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Over the past two decades, researchers analyzing the structure of individual stock

returns have uncovered a wide range of phenomena, both in the time series and the

cross-section. In the time series, the returns of a typical individual stock have a high

mean, are excessively volatile, and are slightly predictable using lagged variables. In

the cross-section, there is a substantial \value" premium, in that stocks with low

ratios of price to fundamentals have higher average returns, and this premium can to

some extent be captured by certain empirically motivated multifactor models.1 These

�ndings have attracted a good deal of attention from �nance theorists. It has proved

something of a challenge, though, to explain both the time series and cross-sectional

e�ects in the context of an equilibrium model where investors maximize a clearly

speci�ed utility function.

In this paper, we argue that it may be possible to improve our understanding of

�rm-level stock returns by re�ning the way we model investor preferences. For guid-

ance as to what kind of re�nements might be important, we turn to the experimental

evidence that has been accumulated on how people choose among risky gambles.

Many of the studies in this literature suggest that loss aversion and narrow framing

play an important role in determining attitudes towards risk. Financial economists do

not typically incorporate these ideas into their models of asset prices. We investigate

whether doing so can shed light on the behavior of individual stock returns.

Loss aversion is a feature of Kahneman and Tversky's (1979) descriptive model

of decision making under risk, prospect theory, which uses experimental evidence to

argue that people get utility from gains and losses in wealth, rather than from absolute

levels. The speci�c �nding known as loss aversion is that people are more sensitive to

losses than to gains. Since our framework is intertemporal, we also make use of more

recent evidence on dynamic aspects of loss aversion. This evidence suggests that the

degree of loss aversion depends on prior gains and losses: a loss that comes after prior

gains is less painful than usual, because it is cushioned by those earlier gains. On

the other hand, a loss that comes after other losses is more painful than usual: after

being burned by the �rst loss, people become more sensitive to additional setbacks.

A crucial question which arises in applying this evidence on loss aversion to the

context of investing is: over which gains and losses is the investor loss averse? Is

he loss averse over changes in total wealth? Or is he loss averse over changes in the

value of his portfolio of stocks or even over changes in the value of individual stocks

1The value premium was originally noted by Basu (1983) and Rosenberg, Reid and Lanstein

(1985); Fama and French (1992) provide more recent evidence. Fama and French (1993) show that a

speci�c three-factor model can capture much of the value premium. Vuolteenaho (1999) documents

the excess volatility and time series predictability of �rm level stock returns.
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that he owns? When gains and losses are taken to be changes in total wealth, we

say that they are de�ned \broadly." When they refer to changes in the value of

isolated components of wealth { the investor's stock portfolio or individual stocks

that he owns { we say that they are de�ned \narrowly." Which gains and losses the

investor pays attention to is a question about mental accounting, a term coined by

Thaler (1980) to refer to the process by which people think about and evaluate their

�nancial transactions.

Numerous experimental studies suggest that when doing their mental accounting,

people engage in narrow framing, that is, they often appear to pay attention to

narrowly de�ned gains and losses. This may re
ect a concern for non-consumption

sources of utility, such as regret, which are often more naturally experienced over

narrowly framed gains and losses. If one of an investor's many stocks performs poorly,

the investor may experience a sense of regret over the speci�c decision to buy that

stock. In other words, individual stock gains and losses can be carriers of utility in

their own right, and the investor may take this into account when making decisions.

In our analysis, we study the equilibrium behavior of �rm-level stock returns when

investors are loss averse and exhibit narrow framing in their mental accounting. We

consider two kinds of narrow framing, one narrower than the other, and investigate

whether either of them is helpful for understanding the data.

In the �rst economy we consider, investors get direct utility not only from con-

sumption, but also from gains and losses in the value of individual stocks that they

own. The evidence on loss aversion described above is applied to these narrowly

de�ned gains and losses: the investor is loss averse over individual stock 
uctua-

tions, and how painful a loss on a particular stock is, depends on that stock's prior

performance. We refer to this as \individual stock accounting."

In the second economy, investors get direct utility not only from consumption,

but also from gains and losses in the value of their overall portfolio of stocks. The

evidence on loss aversion is now applied to these gains and losses: the investor is

loss averse over portfolio 
uctuations, and how painful a drop in portfolio value is,

depends on the portfolio's prior performance. We call this \portfolio accounting," a

form of narrow framing, although not as extreme as individual stock accounting.

In our �rst set of results, we show that for all its severity, individual stock ac-

counting can be a helpful ingredient for understanding a wide range of empirical

phenomena. In equilibrium, under this form of mental accounting, individual stock

returns have a high mean, are more volatile than their underlying cash
ows and are

slightly predictable in the time series. In the cross-section, there is a large value pre-

mium: stocks with low price-dividend ratios have higher average returns than stocks
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with high price-dividend ratios. Moreover, the same kinds of multifactor models that

have been shown to capture the value premium in actual data can also do so in our

simulated economy. At the same time, the model matches empirical features of aggre-

gate asset returns. In equilibrium, aggregate stock returns have a high mean, excess

volatility and are moderately predictable in the time series, while the risk-free rate is

constant and low.

Second, we �nd that the investor's system of mental accounting a�ects asset prices

in a signi�cant way. As we broaden the investor's decision frame from individual

stock accounting to portfolio accounting, the equilibrium behavior of individual stock

returns changes considerably: their mean value falls, they become less volatile, and

also more correlated with each other. Moreover, the value premium in the cross-

section disappears. Overall, portfolio accounting can explain some features of the

data, but is less successful than individual stock accounting.

To understand where our results come from, consider �rst the case of individual

stock accounting. Many of the e�ects here derive from a single source, namely a

discount rate for individual stocks that changes as a function of the stock's past

performance. If a stock has had good recent performance, the investor gets utility

from this gain, and becomes less concerned about future losses on the stock because

any losses will be cushioned by the prior gains. In e�ect, the investor perceives the

stock to be less risky than before and discounts its future cash
ows at a lower rate.

Conversely, if one of his stocks performs dismally, he �nds this painful and becomes

more sensitive to the possibility of further losses on the stock. In e�ect, he views the

stock as riskier than before and raises its discount rate.

This changing discount rate makes �rm-level stock returns more volatile than

underlying cash
ows: a high cash
ow pushes the stock price up, but this prior gain

also lowers the discount rate on the stock, pushing the stock price still higher. It

also generates a value premium in the cross-section: in this economy, a stock with a

high price-dividend ratio (a growth stock) is often one that has done well in the past,

accumulating prior gains for the investor who then views it as less risky and requires

a lower average return. A stock with a low price-dividend ratio (a value stock) has

often had dismal prior performance, burning the investor, who now views it as riskier,

and requires a higher average return. Finally, since the investor is loss averse over

individual stock 
uctuations, he dislikes the frequent losses that individual stocks

often produce, and charges a high average return as compensation.

The reason the results are di�erent under portfolio accounting is that in this case,

changes in discount rates on stocks are driven by 
uctuations in the value of the

overall portfolio: when the portfolio does well, the investor is less concerned about
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losses on any of the stocks that he holds, since the prior portfolio gain will cushion

any such losses. E�ectively, he views all stocks as less risky. Discount rates on all

stocks therefore go down simultaneously. Conversely, discount rates on all stocks go

up after a prior portfolio loss.

This discount rate behavior is the key to many of the portfolio accounting results.

Stock returns are less volatile here than under individual stock accounting. In the

latter case, stocks are highly volatile because good cash
ow news is always accom-

panied by a lower discount rate, pushing the price up even more. Under portfolio

accounting, good cash
ow news on a particular stock will only coincide with a lower

discount rate on the stock if the portfolio as a whole does well. There is no guarantee

of this, and so volatility is not ampli�ed by as much. Since shocks to discount rates

are perfectly correlated across stocks, individual stock returns are highly correlated

with one another. Moreover, the value premium largely disappears since a stock's

past performance no longer a�ects its discount rate, which is now determined at the

portfolio level. Finally, while there is a substantial equity premium, it is not as large

as under individual stock accounting. The investor is loss averse over portfolio level


uctuations, which are sizeable but not as severe as the swings on individual stocks.

The compensation for risk is therefore more moderate.

While individual stock accounting can potentially be a helpful way of thinking

about the data, we emphasize that it is only a potential ingredient in an equilibrium

model, and by no means a complete description of the facts. For one, we show that it

underpredicts the correlation of stocks with each other, and argue that a model which

combines individual stock accounting with broader forms of accounting is likely to be

superior to a model which uses individual stock accounting alone.

The fact that we study equilibrium returns under both individual stock account-

ing and portfolio accounting is also useful for making additional predictions for future

testing. If individual stock accounting is relatively more prevalent among individual

investors as opposed to institutional investors, we would expect to see stocks held

primarily by individuals { small stocks, for example { exhibit more of the features

associated with individual stock accounting. Other predictions arise, if, over time,

investors change the way they do their mental accounting. For example, the increased

availability of mutual funds since the early 1980s may have caused a shift away from

individual stock accounting towards portfolio accounting, since funds automatically

prevent investors from worrying about individual stock 
uctuations. Our analysis

predicts that stocks that were once held directly but are now held indirectly through

mutual funds should exhibit speci�c changes in pricing behavior. Among other pre-

dictions, such stocks should have higher price-to-fundamentals ratios and exhibit a
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lower cross-sectional value premium.

Loss aversion and narrow framing have already been applied with some success

to understanding the aggregate stock market. Benartzi and Thaler (1995) analyze

the static portfolio problem of an investor who is loss averse over changes in his

�nancial wealth and who is trying to allocate his wealth between T-Bills and the

stock market. They �nd that the investor is reluctant to allocate much to stocks,

even if the expected return on the stock market is set equal to its high historical

value. Motivated by this �nding, Barberis, Huang, and Santos (2001) introduce loss

aversion over �nancial wealth 
uctuations into a dynamic equilibrium model and �nd

that it captures a number of aggregate market phenomena. They do not address

the time series or cross-sectional behavior of individual stocks. Moreover, since they

consider only one risky asset, they cannot investigate the impact of di�erent forms of

mental accounting, which is our main focus in this paper.

Ours is not the only paper to address empirical phenomena like time series pre-

dictability and the cross-sectional value premium. Other promising approaches in-

clude models based on irrationality or bounded rationality, such as Barberis, Shleifer

and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (2001), and Hong and

Stein (1999); models based on learning, such as Brennan and Xia (2001); and models

based on corporate growth options such as Berk, Green and Naik (1999) and Gomes,

Kogan, and Zhang (2001).

The rest of the paper is organized as follows. In Section I, we propose two di�erent

speci�cations for investor preferences: in one case, the investor is loss averse over


uctuations in the value of individual stocks in his portfolio; in the other case, he

is loss averse only over 
uctuations in overall portfolio value. Section II derives the

conditions that govern equilibrium prices in economies with investors of each type.

In Section III, we use simulated data to analyze equilibrium stock returns under

each of the two kinds of mental accounting. Section IV discusses the results further

and in particular, argues that they may be robust to generalizations which allow for

heterogeneity across investors. Section V concludes.

I. Two Forms of Mental Accounting

Extensive experimental work suggests that loss aversion and narrow framing are

important features of the way people evaluate risky gambles. In this section, we

construct preferences that incorporate these two ideas.
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Loss aversion is a central feature of Kahneman and Tversky's (1979) prospect

theory, a descriptive model of decision making under risk, which argues that people

derive utility from changes in wealth, rather than from absolute levels. The speci�c

�nding known as loss aversion is that people are more sensitive to reductions in wealth

than to increases, in the sense that there is a kink in the utility function. A simple

functional form that captures loss aversion is

w(X) =

(
X

2X
for

X � 0

X < 0
; (1)

where X is the individual's gain or loss, and w(X) is the utility of that gain or loss.

Kahneman and Tversky (1979) introduce loss aversion as a way of explaining why

people tend to reject small-scale gambles of the form2

G = (110;
1

2
;�100;

1

2
):

Most utility functions used by �nancial economists are not able to explain these risk

attitudes because they are di�erentiable everywhere, making the investor risk-neutral

over small gambles.3

In order to incorporate loss aversion into an intertemporal framework, we need

to take account of its dynamic aspects. Tversky and Kahneman (1981) note that

their prospect theory was originally developed only for one-shot gambles and that

any application to a dynamic context must await further evidence on how people

think about sequences of gains and losses.

A number of papers have taken up this challenge, conducting experiments on how

people evaluate sequences of gambles. In particular, Thaler and Johnson (1990) �nd

that after a gain on a prior gamble, people are more risk-seeking than usual, while

after a prior loss, they become more risk averse. The result that risk aversion goes

down after a prior gain, con�rmed in other studies, has been labeled the \house

money" e�ect, re
ecting gamblers' increased willingness to bet when ahead.4 Thaler

and Johnson interpret these �ndings as evidence that the degree of loss aversion

2This should be read as: \receive $110 with probability 1

2
, and lose $100 with probability 1

2
."

3One exception is �rst-order risk aversion preferences, studied by Epstein and Zin (1990), Segal

and Spivak (1990), Gul (1991) and others. However, this speci�cation does not allow for narrow

framing, which is central in our analysis. Of course, even if a utility function is di�erentiable,

one can explain aversion to small-scale risks by increasing the function's curvature. However, this

immediately runs into other diÆculties. Rabin (2000) shows that if an increasing, concave, and

di�erentiable utility function is calibrated so as to reject G at all wealth levels, then that utility

function will also reject extremely attractive large-scale gambles, a troubling prediction.
4It is important to distinguish Thaler and Johnson's (1990) evidence from other evidence pre-
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depends on prior gains and losses: a loss that comes after prior gains is less painful

than usual, because it is cushioned by those earlier gains. A loss that comes after

other losses, however, is more painful than usual: after being burned by the �rst loss,

people become more sensitive to additional setbacks.

A crucial question which arises in applying this evidence on loss aversion to the

context of investing is: over which gains and losses is the investor loss averse? Is

he loss averse over changes in total wealth? Or is he loss averse over changes in the

value of his portfolio of stocks or even over changes in the value of individual stocks

that he owns? When gains and losses are taken to be changes in total wealth, we

say that they are de�ned \broadly." When they refer to changes in the value of

isolated components of wealth { the investor's stock portfolio or individual stocks

that he owns { we say that they are de�ned \narrowly." Which gains and losses the

investor pays attention to is a question about mental accounting, a term coined by

Thaler (1980) to refer to the process by which people think about and evaluate their

�nancial transactions.

To see why mental accounting matters, consider the following simple example. An

investor is thinking about buying a portfolio of two stocks { one share of each, say.

The shares of both stocks are currently trading at $100, and after careful thought,

the investor decides that for both stocks, the share value a year from now will be

distributed as

(150;
1

2
; 70;

1

2
);

independently across the two stocks.

Suppose that the investor's loss aversion is captured by the functional form in

equation (1). If he is loss averse over portfolio 
uctuations, the expected utility of

the investment is5
1

4
w(100) +

1

2
w(20) +

1

4
w(�60) = 5;

sented by Kahneman and Tversky (1979) showing that people are risk-averse over gains and risk-

seeking over losses; indeed this evidence motivates a feature of prospect theory that we do not

consider here, namely the concavity (convexity) of the value function in the domain of gains (losses).

One set of evidence pertains to one-shot gambles, the other to sequences of gambles. Kahneman

and Tversky's evidence suggests that people are willing to take risks in order to avoid a loss; Thaler

and Johnson's evidence suggests that if these e�orts are unsuccessful and the investor su�ers an

unpleasant loss, he will subsequently act in a more risk-averse manner.
5This calculation says: with probability 1

4
, both stocks will gain $50, for a total gain of $100;

with probability 1

2
, one stock will gain $50, the other will lose $30, for a total gain of $20; and with

probability 1

4
, both stocks will lose $30, for a total loss of $60.
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while if he is loss averse over individual stock 
uctuations, it is6

2
�
1

2
w(50) +

1

2
w(�30)

�
= �10;

which is not as attractive.

Which form of mental accounting is a better description of individual behavior?

Traditional asset pricing models usually assume as broad a form of accounting as

possible: utility is typically speci�ed only over total wealth or over consumption,

and not over individual stock 
uctuations. A substantial body of experimental work,

however, suggests that when doing their mental accounting, people engage in narrow

framing, that is, they often do appear to focus on narrowly de�ned gains and losses.7

The absence of narrow framing from standard asset pricing models is probably

due to doubts about its normative acceptability. These doubts may be unwarranted:

narrow framing can be defended on normative grounds because it may simply re
ect a

concern for non-consumption sources of utility, which are often naturally experienced

over narrowly de�ned gains and losses. Regret is one example of such utility: a loss

is more painful to us if it is linked to an action we took than if it simply befalls us

through no fault of our own. If one of an investor's many stocks performs poorly, the

investor may experience a sense of regret over the speci�c decision to buy that stock.

Since each stock is associated with a distinct decision, namely the decision to buy

that particular stock, each stock's gains and losses can give rise to a distinct source

of utility, based on regret or euphoria about the initial buying decision. This is our

preferred way of thinking about the narrow framing that we model below.

In other situations, narrow framing is less acceptable from a normative perspective.

These are situations where it arises because of cognitive limitations: even though we

know that gains and losses in total wealth are more relevant for our consumption

decisions, we may focus too much on gains and losses in one part of our wealth { in

our stock portfolio { simply because information about those gains and losses is more

readily available.

In what follows, we study asset prices in economies where investors are loss averse

and exhibit narrow framing in their mental accounting. In the �rst economy we

consider, investors get direct utility not only from consumption, but also from gains

and losses in the value of individual stocks that they own. The evidence on loss

6This calculation says: for each stock, there is an equal chance of a gain of $50 and a loss of $30.
7Redelmeier and Tversky (1992), Kahneman and Lovallo (1993), Gneezy and Potters (1997),

Thaler et al. (1997), Benartzi and Thaler (1999), and Rabin and Thaler (2000) present evidence of

various kinds of narrow framing. Read, Loewenstein, and Rabin (1999) review some of the evidence

and discuss possible explanations of why people frame decisions the way they do.
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aversion is applied to these narrowly de�ned gains and losses: the investor is loss

averse over individual stock 
uctuations, and how painful a loss on a particular stock

is, depends on that stock's prior performance. We refer to this as \individual stock

accounting."8

In our second piece of analysis, we consider an economy where investors get direct

utility not only from consumption, but also from gains and losses in the value of

their overall portfolio of stocks. The evidence on loss aversion is now applied to

these gains and losses: the investor is loss averse over portfolio 
uctuations, and how

painful a drop in portfolio value is, depends on the portfolio's prior performance. We

call this \portfolio accounting." While this is a broader form of mental accounting

than individual stock accounting, it still represents narrow framing: the investor is

segregating his stock portfolio from his other forms of wealth such as human capital,

and is focusing on its 
uctuations separately.

We now show how these two forms of mental accounting can be incorporated into

a traditional asset pricing framework, starting with individual stock accounting in

Section I.A and then moving to portfolio accounting in Section I.B. In both cases,

there are two kinds of assets: a risk-free asset in zero net supply, paying a gross

interest rate of Rf;t between time t and t + 1; and n risky assets { \stocks" { each

with a total supply of one unit. The gross return on stock i between time t and t+1

is Ri;t+1:

A. Individual Stock Accounting

When the investor is loss averse over individual stock 
uctuations, he chooses

consumption Ct and an allocation Si;t to stock i to maximize

E
1X
t=0

"
�t

C1�

t

1� 

+ b0C

�

t �t+1

nX
i=1

v(Xi;t+1; Si;t; zi;t)

#
: (2)

The �rst term in this preference speci�cation, utility over consumption Ct, is a

standard feature of asset pricing models. Although the framework does not require

it, we specialize to power utility, the benchmark case studied in the literature. The

8A skeptic could argue that an investor who does individual stock accounting will be reluctant

to take on blatantly attractive opportunities, such as exploiting a relative mispricing between two

stocks by going long one and short the other. Even if he is sure to make $5 on the long position and

to lose only $3 on the short, he may code this as 5� 2(3), which does not look attractive. However,

since the long and short positions are really components of a single trading idea, it is more likely

that the investor will evaluate the strategy as a single entity: he will code a gain of 5� 3 = 2, and

will be keen to take on the opportunity.
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parameter � is the time discount factor, and 
 > 0 controls the curvature of utility

over consumption.9

The second term models the idea that the investor is loss averse over changes in

the value of individual stocks that he owns. The variable Xi;t+1 measures the gain or

loss on stock i between time t and time t+1, a positive value indicating a gain and a

negative value, a loss. The utility the investor receives from this gain or loss is given

by the function v, and it is added up across all stocks owned by the investor. It is a

function not only of the gain or loss itself, but also of Si;t, the value of the investor's

holdings of stock i at time t, and of a state variable zi;t which measures the investor's

gains or losses on the stock prior to time t as a fraction of Si;t. By including Si;t and

zi;t as arguments of v, we allow the investor's prior investment performance to a�ect

the way subsequent losses are experienced.

As discussed earlier, we think of v as capturing utility unrelated to consumption,

such as regret. This is naturally de�ned over individual stock gains and losses because

each stock in the investor's portfolio corresponds to a separate buying decision and

is therefore a separate potential source of regret. There may also be other kinds of

non-consumption utility at work here. An investor may interpret a big loss on a stock

as a sign that he is a second-rate investor, thus dealing his ego a painful blow, and

he may feel humiliation in front of friends and family when word about the failed

investment leaks out.

The b0C
�

t coeÆcient on the loss aversion terms is a scaling factor which ensures

that risk premia in the economy remain stationary even as aggregate wealth increases

over time. It involves per capita consumption Ct which is exogeneous to the investor,

and so does not a�ect the intuition of the model. The constant b0 controls the

importance of the loss aversion terms in the investor's preferences; setting b0 = 0

reduces our framework to the much studied consumption-based model with power

utility.

Barberis, Huang, and Santos (2001), BHS henceforth, have already formalized the

notion of loss aversion in a model of the aggregate stock market. We borrow their

speci�cation, which we summarize in the remainder of this section. We limit ourselves

to describing the essential structure; BHS provide more supporting detail.

The gain or loss on stock i between time t and t+ 1 is measured as

Xi;t+1 = Si;tRi;t+1 � Si;tRf;t: (3)

In words, the gain is the value of stock i at time t + 1 minus its value at time t

multiplied by the risk-free rate. Multiplying by the risk-free rate models the idea

9For 
 = 1, we replace C1�

t =(1� 
) with logCt.
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that investors may only view the return on a stock as a gain if it exceeds the risk-free

rate. The unit of time is a year, so that gains and losses are measured annually. While

the investor may check his holdings much more often than that, even several times a

day, we assume that it is only once a year, perhaps at tax time, that he confronts his

past performance in a serious way.

The variable zi;t tracks prior gains and losses on stock i. It is the ratio of another

variable, Zi;t, to Si;t, so that zi;t =
Zi;t
Si;t

. BHS call Zi;t the \historical benchmark level"

for stock i, to be thought of as the investor's memory of an earlier price level at

which the stock used to trade. When Si;t > Zi;t, or zi;t < 1, the stock price today is

higher than what the investor remembers it to be, making him feel as though he has

accumulated prior gains on the stock, to the tune of Si;t � Zi;t. When Si;t < Zi;t, or

zi;t > 1, the current stock price is lower than it used to be, so that the investor feels

that he has had past losses, again of Si;t � Zi;t.

The point of introducing zi;t is to allow v to capture experimental evidence sug-

gesting that the pain of a loss depends on prior outcomes. This is done by de�ning v

in the following way. When zi;t = 1,

v(Xi;t+1; Si;t; 1) =

(
Xi;t+1

�Xi;t+1
for

Xi;t+1 � 0

Xi;t+1 < 0
; (4)

with � > 1. For zi;t < 1,

v(Xi;t+1; Si;t; zi;t) =

(
Si;tRi;t+1 � Si;tRf;t

Si;t(zi;tRf;t �Rf;t) + �Si;t(Ri;t+1 � zi;tRf;t)
for

Ri;t+1 � zi;tRf;t

Ri;t+1 < zi;tRf;t
;

(5)

and for zi;t > 1,

v(Xi;t+1; Si;t; zi;t) =

(
Xi;t+1

�(zi;t)Xi;t+1
for

Xi;t+1 � 0

Xi;t+1 < 0
; (6)

with

�(zi;t) = �+ k(zi;t � 1); (7)

and k > 0.

It is easiest to understand these equations graphically. Figure 1 shows the form

of v: the solid line for zi;t = 1, the dash-dot line for zi;t < 1, and the dashed line for

zi;t > 1. When zi;t = 1, the case where the investor has neither prior gains nor prior

losses on stock i, v is a piecewise linear function with a slope of one in the positive

domain and a slope of � > 1 in the negative domain. This gives it a kink at the origin

where the gain equals zero and provides a simple representation of loss aversion.

11



When zi;t < 1, the investor has accumulated prior gains on stock i. The form of

v(Xi;t+1; Si;t; zi;t) is the same as for v(Xi;t+1; Si;t; 1) except that the kink is no longer

at the origin but a little to the left; how far to the left depends on the size of the prior

gain. This formulation captures the idea that prior gains may cushion subsequent

losses. In particular, the graph shows that a small loss on stock i is penalized at the

gentle rate of one, rather than �: since this loss is cushioned by the prior gain, it is

less painful. If the loss is so large that it depletes the investor's entire reserve of prior

gains, it is once again penalized at the more severe rate of � > 1.

The remaining case is zi;t > 1, where stock i has been losing value. The form of

v(Xi;t+1; Si;t; zi;t) in this case has a kink at the origin just like v(Xi;t+1; Si;t; 1), but

di�ers from v(Xi;t+1; Si;t; 1) in that losses are penalized at a rate more severe than

�, capturing the idea that losses that come after other losses are more painful than

usual. How much higher than � the penalty is, is determined by equation (7), and in

particular by the constant k. Note that the larger the prior loss, as measured by zi;t,

the more painful any subsequent losses will be.

To complete the model description, we need an equation for the dynamics of zi;t.

Based on BHS, we use

zi;t+1 = �

 
zi;t

Ri

Ri;t+1

!
+ (1� �) (1); (8)

where Ri is a �xed parameter and � � 1: Note that if the return on stock i is

particularly good, so that Ri;t+1 > Ri, the state variable zi;t =
Zi;t
Si;t

falls in value. This

means that the benchmark level Zi;t rises less than the stock price Si;t, increasing the

investor's reserve of prior gains. In other words, equation (8) captures the idea that a

particularly good return should increase the amount of prior gains the investor feels

he has accumulated on the stock. It also says that a particularly poor return depletes

the investor's prior gains: if Ri;t+1 < Ri, then zi;t goes up, showing that Zi;t falls less

than Si;t, decreasing Si;t�Zi;t. The parameter � controls the persistence of the state

variable and hence how long prior gains and losses a�ect the investor. If � � 1; a prior

loss, say, will increase the investor's sensitivity to further losses for many subsequent

periods.

Implicit in equation (8) is an assumption that the evolution of zi;t is una�ected

by any actions the investor might take, such as buying or selling shares of the stock.

In many cases, this is reasonable: if the investor sells some shares for consumption

purposes, it is plausible that any prior gains on the stock are reduced in proportion

to the amount sold { in other words, that zi;t remains constant. More extreme trans-

actions, such as selling one's entire holdings of the stock, might plausibly a�ect the

12



way zi;t evolves. In assuming that they do not, we are making a strong assumption,

but one that is very useful in keeping our analysis tractable.10

The parameter Ri is not a free parameter, but is determined endogeneously by

imposing the requirement that in equilibrium, the median value of zi;t be equal to

one. The idea behind this is that half the time, the investor should feel as though he

has prior gains, and the rest of the time as though he has prior losses. It turns out

that Ri is typically of similar magnitude to the average stock return.

B. Portfolio Accounting

The second form of narrow framing we consider is portfolio accounting, where

investors are loss averse only over portfolio 
uctuations. In particular, they choose

consumption Ct and an allocation Si;t to stock i to maximize

E
1X
t=0

"
�t

C1�

t

1� 

+ b0C

�

t �t+1 v(Xt+1; St; zt)

#
: (9)

Here, Xt+1 is the gain or loss on the investor's overall portfolio of risky assets between

time t and time t + 1, St =
Pn

i=1 Si;t is the value of those holdings at time t, and

zt is a variable that measures prior gains and losses on the portfolio as a fraction of

St. Once again, we interpret v as a non-consumption source of utility, which in this

case is experienced over changes in overall portfolio value and not over changes in

individual stock value.

Portfolio gains and losses are measured as

Xt+1 = StRt+1 � StRf;t; (10)

where Rt+1 is the gross return on the portfolio. When zt = 1, v is de�ned as

v(Xt+1; St; 1) =

(
Xt+1

�Xt+1
for

Xt+1 � 0

Xt+1 < 0
; (11)

with � > 1. For zt < 1,

v(Xt+1; St; zt) =

(
StRt+1 � StRf;t

St(ztRf;t � Rf;t) + �St(Rt+1 � ztRf;t)
for

Rt+1 � ztRf;t

Rt+1 < ztRf;t
; (12)

10An alternative way of interpreting this implicit assumption in equation (8) is that it represents

a form of bounded rationality: when making his investment decisions, the investor is simply unable

to �gure out the e�ect of his actions on the future evolution of the state variable.
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and for zt > 1,

v(Xt+1; St; zt) =

(
Xt+1

�(zt)Xt+1
for

Xt+1 � 0

Xt+1 < 0
; (13)

with

�(zt) = �+ k(zt � 1); (14)

and k > 0. Finally, the dynamics of zt are given by

zt+1 = �

 
zt

R

Rt+1

!
+ (1� �) (1): (15)

In summary, the functional forms are identical to what they were in the case of

individual stock accounting. The only di�erence is that in equation (2), the investor

experiences loss aversion over changes in the value of each stock that he owns, while

in equation (9), he is loss averse only over overall portfolio 
uctuations.

II. Equilibrium Prices

We now derive the conditions that govern equilibrium prices in two di�erent

economies. The �rst economy is populated by investors who do individual stock

accounting and have the preferences laid out in equations (2) through (8). Investors

in the second economy do portfolio accounting, and have the preferences in equations

(9) through (15). In both cases, there are a continuum of investors, with a total

\mass" of one.

In each economy, we want to compute the price Pi;t of stock i, say, which we model

as a claim to a stream of perishable output given by the dividend sequence fDi;tg,

where

log

 
Di;t+1

Di;t

!
= gi + �i"i;t+1 (16)

with "t = ("1;t; : : : ; "n;t) � i.i.d. N(0;
), and where 
ij = (!ij) with !ii = 1.

Aggregate consumption evolves according to

log

 
Ct+1

Ct

!
= gc + �c�t+1; (17)

where �t � N(0; 1); i.i.d. over time, and

corr(�t; "i;t0) =

(
!ci
0

for
t = t

t 6= t0
: (18)
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We do not impose the Lucas (1978) restriction that aggregate consumption equal

the aggregate dividend. The advantage of this is that it allows the volatility of con-

sumption growth and of dividend growth to be very di�erent in our model, as they are

in the data. Given that aggregate consumption di�ers from the aggregate dividend,

we �ll the gap by assuming that each agent also receives a stream of non�nancial

income fYtg { labor income, say. We assume that fYtg and fDi;tgi=1;:::;n form a joint

Markov process whose distribution gives Ct �
Pn

i=1Di;t+Yt the distribution in equa-

tion (17). For simplicity, we assume that agents are not loss averse over labor income


uctuations, although this can be relaxed without a�ecting the main features of our

results.

A. Equilibrium Prices under Individual Stock Accounting

Consider �rst an economy where investors have the preferences given in equations

(2) through (8). Our assumptions so far allow us to construct a Markov equilibrium

in which the risk-free rate is constant and the state variable zi;t determines the dis-

tribution of returns on stock i. Speci�cally, we assume that the price-dividend ratio

of stock i is a function of the state variable zi;t,

fi;t � Pi;t=Di;t = fi(zi;t); (19)

and then look for an equilibrium satisfying this assumption. Under this one-factor

assumption, the distribution of the stock return Ri;t+1 is determined by zi;t and the

function fi(�) as follows:

Ri;t+1 =
Pi;t+1 +Di;t+1

Pi;t
=

1 + Pi;t+1=Di;t+1

Pi;t=Di;t

Di;t+1

Di;t

=
1 + fi(zi;t+1)

fi(zi;t)

Di;t+1

Di;t

=
1 + fi(zi;t+1)

fi(zi;t)
egi+�i"i;t+1: (20)

Intuitively, the value of stock i can change because of news about dividends "i;t+1,

or because its price-dividend ratio fi;t changes. Changes in this ratio are driven by

changes in zi;t, which tracks the past performance of the stock. Recent gains (losses)

on the stock make the investor perceive the stock as less (more) risky, changing its

price-dividend ratio.

In equilibrium, and under rational expectations about stock returns and aggregate

consumption levels, the agents in our economy must �nd it optimal to hold the market

supply of zero units of the risk-free asset and one unit of each stock at all times, and

to consume their labor income and the dividend on each stock every period.11 The

11We need to impose rational expectations about aggregate consumption because the agent's
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proposition below characterizes the equilibrium.12

PROPOSITION 1: For the preferences in equations (2) through (8), necessary and

suÆcient conditions for a one-factor Markov equilibrium are

Rf = ��1e
gc�

2�2c=2; (21)

and

1 = �egi�
gc+
1

2

2�2c (1�!

2
ci
)Et

"
1 + fi(zi;t+1)

fi(zi;t)
e(�i�
!ci�c)"i;t+1

#

+b0�Et

"bv  1 + fi(zi;t+1)

fi(zi;t)
egi+�i"i;t+1; zi;t

!#
; (22)

where for zi;t � 1,

bv(Ri;t+1; zi;t) =

(
Ri;t+1 � Rf;t

(zi;tRf;t �Rf;t) + �(Ri;t+1 � zi;tRf;t)
for

Ri;t+1 � zi;tRf;t

Ri;t+1 < zi;tRf;t
; (23)

and for zi;t > 1,

bv(Ri;t+1; zi;t) =

(
Ri;t+1 � Rf;t

�(zi;t)(Ri;t+1 � Rf;t)
for

Ri;t+1 � Rf;t

Ri;t+1 < Rf;t
: (24)

We prove this formally in the Appendix. At a less formal level, equation (22)

follows directly from the agent's Euler equation for optimality at equilibrium, derived

using standard perturbation arguments,

1 = �Et

24Ri;t+1

 
Ct+1

Ct

!�
35 + b0�Et [bv(Ri;t+1; zi;t)] ; 8i. (25)

The �rst term is the standard one that obtains in an economy where investors

have power utility over consumption. However, there is now an additional term.

Consuming less today and investing the proceeds in stock i exposes the investor to

the risk of greater losses on that stock. Just how painful this might be, is determined

by the state variable zi;t.

B. Equilibrium Prices under Portfolio Accounting

utility includes aggregate consumption as a scaling term.
12Throughout the paper, we assume log �� 
gc + gi +

1

2
(
2�2c � 2
!ci�c�i + �2i ) < 0 so that the

agent's consumption-portfolio decision is well behaved at t =1.
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We now compute the price Pi;t of stock i in a second economy where investors

have the preferences described in equations (9) through (15).

In the case of portfolio accounting, we need to price the portfolio of all stocks

in the economy before we can price any one stock. This portfolio is a claim to the

aggregate dividend, which follows the process

log
�
Dt+1

Dt

�
= gp + �p"t+1 (26)

with "t+1 � N(0; 1); i.i.d. over time, and

corr(�t; "t0) =

(
!cp
0

for
t = t

t 6= t0
(27)

corr("i;t; "t0 ) =

(
!ip
0

for
t = t

t 6= t0
: (28)

The dividend processes for stocks 1 through n in equation (16) will not in general

\add up" to the aggregate dividend process in equation (26). Without additional

structure, we cannot think of the n stocks as a complete list of all stocks in the

portfolio. We therefore imagine that there are some other securities in the economy

whose dividends are distributed in such a way that the total dividend does add up to

the aggregate dividend in equation (26). For the purpose of choosing parameters, it

is helpful to have a setup where the dividends of the n original stocks alone do add

up, and we present this special case in Section III.

Our assumptions allow us to construct a Markov equilibrium in which the risk-free

rate is constant and the portfolio-level state variable zt determines the distribution

of returns on all stocks. Speci�cally, we assume that stock i's price-dividend ratio is

a function of zt,

fi;t � Pi;t=Di;t = fi(zt); (29)

and then look for an equilibrium satisfying this assumption. Given this one-factor

assumption, the distribution of the stock return Ri;t+1 is determined by zt and the

function fi(�) as follows:

Ri;t+1 =
Pi;t+1 +Di;t+1

Pi;t
=

1 + Pi;t+1=Di;t+1

Pi;t=Di;t

Di;t+1

Di;t

=
1 + fi(zt+1)

fi(zt)

Di;t+1

Di;t

=
1 + fi(zt+1)

fi(zt)
egi+�i"i;t+1: (30)

As in the �rst economy, the price of stock i can change because of dividend news

"i;t+1 or because its price-dividend ratio fi;t changes. The key di�erence is that changes
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in this ratio are not driven by a stock-level state variable zi;t but by the portfolio-

level state variable zt, which tracks prior gains and losses on the overall portfolio.

Recent gains (losses) on the portfolio make the investor perceive the entire portfolio

as less (more) risky, changing the price-dividend ratio of every stock in the portfolio

simultaneously.

In equilibrium, and under rational expectations about stock returns and aggregate

consumption levels, the agents in our economy must �nd it optimal to hold the market

supply of zero units of the risk-free asset and one unit of each stock at all times, and

to consume their labor income and the aggregate dividend stream every period. The

proposition below characterizes the equilibrium.

PROPOSITION 2: For the preferences in equations (9) through (15), necessary and

suÆcient conditions for a one-factor Markov equilibrium are

Rf = ��1e
gc�

2�2c=2; (31)

and

1 = �egi�
gc+
1

2

2�2c (1�!

2
cp)+

1

2
�2
i
(1�!2

ip
)�
�c�i(!ci�!cp!ip)Et

"
1 + fi(zt+1)

fi(zt)
e(�i!ip�
�c!cp)"t+1

#

+b0�Et

"ev  1 + fi(zt+1)

fi(zt)
egi+�i!ip"t+1+

1

2
�2
i
(1�!2

ip
); Rt+1; zt

!#
; (32)

where for zt � 1,

ev(Ri;t+1; Rt+1; zt) =

(
Ri;t+1 � Rf;t

(ztRf;t � Rf;t) + �(Ri;t+1 � ztRf;t)
for

Rt+1 � ztRf;t

Rt+1 < ztRf;t
;

(33)

and for zt > 1,

ev(Ri;t+1; Rt+1; zt) =

(
Ri;t+1 �Rf;t

�(zt)(Ri;t+1 �Rf;t)
for

Rt+1 � Rf;t

Rt+1 < Rf;t
: (34)

The gross return Rt+1 on the overall portfolio is given by

Rt+1 =
1 + f(zt+1)

f(zt)
egp+�p"t+1; (35)

where f(�) satis�es

1 = �egp�
gc+
1

2

2�2c (1�!

2
cp)Et

"
1 + f(zt+1)

f(zt)
e(�p�
!cp�c)"t+1

#

+b0�Et

"bv  1 + f(zt+1)

f(zt)
egp+�p"t+1; zt

!#
; (36)
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and where bv is de�ned in Proposition 1. Moreover, f(�) and fi(�) must be self-

consistent:

f(zt) =
X
i

Di;t

Dt
fi(zt): (37)

We prove this formally in the Appendix. At a less formal level, equation (32)

follows from the agent's Euler equation for optimality,

1 = �Et

24Ri;t+1

 
Ct+1

Ct

!�
35 + b0�Et [ev(Ri;t+1; Rt+1; zt)] ; 8i. (38)

The �rst term is standard. The second term re
ects the fact that consuming less

today and investing the proceeds in stock i exposes the investor to the risk of greater

losses on that stock. How painful this is, is now determined by the portfolio-level

state variable zt.

Note that there is now an extra step in computing the price-dividend ratio of an

individual stock. Under portfolio accounting, the price behavior of individual stocks

depends on the behavior of the overall portfolio. This means that we �rst need to

calculate the equilibrium portfolio return Rt+1 in equations (35) and (36), and then

use this in equation (32) governing the individual stock return.

III. Numerical Results and Intuition

In this section, we solve equations (22) and (32) for the price-dividend ratio of

an individual stock fi(�) under individual stock accounting and portfolio accounting

respectively, and then use simulated data to study the properties of equilibrium stock

returns in each case.

A. Parameter Values

Table I summarizes our choice of parameters. We divide the table into two panels,

to separate the two types of parameters: those that determine the distributions of

consumption and dividend growth, and those that determine investor preferences.

For the mean gc and standard deviation �c of log consumption growth, we follow

Ceccheti, Lam, and Mark (1990) who obtain gc = 1:84% and �c = 3:79% from a time

series of annual data from 1889 to 1985.

In principle, specifying parameters for individual stock and aggregate dividend

growth is a daunting task. Equations (16) and (26) show that we need gi, �i, !ci, and

19



!ip for each stock, !ij for each pair of stocks, and gp, �p, and !cp for the aggregate

portfolio, a total of n2

2
+ 7n

2
+ 3 parameters. Fortunately, it turns out that with

two simplifying assumptions, we can specify the dividend processes with just four

parameters, and yet still convey most of the important economics. Essentially, we

take dividend growth to be identically distributed across all stocks, a restriction that

we relax in Section III.E.

Our �rst assumption is that the mean and standard deviation of log dividend

growth is the same for all stocks:

gi = g; �i = �; 8i. (39)

Second, we assume a simple factor structure for individual stock dividend growth

innovations:

"i;t = !p"t + b"i;tq1� !2
p: (40)

In words, the cash
ow shock to stock i has one component due to the aggregate

dividend innovation "t introduced in equation (26), and one idiosyncratic component,b"i;t � i.i.d. N(0; 1). The relative importance of the two components is controlled

by a new parameter !p. The idiosyncratic component is orthogonal to consumption

growth shocks, aggregate dividend growth shocks, and the idiosyncratic shocks on

other stocks:

corr(b"i;t; �t) = corr(b"i;t; "t) = corr(b"i;t; b"j;t) = 0; 8i; j: (41)

This immediately implies

!ci = !p!cp; 8i, (42)

!ij = !2
p; 8i; j; (43)

!ip = !p; 8i: (44)

Another attractive feature of this simple factor structure is that in the limit, as we

add more and more stocks, the growth of their total dividend is also i.i.d lognormal:13

lim
n!1

Pn
i=1Di;t+1Pn
i=1Di;t

! eg+
1

2
�2(1�!2p)+�!p"t+1: (45)

13For an economy with a �nite horizon from t = �T to t = T; this limiting behavior is based

on an argument similar to the law of large numbers. Anderson (1991) and Green (1989) provide

technical details. Our stationary economy can then be thought of as the limit as the time horizon

goes to in�nity.

20



This means that we can think of the n stocks as being an exhaustive list of all

securities, with their total dividend equaling the aggregate dividend in (26), Dt =Pn
i=1Di;t. Comparing equation (45) with equation (26), we obtain14

gp = g +
1

2
�2(1� !2

p); (46)

�p = �!p: (47)

Equations (39), (42) through (44), and (46) through (47) show that the entire

structure of dividend growth can be determined from gp, �p, �, and !cp alone. We

choose these four quantities as the basis variables rather than any other four because

they can be estimated in a relatively straightforward manner. First, we estimate

the mean and standard deviation of aggregate dividend growth using NYSE data

from 1925 to 1995 from CRSP, which gives gp = 0:015 and �p = 0:12. The correla-

tion between shocks to consumption growth and dividend growth, !cp, we take from

Campbell (2000), who estimates it in the neighbourhood of 0.15.

We set the volatility � of individual stock dividend growth to 0:25. A direct

calculation of the value-weighted average volatility of real dividend growth for �rms

in the COMPUSTAT database suggests that this is a reasonable benchmark level.15

Further con�rmation comes from Vuolteenaho (1999), who estimates the cash
ow

news volatility of an individual stock, equal-weighted across stocks, to be 32 percent.

Since smaller �rms have more volatile cash
ows, 25 percent may be a better estimate

of value-weighted cash
ow volatility.

Panel A in Table I shows what these values imply for the remaining parameters

governing the dividend processes.16 The preference parameters are summarized in

Panel B of the table. We choose the curvature 
 of utility over consumption and the

time discount factor � so as to produce a sensibly low value for the risk-free rate.

Given the values of gc and �c, equation (21) shows that 
 = 1:0 and � = 0:98 set the

risk-free interest rate to Rf � 1 = 3:86%.

The value of � determines how keenly losses are felt relative to gains in the case

where the investor has no prior gains or losses. We take � = 2:25, the value Tversky

14The assumptions in this section also allow us to satisfy the self-consistency condition in Propo-

sition 2. Under our assumptions, if f(�) solves equation (36), then it also solves equation (32) for all

i: Therefore fi(�) = f(�);8i; and so the self-consistency condition is satis�ed.
15More precisely, we take all stocks in the annual COMPUSTAT database for which at least 11

consecutive years of dividend data are recorded, compute real dividend growth volatility for each,

and then calculate the average volatility, weighted by �rm size.
16Note that while the mean log dividend growth gi is negative, mean simple dividend growth

equals exp(�0:0091+ 0:252

2
)� 1 = 2:24%, a positive number.
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and Kahneman (1992) estimate by o�ering subjects isolated gambles in experimental

settings.

The parameter k determines how much more painful losses are when they come

on the heels of other losses. We choose k = 3. To interpret this, suppose that the

state variable zi;t is initially equal to one, and that stock i then experiences a sharp

fall of 10 percent. From equation (8) with � � 1, this means that zi;t goes up by

about 0.1, to 1.1. From equation (7), any additional losses will now be penalized at

2:25 + 3(0:1) = 2:55, a slightly more severe penalty.

The parameter b0 determines the relative importance of the loss aversion term

in the investor's preferences. We set b0 = 0:45. One way to think about b0 is to

compare the disutility of losing a dollar on a stock investment with the disutility of

having to consume a dollar less. When computed at equilibrium, the ratio of these

two quantities equals b0��. Our parameter choices therefore make the psychological

disutility of losing the $1 roughly equal in magnitude to the consumption disutility.

Finally, � arises in the de�nition of the state variable dynamics. It controls the

persistence of the state variable zi;t, which in turn controls the autocorrelation of

price-dividend ratios. We �nd that � = 0:9 brings this autocorrelation close to its

empirical value.

B. Methodology

For the case of individual stock accounting, we use an iterative technique to solve

equation (22) for the price dividend ratio fi(�) of an individual stock. The only dif-

�culty is that the state variable zi;t is endogenous: it tracks prior gains and losses

which depend on past returns, themselves endogenous. To deal with this, we use

the following procedure. We guess a solution to equation (22), f
(0)
i say, and then

construct a function zi;t+1 = h
(0)
i (zi;t; "i;t+1) that solves

Ri;t+1 =
1 + fi(zi;t+1)

fi(zi;t)
egi+�i"i;t+1 (48)

and

zi;t+1 = �

 
zi;t

R

Ri;t+1

!
+ (1� �) (1) (49)

simultaneously for this particular fi = f
(0)
i . Given h

(0)
i , we get a new candidate

solution f
(1)
i through the recursion

1 = �egi�
gc+
1

2

2�2c (1�!

2
ci)Et

241 + f
(j)
i (zi;t+1)

f
(j+1)
i (zi;t)

e(�i�
!ci�c)"i;t+1
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0@1 + f

(j)
i (zi;t+1)

f
(j+1)
i (zi;t)

egi+�i"i;t+1; zi;t

1A35 : (50)

With f
(1)
i in hand, we calculate a new hi = h

(1)
i that solves equations (48) and

(49) for fi = f
(1)
i . This h

(1)
i gives us a new candidate fi = f

(2)
i from equation (50).

We continue this process until we obtain convergence, f
(j)
i ! fi, h

(j)
i ! hi. Figure 2

shows the price-dividend ratio fi(�) that corresponds to the parameter values in Table

I. Its precise shape will be explained in more detail later.

With the price-dividend ratio fi(�) in hand, we use simulated data to see how

returns behave in equilibrium. We simulate dividend shocks f"i;tg for n = 500 stocks

and for 10,000 time periods subject to the speci�cation in equation (16) and the

parameters in Table I. We then apply the price-dividend function fi(�) to this dividend

data to see what realized returns look like. More precisely, we use the zi;t+1 =

hi(zi;t; "i;t+1) function described above to generate the series of zi;t implied by the

dividend shocks and then set the return of stock i between time t and t+ 1 equal to

Ri;t+1 =
1 + fi(zi;t+1)

fi(zi;t)
egi+�i"i;t+1. (51)

This gives n time series of individual stock returns. We can then compute moments

{ standard deviation, say { for each stock, and then average these moments across

di�erent stocks. This provides a sense of how the \typical" stock behaves, and we

report the results of such calculations later in Section III.

We can also use our n time series of individual stock returns to compute an equal-

weighted average

Rp;t+1 =
1

n

nX
i=1

Ri;t+1; (52)

which can be interpreted as the aggregate stock return.17

For the case of portfolio accounting, we start out by using iteration in equation

(36) to compute the aggregate price-dividend ratio. As before, we iterate between

guesses f = f (j) and functions zt+1 = h(j)(zt; "t+1) that solve

Rt+1 =
1 + f(zt+1)

f(zt)
egp+�p"t+1 (53)

and

zt+1 = �

 
zt

R

Rt+1

!
+ (1� �) (1) (54)

17The aggregate return Rp;t+1 di�ers from the aggregate return Rt+1 described earlier only in

that it is equal-weighted rather than value-weighted.
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simultaneously for f = f (j). Once this process converges with f (j) ! f and h(j) ! h,

we take the resulting functions f(�) and zt+1 = h(zt; "t+1) and iterate in equation (32)

over guesses f (j)i (�) for stock i's price-dividend ratio, converging eventually to the

solution fi(�).
18 Figure 2 shows the price-dividend ratio fi(�) that we obtain for the

parameter values in Table I. We display it on the same graph as the price-dividend

ratio obtained earlier in the individual stock accounting case, but it is important to

note that the two curves are plotted against di�erent state variables: against zi;t for

individual stock accounting, and against zt for portfolio accounting.

Simulation then illustrates the behavior of individual stock returns. We again

generate dividend shocks f"i;tg for n = 500 stocks and for the portfolio, f"tg; over

10,000 time periods. The function zt+1 = h(zt; "t+1) generates the time series for the

aggregate state variable zt implied by these f"tg. The time series of returns for stock

i is then given by

Ri;t+1 =
1 + fi(zt+1)

fi(zt)
egi+�i"i;t+1, (55)

while the aggregate return is measured by

Rp;t+1 =
1

n

nX
i=1

Ri;t+1. (56)

C. Equilibrium Returns under Individual Stock Accounting

Table II summarizes the properties of individual and aggregate stock returns in

simulated data from three economies: one in which investors use individual stock

accounting, another in which they use portfolio accounting, and for comparison, a

third economy in which investors experience no loss aversion at all. Speci�cally, in

this third economy, investors have the preferences in equation (2) but with b0 = 0; in

other words, they have power utility over consumption with 
 = 1 and � = 0:98.

Panel A in Table II reports time series properties of individual stock returns;

Panel B describes the time series properties of aggregate returns; �nally, Panel C

summarizes the cross-sectional patterns in average returns. As described in Section

III.B, the time series results for individual stocks come from computing the relevant

moment for each stock in the simulated sample and then averaging across stocks. All

values are expressed in annual terms. In this section, as well as in Sections III.D

and III.E, we lay out the results and explain the intuition behind them. Section IV

discusses the broader implications of our �ndings.

18The way f(�) enters equation (32) is through the portfolio return Rt+1 in equations (33) and

(34). Note that Rt+1 depends on f(�) as shown in equation (35).

24



As we present the results, it may be helpful to keep in mind the main empirical

�ndings that have been documented. In the time series, the returns of a typical

individual stock have a high mean, are excessively volatile, and are slightly predictable

using lagged variables. The time series of aggregate stock returns displays the same

properties. In the cross-section, there is a substantial value premium, in that stocks

with low ratios of price to fundamentals have higher average returns.19 The well-

known diÆculties that the \No Loss Aversion" model faces in explaining these facts

are clearly illustrated in Table II: the equity premium is tiny, there is no excess

volatility to speak of, no time series predictability, and no value premium in the

cross-section.

In our �rst set of results, we study an economy in which investors do individual

stock accounting. We look �rst at the time series implications. The typical individual

stock has a high average excess return, E(R) � Rf = 6:7%. It is volatile, and in

particular, excessively volatile: its standard deviation, �R = 40:6%; is higher than

the standard deviation of underlying dividend growth, � = 25%. Its returns are also

slightly predictable: a regression of four-year cumulative log returns on the lagged

dividend yield,

log(Ri;t+1Ri;t+2Ri;t+3Ri;t+4) = � + �
Di;t

Pi;t
+ vi;t+4;

produces an R2 of 4.1%.

The last variable in Panel A, !R; measures the average contemporaneous correla-

tion of individual stocks; we calculate it to be 0.23 in a way that we explain shortly.

The next panel shows that the aggregate stock market also has a high excess

average return, E(RM) � Rf = 6:7%, and is excessively volatile, with a standard

deviation of �M = 19% that exceeds the 12 percent standard deviation of aggregate

dividend growth. Aggregate stock returns are also slightly predictable: a regression

of four-year cumulative log aggregate returns on the lagged aggregate dividend yield

gives an R2 of 5.9 percent.20

The market standard deviation �M helps us measure the average correlation !R

19Le Roy and Porter (1981) and Shiller (1981) �nd excess volatility in aggregate stock returns,

while Campbell and Shiller (1988) and Fama and French (1988) show that the dividend yield has

predictive power for future aggregate returns. Vuolteenaho (1999) documents the excess volatility

and time series predictability of �rm level stock returns. The value premium was originally noted

by Basu (1983) and Rosenberg, Reid and Lanstein (1985); Fama and French (1992) provide more

recent evidence.
20Note that Table II uses the notation R2(M) to distinguish this from the R2 obtained earlier in

the individual stock return regression.
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between stocks that we reported earlier: we compute it as
�
�M
�R

�2
. This calculation is

exact in the limit as the number of stocks n!1, if all stocks have the same standard

deviation and correlation with one another, as they do in our simple economy. This

follows because

�2M = lim
n!1

Var(
R1;t+1 + : : :+Rn;t+1

n
) = lim

n!1

 
�2R
n

+ (1�
1

n
)�2R!R

!
= �2R!R.

Panel C in Table II describes the cross-sectional features of individual stock re-

turns. Our simulated data produces a value premium: a scaled-price variable { in our

case, the price-dividend ratio { has predictive power for the cross-section of average

returns. Each year, we sort stocks into deciles based on this ratio, and measure the

returns of the top and bottom decile portfolios over the next year. The time series

mean of the di�erence in returns between the two deciles is a very substantial 17.9

percent.

Our data also replicates a well-known study of De Bondt and Thaler (1985) which

�nds that long-term prior losing stocks on average outperform long-term prior winning

stocks. Every three years, we sort stocks into deciles based on their three-year prior

return, and measure the average annual returns of the top and bottom deciles over the

next three years. The time series mean of the di�erence in average returns between

the two deciles over all non-overlapping periods in our simulated data is 11.1 percent.

Many of the e�ects we obtain under individual stock accounting derive from a

single source, namely a discount rate for individual stocks that changes as a function

of the stock's past performance. If a stock has had good recent performance, the

investor gets utility from this gain, and becomes less concerned about future losses

on the stock because any losses will be cushioned by the prior gains. In e�ect, the

investor perceives the stock to be less risky than before and discounts its future

cash
ows at a lower rate. Conversely, if one of his stocks performs dismally, he �nds

this painful and becomes more sensitive to the possibility of further losses on the

stock. In e�ect, he views the stock as riskier than before and raises its discount rate.

This changing discount rate has many implications. It gives individual stocks some

time series predictability: a lower discount rate pushes up the price-dividend ratio and

leads to lower subsequent returns, which means that the lagged price-dividend ratio

can predict returns. It makes stock returns more volatile than underlying cash
ows:

a high cash
ow pushes the stock price up, but this prior gain also lowers the discount

rate on the stock, pushing the stock price still higher. It also generates a value

premium in the cross-section: in our economy, a stock with a high price-dividend

ratio (a growth stock) is often one that has done well in the past, accumulating prior
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gains for the investor who then views it as less risky and requires a lower average

return. A stock with a low price-dividend ratio (a value stock) has often had dismal

prior performance, burning the investor, who now views it as riskier, and requires a

higher average return.

The high equity premia we obtain under individual stock accounting derive from a

di�erent source: since the investor is loss averse over individual stock 
uctuations, he

dislikes the frequent losses that individual stocks often produce, and charges a high

average return as compensation. Other papers, such as Benartzi and Thaler (1995)

and Barberis, Huang, and Santos (2001) have also suggested loss aversion as a way

of understanding a high equity premium. The e�ect we obtain here, though, is one

level stronger than in those earlier papers, since the investor is now loss averse over

individual stock 
uctuations rather than over the less dramatic 
uctuations in the

diversi�ed aggregate market.

This intuition also explains why the price-dividend function in Figure 2 is down-

ward sloping. A lower value of zi;t means that the investor has accumulated prior

gains on stock i. Since he is now less concerned about future losses on this stock, he

perceives it to be less risky and is therefore willing to pay a higher price for it per

unit of cash
ow.

D. Equilibrium Returns under Portfolio Accounting

Our next set of results shows that the investor's system of mental accounting mat-

ters a great deal for the behavior of asset prices. As we broaden the investor's frame

from individual stock accounting to portfolio accounting, individual stock returns

exhibit quite di�erent features in equilibrium.

Table II shows that under portfolio accounting, the average excess return on a

typical individual stock is 2.2 percent { not insubstantial, but rather lower than under

individual stock accounting. At 29.4 percent, individual stock volatility is also lower

than under individual stock accounting. In particular, excess volatility of returns over

dividend growth is much smaller. Individual stock returns are predictable in the time

series, but only slightly.

The average excess return on the aggregate market is 2.2 percent. Interestingly,

aggregate returns are roughly as volatile here as they are under individual stock

accounting. Since individual stocks are much less volatile here than under individual

stock accounting, this must mean that stocks are more highly correlated than before,

and indeed, !R = 0:34. Finally, aggregate stock returns are slightly predictable.

We now turn to the cross-section. One disadvantage of our assumption that stock-

27



speci�c parameters { dividend growth mean gi; standard deviation �i and correlations

with the overall portfolio !ip and with consumption !ci { are the same for all stocks

is that there is no cross-sectional dispersion in price-dividend ratios in the case of

portfolio accounting. This assumption will be relaxed in Section III.E. For now, the

lack of dispersion means that we cannot check for a value premium in the simulated

data.

We can, however, still look to see if there is a De Bondt-Thaler premium to prior

losers. As Table II shows, this e�ect is no longer present under portfolio accounting.

The reason the results are di�erent under portfolio accounting is that in this case,

changes in discount rates on stocks are driven by 
uctuations in the value of the

overall portfolio. When the portfolio does well, the investor is less concerned about

losses on any of the stocks that he holds, since the prior portfolio gain will cushion

any such losses. E�ectively, he views all stocks as less risky. Discount rates on all

stocks therefore go down simultaneously. Conversely, discount rates on all stocks go

up after a prior portfolio loss.

This discount rate behavior is the key to many of the portfolio accounting results.

Stock returns are less volatile here than under individual stock accounting. In the

latter case, stocks are highly volatile because good cash
ow news is always accom-

panied by a lower discount rate, pushing the price up even more. Under portfolio

accounting, good cash
ow news on a particular stock will only coincide with a lower

discount rate on the stock if the portfolio as a whole does well. There is no guarantee

of this, and so volatility is not ampli�ed by as much. Since shocks to discount rates

are perfectly correlated across stocks, individual stock returns are highly correlated

with one another. Moreover, the De Bondt-Thaler premium disappears because a

stock's past performance no longer a�ects its discount rate, which is now determined

at the portfolio level.

Finally, while there is a substantial equity premium, it is not as large as under

individual stock accounting. The investor is loss averse over portfolio level 
uctua-

tions, which are sizeable but not as severe as the swings on individual stocks. The

compensation for risk is therefore more moderate.

This intuition also clari�es why the price-dividend function in Figure 2 is down-

ward sloping. A lower value of zt means that the investor has accumulated prior gains

on his portfolio. Since he is now less concerned about future losses on stock i { or

indeed, on any stock { he perceives stock i to be less risky and is therefore willing to

pay a higher price for it per unit of cash
ow. Since he is loss averse only over portfolio


uctuations and not over individual stock 
ucuations, he on average perceives stocks

to be less risky, which is why the overall level of the price-dividend function is higher
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here than under individual stock accounting.

E. Further Cross-sectional Results

Our analysis so far has assumed that mean log dividend growth rates gi and log

dividend growth volatilities �i are equal across stocks. In particular, Table I shows

that we have assumed gi = �0:0091 and �i = 0:25, 8i. Note that for the mean simple

dividend growth rate Gi, this implies

Gi � E

 
Di;t+1

Di;t

!
� 1 = egi+�

2
i
=2 � 1 = 0:0224; 8i

ln(1 +Gi) = 0:0222; 8i:

We now relax these restrictive parameter choices. This should allow for a more

realistic comparison of the cross-sectional features of the actual data with those of

the simulated data.

As before, we simulate dividend data for 500 di�erent stocks over 10; 000 time

periods. This time, however, we draw Gi and �i for each stock from the following

distributions, independently across di�erent stocks:

ln(1 +Gi) � N(0:0222; �2g)

�i � N(0:25; �2S);

where �g = 0:01 and �S = 0:05.21 In other words, we allow for dispersion in the mean

and volatility of dividend growth across di�erent stocks. We use the dispersion in

dividend growth volatilities estimated from COMPUSTAT data as a guide to choosing

�S; �g is harder to estimate directly, but we �nd that given our other parameter values,

an �g of 0:01 leads to a realistic cross-sectional dispersion in price-dividend ratios.

Table III repeats the cross-sectional calculations shown in the bottom panel of

Table II for our new simulated data.22 We look �rst at the results for individual

stock accounting.

Under individual stock accounting, the value premium and the De Bondt-Thaler

premium to prior losers remain as strong as in Table II. The bulk of the value premium

here is due to changing discount rates on individual stocks, exactly as described

21We implement any particular draw ( bGi; b�i) by setting �i = b�i and gi = �0:0091+ ln(1 + bGi)�

0:0222+ 1

2
(0:252 � b�2i ), which immediately implies Gi = bGi.

22In order to avoid computing the price-dividend function fi(�) and transition function hi(�) for

all 500 draws of Gi and �i; we compute them for a few (Gi; �i) pairs and then use interpolation to

approximate fi and hi for other values of Gi and �i.
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earlier. Now that we have allowed for cross-sectional dispersion in the volatility of

dividend growth, there is an additional mechanism contributing to the value premium.

A �rm with more volatile cash
ow growth has more volatile returns, which scares

the loss averse investor into charging a higher risk premium. Since the investor is

applying a high discount rate to future cash
ows, the �rm will have a low P
D
ratio,

thus generating a cross-sectional link between P
D
ratios and average returns.23

The value premium in Table III is lower than the premium in Table II. The reason

for this is the following. In the Table II simulations, a stock only has a low P
D
ratio if

investors decide to assign it a high discount rate. Portfolios of low P
D
stocks therefore

earn high returns on average. In the more realistic simulations we do in Table III,

a low P
D
ratio can be a sign of a high discount rate, but it can also mean that the

stock has a low gi, in other words, that investors expect low cash
ow growth on the

stock. Portfolios of low P
D
stocks still have high returns, but the e�ect is diluted since

the portfolio now includes stocks with low expected growth rates and only average

discount rates.

Table III also presents results for the portfolio accounting case.24 There is now

dispersion in price-dividend ratios, which means that we can examine whether price-

dividend ratios have any predictive power in the cross-section. They do not; in other

words, there is no value premium. The attempt to replicate De Bondt and Thaler's

(1985) �ndings is also a failure, as it was in Table II.

Given the ability of individual stock accounting to generate a value premium, it is

natural to ask whether we are also able to replicate the �nding of Fama and French

(1993), namely that the value premium can be captured by a multifactor model that

includes as a factor a portfolio formed by ranking stocks on their scaled-price ratios

{ the so-called \HML" portfolio.

To study this, we simplify the cash
ow structure by once again equating the mean

and volatility of dividend growth across all stocks, but also enrich it by allowing �rm

level cash
ows to be driven not just by one factor, but by many factors. These

additional factors can be thought of as industry shocks. Suppose that each of the

n stocks falls into one of a small number of industry sectors, labelled s = 1; : : : ; S.

23Our claim that the bulk of the value premium is due to changing discount rates is based on

a comparison of the results in Table III to those for an economy in which there is dispersion only

in the mean dividend growth rate across �rms and not in the volatility of dividend growth. These

results are not shown here but are available from the authors on request.
24Now that we have allowed for dispersion in gi and �i; we cannot be certain that the self-

consistency condition in Proposition 2 is satis�ed. The portfolio accounting results in Table III

should therefore be viewed as approximate.
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Suppose that the cash
ow shock to stock i now has the structure

"i;t+1 = !p"t+1 + !s"s;t+1 + b"i;t+1q1� !2
p � !2

s : (57)

In addition to the market-wide shock "t+1 and the idiosyncratic shock b"i;t+1, there
is sector-level cash
ow shock "s;t+1, where s is the sector to which stock i belongs.

All shocks are distributed N(0; 1), i.i.d. over time, and their relative importance is

determined by !p and !s. If we assume for simplicity that these shocks are orthogonal

to one another, the correlation !ij between the cash
ow shocks on stock i and j will

satisfy:

!ij = !2
p , for i 6= j and i; j in di�erent sectors,

!ij = !2
p + !2

s , for i 6= j and i; j in the same sector,

!ij = 1, for i = j.

We simulate dividend data on 500 stocks over 10,000 time periods using this corre-

lation structure, and then compute the resulting stock prices in an economy where

investors do individual stock accounting. We take !p = 0:48 as before, and !s = 0:5.

To investigate Fama and French's (1993) �nding, we split our simulated data into

two equal subsamples. In the �rst subsample, we create the portfolios whose average

returns we want to explain. Each year, we sort stocks into quintiles based on their

price-dividend ratio and record the equal-weighted return R
P=D
j;t ; j = 1; : : : ; 5; of each

quintile over the next year; in particular, R
P=D
1;t is the return on the �rst quintile,

containing stocks with the lowest price-dividend ratios. Repeating this each period

produces long time series of returns on the �ve portfolios. Table IV reports each

portfolio's average return over time, R
P=D
j . Of course, the dispersion in the average

returns across the �ve portfolios is what we refer to as the value premium.

Table IV shows the results of time series regressions of the excess returns on these

�ve portfolios on the excess market return,

RP=D
j;t � Rf = �j + �j;1(Rp;t � Rf) + uj;t: (58)

The intercepts are large, replicating Fama and French's (1993) �nding that the CAPM

is not able to explain the average returns on portfolios sorted by scaled-price ratios.

In our second subsample, we construct a counterpart to Fama and French's (1993)

HML factor: each year, we compute the return on the portfolio of stocks with price-

dividend ratios in the lowest quartile that period, minus the return on the portfolio

of stocks with price-dividend ratios in the highest quartile that period. We denote
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this di�erence Ft.
25

Table IV shows that when we include Ft in the time series regressions,

R
P=D
j;t �Rf = �j + �j;1(Rp;t � Rf ) + �j;2Ft + uj;t; (59)

the intercepts fall in magnitude, replicating Fama and French's (1993) result that

loadings on this additional factor can help capture average returns on the �ve portfo-

lios. Portfolio 1 (portfolio 5) loads positively (negatively) on Ft because the stocks it

contains share a common industry factor with stocks whose returns enter positively

(negatively) into the construction of Ft: Moreover, portfolio 1 has a higher average

return than portfolio 5. Loadings on Ft therefore line up with average returns.

IV. Discussion

We draw a number of conclusions from the results in Tables II, III, and IV. First,

both kinds of narrow framing may shed light on certain aspects of the data. Under

both individual stock accounting and portfolio accounting, �rm level returns have

a high mean, are excessively volatile, and are predictable in the time series using

lagged variables. In both cases, aggregate stock returns inherit a high mean, excess

volatility and some time series predictability, again in line with the available evidence.

Moreover, the risk-free rate is constant and low.

Another attractive feature of both narrow framing models is that they are able to

generate excess volatility in the time series while still keeping the correlation of aggre-

gate stock returns and consumption growth { a number that we also report in Table

II { at realistically low levels. Some consumption-based models, such as Campbell

and Cochrane (1999), are also able to generate excess volatility in aggregate returns.

However, the extra volatility is driven by shocks to consumption growth, a mechanism

which inevitably gives consumption growth and stock returns a counterfactually high

correlation.

Of the two models, individual stock accounting may be the more successful one.

Not only can it reproduce time series facts, but also a number of puzzling cross-

sectional features of the data: the premium to value stocks and to stocks with poor

prior returns, as well as the ability of certain multifactor models to capture the value

premium. Portfolio accounting fails on the cross-sectional facts, and this is not simply

25The reason we split the data into two subsamples is so that R
P=D
j;t and Ft can be computed in

di�erent samples, thus ensuring that our regressions do not pick up any spurious correlation.
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a consequence of the particular parameter values we have used. The way the cross-

sectional facts emerge under individual stock accounting is through a discount rate

that is a function of a stock's own past performance. This is simply not a feature of

portfolio accounting, whatever the parameters.

While individual stock accounting can be a useful device for understanding certain

features of asset prices, we emphasize that it is at most a potential ingredient in an

equilibrium model, and not a complete description of the facts. There are a number of

dimensions on which it too, fails. For example, it predicts that the correlation between

returns on di�erent stocks is the same as the correlation between their cash
ows.

This can be seen in Table II, which reports the typical correlation between stocks

to be !R = 0:23, identical to the correlation between cash
ow shocks, !ij = 0:23;

listed in Table I. However, Vuolteenaho (1999) �nds that shocks to expected returns

on di�erent stocks are actually much more correlated than cash
ow shocks, which

immediately implies that stocks are more correlated with each other than are their

underlying cash
ows.26

Moreover, while individual stock accounting does generate time series predictabil-

ity, it does not generate enough: the R2 in a time series regression of four-year

cumulative aggregate stock returns on the lagged dividend yield is much smaller than

the empirical value, reported by Fama and French (1988) to be over 20 percent.

One �nal reason why individual stock accounting may only be a partial explanation

of the facts is that it also predicts that more volatile stocks will earn higher average

returns, even though there is as yet little evidence of such an e�ect.27 It is worth

noting however, that individual stock accounting may be able to generate excess

volatility in the time series as well as a value premium in the cross-section without

generating a large premium for idiosyncratic risk. The reason is that in our model,

the �rst set of e�ects are generated by changes in the degree of loss aversion, while the

price of volatility risk is determined by the average level of loss aversion. If investors'

loss aversion changes over time without being too high on average, our model may be

able to replicate the salient features of the data without producing a counterfactually

high premium for volatility risk.

In summary, while individual stock accounting may o�er a simple way of under-

standing a wide range of facts, it cannot be the complete story. A model which

26Equivalently, the individual stock accounting model predicts that individual stock returns and

aggregate stock returns will exhibit the same amount of excess volatility, while Vuolteenaho (1999)

�nds there to be much less excess volatility in individual stocks than in the aggregate stock market.
27This is not to say that there is no evidence of such an e�ect: using a di�erent methodology from

earlier studies, Lehmann (1990) does �nd some evidence of a residual risk premium.
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combines individual stock accounting with broader forms of accounting { portfolio

accounting or even loss aversion over total wealth 
uctuations { is likely to be bet-

ter. Portfolio accounting introduces a common component in discount rate variation

across stocks and therefore makes stocks move together more than their cash
ows

do. For reasons of tractability, we do not attempt an analysis of such a model in this

paper.

A. Other Predictions

The fact that we study equilibrium returns under both individual stock accounting

and portfolio accounting can also be useful for making additional predictions for

future testing. If individual stock accounting is relatively more prevalent among

individual investors as opposed to institutional investors, we would expect to see

stocks held primarily by individuals { small stocks, for example { exhibit more of the

features associated with individual stock accounting. In particular, by comparing the

\Individual Accounting" and \Portfolio Accounting" columns in Table II, the speci�c

prediction is that small stocks should have higher mean returns and more excess

volatility than large stocks, should be more predictable in the time series and less

correlated with each other, and that the value and De Bondt-Thaler premia should

be stronger among small stocks.

Other predictions arise, if, over time, investors change the way they do their mental

accounting. For example, the increased availability of mutual funds since the early

1980s may have caused a shift away from individual stock accounting and towards

portfolio accounting, since funds automatically prevent investors from worrying about

individual stock 
uctuations. Our analysis predicts that stocks that were once held

directly but are now increasingly held indirectly through mutual funds should exhibit

speci�c changes in pricing behavior. Among other predictions, such stocks should

have higher price-to-fundamentals ratios and exhibit a lower cross-sectional value

premium.

B. Exploiting Investors who Frame Narrowly

In Section III.A, we introduced a one-factor cash
ow structure for stocks so as to

simplify the calibration process as much as possible. If in reality, cash
ows did indeed

have a one-factor structure, it would be relatively straightforward for investors who

do not frame narrowly to take advantage of investors who do, thus attentuating their

e�ects. For example, they could buy a portfolio of stocks with price-dividend ratios

in the lowest decile and short a portfolio of stocks with price-dividend ratios in the
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highest decile. This strategy earns the sizeable value premium documented in Tables

II and III, and if implemented with a very large number of stocks, becomes almost

riskless: idiosyncratic risk gets washed away within the portfolio while the long-short

position nets out the market factor. Table V provides some numbers: the column

marked \One-factor" reports the standard deviation of the strategy just described

for various values of n, the total number of stocks. As n increases, the standard

deviation falls, dropping to as low as 9.7 percent for an n of 1000. Coupling this

standard deviation with the kind of value premia reported in Table II produces very

attractive Sharpe ratios.

The problem with such a strategy in reality is that stock returns are driven not

by one, but by many di�erent factors, making it much harder to reduce the strategy's

risk, even with many stocks. To illustrate, the column titled \Multifactor" in Table

V reports the standard deviation of the same long-short strategy, only this time

computed for the more realistic cash
ow structure in equation (57). In particular,

this cash
ow structure allows industry factors to a�ect groups of stocks. Note that

once we recognize these additional factors, the strategy becomes much more risky:

going from 100 to 1000 stocks only reduces risk by about a �fth, in contrast to the

almost 50 percent reduction in risk in the \one-factor" case. Intuitively, many value

stocks now belong to the same sector and hence co-move: there may have been bad

news at the sector level, pushing all stocks in the sector down and leading investors to

view them all as more risky, thus giving them low price-dividend ratios and making

them all value stocks. Similarly, many growth stocks now belong to the same sector,

and therefore also co-move. A long value, short growth strategy does not net out these

industry factors, leaving it far from riskless. Daniel, Hirshleifer, and Subrahmanyam

(2001) provide a similar discussion of this point in a related model.

There may be other reasons why exploiting investors who engage in narrow framing

may be harder in reality than it appears in theory. It is likely to take many years

of data before arbitrageurs can be statistically con�dent of the existence of a value

premium, and even more time before they can convince themselves that it is not

simply compensation for a lurking risk factor. Put simply, the e�ects of narrow

framing may persist for a very long time before they can be detected and exploited.28

C. Heterogeneity, Aggregation and Trading

Even investors who do frame narrowly are likely to be heterogeneous in a number

28After all, the value premium in our simulated data, while certainly strong, has been computed

using 10,000 years of data. Arbitrageurs looking for exploitable anomalies have much less data at

their disposal.
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of ways: in the stocks that they hold or in the time at which they bought a particular

stock. One limitation of our framework is the assumption that investors are com-

pletely homogeneous. This raises the question of whether the intuition of our models

still holds once heterogeneity is recognized.

A full quantitative analysis of this issue is beyond the scope of this paper, but

there is nonetheless reason to be hopeful that a more general model might deliver

similar results. Consider the case of individual stock accounting. First, it is not at

all clear that loss aversion will \wash out" in the aggregate. All investors holding

a particular stock will �nd its 
uctuations painful and will therefore require a high

average return on the stock.

Moreover, if a stock goes down in value, all investors holding the stock will have

their prior gains on the stock reduced, increasing their sensitivity to further losses

regardless of when they bought into the stock or at what price. These investors now

want to get rid of the stock: their selling pressure depresses the price, making the

stock a value stock and giving it a higher expected return. Other investors who were

not originally holding the stock can of course attenuate this e�ect: since they did not

experience the loss, they do not require such a high rate of return. However, these

other investors will trade cautiously for the same reason that arbitrageurs in general

will trade cautiously: common factors in value stocks makes buying these stocks risky.

The price pressure will therefore be only partially absorbed, and the value premium

will persist.

Similarly, if a stock rises in value, all investors holding the stock will accumulate

larger prior gains on the stock, lowering their sensitivity to future losses. They will

want to buy more of the stock, exerting a buying pressure which pushes up the price,

making the stock a growth stock and giving it a lower expected return. This time,

investors not already holding the stock can attenuate the e�ect by shorting, but a

common factor in growth stocks together with restrictions on shorting by mutual

funds suggest that the e�ect may survive.

Recent evidence on trading behavior may be consistent with the predictions of

this more general way of thinking about pricing e�ects. Hvidkjaer (2000) �nds strong

selling pressure among stocks with poor prior performance and strong buying pres-

sure among stocks with good prior performance. Moreover, if we think of \narrow

framers" as being individual investors and the arbitrageurs as being mainly institu-

tions, we would expect to see individuals selling to institutions in market troughs and

institutions selling to individuals at market peaks. There is in fact evidence of such

an e�ect: Cohen (1999) examines the long-term buying and selling patterns of indi-

viduals and institutions, and �nds exactly the pattern we predict, namely individuals
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selling to institutions in market troughs and vice-versa at market peaks.

It is interesting to compare our prediction (and Cohen's (1999) and Hvidkjaer's

(2000) results) with the �ndings of Odean (1998), who shows that individual investors

are reluctant to sell stocks with short-term prior losses, preferring to sell prior short-

term winner stocks.29 The di�erence between this �nding and our prediction may lie

in the horizon over which investors come to terms with an investment loss. If a stock

has experienced a short-term loss, the investor may not count this as a loss, prefering

to hold on the stock in the hope of breaking even down the line. However, if the stock

experiences a sustained, long-term drop, the investor may eventually decide that the

investment has been a failure; he will accept the loss, view the stock as riskier, and

then be ready to sell it.

V. Conclusion

A substantial body of experimental evidence suggests that loss aversion { the

tendency to be more sensitive to losses than to gains { and narrow framing { the

tendency to focus on narrowly de�ned gains and losses { play an important role in

determining how people evaluate risky gambles. In this paper, we incorporate these

ideas into an asset pricing framework to see if they can shed light on the behavior

of �rm-level stock returns. In particular, we consider two economies: one, labelled

\individual stock accounting," in which investors are loss averse over individual stock


uctuations, and another, labelled \portfolio accounting," in which investors are loss

averse only over portfolio 
uctuations.

We �nd that both forms of narrow framing can explain certain aspects of the data.

In both cases, the typical individual stock has a high mean, is excessively volatile and

is predictable in the time series. The aggregate stock return inherits these properties

and is also only weakly correlated with consumption growth, while the risk-free rate is

constant and low. Moreover, under individual stock accounting, there is a substantial

value premium in the cross-section, and this premium can to some extent be captured

by the same kinds of multifactor models that have been successful in actual data.

Our paper suggests that using experimental evidence to re�ne the way we model

investor preferences may be a promising avenue for further research. Nonetheless,

there are alternative explanations under development for some of the phenomena dis-

cussed here, ranging from models �rmly rooted in the consumption-based paradigm

29This is often known as the disposition e�ect, and is also discussed by Shefrin and Statman

(1985).
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to models of learning and models of irrational beliefs. An important topic for fur-

ther study is to clarify the distinct predictions of these various explanations so that

additional testing might tell them apart.
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Appendix

Proof of Proposition 1: Each agent's optimization problem is

max
Ct;fSi;tg

E
1X
t=0

"
�t

C1�

t

1� 

+ b0C

�

t �t+1

nX
i=1

v(Xi;t+1; Si;t; zi;t)

#
; (60)

subject to the standard budget constraint

Wt+1 = (Wt � Ct)Rf +
nX
i=1

Si;t(Ri;t+1 � Rf ); (61)

where Wt denotes the agent's pre-consumption wealth at t.

The Euler equations for the optimization problem are

1 = �RfEt

24 Ct+1

Ct

!�
35 ; (62)

1 = �Et

24Ri;t+1

 
Ct+1

Ct

!�
35 + b0�Et [bv(Ri;t+1; zi;t)] ; 8i. (63)

These Euler equations are necessary conditions of optimality for the individual's in-

tertemporal problem. We now show that they are suÆcient conditions, using a tech-

nique developed by DuÆe and Skiadas (1994).

To simplify notation, let ut(Ct) = �tC1�

t =(1 � 
) and �bt = �t+1b0C

�

t . Assume

that the strategy (C�; fS�i g) satis�es the Euler equations

u0t(C
�
t ) = RfEt

h
u0t+1(C

�
t+1)

i
; (64)

u0t(C
�
t ) = Et

h
Ri;t+1u

0
t+1(C

�
t+1)

i
+�btEt [bv(Ri;t+1; zi;t)] : (65)

Consider any alternative strategy (C� + ÆC; fS�i + ÆSig) that satis�es the budget

constraint

ÆWt+1 = (ÆWt � ÆCt)Rf +
nX
i=1

ÆSi;t(Ri;t+1 � Rf ): (66)

The increase in expected utility from using the alternative strategy is

E

"
1X
t=0

"
ut(C

�
t + ÆCt)� ut(C

�
t ) +

�bt
nX
i=1

ÆSi;tbv(Ri;t+1; zi;t)

##
(67)

� � � E

"
1X
t=0

"
u0t(C

�
t )ÆCt +�bt

nX
i=1

ÆSi;tbv(Ri;t+1; zi;t)

##
;
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where we have made use of the concavity of ut(�) and the linearity of the prospect

utility term with respect to Si;t: It is therefore enough to show that � = 0 under

budget constraint (66).

Multiplying equation (66) by u0t+1(C
�
t+1) and applying Euler equations (64) and

(65), we have

Et

"
u0t(C

�
t )ÆCt +�bt

nX
i=1

ÆSi;tbv(Ri;t+1; zi;t)

#
= u0t(C

�
t )ÆWt � Et

h
u0t+1(C

�
t+1)ÆWt+1

i
: (68)

Summing up equation (68) for all t and taking expectations, we have

� = u0(C
�
0 )ÆW0 � lim

T!1
E [u0T (C

�
T )ÆWT ] : (69)

The budget constraint implies that ÆW0 = 0. By requiring feasible strategies to use

bounded units of �nancial securities, and with a unit of the risk-free security priced

at one, we can show that the limiting term also goes to zero if our model parameters

satisfy log �� 
gc + gi +
1
2
(
2�2c � 2
!ci�c�i + �2i ) < 0; a condition which we already

noted in footnote 12.30 So � = 0 for any feasible alternative to (C�; fS�i g).

We have therefore shown that any other budget feasible strategy cannot increase

utility. The Euler equations are therefore necessary and suÆcient conditions of opti-

mality.

To close the proof, we show that if the risk-free gross interest rate is constant at

Rf given by equation (21) and if the returns on any stock have a one-factor Markov

structure given by equations (8), (19), and (20), with fi(�) satisfying equation (22)

for all zi;t, then the agent's strategy of consuming his labor income and the dividend

of each stock and holding the total supply of assets at each time t indeed satis�es the

Euler equations.

The choice of risk-free rate in equation (21) allows us to satisfy Euler equation

(62), given equation (17). Given the assumed Markov structure of stock i's returns,

zi;t+1 is determined by zi;t and "i;t+1. So we have

Et

24Ri;t+1

 
Ct+1

Ct

!�
35 = Et

"
1 + fi(zi;t+1)
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egi+�i"i;t+1e�
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= egi�
gcEt

"
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)Et

"
1 + fi(zi;t+1)

fi(zi;t)
e(�i�
!ci�c)"i;t+1

#
:

30The proof of this is available upon request.
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Applying this, we �nd that the strategy of consuming Ct and holding the supply of

all securities satis�es Euler equation (63) for all i.

Proof of Proposition 2: Each agent's optimization problem is

max
Ct;fSi;tg

E
1X
t=0

"
�t

C1�

t

1� 

+ b0C

�

t �t+1 v(Xt+1; St; zt)

#
; (70)

subject to the standard budget constraint

Wt+1 = (Wt � Ct)Rf +
nX
i=1

Si;t(Ri;t+1 � Rf ); (71)

where Wt denotes the agent's pre-consumption wealth at t.

The Euler equations for the optimization problem are

1 = �RfEt

24 Ct+1

Ct

!�
35 ; (72)

1 = �Et

24Ri;t+1

 
Ct+1

Ct

!�
35 + b0�Et [ev(Ri;t+1; Rt+1; zt)] ; 8i. (73)

These Euler equations are necessary conditions of optimality for the individual's in-

tertemporal problem. One can also show that they are suÆcient conditions, using an

identical argument to the one in the proof of Proposition 1. Summing up equation

(73) for all the stocks in the economy, we obtain the Euler equation for the market

portfolio,

1 = �Et

24Rt+1

 
Ct+1

Ct

!�
35+ b0�Et [bv(Rt+1; zt)] : (74)

To close the proof, we show that if the risk-free gross interest rate is constant at

Rf given by equation (31), and if the returns on any stock have a one-factor Markov

structure given by equations (15), (29), and (30), with fi(�) satisfying equation (32)

for all zi;t, and if aggregate stock returns are given by equation (35) with f(�) satisfying

equation (36) for all zt; then the agent's strategy of consuming his labor income and

the dividend of each stock and holding the total supply of assets at each time t indeed

satis�es the Euler equations.

The choice of risk-free rate in equation (31) allows us to satisfy Euler equation

(72), given equation (17). A similar procedure to that used in the proof of Proposition

1 can be used to prove that the strategy of consuming Ct and holding the supply of

all securities satis�es Euler equation (74) under the conjectured Markov structure of

market returns.
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Turning now to Euler equation (73), note that

Et

h
egi+�i"i;t+1j"t+1

i
= egi+
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2
�2
i
(1�!2

ip
)+�i!ip"t+1;
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1

2

2�2c (1�!

2
cp)+

1

2
�2
i
(1�!2

ip
)�
�c�i(!ci�!cp!ip)e(�i!ip�
�c!cp)"t+1:

By iterated expectations, and using the above two equations and observing that zt+1
is determined by zt and "t+1 given the conjectured Markov structure of stock returns,

we see that Euler equation (73) reduces to equation (32) and is therefore satis�ed by

the strategy of consuming Ct and holding the supply of all stocks.
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Table I

Parameter Values

Panel A lists the parameters that determine the distributions of consumption and

dividend growth. Speci�cally, gc and �c are the mean and standard deviation of log

consumption growth; gi; �i; !ci; and !ij are the mean, standard deviation, correlation

with log consumption growth and correlation with stock j's log dividend growth of

stock i's log dividend growth, respectively; and gp; �p; !cp; and !ip are the mean,

standard deviation, correlation with log consumption growth and correlation with

stock i's log dividend growth of log aggregate dividend growth. Panel B lists the

parameters that determine investor preferences: 
 governs the curvature of utility

over consumption, � is the time discount rate, � determines how keenly losses are felt

relative to gains when there are no prior gains and losses, k determines how much

more painful losses are when they come on the heels of other losses, b0 determines

the relative imporance of loss aversion in the investor's preferences and � determines

how long prior gains and losses a�ect the investor.
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Panel A: Consumption and

Dividend Parameters

gc 1.84%

�c 3.79%

gi -0.91%, 8i

�i 25.0%, 8i

!ci 0.072, 8i

!ij 0.23, 8i; j

gp 1.5%

�p 12.0%

!cp 0.15

!ip 0.48, 8i

Panel B: Preference Parameters


 1.0

� 0.98

� 2.25

k 3.0

b0 0.45

� 0.9
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Table II

Properties of Asset Returns in Simulated Data

We report the properties of asset returns in simulated data from three economies. In

the �rst economy, labelled \individual stock accounting," investors are loss averse

over individual stock 
uctuations; in the second, labelled \portfolio accounting,"

they are loss averse over portfolio 
uctuations; and in the third, labelled \no loss

aversion," they have power utility over consumption levels. Panel A reports the

properties of the typical individual stock return: its mean in excess of the risk-

free rate, its standard deviation, the R2 in a regression of four-year cumulative

log returns on the lagged dividend yield, and the average contemporaneous return

correlation with other stocks. Panel B reports the risk-free rate and the properties

of the aggregate stock return: its mean in excess of the risk-free rate, its standard

deviation, the R2 in a regression of four-year cumulative log returns on the lagged

dividend yield, and its correlation with consumption growth. Panel C reports the

cross-sectional features of the data. Each year, we sort stocks into deciles based on

their price-dividend ratio, and measure the returns of the top and bottom decile

portfolios over the next year. The value premium is the time series mean of the

di�erence in returns between the two deciles. Every three years, we sort stocks

into deciles based on their three year prior return, and measure the average annual

returns of the top and bottom deciles over the next three years. The De Bondt-

Thaler premium is the time series mean of the di�erence in average returns between

the two deciles over all non-overlapping periods.
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Individual Stock Portfolio No Loss

Accounting Accounting Aversion

Panel A: Properties of Individual Stock Returns

Excess mean E(R)� Rf 6.7% 2.2% 0.1%

Standard deviation �R 40.6% 29.4% 26.5%

Predictability R2 4.1% 0.4% 0.0%

Correlation !R 0.23 0.34 0.23

Panel B: Properties of Aggregate Asset Returns

Aggregate stock return

Excess mean E(RM)� Rf 6.7% 2.2% 0.1%

Standard deviation �M 19.0% 17.2% 12.7%

Predictability R2(M) 5.9% 2.1% 0.0%

Correlation with 0.15 0.15 0.15

consumption growth

Risk-free rate Rf 3.86% 3.86% 3.86%

Panel C: Properties of the Cross-section

Value premium 17.9% - -

De Bondt-Thaler premium 11.1% 0.0% 0.0%
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Table III

The Cross-section of Average Returns in Simulated Data

We report the cross-sectional properties of average returns in simulated data which

allows for dispersion in both the mean and the standard deviation of �rm level div-

idend growth rates. We consider three economies. In the �rst economy, labelled

\individual stock accounting," investors are loss averse over individual stock 
uc-

tuations; in the second, labelled \portfolio accounting," they are loss averse over

portfolio 
uctuations; in the third, labelled \no loss aversion," they have power util-

ity over consumption levels. Each year, we sort stocks into deciles based on their

price-dividend ratio, and measure the returns of the top and bottom decile portfolios

over the next year. The value premium is the time series mean of the di�erence in

returns between the two deciles. Every three years, we sort stocks into deciles based

on their three-year prior return, and measure the average annual returns of the top

and bottom deciles over the next three years. The De Bondt-Thaler premium is the

time series mean of the di�erence in average returns between the two deciles over

all non-overlapping periods.

Individual Stock Portfolio No Loss

Accounting Accounting Aversion

Value premium 12.6% 0.0% 0.0%

De Bondt-Thaler premium 8.2% 0.0% 0.0%
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Table IV

Time Series Regressions of Returns of Portfolios formed on Price-dividend Ratios

on the Excess Market Return and on HML-type Portfolio Returns

We split our simulated data into two equal subsamples. Using the �rst subsample,

each year, we sort stocks into quintiles based on their price-dividend ratio and record

the equal-weighted return R
P=D
j;t ; j = 1; : : : ; 5; of each quintile over the next year;

j = 1 is the quintile containing stocks with the lowest price-dividend ratios. �R
P=D
j is

the average return of portfolio j over time. Panel A reports the result of time series

regressions of excess portfolio returns on excess market returns,

R
P=D
j;t � Rf = �j + �j;1(Rp;t �Rf ) + uj;t:

Using the second subsample, we create a portfolio similar to Fama and French's

(1993) HML factor. Each year, we compute the return on the portfolio of stocks

with price-dividend ratios in the lowest quartile that period, minus the return on

the portfolio of stocks with price-dividend ratios in the highest quartile that period.

We denote this di�erence Ft: Panel B reports the result of time series regressions of

excess portfolio returns on excess market returns and Ft;

R
P=D
j;t � Rf = �j + �j;1(Rp;t � Rf) + �j;2Ft + uj;t:
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Panel A: One-factor Model

j �R
P=D
j � 1 �j �j;1

1 19.1% 7.3% 1.18

2 12.9% 1.7% 1.09

3 9.4% -1.2% 1.01

4 6.7% -3.3% 0.92

5 4.7% -4.5% 0.81

Panel B: Multifactor Model

j �R
P=D
j � 1 �j �j;1 �j;2

1 19.1% 2.2% 1.03 0.47

2 12.9% 0.1% 1.03 0.15

3 9.4% -0.1% 1.02 -0.05

4 6.7% -0.1% 0.99 -0.22

5 4.7% -0.3% 0.94 -0.39
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Table V

The Risk of Value Strategies

The table reports the standard deviation, in simulated data, of a strategy which

each year, sorts stocks by price-dividend ratio and buys the bottom decile (value

stocks) and shorts the top decile (growth stocks). The calculation is done for the

case when �rm-level cash
ows have a one-factor structure and for the case where

they have a multifactor structure which allows for industry shocks. There are n

stocks in total, and in the multifactor case, �ve industries.

Number of stocks n One-factor Multifactor

100 18.2% 23.2%

500 11.4% 19.2%

1000 9.7% 17.9%
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Figure 1. Utility of gains and losses. The utility function is shown for each of three

cases: when the investor has prior gains (dash-dot line), prior losses (dashed line),

or neither prior gains nor prior losses (solid line).
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Figure 2. Price-dividend ratio of stock i under individual stock accounting and

portfolio accounting. The two price-dividend curves are presented on the same graph

for ease of comparison, but they are functions of di�erent variables. Under individual

stock accounting, the price-dividend ratio is a function of zi;t; which measures prior

gains and losses on stock i: Under portfolio accounting, it is a function of zt; which

measures prior gains and losses on the investor's overall portfolio of stocks.
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