× 100)
Unobs 1 Unobs 2 Unobs 3
0.0138 -0.0487 0.0190

(0.0021) (0.0007) (0.0022)

Prices of Risk λ0 and λ1
λ0 λ1 matrix

Real
Inflation Activity Unobs 1 Unobs 2 Unobs 3

Inflation 0.0000 -0.4263 0.1616 0.0000 0.0000 0.0000
(0.1331) (0.0146)

Real Activity 0.0000 1.9322 -0.1015 0.0000 0.0000 0.0000
(0.3893) (0.0329)

Unobs 1 -0.0039 0.0000 0.0000 -0.0047 0.0000 0.0000
(0.0003) (0.0043)

Unobs 2 0.0000 0.0000 0.0000 0.0459 0.0000 -0.2921
(0.0055) (0.0205)

Unobs 3 0.0000 0.0000 0.0000 -0.0035 0.0000 0.0200
(0.0001) (0.0028)

Measurement Error (× 100)
3 month 36 month
0.0207 0.0091

(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the Macro model with the short
rate equation specified with only current inflation and current real activity, as reported in Panel A of Table
4. The short rate equation is given by rt = δ0 + δ′1Xt, where δ1 only picks up current inflation, current real
activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag VAR (not
reported). The model is Xt = ΦXt−1 + εt, with εt ∼ N(0, I). Xt contains 12 lags of inflation and real
activity and three latent variables, which are independent at all lags to the macro variables. In a pre-estimation
we find the inflation and real activity VAR(12), and the coefficients on inflation and real activity in the short
rate equation. The coefficient δ0 is set to the sample unconditional mean of the short rate, 0.0513/12. We
first estimate the latent factor parameters and the prices of risk λ t = λ0 + λ1Xt, restricting λ1 to be block
diagonal and using the same form of the prices of risk for the latent factors as the Yields-Only estimation in
Table 5. In a second estimation, the insignificant coefficients in λ0 and λ1 are set to zero. The sample period
is 1952:06 to 2000:12.
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Table 7: Macro Lag Model Estimates

Companion Form Φ for Latent Factors
0.9922 0.0000 0.0000

(0.0039)
0.0000 0.9431 0.0000

(0.0118)
0.0000 -0.0189 0.8210

(0.0135) (0.0216)

Short Rate Parameters δ1 for Latent Factors (× 100)
Unobs 1 Unobs 2 Unobs 3
0.0130 -0.0438 0.0256

(0.0020) (0.0010) (0.0025)

Prices of Risk λ0 and λ1
λ0 λ1 matrix

Real
Inflation Activity Unobs 1 Unobs 2 Unobs 3

Inflation 0.0000 -0.8442 -0.0017 0.0000 0.0000 0.0000
(0.2397) (0.0582)

Real Activity 0.0000 1.1209 0.2102 0.0000 0.0000 0.0000
(0.1375) (0.0275)

Unobs 1 -0.0050 0.0000 0.0000 -0.0048 0.0000 0.0000
(0.0003) (0.0040)

Unobs 2 0.0000 0.0000 0.0000 0.0483 0.0000 -0.2713
(0.0068) (0.0195)

Unobs 3 0.0000 0.0000 0.0000 -0.0248 0.0000 0.1624
(0.0078) (0.0292)

Measurement Error (× 100)
3 month 36 month
0.0251 0.0107

(0.0005) (0.0003)

The table reports parameter estimates and standard errors in parenthesis for the Macro Lag model with the
short rate equation specified with 12 lags of inflation and current real activity, as reported in Panel B of Table
4. The short rate equation is given by rt = δ0 + δ′1Xt, where δ1 only picks up 12 lags of inflation and real
activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag VAR (not
reported). The model is Xt = ΦXt−1 + εt, with εt ∼ N(0, I). Xt contains 12 lags of inflation and real
activity and three latent variables, which are independent at all lags to the macro variables. In a pre-estimation
we find the inflation and real activity VAR(12), and the coefficients on inflation and real activity in the short
rate equation. The coefficient δ0 is set to the sample unconditional mean of the short rate, 0.0513/12. We
first estimate the latent factor parameters and the prices of risk λ t = λ0 + λ1Xt, restricting λ1 to be block
diagonal and not picking up any lagged variables. We us the same form of the prices of risk for the latent
factors as the Yields-Only estimation in Table 5. In a second estimation, the insignificant coefficients in λ 0
and λ1 are set to zero. The sample period is 1952:06 to 2000:12.
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Table 8: Proportion of Variance Explained by Macro Factors in the Macro Model

Horizon h
1 mth 12 mth 60 mth ∞

short end 50% 78% 85% 83%
middle 67% 79% 78% 73%
long end 61% 63% 48% 38%

We list the contribution of the macro factors to the h-step ahead forecast variance of the 1 month yield (short
end), 12 month yield (middle) and 60 month yield (long end). These are the variance decompositions from
the Macro model outlined in more detail in Table 9.
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Table 9: Variance Decompositions

Macro Factors Latent Factors
Real

h Inflation Activity Unobs 1 Unobs 2 Unobs 3

1 month yield
1 0.1381 0.3303 0.5314

Yields-Only 12 0.3081 0.4342 0.2577
60 0.5579 0.3116 0.1305
∞ 0.6771 0.2279 0.0950
1 0.4887 0.0074 0.0328 0.4088 0.0622

Macro 12 0.6860 0.0946 0.0251 0.1836 0.0108
60 0.7139 0.1372 0.0390 0.1050 0.0048
∞ 0.6985 0.1343 0.0597 0.1027 0.0047
1 0.0005 0.1081 0.0549 0.6235 0.2130

Macro 12 0.2242 0.3478 0.0446 0.3357 0.0477
with Lags 60 0.6885 0.1805 0.0315 0.0900 0.0095

∞ 0.6749 0.1768 0.0507 0.0882 0.0093

12 month yield
1 0.5972 0.3517 0.0511

Yields-Only 12 0.7116 0.2752 0.0132
60 0.8594 0.1361 0.0045
∞ 0.9103 0.0869 0.0028
1 0.6343 0.0332 0.0733 0.2112 0.0480

Macro 12 0.7066 0.0848 0.0709 0.1272 0.0105
60 0.6615 0.1208 0.1271 0.0851 0.0054
∞ 0.6173 0.1128 0.1854 0.0794 0.0051
1 0.0166 0.2107 0.2114 0.4659 0.0955

Macro 12 0.3268 0.1895 0.2001 0.2588 0.0249
with Lags 60 0.5879 0.1249 0.1905 0.0899 0.0067

∞ 0.5237 0.1113 0.2790 0.0801 0.0060

60 month yield
1 0.7507 0.1963 0.0530

Yields-Only 12 0.8443 0.1427 0.0130
60 0.9319 0.0641 0.0040
∞ 0.9578 0.0397 0.0025
1 0.5950 0.0170 0.2756 0.0804 0.0319

Macro 12 0.5690 0.0615 0.3054 0.0561 0.0080
60 0.4027 0.0755 0.4848 0.0333 0.0037
∞ 0.3164 0.0593 0.5953 0.0262 0.0029
1 0.0021 0.0199 0.8060 0.1184 0.0535

Macro 12 0.0597 0.0170 0.8376 0.0703 0.0153
with Lags 60 0.0906 0.0169 0.8619 0.0262 0.0045

∞ 0.0582 0.0108 0.9112 0.0168 0.0029

The table lists the contribution of factor i to the h-step ahead forecast of the 1 month yield. To interpret the
top row, for the Yields-Only model, 13.81% of the 1-step ahead forecast variance is explained by the first
unobserved factor, 33.03% by the second unobserved factor and 53.14% by the third unobserved factor. The
Yields-Only model only has three latent factors. The macro models have inflation, real activity and three
latent factors. The Macro model has no lags of inflation and real activity in the short rate equation, while the
Macro with Lags model does.
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Table 10: Comparison of Yields-Only and Macro Factors

Independent Variables
Dependent Real
Variable Inflation Activity Unobs 1 Unobs 2 Unobs 3 Adj R 2

Panel A: Regressions on Macro Factors

Unobs 1 0.4625 -0.0726 0.2180
“level” (0.0735) (0.0860)

Unobs 2 -0.6707 -0.1890 0.4902
“spread” (0.0716) (0.0611)
Unobs 3 0.0498 -0.1794 0.0343

“curvature” (0.0629) (0.0714)

Panel B: Regressions on Factors from Macro Model

Unobs 1 0.1118 0.0307 0.9507 -0.0174 0.0038 0.9971
(0.0054) (0.0056) (0.0055) (0.0056) (0.0047)

Unobs 2 -0.9364 -0.1026 0.0199 0.7624 0.0279 0.9981
(0.0037) (0.0037) (0.0042) (0.0032) (0.0029)

Unobs 3 0.0427 -0.1238 0.1656 -0.1455 0.9071 0.9256
(0.0262) (0.0260) (0.0289) (0.0241) (0.0233)

Panel C: Regressions on Factors from Macro Lag Model

Unobs 1 -0.0580 -0.0207 1.0248 0.0035 0.0058 0.9979
(0.0049) (0.0040) (0.0044) (0.0047) (0.0036)

Unobs 2 -0.7069 -0.1132 -0.2955 0.5700 0.1306 0.8715
(0.0393) (0.0313) (0.0356) (0.0376) (0.0315)

Unobs 3 0.1112 -0.0081 0.2059 0.0228 0.8119 0.7470
(0.0458) (0.0386) (0.0507) (0.0365) (0.0424)

Regressions of the latent factors from the Yields-Only model with only latent factors (dependent variables)
onto the macro factors and latent factors from the Macro and Macro Lag model (independent variables). All
factors are normalized, and standard errors, produced using 3 Newey-West (1987) lags, are in parentheses.
Panel A lists coefficients from a regression of the Yields-Only latent factors onto only macro factors. Panel
B lists coefficients from a regression of Yields-Only latent factors on the macro and latent factors from the
Macro model with only contemporaneous inflation and real activity in the short rate equation. Panel C lists
coefficients from a regression of Yields-Only latent factors on the macro and latent factors from the Macro
Lag model with contemporaneous inflation and real activity and 11 lags of inflation and real activity in the
short rate equation.
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Table 11: Forecast Comparisons

RMSE Criteria

VAR’s with Cross-Equation
Unconstrained VAR’s Restrictions

Yield VAR VAR with Yields Macro Macro Lag
(mths) RW Yields Only Macro Only Model Model

1 0.3160 0.3905 0.3990 0.3012 0.2889 0.3906
3 0.1523 0.2495 0.2540 0.1860 0.2167 0.2876
12 0.1991 0.2776 0.2722 0.1914 0.1851 0.2274
36 0.2493 0.3730 0.3644 0.2489 0.2092 0.2665
60 0.2546 0.3793 0.3725 0.2497 0.2333 0.2530

MAD Criteria

VAR’s with Cross-Equation
Unconstrained VAR’s Restrictions

Yield VAR VAR with Yields Macro Macro Lag
(mths) RW Yields Only Macro Only Model Model

1 0.2252 0.3076 0.3242 0.2155 0.2039 0.2981
3 0.1159 0.1987 0.2056 0.1442 0.1693 0.2344
12 0.1639 0.2176 0.2204 0.1616 0.1559 0.1870
36 0.1997 0.2991 0.2924 0.1974 0.1604 0.2111
60 0.2054 0.2957 0.2930 0.2017 0.1883 0.2064

We forecast over the last 60 months (the out-sample) of our sample and record the root mean square error
(RMSE) and the mean absolute deviation (MAD) of the forecast versus the actual values. Lower RMSE and
MAD values denote better forecasts. Forecasts are 1-step ahead. We first estimate models on the in-sample,
and update the estimations at each observation in the out-sample. RW denotes a random walk forecast, VAR
Yields Only denotes a VAR(12) only with 5 yields, VAR with Macro denotes a VAR(12) fitted to the macro
factors and all 5 yields, Yields-Only denotes the 3 factor latent variable model without macro variables, the
Macro model has only contemporaneous inflation and real activity in the short rate equation, and the Macro
Lag model has contemporaneous and 11 lags of inflation and real activity in the short rate equation. The
first three of these models are thus unconstrained estimations, while the last three impose the cross-equation
restrictions derived from the absence of arbitrage.
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The top panel shows a plot of (annualized) monthly ZCB yields of maturity 1 month, 12 months and 60
months. The bottom panel plots the two macro factors representing inflation and real activity. The sample
period is 1952:06 to 2000:12.

Figure 1: Bond Yields and Macro Principal Components
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The top panel shows a plot of the inflation factor with CPI, PCOM and PPI measures of inflation. The bottom
panel shows a plot of the real activity factor with HELP, the negative of unemployment, employment and IP
measures of real activity. All variables are standardized to have zero mean and unit variance. The sample
period is 1952:01 to 2000:12.

Figure 2: Inflation and Real Activity
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We fit a VAR(12) to the inflation and real activity macro factors. The plot shows the impulse responses to a
Cholesky one standard deviation innovation to each variable. Time is in months on the x-axis.

Figure 3: Impulse Responses from the VAR(12) on Macro Factors

45



1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

Residuals from Taylor Rule Specifications

Residuals Taylor Rule          
Residuals Taylor Rule with Lags
Demeaned Short Rate            

We show the residuals from the Taylor rule regressions, together with the de-meaned short rate (1 month
yield). We show the residuals from the Taylor rule with no lags, which have 0.9458 autocorrelation, and
the residuals from the Taylor rule with 11 lags, which have 0.9370 autocorrelation. For comparison, the
autocorrelation of the short rate is 0.9716.

Figure 4: Residuals from the Taylor Rule Regressions
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We show the unobserved yield factors from the Yields-Only model versus the level of interest rates (top left
plot), spread (top right plot) and curvature of interest rates (bottom plot). All variables are normalized to have
zero mean and unit variance. The level of interest rates is defined as 1/3(y 1t + y12t + y60t ) where y1t , y

12
t and

y60t are the one-month yield, 12-month yield and 60-month yield respectively. The spread of interest rates is
defined as y60t − y1t . The curvature of interest rates is defined as y1t − 2y12t + y60t . The correlation between
the level of interest rates and Unobs 1 is 92%, the correlation between the spread and Unobs 2 is 58% and the
correlation between curvature and Unobs 3 is 77%.

Figure 5: Unobserved Yield Factors versus Level, Slope and Curvature
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The top (bottom) plot displays the Bn yield weights as a function of maturity n for the Yields-Only (Macro)
model. The weights have been scaled to correspond to one standard deviation movements in the factors and
annualized by multiplying by 1200.

Figure 6: Bn Yield Weights for the Yields-Only and Macro Model
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Impulse Responses (IR’s) for 1 month (top row), 12 month (middle row) and 60 month (bottom row) yields.
The first column presents IR’s from an unrestricted VAR(12) fitted to macro variables and yields ; the middle
column presents IR’s from the Macro model; and the last column presents IR’s from the Macro Lag model.
The IR’s from the latent factors are drawn as lines, while the IR’s from inflation (real activity) are drawn as
stars (circles). All IR’s are from a one standard deviation shock.

Figure 7: Impulse Response Functions
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