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ABSTRACT

This paper presents estimates of the customer-level demand for electricity by industrial and
commercial customers purchasing electricity according to the half-hourly energy prices from the
England and Wales (E& W) electricity market. These customers also face the possibility of a demand
charge on their electricity consumption during the three half-hour periods that are coincident with
E&W system peaks. Although energy charges are largely known by 4 PM the day prior to
consumption, a fraction of the energy charge and the identity of the half-hour periods when demand
charges occur are only known with certainty ex post of consumption. Four years of data from a
Regional Electricity Company (REC) in the United Kingdom is used to quantify the half-hourly
customer-level demands under this real-time pricing program. The econometric model developed
and estimated here quantifies the extent of intertemporal substitution in electricity consumption
across pricing periods within the day due to changes in all components of day-ahead E&W electricity
prices, the level of the demand charge and the probability that a demand charge will be imposed. The
results of this modeling framework can be used by distribution companies supplying consumers
purchasing electricity according to real-time market prices to construct demand-side bids into a

competitive electricity market. The paper closes with several examples of how this might be done.
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1. Introduction

Thispaper estimatesthe site-level demand for electricity by large and medium-sized industria
and commercia customers purchasing e ectricity according to the half-hourly pricefrom the England
and Wales (E& W) dectricity market. Customer-level data covering the four fiscal years from April
1, 1991 through March 31, 1995 was obtained from one of the 12 Regiona Electricity Companies
(RECs) serving the England and Wales market. Customers subject to this pricing scheme, referred
to as a Pool Price Contract (PPC), are charged for the electricity they consume according to half-
hourly per megawatt-hour (MWH) prices from the E& W electricity market—the pool selling price
(PSP).  Pool-price customers also face a demand charge used to pay for transmission services
(termed a "triad charge™) on the average megawatts (MW) of generation capacity used during the
half-hours coincident with the three largest total system loadsin the E& W market for that fiscal year,
subject to the constraint that these three half-hours are separated from one another by at least ten
days. Consequently, triad charges are known only after all electricity consumption for the fiscal year
has occurred.

We develop and estimate an econometric model which quantifies the extent of intertemporal
substitution in electricity consumption between pricing periods within the day due to changesin the
within-day pattern of E&W pool prices. This model distinguishes between the demand-altering
effects of changesin the PSP, changesin the level of triad charges and changes in the probability that
these triad charges occur in a manner consistent with cost-minimizing behavior on the part of the
customer.

The magnitude of the within-day price-response of aggregate el ectricity demand to prices set

on a half-hourly or hourly basis by an electricity market is amaor determinant of both the mean and



time series behavior of market clearing prices. InWolak and Patrick (1997), we argued that building
asignificant price-response into the aggregate demand that determines the market-clearing pricein
the England and Wales electricity market can limit the ability of National Power and PowerGen, the
two largest generators selling into that market, to set high market-clearing prices. Intheir study of
the potential for market power in the re-structured California electricity market Borenstein and
Bushndl (1997) find that the aggregate demand elasticity for eectricity in Caiforniais a magor
determinant of the potential for the exercise of market power. In their model of the re-structured
Cdlifornia electricity industry, they find a substantial reduction in the market power when the
aggregate own-price demand elasticity for electricity isincreased in absolute value from 0.1 to 0.4.

The existence of a substantial price response in the aggregate demand that sets the market
clearing pricewill also reducethe variability of these pricesover the coursethe of day. The existence
of asignificant price-response in aggregate demand will lead to less capacity being called upon to
generate in response to higher bids by generators. This reduction in aggregate demand occurs
independent of whether high prices during the day are the result of the exercise of market power or

the result of more expensive generating capacity being called on-line during periods of high demand.

All of these results underscore the importance of accurately measuring the response of
customer-level electricity demand to within-day price changesand incorporating thisinformationinto
the within-day aggregate demand function that sets the market clearing prices for electricity in a
competitive electricity market. For example, if the RECs purchasing from the E& W market are able
to accurately predict the response of demand to within-day price changes for their customers on the

PPC, then thisinformation can be used to formulate a demand-side bid function for that REC giving



the amount of electricity it will purchase from the pool asafunction of the market price of electricity.
If aREC isableto entice more of its customersto face pricesfor eectricity which reflect the current
PSP from the E&W market for that half-hour, given accurate estimates of the price-responses of
these customers, the REC can then formulate an aggregate demand-side bid function which has a
larger price response in terms of the total demand reduction brought about by a given priceincrease.
Consequently, the combination of agreater number of customers subject prices which movewith the
ha f-hourly PSP and more accurate measurementsof the price-responses of these customerswill allow
more confident and aggressive demand-side bidding into the E& W pool.  Substantial amounts of
demand-side bidding by RECswill result in ahalf-hourly demand functionfor electricity whichimplies
significant reductions in the amount demanded as the price of electricity increases. The greater the
price elasticity of the aggregate demand which sets the market clearing price, the lower will be the
volatility in the market-clearing prices and the smaller will be the potential for generators selling into
the market to exercise market power. The more price-elastic this aggregate demand is, the greater
the extent to which higher bid prices will trandate into reductions in the quantity of electricity
demanded rather than increased market clearing prices (with little change in the quantity demanded).
As emphasized by Wolak and Patrick (1997), the current operation of the E&W market illustrates
the sort of price volatility and potential for the exercise of market power that can occur if the demand
setting the market price is very price inelastic and only a small fraction of the total electricity
consumed in any haf-hour is sold to final customers at prices that vary with the half-hourly PSP.
Consequently, accurate measurement of thewithin-day priceresponseof itscustomersisanimportant

necessary ingredient for any electricity retailer to aggressively demand-side bid, and therefore build



into the price-setting process the aggregate demand el asticity necessary to discipline the exercise of
market power by electricity generators.

Price responses should differ across business customers because of differences in how
electricity is used in their production processes and how sophisticated they are in making their
electricity purchasesthroughout the day. Consequently, wewould ideally like to estimate customer-
level price-responses that depend on such things as the daily or monthly production of the firm, the
type and magnitude of electricity-using capital equipment owned by the firm, and theflexibility of the
firm's work schedule. Unfortunately, the only information we have on firm characteristics is the
British Industrial Classification (BIC) of the customer. Because we believe that the across-industry
differences in price responses are substantially greater than the across-firm differences in price
responses for firmswithin the same BIC code industry, and because we have no observable variables
to explain differences in price responses across customers within the same BIC code, we focus our
attention on estimating the average firm-level price response for a BIC code.

There are two aspects of the PPC which complicate our modeling framework. First, there
are 48 load periods within the day and therefore 48 own- and cross-price elasticities associated with
the demand for electricity in any given load period during the day that must be estimated. Specifying
these own- and cross-price elasticities in a completely unrestricted manner would require
estimating %(N)(N +1) parameters because of symmetry of the matrix of cross-price derivatives of
the customer’ s underlying production function. For the present case of N = 48, thisimplies 1,176
free parameters. Precisely estimating al of these own- and cross-price elasticities without further
restrictionsis not possible with only the four years of data available. In addition, the computational

complexity associated with estimating this many parametersin anonlinear econometric model would



make it an extremely time-consuming task, assuming that it could be accomplished. Our strategy
isimpose prior restrictions on the form the matrix of elasticities based on our beliefs about the form
of substitution possibilitiesin order to increase the precision of our estimates of these own- and cross-
price effects.

The second complication arises because the changing prospect of a triad charge for PPC
customers across load periods within day and across days in a year should affect that customer’s
within-day demand for electricity. To account for the impact of atriad charge on a PPC consumer’s
electricity demand, we assume that each day the customer minimizes the expected cost, including
triad charges, of purchasing the electricity and other inputs that can be varied on a daily basis
necessary to produce the next day’s output given the level of fixed inputs available at the firm and
weather patterns faced by the firm during the following day. This assumption implies an expected
pricefor electricity in each load period that isthe sum of the forecasted PSP in pounds per megawatt-
hour (E/MWH) and the probability that the load period will be atriad period times the appropriately
normalized per MW triad charge. We assume that customers use a simple econometric model based
on publicly availabledatato predict, on aday-ahead basis, the probability that each load period during
the following day isatriad period. We then estimate this model and construct the expected demand
charge for each load period using these parameter estimates.

We find a substantial amount of heterogeneity across industries in the within-day pattern of
their half-hourly own-price elasticities of demand for electricity. Of the five industries we analyze,
the water supply industry uniformly has the largest estimated price responses, while the steel tubes
industry exhibits a small price response. The pattern of cross-price elasticities throughout the day

also differs significantly acrossindustries.  Although these sample mean price elasticities may seem



smal in absolute value, they are precisaly estimated. Given the large amount of price variation that
characterizes the E&W market, even for industries exhibiting a small price response, there is
significant potential for the REC to shift asizeable amount of itsload away from high-priced periods
by having customers purchase according to the Pool Price Contract. Consequently, shifting more
customersto PPC contracts or similar pricing contractsis a very promising mechanism for building
sufficient price-responsiveness into the aggregate demand determining the market-clearing price to
make it more difficult for firms selling into this market to exercise substantial market power.

Theremainder of this paper proceeds asfollows. Inthe next section we briefly present some
background on the electricity industry structure in E& W and describe the pool price determination
process. This section also discusses the workings of the Pool Price Contract. Section 3 provides
adescription of the data used to estimate the model. Section 4 develops our econometric model for
the within-day demand for electricity. Thisisfollowed by the results of our analysisin Section 5.
Section 6 contains examples of how the econometric model can be used to implement demand-side
bidding and presentsillustrations of the responsiveness of the customer-level demand for electricity
to changesin the various components of the expected price paid for electricity. The paper closeswith
asummary and a discussion of directions for future research .
2. Price Determination Process in the England and Wales Electricity Market

This section first describes the pool price determination process in the England and Wales
electricity market. The mechanics of the PPC isthen described. Understanding the various stages
of the pool price determination process is necessary to determine the proper specification of our

model for the day-ahead electricity demand under a PPC.



2.1 Industry Structure

March 31, 1990 marked the beginning of an evolving economic restructuring of the electricity
supply industry in the United Kingdom. This process privatized the government-owned Central
Electricity Generating Board and Area Electricity Boards and introduced competition into the
generation and supply sectors of the market. In England and Wales, the Centra Electricity
Generating Board, which prior to restructuring provided generation and bulk transmission, was
divided into three generation companies and the National Grid Company (NGC). National Power
and PowerGen took over al fossil fuel generating stations, while nuclear generating plants became
the responsibility of Nuclear Electric. The twelve RECs were formed from the Area Electricity
Boards, which provide distribution services and electricity supply to final consumers. NGC provides
transmission services from generators to the RECs and manages the pool, coordinating the
transmission and dispatch of electricity generators.

Prices for transmission and distribution services from NGC and the RECs are restricted to
grow no faster than the percentage change in the economy-wide price level, measured by the Retail
Prices Index (RPI), less an X-factor adjustment for productivity increases. Until the 1994/95 fiscal
year, the RECs electricity supply pricesfor all customerswere regulated by RPI - X + Y, where Y
isan adjustment factor which passes-through unexpected costs the REC incurs, aswell as purchased
electricity costs, and transmission and distribution services. Sincethe beginning of the 1994/95 fisca
year, supply to non-franchise customers (currently those with greater than 100 kilowatts (KWs) peak
demands) has not been regulated since these customers have the option of choosing their supplier
from any of the 12 RECs as well as National Power or PowerGen directly. Before March 31, 1994,

the peak demand limit for a customer to be classified as non-franchise was 1 MW. This size



restriction on customer peak demand will be phased out over the six months following March 31,
1998, when even residential customers will have the option to choose a supplier (i.e., al electricity
consumers become non-franchise). RECs are required, with compensation for distribution services
provided, to allow competitors to transfer electricity over their systems.
2.2 Pool Price Determination Process

Generatorsoffer pricesat which they will provide various quantities of electricity tothe E& W
pool during each half-hour of thefollowing day. These prices and quantities submitted by generators
are input into the general ordering and loading (GOAL) program at NGC to determine the merit
order of dispatching generation and reserve capacity. The lowest priced generating capacity is
dispatched first, although system constraints may cause deviations in this order, in the sense that
higher-priced units may be "constrained to operate” to maintain system integrity. NGC computes a
forecast of haf-hourly system demandsfor the next day. The system marginal price (SMP) for each
half-hour of the next day is the price bid on the margina generation unit required to satisfy each
forecast half-hourly system demand for the next day. The SMP is one component of the price paid
to generatorsfor each MWH of electricity provided to the pool during each half-hour. The Pd
Purchase Price (PPP), the price paid to generators per MWH in the relevant half-hour is defined as
PPP = SMP + CC, where the capacity chargeis CC = LOLPx(VOLL - SMP). LOLPistheloss of
load probability,? and VOLL isthe value of lost load. SMPisintended to reflect the operating costs
of producing electricity (this is the largest component of PPP for most of the half hour periods).

VOLL isset for the entire fiscal year to approximate the per MWH willingness of customersto pay

2 LOLP s calculated for each half-hour usi ng PROMOD and other computations outlined in the Pooling and
Settlement Agreement for the Electricity Industry in England and Wales, Schedule 9-The Pool Rules, using NGC'sday-
ahead half-hourly demand forecast and generators' availability and other operational parameters.



to avoid supply interruptions during that year. VOLL was set by the regulator at 2,000 £/MWH for
1990/91 and has increased annually by the growth in the Retail Prices Index (RPI) since that time.?
The LOLPisdetermined for each half-hour asthe probability of asupply interruption dueto thetotal
available generation capacity being insufficient to meet expected demand. The PPP is known with
certainty from the day-ahead perspective.

For each day-ahead price-setting process, the 48 |oad periods within the day are divided into
two digtinct pricing-rule regimes, referred to as Table A and Table B periods. The pool selling price
(PSP) isthe price paid by RECs purchasing electricity from the pool to sdll to their final commercid,
industrial and residential customers. During Table A half-hoursthe PSP is

PSP = PPP + UPLIFT = SMP + CC + UPLIFT.
UPLIFT isaper MWH charge which covers services related to maintaining the stability and control
of the National Electricity System and costs of supplying the difference between NGC’ s forecast of
the next day’ s demands and the actual demands for each load period during that day, and therefore
can only be known at the end of the day in which the electricity isproduced. These costsare charged
to electricity consumption during Table A periods only in the form of this per MWH charge.

Theex ante and ex post pricespaid by suppliersfor each megawatt-hour (MWH) areidentica
for Table B half-hours, i.e., PSP = PPP for Table B periods. The determination of Table A versus
Table B half-hoursis asfollows. Table A isin effect for those half-hour periods during which the
expected system excess capacity iswithin 1000 MW of the excess capacity during the peak half-hour

of thepreviousday. Excess capacity isthe amount of capacity offered by generatorsin any half-hour

% TheVOLL was2187.00 £/MWH from April 1, 1991, 2285.006/MWH from April 1, 1992, 2345.00 £/MWH from
April 1, 1993, 2389.00 £/MWH from April 1, 1994, 2458.00£/MWH from April 1, 1995 through March 31, 1996.
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less the amount of this capacity actually used to fill demand in that period. Expected excess capacity
during each half-hour period of the next day is defined as the maximum capacity generators offer to
make availableto the pool lessexpected demand asforecast by NGC. If the expected excess capacity
in any half-hour period of the next day is within 1000 MW of the benchmark excess capacity from
the relevant previous day's system peak, then the half-hour is classified as Table A and UPLIFT
charges are added to the per MWH PPP during this half-hour to arrive at the PSP. Thus, the only
energy price uncertainty from the day-ahead perspectiveisthe UPLIFT component of the PSP, which
isonly known ex post and only applies to the Table A half-hours.*

By 4 PM each day, the Settlement System Administrator (SSA) provides Pool Members,
whichincludesall of the RECs, with the SMP, the CC, the LOLP, and theidentity of the Table A and
B pricing periods.

2.3 The Pool Price Contract

The PPC was first offered at beginning after March 31, 1991 to allow consumers with peak
demands greater than 1 MW to assume the risks of pool price volatility and therefore avoid the costs
associated with hedging against this price volatility. Under the PPC, electricity purchase costs for
both energy and transmission services are directly passed through to customer. Under the standard
fixed-price retail sales contract (where prices do not vary over time, or they vary in a deterministic

manner which depends on the time-of-day or day-of-week but not on the value of the PSP), the REC

“To insure that "fixed" costs are not congregated in afew periods, thereby driving up the relative pricesin these periods,
thereis an upper bound on the number of Table B periods each day. From 21:00 hours (the start of the schedule run) to 05:00
hours, a maximum of seven of the sixteen pricing periods can be classified as Table B. From 05:01 to 05:00 hours at |east 28
of the 48 pricing periods must be Table A pricing periods. From 05:01 to 12:00 hours (the end of the schedule run), a
maximum of 5 Table B pricing periodsare allowed. If theinitial calculations produce more than the allowed number of Table
B periods, the Table B periods associated with the minimum expected excess capacity are changed to Table A periods, until
the constraint on the number of Table B periodsis binding.
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must absorb all of the risk associated with purchasing the electricity at the PSP and selling it to final
consumers according to these fixed-price contracts. Because the PPC allows the REC to off-load
this pool price risk management function to the customer and bill for the use of its distribution
network, the PPC represents a low-risk source of revenues for the REC.

The REC had 370 commercia and industrial customers(of approximately 500 customerswith
demands over 1 MW) purchasing their electricity according to a PPC for the year April 1, 1991
through March 31, 1992, thefirst year of the program. This number of customers on the pool price
contract remained stable over the following two years, athough approximately a one-quarter of the
customers each year are new. For the year of April 1, 1994 to March 31, 1995, when the pool price
contract was first offered to relatively smaller consumers—those with greater than 100 KW peak
demand—a number of commercial customers, as well as smaller industrials, were then given the
option to purchase electricity according to pool prices. Approximately 150 customersin this size
class signed up for the Pool Price contract for the year 1994-1995. Table 1(a) gives the number of
customer/year pairs in each BIC class, as well as a general description of the types of industries
contained in each class, for the four fiscal yearsin our sample. Table 1(b) listsBIC classand activity
designations for the five specific industries we anayze below.

The expected PSPs for al 48 half-hourly intervals beginning with the load period ending at
5:30 am the next day until the load period ending at 5:00 am the following day are faxed to all pool
price customers immediately following the REC's receipt of the SMP, CC and the identity of the

Table A and Table B periods from NGC. Figure 1 contains a sample of the fax sent to PPC
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customers.® The REC devel ops forecasts of the UPLIFT component of the PSP for Table A half-
hours and provides these with the 48 half-hourly SMPs and CCs. The PSP reported in this fax is
equal to the PPPin Table B periods and the sum of the REC’ s estimate of the UPLIFT and the PPP
inTable A periods. The actud (ex post) PSP paid by electricity consumers on the PPC is known 28
days following the day the electricity is consumed for Table A periods. The actua or ex post PSP
isequal to theex ante PSP for Table B periods because the UPLIFT isknown to be zero in theseload
periods. The last column of the fax gives the actual ex post PSP from 28 days ago.

Customers on PPCs aso pay a demand charge. This £MW triad charge is levied on the
average capacity used by each PPC customer during the three half-hour load periods ("triads") in
which the load on the England and Wales system is highest, subject to the constraint that each of
these three periods is separated from the others by at least ten days. The precise triad charge is set
each year by NGC (subject to their RPI-X price cap regulation). The triad charge faced by these
PPC customers was 6,150 £/MW for fiscal year 1991/92, 5,420 £/MW for 1992/93, 10,350 £MW
for 1993/4, and 10,730 £/ MW for 1994/95.

There are various mechanisms that RECs can use to warn their PPC customers of potential
triad periods. Triad advance warnings aregenerally faxed to consumerson Thursday nightsand give
the load periods during the following week that the REC feels are more likely to be triad periods.
Triad priority alerts are issued the night before the day which the REC considers the probability of
atriad period to be particularly high. These alerts aso list the half-hours most likely to be triad

periods. To mitigate the incentive for RECs to issue triad priority alerts, the regulatory contract

°Note that the load period numbering scheme that appears on this FAX differs from the one we use throughout the paper.
We assign load period 1 to be load period 11 as it appears on the Pool Price FAX, so that load periods 1 to 48 by our
convention corresponds to load periods 11 to 48 and 1-10 on the Pool Price FAX. Therefore, our numbering scheme
corresponds to the actual order in which the load periods appear on the Pool Price FAX.
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allows a maximum of 25 hours of priority alerts each fiscal year. Actual triad charges have only
occurred in the four-month period from November to February. Table 2(a)-(d) listsall triad advance
warnings, priority aerts, and actual triads periods for our sample.

Theactual pricefor service paid by PPC customers also contains various other factors which
do not vary with the pool price. Customers on fixed rates face similar charges. These are the
distribution use of system charges, corrections for the transmission and distributions losses (which
are fixed fractions of each MWH sold regardless of the time of day), and a 17.5% value-added tax
(VAT). The distribution use of system charge is composed of a standing charge per month (the
monthly connect fee), the availability charge which is multiplied by the line capacity, and the per
MWH delivered charge which has two different values for night and day.

TheREC nitially marketed the PPC by advising dligible (potential) customersthat they could
most likely reduce their e ectricity costs with the PPC regardless of whether they could manage their
load or not (because of the risk premium built into the REC’s fixed price contracts). Insurance
against price increases was also offered by the REC the first year they offered the PPC, as PPC
consumers were given the option to "fallback” to paying for electricity according to their previous
rate structure. PPC customers choosing this fallback option were only allowed to pay according to
thelr prior rates the first year, provided the customer would commit to the PPC a second year and
would then pay according to pool pricesduring the second year of the program. All but 70 customers
during 1991/92 accepted this option of paying according to their "fallback” (prior) rate structure. All
other customersin 1991/92 and all customers that select the PPC since have been obligated to pay

according pool prices. We omitted the customers with fallback options from our demand analysis
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because this option to pay according past rates implies that they did not in fact purchase electricity
according to the pool price.
4. Data

The REC provided dataon the half-hourly consumption of all of its PPC customersfrom April
1, 1991 through March 31, 1995. We aso collected the information contained on the faxes sent to
each PPC customer the day before their actual consumption occurs. This fax contains the ex ante
haf-hourly forecasted PSP for the sample period—SMP + CC + Forecasted Uplift Charge. Asnoted
earlier, theforecasted UPLIFT is estimated by the REC, whereas the actual value of UPLIFT isonly
known 28 days from the day in which the electricity is actually sold. We have also collected
information on the actual value of UPLIFT for our sample period. Table 3 gives the sample means
and standard deviationsfor the various components of the PSP for each fiscal year during our sample.

As discussed in Wolak and Patrick (1997), a notable feature of the behavior of PSP is its
tremendous variability, even over very short time horizons. For example, the maximum ratio of the
highest to lowest PSP within a day is 76.6, whereas the average of this ratio over al days in our
sample period isabout 4.1. The maximum ratio of the highest to lowest PSP within amonthis 107.5
and the average of thisratio over all monthsin our sampleis 11.0. Finaly, the maximum ratio of the
highest to lowest PSP within afiscal year is approximately 117.8.

TheEngland and Walestota systemload (TSL) exhibitsdramatically lessvolatility according
to thismetric. For example, the maximum ratio of the highest to lowest TSL withinaday is1.89 and
the average over all days in the sample is 1.49. Within a month, the maximum of the highest to
lowest TSL is2.38 and the average over all months in the sampleis 2.04. For the time horizon of

afiscal year, the maximum ratio of the highest to lowest TSL is3.08. Consistent with thisdifference
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involatility, the TSL can be forecasted much more accurately at all time horizons than the PSP. In
making thiscomparison, we defineforecasting accuracy asthe standard deviation of theforecast error
as a percent of the sample mean of the time series under consideration.

Figure 2 plotsthe half-hourly PSPin (E/MWH) for the more than 17,000 pricesfor each fisca
year during our sample period. Figure 3 plots the half-hourly TSL in gigawatts (GW) of capacity
used for each fiscal year in our sample period. The highest values of PSP within afiscal year tend to
occur during the four-month period from November to February. These are aso the months when
there is an enormous amount of price volatility within the day and across days. The pattern and the
magnitude of the volatility differs markedly across the four fiscal years. All of the price graphs are
plotted using the same scale on the vertical axis to illustrate this point.

Compared to the four graphs in Figure 2, the four graphs in Figure 3 indicate the very
predictable pattern of TSL across days, weeks, and years. In particular, the total demand inasingle
day in one year is very similar to the demand in that same day in the previous year. The cycle of
demand within agiven week issimilar to the cycle of demand within that same week in another year.
Similar statements can be made for the cyclesin TSL within months across different years.

The difference between the four price graphs and the four TSL graphs illustrates a very
important implication of the operation of the E& W market which does not allow a meaningful price-
response to be recovered from co-movementsin TSL and the PSP. Despite the large differencesin
the patterns of PSP movements across the four years, there is no discernable change in the pattern
of TSL across the four years. This occurs because the vast majority of business customers, and dl

residential customers, purchase power on fixed-price contracts set for the entire fiscal year. These
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customers do not face any within-year price changes or even within-day price changes which depend
on within-year changes in the PSP that might trigger awithin-day demand response.

Each of the 12 RECs offers several fixed-price options to its customers. For residential
customers, RECs offersasmall number of different standard price contracts, e.g., the single-pricefor
al load periods contract, or a two-price contract (separate prices for day and night load periods).
For business customers, each REC offers several standard price contracts, but particularly for large
customers who can choose their supplier from any of the 12 RECs or any of the generators, price
contracts are often negotiated on a customer-by-customer basis. Consequently, for the same half-
hour period, there are hundreds and potentially even thousands of different retail pricesthat different
customersthroughout the E& W system are paying for electricity. Inaddition, movementsinthe PSP,
or in any of its components, generally have no effect on contract prices for the duration of the
contract period, usually afiscal year. Thelack of responsiveness of TSL to changesin PSP does not
imply that individual customers do not respond to price changes. This lack of responsiveness is
indicative of thefact that only avery small fraction of final customers purchase electricity at the half-
hourly PSP, with the remaining vast maority purchasing electricity on the fixed-price contracts
described above.

Animportant consequence of virtually no customers purchasing electricity at the half-hourly
PSP is that it makes little, if any, economic sense to estimate an aggregate demand curve for
electricity involving PSP or PPP asthe price variable and TSL as the quantity demanded variable to
recover a price-response. Movements in the half-hourly or the daily average PSP or PPP, which
identify the aggregate priceresponse, areirrelevant to the vast majority of electricity consumers who

instead face prices that are unrelated to any within-year movements in the PSP or PPP for the entire
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fiscal year. Consequently, a price response recovered from regressing the current value of the TSL
on the PSPfor that load period islikely to be extremely mideading about the true potential aggregate
price response because only between 5 and 10 percent of TSL ispurchased at PSP and the remaining
is purchased according to prices that are invariant to changes in the PSP for an entire fiscal year.
To estimate the within-day electricity demand response to within-day changes in the PSP
requires asample of customers actually purchasing electricity at prices which move with changesin
the half-hourly PSP. PPC customers are ideally suited to this task because the within-day relative
pricesthat they pay for electricity in any load period within the day are those obtained from the PSP.
Asdiscussed in Wolak and Patrick (1997), the mgor source of the large values of the PSP
shown in Figure 2 isthe CC, which is known with certainty on a day-ahead basis. In addition, large
values of the UPLIFT tend to occur in the same load periods within the day that large values of CC
occur, which makes forecasting UPLIFT easier. Nevertheless, the two largest components of the
PSP (SMP and CC) are known to the customer before consumption choices are made for the
following day, and the remaining component (UPLIFT) is forecastable with considerable accuracy.
For example, the sample mean over our four years of data of the difference between the REC's ex
ante forecast of UPLIFT and the actual ex post value of UPLIFT is 0.07 £MWH with a standard
deviation of 1.16 and the mean absolute deviation of the difference between the REC's ex ante
forecast of UPLIFT and the actual ex post value of UPLIFT is0.56 £/MWH with astandard deviation
of 1.02. Comparing these magnitudes to the annual means of the PSP given in Table 3 on the order

of 25 £/MWH, shows that the uncertainty between the ex ante and ex post values of PSP is small.
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5. Modeling Framework

Our modeling framework attempts to capture the day-ahead el ectricity consumption choices
facing a customer on the PPC within the constraints of the data that we have available on electricity
demand and customer characteristics. Electricity demand isderived from the customer’ s demand for
the services produced by electricity using-capital goods. For PPC customers, al of which are
businesses, electricity demand is derived from the level of output that the customer produces during
theday. For industrial customers with e ectricity-consuming production processes, thereis adirect
relation between the output produced and the amount of electricity demanded. For other industrial
customers and commercia customers, this relationship between output produced and electricity
demanded dtill exists, because electricity consuming activities as lighting, heating and office
equipment use will tend to be higher in days when the firm produces more output.

Asnoted earlier, a PPC obligates a customer to purchase electricity directly from the E& W
pool for an entire fiscal year. For thisreason, the decision to purchase electricity on a PPC should
effect the type of capital stock afirm ownsand the mix of labor that it hires. A PPC customer would
invest in capital equipment and employ workers to create a production process which alows
electricity consumption to be easily shifted within the day in response to higher than expected prices
in certain load periods. Our model of the day-ahead demand for electricity recognizes these
incentives for customer behavior and therefore assumes that customers make annual investment and
labor force decisions at the beginning of each fiscal, jointly with their decision purchase electricity
accordingto aPPC. The solution to this same annual planning problem yields an time path of daily
plant output over the course of the year. Consequently, from the perspective of the day-ahead

demand for electricity, thereisapre-determined level output that the customer must produce during
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that day given the level of capital stock on hand and the quantity of labor input at the firm. On aday-
ahead basis, PPC customers have the option to substitute into other variable inputs or shift electricity
consumptioninto other load periodswithintheday inresponseto high electricity pricesduring certain
load periods. Hence, our model for the day-ahead demand for electricity assumes that the customer
chooses its 48 half-hourly electricity consumption levels to minimize the sum of the costs of daily
electricity consumption and daily consumption of al other inputs that can be varied within the day
subject to the constraint of producing its the planned level of daily output, given the level of capital
and |abor available.

Let Y, denote the output produced by the customer in day d, E, the amount of electricity
consumed in load period i during day d, (i = 1,...,48) and X the vector of quasi-fixed inputs—Iabor
and capital—used in day d and Z,, isthe vector of variableinputs—materials and other energy—used
by firm during load period i and day d. Let W,, denote the vector of measures of the weather in load
period i during day d, and W, = (W4, W,,...,W ) the vector of weather variablesfor day d. Let U,
denote the observable (from the perspective of the econometrician) portion of the firm’s production
function for day d. Our numbering of load periods within the day matches the day-ahead price-
setting process for the E& W system. Recall that our load period 1 corresponds to the load period
ending at 5:30 am and our load period 48 corresponds to the half-hour ending at 5:00 am the next
day.

As discussed above, we assume inputs such as capital and labor, cannot be changed on daily
basis, since capital investment decisionsand labor hiring decisionsare made for alonger time horizon.
Let Yy = f(Eyge- Eusar Zigr-onZagar Xaw Wy Uy ) be the firm’s daily production function.  This

production function embodies the assumption that capital (X,,) and labor (X,,) do not vary
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throughout the day, whereas e ectricity, materials and other energy inputs can be varied on a half-
hourly basis. It also accountsfor theimpact of weather on the production process, in the sense that
more or less electricity and other inputs are required to produce the same level of output depending
the weather, and the fact that thereis a portion of the production function that is unobservable to the
econometrician.

Between the time that it receives the pool price fax at approximately 4 PM and 5 AM the
following day, the firm decides on its consumption of electricity, materials and other energy inputs
during that day conditional on the level of capital and labor employed and knowing how weather
during that day will affects its production process and the values of the vector U,. The customer is
assumed to minimize expected variable production costs for the next day subject to producing the
level of output Y, given the level of fixed inputs of capital and labor and the actual weather for that
day. Expected costs are minimized for two reasons. First, as noted above, a small portion of the
PSP is unknown at the time the firm makes this day-ahead planning decision because the size of the
UPLIFT charge assessed in each Table A period is unknown until 28 days after the completion of
that day’s electricity production schedule. The second reason isthat afirm on the PPC faces a non-
zero probability each load period will be one of the three triads. For most load periods during the
year, this probability is very close to zero. However, particularly during peak periods during the
months of peak system demand in November to February, this probability should be large enough to
effect the customer’ s behavior.

To incorporate the triad charge into our model of demand, define the following indicator
variable DC,, which equals one when ademand charge occursin period i and zero otherwise. Let P,

equal the £/MW triad charge for the current fiscal year. If atriad occursin period i, then the firm
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pays 2/3P, per MWH consumed during that half-hour period. This 2/3 factor comes from two
sources. The one-third accounts for the fact that the demand charge is assessed on the average
amount of generation capacity used by that customer over the threetriad periodsfor that fiscal year,
and the two in the numerator accounts for the requirement that 2 MW of capacity is necessary to
produce 1 MWH of energy during a half-hour load period. Intermsof this notation, we can write
the customer's optimization problem as

48

(1) min _Zéf(PSPid + 2/13DC, PL)E; + PZ4Z, subject to Y, = f(E

poEagZyZig 1=1

where PSP is the pool selling price for load period i and PZ, is the K-dimensional vector of prices

preesEagrZyseenZ g X Wy, U,y

paid for materials and other fuel consumed throughout day d. The prices paid for these inputs are
known on a day-ahead basis and are assumed not to vary throughout the day. The notation -1 1
denotes the expectation conditional on information known by 5:00 AM the next day. Taking the

expectation of the individual elementsin (1) yields

48

(2) min Y [#(PSP,) + 2/3pr(DC,=1)P,]E, + PZ.Z,
EpEagZyyeiZag i=1
subject to Y, = f(E,,....E 5,21, 2,5, X W, Uy,

where pr(DC, = 1) isthe probability of theevent DC, = 1. Let PE, = &(PSP) + 2/3pr(DC, = 1)P, be
the expected price of a MWH in load period i. Given this information, the firm's expected cost
minimization problem can be written as

48
(3) min Y PE,(E) + PZZ; subject to Y, = f(E z

EpEagZyZg i-1

which hasthe same form asthe standard cost minimization problem used to solvefor afirm'svariable

E4812 Xd1Wd1Ud)1

1m0 11l yg

cost function. The solution to this problem yields conditional day-ahead |oad period-level demand
functions for electricity that take the form E(PE,...,PE54,PZ4,Y . X Wy Uy) (i=1,...,48) and load

period level demands for materials and other inputs that take the form
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Z*(PE,,...,PE,PZ,,Y 4 X, W,,U,) wherek indexesthe other variableinputs (k=1,...,K) and i indexes
the load period. Multiplying each of these day-ahead demand functions by the respective expected
price yields an expected variable cost function:
(4  EVC(PE,,....PE o ,PZ,.Y X W,U,) = f; [PEE,(PE,y-.-,PE 1, PZ.Y (X, W,,U )

¥ sz;PdeZik(Pld,...,P48d,PZd,Yd,Xd,Wd,Ud)].

There are severa steps necessary to operationalizethismodel. First, we must specify models
for forecasting the value of PSP, and the event DC, = 1 for each load period during the following day.
Next, we need to select afunctional form for the half-hourly electricity demand functionsthat arethe
solution to the expected-cost minimization problem. In the process of selecting thisfunctional form
we will also specify the stochastic structure for the demand system. Finally, we describe some
modeling compromises necessary because of lack data on customer characteristics and the
computational complexity which arises from estimating a 48-equation within-day demand system.

There are several potential approaches that a customer could use to forecast the PSP for the
coming day. Becausethe REC forecaststhe value of the UPLIFT for Table A periodsand distributes
these estimates on the Pool Price Fax (reproduced in Figure 1) sent to each PPC customer, it seems
reasonable to assume that the customer usesthe REC'sforecast astheir own expectation of the value
of PSP, for Table A load periods. Recall that for Table B periods, the value of PSP, is known with
certainty, because UPLIFT is equa to zero for these load periods. We could also assume that the
customer estimates the value of PSP, for Table A periods using atime series model of their own
design. Weexperimented with various UPLIFT forecasting model sand found that although we could
improve on the mean-squared forecast error relative to the REC's forecasting methodology, the

economic and statistical significance of these differences are minor. Recall that the two largest
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components of the PSP are known with certainty for all load periods on day-ahead basis, and that the
mean-squared forecast error for the REC's forecasting model for UPLIFT isasmall fraction of the
mean value of the PSP, so that our estimation results are unlikely to be sensitive to changes in the
method used to forecast UPLIFT for the next day, solong asit is at least as good as the method used
by the REC. Because it would require extra effort and expense with, at best, only a small
improvement in forecasting accuracy for customersto forecast UPLIFT themselves, we assume they
instead use the REC's forecast printed on the Pool Price Fax asthevalueof &£(PSP,) for Table A
periods.

The REC does not provide an estimate of the expected value of the event (DC, = 1).
However, it does issue triad advance warnings and triad priority alerts, which indicate that it
perceives the named load periods as likely to include a triad period. This information should be
incorporated in any model that the customer uses to forecast probability of the event (DC, = 1).
Because the triad periods are the periods of highest total system load, and given the persistencein
TSL for the same load period across days, we expect yesterday’s TSL to be an important predictor
of the event (DC, = 1). Based on this information, we construct a smple statistical model which
trandates qualitative and quantitative information about the likelihood of a triad period into an
estimate of the probability of the event (DC, = 1). NGC offersadaily fax service, to which aPPC
customer can subscribe, to obtain TSL, among other information. Additionaly, the REC
administering the PPC runs a Pool Price Telephone Service which makes al public information
concerning the operation of the E& W pool available to PPC customers. It also serves as backup to

the Pool Price Fax service for delivering the information contained in Figure 1 to PPC customers.
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Let x, denote a4-dimensional vector containing 1, thevalue of TSL for load period i from the
previous day, an indicator variable that is 1 if period i in the current day is a triad advance warning
period and zero otherwise, and an indicator variable that is 1 if period i in the current day isatriad
priority aert period. We then specify the probability of theevent (DC, = 1) aspr(DC = 1) = ®(x;' ),
where « is a 4-dimensional vector of parameters to be estimated and ®(t) is the standard normal
distribution function. We use 4 fiscal years of data, from April 1, 1991 to March 31, 1995, to
estimate the probit model. This model can be rationdized by definingy.” = x.’a + v,, where v, ~
N(0,1), as the unobserved index of whether load period i isatriad period. If y. >0, then DC, = 1,
which impliesthat pr(DC, = 1) = ®(x;'). Because all triad periods in our sample have occurred in
the months of November through February and during only two load periodswithin the day, we could
estimate this model only over those load periods and set pr(DC, = 1) = O for al other load periods.
In experimenting with a variety of samples: (1) the full sample, (2) the peak (November through
February) months only sample, (3) peak load periods (numbers 24-26) in the day only sample, and
(4) the intersection of the samples defined in (3) and (4), we did not find significant differencesin the
predicted probabilities of the event (DC, = 1). For example, the full sample estimates set the
probability of ademand charge at close to zero for most load periods, yet when the lagged value of
TSL waslarge and atriad priority alert had been issued for that load period, this probability was on
the order 0.13 for al of the models estimated. Because we would like to alow for the possibility of
non-zero probabilities of ademand chargein al load periods during the year, we use the probit model
estimated over al load periods in our sample of data.

Table 4 reports the parameter estimates and probability derivativesfor the full-sample probit

estimates of the model for the pr(DC, = 1). Theonly parameter estimate that seemsinconsi stent with

24



our priors on itsimpact is the negative and very imprecisely estimated coefficient on triad advance
warnings. One explanation for this result is that because this variable warns of atriad period on a
week-ahead basis its effect should not show up in amodel predicting atriad period on a day-ahead
basis given the presence of thetriad priority alert variable (which isissued on day-ahead basis) in the
model. The predicted probabilities of theevent (DC, = 1) rangefrom 10 to 0.13, with al but avery
small number of load periodsaround 10™.  Figure 4 presents plots comparable to Figure 2 for the
expected demand charge, (2/3)pr(DC, = 1)P,, for each fiscal year in the data set. The units on the
vertical axis in both Figures 2 and 4 are £/MWH. Recall that P, changes each fiscal year, which
explains the uniformly smaller or larger values of the expected demand charges across fiscal years.
These plotsillustrate the point made earlier, that for the vast mgority of load periods, the day-ahead
probability of atriad chargeiseffectively zero. However, the co-incidence of atriad priority alert for
that load period and a large value of TSL in that same load period the previous day can combine to
yield such ahigh value of pr(DC, = 1) that the expected demand charge in that |oad period exceeds
the highest value of the PSP during our sample period. For all of the fiscal years, the highest value
of the expected demand charge exceeds the highest value of PSP by a significant margin. Because
the expected demand charge can often be substantially in excess of both the expected and redlized
value of PSP, ignoring or improperly modeling itsimpact on the customer's demand can produce very
misleading estimates of the magnitude of a customer's price response. ® Because our modeling

framework computes the expected demand charge for each load period, estimates from our model

%The importance of modeling demand as a function of ex ante prices rather than ex post prices can be best understood by
the thought experiment of estimating the demand for lottery tickets based on their ex post values even though tickets can only
be purchased based on ex ante values. Assuming that aggregate demand is equal across al possible number combinations
(because all of them have the same chance of winning), aregression of these demands on the ex post prices of theticketswould
recover a zero price-response because al tickets but one have zero value ex post with the winning ticket having an enormous
value, yet the demand for all ticketsis the same.
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can be used to predict the demand response due to a change in P, as well as a change in the
probability of a demand charge in any given load period.

Giventheforecastsof PSP discussed above and the expected demand charge, we can compute
PE; for every load period in our sample period. Applying the variable-cost minimization model
developed in equations (1)-(4) requires specifying afunctional form for the 48 within-day electricity
demand functions or afunctional form for the expected variable cost function and then deriving the
within-day electricity demand functionsfrom an application of Shepard'sLemma. Becausewewould
like to exploit all of the restrictions implied by variable cost-minimizing behavior on our within-day
electricity demand functions, we specify afunctional form for the expected variable cost function and
then derive the resulting electricity demand functions.

A major factor influencing our functional form choiceisthe extent of substitutability between
the goods considered. For anumber of reasons, there should not be alarge amount of substitutability
in eectricity demand across half-hour load periods within the day relative to what is possible across
daysof theweek, or acrossmonthsinayear. Many electricity-consuming piecesof capital equipment
have significant costs associated with starting them up and shutting them down, so that once started
the firm would prefer to keep a piece of equipment running rather than shut it down. Consequently,
we should seelittle substitution in consumption across adjacent |oad periods within the day for these
sortsof electricity demands. Additionally, for space heating and cooling demands, thereareonly very
limited substitution possibilities across adjacent pricing periods. Many businesses have minimum run
levelsor prefer to run at ahigher level of output for certain load periods during day because of labor
shiftsat firm. Thisis particularly true for continuously running production processes. In this case,

we would expect to see complementarity in electricity demands across adjacent |oad periods within
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the same labor shift. For these reasons, we select afunctional form that is second-order flexible, yet
suited to capture small positive and negative elasticities of substitution between electricity demands
across load periods within the day.

There are a variety of second-order flexible functional forms which are candidates for
empirical implementation as our expected variable cost function. However, most of these are
eliminated from consideration because the imposition of the curvature restrictions implied by
economic theory destroys the second-order flexibility property of the functional form. The
Generalized Leontief (GL) introduced by Diewert (1974) is shown by Caves and Christensen (1980)
to be superior (in terms of the size of its regular region’) to other commonly used second-order
flexible functional forms, such as the trandog, when true substitution possibilities are thought to be
limited. The intuition for this result follows from the fact that the GL is a second-order flexible
functional form which builds off of the fixed-coefficients Leontief production technology, which has
zero Allen elasticities of substitution between inputs. In contrast, the translog cost function builds
off of the Cobb-Douglas production function which has an Allen éasticity of substitution of 1,
implying considerable substitution possibilities between inputs. However, imposing the curvature
restrictions on the GL functional form implies that all goods must be substitutes, which rules out
complementarity in electricity demands across load periods in the day, which seems likely for
customers with continuously running production processes. On the other hand, imposing the
curvature restrictions globally on the trandog generally implies implausibly large amounts of

substitutability acrossload periods, and therefore implausibly large own-price e asticities of demand.

The regular region of a parametric functional form isthe set of parameter values for that functional form which satisfy all
of the restrictions (particularly the curvature restrictions) implied by optimizing behavior.
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Diewert and Wales (1987) provide an empirical illustration of this phenomenon using aggregate US
manufacturing industries data. In preliminary analyses with the trandog functiona form, we found
this problem to be even more acute because of the presumed small elasticities of substitution because
electricity demand across half-hour periodsin the day.

Diewert and Wales (1987) introduce the Generalized McFadden (GM) cost function to
address these concerns associated with the GL and translog functional forms. The GM functiona
form retains its second-order flexibility properties even when the curvature restrictions implied by
economic theory areimposed globally. Diewert and Wales show that restrictions can be imposed on
the GM cost function in such a way that it is able to satisfy the curvature constraints implied by
economic theory globally, while capturing arbitrary substitutability and complementarity between
inputs. Because we plan to use the estimated demand functions to predict the customer’ s response
to changesin the various components of expected price of e ectricity, wewould asystem of firm-level
demand functions for electricity that is consistent with al of the hypotheses of economic theory.
Consequently, we utilize a version of the GM cost function that satisfies the curvature restrictions
globally, yet still allows for half-hourly electricity demands within the day to be both substitutes and
complements with one another.

In terms of our earlier notation, the GM expected variable cost function is:

(5) EVC(PEld, PE48d,PZd,Xd,Yd,Wd,Ud) = g(PE,PZ)Y, + ZZKUPE X
i=1 j=1
* ZZ‘%PZ de * Z{anE' Yy + 8 PEy + di/WidPEid + PE Ui
i=1 j=1

* ZZ CyPZq X]d * Z{(Putpz * U48+|Pzd}’

i=1 j=1
where g(PE,,PZ,) isahomogenous of degree zero function in p = (PE,;,PZ,), the N = 48 + K vector

of prices, given by
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(6) 9(p) - %(E/p)ljg; J§N; CiPPy & =G, Ll<ij<N,
where€ isan N-dimensional vector of constants. In equations(5) and (6), the subscript i indexesload
periods, d indexes days and t indexes the four fiscal years of our sample.

We now describe the modeling assumptions necessary to estimate the parametersof aversion
of (5) and (6) given the data available and the computational constraintsimposed by the size of our
demand system. Recall that daily output, Y 4, and the level of the capital stock and labor employed
during day d, X,, are unobserved. However, as discussed earlier, the amounts of capital and labor
available for use during day d are pre-determined from the perspective of the daily decision of how
much electricity, fuel and materials to consume. In addition, daily output is result of a longer
horizon—year, month or week—planning problem by the firm, and its fluctuations throughout the
year are therefore pre-determined from the perspective of the data-ahead electricity demand and
variable inputs choices. Daily output, Y 4, should fluctuate throughout the year according to some
periodic process. One way to mode these fluctuations in daily output is to use to the

model Y, = DAY, + MONTH_ + YEAR, where DAY, is aset of day-of-the-week indicator

dmt
variables, MONTH,, is a set of month-of-the-fiscal-year indicator variables, and YEAR, is a set of
fiscal year indicator variables. If the amount of labor and capital employed by the firm is fixed for
the month or fiscal year, then under these assumptions for determining the level of capital and labor
at the firm, and without loss of generality relative to case in which X is observed, we could control
for theimpact of thefirm’scapital and labor holdings on itswithin-day e ectricity demand by separate
dummy variables in each of the 48 demand equations for each month or fiscal year of the sample,

depending on the frequency with which that element of X, in (5) changes. The dummy variablesin

the specification for Y 4, imply 6+11+3 = 20 dummy variablesin each of the 48 demand equations,
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or atotal of 960 parametersto control for the impact of daily output in each half-hourly electricity
demand function. Consequently, the number of additional parametersrequired to control for changes
indaily output and the fixed inputs throughout our sample very quickly rendersthe model estimation
computationally infeasible without additional assumptions.

A second complication arises because the prices of other variableinputs, PZ, are unobserved
a thefirmlevel. Moreover, the actua identities of the other variable inputs used by the customer
are unknown. For example, we do not know if a plant has fuel-switching capabilities, and if it does,
if itisinto oil, coal or natural gas. We also do not know precisely what raw materials are used at the
firm level, dthough all industries do consume other fuels and raw materials. The UK Central
Statistical Office (CSO) produces a composite price index for materials and fuels purchased at the
5-digit BIC code level, the same BIC code detail available in our customer-level eectricity demand
data. Our solutionto thislack of dataon materialsand other fuels pricesat thefirmlevel isto assume
that the expected variable cost function isweakly separablein materialsand other fuelspricesrelative
to al other inputs so that their existsasingle materials and fuel s aggregate price index in the expected
variable cost function. We then use the UK CSO input price index (Government Statistical Service,
1991-95) for the 5-digit BIC code relevant to that customer as the appropriate materials and fuel
priceindex inthe expected variable cost function. Under these assumptionsK, the number of variable
inputs, is set equal to one. The highest frequency at which thisinput price index iscompiledison a
monthly basis. Because daily eectricity consumption choices are based on non-seasonally adjusted
electricity prices, we use the non-seasonally adjusted materials and fuels composite input price index.
If weset € =(0,0,...,0,1) in equation (6) and apply Shepard’s Lemma to the expected variable cost

function for PE; (i=1,...,48), the following the 48 half-hourly electricity demand functions result:
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1 48
= c.PE.. + b
PZd Jz_; ij —jd it

where PZ, is the materials and fuels composite price index for day d. Assuming that the firm’'s

(7) Eig = id’

2
* A
Yy + @ + ;Kijxjd + d;W, + U

capital stock holdings and level of employment is changed each fiscal year implies that we can re-

write (7) as:
1 & A

(8) Eqy = Pz _Z;CijPEjd byl Yy e+ diW, + Uy,
e

where a, = a;, -+ kzzjnijxjd, so that g, is the fiscal year t constant term in demand equationi. As
-1

discussed in Diewert and Wales (1987), because of the surplus of parametersin the model givenin
(5) and (6), in order to empirically implement the GM cost function, a normalization of the c,j* is
required. We set ¢, = 0forj = 1,...,49, and set ¢; givenin (7) and (8) equal to c;. in (6) fori,j =
1,...,48. We assumethat U, = (U,g,...,U,q) ' IS arandom vector with mean zero and covariance
matrix Q and is independently distributed across days. Because we interpret U, as that day's
unobservabl e (to the econometrician) portion of the customer'sconditional variable cost function, this
stochastic structure implies an additive error structure for the input demand functionsin the sense of
McElroy (1987).

To impose concavity globally on the GM expected cost function, define the (48x48) matrix:

Cll C12 Cl 48
C c .. C
21 22 248
(9) C =
_C48 1 C48 2 C48 48|

ParameterizeCas. C=-L DL’ =- (LD)(LD)’, where

i ; 1 0 0 0
6a1) 0 .. O
A2,1) 1 0 0
0 62 ... O
D = and L =|AB1 A(32 1 0l,
: : : 0
0O 0 .. 048
) ] A(48,1) A(48,2) ... A(48/47) 1 31



(10)

are 48x48 diagona and triangular (with 1's along the diagonal) matrices, respectively. These
assumptions guarantee that C isa positive definite matrix, so that the expected variable cost function
is globally concave.

Asnoted above, estimating the parameters of the GM variabl e cost function without imposing
any restrictions beyond those implied cost-minimizing behavior requires estimating 1,176 distinct
parameters of the C matrix, a formidable computational task. Because we believe that how a
customer atersits electricity demands and the demands for materials and fuels across |oad periods
within day for a change in the expected electricity price in one load period is smilar to how its
demands will respond to a price change in an adjacent load period, our estimation strategy is to
require ¢; to lie dong a very flexibility parameterized smooth function of a significantly smaller
number of parameters. We assume that the elements of C are a function of three Fourier series
defined as follows:

o) = ay + %jacosgm) Y sn(jAi) and
N
AGG) = [By + Z Bcos(kAi) + Bk . n Sn(kADIX[y, + I(Z;YKCOS(kAJ) ¥y SIN(KADL,
where A = 2m/48. The coefficients for these Fourier series are (g, 00,00, o),
(BoBasBas--sBanp))s @D (Yo Y1 Y2re s Yoniy)-
For the coefficients on the weather variables, we follow the same approach. Let d=

(dy(i),...,d¢ (1)), where K equals the number of weather variables in load period i. How weather

variablej affectselectricity demandinload periodi, the coefficient d i), is determined by the function:
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N, )
di) = + k§; myCos(kAi) + g .y gSn(kAD),

where the vector (1,o,1;1,M;2,---Nianey) 1S the set of coefficients associated with the function d(i). For
each weather variable, |, we specify an additional vector of coefficients to be estimated. Our two
weather variables are the average hourly temperature in degrees centigrade and sun intensity is
measured by the Campbell-Stokes sunshine recorder® on an hourly basis. Both variables come from
the UK national weather station nearest to the geographic center of the REC’ s servicearea. The sun
intengity variable ranges from 0, which indicates darkness, to 1, the maximum sun intensity.
Consequently, this variable captures the fact that the number of hours of sunlight during the day
changesthroughout the year, aswell asthefact that the sun’ sintensity variesthroughout the daylight
hours to due cloud cover. We match these hourly variablesto the relevant half-hour during the day
to construct the two weather variables used in each of the 48 half-hourly electricity demand
equations. Rather than estimate separate Fourier seriesfor b, and «;, (i=1,...,48) for each fiscal year

t, these parameters are determined as follows
N

oy = [0y * jzg;gjcos(in) t 0. Nfsin(in)] and
b, = b[f, + g;fjcos(in) + ;.\ SnGAD].
The coefficients to be estimated are (fo,fl,Jf_z,...,fZN(f)) and (9:91,92:-+-:0an)- The values of o, and b,
normalized to equal one for the first fiscal year.
Although the firm's output, Y ,, is unobservable, as discussed earlier, we assumeit is set to

vary across days within the year according to the annual planning problem solved at the time

customer determines whether or not to sign a PPC. Our strategy is to control for these pre-

8First used in 1892, the Campbell-Stokes sunshine recorder works by focusing the sun’ srays and burning amark on acard
which is specialy treated to prevent it from catching fire and then measuring the size of this mark.
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determined movementsin 'Y , over the course of the year, by specifying avery flexible model for its
behavior over the course of our sample period that accounts for the fact that daily output produced
by the firm is a periodic function, in the sense that the level of output produced on Monday of last
week isvery similar to thelevel of output produced Monday of the present week. Similar statements
can be made about daily output across the same days across fiscal years. The cost of this flexible
parameterization of Y, requires introducing a substantial number of additional parameters. We
specify the following periodic function for the behavior of daily output
Y, =1+ J%; mjcos(jrd) oy, Nmsin(jﬂzd)) + hy())A,

where Tt = 21t/366, d=1,...,365 (366 in leap years), h,(j) = 1 if day d is nationa holiday j, and zero
otherwise, and A,is a dummy variable for fiscal year t (t=1,..,4). The four sets of holiday dummy
variables are defined in Table 6. Because we have four fiscal years of data, there are three values of
A, that must be estimated, with A, set equa to 1. This model for Y, embodies the view that the
pattern of daily output within the year is periodic and that the periodic pattern of output within the
year issimilar across years, controlling for increases and decreasesin the level of output across fiscal
years and the known holidays throughout each fiscal year. Because the scale of Y 4 isnot identified
separately fromthe coefficient on Y 4in half-hourly demand equations, we normalizethe constant term
inthe Y, Fourier seriesto equa 1.

For all of the coefficients but the w;'s, y;'s, and B;'s we choose N(k) = 5, (where k denotes
the coefficient vector under consideration) whichimplies 11 coefficientseach for the ¢;’s, n;'s,ny's,
f’'sandg’s. For the w;, we choose N(w) = 10, whichimplies 20 coefficients. For theyj’s, and f3j’s,

we chose N(k) = 3. Estimating with N(k) equal to 5 significantly increased the estimation time with



no noticeable change in the estimation results. Because there are four fiscal years of data, there
should be 3 values for b, and 3 values of «,.

Because the vector of expected prices PE,, (i=1,...,48) is assumed to be orthogonal to U, we
can apply nonlinear seemingly unrel ated regressi ons estimati on techni ques (because of cross-equation
restrictions) to estimate the parameters of the 48-equation model. To understand the validity of this
orthogonality assumption, it is important to recall the price-setting process in the E& W market.
Different from the standard simultaneous equations supply and demand model, the demand that sets
the market clearing price is not the actual quantity demanded during that half-hour, but NGC’ s day-
ahead forecast of thisvalue, and thisdemand forecast iscompletely priceinelastic. Inaddition, under
the rules of E&W market, NGC cannot reduce the value of this demand forecast based on
expectations of high prices or demand side bids.® Therefore, even if a REC demand-side bid based
on the expected price-responses of its PPC customers, thisinformation could not be used in the price-
setting process to alter the demand that sets the SMP and CC. Consequently, from the perspective
of acustomer on the PPC, prices set by the E& W pool can be thought of as a stochastic process that
evolves virtually independent of its own actions, so that U, can be thought of as orthogonal to PE,,.

An additional argument in favor the validity of this orthogonality assumption isthe fact that each of
these PPC customer’ sdemands are an insignificant fraction of total system load for the E& W system,
which rangesfrom 30 to 46 GW, whereas the maximum demand of any of thesefirmsisdightly more
than 1 MW.

In this estimation, we experimented with models that had N(k) = 8 for all the coefficient

vectors except w; and found significant increases in the computational time with little change in the

SWolak and Patrick (1997) discuss these issuesin detail .
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results. Based on fairly extensive experiments, we felt that the numbers of parameter selected for
each of the Fourier series was sufficient to adequately capture the true structure of the day-ahead
demand for electricity.*

The assumptions imposed on (5) and (6) allow one simplification that greatly reduces
computational effort necessary to estimate the model. Specifically, the right-hand side of equation
(8) isthe samefor all customersin the same BIC code, because all customers face the same PE,; and
we assume the same parameters of the various Fourier series and therefore the same parameters for
the half-hourly demand functions for all customersin the same BIC code. Thisalowsusto usethe
average quantity for al customersin agiven BIC code each year to estimate the parameters of (8).

Summing E, over dl k for agiven BIC for each fiscal year of the sample and dividing by the number
of customersin the respective BIC code each year, M, (because PPCstypically last the entire fisca

year) yields the grouped data version of (8):
1) E, - iEM:E. - L iszc..PE. R b]Y co dW e iEM:U. .

id M= idk Pz, & i —jd it 'd it i Vid M= id
The interpretation of Y, changes relative to the single firm version of (8). Inthiscase Y, isthe
average daily output of the M firms on the PPC in that BIC during that fiscal year. Estimating the
model in this grouped data form significantly reduces the computer time because the number of data
points considered in the model each year falls from the product of the number of load periodsin the
year and the number customersin that BIC to the number of load periods in the year. Dividing by
adifferent number of customers each year induces heteroscedasticity in the grouped dataerror term.

We estimate the model viaquasi-maximum likelihood, using the 48-dimensiona multivariate normal

density as the objective function for a single observation of the vector of half-hourly electricity

19Each model estimated took more than 20 hours of CPU time on a SUN UltraSPARC 170E.
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demands. Consequently, all standard errors are computed from heteroscedasticity-consistent
standard error estimates derived in a manner similar to that given by White (1982), so that
asymptotically valid standard errors and confidence interval s can be constructed for our estimates of
the demand response to changesin al of the components of the expected price of electricity—the
SMP, CC, the expected UPLIFT, and the expected demand charge.

5. Model Estimates

This section presents the coefficient estimates and the implied own- and cross-price demand
elagticity estimates for the 5 BIC codes with arelatively large number of customer-year pairs during
our four-fiscal year sample period. To convey the magnitude and structure of the (48x48) matrix of
cross-price elasticities, we present 3-dimensional graphs of these elaticities for each BIC code. We
also present plots of the half-hourly own-price elasticitiesfor all 48 1oad periodsfor each of the5BIC
codes.

As is usually the case with structura models, it is very difficult interpret or attach any
economic significance to individual coefficients of a structural model because the estimated impact
of asingle variable on one of the dependent variables is usualy afunction of several parameters of
the structural model. Thisis particularly true in the present case because al of the coefficients of the
expected variable cost function are in fact functions of the parameters of various Fourier series
coefficients, so that it is not possible to attach any economic or statistical significance to any
individual Fourier series coefficients. The appendix gives tables of these coefficient estimates and
thelir heteroscedasticity-consi stent standard errorsfor thefivemodels. Thevast mgority of e ements
of the coefficient vector are very precisaly estimated for al five of the models. Only the individud

coefficients on the parameters of the Fourier seriesdetermining the A(i,j) in the decomposition of the
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C matrix are not precisely estimated. Thislack of precision of individual coefficients is due to the
highly nonlinear relation between the Fourier coefficients and the resulting coefficients of the matrix
C.

The own-price and cross-price elasticities of demand for any day and load period can be
computed by differentiating equation (11), with respect PE, and multiplying by ? to
aaFlei?d PETEJ; the cross-price elasticity of the demand for electricity in load periodjidduri ng

day d with respect the expected price of electricity inload period | in that same day. These within

yidd .

day elasticities depend on the estimates of the matrix C and the 48x1 vector of expected prices and
half-hourly demands during that day. Because prices and demands are extremely variable over the
course of the year and within the day, thereis considerable amount variability both within the day and
across days in these own- and cross-price elasticities. To ease the interpretation of the resulting
parameter estimates of the five demand models, we compute the sample mean own-price elasticities
and cross-price elagticitiesimplied by these parameter estimates and the upper and lower 95 percent
confidence bounds on these sample mean easticities.

Before proceeding with our discussion of the empirical results, we first motivate our choice
of the five BIC code industries for the empirical analysis. The two criteria used to select industries
are: (1) diversity in the magnitude of the within-day substitutability across half-hours in electricity
demand in that industry, and (2) the existence of a substantial number of customers in that BIC code
so that it makes sense to claim that our estimation procedure recovers an industry average price-
response. Based on conversations with staff at the REC, our prior beliefswere that the water supply
industry would be extremely price-responsive.  Thisindustry must pump substantial amounts water

into its storage and sewage-treatment facilities once or twice aday, so that it has the ability to shift

38



this activity to the lowest priced load periods within the day at very short notice. At the other end
of the spectrum is the steel tubes industry, which we expect to exhibit very small amounts of
substitutability across load periods in the day because of the continuously running production
processes in these plants. In fact, for load periods within the same labor shift, we expect
complementarity in half-hourly e ectricity demands, because once the decisionismadeto start alabor
shift the cost of continuing the shift isrelatively small once the large start-up costs of turning on the
machines and bringing the employeesinto the factory are borne. Theremaining threeindustries have
within-day electricity substitution possibilities between these two extremes, and are included in the
analysis because of the large number of customersin that BIC code each year.

As expected, there is a considerable amount of heterogeneity across industries in the pattern
of their within-day price responses. Figure 5(a)-(e) plots these sample mean own-price elasticities
and their upper and lower 95% confidence bounds as afunction of the load period for each of thefive
BIC codes. For al of the industries, the sample mean own-price elasticities are very precisely
estimated. The water supply industry, BIC 17000, is by far the most price-responsive industry of
thefive BIC industrieswe consider. Although during the usual peak total system load periods 20 to
26, the period beginning at 2:30 PM and ending at 6:00 PM, we find a uniformly small mean own-
price elagticity for al five BIC codes, for theload periodsimmediately preceding thistime period and
immediately following the mean own-price elasticity is over 0.20 in absolute value and gets as large
in absolute value as 0.27 in load period 10, the period from 9:30 to 10:00 am. aso very largefor the
load period beginning at 11:00 AM, taking on avalue of -0.142. Giventhe amount of price volatility
in the PSP and the expected demand charge, this within-load-period own-price elasticity of demand

isvery large. Recall the enormous volatility in the PSP shown in Figure 2 and the volatility in the
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expected demand charge given in Figure 4. In particular, it would not be unusual to have values of
PE,, across days for the same load period that differ by a factor 20 or 30, which would imply a
sizeablereduction in thewithin period demand for customersin BIC 17000. Table5 givesthesample
mean and standard deviation of PE, (I=1,...,48) for our four years of data. For some load periods,
the standard deviation of PE,, is more than three times the value of mean, which indicates the
potential for an enormous amount of variability in prices for the same load period across days.

Figure 6 presents a 3-dimensiona plot of the sample mean of the cross-price elasticities for
BIC 17000. Although the matrix of cross-price coefficients, with representative element ¢, is
symmetric, the matrix of cross-price elasticitiesisnot. To improve the interpretability of the cross-
price elasticity plots, the own-price elasticities are excluded by these plots. The peaksin the plotson
both sides of diagonal indicate that most of the substitutability in electricity consumption within the
day comes from substitution across adjacent load periods. The water supply industry exhibits just
the sort of within-day substitution patterns that would enable a REC serving these customers to
predictably demand-side bid significant amounts of capacity when the PSP increases dramatically
between one day to the next or the probability of atriad charge substantially increases across two
adjacent days.

The other four industries analyzed here exhibit substantially lower substitution possibilities
withintheday. The stedl tubeindustry, BIC 22200, has extremely small own-price elasticitieswithin
the day, with the largest occurring during the late night hours. This pattern of own-price effects
seems to be attributable to the continuous running production processin thisindustry. In particular,

this industry appears to illustrate the point made earlier that once the production process and

associated labor shift isstarted, it isvery costly to stop or even dow it down. The plot of cross-price
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elagticitiesgivenin Figure 7 bears out thispoint. Note the consistently negative cross-price effects
of price changes early in the day with respect to the demand for electricity in adjacent load periods
during the early morning. Cross-price elasticities just off the diagona are consistently dightly
negative until load period 24, the period ending at 5 pm, when they become dightly positive for 3
load periods. The near diagona €l ementsthen are consistently negative for the next 10 load periods.
These two sequences of negative cross-price elasticitiesillustrate the complementarity in the demand
for eectricity acrossload periodsfor thework day and this same complementary across adjacent |oad
periods later in a second shorter production shift. Because of the continuously running production
process of associated which each labor shift, reductions in demand in one load period in the
production shift brings about decreases in the demand for al load periods during that production
shift. The particularly large peaks in the plot far from the diagonal on the left hand side of the plot
indicate that substitution away from el ectricity consumption in the daytime shift dueto priceincreases
early intheday primarily result inincreased el ectricity consumption in the night-time production shift.

The copper, brass, and other copper aloys industry, BIC 22460, has the next largest in
absolute value own-price elasticities of the fiveindustries considered. The pattern of mean-own price
elagticities show very few substitution possibilities across adjacent periods during the middle of the
working day, load periods 7 (the half-hour ending at 8 am) and 14 (the haf-hour ending at 12:00
pm). Therearerelatively large own-price el asticities surrounding noon until the early afternoon. The
other relatively large own-price elasticities occur during the early daylight hours from 6 am to 8 am.
As shown Figure 8, most of the substitution possibilities appear to be across adjacent periods in the

early evening, with alower amount early in the day light hours.
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The ceramic goods industry, BIC 24890, exhibits ardlatively constant, but uniformly small
(in absolute value) pattern of own-price elasticitiesthroughout theday. Except dightly larger values
for the peak periods of the day, from load periods 22 to 30, the own-price elasticitiesvery small. The
matrix of cross-price elasticities given in Figure 9 a so possesses the some of the features of the steel
tubes graphsin the sense of having dightly negative elements close to diagona for all of the periods
early in the working day, indicating complementaries in electricity use across adjacent load periods.
The mgjor substitution possibilities seem to occur in adjacent periodsin the later afternoon and early
evening.

The hand tools and finished metal goods industry, BIC 31600, yields the most complex plot
of cross-price elasticities. It has large early in the working day complementaries in electricity
consumption asillustrated by the sequence of negative cross-price el asticitiesnear thediagonal during
thistimeperiod. Thisiscounteracted by thelarge early evening, night and early morning substitution
possibilities across adjacent periods shown in Figure 10. The net result of these substitution
possibilities are own-price éasticities throughout the day that are small in absolute value and
relatively constant. Thelargest own-priceelasticitiesoccur during the peak load periodsof day, from
4:00 pm to 6 pm.

6. Use of Model Results for Demand-Side Bidding by REC

Thissection givesan example of how our demand system estimates can be used to formul ate
demand-side bids by RECs serving customers on the PPC. Because our demand system yields
predictionsof thewithin-day consumption of electricity for any pattern of PE, (i=1,...,48) throughout

the day, we can use differences in values of the demand functions evaluated at two different values
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of PE,=(PE,...,PE,g) to construct an estimate of the change in the vector of daily demands that
comes about as aresult of a change in the pattern of prices throughout the day.

To illustrate this process, define
48

A 1 A ~ - ~
) Fa(0.PE,PZ)) = p7 Z;CijPEjd by Yy o+ g+ AW,
d i=

where 0 denotes the vector of all the Fourier coefficients and a“hat” over avariable implies that it

isafunction of the estimated parameter vector. Intermsof this notation we can re-write the demand
for electricity inload period i as
(12) Eig = Fi(B.PELPZ) + U,
Let PE,” denote the base period level of prices faced by the firm and PE,' the prospective prices
faced by the firm. The predicted change in demand in load period i that results from changing the
vector of prices from the base period to the prospective level of pricesis
(13) AE(6) = F(0,PE;,PZ) - F(6,PESPZ,).
Theterm U,, isassumed to remain the same for both prices and therefore drops out of the expression
for the predicted demand change. Given two vectors of prices, we can compute the value of the
right-hand side of (13). The standard error of AEid(é) can also be computed applying the
A-method using the estimated covariance matrix of the vector 9.

We now use our model to predict the demand response to changes in various components of
the expected prices—the sum of expected PSP and the expected demand charge. Figure 11
considers two changes in the expected PSP for BIC 17000, the water supply industry. The baseline
scenario isthe pattern of consumption for arepresentative weekday evaluated at the sample mean of
the observed expected prices. Thefirst scenarioisa50 percent increasein al 48 half-hourly expected

PSPs holding the expected demand charges constant. Consistent with the own-price elasticities, we
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find significant reductionsin demand relative to baseline scenario in load periods early in the day and
later in day with only a small reduction in demand during the high priced periods of the day. The
second scenario decreases the expected PSPs in load periods 30-34 by 50%. Significant increases
in the electricity consumption are predicted in these load periods, with very small reductions in
consumption predicted in the immediately adjacent periods.

The second two scenarios, which are given in Figure 12, consider the impact of changesin
components of the expected demand charge the pattern of within-day e ectricity consumption. The
first considers a 20% decrease in the demand charge. The representative day we selected for this
scenario did not have atriad priority aert in any of the load periods, so the probability of a demand
charge was uniformly small for all load periodsin the day. Asa consequence, this reduction in the
demand charge had no discernable predicted impact on the pattern of electricity consumption. The
second scenario assumed that atriad priority alert wasin fact issued for load period 24, so using the
estimated probability function given in Table 4 the probability of ademand chargein period 24, went
from close to zero to approximately 0.12. As a result of issuing this triad priority alert, the a
noticeable demand reduction is predicted to occur in load period 24. Thereis also predicted to be
adight reduction in electricity demand in load periods 31 to 36.

These examplesillustrate types of predicted price responsesthat can be computed using these
parameter estimates. Proceeding in this manner for avariety of prospective prices, given the mix of
customers on the PPC, the REC can determine the magnitudes of price responses it can expect from
various changes in the PE, aggregated over al of its customers. Coupled with information on the

standard errors of the these predicted price responses, the REC can then formulate demand-side bid



functions which account for the aggregate estimated price response of al of the REC's PPC
customers and the uncertainty associated with these responses.
7. Conclusions and Directions for Future Research

Inthis paper wehaveformul ated ageneral framework for estimating the within-day customer-
level demand for electricity under a PPC contract. We found substantial heterogeneity across
industries in the own-price elasticities recovered and pattern of within-day substitution in electricity
consumption due to changes in the pattern of PSP and the expected triad charge throughout the day.
We showed how this information could be used by the REC to predict the price-responses of PPC
customers.

As discussed throughout the paper, there are avariety of directions for future research. The
most promising avenue seems to be the collection of a data set with firm-specific characteristics so
that we can measure the impact of differencesin capital stock holdings, labor, and daily output on a
firm’s ability to respond to within-day changes in the price of eectricity.

Another direction for future work is to consider alonger time horizon for substitution in
electricity consumption. Extending this model to the weekly time horizon is complicated first by the
fact that we will have to forecast the PSP and expected demand charge for the next week’ sworth of
load periods when formulating the optimal consumption of electricity over the coming week. This
is a computationally intensive but not insurmountable problem. As opposed to a 48x48 matrix of
second-order price coefficients, this model will have a 336x336 matrix of second-order price
coefficients, athough we can only identify those associated with the 48 day-ahead load periods,
because the customer has the option and will find it profitable to deviate from its weekly optimal

consumption plan once information on the actual prices for following week are revealed. For the
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day-ahead model, the customer’ s planning horizon agreed with the frequency of price changes. For
the weekly model, the planning horizon is aweek, but prices can change on adaily basis. Thisisa
major difficulty associated with formulating an internally consistent economic model with alonger

horizon for substitution in e ectricity consumption given the data we have available.

46



References

Aigner, D.J, J. Newman, and A. Tishler (1994). "The Response of Small and Medium-Size
Business Customers to Time-of-Use Electricity Ratesin Isragl." Journal of
Applied Econometrics 9:283-304.

Baker, A.B. (1992). "The Methodology and Process of Forecasting Nominal Demand,” The National
Grid Company, Grid System Management, National Control, GSMNC/ABB/DF 5.1.2.9,
Coventry, England.

Bohm, R.E., M.C. Caramanis, and F.C. Schweppe. (1984). "Optimal Pricingin Electrical Networks
over Space and Time." The RAND Journal of Economics 15(3):360-376.

Borenstein, Severin and Bushnell, James, (1997) “An Empirical Analysisof the Potential for Market
Power in California’s Electricity Industry,” Program on Workable Energy Regulation,
Working Paper Number PWP-044, March.

Brough, Martin and Lobban, Seumas, (1995) Guide to the Economic Regulation of the Electricity
Industry, OXERA Press, Oxford, U.K.

Brown, S.J,, and D.S. Sibley (1986). The theory of public utility pricing. Cambridge University
Press.

Burness, H. Stuart and Robert H. Patrick (1991). "Peak Load Pricing with Continuous and
Interdependent Demand.” Journal of Regulatory Economics 3(1):69-88.

Caves, D.W., and L.R. Christensen (1980). “Global Properties of Flexible Functional Forms.”
American Economic Review 70:422-432.

Caves, D, L. Christensen, and J. Herriges (1984). "Modelling Alternative Residential Peak-Load
Electricity Rate Structures.” Journal of Econometrics 26(%2):229-268.

Diewert, W. E., (1974) "An Application of the Shepard Duality Theorem: Generalized Leontief
Production Function,” Journal of Political Economy 481-507.

Diewert, W.E. and Wales, T.J. (1987) “ Flexible Functional Formsand Global Curvature Conditions,”
Econometrica, 55(1), 43-68.

Electricity Association (1995). UK Electricity, Electricity Association Services Limited, London,
U.K.

Government Statistical Service (1991-95). Business Monitor: MM22 Producer Price Indices.
Central Statistical Office, HM SO Publications Centre.

47



Green, Richard J., and David M. Newbery (1992) "Competition in the British Electricity Spot
Market," Journal of Political Economy, 100(5), 929-953.

Hansen, L., and K. Singleton (1982). "Generalized Instrumental Variables Estimation of Narlinexr
Rational Expectations Models." Econometrica 50, 1269-1286.

Helm, Dieter and Powell, Andrew (1992) "Pool Prices, Contracts and Regulation in the British
Electricity Supply Industry," Fiscal Studies, 13(1), 89-105.

Herriges, JA., SM. Baadi, D.W. Caves, and B.F. Neenan (1993). “The Response of Industial
Customers to Electric Rates Based Upon Dynamic Marginal Costs.” The Review of
Economics and Statistics :446-454.

King, Kathleen, and Peter Shatrawka (1994). "Customer Response to a Permanent Time- Varying
Pricing Program in the United Kingdom." Laurits R. Christensen Associates, Madison,
Wisconsin, May 31.

McElroy, M.B. (1987) "Additive, General Error Models for Production Cost, and Derived Demand
or Share Systems," Journal of Political Economy 95(4) 737-757.

Mak, J.C., and B.R. Chapman (1993). “A Survey of Current Real-Time Pricing Programs.” The
Electricity Journal 6(7):54-65.

Panzar, John C., and Robert D. Willig (1979). “Theoretical Determinants of the Industrial Demand
for Electricity by Time of Day.” Journal of Econometrics 9:193-207.

Park, Edward Rolla, and Jan Paul Acton (1984). “Large Business Customer Response to Time-of
Day Electricity Rates.” Journal of Econometrics 26(1/2):229-252.

Patrick, Robert H. (1990). "Rate Structure Effects and Regression Parameter InstabilityAcross
Time-of-Use Electricity Pricing Experiments.” Resources and Energy 12(2):179-195.

Phelps, A.K. (1994). "A Study of Real Time Pricing in the UK: The Midlands Electricity
Experience." Midlands Electricity plc, Halesowen, United Kingdom. Mimeo.

Pyndyck, R., and J. Rotemberg (1983). "Dynamic Factor Demands and the Effects of Energy Price
Shocks." American Economic Review 73(5):1066-1079.

Taylor, T.N., and P.M. Schwarz (1990). "The long-run effects of a time-of-use demand charge."
Rand Journal of Economics 21(3):431-445.

Taylor, T.N., and P.M. Schwarz (1986). "A Residential Demand Charge: Evidence from the Duke
Power Time-of-Use Experiment.” The Energy Journal 7:135-151.

48



Tishler, Asher (1983). “The Industrial and Commercia Demand for Electricity under Time-of-Use
Pricing.” Journal of Econometrics 23:369-384.

Train, Kenneth and Gil Hehrez. 1994. "Optional time-of-use prices for electricity: econometric
analysis of surplus and Pareto impacts.” RAND Journal of Economics 25(2): 261-283

Vedl, Michael R. (1983). “Industrial Electricity Demand and the Hopkinson Rate: An Appliction of
the Extreme Value Distribution.” Bell Journal of Economics 14(2):427-  440.

White, H. (1982). “Maximum Likelihood Estimation of Misspecified Models,” Econometrica 50: 1-
16.

Wilson, Robert (1993). Nonlinear Pricing. Oxford University Press.

Wolak, Frank A., and Robert H. Patrick (1997). "The Impact of Market Rules and Market
Structure on the Price Determination Process in the England and Wales Electricity
Market," Mimeo.

Wolak, Frank A. and Patrick, Robert H. (1996a) “Industry Structure and Regulation in the England
and Wales Electricity Market,” in M.A. Crew, edited, Pricing and Regulatory Innovations
Under Increasing Competition, Kluwer Academic Publishers. Boston, MA.

Wolak, Frank A., and Robert H. Patrick (1996b). "The Time Series Behavior of Market Prices and
Output in the England and Wales Electricity Market," mimeo.

Zamikau, J. (1990). "Customer Responsiveness to Real-Time Pricing of Electricity." The Energy
Journal 11(4):99-116.

49



Table 1(a): Two-Digit 1980 BIC Codes and Total Number of Customer-Year Pairs

Total Customer

BIC Description Years
14000 mineral oil processing 11
16000 prod. & dist. of electricity, gas, & other forms of energy 9
17000 water supply industry 31
22000 metal manufacturing 138
23000 extraction of minerals not elsewhere specified 31
24000 manufacture of non-metallic mineral products 180
25000 chemical industry 44
31000 manufacture of metal goods not el sewhere specified 427
32000 industrial plant and steelwork 75
33000 manufacturing of office and data processing equipment 10
34000 electrical and electronic engineering 70
35000 manufacture of motor vehicles and parts thereof 66
36000 manufacture of other transport equipment 13
37000 instrument engineering 5
41000 food, drink & tobacco manufacturing industries 55
42000 sugar and sugar by-products 52
43000 textile industry 29
45000 footwear and clothing industries 1
46000 timber and wooden furntiture industries 31
manufacture of paper & paper products; printing &
47000 publishing 73
48000 processing of rubber & plastics 72
49000 other manufacturing industries 130
61000 wholesale distribution (except in scrap & waste materials) 58
63000 commission agents 22
64000 & 65000|retail distribution 67
66000 hotels and catering 4
67000 repair of consumer goods and vehicles 2
Table 1(b): Five 1980 BIC Code Industries Used in Analysis
BIC Description Customer Years
17000 water supply industry 31
22200 steel tubes 37
22460 copper, brass, and other copper alloys 22
24390 ceramic goods 19
31600 hand tools and finished metal goods 15
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Table 2(a): Advance Warnings, Priority Alerts, and Realized Triads
Fiscal Year 1991/92

Time Periods for

DATE Advance Warnings Priority Alerts Triads
11/21/91 25
11/26/91 24,25

12/3/91 24,25
12/4/91 24,25
12/5/91 24,25
12/9/91 24,25
12/10/91 24,25 24,25
12/11/91 24,25 24,25 25
12/12/91 24,25 24,25
1/6/92 24,25
1/7/92 24,25
1/8/92 24,25
1/9/92 24,25
1/13/92 24,25
1/14/92 24,25 24,25
1/15/92 24,25 24,25
1/16/92 24,25 24,25
1/21/92 24,25,26
1/22/92 24,25,26
1/23/92 24,25,26 24,25,26 25
1/28/92 25,26
2/3/92 25,26
2/10/92 25,26 25,26
2/11/92 25,26
2/18/92 25,26
Total hours 20.5 135 15
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Table 2(b): Advance Warnings, Priority Alerts, and Realized Triads
Fiscal Year 1992/93

Time Periods for

DATE Advance Warnings Priority Alerts Triads
11/17/92 25
11/26/92 24,25

12/3/92 24,25 24,25
12/7/92 24,25
12/8/92 24,25 24,25
12/9/92 24,25 24,25 24
12/10/92 24,25 24,25
12/14/92 24,25
12/15/92 24,25 24,25
12/16/92 24,25 24,25
12/17/92 24,25 24,25
1/4/93 24,25 25
1/5/93 24,25 24,25
1/6/93 24,25 24,25
1/7/93 24,25 24,25
1/11/93 24,25
1/12/93 24,25 24,25
1/13/93 24,25 24,25
1/14/93 24,25
1/19/93 24,25 24,25
1/20/93 24,25
1/21/93 24,25
1/25/93 24,25,26 25,26
1/26/93 24,25,26 25,26
1/27/93 24,25,26
2/1/93 24,25,26
2/2/93 25,26 25,26
2/3/93 25,26
2/4/93 25,26
2/8/93 25,26
2/9/93 25,26
2/10/93 25,26 25,26
2/11/93 25,26 25,26
Total hours 31 20 15
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Table 2(c): Advance Warnings, Priority Alerts, and Realized Triads
Fiscal Year 1993/94

Time Periods for

DATE Advance Warning Priority Alert Triad
11/9/93 24,25
11/10/93 24,25
11/11/93 24,25 24,25
11/15/93 24,25 24,25
11/16/93 24,25 24,25
11/17/93 24,25 24,25
11/18/93 24,25 24,25
11/22/93 24,25 24,25
11/23/93 24,25 24,25
11/24/93 24,25 24,25
11/25/93 24,25 24,25
11/29/93 24
12/13/93 24,25 24,25
12/14/93 24,25 24,25 24
12/15/93 24,25 24,25
12/16/93 24,25 24,25
1/5/94 24,25
1/6/94 24,25 24,25
117/94 24,25 24,25
1/13/94 24,25 24,25
1/18/94 24,25 24,25 25
1/19/94 24,25 24,25
2/2/94 25,26
2/3/94 25,26
2/14/94 25,26 25,26
2/15/94 25,26 25,26
Total hours 22 23 15
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Table 2(d): Triad Advance Warnings, Priority Alerts, and Realized Triads
Fiscal Year 1994/95

Time Periods for

DATE Advance Warning Priority Alert Triad
11/28/94 24,25
11/29/94 24,25 24,25
12/5/94 24,25 24,25
12/6/94 24,25 24,25
12/7/94 24,25 24,25
12/8/94 24,25 24,25
12/12/94 24,25 24,25
12/13/94 24,25 24,25
12/14/94 24,25 24,25 25
12/15/94 24,25 24,25
12/19/94 24,25 24,25
12/20/94 24,25 24,25
12/21/94 24,25 24,25
12/22/94 24,25 24,25
1/3/95 24,25 24,25
1/4/95 24,25 25
1/10/95 24,25
1/11/95 25 25
1/12/95 25 25
1/18/95 24,25 24,25
1/19/95 24,25 24,25 25
1/25/95 24,25
1/26/95 24,25
1/30/95 25,26
1/31/95 25,26

Total hours 20 21 15




Table 3

Sample Means and Standard Deviations of Components of PSP

Y ear Mean Std Dev
SMP 1 19.52 4.10
CcC 1 1.29 8.76
UPLIFT 1 161 231
PSP 1 22.42 12.72
SMP 2 22.64 4.24
CcC 2 0.17 1.70
UPLIFT 2 1.39 112
PSP 2 24.19 5.75
SMP 3 24.16 6.71
CcC 3 0.28 2.97
UPLIFT 3 2.18 1.62
PSP 3 26.62 8.76
SMP 4 20.78 12.28
CcC 4 3.22 24.49
UPLIFT 4 2.38 453
PSP 4 26.38 35.08
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Table 4:

Coefficients Estimates and Probability Derivatives for Day-Ahead
Probability of Triad or Demand Charge Function

Parameter
Constant
Lagged Value of TSL
Triad Adv. Warning

Priority Alert

Estimate Standard Error Probability Derivative
-8.682 1.790
0.254E-03 0.871E-04 1.0215E-07
-0.217 0.388 -0.000087
1.643 0.395 0.00065
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Table 5: Sample Mean and Standard Deviation of Load Period Level PE;,

Load Period Mean Price Standard Load Period Mean Price Standard

£/MWH Deviation £/MWH Deviation

1 16.4041 4.672 25 65.4332 139.679
2 16.5361 5.068 26 46.9099 67.86
3 17.0682 5.188 27 35.0434 32.14
4 19.7809 6.283 28 30.631 16.974
5 22.4044 6.52 29 28.1736 10.163
6 24.0206 7.71 30 26.4282 7.437
7 25.8175 9.365 31 254712 7.114
8 27.1188 9.532 32 25.6455 6.963
9 28.5932 9.698 33 25.9198 7.184
10 29.8345 10.542 34 257174 7.739
11 29.6207 9.854 35 24.2444 7.888
12 28.897 8.895 36 21.6372 7.056
13 29.3244 9.081 37 19.013 5.382
14 30.5428 9.963 38 17.341 4771
15 30.7373 10.148 39 16.9903 4.868
16 29.4235 8.897 40 19.3905 7.292
17 26.5548 6.691 41 20.613 8.264
18 24.8538 6.066 42 21.9722 9.029
19 23.6454 6.295 43 20.5639 7.664
20 23.0726 6.313 44 19.85 7.199
21 22.5719 6.584 45 18.8334 6.535
22 24,1142 10.653 46 17.5373 5.451
23 31.8623 30.628 47 16.6788 4.904
24 56.67/34 117.676 48 16.149 4.474
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Table 6: Holiday Dummiesy,(j)

Dummy Variable Holidays

=1 Christmas(days 1 and 2),
New Y ears Day

j=2 Good Friday, Easter Monday

j=3 May Day, Spring Bank

j=4 L ate Summer
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Figure 1. Sample Pool Price Contract Day-Ahead fax

FORECAST PPUOTOR : 10710794 AND T1/10{94 Final P& for
Time | Periad SMF Capacily OpTii FSF 121994 &
Ending j No. Payment 137324
BRIl 11 0.997 L. g.u800 09452 0.354
%00 12 £.997 0.000 0.800 D.997 0.85%5
B30 13 1.003 0.600 i0.000 1.003 0.854
.00 14 1.670 0.600 0.24% 1.515% 1,586
.30 15 2.657 0.008 0.248 3113 1.913
3:00 16 3.835 0.042 0.257 4134 1.981
8:30 17 4.060 0.06D (.2b0 4320 1.883
.00 18 4.000 0.081 0.268 454 1.995
8:30 19 3.835 0.071 0.265 411 2.144
10:00 20 3.835 8.072 0,266 4,173 2,682
10:30 21 3.835 0.056 0,265 4.166 2,584
11:00 22 1.835 0.053 6,254 4,162 2,686
1130 23 1.835 {.059 0,463 4.157 2.608
12:00 24 2.999 1.051 0.261 im 2.688
12:30 25 2.998 0036 0.255 1.291 2.684
13:00 26 2.999 0.024 0.253 3.276 2.144
13:30 27 2.992 D011 c.249 3,252 2.139
1460 28 2860 1406 0.247 2913 21537
14:30 29 2061 A.005 0.246 2.909 2.137
15:00 30 2.99¢ B.003 0.246 3.241 1.977
15:30 31 2.6610 0.002 0.246 2.908 1.877
16:00 32 2.650 0.003 1.246 2.905 - 1.978
16:38 33 2.560 0.011 0.249 2.970 2.750
1708 3 2,992 0.0186 0.251 3251 2.153
17:30 35 3.193 0.024 6.253 3.470 2.751
1B:0D 36 3193 0.044 [.254 3.496 2.748
18:30 37 4.280 0.120 0.280 4.680 1.976
19:00 3H 4.7 9,150 0.285 5.135 1.371
19:30 34 4,704 0.128 0.232 5110 1.371
Z0:00 40 4.280 0.0456 0.258 4.584 1.042
20:30 41 3133 0.903 8.248 J.449 1.042
21:08 42 2.176 0.002 0.246 z.424 4.042
21:30 43 1.987 0.007 0.245 2.233 1.970
22:00 44 1.919 0.088 0.245 2.164 1.9%¥0
22:10 45 1.670 0.000 .245 1.915 1.971
2300 4B 1.670 .000 0.745 1.315 1.941
2330 d7 1.670 0,000 .245 1.915 1.588
0:00 48 1.000 0.000 1.000 1.608@ 1.441
0:30 1 0.998 0.000 1.000 01.998 0.292
1:00 ? 0.997 6.000 0.084 0,887 0.960
1:30 3 1.081 0.080 0.060 1081 0.960
2:00 4 2.495 0,006 f.245 2.740 0.960
2:1). . 2.49% D.G00O 0,245 2.740 6.960
3:00 b 2,485 0.000 .24k 2740 (.960
3130 7 2,495 0,909 0.245 2.740 0,960
4:05 H 1,670 0.100 0.245 1.915 1.960
4:30 9 0,998 0.000 0.000 0.998 0.960
5:00 1! 0.998 0.040 0.0GG 0,998 0.960
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Price 95—-94
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System Loads 91—-92
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System Loads 92-93
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System Loads 93-94
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System Loads 94—-95
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Figure 4(a): Plot of Half-Hourly Expected Demand Charges
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Figure 4(b): Plot of Half-Hourly Expected Demand Charge
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Figure 4(c): Plot of Half-Hourly Expected Demand Charge

Expected Demand Charge 93—94
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Figure 4(d): Plot of Half-Hourly Expected Demand Charge

Expected Demand Charge 94—95
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Average own price elasticities
BIC 17000: water supply industry
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Average own price elasticities
BIC 22200: steel tubes
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Average own price elasticities
BIC 22460: copper, brass, and other copper alloys
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Average own price elasticities
BIC 24890: ceramic goods
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Average own price elasticities

Average own price elasticities
BIC 31600: Hand tools and finished metal goods
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Figure 7

Mean Cross—Price Elasticities
Customers with BIC = 22200, Steel Tubes
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MEANELAS
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Figure 8
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Figure 10

Mean Cross—Price tlasticities
Customers with BIC = 31600, Hand Toals and Finished Metal Goods
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Figure 11

Price responses: BIC 17000
Water Supply
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