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What should be the goal of monetary stabilization policy? There is thus a fair amount of

consensus in the academic literature that a desirable monetary policy is one that achieves a

low expected value of a discounted loss function, where the losses each period are a weighted

average of terms quadratic in the deviation of inflation from a target rate and in some

measure of output relative to potential. But even agreement upon this general form of the

objective still allows considerable scope for disagreement about details, that may well matter

a great deal for the design of an optimal policy. First of all, obviously, there is the question

of the relative weight to be placed upon inflation stabilization and output stabilization. But

this is hardly the only ambiguity in the conventional prescription. For instance, which kind

of output measure should be stabilized? In particular, should one seek to stabilize output

relative to a concept of “potential output” that varies in response to real disturbances that

shift the short-run aggregate supply curve, or should one seek to stabilize output relative to

a smooth trend?1

Similarly, in which sense should price stability be pursued? Should one seek to stabilize

deviations of the price level from a deterministic target path (as proposed, for example,

by Hall and Mankiw, 1994), so that unexpected inflation in excess of one’s target rate

should subsequently be deliberately counteracted, in order to bring the price level back to

its target path? Or should one seek to stabilize deviations of the inflation rate from its

target level (as assumed, for example, by Svensson, 1997), so that – assuming that the

variance of the unforecastable component of inflation cannot be reduced by policy – one

should not seek to counteract past inflation fluctuations, in order to minimize variation in

the forecastable component of inflation? Should greater priority perhaps be given to reducing

the variability of unforecastable inflation, on the ground that this is what causes unexpected

modifications of the real consequences of pre-existing nominal contracts, while forecastable

variations in inflation can simply be incorporated into contracts? Or should greater priority

be given to stabilization of forecastable inflation, on the ground that expected inflation

1Different answers to this question lead Bean (1983) and West (1986) to reach diametrically opposite
conclusions about the case in which nominal GDP targeting would be preferable to money-supply targeting.
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distorts incentives (like an anticipated tax), while unforecastable inflation has no incentive

effects (like an unanticipated wealth levy)?

The aim of this paper is to show how economic analysis can be brought to bear upon

these questions. An important advantage of using a model founded upon private-sector

optimization to analyze the consequences of alternative policy rules is that there is a natural

welfare criterion in the context of such a model, provided by the preferences of private agents

that are displayed in the structural relations that determine the effects of alternative policies.

Such a utility-based approach to welfare analysis has long been standard in the theory of

public finance. It is not yet too common in analyses of monetary policy, perhaps because

it is believed that the main concerns of monetary stabilization policy are assumed away in

models with explicit micro-foundations. But we have seen that models founded on individual

optimization can be constructed that, thanks to the presence of nominal rigidities, allow for

realistic effects of monetary policy upon real variables. Here we shall see those same nominal

rigidities provide welfare-economic justification for central bankers’ traditional concern for

price stability.

Individuals are not assumed, of course, to care directly about prices; their economic

welfare depends directly only upon the goods they consume and the amount of effort they

expend upon production. But just as taxes can cause deadweight losses because of their ef-

fects upon the equilibrium allocation of resources, so can inflation. In a model with nominal

rigidities – more specifically, in one in which it is recognized that prices are not adjusted in

perfect synchronization with one another (which requires, but is stronger than, the observa-

tion that they are not all adjusted continually) – instability of the general price level leads to

unnecessary and undesired variation in the relative prices of goods whose prices are adjusted

at different times. These relative price distortions result in deadweight losses, just as in the

case of distorting taxes. We shall see that this effect can justify not only a loss function that

penalizes inflation variations, but indeed – if one assumes parameter values implied by the

apparent degree of nominal rigidity in actual economies – a much larger relative weight on

inflation variation than upon output variation than is assumed in the loss functions used in
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many monetary policy evaluation exercises.

Derivation of a utility-based welfare criterion in this way can not only allow us to jus-

tify a general concern with price stability, but can furthermore provide exact answers to

the questions raised above about the precise formulation of the appropriate loss function.

These answers, of course, depend upon the assumptions we make about the structure of the

economy; for example, they depend crucially upon the nature of the nominal rigidities that

are present. Insofar as the correct structural relations of our model of the economy remain

controversial, the proper welfare criterion to use in evaluating policy will remain controver-

sial as well; and our goal here is more to illustrate a method than to reach final conclusions.

But insofar as particular parameter values are found to be empirically justified in that they

are required in order for our structural equations to fit historical data, they will contain

important information about the proper welfare criterion as well.

1 Approximation of Loss Functions and of Optimal

Policies

The method that we shall employ in the analysis below derives a quadratic loss function, that

represents a quadratic (second-order Taylor series) approximation to the level of expected

utility of the representative household in the rational expectations equilibrum associated

with a given policy. There are several reasons for our resort to this approximation. One is

simply mathematical convenience; with a quadratic approximation to our objective function

and linear approximations to our structural equations, we can address the nature of opti-

mal policy within a linear-quadratic optimal control framework that has been extensively

studied, and numerical computation of optimal policy is relatively simple. This convenience

is especially great when we turn to questions such as the optimal use of indicator variables

under circumstances of partial information.

But there are other advantages as well. One is comparability of our results with those

of the traditional literature on monetary policy evaluation, which almost always assumes a

quadratic loss function of one sort or another. Casting our own results in this familiar form
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allows us to discuss similarities and differences between our utility-based welfare criterion and

those assumed in other studies without letting matters be obscured by superficial differences

in functional form that may have relatively little consequence for the results obtained.

And finally, it does not make sense to be concerned with a higher-order approximation

to our welfare criterion if we do not plan to characterize the effects of alternative policies

with a degree of precision sufficient to allow computation of those higher-order terms. In

the first part of this study, we have shown how to derive a log-linear approximation to the

equilibrium fluctuations in inflation and output under alternative policies, using a log-linear

approximation to the exact structural equations of our model. Using this method, we com-

pute the equilibrium fluctuations in these variables only up to a residual of order O(||ξ||2),
where ||ξ|| is a bound on the amplitude of the exogenous disturbances. Given that we do

not compute the terms of second order in ||ξ|| in characterizing equilibrium fluctuations, we

cannot expect to compute the terms of third or higher order in ||ξ|| in evaluating the ex-

pected utility of the representative household.2 Of course, one might also wish to undertake

a more accurate approximation of the predicted evolution of the endogenous variables under

alternative regimes. However, such a study would introduce a large number of additional

free parameters, to which numerical values would have to be assigned for purposes of com-

putation; and there is likely to be little empirical basis for the assignment of such values

in most cases, given the degree to which the empirical study of macroeconomic time series

makes use of linear models.3

However, even a second-order approximation to utility can be computed on the basis

2There is thus no obvious advantage to the approach sometimes adopted in utility-based welfare analyses,
such as Ireland (1997) or Collard et al. (1998), of evaluating an exact utility function but using a log-linear
approximation to the model’s structural equations in order to compute the equilibrium.

3A common approach in the quantitative equilibrium business cycle literature, of course, is to assume
special functional forms for preferences and technology that allow the higher derivatives of these functions
to be inferred from the same small number of parameters as determine the lower-order derivatives, which
may then be inferred from first and second moments of the time series alone. This approach often obscures
the relation between the properties of the time series and the model parameters that are identified by them,
and allows “identifications” that are in fact quite sensitive to the arbitrary functional form assumption. We
prefer instead to assume special functional forms as little as possible, but to be clear about the order of
approximation that is involved in our calculations.
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of a merely linear approximation to our model structural equation only under special cir-

cumstances. We shall assume that these hold in our calculations here, but it is important

to be clear about the scope of validity of our results. Let x represent a vector of endoge-

nous variables, and suppose that we wish to evaluate E[U(x; ξ)] under alternative policies,

where ξ is a vector of random exogenous disturbances, and U(·; ξ) is a concave function for

each possible realization of ξ, and at least twice differentiable. Now suppose that we are

able to compute a linear (or log-linear) approximation to the equilibrium responses of the

endogenous variables, under a given policy regime, of the form

x = x0 + a′ξ + O(||ξ||2), (1.1)

where the vectors of coefficients xss and a may both depend upon policy. (This represents a

first-order Taylor series approximation to the exact equilibrium responses x(ξ), assumed to

be nonlinear but differentiable, taken around the mean values ξ = 0. The conditions under

which the solution to the linearized structural equations yield a valid approximation of this

kind to the solution to the exact structural equations are discussed in Appendix A.)

Under the assumption that the constant term x0 in (1.1) is itself of at most order O(||ξ||),
we can take a similar Taylor series expansion of the utility function U(x), and be confident

that terms that are of at most order O(||x||3) are of at most order O(||ξ||3). We then can

write

U(x; ξ) = Ū + Uxx̃+ Uξξ +
1

2
x̃′Uxxx̃+ x̃′Uxξξ +

1

2
ξ′Uξξξ + O(||ξ||3), (1.2)

where Ū ≡ U(x̄; 0), x̃ ≡ x − x̄, and all partial derivatives of U are evaluated at (x̄; 0). We

wish to use approximation (1.1) to the equilibrium fluctuations in x to compute the terms

of second or lower order in approximation (1.2) to utility. But the term Uxx̃ in (1.2) will

generally contain terms of second order that depend upon the neglected second order terms

in (1.1). In order to be able to neglect these terms, we must also assume that Ux(x̄; 0) is at

most of order O(||ξ||). In that case, the neglected terms of order O(||ξ||2) contribute only to

terms of order O(||ξ||3) in Uxx̃.

Assuming this, substitution of (1.1) minus the residual into (1.2) minus the residual yields
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a correct quadratic approximation to U(x; ξ). Taking the expected value of this expression,

and using the fact that we normalize ξ so that E(ξ) = 0, we obtain the approximate welfare

criterion

E[U ] = Ū +UxE[x̃] +
1

2
tr{Uxxvar[x]}+ tr{Uxξcov(ξ, x̃)}+

1

2
tr{Uξξvar[ξ]}+O(||ξ||3). (1.3)

Here we use the notation E[z] for the expectation of a random vector z, var[z] denotes the

variance-covariance matrix, and cov(z1, z2) the matrix of covariances between two random

vectors z1, z2. In expression (1.3) it is understood that the various first and second moments

are those that one computes using the linear approximation (1.1).

The validity of this last expression, when the first and second moments are computed

using (1.1), thus depends upon two special assumptions. These are that x0 is only of order

O(||ξ||), and that Ux(x̄; 0) is similarly only of order O(||ξ||). Technically, we shall suppose

that ||ξ|| is a bound both upon the amplitude of the exogenous disturbances, and upon the

size of x0 and Ux(x̄; 0). Our approximation result then refers to a sequence of economies in

which ||ξ|| eventually becomes arbitrarily small; as we progress along this sequence, both the

distribution of the disturbances, and certain other parameters of the model that determine

x0 and Ux, are varied so as to respect the changing bound, while keeping the specification of

the policy rule the same. What the Taylor theorem guarantees is then that if (1.3)minus the

residual yields a higher value for one policy than for another, it will be true for all economies

far enough out in this sequence that the first policy yields higher expected utility than the

other in the equilibrium of the exact model.

The stipulation regarding x0 is an assumption about the kind of policy regime which we

seek to evaluate, while the stipulation regarding Ux(x̄; 0) is an assumption about the point

around which we choose to compute the Taylor expansion in in (1.3). The latter assumption

implies that we expand around a state of affairs x̄ that is close to being optimal, not simply

in the sense of being the best we can do using the set of policies under consideration, but in

the sense of being near the maximum of U(x; 0) over all possible values of x.4 Of course, it

4One way to guarantee this would be to stipulate that x̄ is in fact the value that maximizes U(x; 0).
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is really only necessary that Ux be small in directions in which it is possible for the average

value of x to differ under alternative policies. Thus it is not necessary for households to

be nearly satiated both in consumption and in leisure in order for x̄ to be optimal in the

necessary sense; it is enough that it not be possible to greatly increase utility by varying

both consumption and work effort in a way that is feasible given the economy’s production

function. But it is somewhat delicate to draw conclusions about the directions in which it

is possible for policy to vary the second-order terms in x without actually computing the

second-order terms in (1.1), and so we prefer to substitute constraints of this kind into our

definition of the objective function U(x), and then require all elements of the vector Ux to

be small.

Kim and Kim (1999) provide an example of a problem, relating to the welfare gains

from risk-sharing, where this requirement for validity of a welfare calculation based upon

the linear approximation (1.1) is not satisfied. They consider the expected utility E[U(Ci)]

obtained by a household i in each of two cases. In the first case (autarchy), each household

consumes its own random income Yi, while in the second case (perfect risk-sharing), two

households pool their incomes, so that Ci = (Y1 + Y2)/2 for each. Kim and Kim consider

the validity of a log-linear approximation to the relation between consumption and income.

In the case of autarchy, the log-linear relation (which is exact) is given by

Ĉi = Ŷi,

where as usual hatted variables denote deviations of the logs from the value log Ȳ around

which one log-linearizes. In the case of perfect risk-sharing, the log-linear approximation is

instead

Ĉi = (Ŷ1 + Ŷ2)/2.

Substitution of these two log-linear expressions into a quadratic approximation to the utility

We do not wish, however, to insist upon this. In some cases, those “first-best” values do not correspond
to a possible equilibrium, even in the absence of disturbances. We could linearize the model’s structural
equations around such values nonetheless, but we prefer to follow convention in linearizing around values
that represent a particular equilibrium in the absence of shocks. One advantage of this convention is that
our linearized structural equations always have zero constant terms.
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function,

U(Ci) = U(Ȳ ) + Ȳ U ′(Ȳ )
[
Ĉi +

1 − γ

2
Ĉ2

i

]
,

where γ > 0 is the coefficient of relative risk aversion (evaluated at consumption level Ȳ ),

does not yield a correct quadratic approximation to utility as a function of Ŷ1 and Ŷ2. Indeed,

if 0 < γ < 1, this approximation implies that expected utility is higher under autarchy.

The problem is that the partial derivative of U with respect to logCi (which is equal

to Ȳ U ′(Ȳ )) is non-zero, so that the correct quadratic approximation to expected utility in

the case of risk-sharing involves quadratic terms in the Taylor series expansion for Ĉi. (The

omitted terms raise expected utility in that case, since less variable consumption means

a higher expected value for log consumption, by Jensen’s inequality.) It does not make

sense to assume that this derivative can be made arbitrarily close to zero as we make the

bound ||ξ|| on the amplitude of income variations smaller, either. This could be done only

by varying preferences and/or average income as we make ||ξ|| smaller in such a way that

proportional variations in consumption cease to matter much; but this would mean that in

the limit, no comparisons between alternative consumption processes would be possible. This

difficulty does not arise in the case of our analysis of the welfare gains from macroeconomic

stabilization, below, as long as we log-linearize around a level of economic activity (in each

sector) that is sufficiently near to being efficient; since an interior optimum does exist in our

case, this is possible. But it is important that we check that the derivatives in question are

indeed small, under our assumptions, and that the qualifications that this requires to our

results be noted.

The assumption that x0 is small means that the policies considered are all ones with

the property that in the absence of shocks, the equilibrium value of x would be near the

linearization point x̄ — or alternatively, that in equilibrium the mean value of x is near x̄.

Given our assumption about x̄, this means that the policies considered are ones under which

the equilibrium value x is nearly optimal, in the sense discussed above. As we are primarily

interested in whether our approximate welfare criterion correctly identifies the optimal policy,

the essential requirement is that our model (and the family of available policies) be such
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that the best available policy can achieve an outcome that is sufficiently close to being fully

optimal. Thus the unavoidable frictions – the ones that cannot be ameliorated through an

appropriate choice of policy – must be small, even if there exist frictions that imply that

outcomes under a bad policy could be significantly worse.

In the case of the class of monetary models treated below, the only frictions that prevent

equilibrium from being efficient are (i) the market power possessed by suppliers of goods, as a

result of monopolistic competition, and (ii) the failure to adjust all goods prices each period.

We log-linearize our structural equations around the steady state with zero inflation each

period, that represents a possible equilibrium in the absence of real disturbances. In this

equilibrium, the failure to adjust prices constantly results in no distortion of the allocation

of resources; this allocation is thus nearly optimal as long as the distortion due to market

power is sufficiently small. In our calculations below, we assume that it is.

The other assumption required for the validity of the quadratic approximation obtained

from our log-linear structural equations is that the policy rules considered be ones under

which the equilibrium rate of inflation in the absence of shocks would in fact be near zero – or

alternatively, that these policies be ones under which the average rate of inflation is low. This

also is assumed; since we conclude that it is optimal for a country with characteristics like

those of the U.S. to choose a policy under which the average rate of inflation is slightly, but

only slightly, positive, this last assumption is relatively innocuous. However, it is important

to realize that under other circumstances – say, an analysis of optimal monetary policy in

the presence of a need for significant seignorage revenues – this assumption as well might be

inappropriate.

Finally, it is important to note that the conditions required for validity of a quadratic

approximation to welfare obtained from log-linear approximations to the structural equations

do not relate solely to the structure of the economy; it also matters in which form we choose

to express our approximate loss function. Alternative quadratic approximations to U , each

equally valid second-order Taylor series expansions (but in terms of different variables), may

not yield equally valid approximations to welfare when evaluated using a log-linear solution
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(1.1) for the model’s endogenous variables.

For example, consider a model like that of the next section. Each period’s contribution

to the utility of the representative household can be approximated by an expression of the

form

U = aĈ − bĤ +Q1 +R1, (1.4)

where Ĉ, Ĥ denote the percentage deviations in consumption and hours worked respectively,

Q1 is a set of quadratic terms in the log deviations, and the residual R1 contains terms

of third or higher order, or terms that are independent of the policy chosen, that can be

neglected. Alternatively, one may eliminate hours using the necessary relation between

aggregate consumption and aggregate hours implied by the production function, and obtain

a Taylor series expansion of the form

U = cĈ +Q2 + R2, (1.5)

where Q2, R2 are other quadratic terms and residual. Under the assumptions just described,

the coefficient c is of order O(||ξ||). It follows that substitution into (1.5) of the solution to

our log-linear structural equations yields a valid second-order approximation to utility.

However, the same is not true of substitution of the same solution into (1.4). The

structural equations include a production-function relation between Ĉ and Ĥ, of the form

Ĉ = fĤ +Q3 +R3, (1.6)

and one of the log-linear structural relations is given by the linear terms in this. In ap-

proximation (1.5), c = a − bf−1, so that the first-order terms in the two approximations

would have the same value. But the terms Q2 are not equal to Q1, because of the presence

of non-zero quadratic terms Q3 in (1.6).5 Hence (1.4) will not yield a correct second-order

approximation to welfare, if one substitutes the solutions for Ĉ and Ĥ implied by the log-

linear structural relations, including the linear part of (1.6). In terms of the criterion set

5Even if the production function is of a constant-elasticity form, the log-linear approximation (1.6) will
contain non-zero quadratic terms in the event of variations in government purchases.
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out above, substitution of the log-linear approximate solutions into (1.4) yields an incorrect

result because the coefficients a and b are not individually of order O(||ξ||), even though

the linear combination c is. Thus it is not enough that one expand around a near-optimal

equilibrium; the expansion must be written in a form that contains no first-order terms that

do not involve coefficients of order O(||ξ||).

2 A Utility-Based Welfare Criterion

We turn now to the computation of a utility-based approximate welfare criterion, of the kind

discussed in the previous section, for a class of optimizing monetary models with sticky prices.

Each of the models is characterized by a representative household and monopolistically

competitive supply of a continuum of differentiated goods. We abstract from monetary

frictions,6 endogenous variations in productive capacity, factor market inefficiencies (such

as sticky wages), and disturbances with asymmetric effects upon the demand for or cost of

production of different goods, though we offer remarks in the final section on the extension

of our methods to more general cases. The microeconomic foundations of these models,

and the derivation of the aggregate supply relations resulting from alternative assumptions

regarding the timing of price changes, are presented in greater detail in Woodford (2000).7

The natural welfare criterion in our models is the level of expected utility of the repre-

sentative household. This can be written

E

{ ∞∑
t=0

βtUt

}
, (2.1)

where Ut is the period t contribution to utility from the consumption and supply of the

various differentiated goods. Equating the consumption of the representative household

with aggregate production,8 and expressing labor effort as a function of quantity produced

6The welfare criteria derived here thus apply to the “cashless limit” of a monetary economy, in the sense
introduced in Woodford (1998, 1999a). The modification required when monetary frictions are non-negligible
is discussed in Woodford (1999c).

7Rotemberg and Woodford (1997, 1999) apply a similar, though not identical, method to a variant model
with in the context of a variant model with additional decision lags. The method expounded here is applied
to other more complex environments in Amato and Laubach (2000), Aoki (1999), Benigno (1999), Erceg et
al. (1999), and Steinsson (2000).
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using the production function, we can write Ut as a function of the quantity produced in

period t of the various goods. We assume the specific form

Ut = u(Yt; ξt) −
∫ 1

0
ṽ(yt(i); ξ̃t)di, (2.2)

where

Yt ≡
[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

(2.3)

is a Dixit-Stiglitz index of aggregate demand, in which yt(i) is production (and consumption)

in period t of differentiated good i,9 and ξt is a vector of preference shocks.

The function ṽ(y; ξ̃) indicates the disutility of supplying quantity y. If we assume a

“yeoman farmer” model, as in Rotemberg and Woodford (1997, 1999), this can be interpreted

directly as the household’s disutility of supplying output. Alternatively, if we assume firms

and a labor market, as in Woodford (2000a), we can define

ṽ(y; ξ̃) ≡ v(f−1(y/A); ξ), (2.4)

where v(h; ξ) is the disutility of working h hours in any given production activity, and Af(h)

is the output produced using that labor input. Here ξ̃ ≡ (ξ, a) denotes the complete vector of

exogenous disturbances, including both the preference shocks ξ10 and the technology shock

a ≡ logA.11 We assume that u is an increasing, concave function of Y for each possible

value of ξ, while ṽ is an increasing, convex function of y for each possible value of ξ̃. Thus

(2.2) implies that Ut is a concave function of the entire vector of levels of production of the

various goods.

8Recall that we can interpret the model as allowing for government purchases, treating these as a shift
term in the utility function u(Y ; ξ).

9If there is trend growth in productivity and output, the variables Yt, yt(i), and At (introduced in the
next paragraph) should all be interpreted as having been deflated by a common exponential trend factor, to
render them stationary.

10Note that the vector ξ contains many elements, so that the disturbances to the utility of consumption
may or may not be correlated with the disturbances to the disutility of working.

11We assume a normalization of the productivity measure A such that the unconditional expectation of a
is zero. We include a rather than A in our definition of ξ̃ because it is a rather than A that is assumed to be
always sufficiently close to zero (in order for our Taylor series approximation to be accurate), and because
we wish to approximate the production-function relationship by one that is linear in a rather than linear in
A.
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Expression (2.2) assumes that the representative household produces and consumes all

goods, though distinct types of effort (each with its own increasing marginal disutility)

are required to produce each good. Nonetheless, we assume that there is no coordination

of the pricing decisions of the suppliers of the different goods. One interpretation here is

that separate firms supply the various goods, though the representative household supplies

the appropriate type of labor to each of the firms. Alternatively, we may assume (as in

standard “yeoman farmer” models) that each household specializes in the production of a

single good, so that different goods are supplied by different households, but that households

insure one another against the income risk associated with the differential effects of shocks

upon the producers of different goods (that have set their prices at different times). Perfect

risk sharing (the equilibrium with complete financial markets) then implies aggregate supply

and demand decisions that are the same as if a representative household chooses for all

of them, maximizing the average utility of the producers of the various goods subject to

a pooled budget constraint. The objective of the stand-in representative household in the

latter case will again be of the form (2.2). (Our interest in this latter interpretation explains

the assumption of additive separability of the disutility of supplying the various goods.)

Our Taylor series expansions group terms of different powers in the elements of ξ̃, though

we shall continue to use the notation ||ξ|| for the bound on the magnitude of the entire vector

of disturbances.

2.1 Output-Gap Stability and Welfare

It will be useful to express welfare as a function of the gap between output in each sector

and the natural rate of output, by which we mean the equilibrium level of output under full

price flexibility.12 Note that the real marginal cost function of supplying any good i is given

by

s(y(i), Y ; ξ̃) =
ṽy(y(i); ξ̃)

uc(Y ; ξ)
. (2.5)

12Under our symmetry assumptions, under flexible prices the equilibrium output of all goods would be the
same, and so the aggregate natural rate also applies to each good individually. More generally, of course,
there would be a good-specific natural rate.
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The natural rate of output Y n
t = Y n(ξ̃t) is then defined implicitly by

s(Y n
t , Y

n
t ; ξ̃t) =

1 − τ

µ
≡ 1 − Φ. (2.6)

Here τ < 1 is the constant proportional tax rate on sales proceeds (negative in the case of a

subsidy), and µ ≡ θ/(θ−1) > 1 is the desired markup as a result of suppliers’ market power

under monopolistic competition. The parameter Φ then summarizes the overall distortion

in the level of output that would exist under flexible prices, as a result of both taxes and

market power.

It is plainly realistic to assume that Φ > 0. However, we shall assume that Φ is small,

specifically of order O(||ξ||). This is the assumption of near-efficiency of the steady state

level of output with zero inflation that is made in order to allow us to use our log-linear

approximations to the model structural equations in welfare comparisons, as explained in

the previous section. Note that the introduction of the distorting tax rate τ allows us to

contemplate a series of economies in which Φ is made progressively smaller, without this

having to involve any change in the size of θ, a parameter that also affects the coefficients

of the log-linearized equilibrium conditions.13

It might seem more natural to express welfare in terms of the gap between actual output

and the efficient level of output, Y ∗(ξ̃t), given by the solution to (2.6) when Φ = 0. However,

under our assumption that Φ = O(||ξ||), we observe that

log(Y n
t /Y

∗
t ) = −(ω + σ−1)−1Φ + O(||ξ||2), (2.7)

where

ω ≡ barY ṽyy

ṽy

> 0

13Rotemberg and Woodford (1997, 1999) instead assume that τ is of exactly the (negative) size required
to offset the distortion due to market power, so that Φ = 0. The intention is to consider optimal monetary
stabilization policy as part of a broader analysis of optimal policy, in which another instrument (tax policy)
is assigned responsibility for achieving the optimal average level of economic activity, while monetary policy
is used to ameliorate the economy’s response to shocks. However, it is clear that monetary policy must in
practice be chosen in an environment in which such an output subsidy does not, and probably cannot, exist.
Furthermore, the fact that the “natural rate” of output is inefficiently low is of importance for certain issues,
notably the inflationary bias associated with discretionary policymaking. Hence we here allow for Φ > 0,
while still assuming that Φ is of order O(||ξ||).
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is the elasticity of real marginal cost with respect to a firm’s own output, and

σ−1 ≡ − Ȳ ucc

uc

> 0

is the elasticity with respect to aggregate output.14 Here Ȳ ≡ Y n(0) is the steady-state level

of output under flexible prices (and also the steady-state level of output associated with

zero inflation, in each of the sticky-price models considered here), and both elasticities are

evaluated at (Ȳ ; 0), which is also the point around which we expand our Taylor series below.

That is, the percentage difference between Y n
t and Y ∗

t is independent of the disturbances, to

a first-order approximation. Thus the output gap relative to the natural rate differs from the

gap relative to the efficient level only by a constant, if we neglect terms of order O(||ξ||2).
This accounts for the role of the output gap relative to the natural rate (a variable that

plays a crucial role in the aggregate supply relations presented below, for reasons developed

in Woodford, 2000) in our welfare expansions.

We now proceed to compute a quadratic Taylor series approximation to (2.2). The first

term can be approximated as

u(Yt; ξt) = ū+ ucỸt + uξξt +
1

2
uccỸ

2
t + ucξξtỸt +

1

2
ξ′tuξξξt + O(||ξ||3)

= ū+ Ȳ uc · (Ŷt +
1

2
Ŷ 2

t ) + uξξt +
1

2
Ȳ 2uccŶ

2
t

+Ȳ ucξξtŶt +
1

2
ξ′tuξξξt + O(||ξ||3)

= Ȳ ucŶt +
1

2
[Ȳ uc + Ȳ 2ucc]Ŷ

2
t − Ȳ 2uccgtŶt + t.i.p. + O(||ξ||3)

= Ȳ uc

{
Ŷt +

1

2
(1 − σ−1)Ŷ 2

t + σ−1gtŶt

}
+ t.i.p. + O(||ξ||3). (2.8)

Here the first line represents the usual Taylor expansion, in which ū ≡ u(Ȳ ; 0) and Ỹt ≡
Yt − Ȳ , and we assume that the fluctuations in Ỹt are only of order O(||ξ||). The second line

substitutes for Ỹt in terms of Ŷt ≡ log(Yt/Ȳ ), using the Taylor series expansion

Yt/Ȳ = 1 + Ŷt +
1

2
Ŷ 2

t + O(||ξ||3).
14This latter quantity is also the reciprocal of σ, the intertemporal elasticity of substitution of private

expenditure.
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The third line collects together in the term “t.i.p.” all of the terms that are independent of

policy, as they involve only constants and exogenous variables, and introduces the notation

gt ≡ −ucξξt
Ȳ ucc

for the percentage variation in output required in order to keep the marginal utility of

expenditure uc at its steady-state level, given the preference shock. The final line collects

terms in a useful way; note that the only part of this expression that differs across policies

is the expression inside the curly braces.

We may similarly approximate ṽ(yt(i); ξt) by

ṽ(yt(i); ξt) = Ȳ ṽy

{
ŷt(i) +

1

2
(1 + ω)ŷt(i)

2 − ωqtŷt(i)
}

+ t.i.p. + O(||ξ||3)

= Ȳ uc

{
(1 − Φ)ŷt(i) +

1

2
(1 + ω)ŷt(i)

2 − ωqtŷt(i)
}

+ t.i.p.+ O(||ξ||3),

where ŷt(i) ≡ log(yt(i)/Ȳ ), and

qt ≡ − ṽyξξt
Ȳ ṽyy

is the percentage variation in output required to keep the marginal disutility of supply ṽy

at its steady-state level, given the preference shock. The second line uses (2.5) and (2.6) to

replace ṽy by (1−Φ)uc, and the assumption that Φ is of order O(||ξ||) to simplify. Note that

the term premultiplying the expression in curly braces is now the same as in (2.8).

Integrating this expression over the differentiated goods i, we obtain

∫ 1

0
ṽ(yt(i); ξt) = Ȳ uc

{
(1 − Φ)Eiŷt(i) +

1

2
(1 + ω)[(Eiŷt(i))

2 + variŷt(i)] − ωqtEiŷt(i)
}

+t.i.p.+ O(||ξ||3)
= Ȳ uc

{
(1 − Φ)Ŷt +

1

2
(1 + ω)Ŷ 2

t − ωqtŶt +
1

2
(θ−1 + ω)variŷt(i)

}

+t.i.p.+ O(||ξ||3), (2.9)

using the notation Eiŷt(i) for the mean value of ŷt(i) across all differentiated goods at date

t, and variŷt(i) for the corresponding variance. In the second line, we use the Taylor series

approximation to (2.3),

Ŷt = Eiŷt(i) +
1

2
(1 − θ−1)variŷt(i) + O(||ξ||3),
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to eliminate Eiŷt(i).

Combining (2.8) and (2.9), we finally obtain

Ut = Ȳ uc

{
ΦŶt − 1

2
(σ−1 + ω)Ŷ 2

t + (σ−1gt + ωqt)Ŷt − 1

2
(θ−1 + ω)variŷt(i)

}

+t.i.p.+ O(||ξ||3)
= − Ȳ uc

2

{
(σ−1 + ω)(xt − x∗)2 + (θ−1 + ω)variŷt(i)

}
+ t.i.p. + O(||ξ||3). (2.10)

Here the second line rewrites the expression in terms of the output gap xt ≡ Ŷt − Ŷ n
t , where

Ŷ n
t denotes the deviation of the (log of the) natural rate of output from its steady-state level,

or

Ŷ n
t ≡ log(Y n

t /Ȳ ) =
σ−1gt + ωqt
σ−1 + ω

, (2.11)

and in terms of the efficient level of the output gap, x∗ ≡ log(Y ∗/Ȳ ). (This expression for Ŷ n
t

follows from log-linearization of (2.6), while the expression for x∗ follows from (2.7). Note

that if Φ is positive and of order O(||ξ||), the same is true of x∗.)

Expression (2.10) represents a quadratic approximation to (2.2), under the assumption

that Φ (and hence the inefficiency of the steady-state level of output) is of order O(||ξ||).
It is interesting to observe that the preference and technology shocks ξ̃t matter, in this

approximation, only through their effects upon a single exogenous state variable, the natural

rate of output Ŷ n
t . Furthermore, output variability as such does not matter for our utility-

based welfare criterion; rather, it is the variability of the output gap that matters, and the

measure of potential output with respect to which the gap should be measured for purposes

of the welfare criterion is the same “natural rate” of output that (as shown in Woodford,

2000) determines the short-run relation between output and inflation. Thus we can already

offer an answer to one question posed in the introduction to this paper: it is the output gap,

rather than output relative to trend, that one should seek to stabilize, and (if distortions

are small enough) the relevant output gap is the same one that appears in the short-run

aggregate supply curve.

However, (2.10) implies that stabilization of the output gap should not be the sole concern

of policy, since the dispersion of output levels across sectors matters as well.15 In fact, in
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our baseline framework, there is no reason for equilibrium output to be different for different

goods except as a result of relative price distortions that result from sticky prices in an

environment where the overall price level is unstable. It is through this channel that price

stability turns out to be relevant for welfare, in a way that goes beyond the mere association

between inflation and the level of the aggregate output gap.

Specifically, our assumed CES (Dixit-Stiglitz) preferences over differentiated goods imply

that each supplier faces a constant-elasticity demand curve of the form

log yt(i) = log Yt − θ(log pt(i) − logPt).

It follows from this that

vari log yt(i) = θ2vari log pt(i),

so that (2.10) may equivalently be written

Ut = − Ȳ uc

2

{
(σ−1 + ω)(xt − x∗)2 + θ(1 + ωθ)vari log pt(i)

}
+ t.i.p. + O(||ξ||3). (2.12)

Thus we find that, in addition to stabilization of the output gap, it is also appropriate for

policy to aim to reduce price dispersion. In our framework, this is achieved by stabilizing the

general price level; but the exact way in which fluctuations in the general price level affect

price dispersion, and hence welfare, depend upon the details of price-setting.

2.2 Inflation and Relative-Price Distortions

The approximation (2.12) to the utility of the representative household applies to any model

with no frictions other than those due to monopolistic competition and sticky prices, re-

gardless of the nature of the delays involved in price-setting. The relation between the price

dispersion term and the stability of the general price level depends, instead upon the details

15More generally, it is the dispersion of output gaps across sectors that matters, along with the aggregate
output gap. We here assume that the only disturbances ξ̃t that affect the natural rate of output have
identical effects upon all sectors, so that the dispersion of output gaps across sectors is identical to the
dispersion of output levels. In section 3.4 below, we briefly discuss the consequences of allowing for shocks
with asymmetric effects on different sectors.
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of price-setting. Here we do not attempt a general treatment, but illustrate the form of the

relation in three simple examples.

As a first example, we consider the case of an economy in which a fraction 0 < γ < 1 of

goods prices are fully flexible, while the remaining 1 − γ must be fixed a period in advance.

In such an economy, as shown in Woodford (2000a), the aggregate supply relation takes the

familiar “New Classical” form

πt = κxt + Et−1πt, (2.13)

where the slope coefficient is given by

κ ≡ γ

1 − γ

σ−1 + ω

1 + ωθ
> 0.

In this model, in any period all flexible-price goods have the same price, p1
t , and all

sticky-price goods have the same price, p2
t , which satisfies

log p2
t = Et−1 log p1

t + O(||ξ||2). (2.14)

The Dixit-Stiglitz price index furthermore satisfies

logPt = γ log p1
t + (1 − γ) log p2

t + O(||ξ||2),

so that

πt − Et−1πt = γ[log p1
t − Et−1 log p1

t ] + O(||ξ||2)
= γ[log p1

t − log p2
t ] + O(||ξ||2),

using (2.14). It follows that under this assumption about pricing,

vari log pt(i) = γ(1 − γ)(log p1
t − log p2

t )
2

=
1 − γ

γ
(πt −Et−1πt)

2.

As asserted above, equilibrium price dispersion is closely connected with the stability of

the general price level; but in this special case, it is only the volatility of the unexpected

component of inflation that matters.
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Substituting this expression into (2.12), we obtain

Ut = −ΩLt + t.i.p. + O(||ξ||3),

where Ω is a positive constant and Lt is a quadratic loss function of the form

Lt = (πt −Et−1πt)
2 + λ(xt − x∗)2, (2.15)

with a relative weight on output gap variability of λ = κ/θ. We thus obtain precise con-

clusions regarding both the sense in which aggregate output and inflation variations matter

for welfare (it is the output gap that matters, and the unexpected component of inflation),

and the relative weight that should be placed upon the two concerns (the relative weight on

output gap variations is proportional to the slope κ of the short-run Phillips curve).

In fact, in the context of this model, there is no tension between the goals represented by

the two terms of (2.15). For (2.13) implies that the output gap is itself proportional to the

surprise component of inflation. Thus we can simplify (2.15) further, and say that the sole

goal of policy should be to minimize the variability of unexpected inflation, or alternatively,

that the sole goal should be to stabilize the output gap (when properly measured).16

While we obtain a simple result in this case, the model is not a very realistic one, since,

as is well known, it is unable to account for the persistence of the observed output effects

of monetary disturbances. Let us consider instead, then, the consequences of the kind of

staggered pricing assumed in another popular model, a discrete-time version of the Calvo

(1983) pricing model. In this model, a fraction 0 < α < 1 of all prices remain unchanged

each period, with the probability of a price change assumed to be independent of both the

length of time since the price was last changed and of the degree to which that good’s price

is out of line with others. This implies that each period, the distribution of prices {pt(i)}
consists of α times the distribution of prices in the previous period, plus an atom of size

16However, if we allow for disturbances to the short-run aggregate supply relation (2.13) that – unlike
the preference, technology, or government-purchase shocks considered in section 3.2 below – do not shift the
efficient level of output to the same extent, then the loss function (2.15) would still be correct, while the
output gap that appears in this formula would no longer coincide perfectly with unexpected inflation. In
that extension of the model, it would be quite important to know the correct relative weight λ to place on
output-gap variations.
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(1 − α) at the price p∗t that is chosen at date t by all suppliers who choose a new price at

that date. As shown in Woodford (2000a), the aggregate supply relation takes in this case

the “New Keynesian” form

πt = κxt + βEtπt+1, (2.16)

where now the slope coefficient is given by

κ ≡ (1 − α)(1 − αβ)

α

(σ−1 + ω)

1 + ωθ
> 0. (2.17)

Letting

P̄t ≡ Ei log pt(i), ∆t ≡ vari log pt(i),

we observe from the above recursive characterization of the distribution of prices at date t

that

P̄t − P̄t−1 = Ei[log pt(i) − P̄t−1]

= αEi[log pt−1(i) − P̄t−1] + (1 − α)(log p∗t − P̄t−1)

= (1 − α)(log p∗t − P̄t−1).

Similar reasoning about the dispersion measure ∆t yields

∆t = vari[log pt(i) − P̄t−1]

= Ei{[log pt(i) − P̄t−1]
2} − (Ei log pt(i) − P̄t−1)

2

= αEi{[log pt−1(i) − P̄t−1]
2} + (1 − α)(log p∗t − P̄t−1)

2 − (P̄t − P̄t−1)
2

= α∆t−1 +
α

1 − α
(P̄t − P̄t−1)

2.

Finally, substituting the log-linear approximation

P̄t = logPt + O(||ξ||2),

we obtain

∆t = α∆t−1 +
α

1 − α
π2

t + O(||ξ||3) (2.18)
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as a law of motion for the dispersion of prices. Note that price dispersion is again a function

of the degree of instability of the general price level, though now the relation is a dynamic

one. Note also that under this assumptions about pricing, both expected and unexpected

inflation contribute equally to increases in price dispersion.

Integrating forward (2.18) starting from any initial degree of price dispersion ∆−1 in the

period before the first period for which a new policy is contemplated, the degree of price

dispersion in any period t ≥ 0 under the new policy will be given by

∆t = αt+1∆−1 +
t∑

s=0

αt−s
(

α

1 − α

)
π2

s + O(||ξ||3).

Note that the first term will be independent of the policy that is chosen to apply in periods

t ≥ 0. Thus if we take the discounted value of these terms over all periods t ≥ 0, we obtain

∞∑
t=0

βt∆t =
α

(1 − α)(1 − αβ)

∞∑
t=0

βtπ2
t + t.i.p. + O(||ξ||3).

Substitution of this in turn into (2.12), we find that

∞∑
t=0

βtUt = −Ω
∞∑

t=0

βtLt + t.i.p. + O(||ξ||3), (2.19)

where in this case the normalized quadratic loss function is given by

Lt = π2
t + λ(xt − x∗)2. (2.20)

Here the relative weight on output gap variability is again given by λ = κ/θ, but now the

value of κ referred to is that given in (2.17).17

The loss function (2.20) is in fact of a form widely assumed in the literature on monetary

policy evaluation (and also in positive models of central bank behavior).18 Here, however, we

17Note that the values of Ω and λ obtained here are slightly different from those that follow from the
derivation presented in Rotemberg and Woodford (1999). The reason is that we are here interested in
approximating the expected value of the discounted sum of utilities, conditioning upon the pre-existing
degree of price dispersion at date −1, whereas they compute an unconditional expectation. Note that the
loss measure that we compute here, for a given policy, will not depend upon the initial price dispersion ∆−1.
Nonetheless, it matters whether one conditions upon the value of ∆−1 in computing the expected utility.
Computing the unconditional expectation, rather than conditioning upon the value of ∆−1, penalizes policies
that lead to higher average price dispersion also for the higher average value assumed for ∆−1 if one integrates
over the unconditional distribution of values for ∆t associated with a given stationary equilibrium.

18See, e.g., Walsh (1998, chap. 8) and Clarida et al. (1999).
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are able to present a theoretical justification for the attention to variations in inflation (rather

than, say, variations in the price level), as well as for the common assumption that inflation

variations are equally costly whether forecastable or not, in terms of the relative-price distor-

tions resulting from price-level instability in the Calvo model of staggered price-setting. We

are also able to derive an optimal rate of inflation with respect to which deviations should

be measured (namely, zero, as it is in this case that no relative-price distortions result from

imperfect synchronization of price changes). And finally, we are again able to derive an

optimal relative weight upon output-gap variation as opposed to inflation variation; this

depends upon model parameters, but in a way that makes an estimate of the slope of the

short-run aggregate supply curve directly informative about the proper size of this weight.19

As is discussed further in Woodford (1999c), the estimate of the slope of the short-run

aggregate supply curve for the U.S. of Rotemberg and Woodford (1997) implies a value for

λx on the order of .05, if the output gap is measured in percentage points and inflation is

measured as an annualized percentage rate. This value is much lower than the value λx = 1

often assumed in the literature on evaluation of monetary policy rules, on a ground such as

“giving equal weight to inflation and output” as stabilization objectives.20 Our utility-based

analysis implies instead that if one assumes the degree of price stickiness that is needed

to account for the persistence of the real effects of monetary policy shocks, the distortions

associated with inflation are more important than those associated with variation in the

aggregate output gap.

Alternative assumptions about the timing of price changes would justify still other loss

functions. As a single further example, suppose that a fraction 1−α of all goods change their

prices each period, and that these are randomly chosen, but that among these, a fraction γ

19The size of this weight is of greater interest in the case of this model, since aggregate supply relation
(2.16) does not imply that inflation and the output gap should perfectly co-vary under most circumstances.
It is true that complete stabilization of one implies complete stabilization of the other, as we discuss further
in the next section, and in this sense there is no tension between the two goals if (2.16) holds. But it may not
be possible to achieve complete stabilization, e.g., because of the zero lower bound on nominal interest rates,
or informational restrictions upon feasible policies; and in such cases optimal policy will generally depend
upon the relative weight placed upon the two goals.

20See, e.g., Rudebusch and Svensson (1999) and Williams (1999).
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choose the new price that takes effect in period t at that time, while the remaining 1−γ adopt

a new price that was chosen in period t− 1 (or at any rate, using only public information as

of date t− 1). As shown in Woodford (2000a), this assumption leads to an aggregate supply

relation of the form

πt = (1 − ψ)Et−1πt + ψ[κxt + βEtπt+1], (2.21)

where ψ ≡ γα/(1−γ(1−α)) is a positive fraction and κ is the same positive coefficient as in

(2.16). Note that this aggregate supply relation reduces to the “New Classical” specification

(2.13) in the limit as α → 0 (in which case ψ → 0 but ψκ approaches a positive limit), and

to the “New Keynesian” specification (2.16) in the limit as γ → 1 (in which case ψ → 1).

Under these assumptions, the distribution of prices in any period t is equal to α times

the distribution in period t− 1, plus an atom of size γ(1−α) at the new price p1
t charged by

all suppliers who have a new price in period t and no decision lag, and another atom of size

(1− γ)(1− α) at the new price p2
t charged by all suppliers with a new price in period t who

are subject to the one-period decision lag. The two new prices are again related by (2.14),

even though p1
t no longer corresponds to the price that would be chosen by a flexible-price

supplier. A straightforward extension of the above calculations21 shows that in this case

(2.18) generalizes to

∆t = α∆t−1 +
α

1 − α

[
π2

t +

(
1 − ψ

ψ

)
(πt − Et−1πt)

2

]
+ O(||ξ||3). (2.22)

We thus obtain a quadratic approximation to our welfare criterion in which the normalized

period loss function is now given by

Lt = π2
t + λu(πt −Et−1πt)

2 + λx(xt − x∗)2, (2.23)

where λu = ψ−1 − 1 and once again λx = κ/θ. In this case, variations in inflation create

distortions whether they are forecastable or not, but there are additional distortions associ-

ated with the unforecastable component of inflation, so that there is an additional positive

weight on the squared inflation surprise, as in the criterion of Rotemberg and Woodford

(1997, 1999).22

21For details, see the appendix to Rotemberg and Woodford (1999).
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3 The Case for Price Stability

While the loss measures derived above under the various assumptions about the timing of

pricing decisions are each different in certain respects, they all share an important common

property. This is that the deadweight losses due to relative price distortions can in each

case be completely eliminated, in principle, by stabilizing the aggregate price level. The

intuition for this result is simple. The aggregate price level is stabilized by creating an

environment in which suppliers who choose a new price have no desire at any time to set a

price different from the average of existing prices. But if this is so, the average of existing

prices never changes, and so the new prices that are chosen at all times are always the same,

and eventually all goods prices are equal to that same, constant value. Thus aggregate price

stability is a sufficient condition for the absence of price dispersion in our simple framework.

At the same time, in most cases, it is also a necessary condition. This is not true in the

pure “New Classical” case, as in that case it is only necessary that there be no unexpected

changes in the aggregate price level in order for there to be no price dispersion. But this is

clearly a highly special case; in the hybrid case considered at the end of the previous section,

πt = 0 at all times is required for zero price dispersion, even in the case of a very small

positive value for α.

Moreover, price stability is not only the case in which the distortions associated with

inefficient output composition are eliminated. As we shall see, it is also the route to min-

imization of the distortions associated with an inefficient level of output; and so, in the

context of the kind of simple model considered thus far, it is an unambiguously desirable

goal for monetary policy. The argument for this is simplest in the case that the equilibrium

level of output under flexible prices is optimal, so we take up this case first. But as we shall

22The welfare criterion of Rotemberg and Woodford differs from (2.23) in two respects. First, they assume
pricing decision lags of one and two quarters for the two groups of goods, rather than of zero and one quarters,
as here. Thus in their model, πt is entirely forecastable at date t − 1, and they obtain a loss function of
the form (2.23) in which the inflation surprise component is instead defined as πt − Et−2πt. Second, they
evaluate the unconditional expectation of utility rather than the conditional expectation of discounted utility,
as discussed above. Thus they compute a period loss function Lt with the property that E[Ut] = −ΩE[Lt]
(plus terms that may be neglected). This results in a period loss function of the form (2.23), but with a
slightly different expression for the weight λx.
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see, our conclusions require only minor modification even when we allow for the possibility

that the natural rate of output is inefficiently low.

3.1 The Case of an Efficient Natural Rate of Output

Here we assume not merely that the inefficiency wedge Φ defined in (2.6) is of order O(||ξ||),
but that it is equal to zero (or at any rate, that it is of order O(||ξ||2), so that we may

neglect it in our quadratic approximation to expected utility). This implies that Ȳ = Y ∗

(or at least that their log difference x∗ is of order O(||ξ||2)), so that the steady-state level

of output under flexible prices is efficient (at least to second order). Since we have already

verified, above, that percentage fluctuations in the natural rate are equal (to second order)

to the percentage fluctuations in the efficient level of output, this actually implies that (to

second order) the natural rate of output coincides with the efficient level of output at all

times.

In this case, we easily obtain a very simple conclusion about the nature of optimal

monetary policy. For each of the individual terms in our quadratic loss function can be

shown to achieve its minimum possible value, zero, if inflation is zero at all times. We have

just discussed the fact that this is true of the terms that measure the deadweight loss due to

an inefficient composition of output. But in the present case, x∗ = 0, so that the term in the

loss function that involves the aggregate output gap is also minimized (and equal to zero) if

and only if xt = 0 at all times. Each of the aggregate supply relations (2.13), (2.16) and (2.21)

implies that this will be true in the case of zero inflation at all times. Furthermore, except

in the pure “New Classical” case (where all prices are changed each period), zero inflation

at all times is also necessary in order to minimize this term. (In the “New Classical” case,

it is once again only necessary that there be no unforecastable inflation.) Thus there is no

conflict between the goals of minimizing the losses represented by the two separate terms

inside the curly braces in (2.10); and both are minimized by complete stabilization of the

aggregate price level.

In the case that some new prices must be chosen in advance (i.e., in the “New Classical” or
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hybrid cases), these results are only precisely correct under the assumption that the initial

rate of expected inflation, E−1π0, that is given as an initial condition at the time that a

new policy is chosen, is equal to zero.23 For if this does not equal zero, then a policy that

achieves zero inflation from period zero onward in all states will not result in a zero output

gap in period zero, though the output gap will be zero thereafter. (Nor will the relative-

price distortions be completely eliminated, since the surprise component of inflation will be

non-zero in period zero, though it is zero in all later periods.) Of course, if it is known in

advance that such a policy will be followed from period zero onward, E−1π0 should indeed

equal zero. But if we wish to consider optimal policy choice starting from arbitrary initial

conditions, we need also to allow for the possibility that E−1π0 6= 0.

In the pure “New Classical” case, the elimination of deadweight losses only requires

that the inflation surprise be zero at all times, and this is possible regardless of the initial

condition E−1π0. Thus we need only modify our description of optimal policy to state that

inflation in the initial period should equal whatever rate has already been expected (or more

precisely, is reflected in the price changes that have already been chosen for period zero),

while it is possible (though not essential) to commit to zero inflation in all later periods. The

problem is more complicated in the hybrid case; here it is really not possible to eliminate all

distortions in the case of an initial condition E−1π0 6= 0. Nonetheless, the optimal monetary

policy commitment from date zero onward makes the inflation rate each period a linear

function of the initial condition and the shocks realized to that period,24

πt = πss +
t∑

j=0

a′tjεt−j + btE−1π0,

where εt represents the vector of innovations in period t in a state-space model of the evolution

of the exogenous disturbances ξt. Furthermore, in this representation of optimal policy, the

long-run average (or steady-state) inflation rate πss = 0, and all of the response coefficients

atj = 0 as well. Only the coefficients bt are non-zero (though bt → 0 as t grows).

23Technically, the predetermined state variable is the new price that has already been chosen for period
zero for the goods whose prices must be set in advance, as a ratio to the aggregate price level in period -1.

24A Lagrangian method that can be used to solve for the optimal commitment in problems of this kind is
presented in Woodford (1999c).
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Briefly, one sees that the terms atj must be zero, as any dependence of the path of inflation

upon the innovations εt adds additional terms of positive expected value to the discounted

loss criterion, in addition to the terms resulting from the deterministic part of the inflation

path.25 Hence the optimal commitment involves a deterministic path for inflation {πt}.
Using the aggregate supply relation (2.21) to eliminate the output gap xt in the loss function

(2.23), one finds that the optimal inflation sequence must minimize

∞∑
t=0

βtLt = π2
0 + (κθ)−1[(π0 − βπ1) + (ψ−1 − 1)(π0 − E−1π0)]

2

+(ψ−1 − 1)(π0 − E−1π0)
2 +

∞∑
t=1

βt[π2
t + (κθ)−1(πt − βπt+1)

2].

This implies a sequence of first-order conditions

βπt+1 − (1 + β + κθ)πt + πt−1 = 0 (3.1)

for each t ≥ 2. There are corresponding conditions for t = 0 and 1, each of which is of the

form

ciE−1π0 + diπ0 + eiπ1 + fiπ2 = 0, (3.2)

for i = 1, 2. (The first-order condition for t = 1 is actually of the same form as (3.1), except

that πt−1 is replaced by ψ−1π0 − (ψ−1 − 1)E−1π0.)

The characteristic equation associated with the homogeneous difference equation (3.1),

βλ2 − (1 + β + κθ)λ+ 1 = 0, (3.3)

has two real roots, satisfying

0 < λ1 < 1 < β−1 < λ2.

Hence for any given value of π1, (3.1) has a unique bounded solution (which is accordingly

the solution satisfying the transversality condition) given by πt = π1λ
t−1
1 . The remaining two

25Note that neither the structural equation (2.21) nor the objective function (2.23) involve any of the
stochastic disturbance terms explicitly, once written in terms of inflation and the output gap. Hence in the
case of any feasible stochastic solution for inflation and the output gap, the associated certainty-equivalent
solution, obtained by replacing each random variable by its expectation as of period zero, is also consistent
with (2.21), and achieves a strictly lower expected value for (2.23).
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first-order conditions (3.2) then provide a system of two inhomogenous linear equations that

can be solved for π0 and π1 as multiples of E−1π0. (Note that π1 = λ1(ψ
−1π0 − (ψ−1 −1)π0.)

One thereby obtains a solution of the kind described above, where the coefficients bt satisfy

bt = [ψ−1(b0 − 1) + 1]λt−1
1 for all t ≥ 1.

Thus optimal policy involves a deterministic path for inflation that depends upon the

initial condition; but regardless of the initial condition, the optimal inflation rate eventually

approaches zero, and it never responds to any of the exogenous disturbances. Once the

optimal policy has been in place long enough, inflation will be zero at all times, regardless of

the recent history of shocks. If we abstract from issues relating to the transition to an optimal

policy regime starting from initial conditions that may not ever be generated again under

such a regime, and simply consider how inflation should depend upon the recent history of

shocks once an optimal policy is in place,26

then a simple conclusion is obtained: in each of the cases considered thus far, optimal

policy involves zero inflation at all times, regardless of the shocks hitting the economy.

Though we do not provide an explicit analysis here, the same conclusion holds for a much

larger family of possible time-dependent pricing rules (such as overlapping price commitments

of fixed length of the kind considered by authors such as Blanchard and Fischer, 1989, pp.

395-398, or King and Wolman, 1999); only the transition dynamics associated with optimal

policy are different in each case.

3.2 Optimal Responses to Shocks

This strong conclusion regarding the optimality of complete price stability depends upon

various details of our model, as we discuss further in section 3.4. Nonetheless, it is interesting

to remark that it holds despite our having allowed for several different kinds of stochastic

disturbances. In particular, our framework allows for exogenous disturbances to technology,

to government purchases, to households’ impatience to consume, to their willingness to

26The appropriateness of this “timeless perspective” in evaluating alternative policy rules is argued in
Woodford (1999d). See also Svensson and Woodford (1999) and McCallum and Nelson (2000) for further
discussion.
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supply labor, or to the transactions technology that determines their demand for money

balances. In the face of each of these types of disturbance, it remains optimal, under the

circumstances assumed here, for the general level of prices to be held fixed.

The generality of the conclusion results from a simple intuition, stressed by Goodfriend

and King (1997). Under the circumstances assumed here, the failure of prices to be con-

tinually adjusted is the only distortion that prevents rational expectations equilibrium from

achieving an optimal allocation of resources. Thus an optimal monetary policy is one that

achieves the same allocation of resources as would occur with flexible prices, if this is pos-

sible. Flexible-price equilibrium models of aggregate fluctuations (i.e., real business cycle

models27) are then of practical interest, not as descriptions of what aggregate fluctuations

should be like regardless of the monetary policy regime, but as descriptions of what they

would be like under an optimal policy regime. Finally, our models of optimal price-setting

imply that price stickiness will have no effects upon equilibrium outcomes in the case that

monetary policy keeps the general price level completely unchanged over time, since in this

case suppliers of goods would not wish to change their prices more frequently even if it were

costless for them to do so. Thus complete price stability achieves the optimal allocation of

resources.

Verifying that it is in fact possible, in principle, to achieve this first-best allocation

through suitable monetary policy requires that we verify that we can solve the equations

of our model for the evolution of all variables (including the interest-rate instrument of the

27Standard real business cycle models (King and Rebelo, 1999) differ from the flexible-price limit of the
model assumed here in that product markets are competitive, rather than monopolistically competitive; in
that all output is produced using inputs purchased from the same factor markets, so that there is a common
level of marginal cost for all firms at any time; and in that the endogenous dynamics of the capital stock
in response to shocks is modeled, and indeed emphasized (as the only endogenous propagation mechanism
in simple RBC models). However, in the flexible-price limit of our baseline model, all goods prices move
together, and similarly the levels of production of each good, so that marginal cost is in fact the same for
all firms. If we assume, as in this section, that an output or employment subsidy offsets the distortion due
to firms’ market power, the flexible-price equilibrium is equivalent to that of a competitive model with a
single good. Finally, if we extend the basic model expounded here to take account of capital-accumulation
dynamics, as in Woodford (2000b), then the flexible-price dynamics of our model are fully equivalent to
those of a standard RBC model. Note that these models, like the “cashless limit” of our model, abstract
from real-balance effects upon consumption demand, labor supply, and so on.
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central bank) under the assumption that πt = 0 at all times. We observe that each of our

alternative aggregate supply relations implies that this requires that the output gap be zero

at all times,28 so that aggregate output satisfies Ŷt = Ŷ n
t at all times.

Recalling our definitions of the composite exogenous disturbance terms, these can be

expressed in terms of more fundamental disturbances as

gt = Ĝt + (1 − sG)c̃t,

qt = (1 + ω−1)at + ω−1νh̃t.

Here Ĝt denotes the deviation of government purchases from their steady-state level, mea-

sured as a percentage of steady-state output Ȳ , which shifts the level of private expendi-

ture implied by any given level of aggregate demand Ŷt; c̃t denotes the percentage shift in

the Frisch (constant marginal utility of income) consumption demand, due to a shift in the

utility-of-consumption function; at is the multiplicative technology disturbance; and h̃t is the

percentage shift in the Frisch labor supply, due to a shift in the disutility-of-labor function

v. (The exogenous shifts in the Frisch demand schedules are measured at the steady-state

values of their arguments.) In addition, sG < 1 is the steady-state fraction of total spending

consisting of government purchases, and ν > 0 is the inverse of the Frisch (or intertemporal)

elasticity of labor supply. It then follows from (2.11) that

Ŷ n
t =

σ−1

σ−1 + ω
(Ĝt + (1 − sG)c̃t) +

1

σ−1 + ω
((1 + ω)at + νh̃t).

We observe that each of the exogenous disturbances Ĝt, c̃t, at, and h̃t increases the natural

rate of output, and thus, under the optimal policy each of them is allowed to perturb the

equilibrium level of economic activity Ŷt. Nonetheless, it is optimal to completely stabilize

prices in each case. Thus the case for price stability does not depend upon an assumption

that the only important shocks are ones that affect aggregate demand without shifting the

28Here we abstract from transition issues. In the case of our “hybrid” aggregate supply specification (2.21),
if one starts from an initial condition E−1π0 6= 0, the optimal commitment, derived above, implies non-zero
output gaps. However, the implied sequence for xt is deterministic (i.e., unaffected by shocks in period zero
or later), and converges to zero asymptotically at the rate λt

1.
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aggregate supply curve. Of course, it is also optimal to completely stabilize prices in response

to pure “demand” disturbances, such as the exogenous shifts in money demand considered

below.

Substituting the optimal price and output movements into the intertemporal Euler equa-

tion,

xt = Etxt+1 − σ[̂ıt − Etπt+1 − r̂n
t ], (3.4)

we can solve for the required movements of the central bank’s interest-rate instrument. These

are given by ı̂t = r̂n
t , i.e., the interest rate must perfectly track the exogenous fluctuations in

the Wicksellian natural rate of interest, as discussed in Woodford (2000b).29 If this represents

a feasible path for the interest rate, as will necessarily be true at least in the case of small

enough shocks, then we have verified that it is possible in principle for monetary policy to

achieve the optimal allocation of resources.

Noting that

r̂n
t ≡ σ−1[(gt − Ŷ n

t ) − Et(gt+1 − Ŷ n
t+1)],

and assuming (for simplicity) that each of the exogenous disturbances follows an independent

first-order autoregressive process, we see that the required interest-rate variations are given

by

r̂n
t = (σ + ω−1)−1[(1 − ρG)Ĝt + (1 − sG)(1 − ρc)c̃t − (1 + ω−1)(1 − ρa)at − ω−1ν(1 − ρh)h̃t],

where ρG, ρc, ρa, and ρh are the coefficients of serial correlation of the four exogenous

disturbance processes. Since stationarity requires that ρi < 1 in each case, we observe

that under this assumption, interest rates must increase in response to temporary increases

in government purchases or in the impatience of households to consume, and decrease in

response to temporary increases in productivity or in the willingness of households to supply

labor. In each case, the required interest-rate changes under the optimal policy are larger

the more temporary the disturbance (i.e., the less positive the serial correlation).

29As is discussed in that paper, this is not a prescription for a policy rule to achieve price stability,
since a commitment to keep the nominal interest rate on this path does not lead to a determinate rational
expectations equilibrium; it simply describes how interest rates must vary in the desired equilibrium.
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It is worth noting that the required interest-rate variations in response to the various

types of shocks cannot be achieved, in general, through a simple “Taylor rule” under which

the nominal interest rate is a function solely of inflation and the deviation of output from

trend. In the optimal equilibrium, inflation does not vary in response to the shocks at all,

and so conveys no information about them. Output does vary in response to all of the shocks,

but the desired interest-rate response is not proportion to the desired output response across

the various types of shocks; indeed, one wants interest rates to vary procyclically in the case

of government-purchase or consumption-demand shocks, but countercyclically in response to

technology or labor-supply shocks. Thus the central bank will need additional information

in order to implement the optimal policy.

Finally, by substituting the necessary equilibrium variations in prices, output and interest

rates into a money demand equation,30

logMs
t = logPt + ηyŶt − ηiı̂t + εmt , (3.5)

where ηy, ηi > 0 and εmt is an exogenous disturbance, we can learn how the money supply

must be allowed to vary as part of the optimal policy. We obtain

logMs
t = logP ∗ + ηyŶ

n
t − ηir̂

n
t + εmt ,

where Ŷ n
t and r̂n

t are the functions of the primitive disturbances just derived. We find that, in

general, the money supply should be allowed to vary in response to all five types of exogenous

disturbances, so that a constant money growth rate is certainly not the optimal policy.

Nor does the optimal evolution of the money supply necessarily involve “leaning against

the wind”. For example, procyclical variations in the money supply are optimal in response

to temporary fluctuations in productivity, as argued by Ireland (1996);31 for an increase

30This can be derived as an additional equilibrium condition in a standard Sidrauski-Brock monetary
model, under assumptions consistent with the other equations used above; see, e.g., Woodford (1999a). Here
we normalize the steady-state level of real money balances m̄ to equal one.

31Aiyagari and Braun (1998) reach a similar conclusion, in the case of their model with sticky prices,
though they assume convex costs of price changes, following Rotemberg (1995), rather than predetermined
prices as in the models considered here. These authors also reach a similar conclusion with regard to
government-purchase shocks, in the case of their numerical calibration of their model.
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in at raises Ŷ n
t while lowering r̂n

t , thus warranting an increase in logMs
t at the same time

as an increase in Ŷt. The same is true of temporary labor-supply shocks, and while the

result depends upon parameter values, it is also true of government-purchase shocks and

consumption-demand shocks, at least if these are sufficiently persistent. Furthermore, in the

case of technology or labor-supply shocks, it is actually optimal for the money supply to

be more procyclical than would be the case if interest rates were held unchanged; for one

actually wants nominal interest rates to decline in response to a positive shock. In the case

of the other two shocks, this is not true, but it is still possible that holding the nominal

interest rate fixed is closer to the optimal response that holding the money supply fixed; in

particular, this is necessarily true if the shocks are sufficiently persistent, as in that case the

natural rate of interest is affected very little.

These results contrast with the classic analysis of Poole (1970), according to which it

is optimal to accommodate money-demand shocks (fixing the nominal interest rate and

letting the money supply vary), but not “IS shocks”. Our analysis similarly concludes that

full accommodation of money-demand shocks is optimal. But our government-purchase or

consumption-demand shocks presumably correspond to what Poole intends by “IS shocks”,

yet even in the case of these shocks, some degree of accommodation is often optimal, and

if the shocks are sufficiently persistent, the optimal degree of accommodation of the “IS

shift” may be nearly 100 percent. The difference, of course, is that Poole assumes that

output stabilization should be the goal of policy, whereas here we find that optimal policy

stabilizes the output gap instead, and that the natural rate of output is affected by “IS

shocks” among others. If we consider the possibility of technology or labor-supply shocks,

neglected by Poole altogether, our results are even more different, and even more strongly

support a presumption in favor of full accommodation.32

32Of course, even in the case that procyclical variation in the money supply is not optimal, it does not
follow that there is any reason to target the money supply, or even to respond to it at all. Assuming that
it is possible for the central bank to make its interest-rate instrument depend upon aggregate output and
the aggregate price level, then any rule that puts a non-zero weight on the money supply is dominated by
another rule that puts a zero weight on the money supply, and instead involves direct feedback from output
and/or prices to the interest rate, without introducing the noise associated with the money-demand shocks
εm
t .
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Our results also differ, at least superficially, from those of Ireland (1996), who argues that

one should use monetary policy to “insulate aggregate output” against “shocks to demand”,

while accommodating “shocks to supply”. Many readers might assume that “shocks to de-

mand” would include disturbances such as our government-purchase or consumption-demand

shocks, but we have seen that it is not optimal to stabilize output in response to these shocks.

In fact, in Ireland’s model, “shocks to demand” refer solely to money-demand shocks, which

is the only exogenous disturbance other than a technology shock that he considers.

Our results also differ superficially from those of Clarida et al. (1999), who state (in

their “Result 4”) that optimal policy involves “adjusting the interest rate to perfectly offset

demand shocks,” while “perfectly accommodat[ing] shocks to potential output by keeping

the nominal interest rate constant”. In fact, the variable (their “gt”) here referred to as a

“demand shock” corresponds to our natural rate of interest rn
t .33 What these authors mean

by “perfectly offsetting” movements in this variable is that the central bank’s interest-rate

instrument should move one-for-one with variations in the natural rate of interest. (Thus

“perfectly offsetting” the shocks does not mean that output is insulated from them, but that

the output gap is.) And what they mean by “perfectly accommodating shocks to potential

output” is that, given the value of the natural rate of interest, the interest rate should be

independent of the natural rate of output. That is, disturbances to the natural rate of output

that do not shift the natural rate of interest should not affect nominal interest rates. Stated

this way, there is no difference between these results and our own.34 However, it is not true,

in general, that optimal policy involves no interest-rate response to shocks that affect the

natural rate of output, because (as shown above) such shocks almost always do affect the

natural rate of interest to some extent.

33The variable is evidently thought of as a “demand shock” because it is the disturbance term in the Euler
equation (3.4). But because this condition has been written in terms of the output gap xt rather than the
level of output Ŷt, the composite disturbance r̂n

t , unlike our variable gt, cannot properly be regarded as a
pure demand shock, if one supposes that transitory disturbances to the natural rate of output occur.

34Actually, the results referred to in Clarida et al. are characterizations of optimizing central bank policy
under discretion, which is not in general optimal policy, in the sense of the policy that best achieves the
central bank’s assumed objectives, as is emphasized in Woodford (1999b). However, under the special
circumstances that we assume here, optimizing policy under discretion coincides with truly optimal policy,
as optimal policy is time-consistent in this case.
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3.3 Consequences of an Inefficient Natural Rate of Output

We now consider the extent to which the above conclusions must be modified in the case

that (quite realistically) we assume that Φ > 0, so that the equilibrium rate of output under

flexible prices would be inefficiently low. The distortions represented by the coefficient Φ, i.e.,

the market power resulting from monopolistic competition and the constant rate of distorting

taxation τ , introduce a wedge between this natural rate of output and the efficient output

level. However, this wedge is assumed to be constant over time, so that percentage changes

in the natural rate still correspond precisely (in our log-linear approximation) to percentage

changes in the efficient level of output. Thus, as shown above, the distortions associated with

a suboptimal aggregate level of economic activity are still measured a quadratic function of

the output gap, λ(xt − x∗)2, even if now the constant x∗ is assumed to be positive.

While this difference matters for the optimal average levels of inflation and output – that

is, for the deterministic part of our above description of the optimal policy commitment – it

has no effect (in our log-linear approximation to optimal policy) upon the optimal responses

to shocks. We first demonstrate this in the simple context of our “New Classical” model of

price-setting. In this case, the normalized quadratic loss function (2.15) can be written

Lt = (πt − Et−1πt)
2 − 2λx∗xt + λx2

t , (3.6)

dropping the term λx∗2 that is independent of policy. The second term on the right-hand

side now indicates a welfare gain from an increase in the expected output gap in any period.

However, under the assumption that Φ, and hence x∗, is of order O(||ξ||), a first-order

approximation to the solution for xt suffices to give us a second-order approximation to this

term. Hence we may substitute using the aggregate supply relation (2.13), to obtain

Lt = (πt −Et−1πt)
2 − 2θ−1x∗[πt −Et−1πt] + λx2

t ,

recalling that λ = κ/θ.

Taking the expected discounted value of such terms (and dropping the term E−1π0 that
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is independent of policy), we obtain the utility-based welfare criterion

E0

{ ∞∑
t=0

βtLt

}
= −2θ−1x∗π0 + E0

{ ∞∑
t=0

βt[(πt −Et−1πt)
2 + λx2

t ].

}
(3.7)

Note that each of the terms proportional to x∗ has canceled, except the one indicating a

welfare gain from surprise inflation at date zero, the time at which a new policy commitment

is adopted. Because it is not possible to commit in advance to an inflation surprise at any

later date, the corresponding terms for dates t ≥ 1 do not matter. But this means that

allowing for x∗ > 0 has no effect upon the nature of the optimal policy commitment, except in

the initial (transitional) period, when it is possible to take advantage of the fact that private

sector expectations of period zero inflation are already given, before the policy is adopted.35

It is arguable (see Woodford, 1999d) that it does not make sense to behave differently in this

initial period than one commits to behave later, if one wants the commitment to be credible.

But regardless of how one manages the transition to the optimal regime, it is optimal to

commit to an eventual zero rate of inflation, and to a path for inflation that is unaffected by

any stochastic disturbances.36

It might be thought that this result depends upon the fact that in the special case in

which all prices are changed every period (though some are committed a period in advance),

only unexpected inflation has an effect upon output. Yet a similar conclusion is obtained in

our baseline model, with Calvo price-setting. In this case, we can similarly substitute into

(2.20) using the aggregate supply relation (2.16), to obtain

Lt = π2
t − 2θ−1x∗[πt − βEtπt+1] + λx2

t ,

noting again that λ = κ/θ. Taking the expected discounted value, we obtain the utility-based

welfare criterion

E0

{ ∞∑
t=0

βtLt

}
= −2θ−1x∗π0 + E0

{ ∞∑
t=0

βt[π2
t + λx2

t ]

}
. (3.8)

35Of course, this different prescription in the case of the initial period shows that optimal policy is not
time-consistent in this case. See Woodford (1999b) for further discussion.

36Of course, in this model, there is no advantage of complete price stability over any other policy that
makes inflation completely forecastable a period in advance. But in order to stress the similarity of the
results obtained under the alternative aggregate supply specifications, it is worth noting that also in this
case there is no advantage to any variation in inflation in response to shocks.
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Once again all of the terms proportional to x∗ cancel, except the one indicating welfare

gains from a surprise inflation in period zero. Committing in advance to non-zero inflation

in any later period does not produce any such effect. For the value of the increase in output

in any period t ≥ 1 resulting from higher inflation in period t must be offset by the cost

of the reduction in output in period t− 1 as a result of expectation of that higher inflation

in period t. From the standpoint of the discounted loss criterion (3.7), the costs resulting

from the anticipation of the inflation are weighted more strongly (by a factor of β−1 > 1),

as they occur earlier in time. On the other hand, the output effect of anticipated inflation,

by shifting the short-run aggregate supply curve, is also smaller than the effect of current

inflation, by exactly the factor β < 1, with the result that the two effects exactly cancel, to

first order (which is to say, to second order when multiplied by x∗). Thus once again there

is no welfare gain, up to our order of approximation, from a commitment to inflation that

can be anticipated in advance. In particular, we find once again that except for transition

effects, resulting from the different term in (3.8) for the initial period, it is again optimal to

commit to zero inflation, independent of the shocks to the economy.

Nonetheless, the term in (3.8) that is linear in π0 now affects the optimal commitment

for periods later than π0 as well. That is because of the intertemporal linkage implied by

aggregate supply relation (2.16). The welfare gain from inflation at date zero can be obtained

with less increase in the period zero output gap (and hence less increase in the λx2
0 term)

if it is accompanied by an increase in expected inflation at date one; and since the welfare

loss from such inflation is merely quadratic, it is optimal to commit to some amount of such

inflation. Thus the inflation associated with the transition to the optimal regime lasts for

more than a single period in this case.

Let us briefly sketch a derivation of the optimal commitment in this case. As in section

3.1, we easily see that any dependence of the inflation rate upon the stochastic disturbances

increases expected losses (3.8), so that we may restrict attention to deterministic inflation

commitments. Again using (2.16) to eliminate xt from (3.8), we see that the optimal com-
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mitment involves an inflation sequence {πt} that minimizes

∞∑
t=0

βtLt = −2θ−1x∗π0 +
∞∑

t=0

βt[π2
t + (κθ)−1(πt − βπt+1)

2].

The first-order condition for the optimal choice of π0 is given by

βπ1 − (1 + κθ)π0 + κx∗ = 0, (3.9)

while that for πt is again given by (3.1) for each t ≥ 1.

As shown above, the sequence of conditions (3.1) have a unique solution satisfying the

transversality condition, given by

πt = π0λ
t
1,

where λ1 is again the smaller root of the characteristic equation (3.3). Substituting this into

(3.9), we find that the optimal initial inflation rate equals

π0 = (λ−1
1 − β)−1κx∗ > 0.

Thus it is optimal to arrange an initial inflation, taking account of the fact that the decision

to do so can have no effect upon expectations prior to date zero (if one is not bothered

by the non-time-consistency of such a principle of action). The optimal policy involves

positive inflation in subsequent periods as well, but there should be a commitment to reduce

inflation to its optimal long-run value, of zero, asymptotically (as λ1 < 1). And the rate at

which inflation is committed to decline to zero should be completely unaffected by random

disturbances to the economy in the meantime.37 Thus the assumption of Φ > 0 makes no

difference for the conclusions of the previous section with regard to the optimal response

to shocks. And if one takes the view (as we shall argue later) that one should actually

conduct policy as one would have optimally committed to do far in the past, thus foregoing

the temptation to exploit the private sector’s failure to anticipate the new policy, then it is

optimal simply to choose πt = 0 at all times – i.e., to completely stabilize the price level –

just as in the previous section.

37These results agree with those of King and Wolman (1999) in the context of a model with two-period
overlapping price commitments in the style of Taylor (1980).
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It is interesting to note that this result – that the optimal commitment involves a long-

run inflation rate of zero, even when the natural rate of output is inefficiently low – does not

depend upon the existence of a vertical “long-run Phillips curve” tradeoff. For the aggregate

supply relation (2.16) in our baseline model implies an upward-sloping relation

xss = (1 − β)κ−1πss

between steady-state inflation πss and the steady-state output gap xss. (This is because the

expected-inflation term has a coefficient β < 1, unlike that of the “New Classical” relation

(2.13).) It is sometimes supposed that the existence of a long-run Phillips-curve tradeoff,

together with an inefficient natural rate, should imply that the Phillips curve should be

exploited to some extent, resulting in positive inflation forever, even under commitment. But

here that is not true, because the smaller coefficient on the expected-inflation term relative

to that on current inflation – which results in the long-run tradeoff – is exactly the size of

shift term in the short-run aggregate supply relation that is needed to precisely eliminate any

long-run incentive for non-zero inflation under an optimal commitment. If one were instead

to “simplify” the New Keynesian aggregate supply relation, putting a coefficient of one on

expected inflation (as is done in some presentations,38 presumably in order to conform to

the conventional wisdom regarding the long-run Phillips curve), we would then fail to obtain

such a simple result. The optimal long-run inflation rate would actually be found to be

negative, as the stimulative effects of lower expected inflation would be judged to be worth

more than the output cost of lower current inflation – even though there would actually be

no long-run output increase as a result of the policy!

Similar conclusions can be obtained in the case of the “hybrid” aggregate supply speci-

fication (2.21), though the transition dynamics are slightly more complex. In this case we

obtain instead

Lt = π2
t + λu(πt −Et−1πt)

2 − 2θ−1x∗[ψ−1πt − (ψ−1 − 1)E−1πt − βEtπt+1] + λxx
2
t ,

38See, e.g., Roberts (1995) or Clarida et al. (1999).
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so that

E0

{ ∞∑
t=0

βtLt

}
= −2θ−1x∗[ψ−1π0 − (ψ−1 − 1)E−1π0]

+E0

{ ∞∑
t=0

βt[π2
t + λu(πt −Et−1πt)

2 + λxx
2
t ]

}
,

generalizing (3.8). Again, all of the terms proportional to x∗ cancel, except the term involving

π0 and E−1π0. The optimal commitment again involves a deterministic path for inflation,

and the first-order conditions satisfied by this path are the same as in the problem considered

in section 3.1. It follows once again that the optimal commitment is of the form

πt = [ψ−1π0 − (ψ−1 − 1)E−1π0]λ
t
1

for all t ≥ 1, so that the value of x∗ affects only the relation between the optimal π0 and the

initial condition E−1π0. Thus once again the optimal commitment involves no dependence

of inflation upon the exogenous disturbances, and a commitment to reduce inflation to zero

eventually.

3.4 Caveats

We have seen that, within the class of sticky-price models discussed above, the optimality of

a monetary policy that aims at complete price stability is surprisingly robust. Not only does

this conclusion not depend upon the fine details of how many prices are set a particular time

in advance or left unchanged for a particular length of time, but it remains valid in the case

of a considerable range of types of stochastic disturbances, and in the case of an inefficient

natural rate of output. Nonetheless, it is likely that some degree of deviation from full price

stability is warranted in practice. Some of the more obvious reasons for this are sketched

here.

First of all, complete price stability may not be feasible. We have just argued, in section

3.2, that in our baseline model, it is feasible, because we are able to solve for the required

path of the central bank’s nominal interest-rate instrument. This is correct, as long as the

random disturbances are small enough in amplitude. But if they are larger, such a policy
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might not be possible, because it might require the nominal interest rate to be negative at

some times, which is not possible under any policy. Specifically, this will occur if it is ever the

case that the natural rate of interest is negative. On average, it does not seem that it should

be, and thus zero inflation on average would seem to be feasible; but it may be temporarily

negative as a result of certain kinds of disturbances, and this is enough to make complete

price stability infeasible. As a result, a policy will have to be pursued which involves less

volatility of the short nominal interest rate in response to shocks, and some amount of price

stability will have to be sacrificed for the sake of this.39 The way in which optimal monetary

policy is different in the presence of such a concern is an important concern of Woodford

(1999b).40

Varying nominal interest rates as much as the natural rate of interest varies may also be

desirable as a result of the “shoe-leather costs” involved in economizing on money balances.

As argued by Friedman (1969), the size of these distortions is measured by the level of

nominal interest rates, and they are eliminated only if nominal interest rates are zero at all

times.41 Taking account of these distortions – from which we have abstracted thus far in our

welfare analysis – provides another reason for the equilibrium with complete price stability,

even if feasible, not to be fully efficient; for as Friedman argues, a zero nominal interest rate

will typically require expected deflation at a rate of at least a few percent per year.

One might think that this should make no more difference to our analysis of optimal policy

than does the existence of an inefficient natural rate of output due to market power – that it

may similarly affect the deterministic part of the optimal path for inflation without creating

any reason for inflation to vary in response to random shocks. But monetary frictions do

39In general, it will be optimal to back off from complete price stability both by allowing inflation to vary
somewhat in response to disturbances, and by choosing an average rate of inflation that is somewhat greater
than zero, as suggested by Summers (1991), in order to allow more room for interest-rate fluctuations
consistent with the zero lower bound. However, the quantitative analysis undertaken in Rotemberg and
Woodford (1997, 1999) and Woodford (1999b, 1999c) finds that the effect of the interest-rate lower bound
on the optimal response of inflation to shocks is more significant than the effect upon the optimal average
rate of inflation.

40See also Woodford (1999c, section 4.2).
41See Woodford (1990) for justification of this relation in a variety of alternative models of the demand

for money.
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not have implications only for the optimal average level of nominal interest rates. As with

distorting taxes, it is plausible that the deadweight loss is a convex function of the relative-

price distortion, so that temporary increases in nominal interest rates are more costly than

temporary decreases of the same size are beneficial. In short, monetary frictions provide

a further reason for it to be desirable to reduce the variability of nominal interest rates,

even if one cannot reduce their average level. (At the same time, reducing their average

level will require less variable rates, because of the zero floor.) Insofar as these costs are

important, they too will justify a departure from complete price stability, in the case of any

kinds of real disturbances that cause fluctuations in the natural rate of interest, in order to

allow greater stability of nominal interest rates. This tradeoff is treated more explicitly in

Woodford (1999c, section 4.1).

Even apart from these grounds for concern with interest-rate volatility, it should be

recognized that the class of sticky-price models analyzed above are still quite special in

certain respects. One of the most obvious is that there are assumed to be no shocks as a

result of which the relative prices of any of the goods with sticky prices would vary over

time in an efficient equilibrium (i.e., the shadow prices that would decentralize the optimal

allocation of resources involve no variation in the relative prices of such goods). This is

because we have assumed that only goods prices are sticky, that all goods enter the model in

a perfectly symmetrical way, and that all random disturbances have perfectly symmetrical

effects upon all sectors of the economy. These assumptions are convenient, but plainly an

idealization. Yet it should be clear that they are relied upon in our conclusion that stability

of the general price level suffices to eliminate the distortions due to price stickiness.

If an efficient allocation of resources requires relative price changes, due to asymmetries in

the way that different sticky-price commodities are affected by shocks, this will not be true.

We show, however, in Woodford (1999c), that even in the presence of asymmetric shocks,

it is possible to define a symmetric case in which it is still optimal to completely stabilize

the general price level, even though this does not eliminate all of the distortions resulting

from price stickiness. But this holds exactly only in a special case, in which different goods
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are similar, among other respects, in the degree of stickiness of their prices. If sectors of

the economy differ in their degree of price stickiness (as is surely realistic), then complete

stabilization of an aggregate price index will not be optimal. Stabilization of an appropriately

defined asymmetric price index (that puts more weight on the stickier prices) is a better

policy, as argued by Aoki (1999) and Benigno (1999), though even the best policy of this

kind need not be fully optimal.

An especially important reason for disturbances to require relative price changes between

sticky commodities with sticky prices is that wages are probably as sticky as are prices.

Real disturbances almost inevitably require real wage adjustments in order for an efficient

allocation of resources to be decentralized, and if both wages and prices are sticky, it will

then not be possible to achieve all of the relative prices associated with efficiency simply by

stabilizing the price level – specifically, the real wage will frequently be misaligned, as will be

the relative wages of different types of labor if these are not set in perfect synchronization. In

such circumstances, complete price stability may not be a good approximation at all to the

optimal policy, as Erceg et al. (1999) show. Nonetheless, stabilization of an appropriately

weighted average of prices and wages is still found to be a good approximation to optimal

policy, and fully optimal in some cases (Woodford, 1999c). Thus concerns of this kind are

not so much reasons not to pursue price stability as they are reasons why care in the choice

of the index of prices (including wages) that one seeks to stabilize may be important.

Yet another qualification to our results in this section is that we have assumed a frame-

work in which the natural rate of output – the equilibrium level in the case of flexible prices

– is efficient, or at any rate differs from the efficient level only by a (small) constant fac-

tor. As we have seen, this assumption is compatible with the existence of a variety of types

of economic disturbances, including technology shocks, preference shocks, and variations in

government purchases. But it would not hold in the case of other sorts of disturbances, that

cause time variation in the degree of inefficiency of the natural rate. These could include

variation in the level of distorting taxes, variation in the degree of market power of firms or

workers, or variation in the size of the wage premium that must be paid on efficiency-wage
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grounds.42

These are presumably the kinds of disturbances intended by the “cost-push shock” term

in the aggregate supply equation of Clarida et al. (1999).43 In the presence of such shocks,

but with assumptions otherwise as in our baseline model, the aggregate supply relation (2.16)

takes the form

πt = κ[xt + ct] + βEtπt+1, (3.10)

where ct indicates the percentage deviation (from its steady-state level) of the amount by

which the natural rate of output (the equilibrium level under flexible prices) exceeds the

efficient level of output, and xt is now the output gap relative to the efficient level of output,

rather than the natural rate.44 The normalized utility-based loss function is still given by

(2.20), in terms of this notation, as it is the gap between actual output and the efficient

level that matters for the computation of deadweight loss. (Here we continue to assume that

both the efficient level of output and the natural rate are the same for all goods, so that the

dispersion of efficiency gaps continues to be directly related to price dispersion.)

With this modification of the aggregate supply relation, complete stabilization of inflation

is no longer sufficient for complete stabilization of the welfare-relevant output gap, and given

that output-gap variability also affects the loss function, complete stabilization of inflation

will not generally be optimal.45 It is not obvious that stabilization of an alternative price

index makes sense as a solution to the problem in this case, either, whereas some degree of

42See Giannoni (2000) for further discussion of the origin and consequences for optimal policy of such
disturbances.

43The terminology is not entirely helpful, however, as there is no necessary connection between shocks that
affect inflation by increasing costs of production and this kind of time variation in the degree of inefficiency
of the natural rate of output. Technology shocks, energy price shocks, or variations in real wage demands
may all shift the aggregate supply curve without implying any variation in Y n

t /Y ∗t.
44See Giannoni (2000). For consistency with the literature, e.g., Clarida et al., we technically define xt as

log(Yt/Y ∗
t ) plus the steady-state value of log(Y n

t /Y ∗
t ). This is somewhat illogical notation, but allows us to

follow the literature, such as Clarida et al., in representing a non-zero average gap between the natural rate
and the efficient level by a non-zero target value x∗ in the loss function, rather than by a constant in the
aggregate-supply relation, while at the same time representing time variation in this gap by a random term
in the aggregate-supply relation, rather than a time-varying target for the output gap that appears in the
loss function.

45See Clarida et al. (1999), Woodford (1999d), and Svensson and Woodford (1999) for discussions of
optimal policy in the presence of this kind of disturbances.
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concern for stabilization of the (appropriately measured) output gap is clearly appropriate,

alongside a concern for inflation stabilization.

In fact, one can easily show (Clarida et al., 1999; Woodford, 1999d) that minimization of

the welfare-based loss function (2.20) subject to the sequence of constraints implied by the

aggregate supply relation (3.10) requires stabilization of a hybrid index

logPt + θ−1xt, (3.11)

rather than stabilization of either the price index or the output gap alone. This is an example

of the form of policy rule that Hall (1984) calls an “elastic price standard”. However, under

a plausible calibration of the degree of market power in an economy like the U.S., the relative

weight on the output gap in this index should only be about 0.1 — much smaller than the

weights assumed, for example, by Hall.

Hence while it is true that the presence of inefficient supply disturbances justifies a

departure from complete price stability for the sake of greater stabilization of the output

gap, the optimal degree of response to variations in the output gap remains small. And

the above calculation assumes perfect observability of both inflation and the output gap. In

practice, real-time estimates of the output gap are much more uncertain than are measures

of inflation, and taking this into account is likely to justify even less of a deviation from

complete stabilization of the price level.46

Thus the case for price-level stabilization is more robust than is often assumed. Complete

stabilization of the price level is fully optimal only under relatively special circumstances —

but as we have seen, this case still allows for a wide range of types of disturbances, and a

modest degree of inefficiency of the economy for reasons other than the stickiness of prices.

Furthermore, while there are many reasons why complete price stability is not likely to be

46See, e.g., Svensson and Woodford (2000) for an analysis of optimal policy in the case of inefficient
supply disturbances, when potential output is observed only with noise. Because of a certainty-equivalence
principle, it is still optimal to stabilize one’s best estimate of the current value of the index (3.11). However,
the greater the degree of noise in the observation of potential output (i.e., the estimate based on quantity
data alone), the greater the extent to which the optimal estimate of the output gap (based on a Kalman
filter) is a function primarily of fluctuations in prices. Hence the rule amounts to something quite close to
price-level stabilization.

47



fully optimal, none of these seem likely to justify departures from price stability that are too

great, quantitatively (at least if the price index to be stabilized is appropriately defined). This

remains, of course, an important topic for investigation in quantitative models. Furthermore,

the question of which price index it is most desirable to stabilize remains an important topic

for further study, despite the promising initial results of Aoki (1999), Benigno (1999) and

Erceg et al. (1999).
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