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1 Introduction

Meeting days of the Federal Open Market Committee (FOMC) are marked as special

events on the calendars of many market participants. FOMC announcements often cause

strong reactions in bond and stock markets. Indeed, a large literature on announcement

effects has documented increased volatility of interest rates at all maturities, not only on

FOMC meeting days, but also around releases of key macroeconomic aggregates, most promi-

nently nonfarm payroll employment.1 The FOMC is well aware of being closely watched by

the markets, and extracts information about the current state of the economy from the cur-

rent yield curve. This yield-based information may underlie the FOMC’s policy decisions.

These observations suggests that models of the yield curve should take into account

monetary policy actions by the Fed. The extensive term-structure literature in finance,

however, builds models around a few latent state variables which are backed out from yield

data. This statistical description of yields only offers limited insights into the nature of the

shocks that drive yields. Moreover, the fit of these models for yields with maturities far

away from those included in the estimation is typically bad. This property especially applies

to the very short end of the yield curve, as most studies avoid dealing with the extreme

volatility and the large outliers at certain calendar days of short-rate data (as documented

by Hamilton (1996)).

The above observations also suggest that vector autoregressions (VARs) in macroeco-

1For Garch-type models of volatility with release day dummies and macroeconomic news surprises, see
Jones, Lamont, and Lumsdaine (1996) and Li and Engle (1998). For regressions of yield changes on news
surprises, see Balduzzi, Elton, and Green (1998) and Fleming and Remolona (1997).
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nomics that try to disentangle exogenous policy shocks from systematic responses of the

Federal Reserve to changes in macroeconomic conditions should take into account yield

data. Financial market information, however, is usually not included in VARs (see Chris-

tiano, Eichenbaum and Evans (2000) for a survey), presumably because the usual recursive

identification scheme does not work with monthly or quarterly data. Does the Fed not react

to current yield data or do yields not react to current policy actions? Each FOMC meeting

starts with a review of the ‘financial outlook’ - this seems to exclude the first question. And

financial markets immediately react to FOMC announcements - which seems to exclude the

second.2

This paper attempts to kill these two birds with one stone. The idea is that at high

data-sampling frequencies, information about the exact timing of policy-related events, such

as FOMC meetings and macroeconomic releases, can be used to improve bond pricing and

to identify monetary policy shocks. I therefore construct a continuous-time model of the

joint distribution of bond yields, the interest-rate target set by the Fed and macroeconomic

variables the Fed cares about. The model imposes the cross-equation restrictions implied

by the absence of arbitrage and respects the timing of policy moves at FOMC meetings

and releases of macroeconomic variables that are likely to affect future Fed policy. These

policy-related events happen at distinct points in time and are therefore captured as jumps.

Although these jumps can be irregularly spaced and depend on the state of the economy,

2Such a recursive identification assumption is made by Eichenbaum and Evans (1995) to study the impact
of monetary policy shocks on quarterly exchange rates. Eichenbaum and Evans opt for the first of the two
possible assumptions, namely that the Fed does not react to current exchange rates.
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the model has closed-form solutions for bond prices. This feature allows an estimation with

long-maturity yield data, which is particularly important in the context of monetary policy.3

I estimate various versions of this model with data since 1994 on LIBOR (London Interbank

Offered Rate) and swap rates in which the target rate and macroeconomic aggregates are

observable factors, along with more traditional latent factors. The estimation is by the

method of simulated maximum likelihood (Pedersen (1995), Brandt and Santa-Clara (2001)),

extended here to the case of jumps.

There are four main estimation results. First, the model considerably improves the

performance of existing yield-curve models with three latent state variables (such as Dai

and Singleton (2000)), especially at the short end of the yield curve. Intuitively, the target

set by the Fed provides a ‘clean measure’ of the short rate and therefore offers a tractable

way to fix the short end of the yield-curve at a good position. This improvement can be

achieved with a 4-factor model that includes (i) the target rate, (ii) a spread factor that

measures deviations of the short rate from the target, (iii) a traditional stochastic volatility

factor and (iv) a policy inertia factor. The short rate reverts quickly and continually to

the target, suggesting that the spread factor captures money-market noise which does not

matter for longer term yields. The target adjusts slowly toward the Fed’s new desired target

only through jumps occurring at FOMC meeting days. The likelihood of target-rate moves

3Unrestricted regressions of short-rate changes on changes in policy rates have small sample problems
because the Fed only moves the target infrequently. Moreover, they are haunted by reserve-maintenance-
period effects, as most policy moves before 1994 happened on Thursdays after “settlement Wednesdays.”
After 1994, almost all policy moves were made at FOMC meetings, which are usually scheduled for either
Tuesday or Wednesday. By placing the target in a yield-curve model, data on longer yields (which are
little affected by settlement Wednesdays) provide additional information about the parameters governing
the reaction of yields to target changes.
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at FOMC meetings depends crucially on two factors: the current target and the inertia

factor. The inertia factor, which is closely related to the 2-year yield, thus captures latent

information contained in the yield curve that the Fed takes into account when conducting

policy. Persistence in the target holds the target near its old value (interest-rate smoothing),

thereby introducing positive autocorrelation in the target-rate level. The inertia factor slowly

pulls the target toward the new desired value of the target (policy inertia). Shocks to the

policy-inertia factor increase the likelihood of a target move, not only at the next meeting,

but also at subsequent meetings. This leads to positive autocorrelation in target-rate changes.

Second, the paper documents the snake-shape of the volatility curve that can be seen

in Figure 4, the standard deviation of yield changes as a function of maturity, and links

this stylized fact to policy inertia. The cross-sectional response of yields to shocks in the

inertia factor has a hump at maturities around 2 years, as the anticipated cumulative effect

of pending target changes is largest for those maturities. The combined response to money-

market shocks and inertia-factor shocks has a snake-shaped pattern: high for very short

maturities, rapidly decreasing until maturities of around 6 months, then increasing until

maturities of up to 2 years, and finally decreasing again. As these shocks are important for

yields, this snake-shaped pattern carries over to the volatility curve.4 Shocks to the target

rate in the post-1994 environment happen mostly at FOMC meetings and thereby introduce

a seasonality into the volatility of yields.

Third, I obtain a new policy-shock series and policy-rule estimate by assuming that the

4The volatility hump at 2 years in the data is well known, see Litterman, Scheinkman and Weiss (1988).
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Fed reacts to information known right before the FOMC meeting. This makes sense, because

monetary policy is the most important, if not only, source of shocks to macroeconomic and

yield variables right at the time of the FOMC announcement. This assumption identifies

a high-frequency policy rule which is given by the expected value of the target rate at the

FOMC announcement conditional on information before the meeting. While this information

includes macroeconomic variables and yields of different maturities, the estimated rule shows

that yields are more important for the Fed. As a description of target dynamics, the rule

performs better than several benchmarks, including estimated versions of the Taylor rule

(Taylor (1993)). This improvement in fit is not a simple consequence of adding explanatory

variables to the rule, because of the cross-equation restrictions on the parameters. The extent

of the improvement is due to the fact that the yield curve, especially information contained in

yields with maturity around two years, reflects changes in the state of economy that the Fed

is reacting to. This makes yields look like they are ‘anticipating’ target moves which results

in highly significant coefficients of yields in the policy rule. The cross-sectional response

of yields of different maturities to monetary policy shocks is monotonically decreasing in

maturity.

Finally, macroeconomic release surprises turn out to be temporary components in macroe-

conomic variables, in the sense that the impulse response of macro variables to these shocks

dies off after one month. Release surprises are here defined as difference between actual

released values (nonfarm payroll employment and CPI inflation) and analyst forecasts. In a

model in which the Fed reacts to current macroeconomic variables, this means that release
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surprises can affect the conditional probability of target moves at only those FOMC meet-

ings that are scheduled before the next macro release. In other words, release surprises are

not innovations to inertia-type state variables. In order to replicate the hump-shaped cross-

sectional response of yields to release surprises, the propagation of these surprises would

need to ‘live longer.’ This may be achieved by allowing for correlation between the release

surprises and the policy-inertia factor.5 Here, macroeconomic news have an impact on the

new desired target, but the FOMC only gradually implements this desired target over a

number of meetings.

Yield models with low-dimensional state vectors which are backed out from yields go back

to Merton (1974), Vasicek (1977) and Cox, Ingersoll, and Ross (1985, CIR). The theoretical

frameworks of Duffie and Kan (1996) and El Karoui, Myneni and Viswanathan (1993) nest

most of the specifications estimated today, as they provide tractable bond-pricing formulas.

For empirical applications, see, for example, Anderson and Lund (1996), Dai and Singleton

(2000) and Ahn, Dittmar, and Gallant (2001). Even in models in which the state variables

are observable, they are usually not used in the estimation. For example, Pearson and Sun

(1994) estimate a nominal version of the CIR model, in which inflation is specified as a

factor, with yield data only. Campbell and Viceira (2000) is an exception, as they filter

latent variables using yields and CPI inflation.

A small number of papers address the yield curve and monetary policy. Babbs and

5This amounts to attributing release surprises to latent variables, which avoids the need to specify the
dynamics of macroeconomic variables and their connection to the yield curve. This strategy is followed in
Fleming and Remolona (1999) who investigate the behavior of high-frequency yield data around macroeco-
nomic news releases using a discrete-time Gaussian yield-curve model.
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Webber (1993, 1996) and Farnsworth and Bass (2000) present theoretical yield-curve models

that capture some aspects of monetary policy. These models do not have tractable solutions

for yields and are therefore not taken to the data. Another group of papers estimates short-

rate processes that reflect features of policy (Rudebusch (1995), Balduzzi, Das and Foresi

(1996), Balduzzi, Bertola, Foresi and Klapper (1998), Honoré (1997), Hamilton and Jorda

(2000), Das (2001)). The first three papers in this group use their estimated short-rate

process to compute long yields by invoking the expectation hypothesis. These long yields

are then taken to study the impact of Fed policy on the regression results by Campbell and

Shiller (1991). The same is done by Konstantinov (2000) who estimates a regime switching

model for the short rate with yields up to 1 year maturity. These papers do not estimate a

fully fledged yield-curve model nor do they study monetary policy shocks.

While VARs also capture bond yields and macroeconomic variables, they give rise to a

joint time-series process that implies arbitrage opportunities. Evans and Marshall (1998),

for example, estimate various VARs that amount to an unrestricted regression of bond yields

on different traditional monetary policy shock series. The assumption used to identify these

shocks is that the Fed ignores both current and past yield-curve information. Another strand

of literature uses a general equilibrium setting, which does imply the absence of arbitrage (for

example, Pennacchi (1991), Berardi (1998) and Jiltsov and Buraschi (1999)). The approach

I take also imposes no-arbitrage, while not requiring the specification and estimation of a

structural model of the economy, which in any case would be problematic given the current

state of empirical GE models of asset prices (see, for example, Hansen and Jagannathan
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(1991). For a recent survey, see Cochrane (1998)).

The paper is structured as follows. Section 2 provides some institutional background on

the operating procedures of U.S. monetary policy. Section 3 presents the general theoretical

framework with policy and the different versions of the model that are estimated. Section

4 describes the computation of the pricing formula, the simulation-based estimation tech-

nique, and the data. Sections 5 and 6 present estimation results obtained without and with

macroeconomic variables, respectively.

2 The Timing and Size of Target Changes

Important changes in 1994 to Fed-policy operating procedures underlie the choice of sam-

ple period in this paper, which focuses on the policy framework in place today. The Fed

conducts monetary policy by targeting the overnight rate in the federal funds market.The

FOMC fixes a value for the target and communicates it to the Trading Desk of the Fed-

eral Reserve Bank of New York, which then implements it through open-market operations

(Meulendyke (1998)). Figure 1 shows the fed funds market rate, the target rate together

with LIBOR and swap rates from 1994 to 1998. The Figure illustrates that deviations of the

fed funds rate from the target come in the form of short-lived spikes. (Section 4.5 provides a

description of the target data that is used in this paper.) These spikes are usually associated

with “settlement Wednesdays” and other special calendar effects, such as the end of the

8



Figure 1: Daily Target, Fed funds, LIBOR and Swap Rates from 1994 to 1998
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year.6 Figure 1 also shows that target-rate changes are often followed by additional changes

in the same direction. This feature will be referred to as “policy inertia”.7

Starting with the first FOMC meeting of 1994, the Fed changed the timing and the size

of target moves. This change in operating procedures can be seen from Figure 2. The upper

6During bi-weekly reserve-maintenance periods, banks must hold “good funds” in the form of cash or in
accounts at the Fed, or be penalized. These reserve-maintenance periods end on “settlement Wednesdays”.
7Policy inertia, as defined here, does not only apply to the short period considered in the sample. For

example, from June 1989 to September 1992 the Fed lowered the target 25 times without a ever increasing
it. Policy inertia may indicate the Fed’s unwillingness to move the target immediately and entirely to its
desired rate. Instead, the Fed adjusts the target in small steps to avoid possible policy mistakes, because of
political motives, parameter uncertainty (Sack(1998)) or to affect long-maturity yields with minimal changes
in short yields (Woodford (1999)).
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row of graphs consists of two histograms, pre-1994 and post-1994, of the number of days

between a target-rate change and the preceding FOMC meeting. If, in a given subperiod,

the Fed had moved its target only at FOMC meetings, there would be a single spike at 0

in the corresponding histogram. One sees a definite change in 1994 of re-targeting mainly

at FOMC meeting days, with two exceptions highlighted in Figure 2. The first exception

occurred on April 18, 1994 after high car sales in March, a leading business-cycle indicator.

The financial press speculated that the surprise move was intended as a manifestation of

authority by Alan Greenspan, as no vote was held on the move.8 The second exception was

decided upon in a conference call on October 15, 1998, and came in response to the Russian

financial crises.9 The lower row of graphs in Figure 2 shows the histogram of target changes

for the two subperiods. While pre-1994 target-rate changes came in multiples of 6.25 basis

points (0.0625 percentage points), after 1994 the Fed used multiples of quarter-percentage

points.

3 Yield-Curve Model with Fed targeting

3.1 Dynamics of the Target

The target looks like a step function with steps that are multiples of 25 basis points. In

a continuous-time model, these features call for a pure jump-process specification in which

8The Financial Times, April 19, 1994, page 3, “Greenspan plays an early hand: US rates rise” by Michael
Prowse and The New York Times, April 19, 1994, page 1, “Fed again raises short-term rate on loans” by
Keith Bradsher.
9The New York Times, October 16, 1998, page 1, “Federal Reserve cuts rates again; Wall St. surges” by

Richard W. Stevenson.
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Histograms of the Timing and Size of Target Changes
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Figure 2: The first row of graphs show the histogram of days since the last FOMC meeting,
for any given target rate change between 1984-1993 and 1994-1998. In the first subperiod,
there have been a total of 100 target moves, while there were 14 in the second subperiod.
The second row of graphs show the histogram of the size of target changes between 1984-1993
and 1994-1998.
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the target θ solves the stochastic differential equation (SDE)

dθ(t) = 0.0025 (dNU − dND) , (1)

where NU and ND are counting processes with stochastic intensities λU and λD, respectively.

Jumps in NU and ND increase the target by 25 bp, while jumps in ND lower the target by

the same amount. Heuristically, the probability of a Poisson jump in NU during the interval

[t, t+∆] conditional on information up to time t is given by λU(t)∆, and the expression for

jumps in ND is analogous. The econometrician has discrete observations on the difference

between NU and ND, which means that he observes target moves that are multiples of 25

bp.

The Fed sets the target in response to the state of the economy X that lives in some state

space D ⊂ RN . More precisely, the Fed’s policy decision at time t is based on the value of

X ‘just before’ time t, which is denoted X(t−) = lims↑tX(s). The conditional probability of

a target move varies according to the FOMC meeting calendar. The arrival rate of ‘regular’

target moves at FOMC meetings depends on the state X of the economy. Then there is

a small and constant probability of an emergency move outside of FOMC meetings (‘Peso

events’). More precisely, FOMC meetings are taken to be intervals, the i-th meeting being

12



[t̃M(i), tM(i)]. The arrival rates λU and λD are given by

λj(t) =





λj0 + λ
j
X ·X(t−) for t ∈ [t̃M(i), tM(i)],

λjP , otherwise,

(2)

for j = U (“up”) and D (“down”).

The analogy between the target process (1) and descriptions of Fed behavior in the Taylor

rule literature can be seen more easily by defining the martingale M =MU −MD, where Mj

is the compensated process given by {Mj(t) = Nj(t) −
∫ t
0
λj(t)dt ; t ≥ 0} for j = U,D (see

Brémaud (1981) for further details). Then the dynamics of the target can be rewritten as

dθ(t) = κ(t)
(
θ(t−)− θ(t−)

)
dt + 0.0025 dM(t), (3)

where the process θ is a linear function of the state X with coefficients dictated by the

intensity parameters. This representation shows that, during times at which the deterministic

scalar κ(t) is positive, the target is expected to move back towards θ(t−). The expected value

of θ(t) (and of the average target over some period) conditional on information at time s ≤ t

is linear in X(s). This expected value is thus directly comparable to the Taylor rule, for

example, which links the average federal funds rate to measures of inflation and output at a

quarterly frequency.10

10At a quarterly frequency, the difference between the average fed funds and average target rate is tiny.
Given the convention that [t, t+1] spans one year, the conditional expected value of the average target over
[s, t] can be computed exactly using s− t = 0.25.
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To economize on parameters, the slope parameters are taken to be symmetric, in that

λX := λUX = −λDX .Mean-reversion in the target is also imposed by assuming λD0 = λU0 +2λXx,

where x denotes the long-run mean of X. The arrival rates of Peso events are fixed to their

empirical frequency. There has been one up and one down move outside of FOMC meetings

the 5 years from 1994 to 1998, so that I set λUP = λDP = 0.2. For given long-run mean

parameters, there are thus N + 1 free parameters: λU0 and λX .

3.2 General State Dynamics (including Target)

The state X(t) at time t includes the target rate θ(t), some macro variables m(t), and

analyst forecasts mF (t) of these macro variables. All these state variables are observable.

The remaining state variables are unobservable (or latent). Among these is the short rate

and thus the spread s(t) = r(t)−θ(t). The main reason for this approach is that the spikes in

the fed funds rate (see Figure 1) call for a detailed specification of the underlying seasonality

similar to Hamilton (1996), which would add a large number of parameters. This complexity

can be avoided by backing out the short rate from longer term yields.

The general dynamics of X are described by an SDE of the form

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t) + dJ(t), (4)

where W is a vector of Brownian motions, µ is the drift, σ is the volatility, and J is a pure

jump process. The drift µ(x) and the variance-covariance term σ(x)σ(x)> are linear functions
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of the state x. Without jumps and with constant σ, this system may be thought of as a

Gaussian vector-autoregression with mean rate of change µ. Taking the variance-covariance

σσ> to be state-dependent allows for conditional heteroscedasticity. More importantly, the

jumps J can capture ‘macroeconomic jump effects’, such as policy events and macroeconomic

releases. Here, jumps do not necessarily capture ‘large moves’ in yields (as in the short-rate

studies of Das (2001) and Johannes (2001)), but observable changes in X that happen at

distinct points in time.

The specification of jumps differs from existing parametric models (Duffie and Kan

(1996), El Karoui, Myneni and Viswanathan (1993)) to capture different operating pro-

cedures of monetary policy and macroeconomic news releases. The linearity assumption on

µ and σσᵀ combined with parametric assumptions on the distribution of J defines a new class

of continuous-time Markov processes labelled linear-quadratic jump-diffusions (LQJDs). To

describe the properties of this class of processes, I partition the state vector as X = (X1, X2),

so that X2 is a k2-dimensional process, with k1 + k2 = N . Without loss of generality (k2

may be zero), the subvector X2 is assumed to be Gauss-Markov, which means that the lower

k2 components of ∆X(t) are always zero. In what follows, whenever the term ‘quadratic’ is

used, it refers to squaring Gaussian processes (for details, see Appendix A). There can be

jumps at

• scheduled announcements (deterministic points in time): The distribution of the jump

size ∆X(t) conditional on information ‘just before’ the deterministic jump time t may

depend on the state X(t−). In particular, the moment generating function of the

15



conditional distribution is an exponential linear-quadratic (LQ) function of X(t−).

• unscheduled announcements (random points in time): Random jump times τ arrive

with intensities which are LQ functions of the state. The distribution of ∆X(τ) is

state independent.

There is thus a dichotomy between state dependence of the jump-size distribution on the one

hand and of jump timing on the other. This separation turns out to be crucial for bond prices

to have closed form solutions. In this paper, I use scheduled announcements to model releases

of employment and CPI numbers. The requirement on the moment generating function of

these jumps is satisfied, for example, by a Gaussian distribution with LQ mean in X(t−)

and constant variance. The target process is based on jumps at unscheduled announcements

with time-varying arrival intensities, because there is always a small probability of a ‘Peso

move’ outside of FOMC meetings. Moreover, target changes come in discrete amounts and,

even more importantly, a zero move always has positive probability. The distribution of

target changes therefore does not satisfy the condition on the moment generating function

of jumps at scheduled announcements.

3.3 Negative Probabilities of Target Moves?

Negative correlation between the conditional probabilities of up and down moves in the

target is important for a description of the countercyclical interest-rate targeting by the

Fed. The linear arrival intensities λU and λD in (2) allow for such negative correlation.

While quadratic intensities also admit this feature, the linear specification has the further
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advantages that the map from states to yields is invertible and, even more importantly, that

the target rate can revert to a mean. With a state-independent jump size distribution, the

only way to achieve this is to allow the arrival rates to depend on θ. Since the target is

not Gaussian and LQJDs only square Gaussian processes (as laid out in Appendix A), this

dependence has to be linear. Invertibility of the pricing map means that the model can be

estimated with a method that relies on the likelihood function of the state vector.

The main disadvantage of (2) is that intensities may become negative.11 For the model to

be well defined, I therefore assume that (2) defines the intensities of an approximating yield-

curve model, while the true intensities are truncated versions given by max{λj, 0}, j = U,D.

These truncated linear intensities are outside of the LQJD class, and a closed-form solution

for bond yields is no longer available. The quality of the approximating model can be

checked at a given parameter using Monte-Carlo methods (see Section 5.1). The idea of

using a tractable yield-curve model as an approximation usually also underlies papers that

estimate nominal short-rate processes that may become negative (which are most papers in

the literature, including this one). The true short rate in this case is given by max{r, 0}.

11Negative correlation of intensities with positive domain force a violation of assumption Condition A in
Duffie and Kan (1996). In the absence of jumps, the condition is sufficient for the existence of a solution to
the stochastic differential equation (4) describing the state. As already noted by Duffie and Liu (2001), it
is possible to square two Gaussian processes so that each variable takes only positive values, while allowing
for arbitrary correlation. This idea is applied here to the case of jumps.
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3.4 Other State Variables

All estimated setups share the feature that that the state vector X includes the target as

observable variable and the spread s = r − θ as latent, with s mean-reverting to zero. The

fat tails of the spread distribution can be captured with a stochastic volatility factor v. The

most interesting variable is called policy inertia factor z, which proxies variables (in addition

to s, θ and v) to which the Fed reacts when setting the target. The arrival intensities (2) of

policy moves during FOMC meetings may depend on all these variables in X. The dynamics

of these additional state variable solve

ds(t) = −κss(t) dt+
√
v(t)dWs(t),

dv(t) = κv(v − v(t)) dt+ σv
√
v(t)dWv(t), (5)

dz(t) = −κzz(t) dt + dWz(t),

where Ws, Wv and Wz are independent standard Brownian motions.

The four-dimensional state vector X = (θ, s, v, z) does not yet include macro variables.

Section 6 tries link the latent information in z to observable macro variables by augmenting

the state X with employment and CPI inflation. I also report the estimation results of three

factor versions of the model. First, it is interesting to see whether the information the Fed

cares about shows up in some other variable when the inertia factor is omitted, in which case

X = (θ, s, v). Second, yields have started to look ‘more Gaussian’ in the 1990s (in terms

of the tails of the histogram of yield changes). Constant volatility σs =
√
v might thus be
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sufficient to capture yields.

The continuous specification of s implies that the short rate always jumps one-to-one with

the target. Whether this assumption is sensible is hard to judge from, say, funds-rate data

only (which is one of the reasons to work with an unobservable short rate). Some confidence

in this assumption can be gained from the behavior of the funds rate around target changes

in Figure 1, which is particularly evident for the year 1994. An easy extension is to let the

spread jump by some fixed or state-independent random amount.

3.5 Solving for the Yield Curve

Arbitrage-free pricing now specifies an exogenous risk-adjustment in the form of a ‘density

process’ ξ. Asset prices are then given by the conditional expected value of their payoff,

weighted by ξ, and discounted at the riskless short rate r In particular, the time-t price of a

zero-coupon bond price that matures at time T is

P (t, T ) = Et

[
ξ(T )

ξ(t)
exp

(
−
∫ t

0

r(u)du

)]
, (6)

where Et denotes expectation given the information available to bond investors at time t. In a

Lucas (1978) economy, for example, the term inside the expectation is just the marginal rate

of substitution of a representative agent. The weight ξ can be used to define a risk-neutral

probability measure Q which satisfies Et [Zξ(s)/ξ(t)] = EQt (Z) for any random variable Z

known at time s for which this expectation exist. If such a risk-neutral measure Q exists,
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there is no arbitrage, at least under reasonable restrictions on trading strategies (Harrison

and Kreps (1979), Harrison and Pliska (1981)). Conversely, the absence of arbitrage, and

some technical conditions, implies the existence of a risk-neutral measure (Delbaen and

Schachermayer (1994)).

The computation of a solution P (t, T ) to (6) can be performed only in a few special

cases by hand. For example, if r is Gaussian under the risk-neutral measure Q, then this

just involves taking the expectation of a sum of Gaussians, which can be computed directly

(Vasicek (1977)). For the general case in which X is a LQJD under Q, the idea is first to

guess that bond prices are given by the exponential LQ form

P (t, T ) = exp (c0(t, T ) + c1(t, T )X(t) +X(t)
ᵀc2(t, T )X(t)) , (7)

for some coefficients c(t, T ) = (c0(t, T ), c1(t, T ), c2(t, T )) ∈ R× RN × RN×N that depend on

the particular ordering of deterministic jump dates between t and T . This guess is verified

by computing c(t, T ) recursively using the method of undetermined coefficients, starting

at the time T of maturity with the boundary condition c(T, T ) = 0, implied by the fact

that P (T, T ) = 1, and from the assumption that D contains an open set. Proposition 1 in

Appendix B.3 states this result.

The recursive computation of bond prices (and thus coefficients) iterates two steps.

Roughly speaking, the first step (Lemma 1 in Appendix B.6) shows that if the bond price

at the next deterministic jump date is an exponential LQ function in the state vector, as in
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(7), then the price of a bond “just before” the jump date is of the same form. The second

step (Lemma 2 in Appendix B.7) demonstrates that if the bond price “just before” the next

deterministic jump date is given by the exponential LQ form (7), then the price during the

entire interim period between two deterministic jump dates solves a partial differential equa-

tion that also has an exponential LQ solution. Together, these two steps guarantee that for

every t, the price P (t, T ) inherits the postulated form.

3.6 Risk Adjustment

The density process ξ solves dξ = −ξσξdW, where W = (Ws,Wv,Wz), so that a standard

Brownian motionWQ under Q solves dWQ = dW+σξdt. The market prices σξ of uncertainty

for the Brownian motions are of the form

σξ =




σsξ(t)

σvξ (t)

σzξ (t)



=




qs
√
v(t)

qvσv
√
v(t)

qz




(8)

leading to time-varying risk premia that are affine in the volatility factor v. The three factor

versions of the model do not need some of the components in σξ. In particular, if volatility

σs is constant, σ
s
ξ is constant as well. The parametrization of σξ also captures risk aversion

against target moves that are driven by s, v and z. This means that even without market

prices of uncertainty for NU and ND, the intensities under the risk-neutral measure Q may

differ from their values under the data-generating measure because of their state-dependence.
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With only 5 years of data, I chose to set the market prices of jump uncertainty for target-rate

moves to zero. For example, λU0 is hard to estimate even without any risk adjustment.

4 Estimation Technique and Data

This section describes the simulation-based method used to approximate the joint likeli-

hood function of the target, LIBOR and swap rates, which is not available in closed form.

Moreover, it presents the approximation of the pricing map used in the estimation.

4.1 Estimation Problem

Let fX( · , t|Xt̃, t̃; γ) denote the true density of the state vector Xt conditional on the last

observation Xt̃ at some t̃ < t. The parameter vector γ contains parameters describing the

true distribution of X and parameters governing the market prices of uncertainty. This den-

sity involves the nonlinear stochastic intensities in (2). Let p( · , γ) denote the true mapping

from factors to observed yields and the target for a given γ, in that p(Xt, γ) = Yt, where Yt is

the vector of observables at time t: yields and the target rate θt. Assume that p( · , γ) can be

inverted to obtain the factors as function q( · , γ) of the observables Yt, in that Xt = q(Yt, γ).

Ideally, the model would be estimated by maximizing the likelihood of the observations

over γ, which can be obtained by a change of variables from the conditional densities of the

state variables. For example, the conditional density f( · , t |Yt̃, t̃; γ) of Yt given Yt̃ at t̃ < t is
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given by

f
(
Yt, t |Yt̃, t̃; γ

)
= fX

(
q(Yt, γ), t | q(Yt̃, γ), t̃; γ

)
|5Y q(Yt, γ)| . (9)

Three problems arise. First, the true density fX of the state variables is not available in

closed form. I therefore extend the simulated maximum likelihood (SML) method of Pedersen

(1995) and Brandt and Santa-Clara (2001) to jump-diffusions (Section 4.2). Second, the true

maps p and q are not available in closed form. In this high-dimensional setting, Monte-Carlo

integration to recover p( · , γ) is prohibitively expensive. This roadblock is bypassed by

using an approximating LQJD model, for which the Jacobian term in (9) can be calculated

analytically. A hill-climbing procedure based on analytical derivatives inverts the map from

states to LIBOR and swap yields numerically for each observation (Section 4.3). Third, an

exact computation of yield coefficients for the approximating LQJD model is computationally

intensive, so I employ a time-saving algorithm (Section 4.4).

4.2 Density Approximation (SML)

The conditional density of the likelihood function of the underlying state vector solves

a partial differential-integral equation that has a closed-form solution only for a few special

cases, such as Gaussian and square-root diffusions (see Lo (1988)). To overcome this problem,

SML is used, which attains approximate efficiency similar to the efficient method of moments
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technique by Gallant and Tauchen (1996).12 The density fX( · , t | x̃, t̃) of the state X(t)

conditional on the last observation X(t̃) = x̃ can be written, using Bayes’ Rule and the

Markov property of X, as

fX(x, t | x̃, t̃) =
∫

D

fX(x, t |w, t− h) fX(w, t− h | x̃, t̃) dw, (10)

for any time interval h. (This is sometimes called the Chapman-Kolmogorov equation.) SML

computes (10) by Monte-Carlo integration, replacing the density fX( · , t |w, t − h) by the

density of a discretization of X. The method is extended in Appendix C.1 to allow for jump-

diffusions. Particular care needs to be taken to accommodate time-dependent stochastic

intensities.13

4.3 Pricing-Formula Approximation

Modeling the target-rate with jump intensities defined by (2) introduces a form of non-

linearity that takes the state vector outside of the LQJD class as mentioned in Section 3.

12EMM implements a simulated method of moments estimator with moments generated by the scores of
an auxiliary semi-nonparametric (SNP) density. The SNP density is a Hermite expansion (with analytical
scores) that approaches the true density as the degree of the polynomial increases. In the case of SML, the
simulated moments are scores from the discretized model. An alternative approximately efficient estimator
for is proposed by Singleton (2001), who computes explicit moments using the conditional characteristic
function ψ( · ) of X , defined by ψ(u) = Et−1[exp(i u

>Xt)]. Efficiency is achieved by increasing the number
of different values taken on by u with one moment associated with each choice of u. This estimator can also
be used in the LQJD setting, as the characteristic function can also be obtained in closed form. While SML
is used here as a potentially helpful alternative to EMM, the computational costs of explicit moments as in
Singleton (2001) are prohibitive in the present seasonal setting.
13Like any simulation-based technique, SML is computationally intensive. Unfortunately, the application
in this paper does not share the advantage of analytical gradients with Brandt and Santa-Clara (2001),
because the map p(Xt, γ) involves the numerical computation of ODEs that depend on the parameters.
The numerical optimization procedure is therefore based on the Nelder-Mead simplex method, starting a
gradient-based parameter search only after the simplex algorithm has collapsed.
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The quality of an approximating pricing formula Yt = p̃(Xt, γ) that ignores the truncation

by the max-operator in (2) depends crucially on how severely the positivity constraint on

the intensities is binding (and on the average impact of hitting the constraint). The inverse

q̃( · , γ) of the approximating map p̃ is defined in the obvious way. Let

Dγ0+ := {x ∈ D : λj0 + λjXx ≥ γj0, j = U,D}

denote the set of states at which the intensity formula is bounded below by a given constant

γj0, for j = U,D. The approximation q̃( · , γ) is likely to be better at states in D0+.

Two estimation approaches can be taken. The first approach is simply to replace p in

(9) by p̃ and obtain an estimator of γ by maximizing the total approximate likelihood

∏

(t̃,t)∈I

f̃(Yt, t |Yt̃, t̃; γ) =

∏

(t̃,t)∈I

fX
(
q̃(Yt, γ), t | q̃(Yt̃, γ), t̃; γ

)
|5Y q̃(Yt, γ)| ,

where I denotes pairs of successive observation times in the data set. Here, the true factor

dynamics (captured by fX) are combined with the inverse q̃ of the approximating map from

factors to yields. Since there is no restriction here on the parameter space, the approach is

labeled unconstrained estimation. The accuracy of this approximation of the likelihood can

be assessed ex post by checking whether the functions p and p̃ are close at the estimated

parameter γ̂.
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One might be concerned that, without a-priori restrictions on the parameter space, it

is unlikely that a good approximation of p would obtain at the estimated parameter value.

Even though this turned out not to be a problem in the application below, an alternative

approach was also tried. Specifically, consider performing the constrained estimation

max
{γ,γ0}

∏

(t̃,t)∈I

f̃
(
Yt, t |Yt̃, t̃; γ

)
(11)

subject to q̃(Yt, γ) ∈ Dγ0+ , for all t ∈ I.

In words, the parameter space is restricted to contain only those parameters at which the

observations are explained by a factor realization q̃(Yt, γ) for which the γ0-constraint never

binds. The special case that was tried in this paper is γ0 = 0. Naturally these two problems

typically deliver distinct estimators. Any such differences will be further discussed when the

estimates are presented.

4.4 Coefficient Approximation

Time dependencies introduced by scheduled announcements, such as FOMCmeetings and

macro releases, immensely increase the computational burden associated with the solution of

the approximating LQJD model for yields, and render almost impossible an estimation using

data for long-maturity yields. For example, in order to evaluate the likelihood function, the

5-year swap rate needs to be computed for each observation in the sample. In the setup of

26



Section 6, this takes 16 minutes on a SUN workstation.14 In setups with only one type of

scheduled announcement (at FOMC meetings), the coefficients are therefore computed using

the following approximation: the time until the next FOMC meetings is matched exactly

only for the next-to-occur meeting. The subsequent meetings are assumed to be equally

spaced over the year. For the maturities of the yields used in the estimation (6 months and

above), the errors due to this approximation are virtually undetectable. In setups with more

than one type of scheduled announcement (FOMC meetings and macro announcements),

such an approximation is no longer accurate and is not pursued in this paper.

4.5 Data

The target rate is on average higher than short Treasury rates, because the Fed is op-

erating in a market where loans are not collateralized, while tax effects and other factors

further depress Treasuries. For example, the average daily target rate from 1994 to 1998 is

5.22%, while the 3-month T-bill and the 3-month LIBOR-rate averaged 5.06% and 5.44%,

respectively. The empirical results reported here are therefore based on LIBOR and swap

rates.15 The sample period considered in the estimation is January 1, 1994 to December

31, 1998. The dates of FOMC meetings were obtained from the Board of Governors of the

14The computation simulates 9 coefficients (for each of the 8 state variables plus a constant) for 10 different
bond maturities (0.5, 1, . . . , 4.5, 5 years) for each of the 261 observations, using Runge-Kutta solutions of the
ODEs for the coefficients.
15LIBOR-quality swap rates are minimally affected by credit risk because of their special contractual
netting features, although they do trade at spreads to Treasuries that have, to this point, resisted a convincing
explanation (see, for example, Collin-Dufresne and Solnik (2001)). For example, the 2, 5 and 10-year average
swap rates were 6.08%, 6.48% and 6.79% during the post-1994 period, respectively, while the same maturities
had average percentage yields in the Treasury market of 5.81, 6.13, and 6.34.
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Federal Reserve. The FOMC meets eight times a year. Two of these meetings, the first

and the fourth, extend over two days. In the past, if the Fed changed its target during one

of these two-day meetings, the announcement was always made on the second of the two

meeting days. The target-rate series used in this paper differs from the series in Datastream

with respect to the timing of the target change during the two-day meeting of February

1994. Datastream assigns the change to the first meeting day (February 3), while the change

was announced on the second meeting day (The New York Times, February 5, 1994, page 1,

“Federal Reserve, Changing Course, Raises a Key Rate” by Keith Bradsher).

LIBOR data are from the British Bankers’ Association, while swap rates are from Inter-

capital Brokers Limited. Both series are obtained through Datastream. LIBOR rates are

recorded at 11 a.m. London time, while swap rates are recorded at the end of the UK business

day. Target-rate changes are typically announced from 10 a.m. to 3 p.m. Eastern time.16

This means that a move in the target on Tuesday, March 1, affects recorded LIBOR rates

on Wednesday, March 2. The effect on recorded swap yields is not so precisely separable.

The data sample is therefore constructed by using Thursday (London time) observations of

LIBOR and swap yields, together with Wednesday (Eastern time) observations of the target

rate. The asynchronous nature of the observations is ignored in the estimation. Whenever

the respective day was a holiday, the observation of the previous business day was used.

The bond-pricing formula (7) extends as written to the case of LIBOR bonds, treating

r as a default-adjusted discount rate (Duffie and Singleton (1997)). The 6-month LIBOR

16For example: Sep 29, 1998 at 2:15 p.m., Oct 15, 1998 at 3:15 p.m., Nov 17, 1998 at 2:15 p.m.
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rate is denoted Y (t, t + 0.5). An interest-rate swap is a contract between two parties to

exchange fixed and floating coupons for a stipulated time, say τ years. One party receives

a semi-annual floating payment in form of the 6-month LIBOR rate and pays in exchange

a fixed coupon rate, the swap rate. At the initiation of the swap contract, the swap rate is

set so that the value of the swap contract is zero. For simplicity, swap rates Y (t, t + τ) are

treated as par-coupon rates on LIBOR-quality bonds of the same maturity, putting aside

the distinct institutional features and differences in default risk of LIBOR and LIBOR-swap

markets, so that

Y (t, t+ τ) =
2 (1− P (t, t+ τ))∑2τ
j=1 P (t, t+ 0.5 j)

. (12)

5 Estimation Results

The same set of yields (6-month LIBOR, 2 and 5-year swap) and the target are used for

all estimations, creating the need to break the stochastic singularity arising from the exact

map of three factors in four observed variables in the lower-dimensional systems. I therefore

assume that the 2-year swap rate is observed with measurement error.17 As this section

investigates the properties of the estimated models, the concept of model-implied factors

will be needed. These are obtained by inverting the map from factors to the target rate,

17The measurement error of the 2-year swap rate turns out to be persistent, with a weekly autocorrelation
coefficient that varies across models from 0.95 to 0.98, and a standard deviation that varies from 12 to 21
basis points. This is comparable to other yield-curve estimations (see, for example, Duffie and Singleton
(1997)).
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and to those yields that are assumed to be observed without error at the SML estimates.

The map from factors to yields is given by the pricing formulas (12) from the approximating

model.

5.1 Accuracy of the Approximating Model

As the true state process X is not actually of the LQJD class, because of (2), it is

important to study the accuracy of the approximating model. From the swap-yield formula

(12), one can see that it is sufficient to investigate the approximation accuracy for zero-

coupon yields. Zero-coupon yields Y0(t, T ) for each observation t in the sample implied

by the true (nonlinear) model can be computed with Monte Carlo integration. Consider

simulating S paths of the short rate for times i = t + h, t+ 2h, . . . , T − h starting with the

model-implied state x at time t. The time t yield of a zero-coupon bond maturing at time

T is then

Y0(t, T )=̂−
ln P̂ (t, T )

T − t ,

where

P̂ (t, T ) =
1

S

S∑

s=1

exp

(
−
T−h∑

i=t

r̂xi [s]h

)
.

These calculations are performed using S = 10, 000 and h = 1/365. FOMC meeting days

are additionally subdivided into 30 intervals. Given these choices, the standard errors of the
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Monte-Carlo approximation of the true yields for even the 5-year yield are sufficiently small,

from 0.93 to 1.79 basis points.

These zero-coupon yields implied by the true model can be compared to the yields from

the approximating model that are based on the same model-implied state vector. Table 1

shows that the mean absolute approximation error is around 1-3 basis points, with a standard

deviation of 1-2 basis points for the constrained model without inertia factor z and an even

smaller error for the full model. The approximation error for these specifications is thus of

similar magnitude as the bid-ask spread of swaps. The unconstrained estimates of the model

without z and all other 3-factor versions produce about 5 times the approximation error,

which seems too large to be acceptable.

5.2 Cross-Sectional Fit of the Approximating Model

An important measure of cross-sectional out-of-sample fit for any yield-curve model is

the pricing error made when predicting yields that were not included in the estimation.

Pricing errors are defined as the difference between actual yields and the model-implied

yields computed by inserting the model-implied factors into the swap formulas (12). Model-

implied yields are based on the approximating model, so that the pricing errors not only

reflect model misspecification, but also approximation error. Table 2 reports the average

absolute pricing errors and their sample standard deviations for the base-case models and

for the Dai and Singleton (2000, DS) model as a point of reference. The DS parameters are

estimated with weekly data on the same LIBOR and swap rates with the exception of using
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Table 1: Approximation Errors due to ‘Negative Intensities’ (in Basis Points)

Maturity W/o Stoch. Vol W/o Inertia Full Model
Con. Unc. Con. Unc. Con. Unc.

6-mth mean abs.AE 4.08 8.56 2.85 11.32 2.60 2.11
std of abs.AE 2.73 9.26 2.20 10.69 1.91 1.11
average SE 0.53 0.38 0.46 0.29 0.59 0.67

2-yr mean abs.AE 11.43 20.99 2.62 19.43 2.17 1.73
std of abs.AE 8.78 18.59 1.50 18.18 1.36 0.85
average SE 0.93 0.66 0.85 0.59 1.07 1.13

5-yr mean abs.AE 37.74 28.92 1.76 9.37 1.54 1.86
std of abs.AE 20.16 20.74 0.72 9.30 0.81 0.73
average SE 1.19 0.93 1.28 1.07 1.64 1.79

NOTE: This table presents summary statistics about the approximation errors in basis points made by the

approximating models over the sample January 1, 1994 to December 31, 1998. “W/o Stoch. Vol” refers to

(5) with constant σs, while “W/o Inertia” takes out the z process so that X = (θ, s, v). “Con.” refers to the

constrained estimation as in (11), “Unc.” to the unconstrained counterpart. Due to the seasonality introduced

by FOMC meetings, the approximation errors in this setup depend on time t even for a given value of the

state vector. The table therefore reports the mean average absolute approximation error |Y (t, T )− Y0(t, T )|
and its standard deviation over the sample (first and second row). The table also reports the average

standard errors of the Monte Carlo approximation of true yields Y0(t, T ) (third row). These are obtained

using the Delta method by viewing the simulated bond price P̂ (t, T ) at time t as the estimated mean of an

i.i.d. population of random variables exp(
∑T−h
i=t r̂i[s]h). The table reports the average standard errors over

the sample.

the 10-year instead of the 5-year swap over a sample period that only partially overlaps with

the sample used in this paper (April 3, 1987 to August 23, 1996). The parameters have not

been reestimated.

The pricing errors of the unconstrained full model and its version without stochastic

volatility are lowest among these. The model without stochastic vol matches the short end

of the yield curve extremely well with average absolute errors of around 6 to 13 basis points.

In addition to matching the short end well, with 11-26 bp errors, the full model produces

low errors, of around 2 bp, at the long end of the curve. As can be seen from the table, the
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Table 2: Pricing Errors for Yields not used for Fitting (in Basis Points)

W/o Stoch. Vol W/o Inertia Full Model DS Model
Con. Unc. Con. Unc. Con. Unc.

1 mth mean 13.5 12.53 18.48 25.41 33.57 25.72 237.34
std 11.07 11.29 11.59 13.96 16.69 16.36 115.48

3 mth mean 7.90 7.48 11.85 15.48 16.74 11.00 66.17
std 6.22 6.33 6.65 7.71 7.41 6.75 30.72

12 mth mean 6.67 6.84 9.90 12.44 4.72 3.22 9.93
std 6.48 6.58 7.17 8.77 3.53 2.92 4.83

3 year mean 10.68 9.47 14.96 16.94 8.46 1.76 6.41
std 5.89 5.66 8.79 9.03 2.35 1.13 1.54

4 year mean 6.40 5.76 7.98 8.81 10.14 1.78 5.70
std 3.17 3.08 4.55 4.51 2.45 1.02 1.51

NOTE: This table presents the mean and the standard deviation of the absolute value of the pricing error

in basis points over the weekly data sample from January 1, 1994 to December 31, 1998 made by the

approximating model and, as a reference, for the DS model (at their parameter estimates). The definition

of models is as in Table 1. Using their sample period, DS report mean pricing errors for weekly 3, 5 and

7 year swaps rates of -11.3, 16.9 and -12.7 basis points with standard deviations of 9.6, 16.5 and 10.1 basis

points.

latter model does better than the DS model, especially at the short end. The incorporation

of the target as a fourth factor appears to provide a manageable way of fixing the short end

of the yield curve.

Taking out the z variable produces overall higher pricing errors (ranging from 8 to 18 bp)

when the model is evaluated at the constrained parameter vector, and about 1-7 bp higher

than that for the unconstrained parameter.18 Given the small pricing errors of unconstrained

full model, this will be the model I will focus mostly on in the following analysis.

18While pricing errors are a measure of first moments that depends on the realized path of yields through
the use of model-implied factors, a history-independent check can be obtained by simulating 20, 000 samples
of weekly yields. The average 6-month LIBOR, 2 and 5-year swap rates in these simulated samples are 5.59,
5.76 and 5.89%, respectively, which shows better how the high persistence of yields makes it difficult to
match first moments.
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5.3 Interpretation of Model-Implied Factors

The spread s represents money-market noise which only affects short maturities. Table

3 shows that this feature is shared by all models (as defined in Section 5). Under the

data-generating probability measure, the short rate quickly reverts to the target, which in

turn reverts to a parameter θ̄ that is fixed to its sample mean, 5.22%. The speed κs of

mean-reversion is highest in the full model, implying a weekly autoregressive coefficient of

exp(−κs/52) = 0.83 and a half life of shocks to the spread of less than 1 month. Under the

risk-neutral measure, spread shocks die out fast as well, which implies that they only matter

for short yields. Figure 3 computes, for the full model, the linear dependence of zero-coupon

yields on all factors, as a function of maturity. These yield coefficients can be interpreted as

responses of yields to the various shocks because the shocks are uncorrelated. The response

of yields to changes in the spread s is monotonically decreasing with maturity, which means

that s is a “slope factor” in the language of Litterman and Scheinkman (1993).

Shocks to the target persist under both probability measures which leads to positive

autocorrelation in the target level. This will be referred to as interest-rate smoothing. Target

shocks therefore mostly affect short yields and less long yields, as can be seen from Figure

3. This monotone reaction of yields is usually called liquidity effect. In other words, both

s and θ are “slope factors”, but act on different parts of the yield curve, as the impact of

target increases dies off more slowly with maturity than do the impacts of shocks to s.

The Fed conducts monetary policy by slowly pulling the target (and thus the short rate)
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Table 3: Estimated Parameters of Yield-Curve Models with Target

W/o Stoch. Vol W/o Inertia Full Model
Con. Unc. Con. Unc. Con. Unc.

κs 1.28 1.56 2.86 3.33 6.44 9.75
(2.53) (4.10) (3.90) (4.20) (3.83) (4.69)

κv − − 0.17 0.1296 0.12 0.04
− − (3.74) (3.80) (0.41) (0.42)

κz 0.28 0.29 − − 0.47 0.72
(2.69) (3.03) − − (4.73) (4.34)

θ̄ 0.0522 0.0522 0.0522 0.0522 0.0522 0.0522
− − − − − −

v̄ − − 0.000045 0.000059 0.000228 0.000415
− − (5.69) (4.53) (0.51) (1.07)

σs 0.0000712 0.0000799 − − − −
(51.39) (12.50) − − − −

σv − − 0.0058 0.0065 0.0542 0.0899
− − (2.04) (1.37) (0.72) (0.78)

λU
0

758.2 338.6 341.7 −323.3 1160.3 273.7
(0.11) (0.40) (0.03) (−0.02) (0.15) (0.55)

λs 6769 7582 20132 18685 6117 7267
(1.48) (2.25) (2.31) (2.14) (2.32) (1.86)

λθ −5269.7 −4876.7 −12638.3 −14795.8 −8738.6 −9408.9
(−3.90) (−4.30) (−7.48) (−9.23) (−6.53) (−4.18)

λv − − 17831000 18611780 −89192 548315
− − (2.55) (2.26) (−0.60) (1.63)

λz 123 119.5 − − 234.8 237.6
(18.74) (18.63) − − (21.79) (17.87)

qs 70.12 70.29 −257.53 −241.32 −89.93 −47.62
(3.27) (8.67) (−5.29) (−4.79) (−3.22) (−2.90)

qv − − 499.9 1051.16 −10186 −2537.5
− − (0.05) (0.12) (−1.19) (−0.81)

qz −0.2091 −0.2132 − − 0.2553 0.1126
(−132.73) (−33.36) − − (27.82) (0.18)

σM 0.00137 0.00213 0.00116 0.00114 − −
(15.12) (14.77) (17.54) (18.14) − −

ρM 0.961 0.955 0.982 0.984 − −
(58.64) (56.13) (78.93) (88.11) − −

NOTE: This table reports the SML parameter estimates and t-ratios (in brackets) obtained with S = 2500,

h = 1

M
1

365
, M = 1, Ms = 30 and weekly observations of the target rate, 6-month LIBOR, 2 and 5-year swap

rate from January 1, 1994 to December 31, 1998. “Full model” refers to equations (1), (2), (5) and (8). λθ,

for example, denotes the slope coefficient of θ in λX . “W/o Stoch. Vol” refers to (5) with constant σs, while

“W/o Inertia” takes out the z process so that X = (θ, s, v). “Con.” refers to the constrained estimation as

in (11), “Unc.” to the unconstrained counterpart. σM is the standard deviation of the measurement error

contaminating observations of the 2-year swap rate and ρM is its autocorrelation.
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Figure 3: Zero-Coupon Yield Coefficients as a function of time to maturity (T − t = 1, 2, . . . years) taken
from the (unconstrained) full model: Y0(t) = u0(t, T )+us(t, T )s(t)+uθ(t, T )θ(t)+uv(t, T )v(t)+uz(t, T )z(t)
at two typical dates t. The solid line is at an FOMC meeting. The dotted line is at the day after the meeting.

towards a desired rate that is mostly captured by z (under both probability measures). This

can be seen from Table 4 which documents that arrival rates of Fed moves are most highly

correlated with the inertia factor z. Positive shocks to z increase the likelihood of a target

move not only at the next FOMC meeting, but also at subsequent meetings, because their

half live is 1 year (again, under both measures) from Table 3. This means that certain

shocks to the economy affect the target and thus short-term rates only with some delay, and

thereby induce positive autocorrelation in target changes. This positive autocorrelation in

changes is labelled policy inertia. Figure 3 shows that the anticipated cumulative effect of

subsequent target moves on yields is highest for maturities around 2 years. At sufficiently

long maturities, beyond 2 years, mean reversion in the target and the inertia factor causes

shocks to have smaller and smaller impacts on longer and longer rates. The net effect is a

hump-shaped coefficient on z, which means that z is a “curvature factor” in the language of
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Table 4: Which Factors drive the Probability of Target Moves ?

W/o Stoch. Vol W/o Inertia Full Model
Con. Unc. Con. Unc. Con. Unc.

s .44 .53 .60 .55 .40 .48
θ −.33 −.33 −.48 −.48 −.33 −.36
z .85 .83 − − .86 .71
v − − .65 .67 −.09 .26

NOTE: To obtain a measure of importance of a factor for the stochastic intensities of policy events, this table

shows the correlation between changes in the model-implied factors (s, θ, v, z) and changes in the function

λ0 + λss(t) + λθθ(t) + λvv(t) + λzz(t) for the weekly sample from January 1, 1994 to December 31, 1998.

The definition of models is the same as in Table 1.

Litterman and Scheinkman (1993).

Shocks to volatility v affect yields at all maturities, reflecting the strong persistence of

volatility (under both measures). In this sense, v is a “level factor”.

The comparison of model-implied variables across models in Table 5 shows that the latent

variables z and v roughly correspond to the stochastic mean “θ” and volatility “v” factors

of the DS model, as can be seen from their correlation of 0.93 and 0.97, respectively. The

commovements with yields indicate that z behaves much like the 2-year swap rate, and that

v is related to the 5-year swap rate. The two models imply, however, very different short

rates. The sample mean of the model-implied r in the DS model is -0.46%, while the average

r in the full model is 5.02%. The full model implies that r is closely related to the short end

of the yield curve, while the DS model produces a short rate that behaves like the slope at

the short end of the yield curve. This can be seen from the correlations between the model-

implied short rates r from the two models and the LIBOR rate (0.54 for the full model and

−0.05 for the DS model), and the difference between the 2-year swap and the LIBOR rate
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Table 5: Correlations of Model-Implied in Factors, Yields and Target

W/o Stoch. Vol W/o Inertia Full Model LIBOR & Swaps Target
Model r z r v r z v 6-mth 2-yr 5-yr θ

W/o Stoch. Vol r 1 .56 .26 .14 .66
z .01 1 .44 .89 .97 .07

W/o Inertia r .85 −.18 1 .57 .13 −.01 .75
v .07 .99 −.09 1 .55 .93 .99 .12

Full Model r .67 −.24 .77 −.16 1 .54 −.03 −.07 −.12
z 24 .63 .12 .64 −.18 1 .44 .81 .65 .13
v -.08 .78 −.19 .78 −.01 .01 1 .37 .55 .76 −.03

DS r .07 −.57 .21 −.54 .57 -.90 .05 −.05 −.62 −.50 −.26
θ .23 .82 .10 .85 −.16 .93 .34 .63 .96 .86 .29
v −.15 −.10 −.26 .62 .02 −.19 .97 .19 .33 .59 −.21

NOTE: This table computes the correlation of the first differences of model-implied factors (r, z and v)

from the unconstrained estimations, the model-implied factors (r, θ, v) of the “A1(3)DS model” by Dai and

Singleton (2000) (at their estimated parameter vector), the 6-month LIBOR rate, the 2 and 5-year swap

rates, and the target rate θ over the sample January 1, 1994 to December 31, 1998. The definition of models

is the same as in Table 1. All correlations with the target rate are computed using the subsample of FOMC

meetings.

(0.58 for the full and 0.86 for the DS model).

Similar to the full model, the short rate r in the three factor versions is correlated most

highly with the shortest yield in the estimation. In the model without inertia factor z, r is

less related to longer yields than in the version without stochastic volatility v. This can also

be seen from the estimated mean-reversion parameter κs, higher for the model without z than

for the one without v, and its correlation with target-rate changes on FOMC meetings, which

is also higher in the model without z. This may be explained by the fact that, for a nonzero

market price qs of uncertainty, the model without z has the additional flexibility of allowing

r to revert under Q to the continuous variable v, while the conditional mean of r between

FOMC meetings under the risk-neutral measure is constant in the model with constant vol.
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The second latent factor in these models behaves much like the longest yield from Table 5.

They mean-revert at about the same slow rate and are in fact highly correlated, but almost

uncorrelated with their short rate r. This may indicate that the role of v as conditional

second moment of r is dominated by its importance of setting the arrival intensity of policy

moves.

5.4 Snake-Shaped Volatility Curve

Figure 4 shows the standard deviation of yield changes as a function of maturity, the

so-called term structure of volatility (or ‘vol curve’). The vol curve is “snake-shaped,” in

that volatility is high at the very short end, declines until maturities about 3-6 months, after

which it has a “hump” at a maturity of 2 years. The graph also shows the vol curve in

simulated data from the full model, which reproduces the overall “snake-shaped” pattern

quite well. The “head of the snake” at the short end is generated by money-market shocks,

shocks to the spread, which only affect short yields. The “back of the snake”, the hump at

2 years, has already been documented by Litterman, Scheinkman and Weiss (1988).

Informal accounts (for example, Fleming and Remolona (1999)) conjectured that mone-

tary policy is responsible for the hump. This claim is here validated in the sense that the

source of the hump are shocks to the inertia factor z which only enter the model through

their impact on the arrival rates of policy moves. Rates at medium maturities such as 2

years respond immediately to the anticipated cumulative effects of z-shocks on the target,

and thus have greater volatility then do the Fed-dampened short rates. Mean reversion in
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Shape and Seasonality of the Volatility Curve
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Figure 4: The graph shows the volatility curve during weeks of FOMC meetings (gray line) and the
remaining weeks (black line) in the data (without +) and in a simulation of the full model (with +).
The volatility curve is measured as standard deviations of yield changes. The weekly data are Wednesday
observations from 1994 to 1998 on the target rate, overnight repo rate, and Thursday observations on the
1, 3, 6, 12-month LIBOR and 2, 3, 4, 5-year Swap Rates. Standard-error bounds around the volatility
estimates in the actual yield data are computed in the following table with GMM using 5 Newey-West
lags. The simulations for the simulated curve start with S = 20, 000 initial states X̂0 that are obtained by
simulating the state dynamics for 10 years, starting at the unconditional mean. Each day is subdivided into
2 intervals and each FOMC meeting is subdivided into 30 intervals. Given X̂0, S different samples of yields
are simulated based on the actual FOMC calendar.

Standard Errors around Volatility Estimates (in Basis Points)

Repo LIBOR Rates Swap Rates
Overnight 1 mth 3 mth 6 mth 12 mth 2 yr 3 yr 4 yr 5 yr

Data- 19.90 8.78 7.26 8.87 11.17 13.18 13.27 13.05 12.92
‘Normal’ (2.01) (1.53) (0.86) (0.84) (0.79) (0.75) (0.76) (0.70) (0.67)
Data- 31.72 11.13 9.47 9.64 11.35 14.01 14.24 14.00 14.12
Fomc (2.21) (1.69) (1.37) (1.88) (2.12) (1.90) (1.77) (1.75) (1.83)
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the target then leads to smaller volatilities for longer maturity yields. This means that the

hump in the yield-coefficient on the inertia factor translates into a hump in the vol curve.

The volatility in the data is higher around FOMC meetings, especially for short maturities.

This seasonality is also present in the model, where it is generated by shocks to the target

rate, which happen mostly at FOMC meetings. The model overstates this seasonality around

FOMC meetings, because shocks to the target do not die out fast enough in the estimated

model.

5.5 Implied Discrete-Choice Model of Policy

From each of the yield-curve setups, it is possible to derive a discrete-choice model in

which, at each FOMC meeting, the Fed is viewed as randomizing over three possible policy

choices: up move, down move or no move. The conditional probability of a particular choice

at the FOMC meeting at t depends on the state “right before” t and is obtained from its

empirical frequency in a simulated sample of size S = 10, 000 that is generated by simulating

forward in steps of one day’s length starting at the actual value of the implied state at the

last observation. These conditional probabilities from the full model are plotted in Figure

5 for each FOMC meeting. (Outside of FOMC meetings, the discrete-choice model assigns

a small and constant probability to Peso events.) The conditional likelihood of moves up is

very high at the end of 1994, when in fact the Fed increased the target in several steps, and

again quite large around the target increase in March 1997. The conditional probability of

moves down is high in 1995/96 and 1998, both years in which the Fed lowered the rate on

41



Figure 5: Conditional Probabilities of Target Moves at each FOMC Meeting since 1994
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several occasions.

To see whether these conditional probabilities provide a good description of target dy-

namics, Table 6 compares forecasts by the model-implied discrete choice to forecasts based

on alternative ways to describe target-rate moves. A forecast is taken to be the alternative

with the highest conditional probability. As there have been only 7 increases and 5 decreases

in the target at FOMC meetings over the sample period 1994-1998, these results suffer from

small-sample noise, and are not intended to offer a serious forecasting comparison. They do

provide, however, a device that helps to understand the implications of the model regarding

Fed moves. The standard reference setup, usually labeled ‘constant probability model,’ is a

version of the discrete-choice model in which the conditional probabilities are set equal to

their empirical frequencies. For target moves, these frequencies are small (7/40 for “up” and

5/40 for “down”), so that this version always forecasts that the Fed is not going to change
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Table 6: Forecasting Evaluation of Model-Implied Target Model

Same Change No Change
Predicted Actual up no down total up no down total

up 2 5 0 7 0 0 0 0
no 5 20 3 28 7 28 5 40
down 0 3 2 5 0 0 0 0
correct 2 20 2 24 0 28 0 28
total 7 28 5 40 7 28 5 40

% correct 28.57 71.42 40 60 0 100 0 70

Unc. Full Model Con. Full Model
Predicted Actual up no down total up no down total

up 4 2 0 6 7 23 0 30
no 3 26 5 34 0 0 0 0
down 0 0 0 0 0 5 5 10
correct 4 26 0 30 7 0 5 12
total 7 28 5 40 7 28 5 40

% correct 57.14 92.86 0 75 100 0 100 30

NOTE: The sample used in this table is January 1, 1994 to December 31, 1998.
During this time, there have been 40 FOMC meetings, 8 moves up in the target (1
outside of an FOMC meeting) and 6 moves down (1 outside of an FOMC meeting).
This means that in a constant probability model, the estimated probability of a
move up and down is 7/40 and 5/40, respectively. Forecasting a particular choice
(up, down, no) is defined as the alternative with the highest probability. As to the
2 changes outside of FOMC meetings, all models would have missed them, so they
are not part of the table.

the target. In other words, this specification generates the same forecasts as a random walk

for the target, and are reported under ‘No Change.’ A second reference model that seems

useful is a random walk for the first differenced target; its forecasts are reported under

‘Same Change.’ For example, the first column of Table 6 indicates that of the 7 target-rate

increases that occurred at FOMC meetings, the ‘Same-Change’ model would have predicted

2 correctly, while it would have forecasted no move in the remaining 5 cases.

The forecasts made by the unconstrained full model vastly outperform those of the con-

strained one in terms of the overall percentage of correctly forecasted Fed moves (75% and

30%, respectively). The reason is that the constrained model is characterized by large prob-
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abilities of nonzero moves. (This is also true for the three factor versions of the model). For

example, the constrained model is not able predict a zero target-rate move correctly. It is

worth noting, however, that the constrained model never misses the direction of the move,

leading to a perfect score in forecasting nonzero moves. In other words, conditional on a

Fed move, this model always predict the right sign of a move. The unconstrained model

produces forecasts that are also more accurate than those of the reference models in terms

of the overall correct forecasting percentage: the full model predicts 75% of the target moves

on FOMC meetings correctly, compared to only 60% using the ‘Same-Change’ model and

70% using the ‘No-Change’ model.

5.6 Model-implied Policy Rule

Policy rules are structural equations that specify the map from a set of variables to the

policy instrument of the central bank. Recursively identified VARs, for example, typically

contain one equation describing the data-generating process of the fed funds rate, that can

be interpreted as a policy rule plus some orthogonal monetary policy shock (see Christiano,

Eichenbaum and Evans (1998)). The identifying assumption that will be used here is that

the Fed reacts to the value of the state ‘just before’ the FOMC meeting. The resulting high-

frequency rule of the Fed can be computed as the conditional expected value of the target

as a function of model-implied factors based on the estimated SML parameters.

For a given parameter value, the rule can be backed out by the staff using daily and

even higher frequency data. The rule thereby avoids the criticism by Orphanides (1998) who
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argues that policy-rule plots regularly shown by the Fed staff to the FOMC at the beginning

of each meeting cannot be based on right-hand-side variables that are yet to be released.

With weekly observations, the model-implied policy rule at time t is

Eu [ θ(t) ] = 0.36 + 0.10 s(u) + 0.87 θ(u) + 7.51 v(u) + 0.0033 z(u), (13)

where u = t − 1/52. According to this policy rule, the Fed reacts mainly to information

contained in the yield curve. This statement is still true after employment and CPI inflation

are added to the model (see Section 6). The most important variable in the rule is the inertia

variable z which was shown to be closely related to the 2-year yield (Table 5). Another

important variable in (13) is the past target, which is usually referred to as interest-rate

smoothing. While variables such as volatility v and the inertia variable z may seem unfamiliar

as arguments of a policy rule, they act as sufficient statistics for macroeconomic variables the

Fed cares about. The small spread coefficient shows that the Fed does not care much about

money-market noise which causes short-lived deviations of the short rate from the target.

Figure 6 compares the model-implied rule to the original Taylor rule and an estimated

extended Taylor rule. Both Taylor-type rules use the quarterly averaged fed funds rate as

left-hand side variable. The original Taylor rule uses the fixed coefficients proposed by Taylor

(1993) on the two right-hand side variables: π four-quarter average inflation, computed using

the GDP deflator, and the output gap y, computed as the percentage deviation of real GDP

from its trend (based on a Hodrick-Prescott filter). The extension adds the lagged fed funds
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rate to the right-hand side.19 To mimic the decision process of the Fed, the graph plots the

policy rule for each FOMC meeting given its value in the quarter the meeting took place,

leaving us with 40 data points. By eyeballing, the model-implied rule seems to be a better

description of the actual target. This is confirmed by the mean absolute difference between

actual target and the value of the target prescribed by the policy rule. For the original Taylor

rule, the estimated Taylor (no lagged fed funds rate), the extended Taylor and the model-

implied rule, the mean absolute difference is 162, 41, 22 and 10 basis points, respectively. The

reason for the better fit of the model-implied rule is that the model-implied state variables,

especially the inertia factor, commove with changes in the state of the economy to which the

Fed reacts. This makes the inertia factor seem like it is ‘anticipating’ target moves, while

the Taylor-based rules only catch up slowly with the target.

6 Linking Policy Inertia to Macro Shocks

As the Fed reacts to macroeconomic variables (taken to be nonfarm payroll employment

and CPI inflation) when fixing its target, expectations about future macro variables matter

for current long yields. Whenever these expectations are updated, such as at macroeconomic

releases, one would expect long yields to react. This conjecture can be verified in an unre-

stricted regression of yield changes on ‘macro surprises’, defined as the difference between

19The intercept of the original Taylor rule is 3, the coefficients on π and y are 1.5 and 0.5, respectively. The
estimated rules are computed using quarterly data from 1994:1 to 1998:12. In the extended Taylor rule, the
estimated constant is -0.3602, the coefficients on π, y and the lagged fed funds rate are 0.4968, 0.3411 and
0.9105 with standard errors 0.7473, 0.1907, 0.2251 and 0.0861, respectively, calculated with 2 Newey-West
lags. The R2 is 91%, which is reduced to 23% in the case of an estimated Taylor rule (without lagged fed
funds rate). The data was obtained from the Federal Reserve Database.
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Figure 6: Model-Implied Policy Rule together with Taylor Rules since 1994
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actual and analyst forecast. For the case of employment releases, Figure 8 shows that the

slope coefficient of this regression as a function of yield maturity has a hump at 2 years and

is significant. In the following, I explore whether the information contained in the policy

inertia factor of the yields-only model in the last section can be linked to macro shocks in a

setting that respects the exact timing of analyst forecasts and macroeconomic releases.
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6.1 Analyst Forecasts and Actual Data

Employment and CPI releases are made by the Bureau of Labor Statistics. Employment

releases are at 8:30 a.m. on the first Friday of each month,20 while CPI figures are released

about two weeks after the end of the reference month, also at 8:30 a.m. This means that

the LIBOR recorded at 11 a.m. London time is affected by a macro release on the preceding

day, while swap rates recorded at the end of the London business day react on the same day

as the macro release. The actual and released CPI and nonfarm payroll employment (NPE)

series are from Money Market Services (MMS). The raw series obtained from MMS are

the monthly percentage change in the CPI and changes in nonfarm payroll employment in

thousands. The CPI series is multiplied by 1200 to obtain the annualized inflation rate, and

changes in employment are divided by 100 (to obtain a series that is similar in magnitude to

CPI inflation). These series of actuals are the numbers that were released on that particular

date. MMS collects data on analyst forecasts each Friday prior to the actual release from

about 40 money-market managers and reports their median forecast. These analyst-forecast

data have been used in most studies of release surprises (for example, Balduzzi, Elton,

and Green (1998), Li and Engle (1998), Fleming and Remolona (1999)). The monthly

time series of changes in nonfarm payroll employment (NPE) and CPI inflation (CPI) for

the sample period 1994-1998 contains only 60 monthly observations. Evidence about the

macro dynamics will therefore be collected using all available data from MMS, which started

20The relevance of this variable can, for example, be seen from the Minutes of past FOMC meetings. In
six out of eight FOMC meetings in 1996, the Board’s discussion of the “economic and financial outlook”
started with a general overview of the state of the economy and then immediately turned to the value of
nonfarm payroll employment.
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surveying NPE forecasts21 in January 1985.

6.2 Dynamics of Employment and Inflation

Over the sample period 1985:6 to 1998:12, it is not possible to outperform analyst fore-

casts in the mean-squared-error sense with one-step-ahead forecasts of univariate or bivariate

ARMA specifications (even conditioning on past target values). The errors of analyst fore-

casts are positively correlated with those of time-series models, but this correlation is far

from perfect. For instance, the sample correlation coefficient is at most 0.65 for the CPI

and 0.85 for NPE. A reason for the relatively low correlation between analyst errors and

model errors is the oversimplified informational structure assumed by the low-dimensional

time-series model. When forecasting, actual investors are able to condition on a wealth of

state variables. I thus explore a state-space model of macro variables and analyst forecasts

that introduces latent variables summarizing this conditioning information.

The first step in setting up this system is to check for the unbiasedness of analyst forecast

mF = (m
CPI
F , mNPEF ) of the vector m = (mCPI , mNPE) of CPI and NPE. I test for each

variable whether ci0 = 0 and c
i
1 = 1 when fitting

mi(t) = ci0 + c
i
1m

i
F (t) + ε

i(t), i = CPI, NPE, (14)

21The extension of the sample period to pre-1994 is justified if the precise timing of policy events (target
moves at FOMC meetings versus moves at random business days) does not matter for how policy impacts
monthly macro series, an assumption which seems to be reasonable.
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Figure 7: The cross correlation between CPI at time t and NPE at time t+ j together with approximate
95% confidence bounds (±2/

√
T ).

where εi is white noise. Unbiasedness cannot be rejected at the 1% level for NPE, but is

strongly rejected for the CPI series for the period 1985-1998. Concentrating on the post-1994

subsample, that used for the yield-curve model, CPI forecasts also “pass” the unbiasedness

test at the 1% confidence level.22 Finally, three lagged values of CPI, NPE and the target rate

were included on the right-hand side of (14), but none had a significant coefficient, except

perhaps for a weak effect of the first lagged CPI on NPE. To conclude, analyst forecasts of

CPI and NPE provide a reasonably good description of the conditional expected values of

these variables, at least in the post-1994 period, so that (14) will be used with ci0 = 0 and

ci1 = 1.

The second step in setting up the joint system for NPE and CPI is an examination of their

correlation. The contemporaneous correlation between the two variables is small (0.017).

When lagging one of these variables, the correlation estimates rarely exit approximate 95%

22Balduzzi, Elton, and Green (1997) and Li and Engle (1998) conduct this test with a short history as
well, and fail to reject the null.
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confidence bounds around zero, as can be seen from Figure 7. Granger causation regressions

(not reported here) in fact show that NPE does not help much in predicting future CPI. The

CPI might, however, help in forecasting NPE. Including lagged values of the CPI in an AR(3)

specification, for example, of NPE leads to a small gain in adjusted R2 (9.5% to 12.1%). For

each of CPI and NPE, we therefore specify conditionally independent subsystems, using the

target rate as an exogenous variable.

The final requirements of the state-space system are that the macro variables are part

of the state, and that the state is a four-dimensional autoregressive process of order 1 (this

last choice will be further discussed below).

In the continuous-time economy, one deterministic counting process N i records macroe-

conomic releases and another, N iF , counts the times at which analyst forecasts are made.

Selecting a release time τ i and the succeeding analyst forecast time τ iF , the specification can

be summarized as:

mi(τ i) = miF (τ
i) + εi(τ i) (15)

miF (τ
i
F ) = a

i
0 + a

i
1m
i
F (τ

i
F−) + ai2mi(τ iF−) + ai3θ(τ iF−) + εjF (τ iF ),

where εi(τ i) and εiF (τ
i
F ) are jointly Gaussian independent across time with mean zero, re-

spective variances σi and σiF , and covariance σ
i
mF .

23

23Fore more intuition, consider the problem of modeling mF and m in discrete time. Let the state be
denoted by z = (zCPI , zNPE) with zi ∈ R2, i = CPI,NPE. Leaving out the dependence on the target for
the moment, the observation equations in the state space system are (1) miF (t+1) = α0+α1 z

i
1(t)+α2 z

i
2(t)
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Maximum-likelihood parameter estimates for (15) are reported in Table 7, except for

the covariance parameter σimF , which was estimated to be zero for both CPI and NPE.

The forecast mF of m does not depend on the past value of m (both a
CPI
2 and aNPE2 are

small and insignificant), and depend only slightly on the past target (aCPI3 is somewhat

larger than aNPE3 , but neither is significant). The impulse reponse of a macro variable to

a release surprise ε(τ) at time τ thus dies off after one month, since the surprise does not

affect future released values. In this sense, release surprises are only temporary components

of macro variables. Based on (15), mCPI and mNPE are both treated as the sum of an

AR(1), the forecast mF , and Gaussian white noise. In other words, this specification results

in an ARMA(1,1)-structure, which is also the specification selected by comparing Akaike

and Schwarz criteria of ARMA(p,q) models that include p lagged values of the target rate.

The restrictiveness of a four-dimensional state can be checked by including additional lagged

values of mF and m in the equation determining analyst forecasts. I do not find additional

significant terms for the CPI forecasts, but an additional moving average for NPE forecasts

improves the model-selection criteria.

and (2) mi(t) = α0 + z
i
1
(t). This shows that z2 is the latent state that summarizes the information used by

investors to form the forecast mF . The state equation is z
i(t) = Ai zi(t−1)+u(t) with u(t) ∼ N(0,Ωi), Ai =(

0 1
αi
1

αi
2

)
. This system is the maximally flexible system that imposes that (i) miF (t) is the conditional

mean of mi(t), (ii) independence between CPI and NPE, (iii) mi is part of the state zi, and (iv) zi is an
AR(1). This is equivalent to (15).
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Table 7: Joint Dynamics of Analyst Forecasts and Actual Releases

i ai0 ai1 ai2 σi σiF
CPI 0.0061 (0.60) 0.5564 (3.08) -0.0276 (-0.19) 0.0212 (7.30) 0.0182 (12.15)
NPE 0.0058 (1.08) 0.5493 (2.87) -0.0117 (-0.11) 0.0168 (8.39) 0.0092 (10.16)

NOTE: This table reports maximum likelihood estimates of (15) using the sample 1985:2 to 1998:12 with

t-ratios in brackets. The target rate θ(τ iF ) in (15) is the value of the target on the day before the analyst

forecast survey τ iF , as releases occur at 8:30 am and FOMC meetings after that.

6.3 Model-Implied Response to Release Surprises

The state vector X is now augmented by (m(t), mF (t)), of which only m(t) enters the

stochastic intensities (2). If an FOMC meeting and a macro jump event happen on the same

day, the Fed’s target decisions are able to condition on the newly released information, as

CPI and NPE releases (at 8:30 a.m.) precede FOMC meetings. The approximation of the

likelihood function is derived in Appendix C.3. The estimation uses 1, 3, 6, and 12-month

LIBOR rates, the target rate, CPI, NPE, and analyst forecasts. In addition to the weekly

observations from Section 5, the day of and preceding CPI and NPE releases are included

into the sample. Both daily data and longer maturities would raise the computational burden

significantly, as was discussed in Section 4.4.

The impact of the surprise m(τ) − mF (τ) of a macroeconomic release at time τ on

yields is determined by how it affects the arrival intensity of policy moves. The surprise can

affect future Fed behavior in two ways. First, it could in principle change investors’ forecast

about future macro variables the Fed reacts to following λCPI and λNPE in (2). Surprises

are, however, only temporary components of macro variables: they do not affect the future

path of macro variables. Release surprises therefore have a ‘short life’, which means that
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they cannot affect macro variables that are relevant for FOMC meetings that are scheduled

beyond the next macroeconomic release. Second, the surprise can affect the probability of a

target change at the next FOMC meeting, which then changes future intensities according

to λθ in (2). The estimation results (not reported here) show that this latter effect is not

important, so that the estimated λCPI and λNPE are not significant.

This can also be seen from Figure 8 which plots the cross-sectional response of yields to a

one-standard deviation release surprise to NPE. In the model, release surprises do not have

hump-shaped coefficients like in the unrestricted regressions, but they are monotonically

decreasing with maturity. This shows that release surprises are not ‘inertia factors’ like z.

By introducing, for example, a jump in the inertia factor z at employment releases that is

correlated with the actual surprise, the surprise may ‘live longer,’ as a shock to z affects

intensities in the farer future.
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The Effects of Employment Releases (in Basis Points)
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Figure 8: The first graph shows the slope parameter of daily yield changes regressed on NPE standardized
surprises (and an intercept) using the subsample of the respective release days. Dotted lines are standard-
error bounds computed with 5 Newey-West lags. Standardized surprises are defined as the analyst forecast
errorm(t)−mF (t), normalized by its standard deviation, so that the regression coefficients can be interpreted
as reactions to a one-standard deviation analyst forecast error. The second graph shows the model-implied
instantaneous response of yields to NPE release surprises. Due to time-zone differences, the data used for
this estimation are same-day observations from 1994 to 1998 on 2, 3, 4, 5-year swap rates, and next-day
observations of 1, 3, 6 and 12-month LIBOR rates.
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Appendices

A Linear-Quadratic Jump-Diffusions

Fix a complete probability space (Ω,F ,P) and a filtration {F(t) : t ≥ 0} satisfying the

usual conditions (Protter (1990)). Linear-quadratic jump-diffusions (LQJDs) are defined by

choosing particular functional forms for the coefficients µ and σ of the SDE

dX(t) = µ(X(t), t) dt+ σ(X(t, t)) dW (t) + dJ(t),

where W is a vector of Brownian motions, together with additional restrictions on the jump

process J . In describing these parametric specifications, I can, without loss of generality,

partition the state as X = (X1, X2) so that X2 is a k2-dimensional process, with k1+k2 = N .

Assumption 1 will restrict X2 to be Gauss-Markov. It will be convenient to define the set

C = {(c0, c1, c2) ∈ R× RN × RN×N : c2 is symmetric positive semidefinite

and consists of zeros except possibly the lower right k2 × k2 partition}

of coefficients. I will make repeated use of LQ functions of the state of the form g : D×C →

R, with

g(x, c) = c0 + c1 x + x
>c2x. (A.1)
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I am now in the position to specify the LQJD as follows.

Assumption 1 (Characterization of LQJD processes)

(a) (Functional Form of Drift and Volatility)

The drift and ‘volatility’ of X are given by are given by

µ(x, t) = K(t) (x̄(t)− x) (A.2)

σ(x, t) = Σ(t)S(x, t), (A.3)

where S(x, t) is a N × N diagonal matrix with i-th diagonal element [S(x, t)]i,i =

√
s0i(t) + s1i(t) · x, and where the coefficients s0i(t) ∈ R, s1i(t), x̄ ∈ RN andK(t),Σ(t) ∈

R
N×N are deterministic functions of time.

(b) (Functional Form of Stochastic Intensities)

The jumps J are counted by a p-dimensional counting process Np with stochastic

intensity, and by a d-dimensional deterministic counting process Nd with no common

jump times.24 The stochastic intensity {λi(t) : t ≥ 0} of N ip is given by

λi(t) = g
(
X(t−), li(t)

)
, (A.4)

for time-dependent coefficients li(t) ∈ C. The coefficients li(t) and the domain D

satisfy joint conditions to ensure that λi(t) ≥ 0, as required for any intensity process.

24This means that ∆N ip ·∆N jp = 0 and ∆N id ·∆N
j
d = 0, i 6= j almost surely.

65



(c) (Conditional Jump-Size Distributions)

For any Poisson jump time τ , the F(τ−)-conditional distribution vp,τ of the jump

size ∆X(τ) is independent of X(τ−). For any deterministic jump time t, the F(t−)-

conditional distribution vd,t of the jump size ∆X(t) has a Laplace transform which is

an exponential LQ function of X(t−). More precisely, for all a ∈ RN , I have that

Et− [exp(a ·∆X(t))] = exp (g (X(t−), c(t; a))) (A.5)

for some c(t; a) ∈ C.

(d) (Parameter Restrictions)

(i) All of the time-dependent coefficients are bounded and piece-wise constant func-

tions of time.25

(ii) Joint restrictions on (µ, σ, J) and the domain D apply that guarantee a unique

(strong) solution to (4).

(iii) Gaussianity of X2: The lower left k2 × k1 partitions of the matrices K(t) and

Σ(t), labeled K21(t) and Σ21(t), consist of zeros only. Also, s1i(t) is an N -vector

of zeros for all i ∈ {k1 + 1, . . . , N}. Finally, the lower k2 entries of J are always

zero (X2 does not jump).

25This particular type of time-dependence of the parameters determining the dynamics of X is sufficient
for the seasonality effects studied this paper. Alternatively, the parameters may be bounded continuous
functions of time.
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B Linear-Quadratic Yield-Curve Model

In the specification estimated in this paper, the short rate r is taken to be the sum of

two state variables, the spread and the target. More generally, the affine structure of Duffie

and Kan (1996) and the quadratic structure of the SAINTS model Constantinides (1992),

El Karoui, Myneni, and Viswanathan (1993) can be combined by the following assumption.

Assumption 2 (Linear-Quadratic Short Rate of Interest)

Fixing a linear-quadratic jump diffusion X, the short-rate process {r(t); t ≥ 0} is assumed

to have the linear-quadratic form R(x, t) = g(x, δ(t)) for some given coefficients δ(t) ∈ C.

B.1 Statement of Lemma 1

Let the times at which deterministic jumps occur between t and T be denoted τ d1 , . . . , τ
d
n .

In the following, Assumption 1 will often be assumed to hold under the risk-neutral probabil-

ity measure Q. This will be taken to mean that (A.2), (A.3) and (A.4) define the coefficients

of the dynamics of the state (4) under Q, and (A.5) will hold with the expectation taken

under Q.

Lemma 1: Suppose that Assumptions 1 and 2 hold under Q. Additionally, for t = τ di ,

for some i, suppose that P (t, T ) = exp (g (X(t), c̄ )) and for some c̄ = (c̄0, c̄1, c̄2) ∈ C. Then

there exist coefficients c ∈ C such that P (t−, T ) = lims↑t P (s, T ) is given by

P (t−, T ) = exp (g (X(t−), c )) . (B.6)
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Proof: From equation (6),

P (t−, T ) = EQt− [P (t, T )]

= EQt− [exp (g (X(t), c̄ ))]

= exp (g (X(t−), c̄ ))EQt− [exp (c̄1 ·∆X(t))]

= exp (g (X(t−), c̄ )) exp (g (X(t−), a(t; c̄1)))

= exp (g (X(t−), c̄ + a(t; c̄1))) ,

where EQt− denotes F(t−)-conditional expectation under Q, and the fourth equality holds

for some a(t; c̄1) ∈ C because of Definition (A1.c.). �

B.2 Statement of Lemma 2

Lemma 2: Suppose that, for some i such that s = τ di+1, P (s−, T ) = limt↑s P (t, T ) can

be represented as P (s−, T ) = exp (g (X(s−), c̄ )) for some c̄ ∈ C. Let Assumptions 1 and 2

be satisfied under Q. Also suppose that the integrability conditions hold at (s, c̄), as defined

below. Then for each t ∈ [τ di , s), there exist coefficients c(t, s) ∈ C such that

P (t, T ) = exp (g (X(t), c(t, s) )) , (B.7)
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where c( · , s) : [τ di , s] → C solves the system of ordinary differential equations (ODE’s) in

(B.11)-(B.13) stated below, with terminal condition c(s, s) = c̄.

Proof: Lemma 2 applies the standard Feynman-Kac approach to equation (6) between

deterministic jump times. The approach proceeds in two steps. Step 1 states and solves the

relevant Cauchy problem. Step 2 imposes integrability conditions so that the bond price at

time t ∈ [τ di , s) can indeed be viewed as the Feynman-Kac solution to the Cauchy problem

of Step 1.

Step 1 of Proof: Consider the following Cauchy problem. For all t ∈ [τ di , s) and

x ∈ D, let F (t, s, x) solve the partial differential-integral equation (PDIE)

0 = Ft(t, s, x) + Fx(t, s, x) · µ(x, t) (B.8)

+
1

2
tr
[
Fx x(t, s, x)σ(x, t)σ(x, t)

>
]

+

p∑

i=1

g(x, li(t))E
Q [F (t, s, x+ Jpi (t))− F (t, s, x)]− R(x, t)F (t, s, x),

with terminal condition F (s, s, x) = exp (g (x, c̄)). Here, the notation “EQ [Jpi (t)]” stands for

the unconditional mean of the distribution of the jump ∆X(t) in the state at an arbitrary

jump time τ pi of N
p
i . Because this jump is of a distribution independent of X(t−), and

because the number of jumps during any time interval is finite almost surely, the expectation

is unambigeous, despite the abuse of notation. Guess a solution of the form

F (t, s, x) = exp (g (x, c(t, s))) , (B.9)
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where the coefficients c(t, s) = (c0(t, s), c1(t, s), c2(t, s)) satisfy terminal conditions at s given

by c̄ = (c̄0, c̄1, c̄2). Now I verify that the guess in (B.9) solves the PDIE (B.8) for all t ∈ [ti, s).

By applying Ito’s Lemma to (B.9) and using the fact that F (t, s, x) is strictly positive, I have

0 =
dc0(t, s)

dt
+
dc1(t, s)

dt
· x + x> dc2(t, s)

dt
x (B.10)

+ (c1(t, s) + 2 c2(t, s) x) ·K(t)(x̄(t)− x)

+
1

2
tr[
(
(c1(t, s) + 2c2(t, s)x)(c1(t, s) + 2c2(t, s)x)

> + 2c2(t, s)
)

(
Σ(t)S(x, t)S(x, t)>Σ(t)>

)
]

+

p∑

i=1

g (x, li(t))E
Q
[
exp(c1(t, s) · J ip(t))− 1

]
− g (x, δ(t)) ,

where the coefficients with subscripts are subvectors and submatrices of the coefficients in

equations (A.2), (A.3), (A.4), and (A.5). This equation must hold for all x ∈ D, which

is assumed to contain an open set, so that I can apply the usual method of undetermined

coefficients which equates the coefficients of x and the quadratic forms in x to zero. This

shows that c(t, s) solves the ODE’s:
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dc0(t, s)

dt
= δ0(t)− c1(t, s)>K(t) x̄(t)

− 1
2

N∑

i=1

[c1(t, s)
>Σ(t)]2i si0 (B.11)

− 1
2
tr[2 c3(t, s)Σ(t)S(x, t)S(x, t)

>Σ(t)>]

−
p∑

i=1

l0,i(t) E
Q
[
exp(c1(t, s) · J ip(t))− 1

]

dc1(t, s)

dt
= δ1(t) +K(t)

>c1(t, s)− 2 c2(t, s)K(t) x̄(t) (B.12)

− 1
2

N∑

i=1

[c1(t, s)
>Σ(t)]2i si1(t)

− 2 c2(t, s) Σ(t)S(x, t)S(x, t)>Σ(t)>c1(t, T )

−
p∑

i=1

l1,i(t) E
Q
[
exp(c1(t, s) · J ip(t))− 1

]

dc2(t, s)

dt
= δ2(t)− c2(t, s)K(t)−K(t)>c2(t, s) (B.13)

− 2 c2(t, s) Σ(t)S(x, t)S(x, t)>Σ(t)> c2(t, s)

−
p∑

i=1

l2,i(t)E
Q
[
exp(c1(t, s) · J ip(t))− 1

]
,

with terminal conditions given by c̄0, c̄1, and c̄2, respectively. �

71



Step 2 of Proof: The integrability conditions hold at (s, c̄) if

1. c(·, s) : [τ di , s] → C uniquely solve equations (B.11)-(B.13) with terminal conditions c̄

at time s.

2. EQ
∫ s
0
|γi1| dt <∞, for all i = 1, . . . , p, where

γi1(t) = Ψ (t−)EQ
[
exp(c1(t, s) · J ip(t))− 1

]
g (X(t−), li(t)) .

3. EQ
(∫ s
0
|γ2(t) · γ2(t)| dt

)1/2
<∞, where

γ2(t) = Ψ(t−)
[
c1(t, s) + 2X(t−)>c2(t, s)

]
σ(X(t−), t).

4. EQ (|Ψ(s)|) <∞,

where Ψ(t) is defined for t ∈ [τ di , s] by

Ψ(t) =





exp
(
−
∫ t
0
R(X(u), u)du

)
exp (g (X(t), c(t, s))) , for t ∈ [τ di , s)

exp
(
−
∫ s
0
R(X(u), u)du

)
exp (g (X(s−), c̄)) , for t = s.

(B.14)

If the integrability conditions hold at (s, c̄), then Ψ(t) given by (B.14) is a martingale for

t ∈ [τ di , s]. This can be seen by applying Ito’s Lemma26 to equation (B.14) for t ∈ [τ di , s] and

using the coefficient calculation (B.11)-(B.13) gives

dΨ(t) = Ψ(t−)
[
ĉ1(t, s) + 2X(t−)>ĉ2(t, s)

]
σ(X(t−), t) dW (t) +

+

p∑

i=0

Ψ(t−)
[
exp

(
ĉ1(t, s) · J ip(t)

)
− 1
]
dM i

P (t),

26See Protter (1990), p. 74.
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where M i
P denotes the i-th compensated Poisson process. Duffie, Pan, and Singleton (2000),

p. 26, show that with assumptions 4.1 and 4.2,
∫
η2(t)dW and

∫
Ψ(t−)

[
exp

(
ĉ1(t, s) · J ip(t)

)
− 1
]
dM i

P ,

for i = 1, . . . , p, are martingales during the interval [τ di , s].

This implies that, for t ∈ [τ di , s),

P (t, T ) = EQt

[
exp

(
−
∫ s

t

R(X(u), u)du

)
exp (g (X(s−), c̄))

]

can be viewed as the Feynmac-Kac solution to the Cauchy problem (B.8).

B.3 Statement of Proposition 1

Proposition 1: Suppose that Assumptions 1 and 2 hold under Q. Let the coefficient

vector c (t, T ) be calculated recursively using the algorithm shown in Appendix B.4. Assume

that the integrability conditions hold at (τ di , c(τ
d
i , T )), i ∈ {1, . . . , n}, and also at (T, 0).

Then P (t, T ) = ψ (X (t) , c(t, T )) for all t ≤ T .

Proof: The proof is by induction over the deterministic jump dates τ d1 , . . . , τ
d
n be-

tween t and T . By assumption, P (T, T ) = 1. Applying Lemma 2 with s = T, c̄ = 0

and ψ(X(T ), c̄) = 1, implies that P (t, T ) satisfies (7) for t ∈ [τ dn , T ). Lemma 1 can then be

applied to obtain the desired property for P (τ dn−, T ). Now suppose, for any deterministic

jump time τ di , that P (τ
d
i+1−, T ) is given by (7). Lemma 2 can be applied to establish the

desired property for any time t ∈ [τ di , τ di+1) and then Lemma 1 to get it for P (τ di −, T ). By
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induction, P (t, T ), t ∈ [0, T ], has the desired property. (Note that Lemma 2 can also be

applied to the interval [0, τ d1 )).�

B.4 Recursive Calculation of c(t, T )

The algorithm for computing c(t, T ) is provided here.

Step 0 (Initialization):

The terminal condition for c(t, T ) at T consists of a collection of zeros denoted by c̄n+1 in

C. Let c̃n(t, T ) solve the ODE’s in (B.11)-(B.13) during the interval [τ
d
n , T ] with terminal

condition c̄n+1, and define τ
d
n+1 = T .

Go to Step 1.

Step i, for i = 1, . . . , n :

• Calculate the new terminal condition for time τ dn+1−i as

c̄n+1−i = c̃n+1−i
(
τ dn+1−i, τ

d
n+2−i

)
+ cn+1−i

(
τ dn+1−i, c̃n+1−i(τ

d
n+1−i, τ

d
n+2−i)

)
,

where cn+1−i
(
τ dn+1−i, c̃n+1−i(τ

d
n+1−i, τ

d
n+2−i)

)
∈ C is taken from equation (A.5) evaluated

at t = τ dn+1−i.
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• For a given terminal condition c̄n+1−i ∈ C, let c̃n−i(t, T ) solve the ODE’s in (B.11)-

(B.13) during the interval [τ dn−i, τ
d
n+1−i], with terminal condition c̄n+1−i.

Stop if i = n. Go to Step i + 1.

Coefficient Collection:

The coefficients c(t, T ) are then equal to c̃i(t, T ) for any t ∈ (τ di , τ di+1) and equal to c̄i at any

t = τ di .

C Simulated Maximum Likelihood with Jumps

C.1 SML without Macro Variables

Suppose X contains the target rate θ, modeled as the (observable) difference of the

“up” and “down” counting processes, with state-and time-dependent intensities as in (1). I

abstract for the moment from the time dependence of stochastic intensities introduced by

FOMC meetings, assuming that these intensities are always “active.” Starting from x̃ at

time t̃, X can be simulated with the scheme

∆X̂ x̃t = µ(X̂ x̃t−h, t− h) h+
√
hσ(X̂ x̃t−h, t− h) εt + JXt zt (C.15)

X̂ x̃t̃ = x̃,
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where εt is i.i.d. standard normal and J
X is the deterministic jump27 in X at random times,

determined by a 2-dimensional vector of Bernoulli variables zt that determine jumps, up

and down. Using the conditional independence of the counting processes NU and ND, and

assuming that the econometrician observes only the difference of the two, the simulation rolls

a “three-sided die” to determine zt. The three sides are “up” (“U”, meaning θt− θt−h = Jθ),

“down” (“D”, meaning θt − θt−h = −Jθ), and “no change” (“0”, meaning θt = θt−h). Their

conditional probabilities at time t are approximately

pjh,t =





λUt−hh (1− λDt−hh), for j = U,

λDt−hh (1− λUt−hh), for j = D,

and p0h,t = pUh,tp
D
h,t + (1− pUh,t)(1− pDh,t).

Let Xθ denote all variables inX other than the target θ. The Monte-Carlo approximation

of the conditional density is

fX(X(t), t | x̃, t̃) ≈
1

S

S∑

s=1

∑

i={U,D,0}

φ(Xθt , t | θt, X̂ x̃t−h[s], t− h) p̂ih,t[s]1i,t[s], (C.16)

where φ( · , t | X̂ x̃t−h[s], t− h) is the Gaussian density of Xt at time t conditional on the value

X̂ x̃t−h[s] at time t − h, X̂ x̃t−h[s] denotes the s-th simulated path from the scheme (C.15),

1i,t[s] is the indicator for the i-th side of the die at time t in the s-th simulation, and p̂
i
h,t[s]

is constructed using X̂ x̃t−h[s]. Let θ̂
x̃
t−h be the target component of X̂

x̃
t−h. If the simulated

27The notation goes through with Gaussian jumps JX , but needs to be adjusted in the case of other jumps
size distributions.
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target θ̂x̃t−h at time t − h cannot reach the observed time t-value of target in at most one

jump, that simulation is assigned zero likelihood.

I now turn to a case with time-dependent intensities that is relevant in Section 3. In that

application, policy interventions on meeting days are modeled by activating state-dependent

Poisson intensities only during FOMC meeting days. More precisely, suppose the i-th meet-

ing day is during the interval [t̃M(i), tM(i)]. It is straightforward to modify the simulation

scheme (C.15) to allow jumps only during such meeting-day intervals. The s-th path drawn

from this modified scheme is referred to in what follows as X̂ x̃t [s]. I now construct ana-

logues of (C.16) for this time-dependent case. As long as the observation time t lies within a

meeting-day interval, in that t̃M(i) ≤ t < tM (i), the approximation (C.16) itself still applies.

If the observation time t is made outside an FOMC meeting, however, then one might want

to replace the Bernoulli-density terms with an indicator function for sample paths leading

up to the actual value of the target at t,

fX(Xt, t | x̃, t̃) ≈
1

S

S∑

s=1

φ
(
Xθt , t|X̂ x̃t−h[s], t− h

)
1θt=θ̂x̃t−h[s]

. (C.17)

In (C.17), jumps in the target enter the SML objective function only through the indicator

function and the simulated values X̂ x̃t−h. This creates a serious problem when maximizing

the objective: For a given (finite) number S of simulations, a small change in the parameter

vector does not necessarily affect the average number of jumps across simulations and may

thus leave the value of the likelihood function unchanged. Only changes in a parameter that
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are large enough to affect the number of simulated jumps change the objective function,

but possibly by a large amount.28 In order to overcome this discontinuity, an alternative to

(C.17) is constructed as follows. The joint conditional density of factors can be written in

the form

fX
(
Xt, t | x̃, t̃

)
= fθ

(
θt, t | x̃, t̃

)
fXθ |θ

(
Xθt , t | θt, x̃, t̃

)
. (C.18)

The first term of equation (C.18) can be approximated by

fθ
(
θt, t | x̃, t̃

)
≈ 1

S

S∑

s=1

fθ

(
θt, t | X̂ x̃tM(i)−h[s], tM(i)− h

)

≈ 1

S

S∑

s=1

∑

i=U,D,0

p̂ih,tM (i)[s]1i,t[s]

≈ S̄/S,

where S̄ denotes the total number of simulated paths that resulted in the observed value

θ(t). In words, S̄/S is the frequency of “correctly simulated” target rates in the simulations

(starting with x̃ = Xt̃), while the expression in the first row weights the simulated paths by

their likelihoods. In practice, with time-dependent intensities h must be chosen carefully, as

intensities can become large during an FOMC meeting. Details about the choice of h can

28A similar issue is encountered by Anderson, Benzoni, and Lund (1999) who estimate a jump-diffusion
model for equity returns with EMM. In their specification, the size of the jump is Gaussian and the occurrence
of jumps is not observed, so that they smooth the mapping from parameters to the estimation’s objective
function by allowing for partial jumps. In the setup considered in this paper, the target only moves in
observable 25 basis points increments, so that a simulation of partial jumps is not feasible. A conjecture
is that the method proposed in the following can also be applied with EMM, since the efficiency results of
Gallant and Tauchen (1996) do not rely on a particular leading density.
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be found in Appendix C.2.

The second term in (C.18) can be approximated by

fXθ |θ(X
θ
t , t | θt, x̃, t̃) =

fX
(
Xt, t | x̃, t̃

)

fθ
(
θt, t | x̃, t̃

)

≈ 1

S̄

S∑

s=1

φ
(
Xθt , t | X̂ x̃t−h[s], t− h

)
1θt=θ̂x̃t−h[s]

.

Variance-reduction techniques can improve the efficiency of the Monte Carlo integration

(see Geweke (1996)). Here, antithetic variates are used in simulating the paths of the state

vector. That is, with each new pseudo-random Gaussian ε[s] and uniform u[s], the antithetic

variates −ε[s] and 1− u[s] are used as a subsequent scenario.

C.2 Simulation of the Target

The highest value that is reached by the intensities λU and λD in a typical estimated

model29 is 1225. At this value, the next Figure shows that a Bernoulli approximation that

allows for only one jump during an FOMC meeting is not accurate. The Bernoulli density for

h = 1
365
overstates the true probability of one jump. If the number of Bernoulli trials during

an FOMC meeting is increased so that h ≥ 1
30
1
365
, the Bernoulli approximation becomes

accurate. To economize on the number of simulated steps (and thereby the computation time

for the likelihood evaluation), the FOMC meeting day is divided intoMs+1 intervals, where

Ms is a number divisable by 5. During 5 subintervals [ti, ti+1] of length h =
Ms
5

1
Ms+1

1
365
, jumps

29The value is taken from λU in the unconstrained full model introduced in Section 3.
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are drawn from a Poisson distribution with constant parameter λj(t − h)h by truncating

the distribution at Ms
5
jumps. In the last subinterval of length h = 1

Ms+1
, a Bernoulli

discretization is applied. This approximation procedure is equivalent to 31 Bernoulli trials

(with appropriately chosen success probability). In the body of the paper, a choice ofMs = 30

is called ‘subdividing the FOMC meeting into 30 intervals.’

C.3 SML with Macro Variables

The state vector X is now augmented with the macro-related information M(t) =

(m(t), mF (t)), and X
(θ,M) denotes the vector consisting of all coordinates of the state X

except θ and M . Analogous to the decomposition (C.18), I can write the density of X
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conditional on the last observation Xt̃ = x in the form

fX(Xt, t | x, t̃) = fθ,M(θt,Mt, t | x, t̃)fX(θ,M)|θ,M(X(θ,M)t , t | θt,Mt, x, t̃). (C.19)

The first term in (C.19) can be written as

fθ,M(θt,Mt, t | x, t̃) = fM(Mt, t | x, t̃)fθ(θt, t|x,Mt, t̃).

If an FOMC meeting and a macro jump event happen on the same day, the Fed’s target

decisions are able to condition on the newly released information, as CPI and NPE releases

(at 8:30 a.m.) precede FOMC meetings. Since each observation interval [t̃, t] is chosen so

that it does not contain more than one FOMC meeting, the density of M conditional on

X(t̃) depends only on θ(t̃). Moreover, [t̃, t] is short enough so as to not contain the release

of the current month’s macro variable together with the analyst survey of forecasts for the

next month. For the i-th macroeconomic release, I therefore have

fM(Mt, t | x, t̃) =





fmF (mF (t), t |mF (t̃), θt̃, t̃), if τ iF ∈ [t̃, t],

fm(m(t), t |mF (t̃), t̃), if τ i ∈ [t̃, t],

fmF (mF (t) |mF (t̃), θt̃, t̃)fm(m(t), t |mF (t̃), t̃), if τ i, τ iF ∈ [t̃, t].
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