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ABSTRACT
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generating unit owner market power and how it is exercised, this paper derives a model of bidding
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maximizing market price that a generator would like set by its bidding strategy for several hedge
contract and spot sales combinations. This model applied to bid and contract data obtained from the
first three months of operation of the National Electricity Market (NEM1) in Australia to answer
several questions about the bidding behavior of a major participant in this market. This analysis
illustrates the sensitivity of expected profit-maximizing bidding strategies to the amount of financial
hedge contracts held by the generating unit owner. It also provides strong evidence for the
effectiveness of financial hedge contracts as a means to mitigate market power during initial stages
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1. Introduction

This paper derives a model of bidding behavior in a competitive electricity market which
incorporates the impact of the electricity generator’s position in the hedge contract market on its
expected profit-maximizing bidding behavior.! The model is first used to characterize the profit-
maximizing market price that a generator would like set by its bidding strategy for severa hedge
contract and spot sales combinations. Thismodel is applied to bid and contract data obtained from
thefirst three months of operation of the National Electricity Market (NEM1) in Australiato answer
several questions about the bidding behavior of amajor participant in this market.

Questions addressed by this analysis include: How close does this generator’s current
bidding strategy come to earning the highest profits possible given its hedge contract position and
the bidding strategies of the remaining participants? Are there changes in this generator’s hedge
contract position that could increase its expected profits, assuming the bidding strategies of the
remai ning participantsdo not change? If more profitable hedge contract position exists, why haven’t
generatorscompeting inthismarket movedtothismore profitablelevel of contracting? Theanswers
tothese questionswill shed light on the structure of optimal bidding and hedge contracting strategies
in a competitive electricity market.

A major concern of regulators and governments re-structuring their electricity supply
industriesand forming competitive marketsfor el ectricity generationisthe exercise of market power.
In this context, market power isthe ability of a generating company to raise the market price by its

bidding behavior and to profit from this price increase. A first step in determining whether a

1Hedge contracts are usually signed between a generating company and an electricity retailer. This contract guarantees
the price at which afixed quantity of electricity will be sold. They are purely financial obligations. |f the market price
exceeds the contract price, then the contract seller pays to the buyer the difference between these two prices times the
contract quantity. If the market price isless than the contract price the buyer pays the absolute value of this same price
differences times the contract quantity to the seller.



generator possesses market power is an accurate model of the optimal bidding behavior for a
generator competing in this market. Using such a model, | show that a firm’s hedge contract
position can exert adramatic effect onitsoptimal bidding strategy, and its short-term desireto raise
the market price. Infact, for sufficiently high hedge contract levels, a generator should attempt to
reduce market prices below its own marginal cost of production by its optimal short-term bidding
strategy.

These results also have implications for monitoring the exercise of market power. Even
given knowledgeof afirm’ shidding behavior in acompetitiveel ectricity market, without knowledge
of generator’ shedge contract position, itisdifficult, if notimpossible, to determineif thefirmisable
to exercise market power. For aspecific bid function, there is often a hedge contract position that
canrationalizethat bid function asexpected profit-maximizing. Thisresult impliesthat the strategic
value of actual bid functions to other competitorsis significantly reduced because a key ingredient
necessary to determine afirm’s profits from a given bidding strategy is unknown. Unfortunately,
the monitoring value of actual bid functionsto aregulator isalso significantly reduced for the same
reason.

Our empirical analysisof the bidding behavior of onethe mgjor participantsin NEM1 helps
toexplain several featuresof the pattern of pricesinthismarket. Specifically, sincethismarket was
formed, priceshavefallen precipitously. Beforere-structuring the average price of amegawatt-hour
(MWH) of electricity was roughly 35 Australian dollars ($AU). With the formation of separate
markets in the states of New South Wales and Victoria, pricesin each market settled at an average
value of roughly 25 $AU/MWH. With the interconnection of these two markets and the formation
of NEM1 in May of 1997, average prices in the integrated market fell even further to around 15

$AU/MWH. My analysis finds that despite the fact that the marginal cost of generation for many



of thelarge fossil fuel generating facilitiesis roughly $AU 15/MWH, because of the large quantity
of hedge contracts held by the major firms competing in this market, the short-run (conditional on
their current hedge contract prices and quantities) profit-maximizing market price for these
generatorsisvery closeto theactual market price set. Using my model of optimal bidding behavior,
| then provide arationale for why generators competing in this market sold hedge contractsin such
large quantities that these low-prices became short-run optimal. | then present two counterfactual
scenarios which show that reductionsin the generator’ s contract position can significantly increase
both the mean and standard deviation of the variable profits it earns from a profit-maximizing
bidding strategy based a reduced quantity of hedge contracts.

The remainder of the paper proceeds as follows. The next section presents my model of
optimal bidding behavior with hedge contractsfor a generic competitive el ectricity market. Inthis
section | define a best-response bidding strategy as the set of daily bid prices and quantities that
maximize expected daily variable profits given the strategies of other firms participating in the
market. | also definethe best-response price asthe market-clearing pricethat maximizestherealized
profits of thefirm given the bidding strategies of its competitors, the realized value of the stochastic
shock to the price-setting process, and its current hedge contract position. Section 3 then presents
agraphical analysis of severa scenarioswhich illustrate the relationship between the best-response
price for a firm and the quantity of hedge contracts sold by the firm relative to its sales into the
electricity spot market. Given thismodel of bidding behavior, Section 4 provides background on
themarket structure, market rulesand regul atory oversight in NEM 1 and describesthe datanecessary
to implement this model empirically. Section 5 provides evidence for the validity of my model of
the price-setting processin NEM 1. Section 6 uses the results of Section 5 to derive best-response

prices for a mgor firm participating in this market. Section 7 uses the results of the previous



sections to explain the current pattern of prices in this market. This section also discusses the
rationalefor the high levels of hedge contractsinthismarket. Thefinal section describesmy related
research in progress and the implication of these results for the design of competitive electricity
markets.
2. A Model of Best-Response Bidding and Best-Response Pricing

A competitive electricity market is an extremely complicated non-cooperative game with a
very high-dimensional strategy space. A firm owning asingle generating set competing in amarket
with half-hourly prices must, at a minimum, decide how to set the daily price for the unit and the
quantity bid for 48 half-hours during the day.? In all existing electricity markets firms have much
moreflexibility in how they bid their generating facilities. For instance, in NEM 1 firmsareallowed
to bid daily prices and half-hourly quantities for 10 bid increments per generating set (genset). For
a single genset, this amounts to a 490-dimensional strategy space (10 prices and 480 half-hourly
quantities).  Bid prices can range from -9999.99 $AU to 5000.00 $AU, which is the maximum
possible market price. Each of the quantity increments must be greater than or equal to zero and
their sumislessthan or equal to the capacity of the generating set. Most of the participantsin this
market own multiple gensets, so the dimension of the strategy space for these firmsis even larger.

A generator’s optimal bidding strategy will depend on the bidding strategies of al of its
competitors. | assume that afirm selectsits bidding strategy conditional on the strategies selected
by its competitorsto maximize its expected profitsfor the day. Inthe terminology of game theory,
each generator would like play its best response to its competitors’ strategies for that day, given its
costs of generation and hedge contract portfolio. If the strategies played by al participants satisfy

this condition, then each strategy is that firm’s Nash Equilibrium strategy.

’Electrici ty generating plants are usually divided into multiple generating sets or units. For example a 2 gigawatt (GW)
plant will usually be divided into four 500 megawatt (MW) generating sets.



Let (i) represent thedaily bidding strategy of firmi, in the present context the set of 10daily
prices and half-hourly capacity bids for each generation set that firm i owns. Let
T[(S(1),S(2),...,.5(K))] equal the expected daily profit of firm i when there areK firms competing in
the market and they bid according to the strategies $(1),5(2),...,.S(K), respectively. The firm
maximizes expected daily profits because there is uncertainty in the price-setting process that is
unknown at thetime each firm sel ectsitsbidding strategy for thefollowing day. The expected profit
function specifies the expected revenue received by firm i for the day when each firm’s bids are
described by the strategies S(1),5(2),...,S(K), minus the expected costs of generation, taking into
account any expected revenues—positive or negative—from hedge contracts.

In order compute the expected profit function associated with any strategy the firm might
play, | must have an accurate model of the process that translates the bids generators submit into the
actual market pricesthey are paid for the electricity for all possible realizations of uncertainty about
the price-setting process. The construction of amodel of the price-setting processin NEM1 that is
ableto replicate actual market prices with reasonable accuracy is a necessary first step to compute
best-response bidding strategies or perform any comparative analysis of the expected profitability
of alternative bidding strategies. Without the ability to replicate actual market prices using actual
generator bid functions, itisimpossibleto compare with any degree of confidence market outcomes
under current or historical bidding strategies with what they would be under any alternative bidding
strategies. A major part of the empirical haf of the paper is devoted to demonstrating that my
model of the price-setting process accurately reflects the actual price-setting process.

Given an expression for ©[(S(1),5(2),...,.S(K))], firm i’s expected profit function for all

possiblestrategiesplayed by all firms, astrategy which maximizefirmi’ sexpected profitsgiventhe



strategies played by its competitors, or best-response strategies, can be represented as the solution
to the following optimization problem:

WS\(?)X (1), (1)) 1)
where S(-1) = (5(1),52),...,5(i-1),5(i+1),..S(K)) is the vector of strategies of all other firms.
Computing firm i’ s best-response strategy involves maximizing ;[ S(i),S(-i1)] with respect to al of
the daily prices and half-hourly availability declarations for all generating units owned by firmi.

In NEM 1, each day d isdivided into the half-hour load periodsi beginning with 4:00 am to
4:30 am and ending with 3:30 am to 4.00 am the following day. Let Firm A denote the generator
whose bidding strategy is being computed. Define

Q.,: Total market demand in load period i of day d

SO,,(p): Amount of capacity bid by all other firms besides Firm A into the market in load

period i of day d as afunction of market price p

DRy(p) = Q4 - SO,4(p): Residual demand faced by Firm A in load period i of day d,

specifying the demand faced by Firm A as afunction of the market price p

QC,: Contract quantity for load period i of day d for Firm A

PC,4: Quantity-weighted average (over all hedge contracts signed for that load period and

day) contract price for load period i of day d for Firm A.

m4(p): Variable profitsto Firm A at price p, inload period i of day d

MC: Marginal cost of producingaMWH by Firm A

SA,,(p): Bid function of Firm A for load period i of day d giving the amount it iswilling to

supply as afunction of the price p
The market clearing price p is determined by solving for the smallest price such that the equation

SA(p) =DR(p) holds. The magnitudes QC,, and PC,, are usually set far in advance of the actual



day-ahead bidding process. Generators sign hedge contracts with electricity suppliers or large
consumersfor apattern of pricesthroughout the day, week, or month, for an entirefiscal year. There
is some short-term activity in the hedge contract market for electricity purchasers requiring price
certainty for alarger or smaller than planned quantity of electricity a some point during the year.

In terms of the above notation, | can define the variable profits® (profits excluding fixed
costs) to Firm A for load period i during the day d at price p as.

m4(P) = DR4(p)(P - MC) - (p - PCy)QC,q @)
Thefirst term isthe variable profits from selling electricity in the spot market. The second term, if
p > PC,,, isthetotal payments made to purchasersof hedge contractsif the pool price, p, exceedsthe
contract price during that half-hour. If p < PC,, the second term is the total payments made by
purchasers of hedge contracts to Firm A. Once the market-clearing price is determined for the
period, equation (2) can be used to compute the profits for load period i in day d.

Writing Firm A’ s profitsin this manner shows that unlessits bidding strategy can effect the
market-clearing price p, Firm A’s profits are unaffected by its bidding strategy for a given hedge
contract quantity and price. The goal of Firm A’s best-response bidding strategy will therefore be
to find the daily bid function which results in market-clearing prices that make the expectation of
the sum in equation (2) over al load periodsin the day as large as possible.

To seethisresult more clearly, make the following extensions to the basic model. Suppose
that there are stochastic demand shocks to the price-setting process each period, and that Firm A
knows the distribution of these shocks. This could be due to the fact that it does not exactly know
how its competitors will bid—SO(p) has a stochastic element to it—or it does not know the market

demand used in the price-setting processwhen it submitsitsbids—Qisknownupto an additiveerror.

3For the remainder of the paper, | use variable profits and profits interchangeably with the understanding that | am always
referring to variable profits.



Let ¢ equal thisshock to Firm A’ sresidual demand functionin load periodi (i =1,...,48). Re-write
Firm A’sresidual demand in load period i accounting for this demand shock as DR,(p,g; ). Define
O = (Ppyees P> Or10e-0501 30 Oz10e0:0b, 65 -+ Olag1re-sClag )
asthevector of daily bid prices and quantities submitted by Firm A. Therulesof the NEM 1 market
require that asingle price, p,, is set for each of the k=1,...,JxK bid increments owned by firm A for
the entire day. There are K increments for each of the J gensets owned by firm A. However, the
guantity, g, made available to produce electricity in load period i from each of the k=1,...,JxK bid
increments can vary across the 48 load periods throughout the day. In NEM1, the value of K is 10,
so the dimension of ® is10J + 48x10J. Firm A owns a number of gensets so the dimension of ®
is more than several thousand. Let SA,(p,®) equal Firm A’s bid function in load period i as
parameterized by ®. Note that by the rules of the market, bid increments are dispatched based on
the order of their bid prices, from lowest to highest. This means that SA,(p,®) must be non-

decreasing in p.

Let p(s;, ©), denote the market-clearing price for load period i given the residual demand
shock realization, €, and daily bid vector ©. It isdefined asthe solutionin p to the equation DR,(p,¢;)
= SA(p,®). Let f(g) denote the probability density function of € = (g, €,,..., €45)". Firm A’s best-

reply bidding strategy is the solution to the following optimization problem:
48

max,, ff IX; [DR(p,(e.®))(p(e.®) - MC) - (p(e.,®) - PC)QC]f(e)de,...de,; (3)
0l subjectto b, >RO® > b,.

Define ®" asthe expected profit-maximizing value of ®. Besidesthe extremely large dimension of

0, there are several other reasonsto expect this problem to be extremely difficult to solve. First, in

genera, the residual demand function faced by Firm A is a non-decreasing, discontinuous step

function, because the aggregate supply curve of all participants besides Firm A isanon-decreasing

10



step function. Second, to compute the value of the objective function requires integrating with
respect to a 48-dimensional random vector €. Most important, the dimension of ® for Firm A is
greater than 2,000. A 2,000 dimensional nonlinear program exceedsthe memory and computational
limits of most large workstations. Finally, several sets of linear inequality constraints represented
by the matrix R and vectors of upper and lower bounds b, and b, must be imposed on the elements
of ®. Specifically, none of the g, can be negative and the sum of the g, relevant to a given genset
cannot be greater than the capacity of the genset. The prices for each bid increment cannot be
smaller than -9999.99 $AU, or larger than 5,000.00 $AU. Although none of these problems are
insurmountable, clearly thisisan extremely complicated nonlinear programming problem that will
tax the capability of even the most powerful workstation.

At this point it is useful to compare the optimal bidding strategy problem given in (3) to
problem of computing an optimal supply function with demand uncertainty discussed in Klemperer
and Meyer (1989) and applied to the electricity supply industry in England and Wales by Green and
Newbery (1992). Re-write equation (2) with the residual demand function for load period i that
includes the shock for periodi as:

my(P, &) = DRiy(p &,)(P - MC) - (p - PC,))QCiq. (4)
Solving for the value of p that maximizes (4) yields p* (g;), which is the profit-maximizing market
clearing price given that Firm A’s competitors bid to yield the residual demand curve, DR y(p,s;,),
with demand shock realization, g;, for the hedge contract position, QC,, and PC,,. Becausethisprice
maximizes the ex post realized profits of Firm A, for the remainder of the paper, | will refer toit as
the best-response price for the residual demand curve DR, (p,g;,) with demand shock realization g,
for the hedge contract position QC,, and PC,,. Substituting this value of p into the residual demand

curveyields DR, p* (g).¢;,). This price and quantity combination yields Firm A the maximum
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profit that it can earn given the bidding behavior of itscompetitors and the demand shock realization,
g. Klemperer and Meyer (1989) impose sufficient restrictions on the underlying economic
environment—the demand function, cost functions and distribution of demand shocks—so that by
tracing out the price/quantity pair (p,*(g),.DRi4( p*(€).€;,)) for all vaues of ¢ yields a strictly
increasing supply curve, SA(p), for Firm A for load periodi. For each demand shock realizationthis
supply curve yields the best-response price for Firm A given the bidding strategies of Firm A’s
competitors and its hedge contract position. Green (1996) solves this supply function equilibrium
problem with contract cover for the case of linear supply functions.

Because the market rules and market structure in NEM1 constrain the feasible set of price
and quantity pairsthat Firm A can bid in agiven load period, it will be unable to achieve p* (g;) for
all redizationsof g usingitsallowed bidding strategy. Asnoted above, the allowed bidding strategy
constrains Firm A to bid ten bid increments per genset, but moreimportantly, the prices of theseten
bid increments must be the samefor all 48 load periods throughout theday. Thiscan severely limit
the ability of Firm A to achieve p*(g;). Determining the types of restrictions to put on the set
feasible bidding strategies to yield to lowest possible market prices from firms competing using
strategies from these restricted strategy setsis aimportant area for future research.

In the empirical half of the paper, | examine the extent to which Firm A’s current bidding
strategy fallsshort of the obtaining best-response pricing profits. | find that thevariable profitsfrom
best-response pricing—setting p* (¢;) for demand shock reali zation g; assuming current hedge contract
prices and quantities—for Firm A range from 11 to 17 percent higher than the variable profits from
Firm A’s current bidding strategies, depending on the marginal cost of generation assumed. How

much of this profit difference is due to deviations from best-response bidding by Firm A and how
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much is dueto the constraints on Firm A’ s best-response bid functions because on the market rules
governing the price-setting process, isatopic | am currently investigating.

Best-response prices must yield the highest expected profits, followed by best-response
bidding, because the former is based on the redlization of ¢; as shown in (4), whereas the latter
depends on the distribution of € as shown in (3). The generator’s actual expected profits can only
belessthan or equal to the best-response bidding expected profits. Recall that by definition, the best-
responseprice, p*(g;), yieldsthe maximum profits possible given the bidding strategiesof FirmA’s
competitors and the value of the residual demand shock, g, The best-response bidding strategy
which solves (3) for the expected profit-maximizing vector of allowable daily bid prices and
quantities, ® , yieldshighest level of expected profitsfor Firm A within the set of allowablebidding
strategies. Therefore, by definition, this bidding strategy should lead to higher average profits than
Firm A’s current bidding strategy for the same set of competitors’ bids and own contract hedge
positions. Theextent to which profitsfrom abest-response bidding strategy lie below the maximum
possible obtai nable from best-response priceswill not be addressed here. However, giventhe high-
dimensional strategy space available to Firm A, it appears that a non-negligible portion of the
difference between the best-response pricing variable profits and variable profits under Firm A’s
current bidding strategy can be attributed to the use of bidding strategiesthat are not best-response
in the sense of not solving optimization problem (3).

The empirical half of the paper also demonstrates, using my model of the price-setting
process and bids by other generatorsbesidesFirm A, that significant increasesin Firm A’ sexpected
variable profitsare possibleif it unilaterally reduces its hedge contract position and manages to set
best-response pricesfor its new hedge contract position. However, the downside of this reduction

in contract quantity isasignificantly morevolatility acrossdaysin market pricesand variabl e profits.
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In order to provide economic intuition for this and other results presented later, | now turn to a
graphical analysis of the impact of afirm’s contracting position on its best-response prices.
3. An Economic Analysis of the Impact of Contract Quantity on Best-Response Prices

Beforeproceeding withthisanalysis, notethat | canre-writeequation (4), therealized period-
level profitsof Firm A, as:

n(p) = (DR(p) - QC )(p - MC) + (PC - MC)QC. )
Notethat if QCisset equal to zero, thenn(p) = DR(p)(p - MC). For the remainder of the paper | will
omit the subscripts on variables because my analysis is at the load period-level unless explicitly
noted. For notational ease, | aso omit g from the residual demand function despite the fact that |
deal only with the realized residual demand curve (including the realization of ¢; ) faced by Firm A
and best-response prices for the remainder of the paper.

Re-writing equation (3) in this manner isolates the impact of Firm A’s hedge contract
position on its optimal bidding behavior. Because contract prices and quantities, PC and QC, are
set well in advance of the day-ahead bidding process and its margina cost, MC, is known, for the
purposes of Firm A’s day-ahead bidding strategy, the second term in (5) is a fixed cost.
Consequently, because its day-ahead bidding strategy has no impact on the second term of (3), Firm
A’sgoal in setting itsbid prices and quantitiesisto maximizethefirsttermin (3). Define DR.(p)
=DR(p) - Q. asthenet of contract cover residua demand faced by Firm A, recognizing that it can
be both positive and negative. This meansthat Firm A can sell both more or less than its contract
cover. Theportion of itsprofitsthat are affected by its day-ahead bidding strategy can be written as
*(p) = DR (p)( p- MC). If it has nonzero contract cover, Firm A wishesto achieve avalue of p

that maximizes «* (p) by its bidding strategy.
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To alow agraphical analysis, | assume Firm A faces alinear residua demand function for
itsoutput, so that DR(p) takesthe form givenin Figure 1.* Theline shifted to |eft parallel to DR(p)
iIsFirm A’ sresidual demand lessits contract cover Q.. Associated with the both DR(p) and DR.(p)
=DR(p) - Q. are marginal revenue functions, giving theincrease in revenueto Firm A from selling
one more unit of output. For the case of no contract cover this lineis labeled MR, .. The line
labeled MR isthe marginal revenue for contract cover level Q.. Notethat MR isaleftward shift
of MR. From standard microeconomic theory, the profit maximizing level of output for Firm A,
given that it faces either residual demand curve and associated marginal revenue curvein Figure 1,

isto produce at the point where that marginal revenue equals its marginal cost.

P

MC
DR(p)
Q
MR, MRyc DR(p)-Qc

Figure 1: Best-Response Prices with Generation Greater than Contract Quantity

*The mathematics underlying my analysis is unchanged by more complicated residual demand functions allowed by the
rules of the market. Recall that DR(p) = Q - SO(p). The rules of market require SO(p) to be an increasing function and
the structure of available generating technologies implies that SO(p) increases an increasing rate, which implies DR(p)

decreases at a decreasing rate.
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The intersection of Firm A’s marginal cost with each margina revenue function gives the
best-response quantitieswith and without contract cover. Let S denotethe best-response quantity
produced by Firm A with no contract cover. Thisisthe quantity at the intersection of MR, with
MC. Let S - Q. denote the value of net output (output less contract quantity) at the point where
MR intersectsMC. Thetwo best-response pricesare given onthevertical axis. They aretheprices
that solvethe equation DR(p) = S,, for I=Cand NC. The best-response price with no contract cover
isPyc The best-response price with contract cover is P.. Note that the best-response price with
contract cover is below the best-response price without contract cover. This is a genera
phenomenon. In thiscase, Firm A is producing more electricity than its contract quantity so that
DR.(P;) =DR(P.) - Q- = S; - Q- > 0. Because Firm A has a net long position in electricity, its

profit maximizing pricegiventherealization of itsresidual demand curveisgreater thanitsmarginal

16



MC

3 Q

Sc-Qc
© 7 MR, DRp)}-Q, MRxc DR(p)

Figure 2: Best-Response Prices with Generation less than Contract Quantity

cost of generation, MC.

If Firm A sellsless electricity than its contract quantity, then its best-response price will be
less than its marginal cost. To see this consider the case given in Figure 2. The same curves are
drawn asgivenin Figure 1. The only difference, isthat DR(p) - Q. crosses the vertical (price)
axisat avalueof pthat islessthan Firm A’ smarginal cost. Thisimpliesthat at amarket price equal
to Firm A’smarginal cost, the amount of output Firm A sellsisless than its contract quantity. To
compute the best-response prices without contract cover in this case | proceed in the same manner
asdescribed for Figure 1. For the case of contract cover, | must extend, MR, the marginal revenue

curvefor DR(p) = DR(p) - Q. past the vertical axisto the point whereit crossesFirm A’smarginal
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cost curve. This gives the profit-maximizing level of net output for Firm A given its contract
quantity Q.. Thepricesuchthat S =DR(p) or S - Q- =DR(p) isP, the best-response price with
contract quantity Q.. Asshowninthediagram, thispriceislessthan Firm A’smarginal cost. The
intuition for this result, is that if Firm A has a greater contract quantity than electricity sales, its
realized profits are maximized at apricelessthanitsmarginal cost. This can be seen by inspection
of equation (3). Because DR.(p) = DR(p) - Q. is negative, the profit contribution of the first term
will be positive only if the market priceislessthan Firm A’smarginal cost.

If Firm A becomessufficiently over-contracted, itsbest-response price can even becomezero,
assuming negative market pricesare not possible. If themarket rulesallow negative market clearing

prices, then its best-response price would be negative. To seethislogic, consider Figure 3, which

MC

Figure 3: Best-Response Prices with Generation Significantly less than Contract Quantity
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repeats the curves drawn in Figure 2, but with DR(p) - Q. shifted further to the left. The value of
Q. relative to DR(p) is so large that the price at which DR(p) - Q. crosses the vertical axisisless
than negative onetimes Firm A’smarginal cost. Repeating the analysisin Figure 3, yields a best-
response price that is negative. If negative market-clearing prices are not possible, then Firm A’s
best-response price in this case would be zero. In NEM1, the generators can pay to produce
electricity in aload period, athough the minimum price to consumersis zero. If the smallest price
sufficient to satisfy total system demand is negative, then all generators producing during this half-
hour pay thispriceto sell power into market, but electricity suppliersand large customers purchasing
electricity from the market receiveit for free. Because hedge contracts are tied to the market price
and not the price generators must pay to produce, best-response pricing for Firm A under NEM 1
rules for this hedge contract scenario is a market price equal to zero.

Giventhat the best-response pricewith contract cover isalwayslower than the best-response
price, one might ask why Firm A should hold any contract cover. Clearly, the smple answer isthat,
Firm A always sells significantly more electricity under the best-response price with contract cover
relative to what it sells at the best-response price without contract cover. In al of the figures S >
Sye and in many cases by a substantial amount. Consequently, in choosing its contract quantity,
Firm A should balance these two competing goals, higher market-clearing prices with less contract
cover and higher saleswith greater contract cover. Theoptimal contracting strategy assuming best-
response pricing balances these two goals.

The fundamental determinant of the optimal amount of contract cover from the perspective
of maximizing variable profits from bidding into the el ectricity market isthe price elasticity of the
residual demand that Firm A facesfor itsoutput. Recall the definition of theresidual demand given

earlier: DR(p) = Q - SO(p). The only term in DR(p) that depends on price is SO(p), the amount
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supplied at pricep by all other participantsin the market besidesFirm A. Therefore, the slope of the
residual demand is minus one times the slope of the bid function of all other participants besides
Firm A. The more aggressively these firms bid, the greater will be the surge in additional supply
fromthesefirmsfor agivenincreasein the market-clearing price. Thegreater isthe supply response
from Firm A’ s competitors, the more elastic isthe residual demand that Firm A faces. On the other
hand, if these firms do not bid aggressively, thereis asmaller surge in supply from these firms for
agivenincreaseinthe market-clearing price. Very little supply responsefrom Firm A’ scompetitors
impliesa lesselastic residual demand for Firm A’soutput. A less elastic demand impliesamore
steeply sloped residual demand function and therefore a greater divergence between the best-
response-price without contract cover and best-response price with contract cover, and a smaller
divergence between Firm A’s production at these two prices. Conversely, a more price-elastic
residual demand function implies a smaller divergence between these two prices and a greater

divergence between Firm A’ s sales with and without contract cover.
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Figure4illustratesacasewhereFirm A facesavery flat residual demand curvefor its output.
The divergence between the two best-response prices is very smal, whereas Firm A sells
significantly more output with contract cover than without contract cover. A firm faced with this
sort of residual demand hasasignificantly greater incentiveto sell contract cover for itsoutput than
afirm facing the steeper residual demand in Figure 1. If thisfirm sells more hedge contracts, then
it will bid more aggressively into the electricity spot market in order sell more electricity than its
forward financial obligation. This, in turn, will leave its competitor with a more elastic residua
demand curve, which causes these competitor to want to sell more financial hedge contracts.
Consequently, the incentives one firm has to sell financial contracts produces incentives for its
competitors to sell more financial hedge contracts. Aswe show later in the paper, the amount of

contract cover the firm finds it optimal to sell also depends on its preferences towards risk.
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Figure 4. Divergence Between Best-Response Prices with Price Elastic Residual Demand
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Before analyzing the empirical implications of these results for the bidding and contracting
behavior of Firm A, | provide an overview of the market structure of NEM1 and market rules
governing its operation.

4. Overview of NEM 1

The Victoria Power Exchange (VPX) isthelongest running wholesale el ectricity market in
Australia. It was established under the Electricity Industry (Amendment) Act of 1994 and formally
began operation on July 1, 1994. The New South Wales (NSW) SEM began operation May 10,
1996. NEM 1 isthecompetitive electricity market established jointly by NSW and Victoriaon May
4,1997. Itintroduced unrestricted competition for generation dispatch acrossthetwo states, i.e., the
cheapest available generation, after allowing for transmission losses and constraints, is called on
regardless of whereit islocated, and all wholesale energy istraded through the integrated pool. The
spot price in each state is determined with electricity flowsin and between the state markets based

on competitive bids or offersreceived in both markets.

The ultimate goal of this process is to establish a single interconnected electricity market
across Queensland, NSW, Victoria and South Australia. The next step of this process began on
December 12, 1998 when the Victoriaand NSW marketswere merged into asingle national market.
The Australian Capital Territory (ACT) ispart of the NSW pool and South Australiatradesthrough
the Victorian pool. Queensland is not yet connected to the NSW grid, but this interconnection is

planned to be in place by 2001. A link to Tasmaniais aso under consideration.

The formation of NEM 1 started the harmonization of the rules governing the operation of
thetwo marketsin Victoriaand NSW. The market structures of thetwo electricity supply industries
in Victoriaand NSW are similar in terms of the relative sizes of the generation firms and the mix

of generation capacity by fuel type, although the NSW industry isalittlelessthan twice the size (as
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measured by installed capacity) of the Victoriaindustry and the largest 3 generatorsin NSW control
alarger fraction of the total generation capacity in their market than the three largest generatorsin

Victoria control of their market.
4.1. Market Structurein NEM1

Restructuring and privatization of the State Electricity Commission of Victoria (SECV) in
1994 took place at the power station level®. Each power station was formed into a separate entity
tobesold. All former SECV generation capacity is now privately owned. Buyers have comefrom
within Australia and abroad. For example, PowerGen, the second-largest United Kingdom
generating company, owns a49.9% share of Y allourn Energy, along with investors from Japan and
Australia. Mission Energy, aU.S. company, owns 51% of the Loy Y ang B station. Currently there
are eight generating companies competing in the VPX. The supply and distribution sector was
formed into five privatized companies which are owned by a combination of U.S. utilities and

Australian companies.

The NSW SEM has four generators competing to supply power. All generating assets are
still owned by the NSW government. There are seven corporatized state-owned electricity
distribution and supply companies serving NSW and the Australian Capital Territory (ACT). The
eventual goal is to priv4atize both the generation and supply companies, but the current very low

electricity pricesin NEM1 have delayed this process indefinitely.

In both Victoria and NSW, there is an accounting separation within the distribution
companies between their el ectricity distribution business and their electricity supply business. All

other retailers have open and non-discriminatory access to any of the other distribution company’s

S\Wolak (1999) provides a more detailed discussion of the operating history of the VPX and compares its market
structure, market rules and performance to the markets in England and Wales, Norway and Sweden and New Zealand.
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wires. In NSW, the high-voltage transmission grid remains in government hands. In Victoria, the
high-voltagetransmission grid wasinitially owned by thegovernment and called PowerNet Victoria.
It was subsequently sold to the New Jersey-based US company GPU and renamed GPU-PowerNet.
INnNSW it iscalled TransGrid. Both the state markets operating under NEM 1-SEM in NSW and

VPX inVictoria—were state-owned corporati zed entities separatefrom the bulk transmission entities.

Peak demand in Victoriaruns approximately 7.2 GW. The maximum amount of generating
capacity that can be supplied to the market is approximately 9.5 GW. Because of this small peak
demand, and despite the divestiture of generation to the station level, three of the largest baseload
generatorshave sufficient generating capacity to supply at least 20% of thispeak demand. Morethan
80% of generating plant is coal-fired, although some of this capacity does have fuel switching
capabilities. The remaining generating capacity is shared equally between gas turbines and
hydroelectric power. The NSW market has a peak demand of approximately 10.7 GW and the
maximum amount of generating capacity that can be supplied to market is approximately 14 GW.
There are two large generation companies each of which control coal-fired capacity sufficient to
supply morethan 40% of NSW peak demand. Theremaining large generator has hydroel ectric, gas
turbine and coal-fired plants. The Victoria peak demand tends to occur during the summer month

of January, whereas peak demand in NSW tends to occurs in the winter month of July.

The full capability of the transmission link between the two states is nominally 1100MW
from Victoriato NSW, and 1500MW in the opposite direction, although this varies considerably
depending ontemperatureand systemsconditions. If thereareno constraintson thetransfer between
markets, then both states see the same market price at the common reference node. If a constraint
limits the transfer then prices in both markets diverge, with the importing market having a higher

price than the exporting market.
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Thereisalargejoint two-state and federal government-owned hydroel ectric participant, the
Snowy Mountains Corporation, at the boarder of Victoriaand NSW that sellsinto both markets. It
owns 3.37 GW in capacity. Although all inter-pool energy flows are determined by competitive
bids, for the first stage of NEM 1 the existing Snowy arrangementsin each of the two State markets
have been retained. Snowy entitlementsin the two markets receive different spot prices most of the
time even though they are physically located at the same place on the network. To prevent possible
arbitraging by the Snowy Hydro Trading Company between thetwo markets, it isrequired to submit
abid whichwill be proportioned between the marketsin linewith the size of the entitlements (~29%
into Victoriaand ~71% into NSW). Trading also takes place across the Victoria/South Australia

border, with South Australia participating as a VicPool market participant in NEM 1.

Themarketismandatory inthe sensethat generatorswho operate generating unitslarger than
30MW must offer all electricity to be produced by those unitsinto the market on aday-ahead basis.
Generating facilities of less than 30MW in capacity that are embedded in the local distribution
network do not need to be centrally dispatched or trade in the market; however they may elect to do
so. Pool customersareretail suppliersand ‘ contestable’ customers (large commercia or industrial

customers who have half-hourly meters installed).
4.2. Market Rulesin NEM1

With afew minor exceptions, NEM1 has standardized the price-setting process across the
two markets. Generators are ableto bid their unitsinto the pool in 10 priceincrementswhich cannot
be changed for the entire trading day—the 24 hour period beginning at 4 am and ending at 4 am the
next day. The 10 quantity increments for each genset can be changed on a half-hourly basis.
Demanders can also submit their willingness to reduce their demand on a half-hourly basis as

function of price according these same rules. Nevertheless, there is very little demand side
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participation in the pool. A few pumped storage facilities and iron smelter facilities demand-side

bid, but these sources total less than 500 MW of capacity across the two markets.

All electricity is traded through the pool at the market price and al generators are paid the
market pricefor their energy, unlessit is equal zero. For the reasons discussed earlier, generators
may have to pay money to supply power during that half-hour period. The ex-ante Dispatch Price
determined for each 5-minute dispatch cycle is the maximum of: (1) the highest-priced capacity
band which is targeted by the economic dispatch system and (2) the Interpool transfer price. The
spot price for the half hour isthe average of the six ex-ante dispatch pricesfor each 5-minute cycle
of the local dispatch. As noted earlier if this average is negative the market priceis set to zero. If
demand exceeds supply for a5-minute interval, then the priceis set equal to the Value of Lost Load

(VOLL), whichis currently set equal to 5,000 SAU/MWH.

Power flows between the two state markets are determined at 5-minuteintervals, taking into
account the competitive bids and offersinto each of the state-based markets. Power flows between
the two markets may be constrained by technical interconnector line limits due to such factors as
thermal and power system stability. The scheduling process takes into account these restrictionsin

flows between the two markets.
4.3. Regulatory Oversight of NEM 1

Under NEM 1, the Office of the Regulator General in Victoriaisresponsible oversight of the
VictoriaElectricity Supply Industry. It set the pricesfor both transmission and distribution services,
using a price cap regulation plan. In NSW the Independent Pricing and Regulatory Tribunal
oversaw the operation of the SEM. It was charged with setting prices for transmission and

distribution services, using a price cap regulation plan. Australia Competition and Consumer
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Commission regulates the state transmission grids in the integrated national electricity market.

Oversight of distribution companies remains with the two state regul atory bodies.
5. Modeling the Price-Setting Processin the NEM 1

This section describestheresults of my attemptsto model the price-setting processinNEM 1
using generator bid data and market demand data that | obtained for the period May 15, 1997 to
August 24, 1997. An accurate model of the price-setting processis necessary to compute the profit
function given in equation (5) for Firm A for any set of bids submitted by Firm A’ s competitors and
level of market demand net of transfers in the state in which Firm A operates. The day-ahead
generator bids in NEM1 consist of the following information for each generating unit: (1) the
quantity or capacity band bid (in MW) for each haf-hour, (2) available capacity in MW for each
half-hour, (3) fixed loading quantity (in MW) for each half-hour, and (4) the 10 daily price bidsin

Australian centsMWH.

Thereare ninequantity band bidswhich determinethe ninequantity bidincrements. Thelast,
and most often, tenth half-hourly quantity band is determined by CAPIMM, the maximum amount
of capacity available from the facility during that half-hour. Demand-side bids have a similar

structure except that bidders tend not to use all 10 bid increments.®

Theninequantity bidsand the CAPIMM quantity together with theten price bids can be used
to determineasupply curvefor each generating unit for each half hour. Oftenthevalueof CAPIMM

for agiven half-hour is set to a number less than the sum of the nine capacity bands, or is set equal

®The demand-side bidders usually draw power from the system at full capacity or shut down completely.
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to zero.” In thoseinstances, only those capacity bands or portions of bands lessthan CAPIMM are
considered in the construction of the aggregate supply curve for that half-hour. If the dataset has a
value for FIXED for a given generating facility for a given half-hour, that generation facility is
assumed to run at that capacity for that half-hour and the FIXED capacity is subtracted from the
aggregate demand and excluded from the aggregate supply bid function used to set the predicted
market price. All of these adjustmentsto the price-setting processwhere verified by membersof the

NEM1 staff as reflecting what is actually done in the price-setting process.

The first approach to modeling the price-setting process uses the intersection of the half-
hourly demands—net of demand-side bids, FIXED bids for all generators for that half-hour, and
transfers between the markets—with the half-hourly aggregate supply curveto determine a predicted
price of electricity for each half-hour. The second approach to modeling the price-setting process
uses the intersection of the half-hourly supply curve with the 5-minute ahead demand forecasts net
of these same half-hourly magnitudes to compute the 5-minute ahead prospective price. The six
prospective 5-minute ahead prices for each half-hour are then averaged to compute a prediction of
the half-hourly price. Thelatter process more closely followsthe actual price-setting process, so it
is hoped that the extra computational burden would be justified by the increased accuracy in

replicating actual pool prices.

All bid pricesfor each generating unit are adjusted for lossfactors obtained from NEM 1 staff
to convert al prices to the standard reference node for the purposes of constructing the aggregate

supply function. Demand-sidebidders, primarily pumped-storagefacilities, weretreated inthesame

"Values of CAPIMM equal to zero are common. For example, treating the unit of observation as the generating unit and
day pair, roughly 20% of the observations defined in this way have values of CAPIMM equal to zero. This percentage
of values of CAPIMM equal to zero is uniform across the 48 |oad periods in the day, with a minimum over al load
periods of 20.8 percent zeros and a maximum of 21.6 percent zeros.
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manner as supply-side bidders in the construction of the aggregate supply curve, with the only
difference being that if the market priceisless than their bid price, the load will be in service and

if it is greater than the bid price, the load will not bein service.

5.1. Simulations: Predicted Versus Actual Prices

Thefirst two columns of Table 1 give the sample means and standard deviations at the load
period level of the actual half-hourly pool price from the NSW market for the period May 15, 1997
to August 24, 1997. The second two columnsgive the sample means and standard deviations of the
predicted prices obtained using the intersection of the average half-hourly demands with the half-
hourly supply curves to determine the half-hourly market-clearing price. Before comparing the
results of these calculations, it isimportant to note that the use of half-hourly demand to determine
market-clearing pricesintroduces some degree of approximationinto my resultsrelativeto theactual
price-setting process. This approximation to the actual price-setting process should therefore work
best in those instances in which electricity demand of over the half-hour period is stable, meaning
that the half-hourly demand figure is representative of all of the five-minute ahead demand figures
in that half-hour period. Conversely, the load periods when my approximation technique should
work poorly are those where the 5-minute ahead demand forecasts in a half-hour period differ
significantly from one another, dueto an increasing or decreasing system demand during that half-
hour. For the purposes of thistable and all subsequent tables, Period 1 correspondsto the half-hour

beginning at 4:00 am and Period 48 correspondsto the half-hour beginning at 3:30 am thefollowing
day.
Comparing the mean pricesin columns 1 and 3 of the Table 1, showsthat my procedure does

agood job of predicting the actual half-hourly prices for most of the load periods. The difference

between the mean actual priceand the mean predicted priceisamost alwayslessthan oneAustralian
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dollar. The largest this difference ever getsisalittle less than three dollarsin load period 30, the
period beginning at 6:30 pm. | expect the half-hourly average demand to be very unrepresentative
of the 5-minute ahead demandsfor that half-hour. Thisisborne out by the extremely high standard
deviation of actual pricesduring that period and those adjacent to it. My model of the price-setting
process is aso able to predict the standard deviation of the actual half-hourly prices as well.
Comparing the numbersin columnstwo and four, | find relatively close agreement between period-
level the standard deviations of prices. Theseresultslead meto concludethat my model of theprice-
setting processwhich usesthe average half-hourly demands satisfactorily replicatesthe actual price-
setting process and can be used to perform meaningful counterfactual experiments such asmy best-

response price analysis.

To seeif these results could be improved upon, | used the 5-minute-ahead demand data for
the month of July 1997 in my simulation of the price-setting process. With thisdata, | first compute
the intersection of the aggregate supply curve for the associated half-hour for each of the 5-minute
demand forecasts in that half-hour. This gives 6 predicted 5-minute-ahead prices, which are then
averaged to compute the predicted pool pricefor that half hour. If the average of the 5-minute ahead
predicted pricesin ahalf-hour are negative, then thispriceisset equal to zero asrequired by the pool

rules.

Table 2 gives the sample means and standard deviations of the actual half-hourly price and
the predicted half-hourly price using the five-minute-ahead data for a sample of 5-minute demands
from July 2,1997 to July 30, 1997. The 5-minute ahead demand data yields similar results to the
half-hourly demand data, but with larger average misses than the half-hourly demand data. There
are a variety of reasons why these price predictions differ from the actual market prices. A one

reason can be traced to how transfers between the two markets are handled in the computation of
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market-clearing prices. Asnoted above, in boththe half-hourly demand and 5-minute ahead demand
simulated price-setting processes | assumethat the half-hourly transfer capacity, TRANSF, iseither
added or subtracted from the aggregate demand forecast. However, different transfers are taking
place during each 5-minuteinterval. Unfortunately, | am unableto obtain accessto the five-minute
transfer data necessary to model the actual price-setting process more accurately. A final reason for
the difference between the two pricesis also the most difficult to deal with. Each generation owner
submits aramp rate for each facility for each half-hour during the day giving the maximum rate at
which the amount of power supplied from that facility can charge. Accordingtothe NEM 1 rulesfor
the price-setting process, plants constrained at their ramp rate during a5-minute interval cannot set
the price for that 5-minuteinterval. Thisimpliesthat the 5-minute ahead priceis not just the price
at the point where aggregate demand crosses the half-hourly aggregate supply function. Inorder to
know which generatorsto skip over because their ramp rates cannot cover the increase in demand
across a5-minute interval, | need to know the current operating level of all generators. Although,
theramp rate for agenerating unit isgivenin the bid database, | do not know the amount of capacity
inuseat each generating facility for each 5-minuteinterval. Fortunately, information on the capacity
level of each generating facility is only required for a single 5-minute period, because once this
initial level is known, al 5-minute ahead prices can be determined relative to that point.
Incorporating this information into the process of simulating actual prices would enormously
increase the computational complexity of my problem. Given the accuracy | am ableto achievein
predicting actual prices using the half-hourly demands, | decided this increase in complexity was
unnecessary at thistime. | therefore employ the price-setting process which uses average half-

hourly demands to perform my best-response price analysis.

6. Simulations of Best-Response Prices
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This section uses the best-response pricing framework described in Section 2 and the price-
setting process described in the previous section to perform various simulations which estimate the
potential profit increases possible from achieving best-response prices relativeto Firm A’ s current
bidding strategy. Thefirst step isto compute Firm A’s profits from any market-clearing price. In
order to do so, several elements of Firm A’ s profit function must be specified. First, an estimate of
the marginal cost of generatinga MWH isrequired. From my conversations with staff at Firm A,
numbers in the range of 7.5 $AU/MWH and 15 $AU/MWH were deemed reasonable, with 15
$AU/MWH the most plausible. Second, knowledge of contract prices and quantitiesfor each half-
hour period is necessary to obtain an accurate estimate of the variable profits accruing to Firm A
from following any particular bidding strategy. Quantity-weighted average contract price and
quantity information for my sample period was provided by staff at Firm A. This completes the

information necessary to compute an estimate of Firm A’ s profit function for any half-hour.

6.1. Computing Profitsunder Best-Response Pricing

The first step in my analysis is to compute a baseline level of profits to compare to my
estimated profits from using best-response prices. To compute estimates of the actual profits
accruing to Firm A fromitscurrent bidding strategy, | first set valuesfor marginal cost, MC, and the
contract prices and quantities, PC and QC, for each load period and day in my sample. | then take
the actual pool price from the NSW market for each load period as the value of p. For the value of
DR(p) at the actual market clearing price, | take the final pre-dispatch values for each load period
giveninthebidding database (the variable DISPTG) for all Firm A units. Thefirst column of Table
3 gives the mean of my estimates of the actual load period level profits for my sample period
assuming that MC = 15 $AU/MWH. These profit levels and al profit levels reported in the paper

are multiplied by apositive scalar to preserve confidentiality but also to allow all profitslevelsand
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ratiosto be comparable acrosstables. Only the absolute magnitude of profitsisunknown. Thefirst
column of Tables4 and 5 gives the mean of my estimates of the actual load period level profitsfor
my sample period assuming that MC = 10 SAU/MWH and MC = 7.5 $SAU/MWH, respectively.

Thesenumbersrepresent my best guess of themean valuesof |oad period-level variableprofitsgiven

the information at my disposal for these three values of Firm A’s marginal cost of generation.

My simulation of the actual price-setting processfor agiven bid function formsthe basis of
my best-response calculations. To give aflavor for what my price predictionsimply about variable
profit levelsrelative to those computed based on actual market pricesand pre-dispatch levels, inthe
second column of Tables 3-5, | present my average load-period-level predictions of Firm A’s
variable profits, employing my price-setting process that uses the half-hourly demands. For each
load period, | solve for the smallest value of p such that SA(p) = DR(p), i.e., theamount Firm A is
willing to supply (according to its actual bids) is equal to the residual demand that it faces for its
output. Call thisprice p*. To compute Firm A’svariable profits, | set p in equation (5) equal to p*
and theamount supplied by Firm A equal to DR(p*). Thisprovidesall of theinformation necessary
to computean estimate of Firm A’ svariable profitsfor my model of the price-determination process.
The means of these |oad-period-level predicted profits are reported in the second column of Tables
3-5 for the marginal cost scenarios | consider. Despite the fact that | am using the half-hourly
demandsin my model of the price-setting process, | find close agreement between the actual profits
and predicted profitsfor all load periodsacrossall threetables. Theseresultsprovide further support

for the validity of my model of the price-setting process.
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6.2 Computing Best-Response Prices

We now proceed to the final step of my analysis, a comparison of the profits from best-
response prices, to those obtained fromtheactual bidding strategy. Throughout thisentirediscussion
| am assuming that all other firms in the market do not change their strategies in response to a
changein Firm A’sbidding strategy. My best-response price framework can be easily expanded to
deal with changesin the bidding strategies of other firms, or uncertainty in their bidding strategies.
In addition, as noted earlier, afull-blown computation of the actual best-response bidding strategy
giving the optimal daily values of the ten bid prices for each generating unit and ten half-hourly
capacity declarations for each generating unit will not be pursued here. Instead, the goal of my
anaysisisto show the maximum potential profits obtainable from pursuit of such a strategy and to
characterizeits general features. Asdiscussed in Section 2, these maximum potential profitsfrom
best-response prices may not be obtainable because of the constraints placed on Firm A’s bid

functions by the market rules.

| compute how much actual profits, equation (5), could beincreased if Firm A had obtained
best-response prices over the sample period, taking its contract position as given. In these
calculations, | assume that Firm A’s contract quantity, QC, and contract price, PC, cannot be
changed. Other calculations with my model reported below suggest that substantial increases in

expected profits are possible from a change in QC.

The last two columns of Table 1 contain the sample mean and standard deviation of these
optimal best-response prices at the load period level for my sample period May 15, 1997 to August
24, 1997, assuming the marginal cost of generation is 15 $SAU/MWH. For all but load period 1,
these prices are higher, sometimes significantly so, than either the actua market prices, or the

predicted prices | calculated using Firm A’s current bidding strategy.
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The next step in the analysis estimates the increased profits that could be earned by Firm A
if it were ableto set these load period level best-response prices through its bidding behavior. The
third column of Table 3 givestheratio of the average of best-response profitsto the average of actual
profitsfor each load period, assuming a marginal cost of generation of $15/MWH. Thelast column
givestheratio of the average of best-response profitsto the average of Firm A’s predicted profits,
calculated using my model of the price-determination process. These numbers provide my best
estimate of an upper bound on the increase in profits obtainable by Firm A as a result of
implementing abest-response bidding strategy. Thelast two columns of Tables4 and 5 present the
same set of calculationsasthosereported in Table 3 for the casesthat the marginal cost of producing

electricity by Firm A is 10 $AU/MWH and 7.50 $AU/MWH, respectively.

Several conclusionscan bedrawn from theresultsreported inthesetables. First, for al three
estimates of the marginal cost of producing electricity used, in al load periods there appear to exist
opportunitiesfor increasing profitsby pursuing abest-response bidding strategy, relativetoFirmA’s
current bidding strategy. These potentia profit increases are largest for the case in which the
marginal cost of generation is $15/MWH as opposed to $10/MWH and $7.50/MWH. The second
conclusion is that there are considerable differences in the magnitude of these potentia profit
increases across load periodsintheday. For example, the potential increases estimated range from
as small as 4% in some load periods to as large as 44 % in other load periods. The ratio of the
sample mean profits (over al load periods and days) from the best-response bidding strategy to the
sample mean predicted profits (over all load periods and days) from the current bidding strategy
yieldsavalue of 1.17 for the case of the marginal cost of generation equal to 15 $AU/MWH, 1.12
for the case of a marginal cost of generation equal to 10 $SAU/MWH and 1.11 for the case of a

marginal cost of generation equal to 7.5 $AU/MWH. That is, my initial estimatespredict an average
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improvement in profitability of 11% to 17% over the sample period from following a bidding

strategy which yields these best-response prices.

Taken asawhole, these results suggest that increasesin profitsare availableto Firm A from
achieving best-response prices, assuming no changeinitscontract position. What isunknownisthe
extent to which Firm A can achieve these increased profits through its actual bidding strategy.
Nevertheless, this result provides ajustification for the computational effort necessary to solve for

the best-response bidding strategy.
6.3 Best-Response Prices and Contract Quantities

As noted above, my modeling framework can be used to explore the impact of changesin
Firm A’s contract position on its best-response prices. | consider two simple cases. Thefirst case
assumes Firm A holds no contracts. The second case assumes that it uniformly cuts its contract
position to half its present level, but maintains the same contract prices. | compute Firm A’s best-
response pricesand profitsunder both of these scenarios. Thefirst scenario impliesthat the second
two termsin equation (2) are identically equal to zero. Under this assumption | have computed the
best-response price, p*, and the best-response profitsfor amarginal cost of generation of $15/MWH.
Table 6 givestheload period level mean and standard deviations of these profit levelsfor my sample

period.

The first point to notice from these tables is the substantial increases in average variable
profitsin most load periods relative to the average variable profits under both the current bidding
strategy with the current level of contract cover and under best-response pricing with the current
level of contract cover. However, these mean variable profit increases are not without a downside.

The second column of Table 5 shows that very large standard deviations in variable profits result
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from no contract cover best-response prices. The presence of contracts considerably reduces the
variability in load period level profits. According to my model, thisis at a cost of a significant
reduction in average load period level profits. These calculations suggest that, at a minimum, my
modeling framework can be a powerful tool for determining the relevant trade-offsin terms of the

means and variances in profits from pursuing different contracting and bidding strategies.

For comparison, Table 7 computesthe average period-level profitsassuming amarginal cost
of 10 $SAU/MWH and current contracting levels and the average period-level profitsthat could be
obtained if current contract levelswere set to half their magnitudein all load periodsand Firm A was
then able to set best-response prices at these contract levels. | also compare these profits to those
that could be obtained at current contracting levels at the best-response prices for current contract
levels. The second to the last column of this table presents the ratio of the best-response pricing
profits at half of current contract quantities over the actual profits at current prices, quantities and
contract levels. Thelast column presentstheratio of best-response pricing profitsat half of current
contract quantities over the best-response pricing profits at current contract levels. Although the
last column shows certain |oad periodswhere profitswill fall because of reduced contract quantities,
the increased average profits in other load periods more than compensate. The ratio of variable
profitsover all load periodsfor half of current contract quantitiesrelative to variable profitsover all
load periodsat current prices, quantitiesand contract levelsis2.34. Theratio of variable profitsover
al load periodswith best-response pricing and one-half current contract levelsin the numerator and
variable profits over all load periods with best-response pricing and current contract levelsin the
denominator is 1.35. These resultsillustrate the significant potential increases in expected profits
possible from reductions in the level of contract cover. The same downside mentioned above

appliestotheseresultsaswell. Period-level variable profitsare significantly morevolatilewhenthe
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amount of contract cover isreduced. It isaworthwhile empirical question to determine whether a
reduced level of contract cover combined with allowable best-response bidding would yield these

same levels of profit increases.

Although | do not have information on the hedge contract position of other firms in the
market there are severa rules of thumb that can be used to estimate the hedge contract position of
other mgjor firmsin this market. One such ruleisto take the total capacity of all bids submitted
below agiven price asthe contract quantity and the bid-quantity weighted price at which these bids
are submitted as the contract price. | computed estimates of PC and QC for each load period for
several of the other major participantsin thismarket for values of this price bound at 20 SAU/MWH
and 25 $AU/MWH. Using these values of PC and QC and similar estimates of the magnitude of the
marginal cost of generation, | repeated my best-response pricing analysis. For these firms | found
similar ratiosof the average of best-response pricing profitsto actual profits(assuming my estimated
level of contract hedging and marginal costs of generation) to those obtained for Firm A. Thisresult
suggests that al major participants are employing bidding strategies which achieve close to best-

response pricing profits.
7. Why NEM1 Firms Sell So Many Hedge Contracts

Although the previous section shows that there appears to be some opportunities for
increased profits to Firm A and other mgjor participants from modifying their bidding strategies
given their current contract positions, the difference between their current level of profits and the
best-response pricing profitsfor these firmsare not so large that one could claim that thesefirmsare
bidding in an irrational manner. Nevertheless, during this period extremely low market prices are
being set, many below the presumed marginal cost of generation of these participants. As noted

above it also is an open question whether afeasible bidding strategy can yield significantly higher
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profits than Firm A’s current strategy, given it present hedge contract prices and quantities. The
computations reported in Section 6 illustrate that reductionsin thelevel of Firm A’s contract cover
cansignificantly increasethevariableprofitsit can obtain from setting best-responseprices. Similar
resultswere achieved for this same analysisfor the other magjor playersin thismarket. However, as
shown in Section 3, the extent to which reductions in contract cover will increase best-response
pricing profits is determined by the elasticity of each firm’s residual demand. For Firm A, this
el asticity depends on the aggregate supply function of all generators besidesFirm A. Similar logic
appliesto al other generatorsin the NEM 1 market—the price elasticity of the residual demand that
these generatorsface determines the extent to which best-response pricing by them will yield higher
average prices from the electricity pool. The logic of the previous sections shows that the level of

contract cover held by all generators rationalizes the very low prices since the beginning of NEM 1.

From conversations with several market participants, there appears to be general agreement
among the parties involved that the current low electricity pricesin NEM 1 are caused by the high
levels of contract cover sold by the large generators serving this market. For the majority of days
in the sample, Firm A sellsless electricity than it has contract cover for. AsFigures2 and 3 show,
the best-response price for a generator in this position is less than its marginal cost of production.

Consequently, given the very high level of contracting of Firm A and its major competitors, it is
rational for each of these firmsto bid very aggressively into the pool in order to dispatch as much
of their capacity aspossible. Thisbidding strategy will yield very low pool prices, which aredesired
so long as the actual amount capacity dispatched is less than the firm’s contract cover for that half-

hour.

Given this set of circumstances, one question immediately arises. How did the maor

generatorsget themselvesin asituation where aggressivebidding and low pricesyield the maximum
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profitspossible? Stated differently: Why did the generators sign contractsfor such alargefraction
of their capacity? A complete answer to this question involves some speculation, but the analysis
of the previous section can contribute to an answer. Clearly, amgjor factor in the decision of the
large generators to sign these contracts is excess generation capacity to serve both the VPX and
SEM. Even in the absence of contract cover being held by any participants, the large amount of
capacity available to serve each state market relative to that state’ s demand in the vast mgjority of
half-hours of the year implies that all generators face a significant probability all of their capacity
will not be dispatched if they do not bid aggressively. |If generators believe their competitors face
these sorts of incentives, then they must in the language of Section 3 percelve themselves asfacing
very price-elastic residual demand functionsfor their output. Under these conditions, generatorswill
find signing a contract that fixes the price for a certain quantity of electricity extremely attractive,
so long as the contract price is higher than the generator’s marginal cost of producing electricity.
Thisfollowsfrom the analysis comparing the difference in best-response prices with aflat residual
demand curve (aggressive bidding by competitors) given in Figure 4 to the steeper residual demand

curve (less aggressive bidding by competitors) given in Figure 1.

Recall that a firm faces avirtually horizontal residual demand curve if its competitors bid
very aggressively. Thisdesireto sign contractsis particularly strong if the generator isrisk averse,
despite the fact that the expected value of the uncertain profit stream greatly exceeds the certain
incomestream. For avariety of reasons, onewould expect agovernment-owned corporatized entity
to besignificantly morerisk-aversethan aprivately-owned company. Infact, if agenerator manages
to sign contracts that exactly match the amount of electricity its managesto sell into the pool, that
generator has acertain profit stream that isindependent of the pool price of electricity. To seethis

result, re-write equation (2) as.
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n(p) = DR(p)(p —MC) —(p - PC)QC. (4)

Setting DR(p) = QC and solving for p, yieldsn(p) = (PC—-MC)QC. At the market pricethat causes
Firm A sell an amount equal to its contract quantity, its profits depend only on its contract price and
quantity for that load period and its marginal cost of production. Itsprofitsare completely insulated
from fluctuations in the market clearing price. In fact, it can be shown that the best-response price
subject to the constraint that Firm A producesits contract quantity isequal toitsmarginal cost. This

appears to be the contracting strategy pursued by several major participantsin this market.

This low-risk contracting and bidding strategy can have dire longer-term consequences if
very low market prices are necessary for the generator to sell all of its contract quantity. Theselow
prices cause purchasers of contracts to form expectations of very low future prices, which makesit
difficult for the generator to sell future hedge contractsat prices abovethe generator’ smarginal cost.
If all generators decide to pursue this strategy, the results can be even more troublesome for the
reasonsdiscussed in Section 4. A very aggressive bidding strategy leavesafirm’s competitorswith
very price-elastic residual demands. These very price elastic residual demands, by the logic of
Figure 1 and Figure 4, increase the incentive for these other generatorsto sell more contract cover.
Oncethesefirms sell more contract cover, they will have an incentive to bid more aggressively into
the electricity market, which leaves other generators with more price-elastic residua demands.
Given these more price-elastic residual demands, the above process now repeats itself, leading to

even more contracting and even lower prices.

The presence of excess generation capacity and risk-averse generating companies has
contributed to the current low pricesin NEM1. This statement seems to indicate that reducing the
amount of excess capacity in the market can lead to higher prices. However, this capacity reduction

strategy will only work if in response the generatorsto find it optimal to contract less, whichinturn
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causes them to bid less aggressively. Thisless aggressive bidding will then lead to higher prices.
Withdrawal of capacity from the market by Firm A can have these desired effects, but the bottom
lineis still that for al generators' best reply pricesto be above their marginal costs, they must sell
less contract cover than they produce in electricity. If Firm A were to reduce its capacity without
changingitscontract cover, so long asthis capacity reduction did not prevent it from selling its best-
response quantity in each load period, its optimal bidding strategy would be unaffected by this

reduction in capacity and market prices should remain the same.

To understand thislogic, consider the expression for the half-hourly profits earned by Firm

A as afunction of the market price. Asshown earlier, half-hourly profits can be re-written as:

n(p) = (DR(p) - QC)(p—MC) + (PC-MC)QC. (6)

The advantage of this expression for half-hourly profitsis that the second term, (PC - MC)QC, is
fixed from the perspective of the pool-price setting process. Thistermisthe profit that the generator
earns from its contracts. Note that if the amount the generator sellsto the pool at price p, DR(p),
islessthan the contract cover, QC, thegenerator |oses money on thisprocess, unlessthemarket price
is below the generator’ s marginal cost of production. Consequently, if the residual demand faced
by Firm A doesnot change, meaningthat if other generatorsdo not alter their bidding strategies, then
reducing the amount of capacity Firm A holds will have no effect on its optimal bidding strategy,
solongasFirm A isleft with capacity greater than DR(p) for all feasible values of p. Only changes
inafirm’s contract quantity will cause its best-response price to change. Therefore, any reduction
in the amount of capacity bid into the market must be accompanied by areduction in the amount of

contract cover for this capacity reduction to have any direct effect on a firm’'s optimal bidding

strategy.
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How much of areduction in contract cover is optimal depends on the risk tolerance of the
firm. The combination of lessaggressive bidding by Firm A and its competitorswill lead to higher
prices on average, and significantly higher average profits but significantly higher volatility in
profits. Higher profit volatility will come about because alarger fraction of generation output will

be sold at pool prices relative to contract prices.

A final reason for the large amount of hedge contracts held by Firm A istherelatively large
amount of vesting contracts outstanding during thistime period. Under the rules of the NSW and
Victoria markets, generators in these markets were required to sell to retail suppliers of eectricity
hedge contracts in sufficient quantity to cover the forecast load of non-contestable or captive
customers served by theseretailers. Non-contestable customers are prohibited from choosing their
retailer. They must purchase electricity from the incumbent local retailer. The prices of these
vesting contracts are set by the state government at fairly generous levelsrelative to current prices
in the wholesale market. Given the relatively small number of contestable customersin the NSW
and Victoria market during the sample period, these vesting contracts were avery large fraction of

the quantity of hedge contracts held by all generating companies.
8. Market Design Implications and Directionsfor Future Research

Thisanalysis hasyielded several results. First, adetailed analysis of theimpact of the level
of contracting on afirm’s best response-prices was presented. Herel found that if afirm sellsless
electricity than it has contract cover, then its best-response prices are less than its marginal cost of
production. If theamount of over-contracting issufficiently great, then best-response prices can be
negative (if market prices are alowed to be negative) or zero (if the market rules prohibit negative
prices). | also showed that although the best-response price with some level of contract cover is

bel ow the best-response pricewith no contract cover, depending on the price-el asticity of theresidual

43



demand function that the firm faces, the quantity of electricity sold with contract cover can be
significantly larger than that without contract cover. The price elasticity of the residual demand
faced by a firm depends on the aggressiveness of its competitors’ bids. In those instances when a
firm faces aprice-elastic residual demand, this differencein sales with and without contracting can
bevery large. If thefirmsfacesaless price-elastic demand, thisdifferenceissmaller. Inthissense,

afirm has a greater incentive to sell contractsif it faces a price-elastic residual demand.

My model of the price-setting processin NEM 1 which usesthe actual bids submitted, inter-
market transfers and average half-hourly market demand is able to replicate quite closely both the
observed prices and variable profit levels actually achieved. Using thismodel of the price-setting
process, | then computed best-response pricesfor Firm A and compared the profitsit would achieve
under these prices versus those obtained under their current bidding strategy. Depending on the
assumptionsmadeabout Firm A’ smarginal cost of production, my predictedincreasein profitsfrom
best-response pricing taken over al load periodsin my sample ranged from 11 percent to 17 percent

relative to their profits under current prices and contracting levels.

| also analyzed the impact of different contracting strategies on Firm A’s best-response
prices. | found that the case of zero hedge contracts yielded dramatically increased average prices
and profits, but significantly greater volatility in both prices and profits acrossload periods. | then
considered an intermediate case of one-half current contracting levels and current contract prices.
Best-response pricing with thislevel of contracting yielded 134% higher variable profits than those
at current pricesand contracting levels. Theseresultsareindicative of theincreased variable profits

possible from reductions in contract quantities.

Using several rules of thumb to estimate the contract quantities of other major participants

in the market, | repeated the best-response pricing profits to actual profits comparison and the
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reduced contract best-response pricing profitsto current profits comparison. Thisanalysisyielded
similar quantitativeincreasesin variable profitsfrom best response-pricing at current contract levels
tothoseobtainedfor FirmA. | asofound variable profitsincreasesfrom reduced contracting levels
and best-response pricing rel ative current profit level sfor thesefirmssimilar to thosefound for Firm
A. Finaly, | considered variousstrategiesfor achieving higher market prices. Theresultsin Section
7 show that without areductioninitscontract quantity, afirm’ sbest-response priceswill not change.

Consequently, its optimal bidding strategy would not change.

These results have several implications for the design of competitive electricity markets.
Most re-structuring processes around world have imposed a large quantity of vesting contracts
between electricity retailers and generators on these two market participants. These are legally
binding hedge contracts at prices and quantities set by the government regulator. This analysis
shows that if the vesting contract quantity is alarge enough fraction of each firm’s expected sales
into the market, this can cause firmsto find it optimal to bid to achieve low prices. Consequently,
if oneis concerned about the exercise of market power in a re-structured electricity market, then
effective price regulation can be imposed by forcing alarge enough quantity of hedge contracts on
thenewly privatized generators. Itisan open question what the optimal sequenceisfor reducing the
levels of these vesting contracts over time and how the prices of the these contracts should change

astheir level isreduced.

The framework outlined here can be used to analyze a variety of issues in the design of
competitive electricity markets. One extension currently underway is solution of the best-response
bidding strategy given in (3) and a comparison of the expected profits levels that can be obtained

from it to the those from best-response pricing and the current bidding strategy. Another extension
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isto formulate aNash equilibrium in best-response bidding strategiesin order to analyze theimpact

of changesin the constraints on bidding strategies on the market prices obtained.
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Table 1: Meansand Standard Deviations of Actual, Predicted, and Best Response Prices Assuming MC = $15/MWH Using Half-
Hourly Demandsto Set Pricesfor Full Sample of Bid Data
Actual Price Predicted Price Best Response Price
Period Mean Std Dev Mean Std Dev Mean Std Dev

1 $8.51 $4.11 $8.07 $4.45 $12.25 $8.80

2 $8.02 $4.09 $7.95 $4.39 $11.84 $8.27

3 $8.64 $3.77 $8.83 $4.08 $12.15 $8.57

4 $9.95 $3.03 $10.05 $3.42 $13.87 $9.07

5 $11.93 $3.14 $11.90 $2.66 $18.91 $17.01

6 $13.61 $3.70 $13.70 $3.44 $26.77 $31.59

7 $13.53 $2.73 $15.06 $5.85 $31.10 $37.06

8 $17.96 $7.93 $17.16 $7.30 $39.27 $40.51

9 $18.73 $8.26 $17.66 $7.04 $39.22 $39.88
10 $17.29 $6.53 $15.85 $5.06 $35.83 $35.72
11 $18.79 $7.38 $17.79 $6.36 $46.19 $52.08
12 $18.13 $6.97 $17.23 $6.28 $44.85 $49.87
13 $17.34 $5.62 $15.77 $4.62 $33.65 $32.83
14 $16.62 $4.68 $15.18 $3.62 $33.22 $32.41
15 $15.87 $4.71 $15.31 $4.41 $31.28 $31.79
16 $15.86 $6.00 $15.44 $4.76 $30.08 $32.78
17 $14.88 $4.35 $14.56 $4.01 $29.74 $32.35
18 $14.58 $4.08 $14.47 $3.63 $28.26 $29.84
19 $15.04 $4.52 $14.59 $3.94 $28.62 $30.20
20 $14.74 $4.42 $14.13 $3.32 $27.06 $27.75
21 $14.41 $4.10 $14.12 $3.40 $27.40 $29.06
22 $14.02 $3.33 $13.89 $3.15 $26.13 $25.79
23 $13.86 $3.27 $13.93 $3.53 $25.38 $25.31
24 $14.02 $3.45 $14.16 $3.82 $23.96 $19.32
25 $14.35 $4.14 $14.25 $4.00 $22.82 $21.23
26 $15.23 $4.91 $16.05 $6.48 $24.50 $20.78
27 $17.87 $7.21 $18.93 $8.73 $32.95 $44.71
28 $24.30 $14.70 $23.06 $16.12 $49.64 $66.47
29 $22.56 $12.60 $20.31 $11.15 $47.84 $71.78
30 $22.04 $11.84 $18.09 $6.82 $38.38 $47.83
31 $19.47 $8.06 $16.81 $5.66 $32.46 $29.36
32 $18.36 $6.47 $16.88 $5.84 $33.57 $31.94
33 $18.42 $6.37 $17.55 $5.95 $36.17 $34.33
34 $17.48 $5.72 $16.16 $5.08 $31.90 $29.55
35 $15.03 $4.29 $14.29 $3.13 $30.63 $33.29
36 $13.71 $3.20 $13.50 $2.45 $25.32 $25.97
37 $14.38 $2.91 $14.48 $3.40 $33.44 $43.48
38 $13.56 $2.27 $13.35 $1.58 $25.16 $26.51
39 $16.24 $4.69 $14.48 $3.75 $32.77 $48.17
40 $14.39 $3.58 $13.73 $2.60 $30.44 $40.75
41 $14.08 $3.40 $14.09 $3.19 $32.92 $42.41
42 $13.50 $2.59 $13.45 $1.73 $28.79 $33.00
43 $15.27 $3.71 $13.36 $1.71 $29.32 $31.06
44 $13.58 $2.91 $13.06 $2.55 $24.53 $25.25
45 $12.28 $2.63 $12.36 $2.26 $22.55 $23.71
46 $11.14 $3.31 $11.52 $2.49 $19.55 $21.05
47 $10.01 $3.85 $9.69 $4.00 $15.97 $15.45
48 $8.97 $3.95 $8.85 $4.18 $13.50 $10.02
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Table 2: Meansand Standard Deviations of Actual and Predicted Half-Hourly Prices Using
Using 5-Minute Ahead Demand to Determine Predicted Price for Period 7/2/97 to 7/30/97
Actual Price Predicted Price
Period Mean Std Dev Mean Std Dev

1 $11.33 $1.11 $16.45 $27.52

2 $11.05 $1.11 $16.16 $27.33

3 $11.28 $1.01 $15.94 $24.94

4 $11.61 $1.06 $16.11 $23.91

5 $12.12 $1.06 $16.35 $21.87

6 $13.40 $3.60 $17.28 $18.36

7 $13.07 $3.28 $15.93 $12.45

8 $14.72 $5.96 $14.96 $4.85

9 $14.21 $4.71 $14.42 $4.73
10 $13.09 $2.46 $13.62 $3.14
11 $13.52 $1.36 $13.58 $1.94
12 $13.87 $2.14 $13.67 $1.88
13 $14.15 $1.75 $13.85 $2.55
14 $14.78 $2.71 $16.47 $16.62
15 $12.79 $1.43 $16.10 $16.70
16 $12.69 $1.29 $16.65 $20.38
17 $12.61 $1.51 $15.69 $16.15
18 $12.61 $2.08 $15.97 $18.36
19 $12.70 $1.93 $16.64 $21.82
20 $12.30 $1.21 $16.26 $20.45
21 $12.29 $1.20 $16.50 $21.92
22 $12.64 $2.49 $16.17 $20.47
23 $12.22 $1.22 $16.30 $21.89
24 $12.26 $1.15 $16.71 $24.41
25 $12.32 $1.13 $15.32 $18.61
26 $12.84 $1.39 $13.53 $7.66
27 $16.24 $8.06 $13.38 $4.41
28 $20.47 $13.31 $15.28 $6.57
29 $17.21 $7.97 $16.79 $13.36
30 $22.93 $18.00 $17.17 $11.37
31 $19.83 $11.78 $17.22 $11.11
32 $17.19 $7.34 $15.68 $7.27
33 $18.62 $8.15 $16.21 $7.86
34 $17.23 $7.55 $15.81 $7.11
35 $14.44 $5.79 $14.82 $7.08
36 $13.20 $4.15 $12.82 $4.04
37 $14.25 $2.97 $12.77 $2.91
38 $13.20 $2.36 $13.28 $4.65
39 $18.18 $6.44 $14.27 $6.12
40 $14.91 $4.20 $13.54 $1.98
41 $13.57 $2.14 $16.68 $18.74
42 $13.46 $1.03 $17.40 $21.99
43 $16.34 $3.35 $18.37 $23.56
44 $14.66 $2.66 $19.32 $24.80
45 $13.89 $1.77 $18.16 $24.89
46 $12.80 $1.03 $17.70 $26.06
47 $12.39 $1.01 $17.39 $27.27
48 $11.63 $0.89 $16.81 $27.38
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Table 3: Load Period L evel Profits Assuming Marginal Cost of Generation Equals $15/MWH
Mean of Actual Profits Mean of Predicted Profits Best Response Profits/ Actual |Best Response Profits
. Profits Predicted Profits
Period

1 $7,693 $6,830 1.14 1.28

2 $7,782 $6,938 1.14 1.28

3 $8,291 $7,724 1.10 1.19

4 $8,587 $8,367 1.13 1.16

5 $9,305 $9,451 1.26 1.24

6 $11,059 $11,313 1.38 135

7 $24,542 $25,260 1.24 1.20

8 $26,972 $27,173 1.25 1.24

9 $28,052 $27,982 1.21 1.21
10 $28,010 $27,643 1.18 1.19
11 $27,693 $27,477 1.24 1.25
12 $27,501 $27,229 1.21 1.23
13 $28,558 $27,890 1.16 1.18
14 $28,250 $27,677 1.14 1.17
15 $27,843 $27,407 1.15 1.17
16 $32,750 $32,360 1.13 1.14
17 $27,986 $27,768 1.12 1.13
18 $26,782 $26,623 1.13 1.13
19 $26,734 $26,494 1.13 1.14
20 $26,197 $25,949 1.12 1.13
21 $25,643 $25,372 1.12 1.14
22 $25,029 $24,965 111 111
23 $24,875 $24,851 1.10 1.11
24 $25,467 $25,496 1.10 1.10
25 $27,486 $27,471 1.08 1.08
26 $27,425 $27,613 1.09 1.08
27 $28,597 $28,978 1.12 1.11
28 $30,431 $30,183 1.16 1.17
29 $30,405 $29,788 1.14 1.16
30 $30,500 $29,511 111 1.14
31 $29,754 $29,027 1.10 1.13
32 $29,241 $28,650 1.12 1.14
33 $28,429 $28,066 1.15 1.17
34 $27,383 $26,895 1.15 117
35 $29,316 $28,761 1.18 1.21
36 $29,035 $28,765 1.10 111
37 $13,197 $13,099 1.40 1.41
38 $12,992 $12,640 1.26 1.29
39 $13,530 $13,000 1.32 1.38
40 $12,779 $12,483 1.36 1.39
41 $12,277 $12,070 1.43 1.46
42 $11,300 $11,071 1.44 1.47
43 $10,847 $10,225 1.38 1.46
44 $9,585 $9,341 1.35 1.39
45 $8,482 $8,310 1.39 1.42
46 $8,165 $7,833 1.29 134
47 $7,963 $7,356 1.20 1.29
48 $7,696 $7,010 1.15 1.26
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Table 4: Load Period L evel Profits Assuming Marginal Cost of Generation Equals $10/MWH
Period Mean of Actual Profits Mean of Predicted Profits Best Response /Actual Best Response/ Predicted
Profits Profits

1 $12,315 $11,778 1.06 1.10

2 $12,393 $11,844 1.05 1.10

3 $12,994 $12,616 1.04 1.07

4 $13,5%4 $13,482 1.06 1.07

5 $15,227 $15,293 1.13 1.13

6 $17,624 $17,822 1.22 1.21

7 $31,509 $32,275 1.17 1.15

8 $34,444 $34,711 1.18 117

9 $35,857 $35,862 1.15 1.15
10 $35,8%4 $35,669 1.12 1.13
11 $35,804 $35,691 1.17 1.17
12 $35,636 $35,450 1.15 1.15
13 $36,692 $36,117 1.11 1.12
14 $36,352 $35,834 1.10 111
15 $35,876 $35,501 1.10 1.11
16 $40,678 $40,364 1.09 1.10
17 $35,698 $35,584 1.08 1.09
18 $34,382 $34,325 1.09 1.09
19 $34,321 $34,239 1.09 1.09
20 $33,668 $33,537 1.08 1.09
21 $33,031 $32,849 1.08 1.09
22 $32,297 $32,298 1.07 1.07
23 $32,078 $32,158 1.07 1.06
24 $32,777 $32,892 1.06 1.06
25 $34,851 $34,933 1.05 1.05
26 $35,146 $35,480 1.06 1.05
27 $36,769 $37,306 1.09 1.07
28 $38,829 $38,727 111 1.12
29 $38,761 $38,256 1.10 1.11
30 $38,801 $37,915 1.07 1.10
31 $38,044 $37,415 1.07 1.09
32 $37,540 $37,052 1.08 1.09
33 $36,771 $36,492 1.11 1.11
34 $35,576 $35,172 1.10 111
35 $37,100 $36,619 1.13 1.15
36 $36,125 $35,935 1.07 1.07
37 $20,644 $20,677 1.24 1.24
38 $20,040 $19,724 1.16 1.18
39 $20,866 $20,435 1.19 1.22
40 $19,867 $19,593 1.22 1.23
41 $19,285 $19,101 1.26 1.27
42 $18,077 $17,833 1.26 1.27
43 $17,661 $17,091 1.21 1.25
44 $15,947 $15,679 1.19 1.21
45 $14,443 $14,262 1.20 1.22
46 $13,681 $13,329 1.15 1.18
47 $13,031 $12,604 1.09 1.13
48 $12,485 $12,043 1.06 1.10
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Table 5: Load Period L evel Profits Assuming Marginal Cost of Generation Equals $7.50/M WH
Period Mean of Actual Profits Mean of Predicted Profits |Best Response Profits/ Best Response Profits/
Actual Profits Predicted Profits

1 $14,626 $14,252 1.05 1.08

2 $14,698 $14,297 1.04 1.07

3 $15,346 $15,062 1.04 1.06

4 $16,097 $16,040 1.07 1.07

5 $18,188 $18,215 1.13 1.12

6 $20,907 $21,076 1.20 1.19

7 $34,992 $35,783 1.17 1.14

8 $38,179 $38,480 1.17 1.16

9 $39,760 $39,803 1.14 1.14
10 $39,836 $39,682 1.12 1.12
11 $39,859 $39,797 1.15 1.15
12 $39,703 $39,561 1.13 1.14
13 $40,759 $40,231 1.10 1.11
14 $40,403 $39,913 1.09 1.10
15 $39,892 $39,548 1.10 1.11
16 $44,642 $44,365 1.09 1.10
17 $39,553 $39,493 1.08 1.08
18 $38,182 $38,177 1.08 1.08
19 $38,114 $38,112 1.09 1.09
20 $37,403 $37,332 1.08 1.08
21 $36,726 $36,587 1.08 1.08
22 $35,931 $35,965 1.07 1.07
23 $35,679 $35,812 1.07 1.07
24 $36,432 $36,590 1.06 1.06
25 $38,533 $38,664 1.06 1.06
26 $39,007 $39,413 1.07 1.06
27 $40,855 $41,469 1.09 1.07
28 $43,029 $42,999 1.10 1.10
29 $42,939 $42,490 1.09 1.10
30 $42,951 $42,116 1.07 1.09
31 $42,189 $41,610 1.07 1.08
32 $41,689 $41,253 1.08 1.09
33 $40,942 $40,705 1.10 1.11
34 $39,672 $39,311 1.10 111
35 $40,992 $40,548 1.13 1.14
36 $39,670 $39,520 1.07 1.08
37 $24,368 $24,466 1.22 1.21
38 $23,563 $23,266 1.16 1.17
39 $24,534 $24,153 1.18 1.20
40 $23,411 $23,149 1.20 1.21
41 $22,789 $22,617 1.23 1.24
42 $21,466 $21,215 1.23 1.25
43 $21,068 $20,524 1.19 1.22
44 $19,128 $18,848 1.17 1.19
45 $17,423 $17,239 1.18 1.19
46 $16,439 $16,078 1.13 1.16
47 $15,565 $15,229 1.08 1.11
48 $14,880 $14,560 1.06 1.08
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Table 6: Load Period Mean and Standard Deviations of Best Response Profitswith No Contract Cover,
Assuming Marginal Cost of Generation Equals $15/MWH
Period Mean of Profits Std Dev of Profits

1 $10,163 $6,428

2 $9,462 $6,215

3 $10,265 $7,098

4 $12,301 $8,692

5 $20,531 $15,844

6 $40,826 $51,940

7 $102,792 $192,244

8 $238,717 $384,053

9 $306,815 $445,161
10 $294,159 $414,135
11 $450,623 $515,520
12 $404,370 $477,629
13 $297,995 $381,248
14 $221,979 $298,521
15 $169,244 $245,167
16 $142,133 $211,092
17 $110,686 $183,816
18 $99,016 $158,316
19 $102,442 $165,760
20 $84,395 $142,440
21 $73,758 $109,108
22 $61,662 $89,759
23 $53,386 $74,580
24 $62,644 $105,229
25 $77,835 $161,524
26 $168,533 $258,842
27 $513,946 $529,145
28 $876,724 $678,703
29 $801,871 $654,516
30 $555,336 $563,311
31 $361,541 $454,353
32 $245,595 $352,085
33 $193,060 $292,192
34 $125,104 $198,918
35 $63,095 $100,890
36 $40,354 $56,747
37 $60,068 $83,279
38 $39,194 $46,172
39 $58,067 $63,000
40 $43,779 $45,101
41 $40,479 $37,733
42 $32,680 $28,985
43 $32,552 $27,350
44 $25,724 $22,603
45 $22,759 $18,943
46 $19,308 $13,800
47 $15,142 $10,268
48 $12,342 $8,089
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Table 7: Load Period Mean Actual, Predicted and Best Response (BR) Profitswith Current Contract Quantity (CQ),
BR Profitswith One-Half Current CQ, Marginal Cost of Generation Equals $10/MWH
Mean of Actual |Mean of Meanof BRat |Mean of BR BR%2CQ BR %2 CQ/ BR%:CQ/BR
. Profits Predicted Profits |Current CQ Profitsat ¥2CQ |/Actual Profits  |Predicted Profits [Current CQ
Period Profits

1 $5,661 $4,900 $12,998 $9,410 1.66 1.92 0.72

2 $5,486 $4,892 $13,033 $9,082 1.66 1.86 0.70

3 $6,066 $5,778 $13,546 $9,507 1.57 1.65 0.70

4 $6,921 $6,860 $14,471 $11,244 1.62 1.64 0.78

5 $8,858 $8,877 $17,255 $18,366 2.07 2.07 1.06

6 $11,315 $11,577 $21,478 $30,115 2.66 2.60 1.40

7 $18,404 $20,079 $37,015 $41,743 2.27 2.08 1.13

8 $23,671 $23,237 $40,706 $54,044 2.28 2.33 1.33

9 $25,105 $24,283 $41,317 $59,059 2.35 2.43 1.43
10 $23,896 $22,628 $40,339 $54,884 2.30 2.43 1.36
11 $25,207 $24,373 $41,857 $78,604 3.12 3.23 1.88
12 $24,597 $23,770 $40,867 $67,087 2.73 2.82 1.64
13 $24,475 $22,867 $40,554 $54,796 2.24 2.40 1.35
14 $23,697 $22,214 $39,857 $51,236 2.16 2.31 1.29
15 $22,772 $22,125 $39,565 $48,941 2.15 2.21 1.24
16 $25,145 $24,638 $44,480 $47,184 1.88 1.92 1.06
17 $21,734 $21,423 $38,684 $43,262 1.99 2.02 1.12
18 $20,800 $20,687 $37,318 $41,166 1.98 1.99 1.10
19 $21,154 $20,785 $37,320 $41,494 1.96 2.00 1.11
20 $20,556 $19,996 $36,405 $39,486 1.92 1.97 1.08
21 $19,941 $19,613 $35,764 $38,793 1.95 1.98 1.08
22 $19,185 $19,092 $34,648 $36,574 1.91 1.92 1.06
23 $18,929 $19,063 $34,231 $35,858 1.89 1.88 1.05
24 $19,454 $19,652 $34,821 $36,922 1.90 1.88 1.06
25 $20,785 $20,760 $36,750 $36,724 1.77 1.77 1.00
26 $21,736 $22,631 $37,359 $41,356 1.90 1.83 111
27 $24,948 $26,198 $40,026 $55,357 2.22 2.11 1.38
28 $31,382 $30,433 $43,246 $137,725 4.39 4.53 3.18
29 $29,841 $27,752 $42,610 $131,300 4.40 4.73 3.08
30 $29,562 $25,724 $41,643 $79,756 2.70 3.10 1.92
31 $27,011 $24,435 $40,601 $57,303 2.12 2.35 1.41
32 $25,800 $24,303 $40,556 $52,190 2.02 2.15 1.29
33 $25,516 $24,697 $40,647 $55,237 2.16 2.24 1.36
34 $24,019 $22,723 $39,212 $50,187 2.09 2.21 1.28
35 $22,507 $21,660 $42,078 $45,839 2.04 2.12 1.09
36 $20,699 $20,403 $38,627 $36,134 1.75 1.77 0.94
37 $13,627 $13,721 $25,543 $38,353 2.81 2.80 1.50
38 $12,562 $12,160 $23,182 $28,775 2.29 2.37 1.24
39 $15,205 $13,586 $24,932 $37,505 2.47 2.76 1.50
40 $13,190 $12,458 $24,156 $33,421 2.53 2.68 1.38
41 $12,644 $12,472 $24,214 $34,303 2.71 2.75 1.42
42 $11,513 $11,261 $22,724 $30,277 2.63 2.69 1.33
43 $12,626 $10,889 $21,325 $29,802 2.36 2.74 1.40
44 $10,443 $9,870 $18,996 $24,668 2.36 2.50 1.30
45 $8,778 $8,634 $17,387 $20,488 2.33 2.37 1.18
46 $7,749 $7,643 $15,730 $16,808 2.17 2.20 1.07
47 $6,793 $6,230 $14,267 $12,947 1.91 2.08 0.91
48 $5,967 $5,473 $13,286 $10,529 1.76 1.92 0.79
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