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Most of applied work in Industrial Organization is based on static models.
This is in spite of the fact that the issues analyzed often have dynamic impli-
cations1, and is largely due to the fact that the appropriate dynamic model
is often quite complex. Indeed realistic dynamic models of even relatively
simple market settings typically have to be too complex to admit analytic
results with much applied content. This is the reason that most of the good
theoretical work on the dynamics of markets use ”stylized” environments;
environments that are designed more for the clarity they allow in developing
intuitions than for their realism. Our framework is an attempt to provide
a complementary tool for dynamic analysis of more detailed environments.
It gives up on the elegance of analytic results entirely, focusing instead on
an algorithm that computes and analyzes policies for user-specified market
conditions.

The ultimate goal of the framework is to enable the researcher to analyze
dynamics in markets that mimic the markets that we actually observe. That
is we would like to provide a tool to the applied analyst who knows some-
thing about demand, costs, and the nature of both policies and equilibrium
in a particular setting, and wishes to either translate that knowledge into
its likely implications, or to undertake a substantive numerical analysis of a
policy or an environmental change. As we shall see the framework can also be
used to check for the robustness of the intuitions developed from the stylized
theoretical environments, and to investigate the implications of richer behav-
ioral assumptions than theory has been able to deal with to date. Finally
the framework has also been used as a teaching aid; usually to illustrate the
possible dynamic effects of traditional policies.

It works out that building a single framework general enough to encom-
pass many of the situations that are important to applied researchers is both
too difficult a task, and an inefficient way of proceeding. It is inefficient
because the peculiarities of a given setting often enable the use of special
computational techniques which cut the burden of computing the needed
equilibria significantly. Thus what we have tried to do is provide an ”ex-
pandable” framework; one whose core is very simple, but which can be (and
has been) extended to accommodate more complex market institutions2.

1For an empirical example of the importance of dynamic considerations, see Pakes
Berry and Levinsohn’s(1993) analysis of the response of the miles per gallon of new car
sales to the increase in gas prices in 1973.

2There are undoubtedly other frameworks that could be used and expanded in a similar
fashion. My goal here is not to survey what is, or could be made, available. It is only to
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The framework is presented in the next section. It is designed to accom-
modate the limited “empirical facts” that we seem to find in virtually all
industries. Thus it allows for heterogeneity among firms, idiosyncratic or
firm specific outcomes (so it can generate phenomena like rank reversals in
the fortunes and sizes of firms), and (simultaneous) entry and exit.

The core version is supported by a publically available program that has
separate subroutines to compute the equilibrium for the dynamic analogues
to each of three standard static models. One is a differentiated product
model. Here equilibrium in the “spot” market for current output is Nash
in prices, and firms invest to improve the qualities of their products. The
other two models are homogeneous product models; one has differences in
marginal costs across firms and the other has differences in capacities. In
these models equilibrium in the spot market is Nash in quantities and invest-
ment is directed at decreasing marginal cost (in the model with differences
in marginal costs) or at increasing capacity (in the model with capacity con-
straints). For each model the user is allowed to specify values for parameters
that set demand, production costs, sunk entry and exit fees, the efficacy of
investments, and the discount rate. In addition the user specifies an initial
market structure for the analysis. Finally there are additional modules which
compute the solutions to a social planner’s problem and to a “perfect col-
luders” problem based on the same parameters, and provide statistics which
allow the user to compare these outcomes to those from the Markov Perfect
equilibrium.

The core version does limit the set of possible policies and states in ways
that rule out many markets of interest. Section 2 of the paper goes on to
a discussion of extensions. These extension were originally designed by dif-
ferent authors to allow for particular applied phenomena, but they contain
ideas which can be applied more broadly. We review extensions designed
to allow for; multiple state variables per firm, collusion, price (or quantity)
decisions which have an independent effect on the demand or cost function
in future periods (as well as on current profits; examples include models with
learning by doing, or with durable or experience goods), non-pecuniary exter-
nalities to investment decisions (or “spillovers”), and mergers. Throughout
we maintain the assumption of a Markov Perfect equilibrium, so most of the
extensions in section 2 simply mimic theoretical developments in the analy-
sis of such equilibria (see the discussion in Maskin and Tirole 1995 ). That

acquaint the reader with the framework that I have been using.
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is by incorporating different state variables and modifying the action space
appropriately we can use the Markov Perfect concept in a wide variety of
situations.

In describing our framework in section 1 we outline a simple “backward”
solution technique for computing its equilibria. Section 3 provides a way of
determining the computational burden of the backwards solution technique
when applied to any given specification. This section makes it clear that the
simple computational algorithm is not sufficiently powerful to enable realistic
analysis of many empirically important situations. Consequently section 4
provides a brief outline of how two more powerful computational algorithms
can be applied to our framework. One is based on polynomial approximations
similar to those discussed in Judd (1999). The other is based upon ideas from
the artificial intelligence literature (see Barto, Bradtke, and Singh,1995), and
has an interpretation which is similar to that of the economic theory literature
on learning (see Pakes and McGuire, forthcoming).

I conclude this introduction by noting three topics that this paper does
not cover. First there is no publically accessible computer program which
computes the extensions to the framework discussed in section 2, and the
publically accessible version of our algorithm is computationally inefficient.
As a result, though the publically accessible version of the algorithm has
been used extensively as a teaching tool, researchers using variants of our
framework to analyze more detailed problems have largely built their own
computer programs. I should note, however, that the artificial intelligence
algorithm described in section 4 is extremely easy to program, and for many
problems is several orders of magnitude more efficient than the point-wise
techniques that we describe in section 2.

Second, this survey does not pay any attention to the problem of deter-
mining which of the alternative institutional structures are relevant for which
applied situations. Partly this reflects the spirit of the analysis: those choic-
es ought to be made differently for different situations, and made by those
who are familiar with the relevant primitives. On the other hand, there is
still an estimation problem (the problem of obtaining a reasonable range of
parameter values for a given institutional setting), and there is a need for
a discussion of currently available estimation techniques. The literature on
estimation and testing of I.O. models has grown rapidly in the last few years,
and even if I felt comfortable with my reading of it, I could not do justice to
it as a section of this paper.

Finally this paper does not consider the problem of computing models
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with assymetric information. This is an important topic, and various papers
that are just appearing make it clear that we should be able to incorporate
assymetric information into our, or related, frameworks (see for e.g. Cole
and Kocherlakota, 1998, Judd, Yeltkin and Conklin,2000, and Fershtman
and Pakes, in process).

1 A Simple Model.

The core version of our model is taken from Ericson and Pakes (1995, hence-
forth EP), and this section introduces it. In doing so we will also describe
the the publically accessible algorithm which computes its equilibrium.

The model has firms investing to explore profit opportunities. Successful
investments lead to states where the firm earns more profits. Unsuccessful
investments, those that leave the firm behind its competitors both inside and
outside the industry, lead to a deterioration of profits and may eventually
induce owners to exit.

1.1 The Profit Function.

Profits in any period depend on the quality of the firm’s own product or the
efficiency of its production technology, as well as on the levels of quality or
efficiency of other competing firms. We let i index the values of the firm-
specific state variable, and assume i takes on values in the positive integers
(i ∈ Z+). si will be the number of firms at i (si ∈ Z+), so the vector
s = [si; i ∈ Z+] is the “industry structure” (the number of firms at each
different efficiency level). We consider the important extension in which i
is a vector below (among other extensions, this enables us to allow firms to
differ in both the efficiency of their production technology and in the quality
of their product, and to allow product ”quality” to have many dimensions).

Profits for a firm at i when the market structure is s are given by π(i, s).
To derive this profit function from primitives we need to specify:

1. a demand system: this delivers the quantity demanded of each product
as a function of i,s and the prices of all products,

2. a cost function: this delivers costs as a function of i, the quantity
produced, and possibly factor prices, and
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3. an equilibrium assumption: this determines quantities or prices as a
function of (i, s).

The core version of the framework uses the simplifying assumption which
underlies the standard “static-dynamic” breakdown in teaching IO. It as-
sumes that the distribution of future values of the state of the system (in our
notation of (i, s)) conditional on the investments made in the interim do not
depend on prices or quantity choices. When this assumption is appropriate
changes in current price or quantities affect only current profits. Consequent-
ly we can analyze the equilibrium in the “spot market” for current output
without even specifying the dynamics of the system. Those dynamics are
analyzed at a later stage which begins by substituting the output of the first
stage (equilibrium prices or quantities as a function of (i, s)) into the demand
and cost functions and computing the implied profit function. The dynamics
then analyzes investment, entry, and exit, as a response to the opportunities
posed by this profit function. Usually the static or “spot” equilibrium con-
cept is either Nash in prices (in which case quantities are determined by the
demand system) or Nash in quantities (in which case prices are determined
by that system)3.

The computational advantage that results from this simplifying assump-
tion is that the Nash equilibrium values for price (or quantity) can be com-
puted knowing only the functional form of demand and costs, and (i, s) (in
particular, it does not require knowledge of the value function). Formally
that solution gives us price as p(i, s) (or quantity as q(i, s)), which we then
substitute into the demand equation to determine q(i, s) (p(i, s)), which in
turn allows us to compute profits as π(i, s) = p(i, s)q(i, s)− c[q(i, s)], where
c(·) is the cost function. That is the profit function can be computed “of-
f line”and simply imported (point-wise) into the part of the program that
computes the “dynamic” policies (i.e. entry exit and investment). The cost,
of the assumption is that it does not allow us to study environments where,
for any of a number of reasons, current price choices have an effect on fu-
ture states that is independent of any investments made in the interim. We
come back to incorporating to these more complicated environments in our
discussion of extensions in Section 2.

The core version of our program asks the user to choose among three

3Though it is not difficult to think of alternatives that are relevant for particular applied
problems. For e.g. Berry, Levinsohn and Pakes, 1999, consider a model in which certain
agents choose quantities and others choose prices.
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frequently used combinations of (1) to (3) and then calculates the resultant
π(i, s). The three examples of π(·) available in the public program ( each is
programmed up to a set of parameter values determined by the user)4 are:

• A differentiated product model where i indexes the quality of a firm’s
product, equilibrium in the product market is Nash in prices, invest-
ment leads to improvements in the “quality” (average utility from) the
product, and there is entry and a possibility of exit;

• A homogeneous product market in which equilibrium is Nash in quan-
tities, i indexes inter-firm differences in a constant marginal cost of
production, investment improves i, and there is entry and exit;

• A homogeneous product market in which equilibrium is Nash in quan-
tities but i indexes inter-firm differences in capacities, investments in-
crease capacity, and there is entry and exit.

In each case the equilibrium assumption is used to solve for the quantities
and prices as a function of state vector, and these are substituted into the
profit function to obtain π(i, s). 5

Before concluding we remind the reader that the publically accessible
program assumes i is a scalar, and that, conditional on investment decisions,
the distribution of future values of the state of the system (of (i, s)) are inde-
pendent of the choice of prices or quantities. These are strong assumptions
and section 2 is primarily concerned with extending the algorithm in a way
that allows us to circumvent them. However as we will explain below those
extensions require modifications to the publically available program.

4To access a description of, and code for, this algorithm (as well as the number of
auxiliary programs designed to help analyze its results); either download the need direc-
tories directly from my Harvard web page, or FTP to “econ.yale.edu”, use “anonymous”
as login, and your own username as “password”. In the latter case you need to change
directory to “pub/mrkv-eqm” and copy all needed files. There is a “read.me” file to start
you off.

5Examples of applied work that have used these alternatives, are, respectively: Pakes
and McGuire (1994), Gowrisankaran and Town(1996), Marcovich(1999)(who computes the
solution to an advertising game), Liu (1999), Fershtman and Pakes (2000), and Benkard
(2000); EP(1995); and Berry and Pakes(1993) and Gowrisankaran(1999). Older (1998)
uses the core version of the program to compute a differentiated product advertising model
whose profit function is taken from Sutton (1995).
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1.2 Entry, Exit and Investment Decisions.

The public version of the algorithm is broken down into four basic modules.
The first calculates π(i, s) as discussed above. This then becomes input into
the second module which calculates entry, exit, and investment policies. We
now outline this second module.

Given π(·) an incumbent has two choices. It chooses whether to exit or
remain active, and if it remains active it chooses an amount of investmen-
t. If it exits it receives a sell-off value of φ dollars (and never reappears).
If it invests x it incurs a cost of cx and has a probability distribution of
improvements in i which is stochastically increasing in x6.

Thus if we let β be the discount rate, and pr(i′, s′|x, i, s) provide the firm’s
perceptions of the joint probability that its own efficiency in the next period
will be i′ and the industry structure will be s′ conditional on (x, i, s), the
Bellman equation which determines the firm’s value [V (i, s)] is

V (i, s) = max{φ, π(i, s) + sup
(x≥0)

[−cx+ β
∑

V (i′, s′)pr(i′, s′|x, i, s)]}. (1)

The max operator determines if the sell-off value of the firm, our φ, is greater
than its continuation value (the expression on the right hand side of φ). If
so the firm shuts down. If not the firm chooses an amount of investment (an
x ≥ 0) which determines the probability distribution of the increment in the
firm’s state over the period.

We let the increment to that state be

τt+1 ≡ it+1 − it,

and assume τ can be written as a difference of two independent random
variables

τt ≡ νt − ζt.
6Throughout we assume that the response of the state variable to investment is s-

tochastic, rather than deterministic, as in standard models of capital accumulation (for a
discussion of the relevance of stochastic versus deterministic models of accumulation, see
Pakes,1993). Different forms of the stochastic accumulation assumption have been used
in the I.O. literature for some time, probably most often in the patent race literature. For
a brief review of that literature, and an interesting application of numerical techniques
to investigate the robustness of the conclusions of that literature to the stylized assump-
tions used in prior analytic treatments, see Doraszelski,2000. Daraszelski’s uses different
techniques than those we focus on. He considers a continuous time model and numerical
approximations similar to those discussed in Judd,1999 (and discussed in section 4 below.)
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ν represents the outcome of the firm’s investment process and has probabil-
ities given by the family

P = {λ(·|x), x ∈ R+},

which is assumed to be stochastically increasing in x (i.e. λ(·|x1) is better, in
the first order stochastic dominance sense, then λ(·|x2) whenever x1 > x2). ζ
is an exogenous random variable with density λ(ζ). Its precise interpretation
depends on the structure of the profit function (see below). The distributions
of the ν of different firms are independent of one another, but the realization
of ζ is common across firms. Both ν and ζ are non negative, integer valued,
random variables; ν = 0 with probability one if x = 0 (a firm cannot advance
without some investment), and λ(0) > 0 as is λ(0|x) for all finite x.

In the publically available version of the program the interpretation of ζ
depends on the primitives used for demand and costs. Thus in the differen-
tiated product model ζ is the mean utility of the ”outside alternative”; that
is the mean utility from the alternative of not purchasing any of the goods
marketed in this industry. In the homogeneous goods models it represents
either exogenous factor prices, or an index of the demand curve for that good.
Note that in either case the fact that ζ exists provides a reason for positive
correlation between the profits of the different firms in an industry. Since
positive realizations of a given firm’s ν generate less profits for that firm’s
competitors, we would not get this positive correlation without the ζ. That
is we need the ζ (the aggregate demand and cost changes) to predict the
positive correlation among the profits of firms within an industry that exists
in many data sets.

The publically available version of the model confines both ν and ζ to
take on values of zero or one. So in any given decision period the firm’s state
can only move up one, stay the same, or move down one in any period. The
required probabilities are set at: λ(ν = 1|x) = [ax/(1+ax)] (so λ(ν = 0|x) =
1 − [ax/(1 + ax)]), while λ(ζ = 1) = δ. Note that there can be more than
one decision period per period observed in any data set, and by changing the
number of decision periods per data period we can generate a quite rich set of
transition functions for the data to choose between. Of course the discount
rate and the profit function need to be adjusted to the length of the model
period.

Now let ŝi be the vector providing the states of the competitors of a firm
at state i when the industry structure is s, and q[ŝi

′|i, s, ζ] provide the firm’s
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perceived probability that the states of its competitors in the next period
will be ŝi

′ conditional on a particular realization for ζ. Then

pr(i′ = i∗, s′ = s∗|x, i, s) = (2)

Σζλ(ν = i∗ − i− ζ|x)q[ŝi
′
= s∗ − e(i∗)|i, s, ζ]λ(ζ),

where e(i) is a vector which puts one in the ith slot and zero elsewhere so
that s∗ − e(i∗) lists the states of next years competitors if s′ = s∗ and the
firm’s own future state is i∗. Note that q[·|i, s, ζ] embodies the incumbent’s
beliefs about entry and exit.

Substituting equation (2) into (1) we obtain the (Bellman equation for)
the value function as

V (i, s) = max{φ, π(i, s)+

sup
(x≥0)

[−cx+ β
∑

V (i+ ν − ζ, ŝi + e(i+ ν − ζ))q[ŝi|i, s, ζ]λ(ν|x)λ(ζ)]}. (3)

We still need to specify the entry model. The publically accessible version
of the program assumes that there is only one potential entrant a period who
pays an amount xe (> βφ) to enter, and enters one period later at state ıe−ζ
with probability λ(ζ) where ie ∈ Z+ is specified by the user. The entrant
only enters if the expected discounted value of future net cash flows from
entering is greater than the cost of entry. The cost of entry can be specified
as either the constant, xe, or as a random variable which distributes uniformly
on [xe,l, xe,u]. When random entry costs are used only the potential entrant
knows the realization of the entry costs, the other incumbents know only
that entry costs will be a random draw from this uniform distribution.7

As noted in EP different entry models are easy to accommodate provided
the distribution of i′s at which entry occurs is fixed over time. That is the
“ability” of entrants must progress at the same pace as the “ability” of the
outside alternative; else entry would eventually go to zero and stay there.

7Random entry costs tend to “smooth out” the value functions of incumbents in the
region in which there might be entry of an additional competitor. As a result it can be
quite helpful in overcoming convergence problems in computing the equilibrium when such
problems occur (see below).
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1.3 Dynamic Equilibrium:Characterization Results.

This section reviews the properties of the model’s equilibria detailed in
EP(1995). The proof that these properties hold use the regularity condi-
tions given in A.1 to A.7 of that article 8.

EP show that a rational expectations MPE exists for our model. In the
model firm behavior depends on the perceived distributions of its future com-
petitors, formalized in the transition probabilities, q[ŝi

′|i, s, ζ], and derived
as the distribution of s′ − e(i′) from some distribution of s′ given s. Yet the
investment, entry, and exit choices generated by these perceptions, togeth-
er with the known distributions of ν given alternative values of x and the
distribution of entry locations, generate an objective distribution of indus-
try structures. A distribution of future industry structures is an equilibrium
distribution given the current structure if and only if the investment, entry,
and exit decisions which it generates produces an objective distribution of
industry structures which is identical with the distribution which generated
it (for more detail see the discussion in Star and Ho, 1969).

EP also show that we will only observe firms at a finite set of integer
states. We let that set be Ω = {1, ..., K}. Also there will never be more than
a finite number, say n, of active firms9. K is referred to as the dimension of
the grid, and n as the number of state variables. The fact that they are finite

8I should note that no one has reconstructed these proofs for the extensions of the
algorithm discussed in the next section. Still there seems not to have been any difficulty
in verifying the computational properties discussed below (with the possible exception of
ergodicity) for all computed versions of these extensions I am aware of. In addition, as
pointed out to us by Gautum Gowrisankaran, the current existence proof should have
incorporated random entry and exit costs (see Pakes and McGuire, 1995), though again
most of the computed versions of the model suffice without this complication.

9Heuristic explanations for these results follow. First the regularity conditions used
in EP insure that if a firm’s state falls low enough it will exit and this produces the
lower bound for the observed i. Those conditions also insure that the value function
is bounded. Since the returns to investment are determined by the slope of the value
function, the boundedness of that function insures that at a high enough i the firm will
stop investing, and if the firm stops investing its i cannot increase. This produces the
upper bound to observed states. In general both the upper and lower bounds will depend
on the distribution of competitors, but the assumption that the profits can be driven to
a sufficiently low number by increasing the number of incumbents insures that there will
never be more than a finite number of active firms. Hence there will be a finite number of
industry structures and a finite maximum and minimum to the levels of i ever observed.
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implies that we need only compute equilibria for (i, s) tuples that satisfy

(i, s) ∈ Ω× S, where S ≡ {s = [s1, ..., sk] :
∑

sj ≤ n <∞}

Note that the number of distinct elements in Ω × S, or #(Ω × S), is finite,
so it is possible to compute and store equilibrium policies for each possible
(i, s). On the other hand we still need a way of determining what K and n
are for any given set of primitives.

The heart of the equilibrium is a stochastic process for industry structures
[for {st}]. This process is a homogeneous Markov process, i.e. if st provides
the history of industry structures, i.e. st = (st, st−1, ..., s1), then

Pr[st+1 = s′|st] = Pr[st+1 = s′|st] ≡ Q[s′|st].

EP also prove that the Markov transition kernel for {st}, or Q[·|·], that
is associated with each possible equilibrium (and there may be more than
one of them) is ergodic. This implies that no matter the initial s0, st will, in
finite time, wander into a subset of the states, say R ⊂ S or the recurrent
class, and once st ∈ R it will, with probability one, stay in R forever (once
in R there is a no probability of communicating outside of R; see figure 1 in
EP for a two dimensional illustration).

Consequently if st ∈ R then we can analyze behavior from st without
knowing anything about the policies outside of R. Further once we know
the identities of the points in R we will know whether the st of interest
(usually its current value) is in R (and it will be if the process has gone
on for sufficient time). As discussed below the economics of many applied
I.O. problems imply that R will be much smaller than S. Thus one way of
reducing the computational burden of the algorithm is to find a method that
enables us to compute policies for points in R only (see below).

Note that the actual nature of the states in R (e.g. does it include both
relatively fractured and relatively concentrated structures?), and the pattern
of likely transitions between those states (do we cycle over the divergent types
of structures, or are their sudden events that take us more directly from one to
another?), depends on the primitives of the model; π(·), β, xe, φ, λ(·) and P.
These in turn, depend on demand patterns, technological opportunities, and
the institutional structure of the industry; objects that are likely to vary
from problem to problem. Thus, as noted, to actually use this framework
for applied work we need some idea of the appropriate primitives and a
computational algorithm that allows us to analyze their implications.
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1.4 Dynamic Equilibrium: Computation of Policies.

This section outlines the backward solution method provided in Pakes and
McGuire (1994; henceforth PM) for computing equilibrium investment, en-
try and exit policies for our problem. Like all backward solution techniques
it is an iterative procedure which starts each iteration with a set of num-
bers in memory, provides a rule which updates those numbers in the course
of the iteration, and checks to see if the updated numbers satisfy a conver-
gence criteria at the end of the iteration. If not the algorithm begins a new
iteration10.

Our algorithm holds estimates of the value function and policies associ-
ated with each (i, s) ∈ Ω×S in memory, and uses equation (3), the Bellman
equation, to update them. The updating procedure is synchronous ; i.e. it
circles through the points in S in some fixed order and updates all estimates
associated with every s ∈ S at each iteration. If the values and policies
from successive iterations are the same, then the algorithm is said to have
converged. As we explain below when the algorithm converges we will have
computed an equilibrium.

Assume temporarily that Ω, the possible values for i, and that n, or the
maximum number of firms ever active, are both known (so Ω×S is known).
We can rewrite the Bellman equation (equation 3) for each (i, s) ∈ Ω× S as

V (i, s) = max{φ, π(i, s)− sup
x≥0

[−cx+ β
∑
ν

w(ν; i, s)λ(ν|x1)]}, (4)

where

w(ν; i, s) =
∑

(ŝ
′
i,ζ)

V (i+ ν − ζ, ŝ′i + e(i+ ν − ζ)|w)q[ŝ
′

i|i, s, ζ]λ(ζ), (4a)

and, as before

q[ŝ
′

i = s∗i |i, s, ζ] ≡ Pr{ŝ′i = ŝ∗i |i, s, ζ, and equilibrium policies} (4b).

The term, w(ν; i, s), provides the expected discounted value of future net
cash flow conditional on the current year’s investment resulting in a particular
value of ν, and the current state being (i, s). It is an expectation because

10For good overviews of backward solution algorithms for dynamic programming prob-
lems see Bertsekas,1995, and Judd, 1999, chpt.12.
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it is constructed by integrating out over the possible outcomes of both the
investment strategies of competitors (the ŝ

′
i), and over the outside alternative

(the ζ).
Note that the {w(·|i, s)} are all an agent needs to know in order to deter-

mine both his optimal investment policy, and, given that investment, whether
to exit. As a result the equations in (4) make it easy to show how we update
at each iteration of our algorithm.

Index a particular iteration’s value and policies by a superscript. Each
iteration determines a new set of policies and values from the old set that
is in memory. In addition to investment, the policies include exit policies
for incumbents (χ(·) will be an indicator which takes on the value of ze-
ro if the firm exits) and an entry policy for the potential entrant (χe(·)
will be an indicator which takes a value of one if entry occurs). Thus the
iteration’s goal is to determine {V k(·, ·), xk(·, ·), χk(·, ·) and χke(·, ·)} from
{V k−1(·, ·), xk−1(·, ·), χk−1(·, ·), and χk−1

e (·, ·)}.
The iteration circles over the points in S in a predetermined over. If n is

small relative to K (and it usually is) the points are often stored as vectors
that specify the states of active firms (instead of as vectors that specify the
number of firms active at each possible state), i.e. they are often stored as
vectors i = (i1, . . . , in), with the ij in their natural order (i.e. ij ≥ ij−1)
and ij > 0 only if there are j or more firms active11. The computational
algorithm is easier to understand if we proceed as if the memory has been
stored as the i vectors (rather than by the implied s), so this section proceeds
with that assumption (even though this sacrifices both a bit of elegance and
notational consistency with previous work).

Under each i we have stored last iterations policies for each (i, i) and for
the potential entrant. We update these policies as follows

• for each incumbent (i.e. for each ij > 0), calculate wk−1(·|i, i) from the
information in memory (by substituting V k−1(·) and qk−1(·|·) into 4a),
where qk−1(·|·) is calculated from the policies at iteration k− 1 for the
other incumbents and potential entrant,

• then substitute wk−1(·) for w(·) in (4), and solve the resultant single
agent optimization problem for the kth iteration’s exit and investment

11Since we are restricting the policies to be symmetric (or more precisely exchangeable)
in the policies of competitors, we can reorder the elements of any vector to this order, and
use the policies computed from this vector.
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polices by choosing (χ, x) to

max
χ∈{0,1}

{[1− χ]φ+ χ sup
x≥0

[π(i, i)− cx+ β
∑
ν

wk−1(ν; i, i)λ(ν|x)]}. (5)

This is done in the following steps:

– Assume the first firm continues (χ = 1) and solve for xk when
χ = 1. Kuhn Tucker theory tells us that neccesary conditions for
an xk to solve this problem are

xk ≥ 0, and

xk{−c+ β
∑
ν

wk−1(ν; i, i)
∂λ(ν|x)x=xk

∂x
} = 0.

Second order conditions will be satisfied automatically with the
functional form for λ(·|·) used in the publically accessible version
of our algorithm, but will also have to be checked if more general
forms are used.

– Given this xk, we determine χk by substituting xk for x in equation
(5), and then checking whether the implied continuation value is
greater than φ.

• Next we substitute this (xk, χk) for (x, χ) in (5) and take the value of
the resultant expression as V k(i, i). That completes the update for the
incumbents at (i, i).

• To find out whether the potential entrant enters, calculate wk−1(0; ie, i+
e(ie)) from the information in memory as above. If wk−1(0; ie, i +
e(ie)) > xe, set χe = 1; otherwise χe = 0.

That completes the updates for an iteration. At the end of this process
the iteration calculates a norm in the difference between current iteration
and previous iterations values (i.e. ||V k−1(·)−V k(·)|| where || · || refers to the
sum of squares of the differences) and either stops, or continues, depending
on whether the difference is sufficiently small.

If ||V k−1(·)− V k(·)|| = 0, then the policies derived from V k are identical
to those derived from V k−1, and each incumbent and potential entrant

• uses, as its perceived distribution of the future states of its competitors,
the actual distribution of future states of those competitors, and
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• chooses its policy to maximize its expected discounted value of future
net cash flow given this distribution of the future of its competitors.

Consequently those values and polices are a Markov Perfect Nash equilibrium
(see Star and Ho, 1969).

To complete the description of the algorithm all we need to do is explain
how we determine Ω and n. Prior to the procedure described above we solve
the monopoly problem (the problem with n = 1) with an oversized state
space. This is a standard contraction mapping which solves easily and will
produce a lowest i at which the firm remains active and a highest i at which
the firm invests. The lowest i becomes the 1 in the definition of Ω. Since
our regularity conditions insure that a firm that does not invest does not
have a positive ν, the highest i plus the maximum value of ν with positive
probability becomes K. EP(1995) show that if a monopolist would exit at a
given state so would a firm facing any amount of competitors, so the lower
bound for the monopoly problem is a lower bound for any Nash equilibrium.
The upper bound for the monopoly problem need not be the upper bound
for a problem that allows for more than one firm, but it has sufficed in every
problem we have computed. Nonetheless, the publically available version of
the program checks to see if any firm with i = K is actually investing in the
equilibria. If it is, it restarts the program with an increased K.

The program determines n iteratively. It first calculates a Markov Perfect
Nash equilibrium when the maximum number of firms is set arbitrarily to
2 12. Then it pushes the arbitrary limit to n up to 3 and does the iterative
calculations again starting at V 0(i1, i2, i3) = V ∗(i1,max(i2, i3)). In principal
the program should continue in this fashion until we reach an n so high that
whenever there are n− 1 firm’s active there is no possible structure at which
an entrant would want to enter. The minimal n at which this occurs (and
there will be such an n if the regularity conditions in EP,1995, are satisfied)
is the equilibrium n. What the program actually does is let the user choose a
maximum value for n and then check whether it in fact meets the equilibrium
condition.

12In this case we need to modify the program here to instruct it not to evaluate entry
if two firms are active. For this and other details see Pakes, Gowrisankaran and McGuire,
1997.
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1.5 Notes on the Publically Available Algorithm.

This publically available program is split into four modules, each of which
performs a different task. It also comes with a set of auxiliary programs de-
signed to enable the researcher to compare the results from the MP equilibri-
um to other familiar institutional structures. This section begins with a brief
discussion of convergence and uniqueness, then goes on to a description of
each of the four modules, and concludes by outlining the auxiliary programs
available. Section 3 provides a more detailed discussion of computational
efficiency, including methodology for improving the efficiency of the simple
algorithm discussed above (see also the related discussions in Judd,1999, and
Bertsekas,1995).

1.5.1 Convergence and Uniqueness.

There is no guarantee that the public access program will converge for any
given set of primitives. If non-convergence occurs in the public access pro-
gram when using a deterministic entry cost, the first thing one should try
is a problem with the the same value for all primitives but the entry costs,
and the entry costs changed to the random entry cost option. Other ways
of getting around convergence problems are discussed in PM(1994). Though
convergence problems do occur periodically, we have always found that use
of one or more of the suggestions in PM has lead the algorithm to converge.
Unfortunately the alternative computational strategies PM(1994) suggests
for non-convergent problems are not currently programmed as options in the
public access program, so if there is good reason for staying with a set of
primitives for which the algorithm does not converge, the user will have to
go into the program and change some of its features.

There is no guarantee that there is only one equilibrium for a given set of
primitives. Indeed to my knowledge there has been very little discussion of
sufficient conditions for uniqueness of Markov Perfect Equilibria in any lit-
erature13. Since part of what we want to do with the program is to analyze
responses to alternative possible policies, this lack of a guarantee of unique-
ness is troublesome (that is we do not know that the set of policies that we
compute and use to evaluate the change are the only policies consistent with
the new primitives). On the other hand we have experimented quite a bit

13A notable exception is the discussion of uniqueness in Maskin and Tirole’s (1987 )
linear quadratic alternating move game.
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with the core version of the algorithm, and never found two sets of equilib-
rium policies for a given set of primitives (we frequently run the algorithm
several times using different initial conditions or different orderings of points
looking for other equilibria that might exist). We should emphasythe here
that the core version, and indeed most other versions that have been used,
all use quite simple functional forms for the primitives of the problem, and
multiplicity of equilibrium may well be more likely when more complicated
functional forms are used. Of course most applied work suffices with quite
simple functional forms.

1.5.2 The Four Modules of the Basic Program.

As noted, the first module of the program calculates profits. The profit
function is treated as an input in the second module. This module uses
the algorithm discussed in the last subsection to calculate entry, exit and
investment policies for each s ∈ S. These policies serve as the input to
the third and fourth modules; modules which contain programs designed to
characterize the equilibrium. The third module simulates a sequence of in-
dustry structures from a user specified initial condition, and then provides
a set of statistics that describe the industry generated by that simulation.
The descriptive statistics contain data on entry, exit, the number of firms
active, lifespans and values of those firms, prices and investment policies,
and concentration ratios (see PM,1994, for details)14. The fourth module
again simulates from a user specified initial condition, but this time simu-
lates repeatedly from the same initial condition and calculates the mean and
variance of the distribution of consumer and producer surplus generated by
the simulations.

1.5.3 Auxiliary Programs In the Public Access Version.

The auxiliary programs enable the user to compare the Nash equilibria to
two other institutional structures. One is the institutional structure that
would be generated by a benevolent social planner. The planner determines
all prices and investments in each period, as well as entry and exit deci-
sions, to maximize the expected discounted value of consumer surplus. The
four modules for this auxiliary program do precisely the same things as the

14It is not difficult to add to the tables outputted by this procedure. Indeed, we often
require our students to do this as part of a classroom exercise.
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four modules for the program that computes the MPE. A comparison of the
output from these programs to the output from the MP programs tells us
whether there is any room at all for institutional change with improves on
the Nash equilibrium, and suggest properties that the improvement might
have. Note that our planner need not worry about incentive problems, and
receives all the information needed costlessly.

The second set of auxiliary programs computes the policies and simulates
industry structures and welfare results for a “perfect” cartel. The cartel acts
as if it is a monopolist who determines all pricing, entry, exit and investment
decisions to maximize producer surplus (the expected discounted value of
the sum of the net cash flows accruing to the different firms). The collusive
results tell us just how profitable collusion could be in this industry, and what
it might look like if it occurred. Note that this program pays no attention to
the problem of determining whether (and how) this form of collusion could
be enforced (a topic we return to in the extension section).

2 Extensions to the Core Version.

There are a large number of potentially interesting extensions. I suffice with
a short review of those that have been computed, and some straightforward
extensions of obvious applied importance. I discuss each of the extensions
separately and concentrate almost entirely on the conceptual problems that
arise in analyzing them. It is clear, however, that applied researchers might
want to combine two or more of them, and that once we move to applied work
computational, as well as conceptual problems, will arise. Computational
issues are discussed in the next section.

Recall that the core version considers models where there is no indepen-
dent effect of current price (or quantity) choices on future states, and that
this enabled us to mimic the standard textbook separation between static and
dynamic analysis (we can first consider the profits from a Nash equilibrium
in prices or quantities conditional on the “state” variables of the problem,
and then consider the entry exit and investment decisions that determine
the evolution of those states). We begin with problems that arise when we
allow for multiple states per firm in that framework. Only then do we move
on to investigate situations in which the price (or quantity) decisions are
inherently dynamic. Here we split the discussion into a subsection on collu-
sion and one on dynamic costs (e.g. learning by doing, or adjustment costs)
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and/or dynamic demand (e.g. models with experience or durable goods). In
the first subsection current price (or quantity) choices are determinants of
the price (or quantity) strategies of a firm’s competitors in future periods.
In the second subsection current price or quantity choices help set the level
of cost or demand functions in the future. Less is known about alternative
ways of incorporating non-pecuniary externalities to investment (“spillovers”
in the terminology of the R&D literature), and/or merger activity, into the
framework. In the last two subsections we discuss how this could be (and in
the case of merger activity, has been) done.

2.1 Multiple States Per Firm.

Additional state variables are often needed before we can get an adequate
approximation to the real world institutions that determine the interaction-
s of interest. Whether or not the additional state variables generate new
conceptual problems depends on how the new state variables are added.

Exogenously Evolving States.

This includes

• states that evolve as exogenous Markov processes

• states that differentiate between different (time invariant) types of ei-
ther firms or products.

The addition of such states are used in a variety of ways, and I am not aware
of any new conceptual problems they generate.

In applied work movements in industry wide demand, technology, or fac-
tor prices, are often incorporated by adding exogenous Markov processes
whose realizations take on the same value for all firms.

Gowrisankaran and Town (1997) extend the core version to allow for t-
wo different types of firms, for profit and not for profit hospitals, and then
investigate the likely impacts of health policy changes on the evolution of
the hospital industry. Not for profit hospitals care about quality, as well
as profits, and have certain tax advantages15. Using (largely) estimated pa-
rameters, they investigate the impact of policy changes that were designed

15One could also differentiate between different types of goods, rather than by different
types of firms. For e.g. Benkard(2000) differentiates between types (sizes) of the aircraft
developed and marketed.
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primarily to change the conditions determining demand for hospital services
(changes in Medicare reimbursement rates, insuring uninsured patients, and
taxing not for profit hospitals) on supply conditions in that industry. That
is, by endogenizing the impact of the demand side changes on market struc-
ture (through induced changes in investment, entry, and exit), they are able
to analyze the equilibrium impacts of the policy changes on patient welfare.
They find that the induced changes in market structure can have large (and
largely unintended) impacts on patients.

States that Evolve Endogenously.

The conceptual problems that arise in incorporating multiple endogneously
evolving states per firm differ with the details needed for the application at
hand. Two extensions which are important for applied work are

• allowing for products that are differentiated by more than one charac-
teristic, and

• allowing for firms that market more than one product.

Virtually all of the recent characteristic based demand (and cost) studies use
a multidimensional characteristic space and find that there is more than one
characteristic that is important to consumers. To dynamize these models
we need to formulate investment and entry processes that operate on a mul-
tidimensional space. I have computed several such models for the new car
market, focusing on the trade off between miles per gallon and car size, and
on how various policies can effect it. The problems that arose were more
related to the parameterization of the model than to the nature of the equi-
librium, and were largely familiar from the literature on technological change.
For e.g. does investment in cost saving technology shift down the entire cost
surface or are its effects limited to a neighborhood of a particular value for
the “(size, mpg)” couple? Similarly what is the choice set of vehicles for the
new entrant, and how do the costs of entry vary with the characteristics of
the vehicle chosen?

To my knowledge the framework has not been used to study markets with
multi-product firms. I include this in my description of models with multiple
states per firm solely because of its importance to applied work (especially
to the analysis of the impacts of merger activity and to the analysis of the
relative incentives to develop new products). Once we allow for multi-product
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firms it is natural to allow incumbents (as well as new entrants) to introduce
new products. Even in the simplest such case, say when a single quality
dimension is the sole source of differentiation among products and entry
occurs at a random draw from an exogenously specified distribution of these
qualities, when incumbents (as well as the potential entrant) can introduce
new products, there will be many possible equilibria.

The researcher will then have to formulate mechanisms that direct the
algorithm to computing one of them. These can be as simple as allowing
random draws to determine the order of moves. More realistically we could
let the firm for whom entry generates the highest increment to its value have
a higher probability of moving first (taking explicit account of differences in
the investment required before launch due, say, to differences in the prod-
ucts produced in the past). More detailed empirical knowledge, say on the
determinants of the probability of being a first mover, would be extremely
useful in this context.

The issues get even more interesting when we allow for multiprouct firms
and more than one characteristic per firm, for then we get into the discus-
sion of the development of products by competing incumbents in related but
different market segments (which dates back at least to e.g. Schmalensee’s
(1978) paper on cereal’s and Judd’s (1985) comment). Interestingly many
of the developments required to empirically obtain and analyze static profit
functions in settings with multi-product firms producing products with many
characteristics has already been done. A good example is Petrin(2000) who
analyzes the introduction of the Mini-van and shows, inter alia how the fact
that Ford had a disproportionate share of the station wagon market made it a
less likely candidate to introduce the Mini-van than Chrysler (it was Chrysler
that went ahead with development expenditures and eventually introduced
the first Mini-van, even though the idea was put forth by a Ford engineer).

2.2 Equilibria In Which Price or Quantity Choices are
Determined by Dynamic Incentives.

In these cases the logic underlying how we construct the equilibria (the dis-
cussion of section 1.4) must be altered, so we discuss these changes in more
detail. We begin with models which allow current price (or quantity) strate-
gies to be functions of previous choices of these controls (as in models of
collusion). Then we consider cases where the current level of the demand or
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costs function depends explicitly on past price or quantity choices.

Collusion.

Most of the theoretical work on collusion and price wars assumes identical
firms and an unchanging environment. Though these assumptions help clar-
ify what determines when a collusive agreement can be enforced and hence
when it breaks down, they often make the existing collusion models unap-
pealing to applied researchers who are trying to understand the workings
of particular industries. In many applied problems we are simply not will-
ing to assume pricing mechanisms that ignore differences in the policy cum
profitability options of different firms. This is despite the fact that applied
people often find that the simple static Nash pricing models that we gener-
ally bring to data are not rich enough to explain actual behavior, and hence
would welcome alternatives. Further the assumption of an unchanging envi-
ronment limits the investigation of the implications of collusion to its impact
on prices; ignoring the (possibly equally important) effects of collusion on
the costs, qualities, and varieties of the products marketed.

If we are willing to give up on the elegance of analytic results and rely
instead on numerical analysis, it is not difficult to analyze collusive models
that allow for heterogeneity among firms who invest (sequentially) to develop
their products, and can enter and exit. Fershtman and Pakes (2000) provide
one such model, and it illustrates just how the analysis would proceed. As
they note however, there are many possible collusive models that could be
developed and the choice among the possibilities should probably be made
with a particular industry in mind. De Roos (in process) computes an alter-
native collusive model designed to match up to the facts he has gathered on
the lysine cartel recently adjudicated by the DOJ. He then considers data
relating to the DOJ’s investigation of the vitamin cartel in light of his and
other models of collusion.

The Fershtman-Pakes model is a model with symmetric information in
which it is hard to sustain collusion when either; one of the firms does not
keep up with the advances of its competitors, or a “low quality” entrant
enters. In either case there will be an active firm that is quite likely to exit
in the near future. Not only is it hard to punish a firm who is likely to
exit after it deviates, but if one of the competitors is near an exit state the
other incumbent(s) has an incentive to price predatorily (that is to deviate
themselves) in order to hasten that exit.
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They assume that firm’s either collude to set prices or set prices as in a
static Nash pricing equilibrium. Collusive prices and profits are determined
by the outcomes of a Nash bargaining game in which the threat value is the
profits from the static, Nash in prices, equilibrium. The choice of which price
vector to play depends on whether any incumbent has deviated from collusive
prices in the past, and on whether the punishments currently available are
sufficient to insure no firm has an incentive to deviate in the current period.
If there is an incumbent who has deviated, the static Nash in price solution
is played as long as that incumbent remains active. As in much of the
repeated game literature (see Green and Porter,1984 , and Abreu Pearce and
Stachetti,1986 ) no incumbent ever deviates. However there are tuples of
states for which the punishment of reverting to non-collusive prices is not
sufficient to support collusion, and this generates “price wars” (reversions to
a Nash pricing equilibrium).

Formally the difference between the Fershtman-Pakes model and our core
model is that they introduce a second state variable for each firm and let price
choices depend on it. The second state variable is an indicator function which
is one if the given firm has ever deviated from the collusive agreement in the
past. The Bellman equation is then more complicated; profits are collusive
profits if no incumbent has either; (i) deviated in the past or, (ii) has an
incentive to deviate today. For values of the state vector in which no one
has colluded in the past we compute both the vector of collusive profits and
the vector of non-collusive profits. These are computed off line and then
imported into the dynamic module of the program. The modification to the
Bellman equation (equation 2) is that now at each state vector for which
no one has deviated in the past, we must check to see that no one has an
incentive to deviate in the current period. If either someone has deviated
in the past, or someone has an incentive to deviate in the current period,
then a static Nash in prices equilibrium ensues. If neither of these conditions
are satisfied, then the collusive prices are played. With this modification to
the Bellman equation one can compute equilibrium values iteratively, using
techniques analogous to those in section 1.4. Note that this implies that
policies are computed for values of the state vector in which each incumbent
has deviated in the past, as well as for cases when none have ever deviated.
Since, in the equilibria Fershtman and Pakes (2000) compute, no firm ever
deviates, this implies that they need to compute the value function for states
which should never actually be observed (states that are “off the equilibrium
path”).
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Their numerical results are instructive for at least two reasons. First given
the fixed values they chose for their “primitive” parameters (including the
discount rate), they could only find two equilibria, a single equilibria in which
collusion is observed, and an equilibria in which no firm ever colludes. Second,
their results illustrate the potential importance of dynamic considerations in
evaluating the benefits and costs of collusion. In particular for the parameter
values they chose consumers prefer the collusive equilibria to the equilibria
with no collusion; i.e. the greater quality and variety of goods that are
marketed in the collusive equilibria more than compensates consumers for
the higher prices they have to pay when there is collusion.

Dynamic Costs and/or Demand.

The core version of our model assumes that the distribution of future states,
conditional on current states and all investments, is independent of the price
or quantity choices of the agents. This assumption is inappropriate when-
ever either the current cost or the current demand function depends on the
quantities sold (or the prices set) in previous periods. Quantities have an
independent effect on future costs when learning by doing is important or
when there are adjustment costs, and they have an independent effect on
future demand when the goods being marketed are either durable, evaluated
through personal experience, or addictive. Network effects can cause either
future demand or future costs to depend on current price and/or quantity
choices.

Recall that in the core version of the algorithm we can compute the
current profit function “off line” and then simply import a “table” of the
needed values for the profit function into the algorithm designed to compute
equilibrium entry, exit and investment policies. Once current demand has
an independent impact on either future costs, or future demand, this is no
longer true. In these cases the Nash first order condition for equilibrium
quantities (prices) has a term for the impact of current quantities (or prices)
on future net cash flow as well as a term for their impact on current profits.
As a result we cannot obtain either the “static” control or profits without
computing the entire value function, and this makes for a more difficult
computational problem.

The modification to the first order condition needed to accommodate
these cases differs depending on whether the choice of the control for one
firm effects the transition probabilities for the states of all firms, or just the
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transition probabilities for the states of the given firm. In games of quantity
competition in which the transition probability for a firm’s own states are
determined only by own quantities, the simpler case where a firm’s choice of
controls only effects its own state prevails. Benkard (2000) analyzes a model
of this sort and since his work has the added realism of a model build up from
estimated parameters, we begin with an outline of it. When the control of a
given firm is a determinant of the distribution of quantity outcomes for all
competitors, as is usually the case when the control is price (see Berry and
Pakes, in process), or when the control is a bid in a repeated auction with
capacity constraints (see Joffre Bonet and Pessendorfer, 2000), then the first
order condition must account for the fact that a given firm’s choice of control
affects the evolution of the states of all competitors. Later we illustrate what
happens in these cases by modifying Benkard’s model to allow for price,
rather than quantity, competition.

Benkard (2000) incorporates learning by doing into a model similar to
the one introduced in the last section. His goal is to analyze competition in
the market for wide bodied commercial aircraft. He ignores investment in
increasing the quality of the product (i.e. investment of the type we focused
on in the early section), but allows current quantity choices to effect an
experience variable, which in turn affects cost of production in future years16.
Using estimated parameters for both the demand and cost functions, he then
computes and analyzes a model of dynamic quantity competition among
producers which is a reasonably realistic approximation to the competition
that occurred in the commercial aircraft market at the time the Lockheed
Tristar was being introduced.

Letting i index experience levels (or cost functions), and taking some
liberties to place his model in the confines of our notation, he has it+1 =
it+τt+1, where ifQ is quantity produced, the distribution of τt+1 is determined
by the family {λ(·|Q) | Q ∈ R+} which is stochastically increasing in Q.
Quantities are a choice variable and the vector of quantities determine all
prices. As a result the profits of the jth firm can be written as

π(ij, Qj, Q−j) = Qj (p(Qj, Q−j)−mc(ij)) ,

where p(·) provides the pricing function, and m represents a set of state
16Benkard’s model could have been modified to allow for the possibility of investing in

the quality of the product, as well as learning, at the cost of an increased computational
burden. On the other hand he does allow for a number of exogenously evolving state
variables that we omit in our discussion to keep the notation simple.
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variables that evolve exogenously. Again letting i be the vector of states of
the active firms (ordered so ir > ir−1), the Bellman equation in (5) becomes

V (ij, i) = maxχ∈{0,1}{[1− χ]φ (6)

+χsupQ≥0[π(ij, Qj, Q−j) + β
∑

V (i′j, îj
′
+ e(i′j))q(îj

′|i, i)λ(i′j|ij, Qj)}

where îj
′

is notation for the locations of firm j′s competitors in the next
period. Note that there is no independent effect of the firm’s own quantity
choice on the distribution of its competitor’s future states.

Now assuming that χ = 1 (the firm continues in operation) and that
Qj > 0, the first order condition which sets Qj is modified to read

∂π(ij, Qj, Q−j)

∂Q
+ β

∑
V (i′j, îj

′
+ e(i′j))q(îj

′|i, i)
(
∂λ(i′j|ij, Qj)

∂Qj

)
= 0. (7)

That is current quantity choices not only depend on the effect of quantity
on current profits, but also its effect on future profits through its effect on
experience. Since the value function is increasing in experience (in i) and the
distribution of future experience is stochastically increasing in quantity, this
model implies that more output will be put on the market than standard
static Nash in quantities model would predict. The discrepancy between the
output’s generated by this and the standard model will be greatest when the
“derivative” of the value function with respect to experience is steep. For
a given distribution of competitors, this will tend to occur for values of the
state vector at which the derivative of the learning curve is steep.

With this change in the first order condition, the equilibrium for Benkard’s
model can be computed iteratively as in section 1.4 (see also the next section).
In prior work Benkard (forthcoming) did an extensive empirical analysis of
learning by doing in the commercial aircraft market. In Benkard (2000) he
computes the equilibrium corresponding to his estimated parameters and
then analyzes the effect of learning on the nature of competition in the wide-
bodied aircraft market. His numerical analysis finds that the effect of current
quantity on future costs, and through future costs on its future competitive
status, will induce the firm to produce large quantities in the early produc-
tion years (the experience curve is steep early on in the production process).
In fact production in the early years is pushed so far that price falls well
below marginal cost in those years. This implication is clearly borne out
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by the price and cost data, and is inconsistent with a static quantity (or
price) setting model (though consistent with some of the prior theoretical
work on competition in industries with large learning effects; see Cabral and
Riordan,1994 , and the literature cited their). Benkard then proceeds to an
analysis of the producer and consumer surplus generated by the outcomes of
the interactions in this market, and then goes through a series of counterfac-
tuals which allows him to analyze what would have been likely to happen if
we had imposed other institutional constraints on the market.

We now go back to Bellman equation for this problem and consider what
would happen if the firms were playing a price, rather than a quantity setting
game. Recall that the perception of the distribution of a firm’s competitor’s

states in the future is given by q(̂i
′|ij, i) and in equilibrium must satisfy

q(̂i
′|ij, i) = Πr 6=jλ(i′r|ir, Qr).

If we were in a price setting game the quantity of the rth firm would be a
function of the prices set by all firms, i.e. Qr = Qr(pr, p−r). As a result the
price the jth firm sets not only effects its own quantity, and hence its own
likely future experience levels, but it also effects its competitors quantities,
and hence the competitors likely future experience levels.

As a result the first order condition that sets price (the analogue of (7)
in the quantity setting model) is the more complicated expression

∂π(ij, pj, p−j)

∂pj
(8)

+β
∑

V (i′j, î
′
)

(∑
r

∂λ(i′r|ir, Qr)

∂Qr

∂Qr

∂pj
Πl 6=rλ(i′l|il, Ql)

)
= 0.

Berry and Pakes (in process) compute equilibria for their experience good
model using the analogue of this first order condition and the iterative tech-
nique discussed in section 1.4.

There are a number of other related papers. One of the earliest is Judd’s
(1996) investigation of the robustness of the Bertrand and Cournot’s assump-
tion to the ability of firms to set both price and quantity. Judd considers a
duopoly (with no entry or exit), lets (costly) inventories pick up the difference
between produced and sold quantities, and allows for a cost of adjustment
which insures that production does not equal sales. Judd’s assumptions gen-
erate a linear quadratic game which, though restrictive in the institutions it
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can mimic, enables alternative and generally simpler computational strate-
gies then those I review here17. He finds that if marginal costs are constant
and adjustment costs are absent the equilibrium outcome mimics Bertrand
models of competition, but if either marginal costs rise steeply, or their are
high adjustment costs, the equilibrium outcome mimics Cournot.

Markovitch (1998) has modified the core version of the model discussed
in this paper to allow for network interactions. She models the dynamics
caused by the interactions between hardware and software choices. Con-
sumers make a hardware choice that lasts two periods. Software is designed
to run on one, and only one, of the two types of hardware. Software firms
must commit to one of the two types of hardware when they enter, and then
can invest to improve the quality of their product, or exit, just as in the core
version of our model. The demand for a given software product depends not
only on the vectors of qualities of software products available for each of the
two hardware types, but also on the number of consumers who have pur-
chased the different types of hardware in the past. Thus consumer’s demand
for hardware products depends on their beliefs about the likelihood of fu-
ture software products available for each hardware type, while the entry exit
and investment decisions of software firm’s depends on their beliefs on the
future hardware purchases of consumers. She solves for a rational expecta-
tions Markov Perfect equilibrium and finds that if the industry’s competitors
(the outside alternative) are not progressing too quickly the equilibrium is
one where both types of hardware are produced (the “variety” equilibrium),
while if the competitors to the industry are growing quickly we see an equi-
librium with only a single type of hardware produced (an equilibrium with
“standardization”.)

We are clearly just at the beginning of working with models in which
price or quantity choices are determined by dynamic incentives. What seems
to be clear is that the number of potentially important applications here is
enormous. Much of manufacturing produces durable goods, our marketing
colleagues tell us that experience is an important determinant of demand
for most consumer products, and network effects are said to be pervasive in
“new economy” industries.

17Though Judd also reports doing robustness analysis using numerical approximations
similar to those discussed in section 4 below.
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2.3 Allowing for Investment Externalities.

The framework has not been used to study models with externalities. This
then is the second case that I include in my description solely because of
its potential importance to applied work. Externalities can be appended
to our core models in several different ways. For simplicity I will stick to
the spirit, but not the letter, of the models used by Steve Klepper and his
coauthor(see Klepper,2000, and the literature cited their ) in their study of
industry evolution.

We will allow for two types of investment. There is a “traditional” in-
vestment which is similar to the investment in the core model in that it only
increases the value of the firm’s own state which for simplicity we will take as
an index of the quality of the firm’s own product, and an R&D investment.
The R&D investment, if successful, decreases the firm’s marginal cost in the
coming period (marginal costs are constant over quantity levels). However
the firm can only appropriate the gains from the output of its R&D activities
for a single period. The output of last periods R&D activity gives the firm
a cost advantage in the current period, but during this period all firms learn
how to imitate the new “best practice” technique18. Of course in the interim
each firm will have done further R&D which, if successful, will again give
them a one-period cost edge, and so on.

If we let u be the output of this period’s R&D activity, and b be current
best practice (the minimum cost of production in the previous period) then
current marginal cost is

mc(ut, bt) = b0 + btexp[−ut]

while best practice evolves as

bt = minjmc(ut−1,j, bt−1)

where the minimum is taken over the firms active in t− 1. There is a family
of distributions for u which is stochastically increasing in the amount or

18The interpretation here is that the externality shifts the cost function down equally
for all different qualities of the product. An alternative would be to make the externality
larger in a local neighborhood of the quality, or characteristic vector, of the product being
produced (see the discussion in section 2.1). Note that spillovers that enabled better
qualities to be produced at the same cost could be treated in an analogous way to the
analysis in the text.
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research investment (in r)

{Pu(·|r), r ∈ R+}.

The family of distributions for next periods quality (i′) given i and traditional
investment (x) is as specified in section 1.2.

This model has two firm-specific state variables, i or “quality” and the
current values of u, and one industry specific state variable, b, or best practice
technology. The vector which counts up the number of firms at each possible
(i, u) couple is

s ∈ S ≡ {[si,u] with si,u ∈ Z+ for i ∈ Ω, u ∈ U, ; and
∑
i,u

si,u ≤ n},

and to specify the state of the industry we have to specify an s× b ∈ S ×B
where B is the set of possible best practice technologies.

To complete the model we need assumptions which generate demand con-
ditional on the quality vector and prices, and an equilibrium assumption for
the “spot market” which determines current production, say Nash in prices.
These assumptions, when combined with the cost function above, allow us
to determine profits as in the core version, and calculate them “off line”. Let
these profits be π(i, u, s, b)19. The Bellman equation for the value function
can then be written as

V (i, u, s, b) = max{φ, π(i, u, s, b)

sup
r≥0,x≥0

[−c(x+r)+β
∑

V (i+ν−ζ, u′, ŝi+e(i+ν−ζ, u′), b′)λ(u′|r)λ(ν|x)q[ŝi|i, u, s, ζ]λ(ζ)]},

and b′ is the known function of current s given above.
We can now proceed pretty much as before, realizing that we have two

controls, and noting that the first order condition for one of them (r) might
effect the distribution of a firm’s competitors costs in future periods as well
as its own (producing a Bellman equation analogous to that in equation 8
above.)

19Note that this way of proceeding assumes that current marginal costs are public in-
formation even though it takes a period for that public information to become embodied
in the cost functions of all competitors.

32



2.4 Horizontal Mergers.

Almost all of the formal models of merger activity condition on the cost,
qualities, and variety of products sold in the market. These models hold the
distribution of characteristics of the products being marketed (as well as the
nature of competition) fixed, and analyze the impact of the ownership change
on producer and consumer surplus. The producer surplus analysis provides
a vehicle for analyzing the incentives to merge. When the intention is to
analyze whether the merger is beneficial to society, we combine the producer
surplus analysis with analysis consumer surplus.

As noted in Stigler’s(1965 ) investigation of the US Steel merger, the
results from such a “static” analysis of mergers can easily be overturned by
simple dynamic considerations (his discussion allowed for adjustment costs
in an analysis of mergers in a homgenous homogeneous goods industry). The
first attempts I know of to build a model to analyze the dynamic effects of
mergers are in articles by Cheong and Judd (forthcoming) , and Berry and
Pakes (1993). They both analyze the impact of a “one-time” exogenously
specified merger in a dynamic model which allows for investment but does
not allow for any further mergers. These papers show that mergers can
be beneficial to both the firms merging and to society, even if the profits
of the merging firms and consumer surplus falls at the time of the merger.
The predominant reason is that there is less of an incentive to invest in
the merged industry, and the Markov Perfect equilibrium generates more
investment than a social planner would (see Mankiw and Whinston,1986, for
the intuition underlying these arguments).

To be realistic a model which investigated the dynamic impacts of mergers
would want to allow mergers to arise endogenously, and not just investigate
the impacts of a “one-time” exogenously specified merger. There are many
unsolved problems here, not least among them being the diversity of views on
the factors motivating merger activity in different industries. In addition to
specifying the possible sources of gains from mergers, a merger model must
also specify a market mechanism for determining which among the possible
profitable mergers at any point of time are in fact consummated.

One such mechanism is provided in Gowrisankaran(1999). He takes the
capacity constrained homogeneous goods version of our framework and adds
to it a merger game. The merger game occurs at the beginning of each period
and proceeds in the following sequential manner. The largest firm is allowed
to choose a merger partner first. All other firms present the largest firm with a
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“take it or leave it” price at which they are willing to be bought. Information
is symmetric except that the largest firm draws a “synergy” value for each
merger which is known only to it; i.e. the synergy value for a given firm is not
known to any of the firms that might be acquired. The largest firm chooses
to merge with the firm which generates the highest net merger value provided
that value is positive. The net merger value is the the expected discounted
value of future net cash flow if a merger would take place net of the price
of the acquisition and what the value of the firm would be if the merger did
not take place. If a merger takes place the process restarts (there are new
take it or leave if offers, and new synergy values), and the (new) largest firm
can choose another merger partner. When the largest firm chooses not to
merge further, the second largest firm gets to choose a merger partner in
the same way. This process continues until the smallest active firm chooses
not to merge further. At that point production, investment, and then exit
followed by entry and investment decisions are made. All offers and actions
are made to maximize the expected discounted value of future net cash flows
given the agents’ information sets, and the equilibrium is Markov Perfect.

Perhaps the most striking part of this analysis is that it in fact can be
done. Given the quantitative magnitude of the merger phenomena in recent
years and the extent that it can be impacted by policy, any step in developing
a usable models of mergers is welcome. Still, it is clear that we are only at
the beginnings of developing an ability to provide realistic dynamic models
that allow for mergers; alot of work remains to be done.

3 The Computational Burden of the Simple

Algorithm.

We begin with a simple procedure for determining the computational burden
of the algorithm, and then use examples to show how that burden changes
with increases in the number of state variables needed for the problem. The
next section provides an overview of two alternative algorithms designed to
make computation easier.

The Determinants of the Computational Burden.

The description of the algorithm in section 1.4 makes it clear that its com-
putational burden is (essentially) the product of three factors,
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1. the number of points evaluated at each iteration;

2. the time per point evaluated;

3. the number of iterations.

I now consider the rate of increase in the computational burden of each of
the three components of the algorithm as the number of state variables in the
problem increase. Again K denotes the number of distinct tuples for the firm
specific state variable, or K = #Ω. So if i is a d− component vector each of
whose elements can each take on k values then, without further restrictions,
K = kd. n is the maximum number of firms ever active.

The rate at which (1) above increases with an increase in the number of
state variables differs depending on whether the increase is in d or in n. The
relationship between (1) and d is typically model specific, so we discuss it in
the context of our examples below, and focus here on the relationship of (1)
to n.

Since each of the n active firms can only be at K distinct states, the
number of points we need to evaluate at each iteration, or #S ≤ Kn. How-
ever symmetry, or more precisely exchangeability, of the value and the policy
functions in the state variables of a firm’s competitors implies that we do not
need to differentiate between two vectors of competitors that are permuta-
tions of one another. As shown in Pakes (1993), this insures that an upper
bound for #S is given by the combinatoric(

K+n−1
n

)
,

but for n large enough this bound is tight. The bound increases geometrically
(rather than exponentially) in n. Still, even with geometric rates of increase,
computational constraints often become binding for applied problems of in-
terest (see below).

The computational burden in (2), or at a given point, is primarily de-
termined by the cost of calculating the expected values of future states (of
obtaining the wk(·; i, s)’s from the information in memory). The burden of
obtaining the optimal polices and the new value function given wk(·; i, s)
need not depend on either n or K.

Say iteration k − 1’s policies determine that m firms will be active at
point s (accounting for entry and exit). Also assume that there is positive
probability on each of κ points for each of the m − 1 active competitors of
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a given firm. Then to compute each wk(·) we need to sum over κm possi-
ble future states and there are κ × m values of wk(·) needed at that s20.
Thus the computational burden at a given s grows exponentially with the
number of firms active at s. The relationship between the computational
burden per point and the number of state variables per firm is determined
by the relationship between those state variables and κ. This varies with the
characteristics of the model being analyzed, a point we return to below.

There is very little known about the relationship between the number of
iterations and the number of state variables of the problem. Our experience
has been that the number of iterations did not increase dramatically (often
not at all) as we moved to larger problems, but we have not consistently kept
track of this dimension of the problem. We have also tried adding policy and
value iteration steps to the algorithm (these will be described in section 4.1
below). These are techniques that have been used to decrease the number
of iterations in related problems, but they were not helpful in speeding up
convergence of the point-wise calculations.

An Extended Example.

As an example we consider the calculations in PM (1994). That paper
presents an analysis of a differentiated product market in which the products
were unidimensional (so each ‘i’ is an integer), K = 21, and n, the maximum
number of firms ever simultaneously active, was 6. A typical run took about
three hours on our Sun Sparc 2 workstation. If we would have increased
market size until n = 10 then we would have had to compute equilibria with
forty seven times as many points. Since κ = 2 the increase of n from 6 to
10 would also entail a twenty two fold increase in the computational burden
per point evaluated. Thus if we optimistically assume both that the number
of iterations would not increase when we increased n, and that there was no
memory problems, the increase from n = 6 to n = 10 would increase compu-
tational time by a factor of over a thousand, to over three months, and one
with n = 12 would take several years. A dual processor pentium II is eight
or nine times faster for these problems, so we could imagine that with top
of the line desktop hardware and sufficient RAM we might soon be able to

20We sum over a function of each possible future value of the tuple ({νj}m−1
j=1 , ζ). We

could reduce this by using the symmetry restrictions discussed above, but this would
require us to find the probabilities associated with each unique ŝ

′

i vector; a task whose
computational burden generally outweighs the gains from using symmetry.
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analyze a K = 21, n = 10 case, but not a larger problem.
Unfortunately the computational problem gets much more severe if we

allow for many state variables per firm (or d > 1), as we are likely to need
to do in applied work. Without further restrictions both K and κ grows
exponentially in d. Plugging this into the formulae for the number of points
and for the computational burden per point generates results which makes
the limits of point-wise computationally techniques apparent. For example
to accommodate two state variables per firm with 21 grid points each, n = 6,
and no further restrictions, we would have had to increase the number of
points evaluated at each iteration by a factor of 1.9× 108; which makes it a
computational problem which is out of range of even the most sophisticated
of supercomputers.

Further restrictions are often available when d > 1, and they can be
quite useful. A few examples will serve to illustrate this point. We begin
with the collusion problem analyzed by Fershtman and Pakes( 2000). Their
model has two state variables per firm, one that is similar to that in PM (it
takes on 21 values), and an indicator function which is one if the firm has
deviated from the collusive regime in the past. Since in equilibrium nobody
actually deviates, to determine behavior it suffices to compute the fixed point
over the tuples of points in which only one (though any one) of the active
firms deviates. Thus in this case, the addition of the second state variable
increases the number of points by a factor of < n. There is an increase in
the computational burden per point; but it is independent of both n and K.
The collusive runs with n = 4 took about forty-five minutes, and those with
n = 5 took about three hours, both on our dual processor pentium 2.

Models in which the second state variable is a fixed location (or a fixed
“type” of any form as in Gowrisankaran and Town,1997, or Benkard,2000)
are similar in that the computational burden per point does not increase at
all, and the number of points grows linearly (rather than exponentially), in
d. In models with multi-product firms the order in which the alternative
products of the same firm are listed does not matter, and this also allows
computational savings (see Gowrisankaran, 1999a). On the other hand if we
allow for separate investments in each product κ can grow exponentially in
the number of products per firm ( again see the Gowrisankaran 1999a article
for discussion and some bounds on the computational burden).

I hope the preceding discussion has made it clear that though there are
both substantive and pedagogic problems which can be analyzed with the s-
tandard algorithm, there are also many important applied problems for which
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the computational constraints of obtaining an “exact” solution are overly de-
manding. At that point the problem is either abandoned or modeling choices
become dominated by their computational (rather than their substantive)
implications. With this in mind the next section outlines two computation-
al techniques which, at the cost of introducing some approximation error,
have the potential of computing equilibria for models that are several orders
of magnitude more complex than those that have been computed with the
point-wise techniques discussed above.

4 Approximation Techniques.

This section is solely for the reader who needs computational tools that
are more powerful than those described above. It outlines two algorithms
which produce “approximate” solutions to the computational problem at a
much lower computational burden than that of the standard algorithm. I
do not know of publically available versions of these algorithms, though the
“stochastic” algorithm introduced below is much easier to program than any
of the other algorithms discussed in this paper.

The first of these techniques is essentially a curve fitting technique. It
finds a member of a parametric class of functions that “closely approximates”
the value function at a few points, and then uses that function to derive poli-
cies on all of S as needed. It can use many of the tools from the more
general literature on numerically approximating fixed points (see Judd,1999,
and the literature he cites). The second is an artificial intelligence algorithm
which can be endowed with a behavioral interpretation that is familiar from
the recent economics literature on learning (see Lettau and Uhlig,1999. for
applications in macroeconomics, and Fudenberg and Levine,1999, for appli-
cations to matrix games). As noted below for many purposes we only need
policies for the recurrent class of points (see below). The stochastic algo-
rithm confines its efforts to obtaining accurate policies on the recurrent class
and this can reduce the number of points we need to update dramatically.
This algorithm reduces the computational burden per point by substituting
a monte carlo estimate for the explicit summation which defines continua-
tion values. Both algorithm’s can, at least in principal, break the “curse of
dimensionality” associated with increasing the number of state variables in
the problem.

The goal of the section is to provide a simple overview of how each of
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these algorithms work. I will rely on references to the existing literature for
details where such references are easily accessible.

4.1 Deterministic Approximations.

Approximation techniques have been used to compute value or policy func-
tions in economics for some time (see Judd,1993, and the literature cited
their for a review). These techniques begin by specifying a set of functions
considered rich enough to contain an element which provides a good approx-
imation to the value function (we consider polynomials of order d). It then
uses a small subset of the points in S to find an approximating member of
the set of functions, and uses this function to predict the value function at
other points as needed.

Briefly, take our problem with a single state variable per agent (for more
detail see PM,1994, PM, 1995, and the literature they cite). Then our poly-
nomial approximating functions will be maps from Ωn → R. The collection
of all polynomials of order r in n arguments is a vector space, say V(r, n),
and can be generated as the set of linear combinations a set of J(r, n) basis
functions [J(r, n), or just J , is the dimension of the space]. We are looking
for an α ∈ RJ(r,n) [i.e. a V̂ ∈ V(r, n)] which generates a linear combination
of the basis functions which is a good approximation to the value function.

The algorithm for finding the approximating function is iterative. In
memory at iteration k is a value for α say αk−1, and last iterations policies
for a set of basis points, in our case vectors (ω, s) ∈ Ω × S at which we
will evaluate the value function. If there are J basis functions, the only
restriction on the set of basis points is that they generate at least J linearly
independent values for the basis functions. At each iteration we cycle through
the basis points in some predetermined order and update only the policies
associate with those points. The updating procedure is precisely the same as
the updating procedure discussed above except that now when we calculate
continuation values we use the αk−1 and the appropriate basis functions to
generate the values at each possible future locations (these locations will not,
in general, be members of the set of basis points). In the “exact” calculations
we simply called these values up from memory.

The last step of this updating procedure generates an estimate of the
value function at each of our basis points, say V ∗k(·). These estimates will
not (in general) be polynomials of order d, and we do not keep them in
memory (as we did in the point-wise procedure). Instead we want to find
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an αk that generates polynomial estimates of the value function at our basis
points that are “as close as possible” to V ∗k(·). Let U be the matrix whose
rows are the values of the basis functions associated with the basis points.
Then if we choose our αk to minimize the sum of squared deviations between
V ∗k(·) and Uα we obtain the familiar OLS formula

αk = [U ′U ]−1U ′V ∗k.

This α is held in memory, and we continue iterating until the α′s from suc-
cessive iterations are “close enough” to one another. We now consider the
computational burden of this procedure.

The Number of Basis Points

At each iteration we update at least J(r, n) basis points. Without further re-
strictions the number of these points still grows geometrically in n, i.e. at the
same rate as the number of points grew in the point-wise algorithm, though
this time as a rth instead of a Kth order polynomial. However, when we were
considering the point-wise algorithm we used the fact that the value and pol-
icy functions were exchangeable in the state vector’s of a firm’s competitors
to restrict the number of points that had to be held in memory. An obvious
way to use the same information when using the curve fitting technique is to
restrict the set of approximating functions to have the properties of the true
value function; i.e. to be exchangeable in the states of the firm’s competitors.

The space of polynomials of order r that are exchangeable in the state
vectors of a firm’s competitors together with the usual operations of addition
and scalar multiplication, is also a vector space, and the number of basis
points that will be needed to span that space is equal to its dimension. Pakes
(1993) proves that the dimension of the exchangeable basis is independent of
n and provides a formula for an upper bound to it (the bound is tight for n
large enough). Pakes and McGuire,1994, compute the bound for alternative
r and provide the needed basis functions.

So if we are willing to use exchangeable polynomials to approximate the
value function, the number of points we need to use in our computational
algorithm is independent of n. For intuition on why this is true consider an
approximation by polynomials of order 1; i.e. V̂ (i1; i2, . . . , in) =

∑
αjij. To

be exchangeable in the state vector of the competitors we need αj = αj′ for all
couples (j, j′) such that neither j nor j′ equals one (consider tuples where all
i but the firm itself and one of its competitors are zero, and vary the single
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competitor with i 6= 0). This implies that there are two first order basis
functions; i1 and

∑
j 6=1 ij. Analogous logic show there are four second order,

seven third order, and twelve fourth order bases functions. In fact a tenth
order polynomial approximation requires only 407 basis points, regardless of
n.

Computational Burden Per Point.

As noted, the computational burden of computing the optimal policies once
the continuation value for each possible outcome of the firm’s own state (or
the wk(·)) are known is independent of n. So we focus on the burden of
computing the wk(·).

Without further simplification this burden is larger when using the poly-
nomial approximations than it is in the point-wise calculations. In the point-
wise calculations we can simply call up the elements of the V k−1(·) corre-
sponding to the possible future states needed to compute the wk−1(·) from
memory. In the polynomial approximations we need to hold the basis func-
tions corresponding to these future states in memory, and then compute the
V k−1(·) as a multiple of these basis functions and αk−1. However, as we now
show, a suggestion due to Kortum(1992) to use moment generating tech-
niques in single agent problems can also be applied to our problems, and this
decreases the computational burden per point significantly.

It will suffice to consider computing ŵk(v; i1, i2 . . . , in) when we use a first
order exchangeable basis. Then

ŵk(v; i1, i2 . . . , in) =

∑
ζ

∑
v(2)...v(n)

(i1 + v − ζ)αk−1
1 +

n∑
j=2

(ij + vj − ζ)αk−1
2

Πn
j=2λ(vj|xk−1

j )λ(ζ),

where Π is the product operator. This can be rewritten as

∑
ζ

(i1 + v1 − ζ)αk−1
1 +

 n∑
j=2

µj(1, ζ)k−1

αk−1
2

λ(ζ),

where
µj(q, ζ)k−1 ≡

∑
v(j)

(i1 + vj − ζ)qλ(vj|xk−1
j ),
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the mean of (i + vj − ζ)q conditional on ζ and iteration k − 1’s policies.
Similarly the rth order basis function can be shown to be a function of (i1 +
v1− ζ)q and the µj(q, ζ)k−1 for q ≤ r. Further it is straightforward to rewrite
all the needed expressions as functions of

∑n
j=1 µj(r, ζ)k−1 and (i1 + v + ζ).

Since we can calculate wk−1(·) directly from these conditional moments,
once we know those moments there is no need to calculate V k−1(·) at all. So
the computational burden at each point becomes the burden of computing
the µj(r, ζ)k−1 and then summing them. If there are m firms active at the
point, then the number of moments we need to calculate is proportional to
m×r, but these moments suffice for computing the w(·) for all (i1, i−1) tuples
generated by a given s. Thus for a given r the number of moments we need
to calculate need not increase in n at all. Of course we have to sum these
moments over the active firms and the number of terms in this sum grows
linearly in the number of firms active at the point. Still this is slower than the
growth in the computational burden per point in the “exact” calculations.

Number of Iterations.

As noted are at least two ways of adding steps to each iteration of the algo-
rithm in an attempt to decrease the number of iterations until convergence,
and though these were not useful in the point-wise calculations, they proved
quite helpful when we moved to polynomial approximations.

First we can add a value iteration step to each iteration. This step holds
the continuation values fixed at their values in iteration k − 1 and iterates
on the policies for iteration k until they are a Nash equilibrium to the game
whose outcomes are evaluated by these continuation values. Before when
we calculated the kth iteration policies of incumbents and potential entrants
we assumed that the policies of their competitors are fixed at the k − 1
iteration values. Now we define a subsequence of policies for each fixed
αk−1, and continue iterating until that subsequence converges. In addition
we could add a policy iteration step. This step, which is familiar from the
dynamic programming literature (see Rust,1994 , Bertsekas,1995 , and the
literature cited in these articles), holds the policies fixed at those out-putted
by the algorithm for iteration k and then iterates on the α (and hence the
continuation values) until it converges for those policies.

Though the value iteration step did not seem helpful in the point-wise
calculations once we moved to the approximations it seemed almost essential
(without it the algorithm with the polynomial approximations seldom con-
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verged). Moreover sometimes the series generated by the sequence of policies
for the given value function did not converge, and when this happened we
substituted a Newton method for the iterative procedure used to find the
iteration k policies. It can be shown that a matrix inversion of dimension
equal to the number of basis points can be substituted for the policy iteration
step when we use polynomial approximations. If the number of basis points
is small enough this is very easy to do, and we found it to be quite useful
also.

Concluding Comments on Polynomial Approximations.

A few final comments on polynomial approximations are in order. First we
were not terribly successful when we used them on problems the size of the
problem computed in PM(1994). Part of the reason is that the value func-
tions for an incumbent can be discontinuous in the value of the competitor’s
to that incumbent (this because the incumbents value function will tend to
jump when the competitor’s value passes over a margin which either induces
entry or exit). This tends to cause convergence problems. There are many
ways of modifying the algorithm to take better account of this behavior
(for example we could use different polynomial approximations for different
numbers of firms active). Relatedly the discontinuities are likely to be less
problematic when n is larger; and we have only tried problems when n is
small. This was apparently true in the work of Liu 1999, who with a much
larger n and approximations similar (but not identical) to those introduced
here had little difficulty in computing his value functions.

Second once we move to polynomial approximations, the exchangeable
basis, and the moment generating technique discussed in this section, the
computational burden of the approximation algorithm becomes independent
of the fineness of the grid (at least provided the calculation of the moments
designated by µj(q, ζ) does not depend on the grid). Thus it should be
relatively easy to check whether the choice of grid has had a significant impact
on the analysis of the issues of interest.

Third, note that when there is a convergence problem for the iterative
procedure described above, and in our examples we often encountered such
problems, we could transfer to a nonlinear search procedure. Thus, for ex-
ample, we could search for an α which minimizes ||α−α[x(α)]|| where x(α) is
the solution for the optimal policies when the value functions is given by the
α, and α[x(α)] is the matrix solution for the optimal α given this x. Finally
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the reader should know that there are a large number of other modifications
that might help improve the performance of the procedures described in this
subsection. A good reference for many of them is Ken Judd’s(1999) new
book.

I now move on to describe ways of adapting ideas from the artificial intel-
ligence literature to compute Markov Perfect equilibria. Again the discussion
will be designed to provide only an overview of those techniques. In partic-
ular I will not discuss the question of how to combine the “curve fitting”
techniques discussed in this subsection with the stochastic approximation
ideas presented in the next – even though I view such a combination as an
extremely promising avenue for future research21.

4.2 The Stochastic Algorithm.

The stochastic algorithm is a “learning” or artificial intelligence algorithm
that agents might actually use to infer optimal behavior from past outcomes.
Computationally it has two distinct properties which combine to break the
relationship between the dimension of the state space and the burden of
computing equilibria; one changes the number of points that need to be
evaluated and the other changes the relationship between the computational
burden per point and the dimension of the state space. It turns out that
the resulting computational burden is largely determined by the economic
properties of the model analyzed. Moreover, as we explain below, there is
good reason to believe that the computational burden of many I.O. models
will grow quite slowly (if at all) as we increase their state spaces. Numerical
results reinforce this view.

The first difference between the stochastic and the other algorithm’s dis-
cussed thus far is that the stochastic algorithm is asynchronous, i.e. it only
updates a single location at each iteration. Moreover the selection process
which chooses the transitions between updated locations eventually confines
its attention to the recurrent class of points, or R, a subset of S whose car-
dinality does not necessarily depend on the dimension of the state space.
So the stochastic algorithm breaks the relationship between the number of
points analyzed and the dimension of the state space by simply giving up

21This next section is based on Pakes and McGuire, forthcoming, and many of the
omitted details can be found in that article. Section 9 of Barto, Bradtke, and Singh, 1995,
provides some discussion of combining artificial intelligence techniques with other forms
of approximations.
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on the problem of computing policies on all of S. On the other hand we
know that if st ∈ R, then so will be all future s (with probability one), and
the algorithm is designed to tell the user whether the user-specified initial
condition is in R (there are modifications that can be used when it is not;
but they do require additional computation). The computational advantages
gained by focusing on R depends on the relative sizes of R and S, but as
we note below #R is likely to be quite small relative to #S in many I.O.
problems.

The second difference between the stochastic and the other algorithms
is that it never actually does the explicit summation that determines the
continuation values needed to determine policies at a given point (i.e. to
determine the w(·) in 4a). Rather it uses a “monte carlo” estimate of these
continuation values. The simulation draws that underlie this monte carlo
estimate are the outcomes from previous iterations of the algorithm. Use of
simulation rather than explicit integration breaks the relationship between
the computational burden per point and the dimension of the state space.
Simulation is both faster and has less memory requirements than the alterna-
tive of determining continuation values by explicit integration. However the
simulated estimate of the continuation value is also less precise (particularly
in early iterations when there are few past outcomes to average over). This
generates a tradeoff between the computational burden per point, and the
number of iterations needed for a given level of precision. Since the precision
of the estimate does not (necessarily) depend on the dimension of the integral
being estimated, while the cost of doing the summation explicitly does, the
larger the dimension of the state space the more we expect the tradeoff to
favor the stochastic procedure.

The Updating Procedure.

The stochastic algorithm is also iterative (though now asynchronous). The
kth iteration is defined by an estimate of w, say wk, and by its location, an
sk ∈ S. Thus the algorithm’s updating rule must update both s and w. The
way this is done mimics rules used in the reinforcement learning literature22.
The reinforcement learning literature is often used to formulate a set of rules
that might actually be used by agents attempting to infer optimal behavior

22See Bertsekas and Tsikilis, 1996, for a review of related techniques in the context of
single agent problems and zero sum games. That book also contains numerous suggestions
for improving the efficiency of the techniques outlined here.
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from past outcomes (indeed they are used in various “machine learning”
situations). As a result it is possible to interpret our algorithm as a decision
making process that agents in a particular market might actually use.

With our notation and analogies to the learning literature we can begin
with a short verbal explanation of how the stochastic algorithm works. As-
sume s = st and that all agents believe that the expected discounted value of
future net cash flows are given by w(·|·, st) = w+(·|·, st). Each agent would
then choose their policies to maximize the V (·, st|w+) obtained by substitut-
ing w+ for w in (4) above. These choices would generate a distribution of
outcomes for each agent’s competitors given by qw+[·|i, st] (recall that this is
the distribution for ŝ′i, that is for agent i′s competitors, in the next period).
Nature would then choose the market outcome, and it would be a random
draw from qw+. The current perception of the value of this outcome to firm
i is obtained by substituting its ŝ′i into the evaluation function given by w+

and (7). If these values are viewed as random realizations from the integral
defining the appropriate components of the true w, which henceforth we will
denote as w∗, the agents might use them to update their estimates of w∗.
Our algorithm for finding w∗ mimics the learning algorithm just described.23

We begin with the update for s. This requires policies for the incum-
bents and the potential entrant. The investment and exit policies policies for
incumbents, say, x(·, sk|wk) and χ(·, sk|wk) are obtained as the solution to

max
χ∈{0,1}

{[1− χ]φ + χsupx[π(i, sk)− cx+ β
∑
ν

wk(ν; i, sk)λ(ν|x1)]},

while the entry policy is given by

χe(s
k|wk) = 1⇔ βwk(0; ie, s

k + e(ie)) > xe,

where e(ie) is a K-vector which has one for its ie element and zero elsewhere.
These policies determine a distribution for sk+1. The actual sk+1 is ob-

tained as a random draw from this distribution. To obtain the draw first use

23Note that though the interpretation of our algorithm as a learning algorithm is a use-
ful pedagogic device, its empirical relevance depends on several issues. These include the
method by which information on past outcomes is made available to the agents currently
active, and the number of updates possible per unit of time. Relatedly, I do not know
of any attempt to interpret real, as opposed to experimental, data using reinforcement
learning techniques. On the other hand the potential usefulness of these techniques for
understanding empirical phenomena, especially for explaining behavior in recently estab-
lished markets, seems obvious.
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χ(·|wk) to determine which of the firms in sk remain active, and χe(·|wk) to
determine whether or not their is an entrant. Now take random draws for the
ν ′s of the incumbents that remain active and a random draw on ζ. This de-
termines the k+ 1th iteration’s state of each agent active in that period, and
all that remains is to reorder those states into sk+1. 24 Note that if wk = w∗
the process generating sk+1 would be an ergodic Markov process, and hence
would wander into the recurrent class in a finite number of iterations and
stay there.

We now update wk. For each agent and each possible realization of ν,
use V (·|wk) [equation (7) with wk substituted for w] to evaluate the state
defined by the actual simulated draws for ζ and for the locations of the agent’s
competitors; i.e. use (7) and wk to calculate

V (i+ ν − ζk+1, ŝk+1
i + e(i+ ν − ζk+1)|wk).

This expression is the kth period evaluation of being in location (i+ν−ζk+1)
when all the other competitors states are determined by their simulated
draws. Its expectation conditional on information realized by iteration k
is
∑

(ŝ
′
i,ζ)

V (i+ν− ζ, ŝ′i+e(i+ν− ζk+1)|wk)qwk [ŝ′i|i, sk, ζ]λ(ζ). So if wk = w∗,
then its expectation is w∗.

Since V (i + ν − ζk+1, ŝk+1
i + e(i + ζ − ζk+1)|wk) is the current period’s

perception of the value of a random draw from w∗(ν; i, s), it is used to update
wk(ν; i, s). In particular if V (i+ν−ζk+1, ŝk+1

i +e(i+ζ−ζk+1)|wk) is different
from wk(ν; i, s), then set wk+1−wk equal to a fraction of the difference. More
formally if α(k, sk) ∈ (0, 1) set

wk+1(ν; i, sk)− wk(ν; i, sk) = α(k, sk) × (9)

{V [i+ ν − ζk+1, ŝk+1
i + e(i+ ν − ζk+1)|wk]− wk(ν; i, sk)}.

Note that if we set α(k, sk) equal to the inverse of the number of times the
estimate of w∗(ν; i, s) has been updated in the past, then the wk(·; i, s) are
just the sample average of past draws on the expected discounted value of

24More formally let the rth active agent’s location be ikr and its investment be xkr (·|wk).
Then for each active agent draw a random variable from the distribution λ(·|xkr ), say νk+1

r .
Also draw ζk+1 from λ(ζ). We obtain sk+1 as follows. Compute ikr + νk+1

1r − ζk+1 for each
active agent. If χe(wk) = 1, also compute ie − ζk+1 for the potential entrant. Now count
how many of these numbers equal i for each i ∈ Ω. The vector of integers obtained by
this procedure is sk+1.
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future net cash flows (i, s). This is a familiar choice for the {α(k, sk)}, even
though the fact that the values from earlier iterations are less precise implies
that there are typically more efficient ways to choose these weights. Also if
V (i + ν − ζk+1, ŝk+1

i + e(i + ν − ζk+1)|wk) = wk(ν; i, s), then wk+1(ν; i, s) =
wk(ν; i, s). Consequently if wk = w∗ then the expectation of wk+1 is w∗. I.e.
if we are at w∗ we will tend to stay their.

We have now shown how to update both wk and sk. This is the core
of the algorithm. We keep updating until we can show that the values and
policies in memory are equilibrium values and policies for a recurrent class
of points. Pakes and McGuire (forthcoming) provide a detailed definition
of what we mean by this, and a testing procedure. They also consider;
alternative starting values, different sequences for the α in (9), procedures
for estimating policies at an s not in R, and a host of other details.

The Pakes McGuire (forthcoming) paper also provides numerical results
for the model in the extended example in section 3. We increase n in that
example by increasing market size. As we did so we found that the recurrent
class of points did grow, but at most linearly in n with some indication
of #R being concave in n at larger n 25. As expected the computational
burden per point grew linearly in the number of firms active at that point.
The number of iterations required till convergence is a random variable in the
stochastic algorithm. However we found that its distribution did not increase
in any discernible way as we increased n. Consequently to compute equilibria
with n = 10 on our dual processor Pentium 2 workstation, it took less than
two hours of time for the actual iterations. This is the problem which we
optimistically calculated could not be done in under ten days by point-wise
techniques (see section 3). We also computed equilibria for problems with
n = 12 and for problems with two firm specific state variables, and in both
cases the actual iteration time was under three hours. Note that even under
the most optimistic assumptions, these latter problems would have taken
years using the point-wise techniques discussed in section 3.

On the other hand Pakes and McGuire (forthcoming) used a conserva-
tive convergence test that required a point-wise calculation for continuation
values, so the computational burden of the test did increase exponentially
with n. Accordingly by the time they computed the n = 10 problem the
computer was spending more than three times the time on performing the

25This generated market shares in the ergodic distribution that were reminiscent of those
predicted by Sutton(1991).
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tests than on doing the iterations leading to the test. It is clear that to use
these techniques on larger problems we will have to employ more efficient
testing procedures. One possibility is to substitute statistical for point-wise
testing procedures.

A Note on the Computational Burden of the Stochastic Algorithm.

The economics of MP models typically indicate that a given set of primitives
can only support certain configurations of firms in any lasting way. The
lasting configurations become those in R. The relationship between #R and
#S as we increase the number of state variables in the problem is different
when the number of state variables increase because market size (and hence
n) increases then when the number of state variables per firm increases.

Though as market size increases the model will support structures with
more active firms, it will no longer support structures where there are a
small number of active firms. So as market size increases we both add and
subtract points from R. Thus the net effect of market size on #R is not
obvious, and will depend on the primitives of the problem. As noted we
found the cardinality of R to grow in n in our problem, but only linearly at
low n, and if anything the rate fell as n increases. Recall that #S increases
geometrically in n.

When we increase the number of state variables per firm we have found
that the relationship between #R and #S can vary greatly with the eco-
nomics of the problem. For example in differentiated product models where
the state vector details different characteristics of the products (e.g.. the size,
mpg, and hp of cars), the primitives often indicate that certain combination
of characteristics are not demanded at a price greater than their marginal
cost of production (e.g.. large cars with a high mpg, or small cars with a low
mpg). Alternatively in locational models in which there is an initial location-
al choice and then a plant specific cost of production (or quality of product)
which changes over time as the result of outcomes of an investment process,
#R tends to be linear in the number of locations at which their is entry.

We noted that the computational burden per point grows roughly as a
linear function of the number of firms active. More precisely it grows linearly
in the number of firms active after we have searched our storage device for
the w(·)′s associated with the point we visit at each iteration. We have
been using a trinary tree to store the w(·) and the computational burden
of finding a point in such a tree grows like the logarithm of the number of
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points. So the burden per point grows as the product of the logarithm of #R
and the number of firms active at that point. Again this is to be compared
to exponential growth in the point-wise techniques, and a similar linear rate
of growth in the polynomial approximations that use the moment generating
function technique.

We also noted that the number of iterations in the stochastic algorithm
neither needs to grow in any particular way in the dimension of the state
space, nor seemed to grow in our numerical experiment. Probably more im-
portant is that in distinct contrast to the other algorithms considered in this
paper (particularly the algorithm which uses polynomial approximations),
we have never encountered a convergence problem with the stochastic algo-
rithm.

Indeed part of the reason we have not pushed forward on the algorithm
based on polynomial approximations is that we have had so much success
with the stochastic algorithm. On the other hand the potential of the s-
tochastic algorithm may be application specific. For example it will not be
able to be used in problems in which behavior depends on the value of states
that are off the equilibrium path (such as in some models of collusion) without
a modification to sample off the equilibrium paths. One particular intrigu-
ing open question is the potential of the artificial intelligence techniques to
compute equilibria in dynamic games with assymetric information.
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