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1 Introduction

The problem of evaluating the e®ectiveness of a social program or a \treatment" is a central

problem in social science and medicine. The problem of selection bias potentially arises in any

evaluation. Individuals observed participating in a program or receiving treatment often possess

di®erent characteristics than an average person. Evaluating the economic return to a program

requires accounting for the non-random assignment of individuals into the treated and untreated

states.

One popular approach for dealing with selection bias, introduced in Gronau (1974) and Heck-

man (1976), is to specify a latent index model which relates the rule for assigning individuals

to treatment to the potential treatment outcomes. The latent index has the interpretation of

the expected net utility derived from receiving treatment; individuals participate in a program

if net utility is positive (or non-negative) and do not participate if net utility is negative. This

approach is based on assumptions about error distributions and allows for dependence between

the errors in outcome and choice equations. While computationally convenient, this approach has

been criticized for its reliance on distributional assumptions and lack of robustness to departures

from normality (Goldberger (1983) and Paarsch(1984), and later work by Glynn, Laird and Rubin

(1986)).

In response to these criticisms, recent analysts have adopted a more robust approach and have

attempted to identify and estimate various treatment parameters without imposing strong distri-

butional assumptions (see, for example, the LATE analysis of Imbens and Angrist (1994)). While

these methods are free of parametric distributional assumptions, they typically estimate only one

treatment parameter and are quite limited in the range of policy questions they can answer (Heck-

man and Vytlacil (2000b)). Further, the assumptions imposed in LATE analysis are actually

equivalent to those required to specify a nonparametric selection model (Vytlacil (1999)).

This paper uses a latent variable framework to unite the recent treatment e®ect literature with

the classical selection bias literature. We obtain simple closed-form expressions for four treatment
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parameters of interest: the Average Treatment E®ect (ATE), the e®ect of Treatment on the

Treated (TT), the Local Average Treatment E®ect (LATE) (Imbens and Angrist (1994)), and the

Marginal Treatment E®ect (MTE) (Heckman (1997), Heckman and Vytlacil (1999, 2000a-b)). Our

analysis is motivated by the observation that despite the recent advances in °exible estimation of

selection models (see, for example, Ahn and Powell (1993)), simple two-step correction procedures

continue to dominate applied work on this topic (see, e.g. Tunali (2000)).

Since robustness of estimates to maintained distributional assumptions is an important problem,

we present closed-form solutions for the four treatment parameters for non-normal models using

°exible speci¯cations for the selection equation, allowing the error terms to follow a trivariate

Student-tv distribution. For these generalized selection models, we derive closed-form expressions

for the various treatment parameters and show how they can be consistently estimated by two-step

methods. This simple generalization allows for considerable departures from normality, and thus

o®ers an alternative to the standard selection model without increasing the computational burden.

The performance of the techniques developed in this paper are evaluated in Monte Carlo ex-

periments. These simulations reveal the °exibility of our approach and assess the performance

of a widely used model selection procedure due to Amemiya (1980). Using the NLSY data, we

investigate the role of self-selection into higher education and its impact on estimated returns to

schooling.

The plan of this paper is as follows. In the next section, we present a general model of poten-

tial outcomes, and de¯ne and interpret the various treatment parameters within it. In Section

3, expressions for these parameters are derived assuming fully parametric speci¯cations for the

outcome and selection equations. We obtain results for the textbook selection model, and for

generalizations of this model which yield simple closed-form solutions. In Section 4, results from

some Monte Carlo experiments are presented. We report that when selection bias is an empirically

important problem, the Amemiya model selection procedure is e®ective. When selection is not

a feature of the data, it is not e®ective but all models produce essentially the same estimates

of treatment parameters. Section 5 estimates various average gains in post-schooling earnings
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through the receipt of some form of college education. Using data from the National Longitudinal

Survey of Youth (NLSY) we present point estimates of ATE, TT, LATE and MTE. The paper

concludes with a summary in Section 6.

2 Treatment Parameters in a Canonical Model

Consider a model of potential outcomes:

Y 1 = X¯1 + U1 (1)

Y 0 = X¯0 + U0

D¤ = Zµ + UD:

The ¯rst two equations denote outcome equations in two possible \states" or \sectors" (college or

non-college in our paper). Without loss of generality, we assume that the ¯rst state indexed by the

\1" superscript represents the treated state and the \0" superscript denotes the untreated state.

Each agent is observed in only one state, so that either Y 1 or Y 0 is observed for each person,

but the pair (Y 1; Y 0) is never observed for a given person. What we would like to recover is

information about various expected gains from the receipt of treatment, where the gain is denoted

by ¢ ´ Y 1 ¡ Y 0:

Let D(Z) denote the observed treatment decision, where D(Z) = 1 denotes receipt of treatment

and D(Z) = 0 denotes nonreceipt. The variable D¤ is a latent variable which generates D(Z)

according to a threshold crossing rule,

D(Z) = 1[D¤(Z) ¸ 0] = 1[Zµ + UD ¸ 0]; (2)

where 1[A] is the indicator function which takes the value 1 if the event A is true and the value

0 otherwise. In an extension of the Roy (1951) model, D¤ = Y 1 ¡ Y 0 ¡ C, where C represents

the cost of participating in the treated state, so that agents choose to receive treatment if the

gain from participating in the program minus costs is non-negative. We also de¯ne the following

counterfactual choice variables. For any z which is a potential realization of Z, we de¯ne the
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variable D(z) = 1[zµ ¸ UD]. D(z) indicates whether or not the individual would have received

treatment had her value of Z been externally set to z, holding her unobserved UD constant. We

require an exclusion restriction and denote by Zk some element of Z which is not contained in

X. By varying Zk, we can manipulate an individual's probability of receiving treatment without

a®ecting potential outcomes. Finally, we assume (UD U1 U0) is independent of X and Z.

Letting Y denote observed earnings,

Y = DY 1 + (1 ¡ D)Y 0: (3)

This model has been called the switching regression model of Quandt (1972), Rubin's model (Rubin

1978), or the Roy model of income distribution (Roy (1951), Heckman and Honor¶e (1990)).1 To

illustrate how a model of this type can be applied to evaluate an interesting policy question,

consider the problem of estimating the return to a college education. In this case, Y represents

log earnings, Y 1 denotes the log earnings of college graduates and Y 0 denotes the log earnings of

those not selecting into higher education. The latent index maps people into either the \college"

(or treated) state and the \no-college" (or untreated) state. To estimate the return to college, we

might estimate the expected college log wage premium for given characteristics X;E(Y 1¡Y 0 j X):2

In general, given the model described by (1) and (2), we would like to have methods for estimating

various average gains to program participation. In this paper, we examine four such treatment

parameters, which measure possibly di®erent average gains to the receipt of treatment. These

four parameters are the Average Treatment E®ect (ATE), the e®ect of Treatment on the Treated

(TT), the Local Average Treatment E®ect (LATE), and the Marginal Treatment E®ect (MTE). 3

The Average Treatment E®ect (ATE) is de¯ned as the expected gain from participating in the

program for a randomly chosen individual. As before, we let ¢ ´ Y 1 ¡ Y 0 denote the gain from

program participation, and note that the average treatment e®ect conditional on X = x can be

expressed as:

ATE(x) = E(¢ j X = x) = x(¯1 ¡ ¯0): (4)

The average treatment e®ect evaluated at the random variable X is ATE(X). This de¯nes the

treatment parameter as a function of the characteristics X. We can obtain unconditional estimates
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by integrating (4) over the distribution of X,

ATE = E(¢) =
Z

ATE(X)dF (X) ¼ 1
n

nX

i=1

ATE(xi); (5)

where n is sample size. A conceptually di®erent parameter is the e®ect of Treatment on the Treated

(TT). This is the average gain from treatment for those that actually select into the treatment:

TT(x; z;D(z) = 1) = E(¢ j X = x;Z = z; D(z) = 1) (6)

= x(¯1 ¡ ¯0) + E(U1 ¡ U0 j UD ¸ ¡zµ;X = x;Z = z)

= x(¯1 ¡ ¯0) + E(U1 ¡ U0 j UD ¸ ¡zµ);

where the third equality follows from the assumption that (UD U1 U0) is independent of (X; Z).

The value of the Treatment on the Treated parameter evaluated at the random variables (X;Z)

is TT(X; Z; D(Z) = 1). As with ATE, we can obtain an unconditional estimate by integrating

over the joint distribution of X and Z for those who actually receive treatment. Letting nt be the

number of observations with Di = 1, TT can be approximated as follows:

TT = E(¢jD(Z) = 1) (7)

=
Z

TT(X;Z;D(Z) = 1)dF (X; ZjD(Z) = 1)

¼ 1
nt

nX

i=1

Di TT (xi; zi; D(zi) = 1):

The Local Average Treatment E®ect (LATE) of Imbens and Angrist (1994) estimates an average

gain to program participation without explicitly specifying a latent variable framework or imposing

a distributional assumption.4 LATE is de¯ned as the expected outcome gain for those induced to

receive treatment through a change in the instrument from Zk = zk to Zk = z0k. The variable Zk is

assumed to a®ect the treatment decision (is contained in Z in (1)), but not to a®ect the outcomes

Y 1 and Y 0. Below and throughout this paper, we de¯ne the LATE parameter as a change in the

index from Zµ = zµ to Zµ = z0µ, where z0µ > zµ and z and z0 are identical except for their kth

coordinate. Because of the latent index structure in (1) and (2), we can equivalently de¯ne the

treatment parameters in terms of the propensity score, P (Z) = 1 ¡ FUD(¡Zµ), where FS denotes
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the cdf of the random variable S. The LATE parameter is de¯ned as follows:

LATE(D(z) = 0; D(z0) = 1;X = x) = E(¢ j D(z) = 0; D(z0) = 1;X = x) (8)

= x(¯1 ¡ ¯0) + E(U1 ¡ U0 j ¡z0µ · UD · ¡zµ; X = x)

= x(¯1 ¡ ¯0) + E(U1 ¡ U0 j ¡z0µ · UD · ¡zµ);

where the third equality follows from the assumption that (UD U1 U0) is independent of (X; Z).

There are two ways to de¯ne the unconditional version of LATE. First, consider

E(¢jD(z) = 0;D(z0) = 1) =
Z

LATE(D(z) = 0;D(z0) = 1;X)dF (X) (9)

¼ 1
n

nX

i=1

LATE(D(z) = 0;D(z0) = 1; xi):

The parameter E(¢jD(z) = 0;D(z0) = 1) corresponds to the treatment e®ect for individuals who

would not select into treatment if their vector Z was set to z but would select into treatment

if Z was set to z0. An alternative de¯nition of the unconditional version of LATE is as follows.

Let Z0(Z) equal Z but with the kth element replaced by zk. Let Z1(Z) equal Z but with the

kth element replaced by z0k. In this notation the second de¯nition of the unconditional version of

LATE,

E(¢jD(Z0(Z)) = 0; D(Z1(Z)) = 1) =
Z

LATE(D(Z0(Z)) = 0;D(Z1(Z)) = 1;X)dF (X; Z)

¼ 1
n

nX

i=1

LATE(D(Z0(zi)) = 0;D(Z1(zi)) = 1; xi): (10)

This parameter corresponds to the treatment e®ect for individuals who would not select into

treatment if the kth component of the Z vector is set to zk (all other components of Z unchanged)

but would select into treatment if the kth component of the Z vector is set to z0k (all other

components of Z unchanged).

The Marginal Treatment E®ect (MTE) (Heckman (1997), Heckman and Smith (1998), Heckman

and Vytlacil (1999, 2000a-b)) is the treatment e®ect for individuals with a given value of UD,

MTE(x; uD) = E(¢jX = x; UD = uD) (11)

= x(¯1 ¡ ¯0) + E(U1 ¡ U0 j UD = uD;X = x)

= x(¯1 ¡ ¯0) + E(U1 ¡ U0 j UD = uD)
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where the third equality follows from the assumption that (UD U1 U0) is independent of X.

Evaluation of the MTE parameter at low values of uD averages the outcome gain for those with

unobservables making them least likely to participate, while evaluation of the MTE parameter

at high values of uD is the gain for those individuals with unobservables which make them most

likely to participate. Since X is independent of UD, the MTE parameter unconditional on observed

covariates can be written as

MTE(uD) =
Z

MTE(X;uD)dF (X) ¼ 1
n

nX

i=1

MTE(xi; uD):

The MTE parameter can also be expressed as the limit form of the LATE parameter,

lim
zµ!z0µ

LATE(x;D(z) = 0;D(z0) = 1) = x(¯1 ¡ ¯0) + lim
zµ!z0µ

E(U1 ¡ U0 j ¡z0µ · UD · ¡zµ;X = x)

= x(¯1 ¡ ¯0) + E(U1 ¡ U0 j UD = ¡z0µ)

= MTE(x; ¡z0µ):

Thus the MTE parameter measures the average gain in outcomes for those individuals who are

just indi®erent to the receipt of treatment when the zµ index is ¯xed at the value ¡uD.

The four parameters de¯ne di®erent average gains to program participation if UD is not (mean)

independent of U1¡U0 but the four parameters are identical if UD is mean independent of U1¡U0

conditional on X = x. In this paper, we derive closed-form solutions and simple estimators

for these four parameters given certain distributional assumptions for the error terms. These

expressions enable researchers to obtain estimates of the various treatment e®ects using simple

methods.

3 Simple Expressions for the Di®erent Treatment Parameters

This section derives expressions for ATE, TT, LATE, and MTE as given in (4) - (11) us-

ing two di®erent assumptions regarding the distribution of the unobservables. Estimates of the

treatment parameters can be obtained by using the output from a two-step procedure. We begin

with the textbook selection model5 and then present °exible non-normal models that possess the

computational simplicity of the normal model.
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3.1 Results for the \Textbook" Model

We ¯rst present expressions for the textbook normal model:
2
4

UD

U1

U0

3
5 » N

0
@0;

2
4

1 ¾1D ¾0D
¾1D ¾2

1 ¾10
¾0D ¾10 ¾2

0

3
5
1
A :

The variance parameter in the selection equation is normalized to unity without loss of generality.

For all of the values of the parameters, ATE reduces to the form given in (4). Under the normality

assumption, the expression for Treatment on the Treated (TT) is:

TT(x; z;D(z) = 1) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)
Á(zµ)
©(zµ)

;

where ½i ´ Corr(U i; UD); i = 0; 1: Under the normalization that the variance of the disturbance

term in the selection equation is unity, ½i¾i = ¾iD: As previously noted, under independence

between UD and (U1¡U0) all treatment parameters are the same. Thus, if Cov(U1¡U0; UD) = 0,

or ½1¾1 = ½0¾0, Treatment on the Treated reduces to ATE in (4). In this case, people are not

selecting into program on the basis of their unobserved (by the econometrician) gain, and all the

treatment parameters reduce to ATE. If Cov(U1¡U0; UD) > 0, then TT > ATE: If this condition

is true, people are selecting into treatment on the basis of their idiosyncratic gain to treatment,

and thus the gain from program participation for those observed in the treated state will exceed

the gain for the average person. Also note that as zµ ! 1, TT ! ATE. In this case, the

probability of receiving treatment is one given the observable characteristics Z = z and thus there

is no selection problem. In this case, the conditioning information D = 1 is redundant given the

characteristics Z = z and thus the two parameters in (4) and (6) are equal.

Using standard results (see e.g. Cramer (1946) or Johnson, Kotz and Balakrishnan (1992)), the

LATE parameter can easily be derived using the fact that if (y; z) » N(¹y; ¹z; ¾y; ¾z; ½) and b > a

E(y j a · z · b) = ¹y + ½¾y
µ

Á(®) ¡ Á(¯)
©(¯) ¡ ©(®)

¶
;

where ® = (a ¡ ¹z)=¾z, ¯ = (b ¡ ¹z)=¾z, so

LATE(x;D(z) = 0; D(z0) = 1) = E(Y1 ¡ Y0 j x; zµ < UD < z0µ))

= x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)
Á(z0µ) ¡ Á(zµ)
©(z0µ) ¡ ©(zµ)

: (12)
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The Marginal Treatment E®ect

MTE(x; uD) = x(¯1 ¡ ¯0) + E(U1 ¡ U0jUD = uD)

= x(¯1 ¡ ¯0) + E(U1jUD = uD) ¡ E(U0jUD = uD)

= x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)uD:

It is the limit form of LATE, 6

MTE(x; uD) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0) lim
t!¡uD

·
Á(¡uD) ¡ Á(t)
©(¡uD) ¡ ©(t)

¸
(13)

= x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0) lim
t!¡uD

"¡
Á(¡uD) ¡ Á(t)

¢
=(¡uD ¡ t)

(©(¡uD) ¡ ©(t)) =(¡uD ¡ t)

#

= x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)uD:

Evaluating MTE when uD is large corresponds to the case where the average outcome gain is

evaluated for those individuals with unobservables making them most likely to participate, (and

conversely when uD is small). When uD = 0, MTE = ATE as a consequence of the symmetry of

the normal distribution. We next consider non-normal models.

3.2 Extensions to Non-Normal Models

We ¯rst note that the trivariate normal case presented in the previous section can be generalized

by exploiting the natural °exibility of the selection equation. In the latent variable framework, the

selection rule assigns people to the treated state (Di = 1) provided UDi ¸ ¡Ziµ: This is equivalent

to setting Di = 1 when J(UDi ) ¸ J(¡Ziµ) for some strictly increasing function J:7

Suppose that UD » F , where F is an absolutely continuous distribution function which can

be non-normal. For simplicity assume symmetry of UD about zero so that F (¡a) = 1 ¡ F (a).

This model trivially maps into an equivalent model where the normal results apply. De¯ne ~UD ´
J©(UD); and let J©(u) ´ ©¡1F (u): Clearly, J© is left-continuous and strictly increasing and

J©(¡u) = ¡J©(u) given the assumed symmetry of F . The transformed variable, ~UD, is easily

seen to be a standard normal random variable. Thus, the original model in (1) is equivalent to

9



the transformed model:

Y 1 = X¯1 + U1

Y 0 = X¯0 + U0 (14)

D¤¤
i = J©(Zµ) + ~UD

where we now assume that the transformed error vector [ ~UD; U1; U0]0 is trivariate normal so we

can again use the normal framework. We thus obtain the following selection-corrected conditional

mean functions:

E(Y 1 j D(Z) = 1;X = z; Z = z) = x¯1 + ½1¾1
Á (J©(zµ))

F (zµ)
; (15a)

and

E(Y 0 j D(Z) = 0;X = x;Z = z) = x¯0 ¡ ½0¾0
Á (J©(zµ))
1 ¡ F (zµ)

; (15b)

and obtain the treatment parameters:8

TT (x; z;D(z) = 1) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)
Á (J©(zµ))

F (zµ)
; (16)

LATE(x;D(z) = 0;D(z0) = 1) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)
Á (J©(z0µ)) ¡ Á (J©(zµ))

F (z0µ) ¡ F (zµ)
; (17)

and

MTE(x; uD) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)J©(uD): (18)

If F = ©, we obtain the normal model presented in Section 3.1. This model trivially generalizes

the trivariate normal model and is applicable if there is concern that the errors in the selection

equation are non-normal. All the parameters necessary for estimation of the treatment parameters

for given x and z can be consistently estimated using a standard two-step procedure.

A less straightforward generalization can be achieved if we follow Lee (1982, 1983) and allow

the error terms in (1) or (14) to be jointly distributed according to the Student-tv distribution.

By varying the degrees of freedom parameter, v, he produces a °exible class of models which

can depart quite signi¯cantly from the textbook normal case. Since many of these parameters

10



are de¯ned in terms of the tail behavior of the error terms, the family of tv distributions o®ers

a very attractive and potentially more appropriate class of models for the treatment parameters

than those implied by the benchmark normal model, especially since wage data tend to be fat

tailed (see e.g. Lydall (1968)).9 We are able to obtain closed-form expressions for the various

treatment parameters in the Student-tv case, and can also estimate these expressions using output

from simple two-step procedures.

Let tv(¹; ­) denote the multivariate Student-tv density function with mean ¹, scale matrix ­

(variance equal to [v=(v ¡ 2)]­¡1) and v degrees of freedom.10 We retain the notation used to

de¯ne the covariance matrix for the normal model, and parameterize the scale matrix ­ in the

same fashion. Finally, let tv denote the standardized univariate Student tv density with mean 0

and scale parameter equal to 1, and let Tv denote the associated cdf. To obtain expressions for

the treatment parameters and derive the appropriate two-step estimators, we need to evaluate the

truncated mean E(UD j UD > ¡u) when UD has a univariate tv distribution. As shown in Rai®a

and Schlaifer (1961) if UD » tv,

E(UD j UD > ¡u) =
µ

v + u2

v ¡ 1

¶
tv(u)
Tv(u)

; v > 1: (19)

Using this result, now derive the treatment parameters for the more general model. To ensure

that ~UD has a tv density in the general case when UD » F , we de¯ne JTv (u) ´ T¡1v (F (u)); again

noting that JTv (¡u) = ¡JTv(u): We then assume that for this transformed model, [ ~UD; U1; U0]0

has a trivariate tv(0; ­) density. Given (19), we obtain the selection-corrected conditional mean

functions:

E(Y 1 j D(Z) = 1;X = x;Z = z) = x¯1 + ½1¾1

·µ
v + [JTv(zµ)]2

v ¡ 1

¶µ
tv(JTv(zµ))

F (zµ)

¶¸
; (20a)

and

E(Y 0 j D(Z) = 0;X = x;Z = z) = x¯0 ¡ ½0¾0

·µ
v + [JTv(zµ)]2

v ¡ 1

¶µ
tv(JTv (zµ))
1 ¡ F (zµ)

¶¸
: (20b)

For convenience in notation, de¯ne the following function:

g(u; v) ´
µ

v + [JTv(u)]2

v ¡ 1

¶
tv(JTv (u)):

In this notation, the following expressions for the three treatment e®ects are easily derived:11

TT (x; z; D(z) = 1) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)
g(zµ; v)
F (zµ)

: (21)
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LATE(x; D(z) = 0; D(z0) = 1) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)
g(z0µ; v) ¡ g(zµ; v)

F (z0µ) ¡ F (zµ)
: (22)

MTE(x; uD) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)JTv(u
D): (23)

For a given function F , the Student-tv case converges to the case previously analyzed as v ! 1,

since the tv density and cdf approach the normal for large v and thus the term in parentheses in

the de¯nition of g(u; v) approaches one as v ! 1: The di®erence in the expressions for the various

treatment parameters across the normal and Student-tv cases is determined by the di®erence in

the selection correction terms. In the textbook normal model, these are the well-known Mills ratio

terms, while in the Student-tv case, these terms take the form g(zµ; v)=F (zµ) and g(zµ; v)=(1 ¡
F (zµ)): Figure 1 plots the truncated means E( ~UD j ~UD > ¡J(u)). The plots are labeled in the

¯gure according to how J and the outcome variables are constructed. The ¯rst argument refers

to the distribution assigned to the outcome errors and ~UD, while the second argument following

the \/" refers to the choice of link function (i.e., the J function). In the \normal / normal" case,

J(u) = J©(u) = ©¡1©(u) = u; and the truncated mean reduces to the standard Mills ratio term:

Á(u)=©(u): In the tv=2/ normal case, J(u) = JTv=2(u) = T¡1v=2(©(u)); and the truncated mean

reduces to the expression used in (15a) and (15b).

The general models are quite °exible; the tv=2 (or other low values v) results can depart quite

signi¯cantly from the benchmark normal case and could produce treatment parameter estimates

which are quite di®erent from those obtained using normal errors. For large v, the results obtained

are quite similar to those obtained for the normal case, as expected. In the following subsection,

we present consistent estimators of the parameters of the models.

3.3 Estimation

A general recipe for obtaining two-step estimators of the various treatment parameters is as follows:

1. Obtain µ̂ from a binary choice model using F as the distribution of UD.

12



2. Compute the appropriate selection correction terms evaluated at µ̂. In the classical normal

selection model, these terms are Á(Ziµ̂)=©(Ziµ̂) when Di = 1, and Á(Ziµ̂)=(1¡©(Ziµ̂)) when

Di = 0: For the generalized models, the corresponding terms to be used are in (15a-b) or

(20a-b).

3. Run treatment-outcome-speci¯c regressions (for the groups fi : Di = 1g and fi : Di = 0g)

with the inclusion of the appropriate selection-correction terms obtained from the previous

step.

4. Given ^̄0; ^̄1; ^½1¾1 and ^½0¾0 obtained from step 3 and µ̂ from step (1), use these parameter

estimates to obtain point estimates of the treatment parameters for given X, Z, and Z 0.12

Standard errors can be obtained using the Delta method or the parametric bootstrap, as

discussed below in Section 5.

4 Monte Carlo Simulations

In this section we assess the performance of a simple model selection procedure and also assess

the performance of our treatment parameter estimators under correct and incorrect model spec-

i¯cation. We obtain sampling distributions of the estimators of di®erent treatment parameters

using both generated normal and Student-tv data. We show that the di®erent models discussed

in Section 3 can give di®erent estimates of the various treatment e®ects. Further, we demonstrate

the intuitively plausible result that our ability to correctly di®erentiate among competing models

is increasing in the sample size and the degree of selectivity in the model.

The model that we employ in the experiments below is a basic selection model with few covari-

ates, given as follows:

Y 1 = ®1 + ®2 + U1 (24)

Y 0 = ®1 + U0

D¤ = µ0 + µ1Z + UD: (25)

13



We generate the data by setting ®1 = 2; ®2 = 1, µ0 = 0, µ1 = 1, and Z » N(0; 1): With this

structure, the average treatment e®ect is ®2 = 1: For the ¯rst experiment we obtain a data set with

1,500 observations by drawing the error term vector from a trivariate normal distribution. Given

these draws, we determine the individuals' treatment choice, and given this choice, calculate the

observed value of y. For each simulated data set, we estimate the Marginal Treatment E®ect and

Treatment on the Treated for various values of Z and uD. To introduce selection bias, the data are

drawn such that ½1D = :95, ½0D = :1, We choose Var(U1) = Var(U0) = :4, normalize Var(UD) = 1,

and set the unidenti¯ed correlation coe±cient between Y 1 and Y 0 equal to 0. New data sets are

drawn 1,000 times given the speci¯cation and parameter values above, and for each iteration,

values for the above treatment parameters are obtained and stored. Sampling distributions of

these treatment parameters are then estimated by kernel smoothing the resulting 1,000 parameter

estimates. Results obtained from the true model (the normal model) are compared with those

obtained using the misspeci¯ed, heavy-tailed trivariate t2 model in Figures 2 and 3.

In Figures 2 and 3, we see that the sampling distributions are centered around the correct

values when the normal model is appropriate while the heavy-tailed t2 misses the mark, and often

places extremely small weight near the true values. Although not shown in the two ¯gures, the

degree of discrepancy between the normal and t2 models increases as the parameter of interest

moves farther into the tail of the distribution. For example, if the parameter of interest is MTE

with uD = 2; then the distribution of MTE associated with the t2 model places virtually no

mass on the correct values. In Figures 4 and 5, the same experiment is run, except the data are

generated from a trivariate t4 distribution. We then compare results from the true t4 model to

those obtained from the misspeci¯ed normal model. Again we see that the true model outperforms

the misspeci¯ed model, and the normal results generally place small mass around the true value.

Thus for parameters of interest such as TT and MTE, which are de¯ned in the tails, the normal

and Student-tv results can give quite di®erent predictions. Given this result, it is of some interest

to present a way for choosing among competing models.

A simple model selection procedure (given equal numbers of parameters across the various

models) is to obtain estimates of the selection-corrected conditional mean functions for a variety
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of competing models and then select the one which minimizes the sum of squared residuals (SSR).

This approach to model selection chooses the model whose conditional mean function provides

the best ¯t to the observed data (Amemiya, (1980)). Formally, we choose the model m which

minimizes the criterion:
nX

i=1

[(yi ¡ Dim̂(Xi; Zi j Di = 1) ¡ (1 ¡ Di)m̂(Xi; Zi j Di = 0)]2 ;

where m̂(Xi; Zi j Di = 1) corresponds to the estimated selection-corrected conditional mean

function in the treated state, and m̂(Xi; Zi j Di = 0) corresponds to this conditional mean function

in the untreated state.

Several Monte Carlo experiments were conducted to examine the performance of this model

selection procedure. We generated 1,000 data sets of sizes 50, 250, 500 and 1,000 and determined

the probability of choosing the correct model for each sample size. These results are presented in

Figure 6. The data are generated from a normal distribution, and we carry along the t2 model as

a competitor to the normal model. The experiments are repeated for three di®erent correlation

structures, each depicting varying degrees of the importance of selection bias.

The performance of the proposed model selection procedure improves with the sample size n,

and also with the degree of selectivity in the model. With little role for selection bias, it is di±cult

to di®erentiate among the models, even with a fairly large sample size. However, distinguishing

among the models may not be important in this case, since our treatment parameter estimates will

be similar in the absence of selection bias, and controlling for self-selection may not be important

to the evaluation of the given program. The results displayed in Figure 6 also suggest that one

can assess the degree of con¯dence about the ability to di®erentiate among the competing models

by investigating the empirical importance of selectivity. When selectivity is most important, the

models discussed here will give di®erent estimates of the treatment parameters. It is reassuring

that our Monte Carlo analysis suggests that we can di®erentiate among these models using our

MSE criterion given a reasonable sample size. When selectivity is not an important feature of the

data, treatment parameter estimates across these models will be similar, and thus the problem of

model selection is not important. For intermediate cases, where one is not con¯dent about the

ability to choose among competing models, yet estimates of the treatment parameters di®er across
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the models, one could place bounds on the treatment parameter estimates within the °exible class

of models described in this paper.

5 The Returns to College

We next present estimates of the return to some form of college education using our °exible scheme.

The problem of selection bias has long been recognized as important in assessing the returns to

education (see, for example Willis and Rosen (1979)). We seek to provide robust yet simple

estimates for various returns to schooling while controlling for self-selection into higher education.

Data are taken from the National Longitudinal Survey of Youth (NLSY). In our analysis, Y 1

denotes the log of 1991 hourly earnings for those individuals completing at least 13 years of

schooling by 1991, and Y 0 is the log of hourly wages for those with 12 or fewer years of schooling.

The sample is restricted to white males who are not enrolled in school in the current year and

report hourly earnings between $1 and $100. Observations are also deleted when other explanatory

variables used in the analysis are missing, resulting in a ¯nal sample of 1,230 observations.

The variables in X include an intercept, two indicators for residence in the Northeast and

South,13 potential labor market experience and its square,14 an indicator for residence in an urban

area, the local unemployment rate in 1990, and a measure of \ability" denoted as g. This ability

measure is constructed from the 10 component tests of the ASVAB (Armed Services Vocational

Aptitude Battery) provided in the NLSY. Since people vary in age at the time of the test, each

component test is ¯rst regressed on age. The residuals from this regression are then standardized,

and g is de¯ned as the ¯rst principal component of the standardized residuals.15 We choose

a parsimonious speci¯cation for the variables in the selection equation (Z), which includes an

intercept, g, indicator variables denoting if the respondent's mother and father attended college,

an indicator for residence in an urban area at age 18 and number of siblings. The last variable

serves as our exclusion restriction and is assumed to a®ect the college entry decision without

a®ecting post-schooling earnings.16

16



We obtain estimates of the four treatment parameters discussed in this paper using a variety of

models. These include the \textbook" normal model, Student-tv models with a logit link function,

and Student-tv models with a Tv link function. For the Student-tv cases, results are obtained for

v 2 f2; 3; 4; 5; 6; 8; 12; 24g: For small values of v, results could potentially be quite di®erent from

those obtained from the normal model.

Point estimates of the Average Treatment E®ect (ATE) are obtained by averaging the conditional

treatment e®ects (given X) over the sample distribution of characteristics, as in equation (5). For

Treatment on the Treated, point estimates are obtained as in (7) by averaging over the joint

distribution of characteristics (given X and Z) for the subsample that actually selects into college.

To estimate LATE, we average over the joint distribution of characteristics after setting the number

of siblings variable in Z = z equal to four, and equal to 0 in Z = z0 (this is the second form of

the unconditional LATE parameter previously discussed). This estimates the average college

log wage premium for persons induced to attend college when the number of siblings has been

lowered from four to zero. Finally, for each value of UD, we construct the Marginal Treatment

E®ect parameter not conditioning on observable characteristics by averaging MTE(X;uD) over

the sample distribution of X characteristics. We plot the resulting Marginal Treatment E®ect

(MTE) parameter over values of UD from -3 to 3 in Figure 7. Point estimates of the treatment

parameters are scaled by the di®erence in average years of schooling across the college and no-

college groups (¼ 3:8) to estimate the return to schooling. Large sample standard errors of the

estimated treatment parameters are computed using the parametric bootstrap.17

Point Estimates of ATE, TT and LATE across the alternative models are presented in Table

1 of the appendix. We ¯rst see that the receipt of some form of college education tends to raise

the hourly wage of a randomly selected person by 6-9 percent. For those who actually select into

college, the results are lower, ranging from 2.8-4 percent. Point estimates of LATE are similar to

ATE, and range from 5.3-7.9 percent. The similarity between LATE and ATE results from the fact

that the change from 4 to 0 siblings does not signi¯cantly alter the propensity score, and thus this

treatment parameter is very similar to the Average Treatment E®ect. Figure 7 presents a plot of

the MTE over the interval [-3,3] across a variety of models. As the degrees of freedom parameter
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increases, the estimated MTE tends to approach what is obtained from the benchmark normal

case. Further, the average treatment e®ects are obtained for the special cases where uD = 0. The

upward slope of the plots indicates that those individuals with unobservables making them least

likely to attend college receive the highest percent increase in hourly wages, due to a negative

selection e®ect. For the best-¯tting normal model, we test and reject (with a t-statistic equal to

-2.1) the hypothesis of a constant MTE Cov(UD; U1 ¡ U0) = 0, and conclude that selection is

an important feature of this data. Marginal entrants get lower returns than those who precede

them in attending college. Similar results are reported in Carneiro, Hansen, Heckman and Vytlacil

(2000). The methods used here are easily implemented and can be applied to robustly estimate

or bound a variety of policy-relevant average gains to program participation in the presence of

selectivity bias.

6 Conclusion

This paper presents simple expressions for the parameters often used to evaluate the e®ec-

tiveness of a given program or treatment: the Average Treatment E®ect (ATE), the e®ect of

Treatment on the Treated (TT), the Local Average Treatment E®ect (LATE), and the Marginal

Treatment E®ect (MTE). These expressions were obtained for the \textbook" selection model,

and also for generalizations of this model which enable departures from normality. The appeal

of our approach is that practitioners can obtain consistent estimates of these parameters using a

two-step estimator or a simple generalization of that estimator.

The modern approach to program evaluation focuses on the estimation of narrowly de¯ned

parameters without having to impose strong distributional assumptions. The approach adopted in

this paper permits estimation of a variety of policy-relevant parameters as well as estimation of the

four treatment e®ects listed above, rather than one or the other parameters featured in the recent

treatment e®ect literature. We provide generalized yet computationally simple alternatives to the

often-used and often criticized normal model. The approach presented in this paper maintains the

°exibility of the structural model in terms of the number of parameters which we can estimate,
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while relaxing the dependence on normality assumptions.

The methods presented in this paper are applied to estimate the returns to a college education.

Using data from the NLSY, we obtain point estimates of ATE, TT, LATE, and MTE using both

the two-step procedure and generalized two-step methods. The results suggest that for the °exible

class of models analyzed, a college education raises hourly wages from 6-9 percent for a randomly

selected person, and between 2.8-4 percent for those actually selecting into higher education.
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7 Derivation of MTE: Student-tv Case

Using the notation of Section 3.2, let JTv(x) = T¡1v (F (x)): Note the following results:

t0v(x) = ¡(v + 1)x(v + x2)¡1tv(x) and J 0Tv(x) =
f(x)

tv(JTv (x))
: (A-1)

The last statement follows by noting

Tv(JTv (x)) = F (x):

By the chain rule,

@Tv(JTv(x))
@x

=
@Tv(JTv(x))

@JTv(x)
@JTv(x)

@x
= f(x);

so

@JTv (x)
@x

=
f(x)

tv(JTv(x))
:

Consider limzµ!z0µ LATE(D(z) = 0; D(z0) = 1; X = x),

x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0) lim
zµ!z0µ

g(z0µ; v) ¡ g(zµ; v)
F (z0µ) ¡ F (zµ)

= x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0) lim
zµ!z0µ

(g(z0µ; v) ¡ g(zµ; v))=(z0µ ¡ zµ)
(F (z0µ) ¡ F (zµ))=(z0µ ¡ zµ)

= x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)
@g(zµ; v)=@zµ

f(zµ)
;

since the limits exist and equal the derivatives of g (with respect to its ¯rst argument) and F .

With g(zµ; v) de¯ned as below(20), it follows that

@g(zµ; v)
@zµ

=
v + J2

Tv(zµ)
v ¡ 1

@tv(JTv (zµ))
@zµ

+
2JTv(zµ)

v ¡ 1
@JTv (zµ)

@zµ
tv(JTv(zµ)):

Substituting the two results in (A-1) above and canceling terms, and using the relationship between

MTE and the limit of the LATE parameter, we obtain

MTE(x; uD) = x(¯1 ¡ ¯0) + (½1¾1 ¡ ½0¾0)JTv(u
D);

as claimed.
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Notes
1Amemiya (1985) has classi¯ed models of this type as generalized tobit models, and refers to

the model in (1) as the Type 5 tobit model.

2Other applications which ¯t directly into this model include Lee (1979) and Willis and Rosen
(1979).

3For a more general discussion of the parameters and the relationship among them, see Heckman
and Vytlacil (1999,2000a-b).

4The implications of the assumptions imposed in Imbens and Angrist (1994) which permit
estimation of the LATE parameter have been examined by Vytlacil (1999). Vytlacil shows that the
independence and monotonicity assumptions used by Angrist and Imbens imply a latent variable
speci¯cation without parametric restrictions.

5Results for this case were ¯rst reported in Heckman and Vytlacil (2000b), although they
present a more general analysis and do not discuss how estimates of these parameters can be
obtained using simple two-step procedures.

6The last line follows from L'Hopital's rule.

7Lee (1982, 1983) uses this device.

8Henceforth, we do not discuss the ATE expression. In all cases ATE(x) is x(¯1 ¡ ¯0):

9The fat tail for wages arises, in part, from measurement errors in earnings and hours and
because wages are often de¯ned by dividing earnings by hours.

10Of course, the mean exists when v > 1 and the variance exists when v > 2:

11The TT expression follows immediately from the result in (20). The LATE expression uses
this result and an argument similar to the one used to derive the LATE parameter in the textbook
normal case (see appendix). The expression for the MTE is derived in the appendix.

12Alternatively, one could integrate over the distribution of the characteristics to obtain uncon-
ditional estimates.

13The NLSY provides four regional variables - Northcentral, Northeast, South, and West.

14Potential experience is de¯ned as Age - Years of Schooling - 6.

15For more on the construction and use of this ability measure, see Cawley et al. (1997) and
Tobias (1999).

16The number of siblings variable was found to be a signi¯cant determinant of the college entry
decision, but was not signi¯cant at the 5 percent level when included as a regressor in the outcome
equations for the college and no-college states. Other variables, such as distance to college, the
local unemployment rate at age 18 and a state-level tuition variable were also constructed and
investigated as potential instruments. These variables were found to have surprisingly little power
in explaining the college entry decision for this data and thus we selected number of siblings as
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our instrument.

17See, for example, Johnston and DiNardo (1997). We obtain 500 draws from the asymptotic
distribution of the regression parameters, and evaluate the treatment e®ects for each draw. Stan-
dard errors are computed as the standard deviation of the simulated values of the treatment
e®ects.
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Table 1
Point Estimates and Standard Errors of Alternate Treatment Parameters
Outcome Errors / Link Function ATE TT LATE

Normal/Normal .092 .039 .079
(SSR=345.25) (.03) (.04) (.03)
tv=2 / Logit .061 .036 .053

(SSR = 346.09) (.02) (.03) (.02)
tv=3 / Logit .073 .035 .062

(SSR = 345.79) (.02) (.03) (.02)
tv=4 / Logit .079 .035 .067

(SSR = 345.61) (.02) (.04) (.03)
tv=5 / Logit .082 .034 .069

(SSR = 345.51) (.03) (.04) (.03)
tv=6 / Logit .084 .034 .071

(SSR = 345.44) (.03) (.04) (.03)
tv=8 / Logit .085 .034 .073

(SSR = 345.36) (.03) (.04) (.03)
tv=12 / Logit .087 .034 .073

(SSR = 345.29) (.03) (.04) (.04)
tv=24 / Logit .088 .033 .075

(SSR = 345.23) (.04) (.04) (.03)
tv=2 / tv=2 .067 .028 .058

(SSR = 345.68) (.03) (.04) (.03)
tv=3 / tv=3 .075 .030 .063

(SSR = 345.56) (.03) (.04) (.03)
tv=4 / tv=4 .079 .031 .066

(SSR = 345.48) (.03) (.04) (.03)
tv=5 / tv=5 .082 .032 .069

(SSR = 345.43) (.03) (.04) (.03)
tv=6 / tv=6 .084 .033 .070

(SSR = 345.40) (.03) (.04) (.03)
tv=8 / tv=8 .086 .034 .072

(SSR = 345.36) (.03) (.04) (.03)
tv=12 / tv=12 .088 .036 .075

(SSR = 345.32) (.03) (.04) (.03)
tv=24 / tv=24 .090 .037 .077

(SSR = 345.29) (.03) (.04) (.03)
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