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1 Introduction

The origins of nominal exchange rate dynamics remain elusive. In particular, there is no widely

accepted explanation for the sizable short and medium-term movements in the dollar during the

ßoating-rate period. More generally, theoretical models relating exchange rates to macroeconomic

fundamentals are still outperformed by simple time series models in forecasting spot rates over

short and medium-term horizons (Frankel and Rose 1995).

This paper provides new perspective on the poor performance of exchange rate models by

focusing on the information structure of trading between FX dealers in the spot market. I develop

a new theoretical model of FX trading that emphasizes the role of incomplete and heterogeneous

information in dealers� trading decisions. The model shows how an equilibrium distribution of FX

transaction prices and orders can arise at each point in time from the optimal trading decisions

of dealers. This result directs attention away from the traditional view that there is a single

equilibrium value for the exchange rate. Instead, it motivates an empirical investigation of how

the equilibrium distribution of FX transaction prices is determined. The paper undertakes this

investigation with the aid of a new data set that details trading activity in the FX market. This

analysis reveals a striking new perspective on the source of exchange rate movements over all

horizons. In particular, I Þnd that much of the short-term volatility in exchange rates comes from

sampling the equilibrium distribution of transaction prices that, under normal market conditions,

changes comparatively slowly. I also Þnd that public news is rarely the predominant source of long

term exchange rate movements, a result that contrasts with the assumptions of traditional macro

models.

The theoretical model of FX trading has its antecedents in the simultaneous trade model of

Lyons (1997) and is designed to capture the key features of the actual market. It focuses on trading

between dealers that accounts for approximately 75% of total trading in major currency markets.

The model is populated by a large number of dealers that trade directly with each other and with

non-bank customers. Dealers receive private information from two sources. The Þrst comes from

outside the market in the form of customer orders. FX dealers cite customer-dealer transactions

as an important source of information (Lyons 2000). The second source of private information

comes from direct, interdealer transactions. As in the actual market, the details of each direct

transaction (e.g., the bid and ask quotes, the amount and direction of trade) are only observed

by the counterparties. This means that any information conveyed by a transaction diffuses slowly

across the market. Markets with this information structure are said to �lack transparency�.
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The lack of transparency in both direct interdealer and customer-dealer transactions is a key

feature of the model and differentiates it from other multiple dealer models (see, for example,

Perraudin and Vitale 1995, Lyons 1997, and Evans and Lyons 1999). In those models, each dealer

quotes a publicly observed price at which she will trade any amount with any number of other

dealers. In equilibrium, this leads dealers to quote a common price to avoid being arbitraged. In

this model, by contrast, a dealer can only quote a price (good for any amount) to one other dealer

at a point in time. This restriction, and the lack of transparency, make it possible for different

dealers to quote different prices without opening themselves to arbitrage. The task of the model is

to show how heterogeneity in the customer orders received by different dealers, combined with the

lack of transparency, leads to an equilibrium distribution of FX prices at which direct interdealer

trading takes place.

Another key feature of the model is that it considers trading over a large (but Þnite) number

of trading periods. This means that the duration of a trading period can be viewed as being as

short as the few seconds it takes to complete a transaction. By contrast, existing multiple dealer

models split the trading day into a few periods (e.g. Evans and Lyons 1999). These models are

better suited for examining the cumulative effects of trading on exchange rate dynamics than the

origins of high frequency intraday dynamics that I shall study. Of course, the introduction of a large

number of trading periods is not without cost. In particular, it makes the optimization problem

facing dealers much more complex. One �resolution� to this problem is to assume that dealers

make rule-of-thumb trading decisions as in Chakrabarti (2000). My approach is to cast the model

in an overlapping generations structure. Within this structure, the optimization problem facing

dealers becomes tractable and an analytic solution for market equilibrium can be found. The use

of an overlapping generations structure is new to the literature on FX trading.

Section 2 of the paper presents the model and examines how an equilibrium distribution of FX

transaction prices arises. The model characterizes the dynamics of the transaction price distribution

in terms of two exogenous shocks: customer-order shocks and common knowledge (CK) news shocks.

The former drive the customer-orders received by dealers and represent the effects of portfolio

shifts or changing liquidity demands by agents outside the FX market. CK news is characterized

by the simultaneous arrival of new information to all market participants and their homogeneous

interpretation of its implications for equilibrium prices. Clearly, CK news shocks are akin to the

public news shocks found in macro exchange rate models. I use the different terminology to stress
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the fact that the news must be heard simultaneously and must be homogeneously interpreted.1

The model also characterizes the behavior of equilibrium interdealer order ßow. This variable

measures the direction of trade between dealers and is a proximate determinant of equilibrium

prices in many trading models. It plays an important role in my analysis because the theoretical

model makes predictions about the relationship between the distribution of prices and order ßow

that can be exploited empirically. In particular, the model shows that equilibrium order ßow is (i)

unaffected by CK news shocks, and (ii) lags behind prices in responding to customer order shocks.

While result (i) comes from many trading models, and follows naturally from the deÞnition of CK

shocks, result (ii) is new to the theoretical literature.2 It implies that market-wide price movements

are useful in predicting future order ßow. This seems counter-intuitive from an efficient market�s

perspective: Can�t dealers exploit the information in prices about future orders to make larger

trading proÞts? However in this model, the market�s lack of transparency makes it impossible

for dealers to learn about market-wide prices quickly enough to exploit their predictive ability for

future order ßow. Thus, the lack of transparency plays a central role in the model. In fact, one can

demonstrate that the equilibrium breaks down if transparency in the market rises above a certain

level.

With these results, I develop an empirical model that can be used to examine the origins

of exchange rate dynamics. The empirical model decomposes observed changes in transaction

prices into three components: a CK news component, an order ßow component, and a sampling

component. The former incorporates the traditional macro view of exchange rate dynamics in which

all innovations in spot rates are attributable to the arrival of public news in a CK framework. The

second component identiÞes the effects of customer order shocks, the external source of private

information to dealers. This component identiÞes the degree to which asymmetric information

affects equilibrium transaction prices. The sampling component arises from the fact that there is an

equilibrium transaction price distribution at each point in time. The dispersion in this distribution

reßects the heterogeneous trading decisions dealers make in a market that lacks transparency.

The empirical analysis begins in Section 3 with a description of the data. The data set details

1An example of the distinction between CK and public news can be found in Brennan and Cao (1997). They study
a model where investors hold different priors about the value of assets. When public news arrives, better-informed
investors change their valuation of the asset by more than the less well informed investors.

2This lead-lag relationship between prices and order ßow does not appear in the Portfolio Shifts Model of Evans
and Lyons (1999). In that model cumulative order ßow during the trading day is a proximate determinant of the
price at which customer/dealer trades are conducted at the end of the day. Thus, causality runs from order ßow to
prices at a daily frequency. The model presented here focuses on intraday trading, so result (ii) refers to the high
frequency relationship between order ßow and prices.
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trading activity in the spot FX market over a four-month period, May 1 to August 1996. These data

are unique in that they provide information on trading between FX dealers around the world.3 In

particular, they allow us to track the pattern of trade and FX prices in the direct interdealer market

on a transaction-by-transaction basis. As such, the data series constitute sequences of irregularly

spaced observations on a continuous trading process. This makes standard time series methods

based on regularly space observations inapplicable. Section 3 describes how GMM estimation

methods can be adapted to deal with the irregular spacing problem. Estimates are obtained from

the data series sampled over a Þxed 5-minute observation window, allowing for the fact that the

windowmay correspond to varying spans of �market time�: the time scale at which market processes

evolve at a constant rate.

Section 4 reports the empirical results based trading in the DM/$, the most heavily traded

currency pair. These data reveal that there is considerable variation in the intensity at which trading

takes place between dealers. Some of the variation has a well-deÞned intraday pattern that appears

consistent with dealers based in different geographical locations entering and leaving the market.

However, actual trading intensity can differ greatly from the intraday pattern on any particular

day. Transaction prices and order ßow also display some interesting statistical characteristics.

Price changes observed over a 5-minute interval appear to be non-normally distributed and display a

signiÞcant degree of negative serial correlation. Order ßow, by contrast, is positively autocorrelated

and highly persistent. Although the serial correlation in price changes accords with the predictions

of the trading model, the persistence in order ßow does not.4 In fact, order ßow�s persistence

emerges as a puzzling feature of FX trading.

The paper�s central empirical results come from the empirical model estimates and may be

summarized as follows:

� The origins of exchange rate movements vary considerably according to the state-of-the mar-
ket, measured by transaction intensity.

3They differ from the FX quotes shown on the screens of specialist information providers, such as Reuters, Telerate,
Minex and Quotron. These quotes represent indicative prices rather than the Þrm prices at which a dealer will enter
into a transaction. Their relation to the transaction price data used here is discussed in Evans (1997). There exists a
large literature studying the quote data because this was the only source of market-wide information on FX trading.
A partial list of papers includes; Baillie and Bollerslev (1991), Bollerslev and Domowitz (1993) and Bollerslev and
Melvin (1994), Dacorogna, et al.(1993), Engle, Ito, and Lin, (1990), Goodhart and Giugale (1993), and Guillaume,
et al (1994a).

4The source of the negative serial correlation in the trading model does not arise from �noise� or bid-ask bounce;
reasons that are often suggested for the presence of negative serial correlation in indicative FX quote changes (see, for
example, Zhou 1996). Nor, as I shall show, does the presence of serial correlation imply the existence of unexploited
proÞtable trading opportunities.
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� Under normal market conditions, the CK news accounts for approximately 15 per cent of the
variance in short-term price changes. As trading intensity increases, the contribution of CK

news rises to a peak of approximately 40 per cent.

� The sampling component accounts for approximately 80 per cent of the variance in short-
term price changes under normal market conditions. When trading intensity is very high, the

sampling component�s contribution falls to 17 per cent.

� Long-term price movements originate from both CK news and customer order shocks.5 When
the transaction intensity is very low, more than 90 per cent of the variance of permanent

shocks to the price level are attributable to CK news shocks. When the intensity is high, the

CK contribution falls below 20 per cent. In these market states, approximately 80 per cent

of the variance in permanent price shocks comes from customer orders.

� Customer order shocks affect transaction prices at least 20 minutes before interdealer order
ßow. Their peak effect on changing the price distribution occurs approximately 15 minutes

after the shock and lasts for approximately 30 minutes. The strength of these effects increases

with transaction intensity. When intensity is high, customer order shocks account for more

than 50 per cent of the variance in price changes over a 30 minute to 2 hour horizon.

� Customer orders have both temporary and permanent effects on the level of prices in all
market states.

These results provide new perspective on exchange rate dynamics in two respects. First, they

provide strong empirical support for the idea that equilibrium in the FX market is described by

a distribution of prices rather than a particular price level. The existence of this distribution is

key to understanding the short-term dynamics of exchange rates because so much of the variance

in observed price changes is attributable to the sampling component. Second, they challenge the

traditional macro view that emphasizes the role of public news as the primary source of exchange

rate movements. CK news shocks are rarely the predominant source of exchange rate changes over

both long or short horizons. Moreover, the contribution of customer order shocks to permanent

price movements points to a source of exchange rate dynamics, over macro relevant horizons, that

has been overlooked by traditional models. The concluding section of the paper discusses how these

observations may lead to the more empirically successful macro models of exchange rates.

5By deÞnition, long-term price movements are not affected by the samplingly component.
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The remainder of the paper is organized as follows. Section 2 presents the theoretical trading

model, analyses the equilibrium behavior of transaction prices and order ßow, and derives an

empirical model that can investigate the source of exchange rate dynamics. Section 3 describes the

data set and the econometric techniques used to study the data. Section 4 presents the empirical

results. Section 6 concludes.

2 A Model of Direct Interdealer Trading

This section presents a simple model of direct interdealer trading in the FX market. Interdealer

trading accounts for about 75% of total trading in major spot markets (the remaining 25% is be-

tween dealers and non-bank customers) and breaks into two transaction types, direct and brokered.

Direct trading between dealers accounts for about 50% of interdealer trade and brokered trading

accounts for about 50%.

Direct interdealer trades result from bilateral conversations between dealers typically over a

sophisticated E-mail system (see below). A conversation is initiated when a dealer calls another

dealer on the system to request a quote. Users of the system are expected to provide a fast two-way

quote with a tight spread, which is in turn dealt or declined quickly (i.e., within seconds). Thus,

trade follows the so-called dealer protocol where quotes precede orders. The system allows a large

number of dealer pairs to hold conversations at the same time so many transactions can take place

simultaneously. Importantly, details of each conversation, such as the quotes and the decision of

the initiating dealer, are only known to the counterparties. They are never transmitted via the

system to other dealers in the market.

In the model below, trading takes place simultaneously between pairs of dealers according to the

dealer protocol. The model also incorporates the information structure of direct dealing: Details

of each transaction are private information to the counterparties and only disseminate more widely

as further trading takes place. The model also conforms to the actual market in that each dealer

receives customer orders. These orders are a source of private information to dealers on the state

of the market and play an important role in the dynamics of transaction prices.

2.1 Structure

Consider a market in which two assets are traded, one riskless, and one with a stochastic payoff

representing FX. The market comprises a continuum of dealers d ∈ [0, 1) who are split equally
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into two groups, {A : a ∈ [0, 1/2)} and {B : b ∈ [1/2, 1)} . Dealers trade with the public and
among themselves to maximize expected utility deÞned over future wealth subject to an inventory

constraint that limits the number of periods they can hold a long or short FX position.6 Let Idt

denote the inventory of dealer d at the beginning of period t. Under the constraint, Idt must equal

zero at the end of each trading cycle that comprises two periods.

The structure of the model is most easily described in terms of a dealer�s actions over the trading

cycle. Consider dealer a ∈ A beginning her trading cycle at the start of period t with wealth wat and
no inventory, Iat = 0. At the beginning of the period, the dealer receives an order from a customer

for cat units of FX. This customer order is to be Þlled at the market price; that is, the same price

as trades between dealers during period t. A positive value for cat represents the net purchase of

FX by the public. The customer order is only known to the recipient, dealer a. It is not observed

by other dealers in group A, or by any dealers in group B.

After receiving the customer order, dealer a must choose the price, pat , at which she will Þll the

customer order and trade with other dealers. Once this price is set, an order from dealer b ∈ B
arrives for xbt units of FX. Dealer b is matched with dealer a according to an exogenous matching

mechanism. A positive (negative) value for xbt denotes that dealer b wishes to purchase (sell) FX.

Dealer a Þlls the customer and dealer orders at the end of the period. Her wealth and inventory at

the beginning of period t+ 1 are therefore wat+1 = (c
a
t + x

b
t)p

a
t +w

a
t and I

a
t+1 = −(cat + xbt).

At the beginning of period t+1, dealer a has the opportunity to initiate trade with the public

at price st+1. This price is good for any amount the dealer wishes to trade and is observed by all

dealers. Dealer a now chooses the fraction of her inventory to trade with the public knowing that

any remaining inventory must be traded with a dealer in group B later in the period in order to

meet the inventory constraint of Iat+2 = 0. Let λat+1 denote the chosen fraction of the inventory

retained for trade with other dealers. Dealer a therefore sells (1 − λat+1)Iat+1 units of FX to the

public for price st+1. Next, dealer a is randomly matched with a dealer from group B who has set a

price of pbt+1 at which he is willing to trade any amount. To meet her inventory constraint, a must

sell λat+1I
a
t+1 units of FX to dealer b ∈ B. With these transactions complete, dealer a0s wealth at

the beginning of period t+2 is wat+2 = λ
a
t+1I

a
t+1p

b
t+1+ (1− λat+1)Iat+1st+1 +wat+1 and her inventory

is Iat+2 = 0, satisfying the constraint.

Figure 1 depicts the sequence of events across the market. The upper and lower panels of the

6Actual dealers face inventory constraints that limit the size and length of time they can hold FX positions. The
constraint imposed on dealers in the model is more stringent but greatly simpliÞes the analysis.
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Þgure show the decisions and actions of a typical dealer in groups A and B respectively. Here we

can see how the trading cycles of dealers overlap in the typical manner of OLG models. During

any period dealers from one group are setting transaction prices while dealers from the other are

deciding how to manage their inventory. Notice that all interdealer transactions take place between

dealers from different groups via an exogenous matching mechanism. This stops dealers from

sharing inventory risk by trading within a group. Dealers are also prohibited from initiating trades

with the public during the Þrst period of their trading cycle.

Figure 1 also shows how information arrives to each dealer. At the beginning of each period

all dealers learn about the outside price, st. At the start of their trading cycle, dealers also receive

customer orders, cdt . These orders are only observed by the recipient and so constitute a source

of private information. Dealers also receive information from trading. Trading takes place simul-

taneously between pairs of dealers so that no dealer knows market-wide prices or orders as he or

she trades. In the actual FX market, there is no mechanism reporting past market-wide prices or

orders, so dealers must infer these aggregates from their interactions with other individual dealers.

To keep the model tractable, I assume that market-wide price and order ßow information becomes

public with a one period delay7: After trading has ending in period t, all dealers observe the average

transaction price and dealer order ßow from interdealer trading in period t − 1, denoted by pt−1
and xt−1 respectively. Thus, dealers make trading decisions before they obtain any market-wide

information on interdealer trading in the previous period.

Equilibrium transaction prices and dealer orders are determined endogenously by dealers in

response to exogenous customer orders, cdt , and outside prices, st. The customer order received by

each dealer is comprised of common and idiosyncratic components:

cdt = ct + u
d
t ,

ct = vt + αvt−1,
(1)

where uit and vt are i.i.d. normal random variables with zero means and variances Σu and Σv. The

7Ideally, the rate at which market-wide price and order ßow information became public would be determined
endogenously. In this case, trading between dealers via brokers would undoubtedly play a role because information
on brokered trades is disseminated across the whole market (see Lyons 2000). Presumably, brokered trading speeds
up the market-wide dissemination of information on direct interdealer trading. Hellwig (1981) provides the Þrst
example of a rational expectations trading model where the transmission of market prices is delayed.
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outside price is assumed to follow a random walk

st = st−1 + εt, (2)

where εt is an i.i.d. normal variable with mean zero and variance Σs.

Several comments concerning the speciÞcation of these processes are in order. Recall that the

duration of a trading period in this model is very short: it is only as long as is necessary to conduct

the transactions depicted in Figure 1. Thus, (1) and (2) characterize the behavior of cdt and st over

very short time periods. With this perspective, the random walk speciÞcation implies that high

frequency FX returns are unpredictable given their own history (i.e., E[(st+1− st)/st|st, st−1, ...] =
0). This implication of (2) makes outside prices semi-strong form efficient because their history

is known to all dealers and members of the public. The random walk characterization is also

consistent with existing empirical evidence on high frequency FX returns.8 The short duration of

a trading period also motivates the presence of serial correlation in cdt . The idea is that members of

the public place FX orders with dealers to facilitate real transactions elsewhere in the economy. If

these transactions take longer than FX transactions, the customer orders received by dealers will

generally be serially correlated.9 I assume that the serial correlation takes the form of an MA(1)

process for tractability.

Equations (1) and (2) also embody an important assumptions about the public�s price elasticity

of demand for FX. Recall that st represents the price at which dealers can trade any amount of

FX with the public at the start of the second period in their trading cycle. Thus, ∆st = εt can

be viewed as the change in the public�s inverse demand function. If the demand for FX were less

than inÞnitely elastic, εt would generally be correlated with innovations in the public�s holdings of

FX. In this model, these holdings vary as a result of the trades initiated by dealers. Thus, in so

far as dealers� trading decisions are affected by customer orders, εt should be correlated with the

lagged values of vt. Equations (1) and (2) imply that this correlation is zero because vt and εt are

independent serially uncorrelated shocks. Thus the speciÞcation for customer orders and outside

8While there is some evidence of weak negative Þrst-order serial correlation in the high frequency returns con-
structed from indicative quotes, these are typically attributed to bid-ask bounce or �noise� (e.g., Zhou 1996, and
Andersen and Bollerslev 1998), factors that are absent from the theoretical model.

9As an example of how serial correlation in customer orders can arise, suppose agents I and II sign a contract at
the start of period t which speciÞes that I will pay II z units of FX in exchange for a good. Agent I places the order
for cat = z with dealer a ∈ A and receives the FX within period t. The trade of goods and FX between I and II then
takes place. The earliest time at which II can sell the FX is in period t+1 by placing a customer order of cbt+1 = −z
for some dealer b ∈ B.
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prices implicitly assumes that the public�s demand for FX is inÞnitely elastic.10 This assumption

aids in the analysis that follows for two reasons. First, it greatly simpliÞes the optimal trading

problem facing dealers. SpeciÞcally, it makes the speculative positions taken by dealers during

the second period of their trading cycles independent of inventory holdings. The implications of

relaxing this restrictions are discussed below. Second, it means that εt shocks represent CK news

about the value of FX: all dealers observe and interpret the implication of εt shocks for equilibrium

transaction prices in the same way. This would not be true if εt were correlated with vt−1. In this

case, the pricing implications of εt would be interpreted differently across dealers because they hold

difference priors about vt−1. Differentiating between the effects of CK news and other shocks would

then be much harder.

2.2 Equilibrium

Equilibrium in this model is a described by a sequence of transaction price and order ßow distribu-

tions consistent with market clearing and the rational trading decisions of dealers. The requirements

of market clearing are very simple. In the Þrst period of the trading cycle, dealers must Þll customer

and dealer orders at a single price. In the second period, the dealer must trade with her assigned

counterparty at the price set so as to Þnish the trading cycle with no FX inventory. Hence, the

order from dealer d at the end of her trading cycle is

xdt = −λdt Idt = λdt (cdt−1 + x∗t−1), (3)

where x∗t−1 represents the dealer order she received one period earlier. (Hereafter, �∗� denotes

variables chosen by another dealer.) This condition must hold for every dealer in the market. It

implies that the dealer orders received during the Þrst period of a trading cycle match the inventory

another dealer wishes to trade in the second period of their trading cycle.

Trading decisions are made to maximize expected utility deÞned over wealth at the end of

trading in period Td for d = {a, b}, where IdTd = 0. Formally, for dealer d starting her trading cycle

10This contrasts with Evans and Lyons (1999) where the public�s overnight demand of FX is less than inÞnitely
elastic. The model present in that paper focuses on how the cumulative effects of FX trading affect the daily dynamics
of exchange rates and so complements this analysis of intraday dynamics.
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in period t, prices and orders are chosen as

pdt = argmaxE
h
U(wdTd)|Ωdt

i
, (4)

λdt+1 = argmaxE
h
U(wdTd)|Ωdt+1

i
, (5)

subject to

wdt+2 = w
d
t + (c

d
t + x

∗
t )(p

d
t − st+1)− λdt+1(cdt + x∗t )(pd

∗
t+1 − st+1), (6)

where the dealer�s information sets are

Ωdt = {st, pt−2,xt−2, cdt , p∗t−1} ∪Ωdt−1, (7)

Ωdt+1 = {st+1, pt−1, xt−1, x∗t} ∪Ωdt . (8)

The terms on the right of (7) and (8) show the new information received between the beginning of

one period and the next. Public information arrives in the form of outside prices and the average

of past prices and order ßow. Dealers also receive private information between the start of periods

t− 1 and t in the form of cdt and p
∗
t−1, the customer order and the price they were quoted during

trading in t− 1. Between the start of t and t+ 1 dealers receive private information in the form of

x∗t , the dealer order received in period t.

To Þnd the equilibrium, I Þrst posit a form for the dynamics of the equilibrium distribution of

prices and dealer orders. Using these processes, I then solve the dealer�s optimization problem to

Þnd how optimal prices and orders are set over the trading cycle. Finally, I check that the posited

dynamics for prices and orders are consistent with the solution for the optimization problems facing

all dealers. Appendix A provides a detailed derivation of the equilibrium. The results are presented

below.

Proposition: If dealers hold rational expectations about the equilibrium process for

prices and orders, and expected utility is deÞned as

E
h
U(wdTd)|Ωdt

i
= E

h
wdTd |Ωdt

i
− θ
2
V ar

³
wdTd |Ωdt

´
,
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the solutions to the optimization problems in (4) - (8) are

pdt −E[st+1|Ωdt ] =
(cdt +E[x

∗
t |Ωdt ])

θV ar(x∗t |Ωdt )
− ϕ(E[p

∗
t+1|Ωdt ]− st)

V ar(x∗t |Ωdt )
(9)

λdt+1 = − (E[p∗t+1|Ωdt+1]− st+1)
θV ar(p∗t+1|Ωdt+1)(cdt + x∗t )

(10)

for d = {a, b}, a ∈ A, and b ∈ B. The coefficient ϕ, and the conditional variances
V ar(x∗t |Ωdt ) and V ar(p∗t+1|Ωdt+1) are constants that depend upon the parameters govern-
ing equilibrium price and order ßow distributions. Typical elements of these distributions

can be written as

pdt = st + η1c
d
t + η2�v

d
t−1 (11)

xdt = η3(vt−1 + u
d
t−1) (12)

where η1, η2 and η3 are all functions of the structural parameters, θ, α, Σv,Σu and

Σs. �v
d
t−1 is dealer d0s estimate of vt−1 at the end of her trading cycle in t − 1. In

equilibrium, this estimate is equal to vt−1 + edt−1, where edt−1 ∼i.i.d.N(0,Σe) with Σe =

Σu/(1− (η2/η1)2).

The equilibrium displays several noteworthy features. First, (11) and (12) describe elements

in the cross-sectional distribution of prices and orders. Customer orders are the sole source of

this heterogeneity. Differences in the customer orders received at the start of the trading cycle

directly contribute to the dispersion of prices (via cdt in eqn. 11) and also to the dispersion of

dealer orders chosen next period (via udt−1 in eqn. 12). Differences in customer orders also lead

dealers to have different estimates of vt−1, denoted by �vdt−1, which also contribute to the dispersion

of prices. Appendix A shows that the heterogeneity in prices and orders disappears if there are no

idiosyncratic shocks to customer orders.

The second feature to note is that changes in outside prices have a one-to-one effect on equilib-

rium prices but no impact on order ßow. The reason is that changes in st represent CK news about

the value of FX: Recall that st follows a random walk with i.i.d. innovations, so E[st+1|Ωdt ] = st for
all dealers d. Innovations in st therefore lead all dealers to revise their forecast for outside prices in

the same way. Since prices are set as a markup over E[st+1|Ωdt ] that depends on expected dealer
orders (see eqn. 9), and dealer orders depend on the expected markup, E[p∗t+1|Ωdt+1] − st+1 (see
eqns. 3 and 10), in the rational expectations equilibrium no dealer setting prices expects a change
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in dealer orders, and no dealer choosing their order expects a change in the markup. Consequently,

prices move one-for-one with outside prices and interdealer order ßow is unaffected.

Notice also that customer order shocks affect both equilibrium prices and order ßow. Equi-

librium markups, pdt − st, follow an MA(1) process while order ßow depends on customer order

shocks lagged one period. The intuition behind these results is most easily understood by consid-

ering how a customer order affects the optimal trading decisions of an individual dealer. Customer

orders are received at the beginning of the trading cycle and contain three components, a common

shock, vt, an idiosyncratic shock udt , and a lagged common shock, vt−1. Dealers need to estimate

vt and vt−1 in order to optimally set prices because their forecasts of x∗t and p∗t+1 depend on these

estimates. Appendix A shows that these estimates are formed by combining the information in

customer orders and past prices:

E
h
vt+i|Ωdt

i
=


0 i > 0

φ(cdt − αδe�vdt−1) i = 0

δe�vdt−1 + αφ(cdt − αδe�vdt−1) i = −1
, (13)

where

�vdt−1 ≡ 1
η1

¡
p∗t−1 − st−1

¢− (α+η2/η1)
η1

(pt−2 − st−2) + (α+η2/η1)
2

η3
xt−2, (14)

with φ ≡ Σv(1− δe)/
¡
Σu + (1 + α

2(1− δe))Σv
¢
and δe ≡ Σv/(Σv + Σe). Dealer estimates contain

two idiosyncratic components: p∗t−1, the price the dealer was quoted in period t − 1 trading, and
cdt , the customer order received before period t trading. Equation (13) shows how a customer order

changes the estimates of vt−1 and vt. Because dealers are paired through an independent random

matching process, dealer d�s estimate of u∗t−1 (the idiosyncratic customer shock received by d�s

period t counterpart) is zero, so the rationally expected order ßow is E[x∗t |Ωdt ] = η3E[vt−1|Ωdt ] from
(12). Similarly, (11) implies that E[p∗t+1|Ωdt ] − st = η1E[c

∗
t+1|Ωdt ] + η2E[�v∗t |Ωdt ], which in turn is

equal to (η1α+η2)E[vt|Ωdt ] because E[e∗t |Ωdt ] = 0 through random matching. Thus, customer orders
affect prices directly via the Þrst term in (9) and indirectly through revisions in expectations, with

a net effect measured by the η1coefficient.

In the second period of the trading cycle the dealer must decide how much of her inventory

to retain for trade with other dealers. As (10) shows, this decision depends on her expectations
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concerning the quote she will receive. In equilibrium these expectations are given by

E[p∗t+1|Ωdt+1] = st+1 + η1E
h¡
vt+1 + u

∗
t+1

¢ |Ωdt+1i+ (η1α+ η2)E hvt|Ωdt+1i+ η2E[e∗t |Ωdt+1]. (15)

As above, random matching ensures that E
£
u∗t+1|Ωdt+1

¤
= E[e∗t |Ωdt+1] = 0, so expectations depend

on E
£
vt+1|Ωdt+1

¤
, E
£
vt|Ωdt+1

¤
and st+1 ∈ Ωdt+1.Recall from (8) that the dealer only learns the values

of {st+1, pt−1, xt−1, x∗t} between the start of periods t and t+ 1. On the basis of this information,
Appendix A shows that the dealer�s best estimates of vt are given by

E
h
vt+i|Ωdt+1

i
=

 0 i > 0

δu

³
cdt − α

η1
(pt−1 − st−1) + α(α+η2/η1)

η3
xt−1

´
i = 0

. (16)

Equation (16) shows that a customer order received in period t affects the dealer�s estimate of

E
£
vt|Ωdt+1

¤
but not E

£
vt+1|Ωdt+1

¤
. Thus, customer orders received at the start of the trading

cycle affect dealer orders next period because they contain information that dealers Þnd useful in

forecasting quotes.

Customer orders also have a lagged effect on prices. Because the price set by dealer d reßects in

part the customer order she received in period t, the information received by her trading counterpart

in t is also affected by that order. SpeciÞcally, combining (11) and (14) gives

�v∗t ≡ 1
η1

³
η1c

d
t + η2�v

d
t−1
´
− (α+η2/η1)

η1
(pt−1 − st−1) + (α+η2/η1)

2

η3
xt−1

which is a component of E[vt+i|Ω∗t+1]. As we saw above, these estimates are used by dealers to set
prices optimally. Hence, a customer order received by one dealer will affect the price set by another

the next period because transaction prices convey information that is useful in making subsequent

trading decisions.

The origins of the price and order ßow dynamics now become clear. Persistence in the cdt process

means that the customer orders received by dealers in one group are correlated with the customer

orders received by dealers in the other. Since trading always takes place between traders from

different groups, this correlation means that customer orders affect dealers� expectations about the

dealer orders or quotes they will received while trading. As a consequence, customer orders affect

dealer orders and transaction prices.

One particularly important feature of the model is that dealers only observe market-wide trans-

action prices and order ßow with a delay. After trading has ended in period t, all dealers observe the
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average transaction price and dealer order ßow from interdealer trading in period t− 1. This lack
of transparency means that dealers must make trading decisions before there is precise information

about the common shock to customer orders last period. To appreciate how this lack of information

affects trading behavior, it is useful to consider what would happen if all dealers learned the value

of vt−1 immediately after period t− 1 trading ended so that vt−1 ∈ Ωdt . In this case, (15) simpliÞes
to E[p∗t+1|Ωdt+1] = st+1 + (η1α+ η2)vt so dealers hold the same expectations about future quotes.
These expectations, in turn, imply that dealer orders are xdt+1 = −ψ(η1α+η2)vt from (3) and (10).
Since these orders are completely predictable to dealers setting prices in t+1, V ar(x∗t+1|Ωdt+1) = 0
and the optimal markup shown in (9) becomes inÞnite. Thus, increasing the degree of transparency

leads to a breakdown in the equilibrium.

One further perspective one the equilibrium comes from considering the origins of dealer order

ßow. In this model dealer orders represent the unwinding of the speculative position taken mid-

way through the trading cycle. At this point, dealers observe outside prices and decide on the

fraction of their inventory to retain for trade with other dealers. Recall that for a dealer starting a

trading cycle in period t, her inventory at the start of t+ 1 is Idt+1 = −(cdt + x∗t ). Thus, a positive
value of λdt+1(c

d
t + x

∗
t ) represents a short position established at the start of t + 1 that must be

unwound by purchasing xdt+1 = λdt+1(c
d
t + x

∗
t ) from another dealer later in the period. Equation

(12) shows that the size of these positions depend on the difference between the outside price

and the price they expect to be quoted by another dealer, and the variance of that quote. The

optimal position does not depend on the inventory the dealer started the period with because the

public�s demand for any unwanted inventory is inÞnitely elastic. Thus, customer orders have no

direct effect on subsequent order ßow through an inventory-control channel.11 Instead, they affect

dealer order ßow because they change expectations and induce dealers to take speculative positions

that ultimately are unwound through dealer orders. SpeciÞcally, suppose a positive vt shock raises

customer orders received by group A dealers in period t. If α is positive (negative), these dealers

will revise their forecasts of c∗t+1 upward (downward), and also their forecast of the quote they will

receive from a group B dealer in t+1 trading. Consequently, group A dealers will establish longer

(shorter) speculative positions at the start of t+1 that in turn lead to lower (higher) average dealer

order ßow, xt+1.

11If the public�s demand was less than perfectly elastic (see Evans and Lyons 1999, for example), optimal speculative
positions would depend in part on the dealer�s inventory. Although this modiÞcation would make the model very
much harder to solve, it would introduce an operative inventory control channel that in principle could lead to serially
correlated order ßow.
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2.3 Empirical Implications

Equations (11) and (12) describe elements in the equilibrium cross-sectional distributions of prices

and orders at a point in time. Suppose we observe the average order xt, and an randomly drawn

price pot , from these distributions at time t. Since pot = p
d
t for some dealer d, equations (1), (2) and

(11) imply that we can write the observed price as

pot = pt + ω
o
t , (17)

where ωot = η1u
d
t + η2e

d
t−1 is an idiosyncratic shock. pt is the average price that follows

∆pt = η1vt + (η2 − (1− α)η1)vt−1 − (η1α+ η2)vt−2 + εt
= B(L)vt + εt, (18)

where B(L) represents a polynomial in the lag operator, L. The size of the ωot shock depends on

the identity of the dealer whose price we observe. If the observed price is drawn randomly from

the cross-sectional distribution of prices every period, ωot will be serially independent. It will also

be independent from leads and lags of ∆pt.

Combining (17) and (18) gives the period-by-period change in the observed price as

∆pot = εt +B(L)vt + ω
o
t − ωot−1. (19)

This equation decomposes observed price changes into three components: the CK news component

εt, the order ßow component B(L)vt, and the sampling component ω
o
t −ωot−1. The Þrst component

incorporates the traditional macro view of exchange rate determination in which all innovations

in spot rates are attributable to the arrival of public news. More precisely, this view assumes

that: (i) all information relevant for exchange rate determination is CK, and (ii) the mapping from

information to equilibrium prices is also CK. εt shocks play the role of CK news in this model

because all dealers learn the value of εt simultaneously and hold the same view about the mapping

from εt to the equilibrium transaction price distribution. The second and third components come

from the trading-theoretic perspective of the model. The second captures the role of customer

orders as a source of asymmetric information to dealers while the third arises from the existence of

an equilibrium distribution of transaction prices at a point in time.

While the three components are mutually independent, they cannot be separately identiÞed
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without some further information. This is provided via the trading model in the form of average

dealer order ßow. In particular, (12) implies that average dealer order ßow follows,

xt = η3vt−1 = C(L)vt, (20)

so we can rewrite (19) as

∆pot = D(L)xt + εt + ω
o
t − ωot−1 (21)

where D(L) = B(L)C(L)−1.

Equation (21) takes the form of regression with an MA(1) error-structure that can be used to

estimate the different price change components. For example, in the case of the model presented

above, (21) becomes

∆pot = a1xt+1 + a2xt + a3xt−1 + εt + ω
o
t − ωot−1. (22)

where a1 = η1/η3, a2 = (η2 + (α − 1)η1)/η3, and a3 = −(η2 + αη1)/η3. Note that the right hand
side of this equation contains both a lead and lag of order ßow. The leading term arises because vt

shocks affect prices contemporaneously but order ßow with a one period lag. Hence, the value of

a1 captures the contemporaneous effect of vt on prices.

Although the structure of the trading model honors the main features of direct interdealer

trading, it limits the actions of dealers in ways that the market does not. In particular, the

model imposes a rigid structure to the timing of events and assumes the presences of an exogenous

matching mechanism that has no exact market counterpart: Actual dealers can choose to initiate

conversations with any other dealer at any time they are not responding to a quote request from

another dealer. In recognition of these limitations, I will not attempt structural estimation of the

trading model with (22).

I will focus instead on (21). This equation allows us to study the origins of exchange rate

movements beyond the conÞnes of the speciÞc trading model. In particular, decompositions of

exchange rate changes using (21) rest on three identiÞcation assumptions: (i) the orthogonality of

ωot to all leads and lags of ∆pt, (ii) the dependence of xt on only vt shocks, and (iii) the absence of

serial correlation in εt. Assumption (i) will hold provided that the observed price is an independent

random drawing from the distribution of prices each period. This is a reasonable assumption in
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a market where there are a large number of dealers who can execute transactions at any time.

Assumption (ii) rules out the possibility that common knowledge shocks affect order ßow. This

assumption holds true in a wide class of rational trading models and has been used elsewhere in

empirical research (see, for example, Hasbrouck 1991 and Payne 1999). Assumption (iii) implies

that all CK shocks have permanent affects on the spot exchange rate. This assumption is a little

stronger because, as macro models show, it is possible for public news to have a temporary effect on

spot rates. However, given that the estimated speed of mean reversion in spot rates following such

shocks is typically measured in weeks, months or longer, and we will be considering observations over

Þve minute intervals, this assumption is also rather weak. Notice that none of these assumptions

restrict the form of the polynomial D(L), which captures the dynamics of prices and order ßow via

B(L) and C(L). The model presented above places restrictions onB(L) and C(L) that would almost

surely be different in richer theoretical settings. Thus, in the empirical analysis that follows, I will

estimate (21) with quite general speciÞcations for D(L). The parameter estimates thus obtained

will then be used to decompose price changes into their various components.

3 Empirical Analysis

3.1 The Data

The analysis below utilizes new data on trading activity in the DM/$ spot FX market over a four-

month period, May 1 to August 31, 1996. The data set contains time-stamped tic-by-tic data on

actual transactions taking place through the Reuters Dealing 2000-1 system via an electronic feed

that was customized for the purpose by Reuters. This is the most widely used electronic dealing

system. According to Reuters, over 90% of the world�s direct interdealer transactions took place

through the system.

Trades on the D2000-1 system take the form of electronic bilateral conversations. The conver-

sation is initiated when a dealer calls another dealer on the system to request a quote. Users of the

system are expected to provide a fast two-way quote with a tight spread, which is in turn dealt or

declined quickly (i.e., within seconds). To settle disputes, Reuters keeps a temporary record of all

the conversations on the system. This record is the source of the transactions data. Every time

an electronic conversation on D2000-1 results in a trade, the Reuters feed provides a time-stamped

record of the transactions price, a bought or sold indicator, and a measure of cumulative trading

volume.
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Several features of the data are particularly noteworthy. First, they provide transaction in-

formation for the whole interbank market over the full 24-hour trading day. This contrasts with

earlier transaction data sets covering single dealers over some fraction of the trading day (e.g. Lyons

1995, Yao 1997a, and 1997b, and Bjonnes and Rime 1998). The data set makes it possible, for

the Þrst time, to analyze trading patterns and prices at the level of �the market.� The only other

multiple-dealer data set in the literature covers brokered interdealer transactions (the electronic

system examined by Goodhart, Ito and Payne 1996, and Payne 1999). The system they examine,

however, accounts for only a small fraction of daily trading volume.12

Second, these market-wide transactions data are not observed by individual FX dealers on the

system as they trade. Though dealers have access to their own transaction records, they do not

have access to others� transactions on the system. The transactions data therefore represents a

history of market activity that market participants could only infer indirectly. This feature has

important implications for interpreting the results reported below.

Third, the data cover a relatively long time span (four months) in comparison with other micro

data sets. This span provides as truly vast number of minute-by-minute observations on trading

activity across a wide variety of �market states�. In the analysis that follows, I utilize that data

collected between 00:00:01 BST on Monday to 24:60:60 BST on Friday. (All time is measured

relative to British Summer Time (BST) which corresponds to GMT plus one hour). This time

interval appears to span the week of trading in the DM/$ fairly well. Although the D2000-1 system

runs 24 hours a day, 7 days a week, it rarely recorded trades outside this interval. Excluding

weekends and a feed interruption caused by a power failure, there are 79 full trading days in the

sample.

The analysis below concentrates on (i) transaction prices, (ii) interdealer order ßow, and (iii)

trade intensity. Transactions take two forms in the data. If a dealer initiating a conversation ends

up buying dollars, the transaction price is equal to the ask quote in DMs per dollar offered by

the other dealer. I refer to this as the DM purchase price for dollars, p+t . If the dealer initiating

a conversation ends up selling dollars, the transaction price will be equal to the bid quote given

by the other dealer. I refer to this as the DM sale price for dollars, p−t . Thus the designation of

a transaction price as a purchase or sale price depends on who initiates the transaction. Buyer-

initiated trades take place at the purchase price while seller-initiated trades take place at the sale

12There is also evidence that dealers attach more informational importance to direct interdealer order ßow than to
brokered interdealer order ßow, (see Bjonnes and Rime 1998).
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price. Interdealer order ßow, xt, is deÞned by the difference between the number of buyer-initiated

orders and seller-initiated orders per period. Trade intensity, nt, is deÞned as the number of trades

per period.

3.2 Econometrics

The spot FX market is open continuously in the sense that dealers can trade with one another via

the D2000-1 system 24 hours a day, 7 days a week. The system also allows conversations between

many dealer pairs to take place at the same time. Thus, it is possible for multiple trades to be

concluded, and recorded, at the same instant. The resulting data set constitutes a sequence of

irregularly spaced observations on a continuous trading process. At some points in the sample,

the gaps between successive trades span many minutes, while at others several trades appear with

the same second-by-second time stamp. I will not attempt to directly model these irregular timing

patterns in the analysis below. Instead I will utilize prices, order ßow and trade intensity measured

relative to a Þxed 5 minute observation interval. Hence, p+t and p
−
t are respectively the last dollar

purchase and sale price recorder during interval t; xt is the difference between the number of buyer-

initiated and seller-initiated trades during interval t; and nt is the number of transactions during

interval t.

One drawback to adopting a Þxed observation interval is that there are periods of the day when

no transactions take place during the interval. I designate the price and order ßow observations

from these periods as �missing�. All the statistics and estimates reported below are calculated

without the use of these observations. For example, in computing the Þrst order autocorrelation

coefficient in the ∆p+t series, I only use consecutive observations on ∆p
+
t and ∆p

+
t−1 for which none

of the values for p+t were �missing�. More generally, I employ the GMM estimation procedure

described below.

All the statistics and empirical models considered below can be written in the state-space form:

ξt = Aξt−1 + ζt, (23)

yt = Cξt,

where ξt is a q-dimensioned state vector, and yt is a r-dimensioned vector of observed variables.

ζt is a q-dimensioned vector of shocks with zero means that are uncorrelated with ξt−1, serially

uncorrelated and have covariance matrix Ω. Although the form of A, C and Ω vary according to
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the particular application, in all cases the eigenvalues of A lie inside the unit circle so that ξt

and yt follow stationary processes. Hence, (23) implies that the unconditional means of ξt and

yt are respectively equal to a q and r-dimensioned vector of zeros. (23) also implies that the

covariance of the states, Γ(k) ≡ Cov(ξt, ξ
0
t−k), is computed as Γ(k) = AΓ(k − 1) with Γ(0) =

vec−1
£
(I −A⊗A)−1vec(Ω)¤ . The covariance of the observed variables is therefore given by

Cov(yty
0
t−k) ≡ γ(k) = CΓ(k)C0. (24)

In some applications, I also make us of a j-dimensioned vector of instruments, zt, with the property

cov(yt, z0t−i) = 0 for i ≥ 0.
Let θ represent the vector of parameters to be estimated. As in the standard GMM case, I

consider orthogonality conditions of the form

E [mt(k; θ)] = 0 (25)

where

mt(k; θ) = D(k)
 vec(ytz

0
t−k)

vec(yty
0
t−k − γ(k; θ))


for k = 0, 1, ..K. D(k) is a vector of ones and zeros that selects the moments to be included in
mt(k; θ). (25) gives a maximum of rj+ r2 independent conditions when k > 0 and rj+ r(r+1)/2

conditions when k = 0.

To compute the GMM estimates, let mt(θ) = [mt(0; θ),mt(1; θ).....mt(K; θ)]0 be vector of se-

lected moment conditions. While all the elements of mt(θ) can be computed for any period t, if a

particular element involves a value for yt or yt−k designated as a �missing� observation, the result

is also designated �missing�. This holds true irrespective of the value of θ so the set of �missing�

elements in mt(θ) will not vary with θ for a particular t. Let Λ = {t∗1, .t∗2...t∗T} denote the set of
observations for which none of the elements in mt(.) are �missing�. The estimates of θ are found

by minimizing

Q(θ) = mT∗(θ)
0W−1mT ∗(θ) (26)
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where

mT ∗(θ) =
1

T ∗
X

Λ
mt(θ),

with T ∗ equal to the number of observations in Λ. I follow the standard practice of Þrst setting

the weighting matrix W equal to the identity to obtain consistent estimates of θ. These estimates,

�θ, are then used to compute a consistent estimate of the optimal weighting matrix. The form of

this weighting matrix varies across applications according to whether elements of mt(θ) are serially

correlated under the null hypothesis of a correctly speciÞed model. The most general weighting

matrix I consider follows the form proposed by Newey and West (1987):

�W = Γ0,T ∗ +
κX
v=1

½
1−

·
v

κ+ 1

¸¾¡
Γv,T ∗ + Γ

0
v,T ∗

¢
,

where

Γv,T ∗ =
1

T ∗
X

Λ
mt(�θ)mt−v(�θ)0.

In applications where all the elements of mt(θ) are serially uncorrelated, κ is set to zero so that

�W = Γ0,T ∗ . The GMM estimates, �θ, are found by minimizing (26) with W = �W. The asymptotic

covariance matrix of the resulting estimates is �V = [ �G �W−1 �G0]−1where �G = ∂mT ∗(�θ)/∂θ0.

Several facets of this estimation technique may be illustrated by considering its application to

the regression in (22). In this case, yt = ∆pot − a1xt+1 − a2xt − a3xt−1, ξ0t = [εt,ω
o
t ,ω

o
t−1], and

ζ0t = [εt,ωot , 0] with

C =
h
1 1 −1

i
, A =


0 0 0

0 0 0

0 1 0

 , and Ω =


Σε 0 0

0 Σω 0

0 0 0

 .
The GMM estimates of θ = [a1, a2, a3,Σε,Σω] can be found with instruments zt = [1, xt+1, xt, xt−1]

and the moments

mt(θ) =
h
yt ytxt+1 ytxt ytxt−1 y2t − γ(0; θ) ytyt−1 − γ(1; θ) ..... ytyt−k − γ(k; θ)

i
.
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It is clear in this application that the GMM technique does not necessarily provide the most

efficient parameter estimates. For example, if εt and ω
o
t were normally distributed and the time

series for yt contained no missing observations, θ would be most efficiently estimated by maximum

likelihood with the aid of the Kalman Filter. However, balanced against this, the GMM technique

offers two important advantages. First, it does not require any distributional assumptions regarding

the error processes. Although the trading model implies that εt and ωot are normally distributed,

this arises from modeling assumptions made for analytic convenience rather than any deep economic

reason. In reality, the distribution of εt and ωot could be far from normal. The second advantage

stems from the presence of missing observations. Although the Kalman Filtering algorithm can be

extended to deal with one or two missing observations (see Harvey 1989), dealing with many adds

considerable to the complexity of the Þlter and makes estimation very computational burdensome.

By contrast, the GMM technique can deal with many missing observations very easily. Moreover,

because the data set spans four months, the adoption of the Þve minute observation interval provides

us with a truly vast number of (non-missing) observations. As a consequence, the GMM estimates

of θ are extremely precise judged by the metric of their asymptotic distribution.

4 Results

4.1 Sample Statistics

Although the D2000-1 system runs 24 hours a day, the vast majority interdealer transactions in

the DM/$ are concentrated during the European trading. This institutional feature gives rise to

recurrent intraday patterns in the data. Exemplifying this phenomena, Engle, Ito and Lin (1990),

Baillie and Bollerslev (1991), Bollerslev and Domowitz (1993), Goodhart and Giugale (1993), Payne

(1997) and Andersen and Bollerslev (1998) have all studied the intraday patterns in the volatility

of indicative quotes.

There is also a pronounced intradaily pattern in transactions. Figure 2 plots the average trade

intensity during each Þve minute observation interval calculated over the 79 trading days in the

sample. As the Þgure shows, average trading activity follows a three humped pattern. The Þrst

hump occurs between 01:00 and 05:00 with peak intensity of approximately 5 trades per minute.13

13Trading in the DM/$ is comparatively light during this period because only Asian based dealers are typically in
the market. It is also possible that the Reuter�s Dealing system is used much less by Asian based dealers that their
counterparts in Europe and the US.
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The second hump begins around 07:00, peaks with approximately 25 trades per minute at 09:30, and

drops to 15 trades per minute by about 12:30. Trading during this period is dominated by dealers

situated in Europe. The third hump begins at 12:30, and rises quickly to a peak of approximately

30 trades per minute at 14:30. This increase coincides with U.S. based dealers entering the market.

Activity remains around 25 trades per minute until approximately 16:00, when European based

dealers typically leave the market. Thereafter, there is a gradual decline in activity with fewer than

5 trades per minute taking place after 19:00.

It is important to stress that Figure 2 plots average trade intensity over the sample of 79 trading

days. Actual intensity can vary considerably from day to day. For example, the most active period

of trading in the sample occurs between 09:00 and 10:00 when more that 200 transactions per

minute take place, 8 times the average for that time of day. More generally, the difference between

the actual and average intensity during each Þve minute interval has a sample standard deviation

of 58, so that trading intensity on any particular day could differ signiÞcantly from the pattern

displayed in Figure 2.

Further evidence on the variability of trading activity is provided by Table 1. The upper panel

of this table reports estimates of a 6-state Þrst-order Markov process for trade intensity. The states

are deÞned as {j : n ∈ [Sj, Sj+1)} for j = 1, ..6 where Sj is the lower bound for state j reported in
the table. Thus, an observation of nt = 10, would represent state j = 3 of the Markov process. The

body of the table reports the matrix of estimated transition probabilities, with entry i, j denoting

the probability of transition from state i to state j. Two features of these estimates are noteworthy.

First, the probability of remaining in the same state, reported on the leading diagonal, is less

than 75 per cent in every case. Second, the probability of leaving the current state is highest at

intermediate levels of trading activity. These features are more pronounced in the lower panel of the

table which reports estimates of a 6-state Markov process for the �deseasonalize� trading rates. In

this case, states are deÞned as {j : n− n̄ ∈ [Sj, Sj+1)} where n̄ denotes the average trade intensity
for the interval from which n is observed. These estimates indicate that unusually high or low trade

intensities are more likely to persist than intensities that are closer to the norm for that particular

time of day. They also show that trade intensities can vary over the complete range of states from

period to period. In contrast to the upper panel, all the off-diagonal transition probabilities are

non-zero.

These results show that there are considerable variations in trade intensity over the sample

period. Some of these variations can be attributed to a fairly well-deÞned intraday pattern that
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appears consistent with dealers in different locations entering and leaving the market. However,

on any particular day actual trade intensity can vary considerable from this norm. This raises

the possibility that the 5 minute observation interval spans varying periods of �market time�: the

time scale at which market process evolve at a constant rate. If this time scale is grounded in the

rate at which information becomes available to dealers, and the arrival of private information is an

important source of interdealer trade, then the variable trading intensities we observe may in part

result from the speeding up and slowing down of market time. This phenomena is referred to as

time deformation (Stock 1988) and I shall examine its possible implications below.

Sample statistics for the change in purchase price, ∆p+t , and order ßow, xt are reported in Table

2.14 From the statistics in the right hand columns of the upper panel, the unconditional distributions

for both variables appear non-normal. The distribution for transaction price changes is skewed to

the left and is highly leptokuritic. The distribution for order ßow is also fat-tailed but skewed to

the right. The lower panel reports estimated autocorrelation coefficients together with the p-values

for the null hypothesis of a zero coefficient. In the case of purchase prices, these estimates indicate

the presence of a MA(1) process for ∆p+t : there is a signiÞcant negative coefficient at lag one, while

all coefficients at higher lags are insigniÞcantly different from zero. By contrast, order ßow displays

positive autocorrelation that is statistically signiÞcant at the 1% level on lags one through six.

Further evidence on the dynamics of price changes and order ßow is provided by Table 3. Here

I report GMM estimates for various ARMA speciÞcations using the variance and the Þrst twelve

autocorrelations as moments (see Appendix B). The number of overidentifying restrictions for each

set of estimates are reported in the right hand column together with the Hansen (1982) J-statistic

and its associated p-value.

The upper panel of the table reports estimates of ARMAmodels for the change in purchase price.

Consistent with the statistics in Table 2, there is strong evidence of a moving average component in

this series: the moving average coefficient(s) are highly signiÞcant in all but one model. Although

the MA(1) model appears well-speciÞed when judged by the J-statistic, the autoregressive coeffi-

cients also appear to be signiÞcant in the ARMA(1,1) and ARMA(2,2) models. This is an interesting

Þnding because it provides some preliminary evidence that order ßow contributes to price changes.

Recall from (19) that observed price changes can be written as ∆pot = εt+B(L)vt+ω
o
t−ωot−1, where

εt, vt and ωt are serially uncorrelated. According to this equation, price changes should follow an

14The statistics for the difference in sales prices, ∆p−t , are almost identical to those for ∆p
+
t and so are not reported

to conserve space. All statistics on ∆p+t are calculated without �missing� observations. Appendix B provides details
on all the empirical results presented below.
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MA(1) process if B(L)vt = 0. However, the estimates in Table 3 suggest that price changes follow

a higher order process. According to (19), this must originate from the order ßow component,

B(L)vt.

ARMAmodel estimates for order ßow are reported in the lower panel of Table 3. These estimates

indicate that order ßow follows either an ARMA(1,2), ARMA(2,1) or ARMA(2,2) process with a

high degree of persistence. Judged by the J-statistics, lower order models do not appear to capture

the high degree of persistence in the process implied by the autocorrelations reported in Table 2.

For example, the estimates of the ARMA(1,2) model imply a root for the order ßow process of 0.84.

The persistence in the order ßow is somewhat puzzling. To see why, consider the implications

of these results for the behavior of inventories and customer orders. Market clearing ensures that

∆It+1 = −(ct+ xt) where It denotes the average level of dealer inventories at the start of period t.
Now suppose that dealers� trading decisions are in part motivate by the desire to control inventories.

One minimal implication of an operative inventory control channel is that Cov(∆It+1,∆It−i) < 0

for i > 0, because dealers adjust their quotes so inventories do not stray too far from their (constant)

desired level.15 When this condition holds, market clearing implies that

Cov(ct, xt−i) +Cov(xt, ct−i) +Cov(ct, ct−i) +Cov(xt, xt−i) = Cov(∆It+1,∆It−i) < 0. (27)

The order ßow results in Tables 2 and 3 could be squared with the presence of an operative

inventory control channel if the sum of Þrst three terms is negative. Let us therefore consider these

terms in turn. Interdealer order ßow cannot be observed by non-bank customers so there is little

reason to think that the Þrst term is negative. The second term depends on the extent to which

inventory imbalances resulting from customer orders are passed on from one dealer to another; a

phenomena termed �hot potato� trading by Lyons (1997). If �hot potato� trading is prevalent,

interdealer order ßow will be positively correlated with lagged customer orders so Cov(xt, ct−i) > 0.

Together these observations suggest an upper bound for Cov(ct, ct−i) of −Cov(xt, xt−i) in the
presence of an inventory control channel. Since Cov(xt, xt−i) appears signiÞcantly positive for a

number of lags i, the bound implies that customer orders are negatively autocorrelated over similar

horizons. Although customer orders are taken as exogenous in the trading model, in a more general

setting they would be determined endogenously by the behavior of the non-bank public. Whether

15See Hasbrouck (1998) for a discussion of the canonical inventory control model where this condition holds.
Empirical evidence on the importance of the inventory control in dealer decision-making is provided in Lyons (1995).
He estimates a half life for unwanted inventory of approximately ten minutes for the dealer in his study.
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such negative autocorrelations could arise endogenously remains to be seen.

Equation (27) provides a further perspective on the behavior of order ßow. Suppose that cus-

tomer orders are serially uncorrelated. If Cov(xt, ct−i) ≥ 0 and Cov(ct, xt−i) = 0 for the reasons
cited above, then Cov(xt, xt−i) is a lower bound on Cov(∆It+1,∆It−i). From this perspective, the

order ßow estimates in Tables 2 and 3 suggest that average inventory changes are positively corre-

lated: an equally puzzling result that is inconsistent with the micro evidence on dealer inventories

in Lyons (1995).

A key assumption in these arguments is that the dynamics of order ßow hitting individual dealers

(i.e., x∗t ) is well-represented by the dynamics of the aggregate measure, xt. If there is a signiÞcant

degree of heterogeneity in dynamics of individual the order ßows, the estimates in Tables 2 and 3

will not be informative about the behavior of x∗t . And, as a result, the puzzles alluded to above

become more apparent than real. If this is indeed the case, the order ßow results simply serve to

reinforce my emphasis on the important role of heterogeneity.

4.2 Structural Models

I now turn to examine the origins of exchange rate movements. Table 4 reports GMM estimates of

the regression in (21) for ten different speciÞcations for D(L), the polynomial on order ßow. The

dependent variable in all cases is the change in purchase price, ∆p+t . (Results using the change in

sale price, ∆p−t , are nearly identical.) The table reports the coefficient estimates on each of the order

ßow terms, together with their standard errors which are corrected for conditional heteroskedasticity

and an MA(1) error process. Inspection of these estimates reveals that the coefficients on xt−2, xt−3,

xt+5 and xt+6 are (individually) insigniÞcantly different from zero at the 5 per cent level whenever

they are included in a speciÞcation. This evidence suggests that D(L) is well-characterized by

a 60th order polynomial (i.e., one that includes terms in L−4, L−3, L−2, L−1, L0, and L). As row

VII of the table shows, all the coefficient estimates in this speciÞcation are statistically signiÞcant.

The importance of the leading order ßow terms is further emphasized by the results in the last

row. Here the table reports estimates for the case where D(L) includes only L0, L, L2 and L3

terms. The R2 statistic from this speciÞcation is 0.005, much lower than the R2 statistics for the

other speciÞcations. Thus, order ßow contributes most to the predicable variation in price changes

through the leading terms.

The right hand columns of the table report the estimated sum of the order ßow coefficients

together with some regression diagonstics. In every case, the sum of the coefficients is positive
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and statistically signiÞcant. Since the dependent variable is the change in price, these estimates

imply that order ßow variations have a permanent effect on the price level. This is a surprising

Þnding when judged against the background of the trading model. There customer order shocks

only exerted a temporary affect on prices so that D(1) = 0. The estimates in Table 4 strongly

reject this restriction. The trading model makes more accurate predictions about the structure

of the regression residuals. The right hand column of the table reports l− statistics (Cumby and

Huizinga 1993) for the null hypothesis that the regression residuals follow an MA(1) process. For

the preferred speciÞcation in row VII, the l−statistic is signiÞcant at the 9 per cent level.
While the results in Table 4 provide strong evidence on the price-impact of order ßow, more

can be learnt about the origins of price movements by utilizing both the purchase and sale prices,

p+t and p
−
t . SpeciÞcally, consider p

+
t and p

−
t to represent random drawings from the respective

distributions of purchase and sales prices so that p+t = pt + ω
+
t and p−t = pt + ω

−
t where pt is the

average price level. Combining these expressions with (18) and (20) gives ∆p+t
∆p−t

 =
 1
1

D(L)xt +
 1
1

 εt +
 ω+t − ω+t−1
ω−t − ω−t−1

 . (28)

When observed prices are drawn independently from their respective distributions, ω−t and ω
+
t will

be serially uncorrelated and independently distributed. They will also be independent from the CK

news shock εt, and from leads and lags of order ßow.

Equation (28) provides us with a generalizing of (21) that utilizes both purchase and sales price

changes to estimate the dynamics of the average price change ∆pt, which is represented by the Þrst

two terms on the right hand side. The third term is the sampling component of observed price

changes that arises from the presence of the transaction price distribution. To estimate the model,

I draw on the results in Table 4 by assuming that D(L) is a 6�th order polynomial containing terms

in L−4 to L. I also assume that ω+t and ω
−
t have the same variance, Σω, and constant means.

16

The GMM estimates are obtained using instruments zt = [xt+4, ....xt−1] and moments derived from

the covariances of observed price changes.

The GMM estimates of the Bivariate model in (28) are reported in Table 5. The order ßow

16The latter assumption implies that there is no period-by-period change in the difference between the average
purchase and sales price, p̄+t − p̄−t . This is not a completely innocuous assumption because dealers can change the
spread between their bid and ask quotes, which in turn could alter p̄+t − p̄−t . However, spreads in the interdealer
market are extremely small (for example, Lyons 2000 reports a median spread of DM 0.0003/$ for the dealer he
studied), so keeping the means of ω+t and ω

−
t constant is not unreasonable.
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coefficient estimates are generally very similar to those reported in row VII of Table 4, and are all

highly statistically signiÞcant. The sum of the estimated coefficients is approximately 0.24 with

a standard error of 0.02. This estimate is also similar to the one in Table 4 and implies a strong

rejection of the null hypothesis that customer order shocks only have temporary affects on prices.

The estimates of Σ
1/2
ε and Σ

1./2
ω , the standard deviations of CK news and the idiosyncratic shocks

are rather similar. Thus, the cross-sectional dispersion of transaction prices appears to be of the

same order of magnitude as the variance of CK shocks.

These estimates provide empirical support for the existence of an equilibrium distribution of

transaction prices at a point in time. While the trading model shows how an equilibrium distribution

can arise from heterogeneity and a lack of transparency, are other interpretations possible? In

particular, couldn�t the estimates simply imply the presence of some sort of measurement error? In

one sense, the answer is clearly no. The data on p+t and p
−
t come from the Reuters trading system

and constitute part of the audit trail. There is not doubt that transactions took place at exactly

the prices recorded in the p+t and p
−
t series. Of course, it is possible that dealers make typing errors

or irrational decisions when using the trading system. p+t and p
−
t will then contain measurement

errors in the sense that they do not correspond to equilibrium transaction prices in any theoretical

model that excludes these possibilities. But even in this case, the assumptions of the Bivariate

model are valid so long as the ωot shocks are serially uncorrelated. Thus, while it may be possible

to attribute some of the price distribution implied by the estimates to economic factors ignored by

the trading model, it cannot be even partially attributed to pure measurement error in the data.

The estimates reported in Table 5 are based on the dynamics of price changes and order ßow

measured over a Þxed 5-minute observation window. As I noted above, it is quite possible that

this Þxed interval corresponds to varying spans of �market time�. Consequently, the estimates may

be affected by the presence of time deformation. To examine this possibility, I use trade intensity

as a state variable to test for the presence of state-dependency in the dynamics of prices changes

and order ßow. If market time is in part determined by the rate at which dealers receive new

information from outside the market, and arrival of non-common knowledge (NCK) information is

an important source of interdealer trade, the large variations in trade intensity we observe may be

signaling the presence of time deformation.

The upper panel of Table 6 reports the results of the state-dependency tests for the dynamics of

price changes and order ßow. In the former case, I estimate models for price changes that include

the distributed lag of order ßow D(L)xt, together with the interaction terms D(L)xtnt, D(L)xtn2t
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and D(L)xtn
3
t . I then test the null hypothesis that the estimated coefficients on all the included

interactions terms are zero using a Wald test corrected for the presence of heteroskedasticity and

an MA(1) residual error structure. As the table shows, these test statistics strongly reject the

null. The Wald tests for state-dependency in the order ßow dynamics show much weaker evidence

against the null; none are signiÞcant at the 5 per cent signiÞcance level. These tests are based on

AR(6) models for order ßow (i.e., D(L) = d1L+ ...+ d6L6), but the results are robust to the use

of higher-order models.

The lower panel of Table 6 reports tests for heteroskedasticity in the variances of εt, ω
+
t and ω

−
t .

The center three columns report Glesjer (1969) tests for heteroskedasticity using combinations of

nt, n
2
t and n

3
t . As the table shows, there is very strong evidence against the null of homoskedasticity

in all three cases. The right hand column reports LM statistics for Þrst order ARCH (Engle 1982)

for each of the three shocks. These statistics also imply a rejection of the homoskedastic null at

very high signiÞcance levels. The table also reports tests for heteroskedasticity in the variance of

the innovations in order ßow. The tests use the innovations from the estimates of the ARMA(2,2)

order ßow model in Table 3. All four test statistics are highly signiÞcant.

Overall, the results in Table 6 strongly indicate that the dynamics of price changes vary signiÞ-

cantly with the state of the market as measured by trading intensity. While this does not constitute

direct evidence of time deformation, it is certainly consistent with the idea that speed of market

processes varies through time. The results also point to the need to incorporate state-dependency

into the Bivariate model. To this end, I consider the following extension: ∆p+t
∆p−t

 =
 1
1

D(L,nt)xt +
 1
1

 εt +
 ω+t − ω+t−1
ω−t − ω−t−1

 , (29)

where D(L,nt) denotes a state-dependent 6�th order polynomial

D(L,n) = d1(n)L
−4 + d2(n)L−3 + .....+ d5(n) + d6(n)L,

with state-dependent coefficients di(.). As above, εt, ω
+
t and w

−
t are mutually independent and

serially uncorrelated shocks, but their variances are now state-dependent: V ar(εt) = Σε(n) and
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V ar(ω+t ) = V ar(ω
−
t ) = Σω(n). I model state-dependency in the coefficients and variances as

di(n) = di(0) exp(−n/γ) + di(∞)(1− exp(−n/γ)),
Σi(n) = Σi(0) exp(−n/γ) +Σi(∞)(1− exp(−n/γ)),

where di(0), di(∞), Σi(0) and Σi(∞) are all parameters to be estimated. These functional forms
bound the coefficients between di(0) and di(∞), and the variances between Σi(0) and Σi(∞) as the
transaction rate varies between 0 and∞. For the sake of parsimony, the positive scaling parameter
γ, is common to all functions.

Table 7 reports the GMM estimates of the state-dependency model in (29) with γ set equal

to 100. Attempts to estimate the model with γ unrestricted gave estimates close to 100 but the

standard errors on all the other parameters were much larger than the values reported in the table.

(Re-estimating the model with γ set to different values of 90 and 110 had negligible effects on the

estimated parameters.) The upper portion of the table reports the estimated bounds in the order

ßow polynomial, D(L, n). When compared to the estimates in Table 5, we see that the estimates

of di(0) are generally smaller in absolute value than their state-independent counterparts, while

the estimates of di(∞) are generally larger. The estimated range for the individual di(.)s appears
quite large. A Wald test for the null hypothesis of di(0) = di(∞) for i = {1, 2, ...6}, reported in the
lower panel, is highly signiÞcant. This test statistic supports the presence of state-dependency in

the price change dynamics. The di(.) estimates also imply signiÞcant state dependence in D(1, n),

which measures the long run impact of order ßow on the price level. The estimated lower and upper

limits are -0.15 and 1.32 with standard errors of 0.03 and 0.10 as n ranges from zero to inÞnity.

The center of the table reports estimates for the variance parameters. In models where all four

parameters were left unrestricted, the estimates of Σε(0) and Σω(∞) were very close to zero (i.e.
< 0.0001), so the table reports estimates where these parameters are restricted to zero. With these

restrictions, V ar(εt) = Σε(∞)(1− exp(−n/100)) and V ar(ω+t ) = V ar(ω−t ) = Σω(0) exp(−n/100).
The estimated value for Σω(0) implies that the standard deviation for the idiosyncratic shocks

slowly falls from 0.047 to approximately 0.006 as n varies from 0 to 200. The estimate for Σε(∞)
implies that the standard deviations of CK shocks is smaller than V ar(ωt)1/2 for n less than 35.

As the transactions rate rise beyond 35 the standard deviation increases slowly from 0.042.towards

0.090.

The lower portion of the table reports the results of various diagnostic tests. The Hansen
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(1982) J -test for the over-identifying restrictions of the model has a p-value of 0.96. The table

also reports the results of LM-type tests for misspeciÞcation in the estimated D(L,n), Σε(n) and

Σω(n) functions. None of these statistics are statistically signiÞcant. This suggests that the model

did manage to incorporate most of the state-dependency in price dynamics. The model is less

successful in accounting for all the heteroskedasticity exhibited by price changes. The bottom of

the table reports autocorrelations for the standardized estimates of the shocks. If the model had

completely captured the heteroskedasticity in price changes, these autocorrelations should all be

close to zero. As the table shows, this is not the case. In particular, there appears to be signiÞcant

Þrst-order serial correlation in the estimates of ε2t /Σε(nt).

Overall, the results in Table 7 show that the state-dependent dynamics of price changes are

reasonably well-characterized by the model speciÞed in (29). While the model does not identify all

the sources of heteroskedasticity in prices, it does appear to capture the role played by changing

trade intensity.

4.3 Implications

The results above allow us to examine the origins of price changes in several different ways. In

particular, we can (i) study the dynamic response of prices to CK and NCK shocks, (ii) decompose

the variance of observed price changes into different theoretical components, and (iii) examine the

sources of seasonality in price heteroskedasticity.

The results in Table 7 provide us with estimates of the observed price process:

∆pot = D(L,nt)xt + εt + ω
o
t − ωot−1. (19)

Recall from Section 2.3 that equilibrium order ßow can be represented as xt = C(L)vt, where vt

is a common component of customer orders. Although this process could also be state-dependent

with the coefficients in C(L) functions of the transaction rate, the empirical evidence in Table 6

suggests that order ßow follows a reasonably stable process. Thus, as an empirical matter, we can

substitute C(L)vt for xt in (19) to give

∆pot = B(L, nt)vt + εt + ω
o
t − ωot−1, (30)

where B(L,n) = D(L, n)C(L).

Equation (30) provides us with the means to empirically examine the origins of price changes.
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In particular, the state-dependent polynomial B(L,n) identiÞes the impulse response of prices to

a one standard deviation order ßow shock while trade intensity remains at n. To calculate these

impulse responses, I Þrst use the estimated ARMA models for order ßow in Table 3 to calculate

the coefficients in C(L). I then combine these values with the estimates of D(L, n) from Table 7 to

compute B(L,n). Panels A, B and C of Figure 3 report the results for n = 5, 20 and 40. As there is

little to choose between the ARMA(2,1), ARMA(1,2) and ARMA (2,2) estimates for order ßow, the

Þgure plots the impulse responses implied by each speciÞcation. For completeness, panel D plots

the impulse responses implied by the estimates of D(L) in Table 5 (i.e., without state-dependency).

Figure 3 displays three noteworthy features. First the impulse responses appear fairly robust to

the choice of ARMA speciÞcation used in calculating C(L). Second, the dynamic response of prices

seems to vary considerably with trade intensity. When the state of the market is characterized by

low trade intensity, order ßow shocks have comparatively small effects on prices. Prices rise for the

Þrst three periods following the shock and then fall back towards their original level. In fact the

total effect on the price level (i.e., B(1, 5)) is less than 0.002 in all three cases. Thus, order ßow

shocks have small and transitory effects on prices when transaction rates are low. Panels B and C

show very different responses. Here prices rise for approximately 7 periods (35 minutes) following

the shock. The cumulative effect on the price level is approximately 0.40 when n = 20, and 0.63

when n = 40. Thus, order ßow shocks have much larger and long-lasting price effects when trade

intensity is high.

The third noteworthy feature concerns the time of the peak response. In all cases order ßow

shocks have their largest (positive) effect on price changes during the 3rd. period, 15 minutes after

the shock. To understand how such a delay might arise, recall from the trading model that the

customer order received by one dealer affected the price quoted to a counterparty, who in turn used

the information in setting prices next period. In a model with a richer timing structure that more

closely resembles trading in the interdealer market, it may take some time before the transmission of

information through transaction prices affects the price-setting decisions of a signiÞcant number of

dealers. Consequently, the delayed peaked response may well reßect the importance of transaction

prices as a medium for information ßows between dealers and the relatively slow speed at which

such information diffuses across the whole market.

We can also use equation (30) to decompose the variance of observe price changes into different

theoretical components. In particular, consider the k-period price change, ∆kpot ≡ Σk−1i=0∆p
o
t+i.
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Substituting for ∆pot with (30), gives

∆kpot = ω
o
t − ωot−k +

Xk−1
i=0

εt−i +B(L, k, nt)vt, (31)

where B(L, k, nt) =
Pk−1
i=0 B(L,L

int)L
i. Since the vt, εt and ω

o
t shocks are mutually independent

and serially uncorrelated, we can use (31) to write the variance of price changes as

V ar(∆kpot ) = Σω(nt) +Σω(nt−k) +
Xk−1

i=0
Σε(nt−i) + V ar (B(L, k, nt)vt) . (32)

The Þrst two terms identify the contribution of the idiosyncratic sampling shocks to the variance.

These terms can be calculated from the estimates of the Σω(.) function in Table 7. The contribution

of CK news, given by the third term, can be similarly calculated from the estimates of Σε(.). The

forth term identiÞes the contribution of the order ßow shocks (from the common component of

customer orders). This term can be further decomposed as

V ar (B∗(L, k, nt)vt) + V ar (B(1, k, nt)vt) + 2B∗(0, k, nt)B(1, k, nt)V ar(vt),

where B∗(L, k, nt) ≡ B(L, k, nt)−B(1, k, nt) identiÞes the transitory effect on prices over k-periods
of a one standard deviation order ßow shock. The Þrst term in the expression above gives us the

contribution of such shocks to the variance of k-period price changes. The permanent contribution

of order ßow shocks is shown by the second term. The last term identiÞes twice the covariance

between B∗(L, k, nt)vt and B(1, k, nt)vt.

To compute these components we need estimates of B(L, k, nt) and the variance of the vt shocks.

In light of the state-dependency results reported in Table 6, it is clearly inappropriate to assume

that vt is homoskedastic. I therefore re-estimated the ARMA(2,2) model for order ßow allowing for

a state-dependence variance, Σv(n) = Σv(0) exp(−n/γ)+Σv(∞)(1−exp(−n/γ)).With γ set equal
to 100 (as above), the GMM estimates of the AR and MA coefficients are almost identical to those

reported in Table 3 while the estimates of Σv(0) and Σv(∞) are 0.001 and 0.022 respectively. For the
sake of comparison, I also computed variance decompositions assuming that vt was homoskedastic

with Σv set equal to the variance of the innovations from the ARMA(2,2) model. These results are

reported in Appendix C.

Table 8 reports variance decompositions based on (32) for various horizons k and trade intensi-

ties n. The upper panel reports the fraction of the price change variance attributable to sampling,
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Rω(k, n) ≡ 2Σω(n)/V ar(∆
kpot ). According to these estimates, most of the short-term variability

in prices is attributable to sampling unless trade intensity is very high. For example, Rω(1, 10)

is approximately 84 per cent. Although Rω(k, n) falls at all intensities as the horizon increases,

sampling continues to contribute more than 17 per cent at the 2 hour horizon for intensities of

10 or less. These results indicate that, under most conditions, a majority of the high frequency

variations in observed transaction prices result from the presence of signiÞcant dispersion in the

equilibrium price distribution.

The middle panel of Table 8 reports the contribution of the order ßow shocks to the variance

of price changes: Rv(k, n) ≡ V ar (B(L, k, nt)vt) /V ar(∆kpot ). These estimates show that order ßow
shocks contribute more to price volatility in states of the market with higher trade intensities.

Order ßow shocks also make a larger contribution to the price variance as the horizon rises. Across

all intensities, order ßow contributes approximately 40 per cent of the variance in prices at the two

hour horizon. The contribution of order ßow shocks are even higher in states where trade intensities

are at least 40.

These Þndings are inconsistent with the traditional macro view that stresses the importance of

CK news. According to this view, the estimates of both Rω(k, n) and Rv(k, n) should be close to

zero. Of course, the macro view may still be accurate at much longer horizons. To address this

possibility, the right hand column of the center panel reports the contribution of the order ßow

shocks to the variance of the permanent innovations in prices. According to (30), observed prices

can be written as pot = p̄t+I(0) terms, where ∆p̄t = εt+B(1, n)vt. Hence, the relative contribution

of order ßow can be calculated as Rv(∞, n) ≡ B(1, n)2Σv/V ar(∆p̄t). The right hand column of the
table shows that the estimates of Rv(∞, n) follow a �U-shaped� pattern, with a minimum value of

zero when n = 5. At high trade intensities, the estimates of Rv(∞, n) are more than 80 per cent.
These estimates are consistent with regression Þnding in Evans and Lyons (1999) that order ßow

accounts for more than 60 per cent of daily price changes. They also stand in sharp contrast to the

traditional macro view concerning the origins of exchange rate movements.

Further information on the importance of order ßow shocks comes from the lower panel of

Table 8. Here I report the contribution of order ßow shocks that temporary affect the price level,

Rv∗(k, n) ≡ V ar (B∗(L, k, nt)vt) /V ar(∆kpot ). Once again, the estimates of Rv∗(k, n) increase as n
rises. The largest estimates of over 22 per cent are found at high trade intensities with the 30 minute

horizon. Across all intensities, the temporary order ßow component contributes approximately 12

per cent to the variance of the prices changes over 30 minutes. This pattern is consistent with the
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delayed peak in the impulse responses plotted in Figure 3.

Finally, we can use the variance components to examine sources of seasonal heteroskedasticity.

Recall from Figure 2 that there are pronounced intraday patterns in trade intensities. Figure 4

combines these patterns with the estimates of Rω(k, n) and Rv(k, n) to show how different shocks

contribute to the variance of price changes over a typical 24 hour period. Three features of these

plots stand out. First, sampling variability is a very signiÞcant source of price variance outside of

European trading hours. For example, panel A shows that the estimates of Rω(1, n) are more than

80 per cent before 7:00 hrs. and after 17:00 hrs.. Although sampling contributes less to the price

variance over longer horizons, Rω(k, n) remains above 30 per cent even at the two hour horizon. Sec-

ond, although sampling contributes less to the variance of price changes during European Trading,

it continues to be a very important source at the 5 minute horizon; the estimates of Rω(1, n) remain

above 60 per cent. Third, order ßow shocks contribute most to price variance during European trad-

ing. The peak values for Rv(k, n) range from 10 per cent at the 5 minute horizon to approximately

50 per cent at two hours. When combined with the values for Rω(k, n), these estimates imply a

peak contribution for CK news to the price variance, deÞned as Rε(k, n) ≡ 1−Rω(k, n)−Rv(k, n),
of approximately 30 per cent at the 5 minute horizon, and 50 per cent at 2 hours.

5 Conclusion

The primary aim of this paper has been to provide a new perspective on the source of exchange

rate dynamics. The perspective comes from considering how trading in the FX market actually

takes place. To this end, I presented a theoretical model of FX trading that emphasized how the

lack of transparency in dealer-customer and dealer-dealer transactions can lead to an equilibrium

distribution of transaction prices rather than a single price level. I then showed how the predictions

of this model could be used to develop an empirical framework for studying exchange rate dynamics.

Applying this framework to transactions data for the DM/$, several striking results emerge: First,

there is strong evidence supporting the presence of equilibrium price distribution. Second, CK

news shocks are rarely the predominant source of exchange rate changes over both long and short

horizons. Third, NCK news shocks are an empirically important source of long-term exchange-rate

dynamics.

The Þrst of these Þndings is key to understanding the short-term dynamics of exchange rates.

Unless trading between dealers is extremely active, the dispersion in the equilibrium distribution
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is large enough to account for most of the observed variance in high frequency price changes.

This Þnding puts a new perspective on the high frequency volatility of exchange rates. It implies

that much of the volatility we observe comes from sampling the heterogeneous trading decisions of

dealers in an equilibrium distribution that, under normal market conditions, changes comparatively

slowly.

The second Þnding speaks more directly to assumptions that lie at the heart of the traditional

macro view of exchange rate dynamics. Recall that this view assumes (i) all information relevant

for exchange rate determination is CK, and (ii) the mapping from information to equilibrium prices

is also CK. CK news shocks meet both of these requirements but account for only 56 per cent of

the persistent movements in exchange rates across all market states, and 20 per cent when trading

activity is high. Thus, a key implication of my results is that models based on assumptions (i) and

(ii) are simply too restrictive to account for all the persistent exchange rate movements we observe.

In this sense, my Þndings do direct attention away from the common knowledge framework modeled

in traditional macro exchange rate models.

Where should our attention be redirected? The third Þnding points towards NCK news shocks.

The trading model identiÞed customer orders as one source of such shocks, but this is not a wholly

satisfactory answer: Customer orders are surely determined endogenously by agents outside the

market. Although general equilibrium models have yet to be developed identifying the source of

customer orders, there are suggestions in the literature about their origins. For example, Evans

and Lyons (1999) point out that orders can embody NCK information about valuation numerators

(i.e. future interest differentials) and denominators (i.e., anything that affects discount rates). In

the former case, customer orders could reßect changes in the expected future path of interest rates.

Moreover, there is mounting microeconomic evidence that private information plays an important

role in FX trading (Lyons 1995, Yao 1997a, Bjonnes and Rime 1998, Cheung and Wong 1998, Ito

Lyons and Melvin, 1988, Covrig and Melvin 1998, and Payne 1999). Customer orders need not be

the only source of NCK news. Public news announcements, for example, may represent NCK news

to dealers because they hold differing views about its implications for equilibrium prices. If this is

the case, prices and interdealer order ßow will be affected by these differing views until a consensus

arises; a implication consistent with the variance decompositions presented above.

In sum, my results direct attention away from exchange rate models with a common-knowledge

environment dominated by a small number of macro variables and towards models with richer

informational structures.
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A Trading Model Solution

This appendix derives the equilibrium solution to the trading model presented in Section 2. I start

with four lemmas.

Lemma 1 When prices and order ßow follow (11) and (12), the information sets of dealer d

starting her trading cycle in period t, can be characterized by

Ωdt = {qt, cdt , vt−2, �vdt−1} ∪Ωdt−1, (A.1)

Ωdt+1 = {qt+1, vt−1, u∗t−1} ∪Ωdt , (A.2)

where �vdt−1 = vt−1 + edt−1, with edt−1 ∼ N(0,Σe) and Σe = Σu/(1− (η2/η1)2).

Proof At the end of period t− 1 trading dealers learn the values of pt−2 and xt−2.Combining (11)
and (12) with (1) and averaging across dealers (with the average values of udt and e

d
t set equal to

zero), gives

pt−2 = qt−2 + η1vt−2 + (η1α+ η2)vt−3, (A.3)

xt−2 = η3vt−3. (A.4)

Since qt−2 is announced publicly at the start of t− 2, these equations imply that

vt−2 =
1

η1
(pt−2 − qt−2)− (η1α+ η2)

η3η1
xt−2 ∈ Ωt. (A.5)

Dealers also receive private information in the form of dealer orders x∗t and transactions prices

p∗t−1. SpeciÞcally, equation (12) implies that

x∗t − η3vt−1 = η3u∗t−1.

By the start of period t + 1, all the terms on the left are known so the dealer can precisely infer

the value of u∗t−1 as shown in (A.2).

Finally, combine (11) and (1) to write transaction prices as

p∗t−1 = qt−1 + η1(u
∗
t−1 + vt−1) + η1αvt−2 + η2�v

∗
t−2.
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DeÞne �vdt−1 ≡ 1
η1

£
p∗t−1 − qt−1 − (η1α+ η2)vt−2

¤
as the signal dealer d extracts from p∗t−1 given qt−1

and vt−2 ∈ Ωdt . Substituting for p∗t−1 in this deÞnition gives

�vdt−1 = vt−1 +
η2
η1
(�v∗t−2 − vt−2) + u∗t−1.

Thus, �vdt−1 is equal to the true value of vt−1 plus an estimation error that depends on the id-

iosyncratic shock to the customer order received by dealer ∗ (d0s counterparty in t− 1), and their
estimation error, �v∗t−2− vt−2. Solving this equation recursively implies that �vdt−1− vt−1 is a inÞnite
weighted average of the past udt shocks received by a sequence of dealers that have traded with

each other. Since udt ∼ i.i.d.N(0,Σu) for all d, and |η2| < |η1| (see below), edt−1 ≡ �vdt−1 − vt−1
∼ i.i.d.N(0,Σe) with Σe = Σu/(1− (η2/η1)2).

Lemma 2 If dealer d starts her trading cycle in period t, with information sets described by (A.1)

and (A.2),

E
h
vt+i|Ωdt

i
=


0 i > 0

φ(cdt − αδe�vdt−1) i = 0

δe�v
d
t−1 + αφ(cdt − αδe�vdt−1) i = −1

, (A.6)

where δe ≡ Σv/(Σv+Σe) and φ ≡ Σv(1−δe)/
¡
Σu + (1+ α

2(1− δe))Σv
¢
. At the beginning of period

t+ 1,

E
h
vt+i|Ωdt+1

i
=

 0 i > 0

δu(cdt − αvt−1) i = 0
(A.7)

where δu ≡ Σv
Σv+Σu

Proof Dealer estimates of vt are found by applying the following well-known property of bivariate

normal distributions: If x ∼ N(µ,Ω) where x = [x1, x2]
0, µ = [µ1, µ2]

0 and Ω = [Ωij ], then

x1|x2 ∼ N(µ1|2,Ω1|2) where µ1|2 = µ1 + (Ω12/Ω22)(x2 − µ2) and Ω1|2 = Ω11 −Ω12(Ω22)−1Ω12.
For dealer d starting her trading cycle in period t, Lemma 1 implies thatE[vt−1|Ωdt ] = E[vt−1|�vdt−1, cdt ],

E
£
vt|Ωdt

¤
= E[vt|�vdt−1, cdt ], and �vdt−1 ∼ N(0,Σe+Σv). Applying the result above with x1 = vt−1 and

x2 = �vdt−1, gives vt−1|�vdt−1 ∼ N(δe�vdt−1,Σv(1− δe)), where δe ≡ Σv/(Σv +Σe). Combining this with
(1) implies that cdt |�vdt−1 ∼ N(αδe�vdt−1,Σu +Σv[1+ α2(1− δe)]).
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Next, I apply the result above with x1 = vt−1|�vdt−1 and x2 = cdt |�vdt−1 to get E[vt−1|Ωdt ] = δe�vdt−1+
αφ(cdt −αδe�vdt−1). Similarly, if x1 = vt|�vdt−1 and x2 = cdt |�vdt−1, I obtain E

£
vt|Ωdt

¤
= φ(cdt −αδe�vdt−1).

When dealer d reaches the second period of her trading cycle in t + 1, Lemma 1 implies that

E[vt|Ωdt+1] = E[vt|cdt , vt−1] and E[vt+1|Ωdt+1] = E[vt+1|cdt , vt−1] = 0. Let x1 = vt|vt−1 ∼ N(0,Σv)

and x2 = cdt |vt−1 ∼ N(αvt−1,Σv+Σu). Applying the result above, gives E[vt|Ωdt+1] = δu(cdt −αvt−1)
with δu =Σv/(Σv+Σu). Equations (13), (14) and (16) follow from Lemma 2, (A.5) and the deÞnition

of �vdt .

Lemma 3 For a dealer starting her trading cycle in period t, with expected utility deÞned in the

Proposition, the solution to the optimization problems in (4) - (8) is

pdt −E[qt+1|Ωdt ] =
(cdt +E[x

∗
t |Ωdt ])

θV ar(x∗t |Ωdt )
+
Cov(xdt+1(p

∗
t+1 − qt+1)−∆τwT , x∗t |Ωdt )
V ar(x∗t |Ωdt )

, (A.8)

and

xdt+1 = λ
d
t+1(c

d
t + x

∗
t ) =

(qt+1 −E[p∗t+1|Ωdt+1])
θV ar(p∗t+1|Ωdt+1)

+
Cov

¡
∆τwdT , p

∗
t+1|Ωdt+1

¢
V ar(p∗t+1|Ωdt+1)

, (A.9)

where ∆τwdT ≡ wdT − wdt+2 is the change in wealth from t + 2 until the end of trading in period T

(denoted Td in the text).

Proof Let Edt , V ar
d
t (.) and Cov

d
t (.) respectively denote E[.|Ωdt ], V ar(.|Ωdt ) and Cov(.|Ωdt ). First

iterate the budget constraint in (6) forward to give

wdT = ∆
τwdT +w

d
t + (c

d
t + x

∗
t )(p

d
t − qt+1)− λdt+1(cdt + x∗t )(p∗t+1 − qt+1),

where τ = T−(t+2). Now consider a dealer starting her trading cycle in period t. At the beginning
of period t + 1, the dealer chooses λdt+1 to maximize E

d
t+1U(wdTd) = Edt+1(w

d
Td
) − θ2

2 V ar
d
t+1(w

d
Td
)

where

Edt+1(w
d
T ) = Edt+1∆

τwdT +w
d
t + (c

d
t + x

∗
t )(p

d
t − qt+1)− λdt+1(cdt + x∗t )(Edt+1p∗t+1 − qt+1),

V ardt+1(w
d
T ) = (λdt+1)

2(cdt + x
∗
t )
2V ardt+1(p

∗
t+1) + V ar

d
t+1(∆

τwdT )

−λdt+12(cdt + x∗t )Covdt+1
³
∆τwdT , p

∗
t+1

´
.

Making these substitutions and differentiating Edt+1U(wdT ) with respect to λdt+1 gives (A.9).
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In period t, the dealer chooses pdt to maximize E
d
t U(wdT ) = Edt wdT − θ

2V ar
d
t (w

d
T ). The mean and

variance are calculated from the budget constraint with xdt+1 = λ
d
t+1(c

d
t + x

∗
t ) using the fact that

qt+1 is independent of x
∗
t :

Edt (w
d
T ) = Edt

h
∆τwdT − xdt+1(p∗t+1 − qt+1)

i
+wdt + (c

d
t +E

d
t x
∗
t )(p

d
t −Edt qt+1),

V ardt (w
d
T ) = V ardt (∆

τwdT − xdt+1(p∗t+1 − qt+1)) + V ardt (x∗t )[(pdt −Edt qt+1)2 +Σs]
+(cdt +E

d
t x
∗
t )
2Σq − 2(pdt −Edt qt+1)Covdt (∆τwdT − xdt+1(p∗t+1 − qt+1), x∗t ).

Making these substitutions and differentiating Edt U(wdT ) with respect to pdt gives (A.8).

Lemma 4 If y1, y2 and y3 are jointly normally distributed random variables,

Cov(y1y2, y3) = Ey1Cov(y2, y3) +Ey2Cov(y1, y3).

Proof From the identity, y1y2 = Ey1Ey2+Ey1ÿy2+Ey2ÿy1+ ÿy1ÿy2 where ÿyi ≡ yi−Eyi, we can write

Cov(y1y2, y3) = Ey1Cov(y2, y3) +Ey2Cov(y1, y3) +Cov (ÿy1ÿy2, y3) .

To show that the last term in these expression equals zero, project ÿy1 and ÿy2 on ÿy3 to get ÿy1 =

a1ÿy3 + e1 and ÿy2 = a2ÿy3 + e2 where ei is uncorrelated with ÿy3 and Eei = 0. The projection errors

are also independent from ÿy3 because the ÿyi�s are normally distributed. Hence,

Cov (ÿy1ÿy2, y3) = E [ÿy1ÿy2ÿy3]

= a1a2E
£
ÿy33
¤
+E [a1e2 + a2e1]E

£
ÿy23
¤
+Et [e1e2]E[ÿy3].

Since ÿy3 is normally distributed with Eÿy3 = 0, and Eei = 0, all the terms in the second line equal

zero.

Proof of Proposition in Section 2 The proof proceeds in two steps. Step 1 is to show that

Cov(∆τwT , x
∗
t |Ωdt ) = 0, (A.10)

Cov
³
∆τwdT , p

∗
t+1|Ωdt+1

´
= 0, (A.11)

Cov(xdt+1(p
∗
t+1 − qt+1), x∗t |Ωdt ) = ϕ(qt −Edt p∗t+1). (A.12)
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so that (A.8) and (A.9) in Lemma 3, can be written as

xdt+1 = ψ(qt+1 −Edt+1p∗t+1) (A.13)

pdt −Edt qt+1 = β(cdt +E
d
t x
∗
t ) + βθϕ(qt −Edt p∗t+1) (A.14)

where ψ ≡ (θV ardt+1(p
∗
t+1))

−1, β = (θV ardt (x
∗
t ))

−1 and ϕ is a constant determined below. These

equations have the same form as (9) and (10) in the text. Step 2 shows that (11) and (12) are

consistent with (A.13) and (A.14) when dealers hold rational expectations.

Step 1 : To derive the results in (A.10) - (A.12), I Þrst use the identity ∆τwdT =
Pτ/2
i=1∆

2wdt+2(i+1),

to write

Covdt

³
∆τwdT , x

∗
t

´
=

Xτ/2

i=1
Covdt (∆

2wdt+2(i+1), x
∗
t ), (A.15)

Covdt+1

³
∆τwdT , p

∗
t+1

´
=

Xτ/2

i=1
Covdt+1(∆

2wdt+2(i+1), p
∗
t+1). (A.16)

The dealer�s budget constraint implies that

∆2wdt+2(i+1) = (c
d
t+2i + x

∗
t+2i)(p

d
t+2i − qt+2i+1)− xdt+2i+1(p∗t+2i+1 − qt+2i+1). (A.17)

so covariance terms on the right of equations (A.15) and (A.16) can be written as

Covdt (∆
2wdt+2(i+1), x

∗
t ) = Covdt

³
(cdt+2i + x

∗
t+2i)(p

d
t+2i − qt+2i+1), x∗t

´
(A.18)

−Covdt
³
xdt+2i+1(p

∗
t+2i+1 − qt+2i+1), x∗t

´
,

Covdt+1(∆
2wdt+2(i+1), p

∗
t+1) = Covdt+1

³
(cdt+2i + x

∗
t+2i)(p

d
t+2i − qt+2i+1), p∗t+1

´
(A.19)

−Covdt+1
¡
xt+2i+1(p

∗
t+2i+1 − qt+2i+1), p∗t+1

¢
.
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Equations (11) and (12) imply that all the terms in the the covariance functions are normally

distributed so each covariance can be evaluated using Lemma 4. Thus in the case of (A.18)

Covdt

³
(cdt+2i + x

∗
t+2i)(p

d
t+2i − qt+2i+1), x∗t

´
= Edt

h
(cdt+2i + x

∗
t+2i)

i
Covdt

³
(pdt+2i − qt+2i+1), x∗t

´
+Edt

h
(pdt+2i − qt+2i+1)

i
Covdt

³
(cdt+2i + x

∗
t+2i), x

∗
t

´
(A.20)

Covdt

³
xdt+2i+1(p

∗
t+2i+1 − qt+2i+1), x∗t

´
= Edt

h
xdt+2i+1

i
Covdt

¡
(p∗t+2i+1 − qt+2i+1), x∗t

¢
+Edt

£
(p∗t+2i+1 − qt+2i+1)

¤
Covdt

³
xdt+2i+1, x

∗
t

´
Using (11), (12) and the results in lemma 2, it is straightforward to check that all the expectations

in (A.20) equal zero for i ≥ 1, and hence, by (A.15), (A.18) and (A.20), Covdt
¡
∆τwdT , x

∗
t

¢
= 0 as

shown in (A.10).

In the case of (A.19),

Covdt+1

³
(cdt+2i + x

∗
t+2i)(p

d
t+2i − qt+2i+1), p∗t+1

´
= Edt+1

h
(cdt+2i + x

∗
t+2i)

i
Covdt+1

³
(pdt+2i − qt+2i+1), p∗t+1

´
+Edt+1

h
(pdt+2i − qt+2i+1)

i
Covdt+1

³
(cdt+2i + x

∗
t+2i), p

∗
t+1

´
,

(A.21)

Covdt+1

³
xdt+2i+1(p

∗
t+2i+1 − qt+2i+1), p∗t+1

´
= Edt+1

h
xdt+2i+1

i
Covdt+1

¡
(p∗t+2i+1 − qt+2i+1), p∗t+1

¢
+Edt+1

£
(p∗t+2i+1 − qt+2i+1)

¤
Covdt+1

³
xdt+2i+1, p

∗
t+1

´
.

As above, it is straightforward to check that all the expectations in (A.21) are equal to zero for

i ≥ 1. Hence, (A.16), (A.19) and (A.21) together imply that Covdt+1
¡
∆τwdT , p

∗
t+1

¢
= 0 as shown in

(A.11). (A.9) of Lemma 3 and (A.11) imply (A.13).
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To derive (A.12), I use Lemma 4 in conjunction with (A.13) to write

Covdt

³
xdt+1(p

∗
t+1 − qt+1), x∗t

´
= ψ(qt −Edt p∗t+1)Covdt

¡
(p∗t+1 − qt+1), x∗t

¢
+ψ(Edt p

∗
t+1 − qt)Covdt

³
(qt+1 −Edt+1p∗t+1), x∗t

´
.

With qt+1 following an independent random walk, and Covdt
¡
p∗t+1, x∗t

¢
= Covdt

¡
Edt+1p

∗
t+1, x

∗
t

¢
be-

cause x∗t ∈ Ωdt+1, this expression simpliÞes to

Covdt

³
xdt+1(p

∗
t+1 − qt+1), x∗t

´
= 2ψ(qt −Edt p∗t+1)Covdt

³
Edt+1p

∗
t+1, x

∗
t

´
. (A.22)

Equation (11) and Lemma 2 imply that Edt+1p
∗
t+1 = qt+1 + (αη1 + η2)δu(vt + u

d
t ), so

Covdt

³
Edt+1p

∗
t+1, x

∗
t

´
= (αη1 + η2)η3Cov

d
t (vt, vt−1). (A.23)

Lemma 2 also implies that

vt−1 −Edt vt−1 = (1− φ)αvt−1 − αφvt − αφudt − δe(1− α2φ)�vdt−1
vt −Edt vt = (1− φ)vt − φudt − φαvt−1 − φαδe�vdt−1

so

Edt

h
(vt−1 −Edt vt−1)

³
vt −Edt vt

´i
= φα

£
(1− φ)(1− α(1+ δe)) + (δe + 1)(1− α2φ)δe

¤
Σv

+αφ2Σu + δeαφ(1− α2φ)Σe. (A.24)

Combining (A.22) -(A.24) gives.(A.12) where

ϕ = 2ψ(αη1 + η2)η3
©
φα
£
(1− φ)(1− α(1+ δe)) + (δe + 1)(1− α2φ)δe

¤
Σv + αφ

2Σu + δeαφ(1− α2φ)Σe
ª
.
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Step 2: I proceed using the method of undetermined coefficients with dealer d�s expectations

be represented by

Edt x
∗
t = γ1c

d
t + γ2vt−2 + γ3�v

d
t−1, (A.25)

Edt+1p
∗
t+1 = qt+1 + π1c

d
t + π2vt−1, (A.26)

for πi and γi determined below.

Consider the orders from dealer b in period t : Lagging (A.13) one period with d = b, and

substituting for Ebt p
a
t with (A.26), gives

xbt = ψqt − ψ
h
qt + π1c

b
t−1 + π2vt−2

i
.

Next, we take expectations conditioned on Ωdt (dealer a
0s time t information) to obtain,

Eat x
b
t = −ψπ1Eat vt−1 − ψ(π2 + απ1)Eat vt−2 − ψπ1Eat ubt−1.

Since t is the Þrst period of dealer a0 trading cycle, Lemma 2 implies that Eat vt−1 = δe�vat−1+αφ(cat −
αδe�v

a
t−1), .random matching ensures that Eat u

b
t−1 = 0, and Lemma 1 implies that Eat vt−2 = vt−2.

Combining these results with the equation above, and simplifying, gives

Eat x
b
t = −ψαφπ1cat − ψ (π1α+ π2) vt−2 − ψδeπ1(1− α2φ)�vat−1. (A.27)

Next, consider the pricing decision made by group B dealers at the beginning of their trading

cycle in period t+ 1. According to (A.14) these prices are given by

pbt+1 = qt+1 + βc
b
t+1 + βE

b
t+1x

a
t+1 + βθϕ(qt+1 −Ebt+1pat+2). (A.28)

Leading (A.26) one period forward, and taking expectations conditioned on Ωbt+1, gives

Ebt+1p
a
t+2 = qt+1 + π1c

b
t+1 + π2E

b
t+1vt. (A.29)

Since period t + 1 is the Þrst period of dealer b�s trading cycle, Ebt+1vt+1 = φ(cbt+1 − αδe�vbt ) and
Ebt+1vt = δe�v

b
t + αφ(c

b
t+1 − αδe�vbt ) from (A.6) of Lemma 2. Combining these results with (A.25),
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(A.28) and (A.29), gives

pbt+1 = qt+1 + β [1+ γ1 − θϕπ1 − θϕπ2αφ] cbt+1 + βγ2vt−1 + β
£
γ3 − θϕπ2δe(1− α2φ)

¤
�vbt .

Next, take expectations conditioned on Ωat+1 to give

Eat+1p
b
t+1 = qt+1 + β [1+ γ1 − θϕπ1 − θϕπ2αφ]Eat+1cbt+1 + βγ2vt−1

+β
£
γ3 − θϕπ2δe(1− α2φ)

¤
Eat+1�v

b
t .

Period t+1 is the second period of dealer a0s trading cycle so Eat+1cbt+1 = αEat+1vt = αδu(cat−αvt−1)
and Eat+1�v

b
t = E

a
t+1vt = δu(c

a
t − αvt−1) from Lemmas 1 and 2. Substituting in these expectations

into the expression above gives

Eat+1p
b
t+1 = qt+1 + β [1+ γ1 − θϕπ1 − θϕπ2αφ]αδu(cat − αvt−1) + βγ2vt−1

+β
£
γ3 − θϕπ2δe(1− α2φ)

¤
δu(c

a
t − αvt−1). (A.30)

which is in the form of (A.26) above.

Equating coefficients in (A.25) and (A.26) with (A.27) and (A.30) respectively, gives the fol-

lowing set of equations:

π1 = β [1+ γ1 − θϕπ1 − θϕπ2αφ]αδu + β
£
γ3 − θϕπ2δe(1− α2φ)

¤
δu

π2 = βγ2 − π1α, γ1 = −ψαφπ1,
γ2 = −ψ (π1α+ π2) γ3 = −ψδeπ1(1− α2φ).

(A.31)

This establishes that dealer�s expectations take the form of (A.25) and (A.26).

To establish that equilibrium prices and orders follow (11) and (12), Þrst note that the equations

for π2 and γ2 in (A.31) imply that γ2 = 0, and π2 = −απ1. Using these results with (A.25), (A.26)
(A.29) and lemma 2 to substitute for the expectations in (A.13) and (A.14):

pdt = qt + β
¡
1− ¡θϕ(1− α2φ) + ψφα¢αδuβΞ¢ cdt (A.32)

−β2δuαΞδe
¡
1− α2φ¢ (ψ − αθϕ) �vdt−1

xdt = −ψβδuαΞ(cdt−1 − αvt−2) (A.33)
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(A.32) and (A.33) take the same form as the posited process for equilibrium prices and orders in

(9) and (10), with

η1 = β
¡
1− ¡θϕ(1− α2φ) + ψφα¢αδuβΞ¢ , η3 = −ψβδuαΞ,

η2 = −β2δuαΞδe
¡
1− α2φ¢ (ψ − αθϕ) ,

Ξ−1 = 1+ βαδu(ψαφ+ θϕ(1− α2φ)) + βδe(1− α2φ)(ψ − αθϕ)δu
(A.34)

Together with (1), these equations imply that

V ardt (x
∗
t ) = η3

2
£
Σu +Σv

¡
1− δe)(1− α2φ

¢¤
,

V ardt+1(p
∗
t+1) = Σq + η

2
1(Σv +Σu) + η

2
2Σe + (η1α+ η2)

2Σv(1− δu).

When there are no idiosyncratic shocks to customer orders (i.e., Σu = 0), Σe = 0, δu = δe = 1

φ = 0 and ϕ = 0. Substituting these restrictions into the expressions for ηi implies that p
d
t =

qt + β(vt +
α

1+βψvt−1) and x
d
t = − βψα

1+βψvt−1 so the heterogeneity in prices and orders disappears.

Finally, we need to establish that |η2/η1| < 1 in order for Σe to be Þnite. I argue by contra-

diction. Suppose |η2/η1| ≥ 1, so that δe = 0. Then η2 = 0 by (A.34) above. Hence, η1 must also
be equal to zero. According to (A.34), this requires that either (i) β ≡ (θV ardt (x∗t ))−1 = 0 or (ii)
1 =

¡
θϕ(1− α2φ) + ψφα¢αδuβΞ.Condition (i) cannot hold because V ardt (x∗t ) is Þnite even when

Σe is not because |η3| <∞ when δe = 0. All that remains is condition (ii). Substituting for Ξ with

δe = 0, it is easy to check that (ii) cannot hold.

50



B Estimation Details

The appendix describers how the GMM technique is applied to produce the estimation results

reported in the tables.

B.1 Autocorrelations

To estimate Corr(wt, wt−i), let yt = wt − α0 − α1wt−i and z0t = [1, wt]. The GMM estimates of α0

and α1 are then computed using mt(θ) = ytz
0
t−i with weighting matrix Γ0T ∗ . Table 2 reports the

estimate of α1, together with the p-value for the Wald test of the null hypothesis of α1 = 0.

B.2 ARMA Models

To illustrate how the ARMA model estimates in Table 3 are calculated, consider the ARMA(2,2)

case:

wt = α1wt−1 + α2wt−2 + νt + β1νt−1 + β2vt−2. (B.1)

The Þrst step is to write the model in the state space form of (23):


wt

wt−1
νt

νt−1

 =

α1 α2 θ1 θ2

1 0 0 0

0 0 0 0

0 0 1 0




wt−1
wt−2
νt−1
νt−2

+

νt

0

0

0

 ,

yt =
h
1 0 0 0

i


wt

wt−1
νt

νt−1

 , Ω =


Σν 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

The estimates are then computed with mt(k; θ) = ytyt−k − γ(k; θ), for k = 0, 1, ..12, where γ(k; θ)
≡ Cov(yt, yt−k) is calculated from the state space form. The weighting matrix is Γ0T ∗ .
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B.3 Decomposition Regressions

Table 4 reports GMM estimates of

∆p+t =
Xi=k

i=k
αixt−i + νt,

where νt follows an MA(1) process that is independent from all leads and lags of xt. Let yt =

∆p+t −
Pi=k
i=k αixt−i, and z

0
t = [xt−k......xt−k]. The GMM estimates of the α0is, are computed using

mt(θ) = ytz
0
t and the Newey-West weighting matrix with κ = 1, i.e., Γ0T ∗ +

1
2(Γ1T∗ +Γ

0
1T ∗). Notice

that this choice allows for both heteroskedasticity and an MA(1) process in νt.

B.4 Bivariate Model

The Bivariate model in (28) can be written in the state space form of (23) as



ω+t

ω−t
ω+t−1
ω−t−1
εt


=



0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0





ω+t−1
ω−t−1
ω+t−2
ω−t−2
εt−1


+



ω+t

ω−t
0

0

εt


, Ω =



Σω 0 0 0 0

0 Σω 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 Σε


,

yt ≡
 y1t
y2t

 ≡
 ∆p+t −Pi=−4

i=1 αixt−i
∆p−t −

Pi=−4
i=1 αixt−i

 =
 1 0 −1 0 1

0 1 0 −1 1




ω+t

ω−t
ω+t−1
ω−t−1
εt


.

To obtain the GMM estimates, I use instruments, z0t = [xt−1......xt+4], and moments

mt(0; θ) =

 vec(ytz
0
t)

vec(yty
0
t)− γ(0; θ)

 ,
mt(k; θ) = vec(yty

0
t−k)− γ(k; θ) k = 1, 2,

with the Newey-West (κ = 1) weighting matrix, Γ0T ∗ +
1
2(Γ1T ∗ + Γ

0
1T ∗).
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B.5 Tests for State-Dependency

The upper panel of Table 6 reports Wald tests for non-linearity in models of the form:

∆p+t = D0(L)xt−i +D1(L)ntxt +D2(L)n
2
txt +D3(L)n

3
txt + νt,

where νt follows an MA(1) process that is independent from all leads and lags of xt and Di(L) =

di1L+d
i
2L

0+di3L
−1+...di6L−4. Each cell reports the Wald statistic and p-value for the null hypothesis

of dji = 0 for i = {1, 2..6} with j = 1 (left hand column), j = 1 and 2 (center column), and

j = 1, 2, and 3 (right hand column). In each case, the dji coefficients are estimated by GMM for

the speciÞcation including D0(L)xt and the regressors listed at the head of each column along the

lines described in B.4.

The lower panel of Table 6 reports tests for heteroskedasticity in the shocks to the Bivariate

Model and ARMA(2,2) order ßow model. Estimates of the shocks from the Bivariate Model are

obtained as:

³≈
εt
´2

= �y1t�y2t =
¡
�εt + �ω

+
t − �ω+t−1

¢ ¡
�εt + �ω

−
t − �ω−t−1

¢
= (�εt)

2 + ζεt ,µ
≈
ω
+

t

¶2
= −�y1t+1�y1t = −

¡
�εt+1 + �ω

+
t+1 − �ω+t

¢ ¡
�εt + �ω

+
t − �ω+t−1

¢
=
¡
�ω+t
¢2
+ ζ+t , (B.2)µ

≈
ω
−
t

¶2
= −�y2t+1�y2t = −

¡
�εt+1 + �ω

−
t+1 − �ω−t

¢ ¡
�εt + �ω

−
t − �ω−t−1

¢
=
¡
�ω−t
¢2
+ ζ−t ,

where �hats� denote the GMM estimates. The estimated innovations to the ARMA(2,2) order ßow

model are found from (B.1) as

³≈
vt

´2
= (wt+2 − �α1wt+1 − �α2wt) (wt − �α1wt−1 + �α2wt−2)/�β2 = (�vt)2 + ζvt .

Under the null of a correctly speciÞed model, all the error terms, ζit, have mean zero and are serially

uncorrelated. To implement the Glesjer (1969) tests, I estimate $2t = α0+ n
0
tα+ ξt for each shock

$t, where the vector nt includes the terms listed at the head of each column. The GMM estimates

of α0 and α are then computed using mt(θ) = ytz
0
t where yt = $

2
t − α0 − n0tα and z0t = [1, n0t] with

weighting matrix Γ0T ∗ . The table reports the Wald test for α = 0 based on these estimates.
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B.6 Bivariate Model with State-Dependence

The State-Dependent model in (29) can be written in the state space form of (23) as



ω+t

ω−t
ω+t−1
ω−t−1
εt


=



0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0





ω+t−1
ω−t−1
ω+t−2
ω−t−2
εt−1


+



ω+t

ω−t
0

0

εt


,

Ω(nt) =



Σω(nt) 0 0 0 0

0 Σω(nt) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 Σε(nt)


.

yt ≡
 y1t
y2t

 ≡
 ∆p+t −Pi=−4

i=1 αi(nt)xt−i
∆p−t −

Pi=−4
i=1 αi(nt)xt−i

 =
 1 0 −1 0 1

0 1 0 −1 1




ω+t

ω−t
ω+t−1
ω−t−1
εt


,

where

Σi(n) = Σi(0) exp(−n/100) +Σi(∞)(1− exp(−n/100)),
αi(n) = αi(0) exp(−n/100) + αi(∞)(1− exp(−n/100)).

To obtain the GMM estimates, I use instruments,

z0t = [xt−1, ......xt+4, xt−1 exp(−nt/100), ......xt+4 exp(−nt/100)],

and moments

mt(0; θ) =

 vec(ytz0t)

vec(yty
0
t)− γt(0; θ)

 ,
mt(k; θ) = vec(yty

0
t−k)− γ(k; θ, nt) k = 1, 2.
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where

γt(0; θ) =

 Σω(nt) +Σω(nt−1) +Σε(nt) Σε(nt)

Σε(nt) Σω(nt) +Σω(nt−1) +Σε(nt)


γt(1; θ) =

 −Σω(nt−1) 0

0 −Σω(nt−1)

 , γt(2; θ) =

 0 0

0 0

 .
As in the Bivariate Model, I use the Newey-West (κ = 1) weighting matrix, Γ0T ∗ +

1
2(Γ1T ∗ +Γ

0
1T ∗).

The Wald test for D(L, 0) = D(L,∞) is computed as ∇�α0
³
�Ω∇α

´−1∇�α where
∇�α = [�α1(0)− �α1(∞), .. .., �α−4(0)− �α−4(∞)]

and �Ω∇α is the estimated asymptotic covariance matrix of ∇α. To test for misspeciÞcation in
the αi(n) and Σi(n) functions, I use the GMM version of the LM test developed by Newey and

West (1987). In the case of the αi(n) functions, I consider alternative speciÞcations of the form

�αi(n) = αi(n) +ϕin. To test the null hypothesis that ϕi = 0 for all i, I use the two step procedure

suggested by Greene (1997). First I compute the derivative for the GMM criterion function Q(θ)

with �αi(n) replacing αi(n) at the GMM estimates with ϕi = 0. I then calculate the Wald statistic for

the null hypothesis that this vector of derivatives equals zero. In the case of the variance functions

Σω(n) and Σε(n) functions, the alternative speciÞcations take the form of �Σω(n) = Σω(n)+ϕn and

�Σε(n) = Σε(n) + ϕn.

The lower panel of the table reports autocorrelations for the estimated shocks. The shocks are

calculated from the GMM estimates as in (B.2), and standardized as �$2t = $
2
t [�Σ$(nt)]

−1 where $t
denotes the shock in question. I then estimate �$2t = α0+αi �$

2
t−i+ξt by GMM usingmt(θ) = ytz

0
t−i

where yt = �$2t − α0 − αi �$2t−i and z0t =
£
1, �$2t

¤
with weighting matrix Γ0T∗ . The table reports the

estimate of αi and GMM standard error allowing for heteroskedasticity. Under the null hypothesis

that V ar(υt) = Συ(nt), αi = 0 for all lags i.
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Figure 2: Average Trade Intensity 

 

 
The figure shows the average number of direct-interdealer transactions per minute over the 
79 trading days in the sample plotted over 24 hours. 
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Figure 3: Impulse Response Functions  
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A: n = 5 B: n = 20 
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C: n = 40 D: n = all 

Panels A, B, and C plot B L n D L n C L( , ) ( , ) ( )=  where D L n( , )  is the estimated state-dependent 
polynomial on order flow from Table 6 and C(L) is the polynomial implied by the estimated 
ARMA model for order flow in Table 3. Panel D plots B L n D L C L( , ) ( ) ( )=  where D(L) is 
estimated the polynomial on order flow from Table 5 (without state-dependence). The solid, 
dashed and dotted lines respectively show the impulse response based on ARMA(2,2), 
ARMA(2,1) and ARMA(1,2) order flow models.  

 



 

 
Figure 4: Variance Decompositions Over  

a Typical Trading Day 
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C: 60 Minute Horizon (k=12) D: 120 Minute Horizon (k=24) 

Solid lines plot R k ntw ( , )  against the left hand axis. Dashed lines plot R k nv t( , )  against the 
right hand axis. nt  is the average trade intensity rate over the sample during the each 5-
minute interval.   



 

 
Table 1: Markov Models for Trade Intensities 

 
I:With Seasonals Transition Probabilities 

  State 
State 1 2 3 4 5 6 

        
1 0.743 0.188 0.028 0.001 0.000 0.001 
2 0.215 0.568 0.209 0.008 0.001 0.000 
3 0.040 0.237 0.574 0.301 0.087 0.022 
4 0.001 0.006 0.160 0.496 0.453 0.201 
5 0.000 0.001 0.019 0.126 0.274 0.245 
6 0.000 0.000 0.010 0.068 0.186 0.532 

        
Ergodic Probabilities 0.210 0.244 0.283 0.160 0.053 0.050 

Lower Bounds 0 1 4 14 26 36 
        

II:Without Seasonals Transition Probabilities 
  States 

State 1 2 3 4 5 6 
        

1 0.725 0.110 0.068 0.108 0.105 0.036 
2 0.108 0.497 0.266 0.182 0.081 0.034 
3 0.066 0.265 0.466 0.278 0.129 0.047 
4 0.060 0.104 0.167 0.297 0.288 0.164 
5 0.021 0.016 0.020 0.086 0.232 0.221 
6 0.019 0.007 0.013 0.049 0.165 0.498 
        

Ergodic Probabilities 0.248 0.251 0.250 0.150 0.050 0.050 
Lower Bounds -28.672 -3.644 -0.974 1.775 8.472 16.582 

Notes: The tables report estimates of the transition probabilities for a first-order, 6-state 
Markov processes for trade intensities. Panel I reports estimates based on the raw
intensities, while panel II shows estimates for the deseasonalized intensities, where the 
latter are computed as n nt t-  with nt  denoting the sample average rate for observation 
period t (plotted in Figure 2). The table reports the lower bounds that define the 6 states, and 
the estimated unconditional (ergodic) probability of each state occurring. The transition 
probabilities are estimated as the relative frequency that a particular transition occurred 
over the sample.    



 

 
Table 2: Sample Statistics  

 
 mean max. min. Sdt. skewness kurtosis
Dpt

+  0.000 0.500 -0.790 0.076 -0.194 7.291
   0.008 0.020 0.039
     
xt  0.005 69.000 -72.000 5.211 0.102 14.260
   0.007 0.017 0.034
     

      
Autocorrelations (p-values) 

      
lag 1 2 3 4 5 6 12 18 24
Dpt

+  -0.319 -0.014 -0.005 0.002 -0.006 0.004 0.005 0.020 0.001
 (0.000) (0.170) (0.650) (0.858) (0.539) (0.732) (0.607) (0.037) (0.899)
       
xt  0.232 0.105 0.092 0.077 0.060 0.058 0.025 0.027 0.005
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.007) (0.005) (0.578)
       
Notes: pt

+  is 100 times the last DM purchase price for dollars on the Reuter�s D2000-1
system during observation interval t. xt  is the difference between the number of buyer-
initiated and seller-initiated trades during observation interval t. The autocorrelations are 
computed by GMM. The p-values are calculated from Wald tests of the null hypothesis of a 
zero correlation allowing for conditional heteroskedasticity (see Appendix B for details).  

 



 

Table 3: ARMA Models 

Coeffs. a1 a2 b1 b2 s 2  J-stat. p-value Df.
      
Dpt

+  -0.2347  0.0728 53.8420 0.0000 11
 (0.0084)  (0.0006)   
  0.3079  0.0719 4.9999 0.9312 11
  (0.0122)  (0.0007)   
 0.0768 0.3903  0.0717 1.8596 0.9973 10
 (0.0269) (0.0308)  (0.0007)   
 0.0809 0.0012 0.3945  0.0717 1.8587 0.9935 9
 (0.0874) (0.0246) (0.0902)  (0.0007)   
 0.0972 0.4108 -0.0063 0.0717 1.8587 0.9935 9
 (0.4022) (0.4041) (0.1244) (0.0007)   
 -1.0129 0.0898 -0.7000 0.4305 0.0717 1.1029 0.9975 8
 (0.2873) (0.0321) (0.2882) (0.1066) (0.0007)   
      

xt   0.2602  5.7451 107.4869 0.0000 11
 (0.0100)  (0.0615)   
  -0.2241  5.7527 155.4307 0.0000 11
  (0.0128)  (0.0612)   
 0.7572 0.5953  5.8144 32.9568 0.0003 10
 (0.0166) (0.0229)  (0.0601)   
 0.9851 -0.1133 0.7755  5.8769 8.9239 0.4443 9
 (0.0348) (0.0176) (0.0300)  (0.0604)   
 0.8417 0.6282 0.0959 5.8771 7.5449 0.5806 9
 (0.0176) (0.0207) (0.0141) (0.0604)   
 0.7663 0.0577 0.5531 0.1411 5.8762 7.3681 0.4975 8
 (0.1356) (0.1023) (0.1348) (0.0802) (0.0605)   
Notes: The table reports GMM estimates and standard errors for ARMA models of the form 
 

z a z a z w b w b wt t t t t t= + + + +- - - -1 1 2 2 1 1 2 2 , 
 

where Ewt = 0  and E tw s2 2= . The models are estimated from the mean, variance and first 12 
autocorrelations of the data (see Appendix B). The right hand columns report the results of 
Hansen (1982) J-tests for each specification. The column headed Df. reports the degrees of 
freedom associated with each test. The variables are: pt

+ , 100 times the last DM purchase 
price for dollars on the Reuter�s D2000-1 system during observation interval t; and xt , the 
difference between the number of buyer-initiated and seller-initiated trades during 
observation interval t. 

 



 
 

Table 4: Decomposition Regressions 
 

 D L( )  Coefficients (x100) 
  

Diagnostics 

 xt  xt −1  xt −2 xt −3  xt +1  xt +2 xt +3  xt +4 xt +5 xt +6 D L( )    R2 SEE l-test
            
I -0.134 -0.018  0.200    0.048       0.028 7.479   2.045
  (0.012) (0.011)  (0.016)    (0.018)   (0.360)
         
II -0.140 -0.028 0.001 0.167 0.157   0.156 0.044 7.364 2.219
  (0.012) (0.011) (0.013) (0.016) (0.012)   (0.021)   (0.330)
         
III -0.145 -0.031 -0.002 -0.001 0.165 0.140 0.085  0.210 0.051 7.331 4.359
  (0.012) (0.011) (0.014) (0.011) (0.016) (0.013) (0.012)  (0.021)   (0.113)
         
IV -0.146 -0.031 -0.004 -0.002 0.162 0.139 0.072 0.052 0.242 0.053 7.307 6.046
  (0.012) (0.011) (0.014) (0.011) (0.016) (0.013) (0.013) (0.011) (0.023)   (0.049)
         
V -0.146 -0.031 -0.003 -0.002 0.161 0.138 0.072 0.050 0.011 0.249 0.054 7.299 5.287
  (0.012) (0.011) (0.014) (0.011) (0.016) (0.013) (0.013) (0.012) (0.011) (0.023)   (0.071)
         
VI -0.146 -0.031 -0.005 0.000 0.161 0.138 0.072 0.050 0.011 0.002 0.251 0.055 7.289 4.429
  (0.012) (0.011) (0.014) (0.011) (0.016) (0.013) (0.013) (0.012) (0.011) (0.010) (0.024)   (0.109)
         
VII -0.145 -0.033  0.159 0.139 0.071 0.055 0.247 0.051 7.318 4.794
  (0.012) (0.011)  (0.016) (0.013) (0.012) (0.011) (0.021)   (0.091)
         
VIII -0.146 -0.033  0.159 0.138 0.071 0.052 0.012 0.253 0.052 7.315 6.315
  (0.012) (0.011)  (0.016) (0.013) (0.012) (0.012) (0.011) (0.022)   (0.043)
         
IX -0.145 -0.033  0.159 0.138 0.071 0.051 0.012 0.003 0.256 0.053 7.297 6.046
  (0.012) (0.011)  (0.016) (0.013) (0.013) (0.012) (0.011) (0.010) (0.023)   (0.049)
         
X -0.091 -0.013 0.017 0.014    -0.073 0.005 7.559 0.075
 (0.013) (0.012) (0.014) (0.011)    (0.017)   (0.963)

Notes: The table reports GMM estimates of the coefficients in the polynomial, D L( ) for the 
regression: 

Dp D L xt t t t t
+ +

-
+= + + -( ) e w w 1, 

where pt
+  is 100 times the last DM purchase price for dollars on the Reuter�s D2000-1 system 

during observation interval t; and xt , the difference between the number of buyer-initiated 
and seller-initiated trades during observation interval t. The GMM estimates and standard 
errors allow for the presence of conditional heteroskedasticity and an MA(1) error structure 
(see Appendix B). The column headed D( )1  reports the sum of the estimated coefficients in 
D L( )  and its standard error. The right-hand column reports Cumby Huizinga l-test statistics 
for the null hypothesis that the errors follow an MA(1) process. The associated p-values are 
reported in parenthesis.   

 
  



 

 
Table 5: Estimates of Bivariate Model 

 
     

 
 

xt+4  xt+3 xt+2  xt+1 xt  xt-1

Coefficients in D L( )  0.0494 0.0700 0.1488 0.1613 -0.1461 -0.0374
(x100) (0.0103) (0.0114) (0.0112) (0.0156) (0.0107) (0.0101)

     
     
 Seb g1 2/  0.0391 (0.0011) Swb g1 2/ 0.0433 (0.0004)
     
     
     
 D( )1  0.2461 (0.0219) J-statistic 7.6044 (0.8684)

Notes: The table reports GMM estimates of the Bivariate model: 
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+

-
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-
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where wt

+ , wt
-  and e t  are mutually independent and serially uncorrelated shocks with 

E tw w+ += , E tw w- -= , E te = 0  and Var t( )e e= S , Var Vart t( ) ( )w w w
+ -= = S . pt

+ and pt
- are 

respectively 100 times the last DM purchase and sales price for dollars on the Reuter�s 
D2000-1 system during observation interval t. xt is the difference between the number of 
buyer-initiated and seller-initiated trades during observation interval t. Asymptotic standard 
errors corrected for heteroskedasticity and serial correlation are reported below the 
parameter estimates (see Appendix B). The table also reports Hansen�s J-statistic with its 
associated p-value in parenthesis. 

 
 
 
 
 



 

 
Table 6: Tests For State-Dependency 

 
     

Non�linearity  
Variable D L x nt t( )  D L x n D L x nt t t t( ) ( ) 2  D L x n D L x n D L x nt t t t t t( ) ( ) ( )2 3   

     
Dp+  97.844 92.988 166.284  
 (<0.001) (<0.001) (<0.001)  
     
Dp-  167.426 252.563 296.390  
 (<0.001) (<0.001) (<0.001)  
     
x  11.254 16.868 28.132  
 (0.081) (0.158) (0.060)  
     

 
Heteroskedasticity 

Shock n  n n2  n n n2 3  ARCH 

     
e t  545.127 609.454 662.451 123.525 
 (<0.001) (<0.001) (<0.001) (<0.001) 
     
w t

+  6.272 6.471 14.234 17.981 
 (0.013) (0.039) (0.003) (<0.001) 
     
w t

-  2.542 5.017 25.759 41.626 
 (0.117) (0.081) (<0.001) (<0.001) 
     
vt  4705.604 5152.894 5188.820 2097.581 
 (<0.001) (<0.001) (<0.001) (<0.001) 
     
Notes: See Table 5 for the definitions of Dp+ ,Dp- , and x . The upper panel reports Wald tests 
for the null hypothesis of zero coefficients on all the terms listed at the head of each column 
in models of the form 

z D L x D L x n D L x n D L x n wt t t t t t t t t= + + + +( ) ( ) ( ) ( )2 3 . 
 
In each case, the model including D L xt( )  and the listed terms was estimated by GMM 
allowing for heteroskedasticity and an MA(1) error structure. These estimates are then used 
to construct the Wald test. P-values are reported below each statistic. In cases where the 
change in price is the dependent variable, D(L) takes the form of the 6�th-order polynomial in 
the Bivariate model. For the case of order flow, D(L) = d L d L d L1 2

2
6

6+ +..... . The lower panel 
reports the results of tests for heteroskedasticity. The center three columns report Glesjer 
(1969) tests for heteroskedasticity in the variance of each shock using the variables listed at 
the head of each column. vt  is the innovation to the ARMA(2,2) model for order flow 
estimated in Table 3 above, while e t , w t

+ , and w t
-  are the shocks from the Bivariate model. 

The right hand column reports LM statistics for first-order ARCH. In all cases, p-values for 
the null hypothesis of homoskedasticity are shown in parenthesis.  



 
Table 7: Bivariate Model with State-Dependency 

 
I: Estimates    
 xt+4  xt+3 xt+2 xt+1 xt  xt-1
Coefficients in D L( , )0   0.0195 0.0154 0.0075 -0.0579 -0.0963 -0.0428
(Std. Errs.) (x100) (0.0169) (0.0160) (0.0167) (0.0182) (0.0171) (0.0165)

    
Coefficients in D L( , )•  0.1575 0.2555 0.5384 0.6424 -0.2697 -0.0072
(Std. Errs.) (x100) (0.0659) (0.0567) (0.0563) (0.0594) (0.0426) (0.0517)
    

 Se ( ) /0 1 2  Se ( ) /• 1 2  Sw ( ) /0 1 2 Sw ( ) /• 1 2 D( , )1 0  D( , )1 •
 0.000 0.0900 0.0479 0.0000 -0.1546 1.3169
 (N/A) (0.0005) (0.0001) (N/A) (0.0300) (0.1020)

    
II: Diagnostics    

   Statistic p-value 
J-Test for Over identifying Restrictions 9.315 (0.968)  
Wald Test for D L( , )0 =D L( , )•   255.247 (<0.001)  
LM Test for misspecification in D(L,n)  0.726 (0.999)  
LM Test for misspecification in Se ( )n   0.128 (0.721)  
LM Test for misspecification in Sw ( )n   0.094 (0.760)  

     
Residual Autocorrelations (Std. Errs) 

Residual lag = 1 2 3 4 5 6 12
    

0.1051 0.0087 0.0243 0.031 0.024 0.0312 0.0034e et tn2 / ( )S  
(0.0222) (0.0120) (0.0098) (0.0148) (0.0158) (0.0191) (0.0081)

0.0605 0.0152 0.0174 -0.0085 0.0008 0.02 -0.0023w wt tn+e j2 / ( )S  (0.0233) (0.0138) (0.0171) (0.0111) (0.0095) (0.0121) (0.0094)
0.0543 0.0219 0.0103 0.0023 0.0035 0.0037 0.017w wt tn-e j2 / ( )S  (0.0230) (0.0097) (0.0109) (0.0103) (0.0086) (0.0096) (0.0112)

Notes: The model takes the form: 
D
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p
p

D L n xt
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1
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( , ) e w w
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where w t
+ , w t

-ande t are mutually independent and serially uncorrelated shocks with 
E tw w+ += ,E tw w- -= ,E te = 0 . The variances are given by Var nt t( ) ( )e e= S  Var t( )w +  =Var t( )w -

=Sw ( )nt withS S Si i in n n( ) ( ) exp( / ) ( )( exp( / ))= - + • - -0 100 1 100 .The state-dependent poly-
nomial  is D L n d n L d n L d Lt t t( , ) ( ) ( ) ....= + + +- -

1
4

2
3

6 . Variables are defined in Table 5.  Panel I 
shows GMM estimates and asymptotic standard errors corrected for heteroskedasticity and 
serial correlation (see Appendix B). Panel II reports the Hansen J-statistic, a Wald statistic 
for the null that D L D L( , ) ( , )0 = • , and LM-type statistics for misspecification state-dependent 
polynomial, and variances (see Appendix B). The lower portion of the table reports 
autocorrelations, and standard errors, in the estimated standardized shocks. 

 



  
 

Table 8: Variance Ratios 
 

R k n Var Var pt
o

t k
o k

t
o

w w w( , ) ( ) / ( )= - - D  
n  \  k 5 30 60 120 •

    2 96.39% 81.78% 69.45% 53.36% 0.00%
5 91.37% 64.22% 47.64% 31.42% 0.00%

10 83.70% 45.89% 29.94% 17.66% 0.00%
20 69.61% 24.65% 13.79% 7.33% 0.00%
30 56.60% 13.48% 6.88% 3.48% 0.00%
40 45.04% 7.73% 3.75% 1.85% 0.00%
60 27.65% 3.07% 1.42% 0.68% 0.00%
80 17.13% 1.49% 0.68% 0.32% 0.00%

   
all 67.11% 20.13% 10.72% 5.54% 0.00%

R k n Var B L k n v Var pv t
k

t
o( , ) ( ( , , ) ) / ( )= D  

n  \  k 5 30 60 120 •
2 0.18% 0.77% 0.91% 1.08% 1.67%
5 0.38% 1.00% 0.74% 0.49% 0.00%

10 0.80% 3.11% 3.54% 3.87% 4.34%
20 3.25% 17.68% 21.71% 24.10% 26.82%
30 8.53% 36.71% 42.22% 45.07% 47.98%
40 15.95% 52.09% 57.28% 59.75% 62.16%
60 32.32% 70.31% 73.97% 75.60% 77.11%
80 45.91% 79.19% 81.80% 82.93% 83.97%

   
all 5.53% 30.62% 36.81% 40.22% 43.87%

R k n Var B L k n v Var pv t
k

t
o

* ( , ) ( *( , , ) ) / ( )= D  
n  \  k 5 30 60 120 •

2 0.17% 0.53% 0.38% 0.29% 0.00%
5 0.38% 1.00% 0.74% 0.49% 0.00%

10 0.74% 2.54% 2.06% 1.22% 0.00%
20 2.22% 8.72% 6.49% 3.59% 0.00%
30 4.52% 14.45% 10.15% 5.52% 0.00%
40 6.68% 18.04% 12.37% 6.70% 0.00%
60 9.43% 21.46% 14.44% 7.83% 0.00%
80 10.73% 22.86% 15.28% 8.29% 0.00%

   
all 3.13% 12.16% 8.64% 4.75% 0.00%

Notes: Variance decompositions derived from estimates of the State-Dependent Bivariate 
model in Table 7  and the ARMA(2,2) model for order flow with state-dependent 
heteroskedasticity. The column headings show the horizon k measured in minutes. R k nw ( , )
and R k nv ( , ) respectively measure the contribution of sampling and order flow shocks to the 
variance of observed price changes.  R k nv* ( , ) measures the contribution of order flow shocks 
that only temporarily affect the price level.   

 



 
 

Appendix C: Variance Ratios 
 

R k n Var Var pt
o

t k
o k

t
o

w w w( , ) ( ) / ( )= - - D  
n  \  k 5 30 60 120 •

    2 95.21% 77.64% 65.35% 49.64% 0.00%
5 90.62% 62.82% 46.87% 31.09% 0.00%

10 83.26% 44.98% 29.26% 17.22% 0.00%
20 69.91% 25.25% 14.20% 7.57% 0.00%
30 58.57% 15.76% 8.26% 4.23% 0.00%
40 49.15% 10.63% 5.36% 2.69% 0.00%
60 35.04% 5.66% 2.74% 1.35% 0.00%
80 25.50% 3.44% 1.63% 0.79% 0.00%

   
all 67.11% 20.13% 10.72% 5.54% 0.00%

R k n Var B L k n v Var pv t
k

t
o( , ) ( ( , , ) ) / ( )= D  

n  \  k 5 30 60 120 •
2 1.41% 5.79% 6.75% 7.99% 11.88%
5 1.20% 3.14% 2.35% 1.56% 0.00%

10 1.32% 5.03% 5.70% 6.22% 6.96%
20 2.83% 15.68% 19.36% 21.57% 24.09%
30 5.34% 25.99% 30.68% 33.20% 35.84%
40 8.29% 34.11% 38.96% 41.41% 43.89%
60 14.25% 45.17% 49.71% 51.87% 53.96%
80 19.48% 52.03% 56.16% 58.07% 59.89%

   
all 5.53% 30.62% 36.81% 40.22% 43.87%

R k n Var B L k n v Var pv t
k

t
o

* ( , ) ( *( , , ) ) / ( )= D  
n  \  k 5 30 60 120 •

2 1.36% 3.98% 2.81% 2.13% 0.00%
5 1.20% 3.15% 2.36% 1.56% 0.00%

10 1.21% 4.06% 3.29% 1.96% 0.00%
20 1.95% 7.84% 5.84% 3.23% 0.00%
30 3.09% 10.92% 7.68% 4.15% 0.00%
40 4.22% 13.08% 8.92% 4.79% 0.00%
60 6.02% 15.71% 10.44% 5.57% 0.00%
80 7.21% 17.19% 11.30% 6.03% 0.00%

   
all 3.13% 12.16% 8.64% 4.75% 0.00%

Notes: Variance decompositions derived from estimates of the State-Dependent Bivariate 
model in Table 7  and the ARMA(2,2) model for order flow in Table 3. (Unlike Table 8, this 
version assumes homoskedastic variance for order low shocks). The column headings show 
the horizon k measured in minutes. R k nw ( , )  and R k nv ( , ) respectively measure the 
contribution of sampling and order flow shocks to the variance of observed price changes. 
R k nv* ( , )  measures the contribution of order flow shocks that only temporarily affect the 
price level.  


